2014-06-01
User Manual and Source Code for a LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E) by James P. Larentzos...Laboratory Aberdeen Proving Ground, MD 21005-5069 ARL-SR-290 June 2014 User Manual and Source Code for a LAMMPS Implementation of Constant...3. DATES COVERED (From - To) September 2013–February 2014 4. TITLE AND SUBTITLE User Manual and Source Code for a LAMMPS Implementation of
Measuring diagnoses: ICD code accuracy.
O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M
2005-10-01
To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Main error sources along the "patient trajectory" include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the "paper trail" include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways.
Measuring Diagnoses: ICD Code Accuracy
O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M
2005-01-01
Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999
Methods for Coding Tobacco-Related Twitter Data: A Systematic Review
Unger, Jennifer B; Cruz, Tess Boley; Chu, Kar-Hai
2017-01-01
Background As Twitter has grown in popularity to 313 million monthly active users, researchers have increasingly been using it as a data source for tobacco-related research. Objective The objective of this systematic review was to assess the methodological approaches of categorically coded tobacco Twitter data and make recommendations for future studies. Methods Data sources included PsycINFO, Web of Science, PubMed, ABI/INFORM, Communication Source, and Tobacco Regulatory Science. Searches were limited to peer-reviewed journals and conference proceedings in English from January 2006 to July 2016. The initial search identified 274 articles using a Twitter keyword and a tobacco keyword. One coder reviewed all abstracts and identified 27 articles that met the following inclusion criteria: (1) original research, (2) focused on tobacco or a tobacco product, (3) analyzed Twitter data, and (4) coded Twitter data categorically. One coder extracted data collection and coding methods. Results E-cigarettes were the most common type of Twitter data analyzed, followed by specific tobacco campaigns. The most prevalent data sources were Gnip and Twitter’s Streaming application programming interface (API). The primary methods of coding were hand-coding and machine learning. The studies predominantly coded for relevance, sentiment, theme, user or account, and location of user. Conclusions Standards for data collection and coding should be developed to be able to more easily compare and replicate tobacco-related Twitter results. Additional recommendations include the following: sample Twitter’s databases multiple times, make a distinction between message attitude and emotional tone for sentiment, code images and URLs, and analyze user profiles. Being relatively novel and widely used among adolescents and black and Hispanic individuals, Twitter could provide a rich source of tobacco surveillance data among vulnerable populations. PMID:28363883
NASA Astrophysics Data System (ADS)
Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.
2018-05-01
One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.
Automated Concurrent Blackboard System Generation in C++
NASA Technical Reports Server (NTRS)
Kaplan, J. A.; McManus, J. W.; Bynum, W. L.
1999-01-01
In his 1992 Ph.D. thesis, "Design and Analysis Techniques for Concurrent Blackboard Systems", John McManus defined several performance metrics for concurrent blackboard systems and developed a suite of tools for creating and analyzing such systems. These tools allow a user to analyze a concurrent blackboard system design and predict the performance of the system before any code is written. The design can be modified until simulated performance is satisfactory. Then, the code generator can be invoked to generate automatically all of the code required for the concurrent blackboard system except for the code implementing the functionality of each knowledge source. We have completed the port of the source code generator and a simulator for a concurrent blackboard system. The source code generator generates the necessary C++ source code to implement the concurrent blackboard system using Parallel Virtual Machine (PVM) running on a heterogeneous network of UNIX(trademark) workstations. The concurrent blackboard simulator uses the blackboard specification file to predict the performance of the concurrent blackboard design. The only part of the source code for the concurrent blackboard system that the user must supply is the code implementing the functionality of the knowledge sources.
The FORTRAN static source code analyzer program (SAP) user's guide, revision 1
NASA Technical Reports Server (NTRS)
Decker, W.; Taylor, W.; Eslinger, S.
1982-01-01
The FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 1) is presented. SAP is a software tool designed to assist Software Engineering Laboratory (SEL) personnel in conducting studies of FORTRAN programs. SAP scans FORTRAN source code and produces reports that present statistics and measures of statements and structures that make up a module. This document is a revision of the previous SAP user's guide, Computer Sciences Corporation document CSC/TM-78/6045. SAP Revision 1 is the result of program modifications to provide several new reports, additional complexity analysis, and recognition of all statements described in the FORTRAN 77 standard. This document provides instructions for operating SAP and contains information useful in interpreting SAP output.
The social disutility of software ownership.
Douglas, David M
2011-09-01
Software ownership allows the owner to restrict the distribution of software and to prevent others from reading the software's source code and building upon it. However, free software is released to users under software licenses that give them the right to read the source code, modify it, reuse it, and distribute the software to others. Proponents of free software such as Richard M. Stallman and Eben Moglen argue that the social disutility of software ownership is a sufficient justification for prohibiting it. This social disutility includes the social instability of disregarding laws and agreements covering software use and distribution, inequality of software access, and the inability to help others by sharing software with them. Here I consider these and other social disutility claims against withholding specific software rights from users, in particular, the rights to read the source code, duplicate, distribute, modify, imitate, and reuse portions of the software within new programs. I find that generally while withholding these rights from software users does cause some degree of social disutility, only the rights to duplicate, modify and imitate cannot legitimately be denied to users on this basis. The social disutility of withholding the rights to distribute the software, read its source code and reuse portions of it in new programs is insufficient to prohibit software owners from denying them to users. A compromise between the software owner and user can minimise the social disutility of withholding these particular rights from users. However, the social disutility caused by software patents is sufficient for rejecting such patents as they restrict the methods of reducing social disutility possible with other forms of software ownership.
Methods for Coding Tobacco-Related Twitter Data: A Systematic Review.
Lienemann, Brianna A; Unger, Jennifer B; Cruz, Tess Boley; Chu, Kar-Hai
2017-03-31
As Twitter has grown in popularity to 313 million monthly active users, researchers have increasingly been using it as a data source for tobacco-related research. The objective of this systematic review was to assess the methodological approaches of categorically coded tobacco Twitter data and make recommendations for future studies. Data sources included PsycINFO, Web of Science, PubMed, ABI/INFORM, Communication Source, and Tobacco Regulatory Science. Searches were limited to peer-reviewed journals and conference proceedings in English from January 2006 to July 2016. The initial search identified 274 articles using a Twitter keyword and a tobacco keyword. One coder reviewed all abstracts and identified 27 articles that met the following inclusion criteria: (1) original research, (2) focused on tobacco or a tobacco product, (3) analyzed Twitter data, and (4) coded Twitter data categorically. One coder extracted data collection and coding methods. E-cigarettes were the most common type of Twitter data analyzed, followed by specific tobacco campaigns. The most prevalent data sources were Gnip and Twitter's Streaming application programming interface (API). The primary methods of coding were hand-coding and machine learning. The studies predominantly coded for relevance, sentiment, theme, user or account, and location of user. Standards for data collection and coding should be developed to be able to more easily compare and replicate tobacco-related Twitter results. Additional recommendations include the following: sample Twitter's databases multiple times, make a distinction between message attitude and emotional tone for sentiment, code images and URLs, and analyze user profiles. Being relatively novel and widely used among adolescents and black and Hispanic individuals, Twitter could provide a rich source of tobacco surveillance data among vulnerable populations. ©Brianna A Lienemann, Jennifer B Unger, Tess Boley Cruz, Kar-Hai Chu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 31.03.2017.
NASA Technical Reports Server (NTRS)
Clark, Kenneth; Watney, Garth; Murray, Alexander; Benowitz, Edward
2007-01-01
A computer program translates Unified Modeling Language (UML) representations of state charts into source code in the C, C++, and Python computing languages. ( State charts signifies graphical descriptions of states and state transitions of a spacecraft or other complex system.) The UML representations constituting the input to this program are generated by using a UML-compliant graphical design program to draw the state charts. The generated source code is consistent with the "quantum programming" approach, which is so named because it involves discrete states and state transitions that have features in common with states and state transitions in quantum mechanics. Quantum programming enables efficient implementation of state charts, suitable for real-time embedded flight software. In addition to source code, the autocoder program generates a graphical-user-interface (GUI) program that, in turn, generates a display of state transitions in response to events triggered by the user. The GUI program is wrapped around, and can be used to exercise the state-chart behavior of, the generated source code. Once the expected state-chart behavior is confirmed, the generated source code can be augmented with a software interface to the rest of the software with which the source code is required to interact.
NASA Astrophysics Data System (ADS)
Kempton, Eliza M.-R.; Lupu, Roxana; Owusu-Asare, Albert; Slough, Patrick; Cale, Bryson
2017-04-01
We present Exo-Transmit, a software package to calculate exoplanet transmission spectra for planets of varied composition. The code is designed to generate spectra of planets with a wide range of atmospheric composition, temperature, surface gravity, and size, and is therefore applicable to exoplanets ranging in mass and size from hot Jupiters down to rocky super-Earths. Spectra can be generated with or without clouds or hazes with options to (1) include an optically thick cloud deck at a user-specified atmospheric pressure or (2) to augment the nominal Rayleigh scattering by a user-specified factor. The Exo-Transmit code is written in C and is extremely easy to use. Typically the user will only need to edit parameters in a single user input file in order to run the code for a planet of their choosing. Exo-Transmit is available publicly on Github with open-source licensing at https://github.com/elizakempton/Exo_Transmit.
A Review on Spectral Amplitude Coding Optical Code Division Multiple Access
NASA Astrophysics Data System (ADS)
Kaur, Navpreet; Goyal, Rakesh; Rani, Monika
2017-06-01
This manuscript deals with analysis of Spectral Amplitude Coding Optical Code Division Multiple Access (SACOCDMA) system. The major noise source in optical CDMA is co-channel interference from other users known as multiple access interference (MAI). The system performance in terms of bit error rate (BER) degrades as a result of increased MAI. It is perceived that number of users and type of codes used for optical system directly decide the performance of system. MAI can be restricted by efficient designing of optical codes and implementing them with unique architecture to accommodate more number of users. Hence, it is a necessity to design a technique like spectral direct detection (SDD) technique with modified double weight code, which can provide better cardinality and good correlation property.
RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, S.L.; Miller, L.A.; Monroe, D.K.
1998-04-01
This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in themore » quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.« less
15 CFR 740.7 - Computers (APP).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 4A003. (2) Technology and software. License Exception APP authorizes exports of technology and software... programmability. (ii) Technology and source code. Technology and source code eligible for License Exception APP..., reexports and transfers (in-country) for nuclear, chemical, biological, or missile end-users and end-uses...
An Adaptive Source-Channel Coding with Feedback for Progressive Transmission of Medical Images
Lo, Jen-Lung; Sanei, Saeid; Nazarpour, Kianoush
2009-01-01
A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI). The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician). In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC) and Rayleigh channel. The experimental results verify the effectiveness of the design. PMID:19190770
Make Movies out of Your Dynamical Simulations with OGRE!
NASA Astrophysics Data System (ADS)
Tamayo, Daniel; Douglas, R. W.; Ge, H. W.; Burns, J. A.
2013-10-01
We have developed OGRE, the Orbital GRaphics Environment, an open-source project comprising a graphical user interface that allows the user to view the output from several dynamical integrators (e.g., SWIFT) that are commonly used for academic work. One can interactively vary the display speed, rotate the view and zoom the camera. This makes OGRE a great tool for students or the general public to explore accurate orbital histories that may display interesting dynamical features, e.g. the destabilization of Solar System orbits under the Nice model, or interacting pairs of exoplanets. Furthermore, OGRE allows the user to choreograph sequences of transformations as the simulation is played to generate movies for use in public talks or professional presentations. The graphical user interface is coded using Qt to ensure portability across different operating systems. OGRE will run on Linux and Mac OS X. The program is available as a self-contained executable, or as source code that the user can compile. We are continually updating the code, and hope that people who find it useful will contribute to the development of new features.
Make Movies out of Your Dynamical Simulations with OGRE!
NASA Astrophysics Data System (ADS)
Tamayo, Daniel; Douglas, R. W.; Ge, H. W.; Burns, J. A.
2014-01-01
We have developed OGRE, the Orbital GRaphics Environment, an open-source project comprising a graphical user interface that allows the user to view the output from several dynamical integrators (e.g., SWIFT) that are commonly used for academic work. One can interactively vary the display speed, rotate the view and zoom the camera. This makes OGRE a great tool for students or the general public to explore accurate orbital histories that may display interesting dynamical features, e.g. the destabilization of Solar System orbits under the Nice model, or interacting pairs of exoplanets. Furthermore, OGRE allows the user to choreograph sequences of transformations as the simulation is played to generate movies for use in public talks or professional presentations. The graphical user interface is coded using Qt to ensure portability across different operating systems. OGRE will run on Linux and Mac OS X. The program is available as a self-contained executable, or as source code that the user can compile. We are continually updating the code, and hope that people who find it useful will contribute to the development of new features.
AirShow 1.0 CFD Software Users' Guide
NASA Technical Reports Server (NTRS)
Mohler, Stanley R., Jr.
2005-01-01
AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.
Time synchronized video systems
NASA Technical Reports Server (NTRS)
Burnett, Ron
1994-01-01
The idea of synchronizing multiple video recordings to some type of 'range' time has been tried to varying degrees of success in the past. Combining this requirement with existing time code standards (SMPTE) and the new innovations in desktop multimedia however, have afforded an opportunity to increase the flexibility and usefulness of such efforts without adding costs over the traditional data recording and reduction systems. The concept described can use IRIG, GPS or a battery backed internal clock as the master time source. By converting that time source to Vertical Interval Time Code or Longitudinal Time Code, both in accordance with the SMPTE standards, the user will obtain a tape that contains machine/computer readable time code suitable for use with editing equipment that is available off-the-shelf. Accuracy on playback is then determined by the playback system chosen by the user. Accuracies of +/- 2 frames are common among inexpensive systems and complete frame accuracy is more a matter of the users' budget than the capability of the recording system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Thomas; Hamilton, Steven; Slattery, Stuart
Profugus is an open-source mini-application (mini-app) for radiation transport and reactor applications. It contains the fundamental computational kernels used in the Exnihilo code suite from Oak Ridge National Laboratory. However, Exnihilo is production code with a substantial user base. Furthermore, Exnihilo is export controlled. This makes collaboration with computer scientists and computer engineers difficult. Profugus is designed to bridge that gap. By encapsulating the core numerical algorithms in an abbreviated code base that is open-source, computer scientists can analyze the algorithms and easily make code-architectural changes to test performance without compromising the production code values of Exnihilo. Profugus is notmore » meant to be production software with respect to problem analysis. The computational kernels in Profugus are designed to analyze performance, not correctness. Nonetheless, users of Profugus can setup and run problems with enough real-world features to be useful as proof-of-concept for actual production work.« less
GRASP/Ada 95: Reverse Engineering Tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1996-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped an algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD), and a new visualization for a fine-grained complexity metric called the Complexity Profile Graph (CPG). By synchronizing the CSD and the CPG, the CSD view of control structure, nesting, and source code is directly linked to the corresponding visualization of statement level complexity in the CPG. GRASP has been integrated with GNAT, the GNU Ada 95 Translator to provide a comprehensive graphical user interface and development environment for Ada 95. The user may view, edit, print, and compile source code as a CSD with no discernible addition to storage or computational overhead. The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada 95 source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. The current update has focused on the design and implementation of a new Motif compliant user interface, and a new CSD generator consisting of a tagger and renderer. The Complexity Profile Graph (CPG) is based on a set of functions that describes the context, content, and the scaling for complexity on a statement by statement basis. When combined graphicafly, the result is a composite profile of complexity for the program unit. Ongoing research includes the development and refinement of the associated functions, and the development of the CPG generator prototype. The current Version 5.0 prototype provides the capability for the user to generate CSDs and CPGs from Ada 95 source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application. This report provides an overview of the GRASP/Ada project with an emphasis on the current update.
OpenSQUID: A Flexible Open-Source Software Framework for the Control of SQUID Electronics
Jaeckel, Felix T.; Lafler, Randy J.; Boyd, S. T. P.
2013-02-06
We report commercially available computer-controlled SQUID electronics are usually delivered with software providing a basic user interface for adjustment of SQUID tuning parameters, such as bias current, flux offset, and feedback loop settings. However, in a research context it would often be useful to be able to modify this code and/or to have full control over all these parameters from researcher-written software. In the case of the STAR Cryoelectronics PCI/PFL family of SQUID control electronics, the supplied software contains modules for automatic tuning and noise characterization, but does not provide an interface for user code. On the other hand, themore » Magnicon SQUIDViewer software package includes a public application programming interface (API), but lacks auto-tuning and noise characterization features. To overcome these and other limitations, we are developing an "open-source" framework for controlling SQUID electronics which should provide maximal interoperability with user software, a unified user interface for electronics from different manufacturers, and a flexible platform for the rapid development of customized SQUID auto-tuning and other advanced features. Finally, we have completed a first implementation for the STAR Cryoelectronics hardware and have made the source code for this ongoing project available to the research community on SourceForge (http://opensquid.sourceforge.net) under the GNU public license.« less
Mod3DMT and EMTF: Free Software for MT Data Processing and Inversion
NASA Astrophysics Data System (ADS)
Egbert, G. D.; Kelbert, A.; Meqbel, N. M.
2017-12-01
"ModEM" was developed at Oregon State University as a modular system for inversion of electromagnetic (EM) geophysical data (Egbert and Kelbert, 2012; Kelbert et al., 2014). Although designed for more general (frequency domain) EM applications, and originally intended as a testbed for exploring inversion search and regularization strategies, our own initial uses of ModEM were for 3-D imaging of the deep crust and upper mantle at large scales. Since 2013 we have offered a version of the source code suitable for 3D magnetotelluric (MT) inversion on an "as is, user beware" basis for free for non-commercial applications. This version, which we refer to as Mod3DMT, has since been widely used by the international MT community. Over 250 users have registered to download the source code, and at least 50 MT studies in the refereed literature, covering locations around the globe at a range of spatial scales, cite use of ModEM for 3D inversion. For over 30 years I have also made MT processing software available for free use. In this presentation, I will discuss my experience with these freely available (but perhaps not truly open-source) computer codes. Although users are allowed to make modifications to the codes (on conditions that they provide a copy of the modified version) only a handful of users have tried to make any modification, and only rarely are modifications even reported, much less provided back to the developers.
ALPHACAL: A new user-friendly tool for the calibration of alpha-particle sources.
Timón, A Fernández; Vargas, M Jurado; Gallardo, P Álvarez; Sánchez-Oro, J; Peralta, L
2018-05-01
In this work, we present and describe the program ALPHACAL, specifically developed for the calibration of alpha-particle sources. It is therefore more user-friendly and less time-consuming than multipurpose codes developed for a wide range of applications. The program is based on the recently developed code AlfaMC, which simulates specifically the transport of alpha particles. Both cylindrical and point sources mounted on the surface of polished backings can be simulated, as is the convention in experimental measurements of alpha-particle sources. In addition to the efficiency calculation and determination of the backscattering coefficient, some additional tools are available to the user, like the visualization of energy spectrum, use of energy cut-off or low-energy tail corrections. ALPHACAL has been implemented in C++ language using QT library, so it is available for Windows, MacOs and Linux platforms. It is free and can be provided under request to the authors. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Femec, D.A.
This report describes two code-generating tools used to speed design and implementation of relational databases and user interfaces: CREATE-SCHEMA and BUILD-SCREEN. CREATE-SCHEMA produces the SQL commands that actually create and define the database. BUILD-SCREEN takes templates for data entry screens and generates the screen management system routine calls to display the desired screen. Both tools also generate the related FORTRAN declaration statements and precompiled SQL calls. Included with this report is the source code for a number of FORTRAN routines and functions used by the user interface. This code is broadly applicable to a number of different databases.
Automatic Data Traffic Control on DSM Architecture
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry; Kwak, Dochan (Technical Monitor)
2000-01-01
We study data traffic on distributed shared memory machines and conclude that data placement and grouping improve performance of scientific codes. We present several methods which user can employ to improve data traffic in his code. We report on implementation of a tool which detects the code fragments causing data congestions and advises user on improvements of data routing in these fragments. The capabilities of the tool include deduction of data alignment and affinity from the source code; detection of the code constructs having abnormally high cache or TLB misses; generation of data placement constructs. We demonstrate the capabilities of the tool on experiments with NAS parallel benchmarks and with a simple computational fluid dynamics application ARC3D.
EUPDF: An Eulerian-Based Monte Carlo Probability Density Function (PDF) Solver. User's Manual
NASA Technical Reports Server (NTRS)
Raju, M. S.
1998-01-01
EUPDF is an Eulerian-based Monte Carlo PDF solver developed for application with sprays, combustion, parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with the coding required to couple the PDF code to any given flow code and a basic understanding of the EUPDF code structure as well as the models involved in the PDF formulation. The source code of EUPDF will be available with the release of the National Combustion Code (NCC) as a complete package.
Update of GRASP/Ada reverse engineering tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1992-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation of Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAS 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3, the prototype was evaluated by software engineering students at Auburn University and then updated with significant enhancements to the user interface including editing capabilities. Version 3.2 of the prototype was prepared for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application.
Astrophysics Source Code Library -- Now even better!
NASA Astrophysics Data System (ADS)
Allen, Alice; Schmidt, Judy; Berriman, Bruce; DuPrie, Kimberly; Hanisch, Robert J.; Mink, Jessica D.; Nemiroff, Robert J.; Shamir, Lior; Shortridge, Keith; Taylor, Mark B.; Teuben, Peter J.; Wallin, John F.
2015-01-01
The Astrophysics Source Code Library (ASCL, ascl.net) is a free online registry of codes used in astronomy research. Indexed by ADS, it now contains nearly 1,000 codes and with recent major changes, is better than ever! The resource has a new infrastructure that offers greater flexibility and functionality for users, including an easier submission process, better browsing, one-click author search, and an RSS feeder for news. The new database structure is easier to maintain and offers new possibilities for collaboration. Come see what we've done!
NASA Astrophysics Data System (ADS)
Maeda, Takuto; Takemura, Shunsuke; Furumura, Takashi
2017-07-01
We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct seismic wave propagation simulations using their own velocity structure models and the necessary source representations by specifying them in an input parameter file. The code has various modes for different types of velocity structure model input and different source representations such as single force, moment tensor and plane-wave incidence, which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in Fortran 2003 and are available with detailed documents in a public repository.[Figure not available: see fulltext.
Implementation of the Regulatory Authority Information System in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, S.D.; Schetnan, R.; Hasan, A.
2006-07-01
As part of the implementation of a bar-code-based system to track radioactive sealed sources (RSS) in Egypt, the Regulatory Authority Information System Personal Digital Assistant (RAIS PDA) Application was developed to extend the functionality of the International Atomic Energy Agency's (IAEA's) RAIS database by allowing users to download RSS data from the database to a portable PDA equipped with a bar-code scanner. [1, 4] The system allows users in the field to verify radioactive sealed source data, gather radioactive sealed source audit information, and upload that data to the RAIS database. This paper describes the development of the RAIS PDAmore » Application, its features, and how it will be implemented in Egypt. (authors)« less
GSE, data management system programmers/User' manual
NASA Technical Reports Server (NTRS)
Schlagheck, R. A.; Dolerhie, B. D., Jr.; Ghiglieri, F. J.
1974-01-01
The GSE data management system is a computerized program which provides for a central storage source for key data associated with the mechanical ground support equipment (MGSE). Eight major sort modes can be requested by the user. Attributes that are printed automatically with each sort include the GSE end item number, description, class code, functional code, fluid media, use location, design responsibility, weight, cost, quantity, dimensions, and applicable documents. Multiple subsorts are available for the class code, functional code, fluid media, use location, design responsibility, and applicable document categories. These sorts and how to use them are described. The program and GSE data bank may be easily updated and expanded.
The development of a program analysis environment for Ada: Reverse engineering tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1991-01-01
The Graphical Representations of Algorithms, Structures, and Processes for Ada (GRASP/Ada) has successfully created and prototyped a new algorithm level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and thus improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under the Virtual Memory System (VMS) on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. In Phase 3 of the project, the prototype was prepared for limited distribution (GRASP/Ada Version 3.0) to facilitate evaluation. The user interface was extensively reworked. The current prototype provides the capability for the user to generate CSD from Ada source code in a reverse engineering mode with a level of flexibility suitable for practical application.
Support for Debugging Automatically Parallelized Programs
NASA Technical Reports Server (NTRS)
Hood, Robert; Jost, Gabriele
2001-01-01
This viewgraph presentation provides information on support sources available for the automatic parallelization of computer program. CAPTools, a support tool developed at the University of Greenwich, transforms, with user guidance, existing sequential Fortran code into parallel message passing code. Comparison routines are then run for debugging purposes, in essence, ensuring that the code transformation was accurate.
Karpievitch, Yuliya V; Almeida, Jonas S
2006-01-01
Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet. PMID:16539707
Karpievitch, Yuliya V; Almeida, Jonas S
2006-03-15
Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet.
McSKY: A hybrid Monte-Carlo lime-beam code for shielded gamma skyshine calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J.K.; Faw, R.E.; Stedry, M.H.
1994-07-01
McSKY evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated into either a vertical cone or a vertical structure with an N-sided polygon cross section. The code assumes an overhead shield of two materials, through the user can specify zero shield thickness for an unshielded calculation. The code uses a Monte-Carlo algorithm to evaluate transport through source shields and the integral line source to describe photon transport through the atmosphere. The source energy must be between 0.02 and 100 MeV. For heavily shielded sources with energies above 20 MeV, McSKY results must be used cautiously, especially at detectormore » locations near the source.« less
NASA Technical Reports Server (NTRS)
1975-01-01
A system is presented which processes FORTRAN based software systems to surface potential problems before they become execution malfunctions. The system complements the diagnostic capabilities of compilers, loaders, and execution monitors rather than duplicating these functions. Also, it emphasizes frequent sources of FORTRAN problems which require inordinate manual effort to identify. The principle value of the system is extracting small sections of unusual code from the bulk of normal sequences. Code structures likely to cause immediate or future problems are brought to the user's attention. These messages stimulate timely corrective action of solid errors and promote identification of 'tricky' code. Corrective action may require recoding or simply extending software documentation to explain the unusual technique.
SKYDOSE: A code for gamma skyshine calculations using the integral line-beam method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J.K.; Faw, R.E.; Brockhoff, R.C.
1994-07-01
SKYDOS evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated by three simple geometries: (1) a source in a silo; (2) a source behind an infinitely long, vertical, black wall; and (3) a source in a rectangular building. In all three geometries, an optical overhead shield may be specified. The source energy must be between 0.02 and 100 MeV (10 MeV for sources with an overhead shield). This is a user`s manual. Other references give more detail on the integral line-beam method used by SKYDOSE.
SIMULATION MODEL FOR WATERSHED MANAGEMENT PLANNING. VOLUME 2. MODEL USER MANUAL
This report provides a user manual for the hydrologic, nonpoint source pollution simulation of the generalized planning model for evaluating forest and farming management alternatives. The manual contains an explanation of application of specific code and indicates changes that s...
MELCOR computer code manuals: Primer and user`s guides, Version 1.8.3 September 1994. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.
1995-03-01
MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the US Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users` Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less
Software to model AXAF image quality
NASA Technical Reports Server (NTRS)
Ahmad, Anees
1993-01-01
This draft final report describes the work performed under this delivery order from May 1992 through June 1993. The purpose of this contract was to enhance and develop an integrated optical performance modeling software for complex x-ray optical systems such as AXAF. The GRAZTRACE program developed by the MSFC Optical Systems Branch for modeling VETA-I was used as the starting baseline program. The original program was a large single file program and, therefore, could not be modified very efficiently. The original source code has been reorganized, and a 'Make Utility' has been written to update the original program. The new version of the source code consists of 36 small source files to make it easier for the code developer to manage and modify the program. A user library has also been built and a 'Makelib' utility has been furnished to update the library. With the user library, the users can easily access the GRAZTRACE source files and build a custom library. A user manual for the new version of GRAZTRACE has been compiled. The plotting capability for the 3-D point spread functions and contour plots has been provided in the GRAZTRACE using the graphics package DISPLAY. The Graphics emulator over the network has been set up for programming the graphics routine. The point spread function and the contour plot routines have also been modified to display the plot centroid, and to allow the user to specify the plot range, and the viewing angle options. A Command Mode version of GRAZTRACE has also been developed. More than 60 commands have been implemented in a Code-V like format. The functions covered in this version include data manipulation, performance evaluation, and inquiry and setting of internal parameters. The user manual for these commands has been formatted as in Code-V, showing the command syntax, synopsis, and options. An interactive on-line help system for the command mode has also been accomplished to allow the user to find valid commands, command syntax, and command function. A translation program has been written to convert FEA output from structural analysis to GRAZTRACE surface deformation file (.dfm file). The program can accept standard output files and list files from COSMOS/M and NASTRAN finite analysis programs. Some interactive options are also provided, such as Cartesian or cylindrical coordinate transformation, coordinate shift and scale, and axial length change. A computerized database for technical documents relating to the AXAF project has been established. Over 5000 technical documents have been entered into the master database. A user can now rapidly retrieve the desired documents relating to the AXAF project. The summary of the work performed under this contract is shown.
General Mission Analysis Tool (GMAT) Architectural Specification. Draft
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Conway, Darrel, J.
2007-01-01
Early in 2002, Goddard Space Flight Center (GSFC) began to identify requirements for the flight dynamics software needed to fly upcoming missions that use formations of spacecraft to collect data. These requirements ranged from low level modeling features to large scale interoperability requirements. In 2003 we began work on a system designed to meet these requirement; this system is GMAT. The General Mission Analysis Tool (GMAT) is a general purpose flight dynamics modeling tool built on open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively. GMAT can be run through either a fully functional Graphical User Interface (GUI) or as a command line program with minimal user feedback. The system is built and runs on Microsoft Windows, Linux, and Macintosh OS X platforms. The GMAT GUI is written using wxWidgets, a cross platform library of components that streamlines the development and extension of the user interface Flight dynamics modeling is performed in GMAT by building components that represent the players in the analysis problem that is being modeled. These components interact through the sequential execution of instructions, embodied in the GMAT Mission Sequence. A typical Mission Sequence will model the trajectories of a set of spacecraft evolving over time, calculating relevant parameters during this propagation, and maneuvering individual spacecraft to maintain a set of mission constraints as established by the mission analyst. All of the elements used in GMAT for mission analysis can be viewed in the GMAT GUI or through a custom scripting language. Analysis problems modeled in GMAT are saved as script files, and these files can be read into GMAT. When a script is read into the GMAT GUI, the corresponding user interface elements are constructed in the GMAT GUI. The GMAT system was developed from the ground up to run in a platform agnostic environment. The source code compiles on numerous different platforms, and is regularly exercised running on Windows, Linux and Macintosh computers by the development and analysis teams working on the project. The system can be run using either a graphical user interface, written using the open source wxWidgets framework, or from a text console. The GMAT source code was written using open source tools. GSFC has released the code using the NASA open source license.
Increasing Open Source Software Integration on the Department of Defense Unclassified Desktop
2008-06-01
free and legal access to the source code grants the user or operating agency considerable power and control . Commercial, off-the-shelf (COTS...COMMAND, CONTROL AND COMMUNICATIONS (C-3)) from the NAVAL POSTGRADUATE SCHOOL June 2008 Author: Steven A. Schearer Approved...Network. This fee also entitles users to unlimited web support with a two-business-day turnaround time. The retail price for a one year, basic
SAP- FORTRAN STATIC SOURCE CODE ANALYZER PROGRAM (IBM VERSION)
NASA Technical Reports Server (NTRS)
Manteufel, R.
1994-01-01
The FORTRAN Static Source Code Analyzer program, SAP, was developed to automatically gather statistics on the occurrences of statements and structures within a FORTRAN program and to provide for the reporting of those statistics. Provisions have been made for weighting each statistic and to provide an overall figure of complexity. Statistics, as well as figures of complexity, are gathered on a module by module basis. Overall summed statistics are also accumulated for the complete input source file. SAP accepts as input syntactically correct FORTRAN source code written in the FORTRAN 77 standard language. In addition, code written using features in the following languages is also accepted: VAX-11 FORTRAN, IBM S/360 FORTRAN IV Level H Extended; and Structured FORTRAN. The SAP program utilizes two external files in its analysis procedure. A keyword file allows flexibility in classifying statements and in marking a statement as either executable or non-executable. A statistical weight file allows the user to assign weights to all output statistics, thus allowing the user flexibility in defining the figure of complexity. The SAP program is written in FORTRAN IV for batch execution and has been implemented on a DEC VAX series computer under VMS and on an IBM 370 series computer under MVS. The SAP program was developed in 1978 and last updated in 1985.
SAP- FORTRAN STATIC SOURCE CODE ANALYZER PROGRAM (DEC VAX VERSION)
NASA Technical Reports Server (NTRS)
Merwarth, P. D.
1994-01-01
The FORTRAN Static Source Code Analyzer program, SAP, was developed to automatically gather statistics on the occurrences of statements and structures within a FORTRAN program and to provide for the reporting of those statistics. Provisions have been made for weighting each statistic and to provide an overall figure of complexity. Statistics, as well as figures of complexity, are gathered on a module by module basis. Overall summed statistics are also accumulated for the complete input source file. SAP accepts as input syntactically correct FORTRAN source code written in the FORTRAN 77 standard language. In addition, code written using features in the following languages is also accepted: VAX-11 FORTRAN, IBM S/360 FORTRAN IV Level H Extended; and Structured FORTRAN. The SAP program utilizes two external files in its analysis procedure. A keyword file allows flexibility in classifying statements and in marking a statement as either executable or non-executable. A statistical weight file allows the user to assign weights to all output statistics, thus allowing the user flexibility in defining the figure of complexity. The SAP program is written in FORTRAN IV for batch execution and has been implemented on a DEC VAX series computer under VMS and on an IBM 370 series computer under MVS. The SAP program was developed in 1978 and last updated in 1985.
Numerical Electromagnetic Code (NEC)-Basic Scattering Code. Part I. User’s Manual.
1979-09-01
Command RT : 29 I. Command PG: 32 J. Command GP: 35 K. Command CG: 36 L. Command SG: 39 M. Command AM: 44 N. Conumand PR: 48 0. Command NP: 49 P...these points and con- firm the validity of the solution. 1 0 1 -.- ’----.- ... The source presently considered in the computer code is an Plec - tric...Range Input 28 * RT : Translate and/or Rotate Coordinates 29 SG: Source Geometry Input IQ TO: Test Data Generation Options 17 [IN: Units of Input U)S
ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2008-04-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a methodmore » for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.« less
Sridhar, Vishnu B; Tian, Peifang; Dale, Anders M; Devor, Anna; Saisan, Payam A
2014-01-01
We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches.
Evaluating Open-Source Full-Text Search Engines for Matching ICD-10 Codes.
Jurcău, Daniel-Alexandru; Stoicu-Tivadar, Vasile
2016-01-01
This research presents the results of evaluating multiple free, open-source engines on matching ICD-10 diagnostic codes via full-text searches. The study investigates what it takes to get an accurate match when searching for a specific diagnostic code. For each code the evaluation starts by extracting the words that make up its text and continues with building full-text search queries from the combinations of these words. The queries are then run against all the ICD-10 codes until a match indicates the code in question as a match with the highest relative score. This method identifies the minimum number of words that must be provided in order for the search engines choose the desired entry. The engines analyzed include a popular Java-based full-text search engine, a lightweight engine written in JavaScript which can even execute on the user's browser, and two popular open-source relational database management systems.
Update of GRASP/Ada reverse engineering tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1993-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional pretty printed Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype CSD generator (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3,e two update phases were completed. Update'92 focused on the initial analysis of evaluation data collected from software engineering students at Auburn University and the addition of significant enhancements to the user interface. Update'93 (the current update) focused on the statistical analysis of the data collected in the previous update and preparation of Version 3.4 of the prototype for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application. An overview of the GRASP/Ada project with an emphasis on the current update is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theoristsmore » alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less
DeNovoGUI: An Open Source Graphical User Interface for de Novo Sequencing of Tandem Mass Spectra
2013-01-01
De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com. PMID:24295440
DeNovoGUI: an open source graphical user interface for de novo sequencing of tandem mass spectra.
Muth, Thilo; Weilnböck, Lisa; Rapp, Erdmann; Huber, Christian G; Martens, Lennart; Vaudel, Marc; Barsnes, Harald
2014-02-07
De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com .
Espino, Jeremy U; Wagner, M; Szczepaniak, C; Tsui, F C; Su, H; Olszewski, R; Liu, Z; Chapman, W; Zeng, X; Ma, L; Lu, Z; Dara, J
2004-09-24
Computer-based outbreak and disease surveillance requires high-quality software that is well-supported and affordable. Developing software in an open-source framework, which entails free distribution and use of software and continuous, community-based software development, can produce software with such characteristics, and can do so rapidly. The objective of the Real-Time Outbreak and Disease Surveillance (RODS) Open Source Project is to accelerate the deployment of computer-based outbreak and disease surveillance systems by writing software and catalyzing the formation of a community of users, developers, consultants, and scientists who support its use. The University of Pittsburgh seeded the Open Source Project by releasing the RODS software under the GNU General Public License. An infrastructure was created, consisting of a website, mailing lists for developers and users, designated software developers, and shared code-development tools. These resources are intended to encourage growth of the Open Source Project community. Progress is measured by assessing website usage, number of software downloads, number of inquiries, number of system deployments, and number of new features or modules added to the code base. During September--November 2003, users generated 5,370 page views of the project website, 59 software downloads, 20 inquiries, one new deployment, and addition of four features. Thus far, health departments and companies have been more interested in using the software as is than in customizing or developing new features. The RODS laboratory anticipates that after initial installation has been completed, health departments and companies will begin to customize the software and contribute their enhancements to the public code base.
PARAVT: Parallel Voronoi tessellation code
NASA Astrophysics Data System (ADS)
González, R. E.
2016-10-01
In this study, we present a new open source code for massive parallel computation of Voronoi tessellations (VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid. Code implementation and user guide are publicly available at https://github.com/regonzar/paravt.
Intrinsic Radiation Source Generation with the ISC Package: Data Comparisons and Benchmarking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Clell J. Jr.
The characterization of radioactive emissions from unstable isotopes (intrinsic radiation) is necessary for shielding and radiological-dose calculations from radioactive materials. While most radiation transport codes, e.g., MCNP [X-5 Monte Carlo Team, 2003], provide the capability to input user prescribed source definitions, such as radioactive emissions, they do not provide the capability to calculate the correct radioactive-source definition given the material compositions. Special modifications to MCNP have been developed in the past to allow the user to specify an intrinsic source, but these modification have not been implemented into the primary source base [Estes et al., 1988]. To facilitate the descriptionmore » of the intrinsic radiation source from a material with a specific composition, the Intrinsic Source Constructor library (LIBISC) and MCNP Intrinsic Source Constructor (MISC) utility have been written. The combination of LIBISC and MISC will be herein referred to as the ISC package. LIBISC is a statically linkable C++ library that provides the necessary functionality to construct the intrinsic-radiation source generated by a material. Furthermore, LIBISC provides the ability use different particle-emission databases, radioactive-decay databases, and natural-abundance databases allowing the user flexibility in the specification of the source, if one database is preferred over others. LIBISC also provides functionality for aging materials and producing a thick-target bremsstrahlung photon source approximation from the electron emissions. The MISC utility links to LIBISC and facilitates the description of intrinsic-radiation sources into a format directly usable with the MCNP transport code. Through a series of input keywords and arguments the MISC user can specify the material, age the material if desired, and produce a source description of the radioactive emissions from the material in an MCNP readable format. Further details of using the MISC utility can be obtained from the user guide [Solomon, 2012]. The remainder of this report presents a discussion of the databases available to LIBISC and MISC, a discussion of the models employed by LIBISC, a comparison of the thick-target bremsstrahlung model employed, a benchmark comparison to plutonium and depleted-uranium spheres, and a comparison of the available particle-emission databases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Scott Carlton; Roberts, Jesse D.
2014-03-01
This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in anmore » open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.« less
Subsurface Transport Over Multiple Phases Demonstration Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-01-05
The STOMP simulator is a suite of numerical simulators developed by Pacific Northwest National Laboratory for addressing problems involving coupled multifluid hydrologic, thermal, geochemical, and geomechanical processes in the subsurface. The simulator has been applied to problems concerning environmental remediation, environmental stewardship, carbon sequestration, conventional petroleum production, and the production of unconventional hydrocarbon fuels. The simulator is copyrighted by Battelle Memorial Institute, and is available outside of PNNL via use agreements. To promote the open exchange of scientific ideas the simulator is provided as source code. A demonstration version of the simulator has been developed, which will provide potential newmore » users with an executable (not source code) implementation of the software royalty free. Demonstration versions will be offered via the STOMP website for all currently available operational modes of the simulator. The demonstration versions of the simulator will be configured with the direct banded linear system solver and have a limit of 1,000 active grid cells. This will provide potential new users with an opportunity to apply the code to simple problems, including many of the STOMP short course problems, without having to pay a license fee. Users will be required to register on the STOMP website prior to receiving an executable.« less
Enhancements to the MCNP6 background source
McMath, Garrett E.; McKinney, Gregg W.
2015-10-19
The particle transport code MCNP has been used to produce a background radiation data file on a worldwide grid that can easily be sampled as a source in the code. Location-dependent cosmic showers were modeled by Monte Carlo methods to produce the resulting neutron and photon background flux at 2054 locations around Earth. An improved galactic-cosmic-ray feature was used to model the source term as well as data from multiple sources to model the transport environment through atmosphere, soil, and seawater. A new elevation scaling feature was also added to the code to increase the accuracy of the cosmic neutronmore » background for user locations with off-grid elevations. Furthermore, benchmarking has shown the neutron integral flux values to be within experimental error.« less
Lessons learned from a pilot implementation of the UMLS information sources map.
Miller, P L; Frawley, S J; Wright, L; Roderer, N K; Powsner, S M
1995-01-01
To explore the software design issues involved in implementing an operational information sources map (ISM) knowledge base (KB) and system of navigational tools that can help medical users access network-based information sources relevant to a biomedical question. A pilot biomedical ISM KB and associated client-server software (ISM/Explorer) have been developed to help students, clinicians, researchers, and staff access network-based information sources, as part of the National Library of Medicine's (NLM) multi-institutional Unified Medical Language System (UMLS) project. The system allows the user to specify and constrain a search for a biomedical question of interest. The system then returns a list of sources matching the search. At this point the user may request 1) further information about a source, 2) that the list of sources be regrouped by different criteria to allow the user to get a better overall appreciation of the set of retrieved sources as a whole, or 3) automatic connection to a source. The pilot system operates in client-server mode and currently contains coded information for 121 sources. It is in routine use from approximately 40 workstations at the Yale School of Medicine. The lessons that have been learned are that: 1) it is important to make access to different versions of a source as seamless as possible, 2) achieving seamless, cross-platform access to heterogeneous sources is difficult, 3) significant differences exist between coding the subject content of an electronic information resource versus that of an article or a book, 4) customizing the ISM to multiple institutions entails significant complexities, and 5) there are many design trade-offs between specifying searches and viewing sets of retrieved sources that must be taken into consideration. An ISM KB and navigational tools have been constructed. In the process, much has been learned about the complexities of development and evaluation in this new environment, which are different from those for Gopher, wide area information servers (WAIS), World-Wide-Web (WWW), and MOSAIC resources.
The Future of ECHO: Evaluating Open Source Possibilities
NASA Astrophysics Data System (ADS)
Pilone, D.; Gilman, J.; Baynes, K.; Mitchell, A. E.
2012-12-01
NASA's Earth Observing System ClearingHOuse (ECHO) is a format agnostic metadata repository supporting over 3000 collections and 100M science granules. ECHO exposes FTP and RESTful Data Ingest APIs in addition to both SOAP and RESTful search and order capabilities. Built on top of ECHO is a human facing search and order web application named Reverb. ECHO processes hundreds of orders, tens of thousands of searches, and 1-2M ingest actions each week. As ECHO's holdings, metadata format support, and visibility have increased, the ECHO team has received requests by non-NASA entities for copies of ECHO that can be run locally against their data holdings. ESDIS and the ECHO Team have begun investigations into various deployment and Open Sourcing models that can balance the real constraints faced by the ECHO project with the benefits of providing ECHO capabilities to a broader set of users and providers. This talk will discuss several release and Open Source models being investigated by the ECHO team along with the impacts those models are expected to have on the project. We discuss: - Addressing complex deployment or setup issues for potential users - Models of vetting code contributions - Balancing external (public) user requests versus our primary partners - Preparing project code for public release, including navigating licensing issues related to leveraged libraries - Dealing with non-free project dependencies such as commercial databases - Dealing with sensitive aspects of project code such as database passwords, authentication approaches, security through obscurity, etc. - Ongoing support for the released code including increased testing demands, bug fixes, security fixes, and new features.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Heidegger, Nathan J.; Delaney, Robert A.
1999-01-01
The overall objective of this study was to evaluate the effects of turbulence models in a 3-D numerical analysis on the wake prediction capability. The current version of the computer code resulting from this study is referred to as ADPAC v7 (Advanced Ducted Propfan Analysis Codes -Version 7). This report is intended to serve as a computer program user's manual for the ADPAC code used and modified under Task 15 of NASA Contract NAS3-27394. The ADPAC program is based on a flexible multiple-block and discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Turbulence models now available in the ADPAC code are: a simple mixing-length model, the algebraic Baldwin-Lomax model with user defined coefficients, the one-equation Spalart-Allmaras model, and a two-equation k-R model. The consolidated ADPAC code is capable of executing in either a serial or parallel computing mode from a single source code.
Monitor Network Traffic with Packet Capture (pcap) on an Android Device
2015-09-01
administrative privileges . Under the current design Android development requirement, an Android Graphical User Interface (GUI) application cannot directly...build an Android application to monitor network traffic using open source packet capture (pcap) libraries. 15. SUBJECT TERMS ELIDe, Android , pcap 16...Building Application with Native Codes 5 8.1 Calling Native Codes Using JNI 5 8.2 Calling Native Codes from an Android Application 8 9. Retrieve Live
Domestic Ice Breaking Simulation Model User Guide
2012-04-01
Temperatures” sub-module. Notes on Ice Data Sources Selected Historical Ice Data *** D9 Historical (SIGRID Coded) NBL Waterways * D9 Waterway...numbers in NBL scheme D9 Historical Ice Data (Feet Thickness) Main Model Waterways * SIGRID code conversion to feet of ice thickness D9 Historical Ice Data...Feet Thickness) NBL Waterways * SIGRID codes Years for Ice Data ** Types of Ice Waterway Time Selected Ice and Weather Data Years DOMICE Simulation
VizieR Online Data Catalog: FARGO_THORIN 1.0 hydrodynamic code (Chrenko+, 2017)
NASA Astrophysics Data System (ADS)
Chrenko, O.; Broz, M.; Lambrechts, M.
2017-07-01
This archive contains the source files, documentation and example simulation setups of the FARGO_THORIN 1.0 hydrodynamic code. The program was introduced, described and used for simulations in the paper. It is built on top of the FARGO code (Masset, 2000A&AS..141..165M, Baruteau & Masset, 2008ApJ...672.1054B) and it is also interfaced with the REBOUND integrator package (Rein & Liu, 2012A&A...537A.128R). THORIN stands for Two-fluid HydrOdynamics, the Rebound integrator Interface and Non-isothermal gas physics. The program is designed for self-consistent investigations of protoplanetary systems consisting of a gas disk, a disk of small solid particles (pebbles) and embedded protoplanets. Code features: I) Non-isothermal gas disk with implicit numerical solution of the energy equation. The implemented energy source terms are: Compressional heating, viscous heating, stellar irradiation, vertical escape of radiation, radiative diffusion in the midplane and radiative feedback to accretion heating of protoplanets. II) Planets evolved in 3D, with close encounters allowed. The orbits are integrated using the IAS15 integrator (Rein & Spiegel, 2015MNRAS.446.1424R). The code detects the collisions among planets and resolve them as mergers. III) Refined treatment of the planet-disk gravitational interaction. The code uses a vertical averaging of the gravitational potential, as outlined in Muller & Kley (2012A&A...539A..18M). IV) Pebble disk represented by an Eulerian, presureless and inviscid fluid. The pebble dynamics is affected by the Epstein gas drag and optionally by the diffusive effects. We also implemented the drag back-reaction term into the Navier-Stokes equation for the gas. Archive summary: ------------------------------------------------------------------------- directory/file Explanation ------------------------------------------------------------------------- /in_relax Contains setup of the first example simulation /in_wplanet Contains setup of the second example simulation /srcmain Contains the source files of FARGOTHORIN /src_reb Contains the source files of the REBOUND integrator package to be linked with THORIN GUNGPL3 GNU General Public License, version 3 LICENSE License agreement README Simple user's guide UserGuide.pdf Extended user's guide refman.pdf Programer's guide ----------------------------------------------------------------------------- (1 data file).
Digital Controller For Emergency Beacon
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1990-01-01
Prototype digital controller intended for use in 406-MHz emergency beacon. Undergoing development according to international specifications, 406-MHz emergency beacon system includes satellites providing worldwide monitoring of beacons, with Doppler tracking to locate each beacon within 5 km. Controller turns beacon on and off and generates binary codes identifying source (e.g., ship, aircraft, person, or vehicle on land). Codes transmitted by phase modulation. Knowing code, monitor attempts to communicate with user, monitor uses code information to dispatch rescue team appropriate to type and locations of carrier.
Specht, Michael; Kuhlgert, Sebastian; Fufezan, Christian; Hippler, Michael
2011-04-15
We present Proteomatic, an operating system independent and user-friendly platform that enables the construction and execution of MS/MS data evaluation pipelines using free and commercial software. Required external programs such as for peptide identification are downloaded automatically in the case of free software. Due to a strict separation of functionality and presentation, and support for multiple scripting languages, new processing steps can be added easily. Proteomatic is implemented in C++/Qt, scripts are implemented in Ruby, Python and PHP. All source code is released under the LGPL. Source code and installers for Windows, Mac OS X, and Linux are freely available at http://www.proteomatic.org. michael.specht@uni-muenster.de Supplementary data are available at Bioinformatics online.
Computation of Reacting Flows in Combustion Processes
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Chen, Kuo-Huey
1997-01-01
The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.
MultiElec: A MATLAB Based Application for MEA Data Analysis.
Georgiadis, Vassilis; Stephanou, Anastasis; Townsend, Paul A; Jackson, Thomas R
2015-01-01
We present MultiElec, an open source MATLAB based application for data analysis of microelectrode array (MEA) recordings. MultiElec displays an extremely user-friendly graphic user interface (GUI) that allows the simultaneous display and analysis of voltage traces for 60 electrodes and includes functions for activation-time determination, the production of activation-time heat maps with activation time and isoline display. Furthermore, local conduction velocities are semi-automatically calculated along with their corresponding vector plots. MultiElec allows ad hoc signal suppression, enabling the user to easily and efficiently handle signal artefacts and for incomplete data sets to be analysed. Voltage traces and heat maps can be simply exported for figure production and presentation. In addition, our platform is able to produce 3D videos of signal progression over all 60 electrodes. Functions are controlled entirely by a single GUI with no need for command line input or any understanding of MATLAB code. MultiElec is open source under the terms of the GNU General Public License as published by the Free Software Foundation, version 3. Both the program and source code are available to download from http://www.cancer.manchester.ac.uk/MultiElec/.
U.S. Seismic Design Maps Web Application
NASA Astrophysics Data System (ADS)
Martinez, E.; Fee, J.
2015-12-01
The application computes earthquake ground motion design parameters compatible with the International Building Code and other seismic design provisions. It is the primary method for design engineers to obtain ground motion parameters for multiple building codes across the country. When designing new buildings and other structures, engineers around the country use the application. Users specify the design code of interest, location, and other parameters to obtain necessary ground motion information consisting of a high-level executive summary as well as detailed information including maps, data, and graphs. Results are formatted such that they can be directly included in a final engineering report. In addition to single-site analysis, the application supports a batch mode for simultaneous consideration of multiple locations. Finally, an application programming interface (API) is available which allows other application developers to integrate this application's results into larger applications for additional processing. Development on the application has proceeded in an iterative manner working with engineers through email, meetings, and workshops. Each iteration provided new features, improved performance, and usability enhancements. This development approach positioned the application to be integral to the structural design process and is now used to produce over 1800 reports daily. Recent efforts have enhanced the application to be a data-driven, mobile-first, responsive web application. Development is ongoing, and source code has recently been published into the open-source community on GitHub. Open-sourcing the code facilitates improved incorporation of user feedback to add new features ensuring the application's continued success.
Terminal Area Simulation System User's Guide - Version 10.0
NASA Technical Reports Server (NTRS)
Switzer, George F.; Proctor, Fred H.
2014-01-01
The Terminal Area Simulation System (TASS) is a three-dimensional, time-dependent, large eddy simulation model that has been developed for studies of wake vortex and weather hazards to aviation, along with other atmospheric turbulence, and cloud-scale weather phenomenology. This document describes the source code for TASS version 10.0 and provides users with needed documentation to run the model. The source code is programed in Fortran language and is formulated to take advantage of vector and efficient multi-processor scaling for execution on massively-parallel supercomputer clusters. The code contains different initialization modules allowing the study of aircraft wake vortex interaction with the atmosphere and ground, atmospheric turbulence, atmospheric boundary layers, precipitating convective clouds, hail storms, gust fronts, microburst windshear, supercell and mesoscale convective systems, tornadic storms, and ring vortices. The model is able to operate in either two- or three-dimensions with equations numerically formulated on a Cartesian grid. The primary output from the TASS is time-dependent domain fields generated by the prognostic equations and diagnosed variables. This document will enable a user to understand the general logic of TASS, and will show how to configure and initialize the model domain. Also described are the formats of the input and output files, as well as the parameters that control the input and output.
1987-09-01
Evaluation Commnand &_. ADMASS Coly, 1W~., and ZIP Code ) 7b. ADDRESS (C01y, State, wid ZIP Code ) Dugwiay, Utahi 84022-5000 Aberdeen Proving Ground...Aency_________________________ 9L AoOMS(CRY, 0to, and ZIP Code ) 10. SOURCE OF FUNDING NUMBERS Hazardous Waste Environmental RLsearch Lab PROGRAM PROJECT TASK...CLASSIFICATION 0 UNO.ASSIFIEDAIJNLIMITED 0l SAME AS RPT. 03 OTIC USERS UNCLA.SSIFIED 22a. RAWE OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code ) I
Understanding Lustre Internals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Feiyi; Oral, H Sarp; Shipman, Galen M
2009-04-01
Lustre was initiated and funded, almost a decade ago, by the U.S. Department of Energy (DoE) Office of Science and National Nuclear Security Administration laboratories to address the need for an open source, highly-scalable, high-performance parallel filesystem on by then present and future supercomputing platforms. Throughout the last decade, it was deployed over numerous medium-to-large-scale supercomputing platforms and clusters, and it performed and met the expectations of the Lustre user community. As it stands at the time of writing this document, according to the Top500 list, 15 of the top 30 supercomputers in the world use Lustre filesystem. This reportmore » aims to present a streamlined overview on how Lustre works internally at reasonable details including relevant data structures, APIs, protocols and algorithms involved for Lustre version 1.6 source code base. More importantly, it tries to explain how various components interconnect with each other and function as a system. Portions of this report are based on discussions with Oak Ridge National Laboratory Lustre Center of Excellence team members and portions of it are based on our own understanding of how the code works. We, as the authors team bare all responsibilities for all errors and omissions in this document. We can only hope it helps current and future Lustre users and Lustre code developers as much as it helped us understanding the Lustre source code and its internal workings.« less
Joyce, Brendan; Lee, Danny; Rubio, Alex; Ogurtsov, Aleksey; Alves, Gelio; Yu, Yi-Kuo
2018-03-15
RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .
Modeling Vortex Generators in the Wind-US Code
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.
2010-01-01
A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.
JBioWH: an open-source Java framework for bioinformatics data integration
Vera, Roberto; Perez-Riverol, Yasset; Perez, Sonia; Ligeti, Balázs; Kertész-Farkas, Attila; Pongor, Sándor
2013-01-01
The Java BioWareHouse (JBioWH) project is an open-source platform-independent programming framework that allows a user to build his/her own integrated database from the most popular data sources. JBioWH can be used for intensive querying of multiple data sources and the creation of streamlined task-specific data sets on local PCs. JBioWH is based on a MySQL relational database scheme and includes JAVA API parser functions for retrieving data from 20 public databases (e.g. NCBI, KEGG, etc.). It also includes a client desktop application for (non-programmer) users to query data. In addition, JBioWH can be tailored for use in specific circumstances, including the handling of massive queries for high-throughput analyses or CPU intensive calculations. The framework is provided with complete documentation and application examples and it can be downloaded from the Project Web site at http://code.google.com/p/jbiowh. A MySQL server is available for demonstration purposes at hydrax.icgeb.trieste.it:3307. Database URL: http://code.google.com/p/jbiowh PMID:23846595
JBioWH: an open-source Java framework for bioinformatics data integration.
Vera, Roberto; Perez-Riverol, Yasset; Perez, Sonia; Ligeti, Balázs; Kertész-Farkas, Attila; Pongor, Sándor
2013-01-01
The Java BioWareHouse (JBioWH) project is an open-source platform-independent programming framework that allows a user to build his/her own integrated database from the most popular data sources. JBioWH can be used for intensive querying of multiple data sources and the creation of streamlined task-specific data sets on local PCs. JBioWH is based on a MySQL relational database scheme and includes JAVA API parser functions for retrieving data from 20 public databases (e.g. NCBI, KEGG, etc.). It also includes a client desktop application for (non-programmer) users to query data. In addition, JBioWH can be tailored for use in specific circumstances, including the handling of massive queries for high-throughput analyses or CPU intensive calculations. The framework is provided with complete documentation and application examples and it can be downloaded from the Project Web site at http://code.google.com/p/jbiowh. A MySQL server is available for demonstration purposes at hydrax.icgeb.trieste.it:3307. Database URL: http://code.google.com/p/jbiowh.
User's manual: Subsonic/supersonic advanced panel pilot code
NASA Technical Reports Server (NTRS)
Moran, J.; Tinoco, E. N.; Johnson, F. T.
1978-01-01
Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.
Engqvist, Martin K M; Nielsen, Jens
2015-08-21
The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines.
Freeing Worldview's development process: Open source everything!
NASA Astrophysics Data System (ADS)
Gunnoe, T.
2016-12-01
Freeing your code and your project are important steps for creating an inviting environment for collaboration, with the added side effect of keeping a good relationship with your users. NASA Worldview's codebase was released with the open source NOSA (NASA Open Source Agreement) license in 2014, but this is only the first step. We also have to free our ideas, empower our users by involving them in the development process, and open channels that lead to the creation of a community project. There are many highly successful examples of Free and Open Source Software (FOSS) projects of which we can take note: the Linux kernel, Debian, GNOME, etc. These projects owe much of their success to having a passionate mix of developers/users with a great community and a common goal in mind. This presentation will describe the scope of this openness and how Worldview plans to move forward with a more community-inclusive approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.
In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored atmore » synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.« less
NASA Astrophysics Data System (ADS)
Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.
2013-07-01
In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.
PRay - A graphical user interface for interactive visualization and modification of rayinvr models
NASA Astrophysics Data System (ADS)
Fromm, T.
2016-01-01
PRay is a graphical user interface for interactive displaying and editing of velocity models for seismic refraction. It is optimized for editing rayinvr models but can also be used as a dynamic viewer for ray tracing results from other software. The main features are the graphical editing of nodes and fast adjusting of the display (stations and phases). It can be extended by user-defined shell scripts and links to phase picking software. PRay is open source software written in the scripting language Perl, runs on Unix-like operating systems including Mac OS X and provides a version controlled source code repository for community development (https://sourceforge.net/projects/pray-plot-rayinvr/).
Landlab: an Open-Source Python Library for Modeling Earth Surface Dynamics
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Adams, J. M.; Hobley, D. E. J.; Hutton, E.; Nudurupati, S. S.; Istanbulluoglu, E.; Tucker, G. E.
2016-12-01
Landlab is an open-source Python modeling library that enables users to easily build unique models to explore earth surface dynamics. The Landlab library provides a number of tools and functionalities that are common to many earth surface models, thus eliminating the need for a user to recode fundamental model elements each time she explores a new problem. For example, Landlab provides a gridding engine so that a user can build a uniform or nonuniform grid in one line of code. The library has tools for setting boundary conditions, adding data to a grid, and performing basic operations on the data, such as calculating gradients and curvature. The library also includes a number of process components, which are numerical implementations of physical processes. To create a model, a user creates a grid and couples together process components that act on grid variables. The current library has components for modeling a diverse range of processes, from overland flow generation to bedrock river incision, from soil wetting and drying to vegetation growth, succession and death. The code is freely available for download (https://github.com/landlab/landlab) or can be installed as a Python package. Landlab models can also be built and run on Hydroshare (www.hydroshare.org), an online collaborative environment for sharing hydrologic data, models, and code. Tutorials illustrating a wide range of Landlab capabilities such as building a grid, setting boundary conditions, reading in data, plotting, using components and building models are also available (https://github.com/landlab/tutorials). The code is also comprehensively documented both online and natively in Python. In this presentation, we illustrate the diverse capabilities of Landlab. We highlight existing functionality by illustrating outcomes from a range of models built with Landlab - including applications that explore landscape evolution and ecohydrology. Finally, we describe the range of resources available for new users.
ERIC Educational Resources Information Center
Simpson, James Daniel
2014-01-01
Free, libre, and open source software (FLOSS) is software that is collaboratively developed. FLOSS provides end-users with the source code and the freedom to adapt or modify a piece of software to fit their needs (Deek & McHugh, 2008; Stallman, 2010). FLOSS has a 30 year history that dates to the open hacker community at the Massachusetts…
EUPDF-II: An Eulerian Joint Scalar Monte Carlo PDF Module : User's Manual
NASA Technical Reports Server (NTRS)
Raju, M. S.; Liu, Nan-Suey (Technical Monitor)
2004-01-01
EUPDF-II provides the solution for the species and temperature fields based on an evolution equation for PDF (Probability Density Function) and it is developed mainly for application with sprays, combustion, parallel computing, and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase CFD and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with an understanding of the various models involved in the PDF formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. The source code of EUPDF-II will be available with National Combustion Code (NCC) as a complete package.
User interfaces for computational science: A domain specific language for OOMMF embedded in Python
NASA Astrophysics Data System (ADS)
Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans
2017-05-01
Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.
Williams, Gary L.; Goin, Jr., Jesse L.; Kirby, Patrick G.; McKenna, John P.
1997-01-01
The invention is a motorized linkage for operating a door strike. A six volt power source, controlled by a security code, rotates a small electric motor when a proper security code is given. The motor rotates a shaft which engages a coil spring. This moves a locking cam. When a catch on the locking cam separates from the locking lever catch, the latch bolt keeper may be manipulated by a user.
GeNN: a code generation framework for accelerated brain simulations
NASA Astrophysics Data System (ADS)
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-01
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
GeNN: a code generation framework for accelerated brain simulations.
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-07
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
GeNN: a code generation framework for accelerated brain simulations
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-01
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/. PMID:26740369
TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (HP9000 SERIES 300/400 VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is expected to be available on media suitable for seven different machine platforms: 1) DEC VAX computers running VMS (TK50 cartridge in VAX BACKUP format), 2) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and 7) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2.
TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is expected to be available on media suitable for seven different machine platforms: 1) DEC VAX computers running VMS (TK50 cartridge in VAX BACKUP format), 2) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and 7) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2.
NASA Technical Reports Server (NTRS)
Teubert, Christopher; Sankararaman, Shankar; Cullo, Aiden
2017-01-01
Readme for the Random Variable Toolbox usable manner. is a Web-based Git version control repository hosting service. It is mostly used for computer code. It offers all of the distributed version control and source code management (SCM) functionality of Git as well as adding its own features. It provides access control and several collaboration features such as bug tracking, feature requests, task management, and wikis for every project.[3] GitHub offers both plans for private and free repositories on the same account[4] which are commonly used to host open-source software projects.[5] As of April 2017, GitHub reports having almost 20 million users and 57 million repositories,[6] making it the largest host of source code in the world.[7] GitHub has a mascot called Octocat, a cat with five tentacles and a human-like face
Blind information-theoretic multiuser detection algorithms for DS-CDMA and WCDMA downlink systems.
Waheed, Khuram; Salem, Fathi M
2005-07-01
Code division multiple access (CDMA) is based on the spread-spectrum technology and is a dominant air interface for 2.5G, 3G, and future wireless networks. For the CDMA downlink, the transmitted CDMA signals from the base station (BS) propagate through a noisy multipath fading communication channel before arriving at the receiver of the user equipment/mobile station (UE/MS). Classical CDMA single-user detection (SUD) algorithms implemented in the UE/MS receiver do not provide the required performance for modern high data-rate applications. In contrast, multi-user detection (MUD) approaches require a lot of a priori information not available to the UE/MS. In this paper, three promising adaptive Riemannian contra-variant (or natural) gradient based user detection approaches, capable of handling the highly dynamic wireless environments, are proposed. The first approach, blind multiuser detection (BMUD), is the process of simultaneously estimating multiple symbol sequences associated with all the users in the downlink of a CDMA communication system using only the received wireless data and without any knowledge of the user spreading codes. This approach is applicable to CDMA systems with relatively short spreading codes but becomes impractical for systems using long spreading codes. We also propose two other adaptive approaches, namely, RAKE -blind source recovery (RAKE-BSR) and RAKE-principal component analysis (RAKE-PCA) that fuse an adaptive stage into a standard RAKE receiver. This adaptation results in robust user detection algorithms with performance exceeding the linear minimum mean squared error (LMMSE) detectors for both Direct Sequence CDMA (DS-CDMA) and wide-band CDMA (WCDMA) systems under conditions of congestion, imprecise channel estimation and unmodeled multiple access interference (MAI).
NASA Astrophysics Data System (ADS)
Fraser, Ryan; Gross, Lutz; Wyborn, Lesley; Evans, Ben; Klump, Jens
2015-04-01
Recent investments in HPC, cloud and Petascale data stores, have dramatically increased the scale and resolution that earth science challenges can now be tackled. These new infrastructures are highly parallelised and to fully utilise them and access the large volumes of earth science data now available, a new approach to software stack engineering needs to be developed. The size, complexity and cost of the new infrastructures mean any software deployed has to be reliable, trusted and reusable. Increasingly software is available via open source repositories, but these usually only enable code to be discovered and downloaded. As a user it is hard for a scientist to judge the suitability and quality of individual codes: rarely is there information on how and where codes can be run, what the critical dependencies are, and in particular, on the version requirements and licensing of the underlying software stack. A trusted software framework is proposed to enable reliable software to be discovered, accessed and then deployed on multiple hardware environments. More specifically, this framework will enable those who generate the software, and those who fund the development of software, to gain credit for the effort, IP, time and dollars spent, and facilitate quantification of the impact of individual codes. For scientific users, the framework delivers reviewed and benchmarked scientific software with mechanisms to reproduce results. The trusted framework will have five separate, but connected components: Register, Review, Reference, Run, and Repeat. 1) The Register component will facilitate discovery of relevant software from multiple open source code repositories. The registration process of the code should include information about licensing, hardware environments it can be run on, define appropriate validation (testing) procedures and list the critical dependencies. 2) The Review component is targeting on the verification of the software typically against a set of benchmark cases. This will be achieved by linking the code in the software framework to peer review forums such as Mozilla Science or appropriate Journals (e.g. Geoscientific Model Development Journal) to assist users to know which codes to trust. 3) Referencing will be accomplished by linking the Software Framework to groups such as Figshare or ImpactStory that help disseminate and measure the impact of scientific research, including program code. 4) The Run component will draw on information supplied in the registration process, benchmark cases described in the review and relevant information to instantiate the scientific code on the selected environment. 5) The Repeat component will tap into existing Provenance Workflow engines that will automatically capture information that relate to a particular run of that software, including identification of all input and output artefacts, and all elements and transactions within that workflow. The proposed trusted software framework will enable users to rapidly discover and access reliable code, reduce the time to deploy it and greatly facilitate sharing, reuse and reinstallation of code. Properly designed it could enable an ability to scale out to massively parallel systems and be accessed nationally/ internationally for multiple use cases, including Supercomputer centres, cloud facilities, and local computers.
Prediction of Turbulence-Generated Noise in Unheated Jets. Part 2; JeNo Users' Manual (Version 1.0)
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Wolter, John D.; Koch, L. Danielle
2009-01-01
JeNo (Version 1.0) is a Fortran90 computer code that calculates the far-field sound spectral density produced by axisymmetric, unheated jets at a user specified observer location and frequency range. The user must provide a structured computational grid and a mean flow solution from a Reynolds-Averaged Navier Stokes (RANS) code as input. Turbulence kinetic energy and its dissipation rate from a k-epsilon or k-omega turbulence model must also be provided. JeNo is a research code, and as such, its development is ongoing. The goal is to create a code that is able to accurately compute far-field sound pressure levels for jets at all observer angles and all operating conditions. In order to achieve this goal, current theories must be combined with the best practices in numerical modeling, all of which must be validated by experiment. Since the acoustic predictions from JeNo are based on the mean flow solutions from a RANS code, quality predictions depend on accurate aerodynamic input.This is why acoustic source modeling, turbulence modeling, together with the development of advanced measurement systems are the leading areas of research in jet noise research at NASA Glenn Research Center.
Plasma separation process. Betacell (BCELL) code, user's manual
NASA Astrophysics Data System (ADS)
Taherzadeh, M.
1987-11-01
The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the Plasma Separation Program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison.
Math Description Engine Software Development Kit
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.
2010-01-01
The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.
Open Source and These United States
1999-04-01
the ability of all participants to freely access the source code and keep abreast of progress. There can be no information hoarding on an open source... developed in this way depends upon ready and reliable communications. Just as the internet has increased the ability of people to exchange information...investment is maximized through long use and reuse. This process results in systems which harnesses the collaborative abilities of its user developers
1997-10-01
used to establish associations between source code and Adobe FrameMaker documents. The associations are represented as links that facilitate...possible (such as that provided with FrameMaker ). There is no scripting interface that would enable end-user programming of its modules. The suite of
ProteoCloud: a full-featured open source proteomics cloud computing pipeline.
Muth, Thilo; Peters, Julian; Blackburn, Jonathan; Rapp, Erdmann; Martens, Lennart
2013-08-02
We here present the ProteoCloud pipeline, a freely available, full-featured cloud-based platform to perform computationally intensive, exhaustive searches in a cloud environment using five different peptide identification algorithms. ProteoCloud is entirely open source, and is built around an easy to use and cross-platform software client with a rich graphical user interface. This client allows full control of the number of cloud instances to initiate and of the spectra to assign for identification. It also enables the user to track progress, and to visualize and interpret the results in detail. Source code, binaries and documentation are all available at http://proteocloud.googlecode.com. Copyright © 2012 Elsevier B.V. All rights reserved.
Menu-driven cloud computing and resource sharing for R and Bioconductor.
Bolouri, Hamid; Dulepet, Rajiv; Angerman, Michael
2011-08-15
We report CRdata.org, a cloud-based, free, open-source web server for running analyses and sharing data and R scripts with others. In addition to using the free, public service, CRdata users can launch their own private Amazon Elastic Computing Cloud (EC2) nodes and store private data and scripts on Amazon's Simple Storage Service (S3) with user-controlled access rights. All CRdata services are provided via point-and-click menus. CRdata is open-source and free under the permissive MIT License (opensource.org/licenses/mit-license.php). The source code is in Ruby (ruby-lang.org/en/) and available at: github.com/seerdata/crdata. hbolouri@fhcrc.org.
2015-06-01
abstract constraints along six dimen- sions for expansion: user, actions, data , business rules, interfaces, and quality attributes [Gottesdiener 2010...relevant open source systems. For example, the CONNECT and HADOOP Distributed File System (HDFS) projects have many user stories that deal with...Iteration Zero involves architecture planning before writing any code. An overly long Iteration Zero is equivalent to the dysfunctional “ Big Up-Front
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.
Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M
2009-09-30
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.
1995-03-01
MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less
Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.
2012-01-01
An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.
CACTI: free, open-source software for the sequential coding of behavioral interactions.
Glynn, Lisa H; Hallgren, Kevin A; Houck, Jon M; Moyers, Theresa B
2012-01-01
The sequential analysis of client and clinician speech in psychotherapy sessions can help to identify and characterize potential mechanisms of treatment and behavior change. Previous studies required coding systems that were time-consuming, expensive, and error-prone. Existing software can be expensive and inflexible, and furthermore, no single package allows for pre-parsing, sequential coding, and assignment of global ratings. We developed a free, open-source, and adaptable program to meet these needs: The CASAA Application for Coding Treatment Interactions (CACTI). Without transcripts, CACTI facilitates the real-time sequential coding of behavioral interactions using WAV-format audio files. Most elements of the interface are user-modifiable through a simple XML file, and can be further adapted using Java through the terms of the GNU Public License. Coding with this software yields interrater reliabilities comparable to previous methods, but at greatly reduced time and expense. CACTI is a flexible research tool that can simplify psychotherapy process research, and has the potential to contribute to the improvement of treatment content and delivery.
TEA: A Code Calculating Thermochemical Equilibrium Abundances
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.
TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but withmore » higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.« less
Maintaining Quality and Confidence in Open-Source, Evolving Software: Lessons Learned with PFLOTRAN
NASA Astrophysics Data System (ADS)
Frederick, J. M.; Hammond, G. E.
2017-12-01
Software evolution in an open-source framework poses a major challenge to a geoscientific simulator, but when properly managed, the pay-off can be enormous for both the developers and the community at large. Developers must juggle implementing new scientific process models, adopting increasingly efficient numerical methods and programming paradigms, changing funding sources (or total lack of funding), while also ensuring that legacy code remains functional and reported bugs are fixed in a timely manner. With robust software engineering and a plan for long-term maintenance, a simulator can evolve over time incorporating and leveraging many advances in the computational and domain sciences. In this positive light, what practices in software engineering and code maintenance can be employed within open-source development to maximize the positive aspects of software evolution and community contributions while minimizing its negative side effects? This presentation will discusses steps taken in the development of PFLOTRAN (www.pflotran.org), an open source, massively parallel subsurface simulator for multiphase, multicomponent, and multiscale reactive flow and transport processes in porous media. As PFLOTRAN's user base and development team continues to grow, it has become increasingly important to implement strategies which ensure sustainable software development while maintaining software quality and community confidence. In this presentation, we will share our experiences and "lessons learned" within the context of our open-source development framework and community engagement efforts. Topics discussed will include how we've leveraged both standard software engineering principles, such as coding standards, version control, and automated testing, as well unique advantages of object-oriented design in process model coupling, to ensure software quality and confidence. We will also be prepared to discuss the major challenges faced by most open-source software teams, such as on-boarding new developers or one-time contributions, dealing with competitors or lookie-loos, and other downsides of complete transparency, as well as our approach to community engagement, including a user group email list, hosting short courses and workshops for new users, and maintaining a website. SAND2017-8174A
SNPConvert: SNP Array Standardization and Integration in Livestock Species.
Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra
2016-06-09
One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.
Modeling Vortex Generators in a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.
2011-01-01
A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.
User's manual for PRESTO: A computer code for the performance of regenerative steam turbine cycles
NASA Technical Reports Server (NTRS)
Fuller, L. C.; Stovall, T. K.
1979-01-01
Standard turbine cycles for baseload power plants and cycles with such additional features as process steam extraction and induction and feedwater heating by external heat sources may be modeled. Peaking and high back pressure cycles are also included. The code's methodology is to use the expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses to calculate the heat rate and generator output. A general description of the code is given as well as the instructions for input data preparation. Appended are two complete example cases.
Importance biasing scheme implemented in the PRIZMA code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandiev, I.Z.; Malyshkin, G.N.
1997-12-31
PRIZMA code is intended for Monte Carlo calculations of linear radiation transport problems. The code has wide capabilities to describe geometry, sources, material composition, and to obtain parameters specified by user. There is a capability to calculate path of particle cascade (including neutrons, photons, electrons, positrons and heavy charged particles) taking into account possible transmutations. Importance biasing scheme was implemented to solve the problems which require calculation of functionals related to small probabilities (for example, problems of protection against radiation, problems of detection, etc.). The scheme enables to adapt trajectory building algorithm to problem peculiarities.
SU-E-T-103: Development and Implementation of Web Based Quality Control Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studinski, R; Taylor, R; Angers, C
Purpose: Historically many radiation medicine programs have maintained their Quality Control (QC) test results in paper records or Microsoft Excel worksheets. Both these approaches represent significant logistical challenges, and are not predisposed to data review and approval. It has been our group's aim to develop and implement web based software designed not just to record and store QC data in a centralized database, but to provide scheduling and data review tools to help manage a radiation therapy clinics Equipment Quality control program. Methods: The software was written in the Python programming language using the Django web framework. In order tomore » promote collaboration and validation from other centres the code was made open source and is freely available to the public via an online source code repository. The code was written to provide a common user interface for data entry, formalize the review and approval process, and offer automated data trending and process control analysis of test results. Results: As of February 2014, our installation of QAtrack+ has 180 tests defined in its database and has collected ∼22 000 test results, all of which have been reviewed and approved by a physicist via QATrack+'s review tools. These results include records for quality control of Elekta accelerators, CT simulators, our brachytherapy programme, TomoTherapy and Cyberknife units. Currently at least 5 other centres are known to be running QAtrack+ clinically, forming the start of an international user community. Conclusion: QAtrack+ has proven to be an effective tool for collecting radiation therapy QC data, allowing for rapid review and trending of data for a wide variety of treatment units. As free and open source software, all source code, documentation and a bug tracker are available to the public at https://bitbucket.org/tohccmedphys/qatrackplus/.« less
An Evolving Worldview: Making Open Source Easy
NASA Technical Reports Server (NTRS)
Rice, Zachary
2017-01-01
NASA Worldview is an interactive interface for browsing full-resolution, global satellite imagery. Worldview supports an open data policy so that academia, private industries and the general public can use NASA's satellite data to address Earth science related issues. Worldview was open sourced in 2014. By shifting to an open source approach, the Worldview application has evolved to better serve end-users. Project developers are able to have discussions with end-users and community developers to understand issues and develop new features. New developers are able to track upcoming features, collaborate on them and make their own contributions. Getting new developers to contribute to the project has been one of the most important and difficult aspects of open sourcing Worldview. A focus has been made on making the installation of Worldview simple to reduce the initial learning curve and make contributing code easy. One way we have addressed this is through a simplified setup process. Our setup documentation includes a set of prerequisites and a set of straight forward commands to clone, configure, install and run. This presentation will emphasis our focus to simplify and standardize Worldview's open source code so more people are able to contribute. The more people who contribute, the better the application will become over time.
Exploring User Acceptance of FOSS: The Role of the Age of the Users
NASA Astrophysics Data System (ADS)
Gallego, M. Dolores; Bueno, Salvador
Free and open source software (FOSS) movement essentially arises like answer to the evolution occurred in the market from the software, characterized by the closing of the source code. Furthermore, some FOSS characteristics, such as (1) the advance of this movement and (2) the attractiveness that contributes the voluntary and cooperative work, have increased the interest of the users towards free software. Traditionally, research in FOSS has focused on identifying individual personal motives for participating in the development of a FOSS project, analyzing specific FOSS solutions, or the FOSS movement itself. Nevertheless, the advantages of the FOSS for users and the effect of the demographic dimensions on user acceptance for FOSS have been two research topics with little attention. Specifically, this paper's aim is to focus on the influence of the userś age with FOSS the FOSS acceptance. Based on the literature, userś age is an essential demographic dimension for explaining the Information Systems acceptance. With this purpose, the authors have developed a research model based on the Technological Acceptance Model (TAM).
A users' guide to the trace contaminant control simulation computer program
NASA Technical Reports Server (NTRS)
Perry, J. L.
1994-01-01
The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various trace contaminant control technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. The results obtained from the program can be useful in assessing different technology combinations, system sizing, system location with respect to other life support systems, and the overall life cycle economics of a trace contaminant control system. The user's manual is extracted in its entirety from NASA TM-108409 to provide a stand-alone reference for using any version of the program. The first publication of the manual as part of TM-108409 also included a detailed listing of version 8.0 of the program. As changes to the code were necessary, it became apparent that the user's manual should be separate from the computer code documentation and be general enough to provide guidance in using any version of the program. Provided in the guide are tips for input file preparation, general program execution, and output file manipulation. Information concerning source code listings of the latest version of the computer program may be obtained by contacting the author.
Seismic Analysis Code (SAC): Development, porting, and maintenance within a legacy code base
NASA Astrophysics Data System (ADS)
Savage, B.; Snoke, J. A.
2017-12-01
The Seismic Analysis Code (SAC) is the result of toil of many developers over almost a 40-year history. Initially a Fortran-based code, it has undergone major transitions in underlying bit size from 16 to 32, in the 1980s, and 32 to 64 in 2009; as well as a change in language from Fortran to C in the late 1990s. Maintenance of SAC, the program and its associated libraries, have tracked changes in hardware and operating systems including the advent of Linux in the early 1990, the emergence and demise of Sun/Solaris, variants of OSX processors (PowerPC and x86), and Windows (Cygwin). Traces of these systems are still visible in source code and associated comments. A major concern while improving and maintaining a routinely used, legacy code is a fear of introducing bugs or inadvertently removing favorite features of long-time users. Prior to 2004, SAC was maintained and distributed by LLNL (Lawrence Livermore National Lab). In that year, the license was transferred from LLNL to IRIS (Incorporated Research Institutions for Seismology), but the license is not open source. However, there have been thousands of downloads a year of the package, either source code or binaries for specific system. Starting in 2004, the co-authors have maintained the SAC package for IRIS. In our updates, we fixed bugs, incorporated newly introduced seismic analysis procedures (such as EVALRESP), added new, accessible features (plotting and parsing), and improved the documentation (now in HTML and PDF formats). Moreover, we have added modern software engineering practices to the development of SAC including use of recent source control systems, high-level tests, and scripted, virtualized environments for rapid testing and building. Finally, a "sac-help" listserv (administered by IRIS) was setup for SAC-related issues and is the primary avenue for users seeking advice and reporting bugs. Attempts are always made to respond to issues and bugs in a timely fashion. For the past thirty-plus years, SAC files contained a fixed-length header. Time and distance-related values are stored in single precision, which has become a problem with the increase in desired precision for data compared to thirty years ago. A future goal is to address this precision problem, but in a backward compatible manner. We would also like to transition SAC to a more open source license.
Toward an automated parallel computing environment for geosciences
NASA Astrophysics Data System (ADS)
Zhang, Huai; Liu, Mian; Shi, Yaolin; Yuen, David A.; Yan, Zhenzhen; Liang, Guoping
2007-08-01
Software for geodynamic modeling has not kept up with the fast growing computing hardware and network resources. In the past decade supercomputing power has become available to most researchers in the form of affordable Beowulf clusters and other parallel computer platforms. However, to take full advantage of such computing power requires developing parallel algorithms and associated software, a task that is often too daunting for geoscience modelers whose main expertise is in geosciences. We introduce here an automated parallel computing environment built on open-source algorithms and libraries. Users interact with this computing environment by specifying the partial differential equations, solvers, and model-specific properties using an English-like modeling language in the input files. The system then automatically generates the finite element codes that can be run on distributed or shared memory parallel machines. This system is dynamic and flexible, allowing users to address different problems in geosciences. It is capable of providing web-based services, enabling users to generate source codes online. This unique feature will facilitate high-performance computing to be integrated with distributed data grids in the emerging cyber-infrastructures for geosciences. In this paper we discuss the principles of this automated modeling environment and provide examples to demonstrate its versatility.
Performance Analysis of New Binary User Codes for DS-CDMA Communication
NASA Astrophysics Data System (ADS)
Usha, Kamle; Jaya Sankar, Kottareddygari
2016-03-01
This paper analyzes new binary spreading codes through correlation properties and also presents their performance over additive white Gaussian noise (AWGN) channel. The proposed codes are constructed using gray and inverse gray codes. In this paper, a n-bit gray code appended by its n-bit inverse gray code to construct the 2n-length binary user codes are discussed. Like Walsh codes, these binary user codes are available in sizes of power of two and additionally code sets of length 6 and their even multiples are also available. The simple construction technique and generation of code sets of different sizes are the salient features of the proposed codes. Walsh codes and gold codes are considered for comparison in this paper as these are popularly used for synchronous and asynchronous multi user communications respectively. In the current work the auto and cross correlation properties of the proposed codes are compared with those of Walsh codes and gold codes. Performance of the proposed binary user codes for both synchronous and asynchronous direct sequence CDMA communication over AWGN channel is also discussed in this paper. The proposed binary user codes are found to be suitable for both synchronous and asynchronous DS-CDMA communication.
Menu-driven cloud computing and resource sharing for R and Bioconductor
Bolouri, Hamid; Angerman, Michael
2011-01-01
Summary: We report CRdata.org, a cloud-based, free, open-source web server for running analyses and sharing data and R scripts with others. In addition to using the free, public service, CRdata users can launch their own private Amazon Elastic Computing Cloud (EC2) nodes and store private data and scripts on Amazon's Simple Storage Service (S3) with user-controlled access rights. All CRdata services are provided via point-and-click menus. Availability and Implementation: CRdata is open-source and free under the permissive MIT License (opensource.org/licenses/mit-license.php). The source code is in Ruby (ruby-lang.org/en/) and available at: github.com/seerdata/crdata. Contact: hbolouri@fhcrc.org PMID:21685055
NASA Technical Reports Server (NTRS)
Mclennan, G. A.
1986-01-01
This report describes, and is a User's Manual for, a computer code (ANL/RBC) which calculates cycle performance for Rankine bottoming cycles extracting heat from a specified source gas stream. The code calculates cycle power and efficiency and the sizes for the heat exchangers, using tabular input of the properties of the cycle working fluid. An option is provided to calculate the costs of system components from user defined input cost functions. These cost functions may be defined in equation form or by numerical tabular data. A variety of functional forms have been included for these functions and they may be combined to create very general cost functions. An optional calculation mode can be used to determine the off-design performance of a system when operated away from the design-point, using the heat exchanger areas calculated for the design-point.
MCNP capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less
Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taherzadeh, M.
1987-11-13
The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation andmore » source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.« less
Software engineering capability for Ada (GRASP/Ada Tool)
NASA Technical Reports Server (NTRS)
Cross, James H., II
1995-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada Source code. A new Motif compliant graphical user interface has been developed for the GRASP/Ada prototype.
Digital Image Correlation Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Dan; Crozier, Paul; Reu, Phil
DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full-field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classesmore » or through a graphical user interface.« less
The Design and Evaluation of "CAPTools"--A Computer Aided Parallelization Toolkit
NASA Technical Reports Server (NTRS)
Yan, Jerry; Frumkin, Michael; Hribar, Michelle; Jin, Haoqiang; Waheed, Abdul; Johnson, Steve; Cross, Jark; Evans, Emyr; Ierotheou, Constantinos; Leggett, Pete;
1998-01-01
Writing applications for high performance computers is a challenging task. Although writing code by hand still offers the best performance, it is extremely costly and often not very portable. The Computer Aided Parallelization Tools (CAPTools) are a toolkit designed to help automate the mapping of sequential FORTRAN scientific applications onto multiprocessors. CAPTools consists of the following major components: an inter-procedural dependence analysis module that incorporates user knowledge; a 'self-propagating' data partitioning module driven via user guidance; an execution control mask generation and optimization module for the user to fine tune parallel processing of individual partitions; a program transformation/restructuring facility for source code clean up and optimization; a set of browsers through which the user interacts with CAPTools at each stage of the parallelization process; and a code generator supporting multiple programming paradigms on various multiprocessors. Besides describing the rationale behind the architecture of CAPTools, the parallelization process is illustrated via case studies involving structured and unstructured meshes. The programming process and the performance of the generated parallel programs are compared against other programming alternatives based on the NAS Parallel Benchmarks, ARC3D and other scientific applications. Based on these results, a discussion on the feasibility of constructing architectural independent parallel applications is presented.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (HP9000 SERIES 700/800 VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (IBM RS/6000 VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SUN4 VERSION WITH MOTIF)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SILICON GRAPHICS VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SUN4 VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (DEC RISC ULTRIX VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.
NASA One-Dimensional Combustor Simulation--User Manual for S1D_ML
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Paxson, Daniel E.
2014-01-01
The work presented in this paper is to promote research leading to a closed-loop control system to actively suppress thermo-acoustic instabilities. To serve as a model for such a closed-loop control system, a one-dimensional combustor simulation composed using MATLAB software tools has been written. This MATLAB based process is similar to a precursor one-dimensional combustor simulation that was formatted as FORTRAN 77 source code. The previous simulation process requires modification to the FORTRAN 77 source code, compiling, and linking when creating a new combustor simulation executable file. The MATLAB based simulation does not require making changes to the source code, recompiling, or linking. Furthermore, the MATLAB based simulation can be run from script files within the MATLAB environment or with a compiled copy of the executable file running in the Command Prompt window without requiring a licensed copy of MATLAB. This report presents a general simulation overview. Details regarding how to setup and initiate a simulation are also presented. Finally, the post-processing section describes the two types of files created while running the simulation and it also includes simulation results for a default simulation included with the source code.
phylo-node: A molecular phylogenetic toolkit using Node.js.
O'Halloran, Damien M
2017-01-01
Node.js is an open-source and cross-platform environment that provides a JavaScript codebase for back-end server-side applications. JavaScript has been used to develop very fast and user-friendly front-end tools for bioinformatic and phylogenetic analyses. However, no such toolkits are available using Node.js to conduct comprehensive molecular phylogenetic analysis. To address this problem, I have developed, phylo-node, which was developed using Node.js and provides a stable and scalable toolkit that allows the user to perform diverse molecular and phylogenetic tasks. phylo-node can execute the analysis and process the resulting outputs from a suite of software options that provides tools for read processing and genome alignment, sequence retrieval, multiple sequence alignment, primer design, evolutionary modeling, and phylogeny reconstruction. Furthermore, phylo-node enables the user to deploy server dependent applications, and also provides simple integration and interoperation with other Node modules and languages using Node inheritance patterns, and a customized piping module to support the production of diverse pipelines. phylo-node is open-source and freely available to all users without sign-up or login requirements. All source code and user guidelines are openly available at the GitHub repository: https://github.com/dohalloran/phylo-node.
Nurses' attitudes toward the use of the bar-coding medication administration system.
Marini, Sana Daya; Hasman, Arie; Huijer, Huda Abu-Saad; Dimassi, Hani
2010-01-01
This study determines nurses' attitudes toward bar-coding medication administration system use. Some of the factors underlying the successful use of bar-coding medication administration systems that are viewed as a connotative indicator of users' attitudes were used to gather data that describe the attitudinal basis for system adoption and use decisions in terms of subjective satisfaction. Only 67 nurses in the United States had the chance to respond to the e-questionnaire posted on the CARING list server for the months of June and July 2007. Participants rated their satisfaction with bar-coding medication administration system use based on system functionality, usability, and its positive/negative impact on the nursing practice. Results showed, to some extent, positive attitude, but the image profile draws attention to nurses' concerns for improving certain system characteristics. The high bar-coding medication administration system skills revealed a more negative perception of the system by the nursing staff. The reasons underlying dissatisfaction with bar-coding medication administration use by skillful users are an important source of knowledge that can be helpful for system development as well as system deployment. As a result, strengthening bar-coding medication administration system usability by magnifying its ability to eliminate medication errors and the contributing factors, maximizing system functionality by ascertaining its power as an extra eye in the medication administration process, and impacting the clinical nursing practice positively by being helpful to nurses, speeding up the medication administration process, and being user-friendly can offer a congenial settings for establishing positive attitude toward system use, which in turn leads to successful bar-coding medication administration system use.
New developments in the McStas neutron instrument simulation package
NASA Astrophysics Data System (ADS)
Willendrup, P. K.; Knudsen, E. B.; Klinkby, E.; Nielsen, T.; Farhi, E.; Filges, U.; Lefmann, K.
2014-07-01
The McStas neutron ray-tracing software package is a versatile tool for building accurate simulators of neutron scattering instruments at reactors, short- and long-pulsed spallation sources such as the European Spallation Source. McStas is extensively used for design and optimization of instruments, virtual experiments, data analysis and user training. McStas was founded as a scientific, open-source collaborative code in 1997. This contribution presents the project at its current state and gives an overview of the main new developments in McStas 2.0 (December 2012) and McStas 2.1 (expected fall 2013), including many new components, component parameter uniformisation, partial loss of backward compatibility, updated source brilliance descriptions, developments toward new tools and user interfaces, web interfaces and a new method for estimating beam losses and background from neutron optics.
Synchrotron Radiation Workshop (SRW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubar, O.; Elleaume, P.
2013-03-01
"Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, softmore » and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less
NASA Astrophysics Data System (ADS)
Kurceren, Ragip; Modestino, James W.
1998-12-01
The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretically achievable upper limits on the number of sources multiplexed. Performance of specific coding techniques using interlaced nonbinary Reed-Solomon (RS) codes and binary rate-compatible punctured convolutional (RCPC) codes is illustrated.
CACTI: Free, Open-Source Software for the Sequential Coding of Behavioral Interactions
Glynn, Lisa H.; Hallgren, Kevin A.; Houck, Jon M.; Moyers, Theresa B.
2012-01-01
The sequential analysis of client and clinician speech in psychotherapy sessions can help to identify and characterize potential mechanisms of treatment and behavior change. Previous studies required coding systems that were time-consuming, expensive, and error-prone. Existing software can be expensive and inflexible, and furthermore, no single package allows for pre-parsing, sequential coding, and assignment of global ratings. We developed a free, open-source, and adaptable program to meet these needs: The CASAA Application for Coding Treatment Interactions (CACTI). Without transcripts, CACTI facilitates the real-time sequential coding of behavioral interactions using WAV-format audio files. Most elements of the interface are user-modifiable through a simple XML file, and can be further adapted using Java through the terms of the GNU Public License. Coding with this software yields interrater reliabilities comparable to previous methods, but at greatly reduced time and expense. CACTI is a flexible research tool that can simplify psychotherapy process research, and has the potential to contribute to the improvement of treatment content and delivery. PMID:22815713
Vector radiative transfer code SORD: Performance analysis and quick start guide
NASA Astrophysics Data System (ADS)
Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Alexander; Holben, Brent; Kokhanovsky, Alexander
2017-10-01
We present a new open source polarized radiative transfer code SORD written in Fortran 90/95. SORD numerically simulates propagation of monochromatic solar radiation in a plane-parallel atmosphere over a reflecting surface using the method of successive orders of scattering (hence the name). Thermal emission is ignored. We did not improve the method in any way, but report the accuracy and runtime in 52 benchmark scenarios. This paper also serves as a quick start user's guide for the code available from ftp://maiac.gsfc.nasa.gov/pub/skorkin, from the JQSRT website, or from the corresponding (first) author.
Open-Source Development of the Petascale Reactive Flow and Transport Code PFLOTRAN
NASA Astrophysics Data System (ADS)
Hammond, G. E.; Andre, B.; Bisht, G.; Johnson, T.; Karra, S.; Lichtner, P. C.; Mills, R. T.
2013-12-01
Open-source software development has become increasingly popular in recent years. Open-source encourages collaborative and transparent software development and promotes unlimited free redistribution of source code to the public. Open-source development is good for science as it reveals implementation details that are critical to scientific reproducibility, but generally excluded from journal publications. In addition, research funds that would have been spent on licensing fees can be redirected to code development that benefits more scientists. In 2006, the developers of PFLOTRAN open-sourced their code under the U.S. Department of Energy SciDAC-II program. Since that time, the code has gained popularity among code developers and users from around the world seeking to employ PFLOTRAN to simulate thermal, hydraulic, mechanical and biogeochemical processes in the Earth's surface/subsurface environment. PFLOTRAN is a massively-parallel subsurface reactive multiphase flow and transport simulator designed from the ground up to run efficiently on computing platforms ranging from the laptop to leadership-class supercomputers, all from a single code base. The code employs domain decomposition for parallelism and is founded upon the well-established and open-source parallel PETSc and HDF5 frameworks. PFLOTRAN leverages modern Fortran (i.e. Fortran 2003-2008) in its extensible object-oriented design. The use of this progressive, yet domain-friendly programming language has greatly facilitated collaboration in the code's software development. Over the past year, PFLOTRAN's top-level data structures were refactored as Fortran classes (i.e. extendible derived types) to improve the flexibility of the code, ease the addition of new process models, and enable coupling to external simulators. For instance, PFLOTRAN has been coupled to the parallel electrical resistivity tomography code E4D to enable hydrogeophysical inversion while the same code base can be used as a third-party library to provide hydrologic flow, energy transport, and biogeochemical capability to the community land model, CLM, part of the open-source community earth system model (CESM) for climate. In this presentation, the advantages and disadvantages of open source software development in support of geoscience research at government laboratories, universities, and the private sector are discussed. Since the code is open-source (i.e. it's transparent and readily available to competitors), the PFLOTRAN team's development strategy within a competitive research environment is presented. Finally, the developers discuss their approach to object-oriented programming and the leveraging of modern Fortran in support of collaborative geoscience research as the Fortran standard evolves among compiler vendors.
A MATLAB based 3D modeling and inversion code for MT data
NASA Astrophysics Data System (ADS)
Singh, Arun; Dehiya, Rahul; Gupta, Pravin K.; Israil, M.
2017-07-01
The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator code and modeling/inversion code. The grid generator code performs model discretization and acts as an interface by generating various I/O files. The inversion code performs core computations in modular form - forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the code provides a framework useful for implementation of new applications and inversion algorithms. The use of MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several published models. To demonstrate its versatility and capabilities the results of inversion for two complex models are presented.
TOPAS Tool for Particle Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Joseph
2013-05-30
TOPAS lets users simulate the passage of subatomic particles moving through any kind of radiation therapy treatment system, can import a patient geometry, can record dose and other quantities, has advanced graphics, and is fully four-dimensional (3D plus time) to handle the most challenging time-dependent aspects of modern cancer treatments.TOPAS unlocks the power of the most accurate particle transport simulation technique, the Monte Carlo (MC) method, while removing the painstaking coding work such methods used to require. Research physicists can use TOPAS to improve delivery systems towards safer and more effective radiation therapy treatments, easily setting up and running complexmore » simulations that previously used to take months of preparation. Clinical physicists can use TOPAS to increase accuracy while reducing side effects, simulating patient-specific treatment plans at the touch of a button. TOPAS is designed as a user code layered on top of the Geant4 Simulation Toolkit. TOPAS includes the standard Geant4 toolkit, plus additional code to make Geant4 easier to control and to extend Geant4 functionality. TOPAS aims to make proton simulation both reliable and repeatable. Reliable means both accurate physics and a high likelihood to simulate precisely what the user intended to simulate, reducing issues of wrong units, wrong materials, wrong scoring locations, etc. Repeatable means not just getting the same result from one simulation to another, but being able to easily restore a previously used setup and reducing sources of error when a setup is passed from one user to another. TOPAS control system incorporates key lessons from safety management, proactively removing possible sources of user error such as line-ordering mistakes In control files. TOPAS has been used to model proton therapy treatment examples including the UCSF eye treatment head, the MGH stereotactic alignment in radiosurgery treatment head and the MGH gantry treatment heads in passive scattering and scanning modes, and has demonstrated dose calculation based on patient-specific CT data.« less
Make safety awareness a priority: Use a login software in your research facility
Camino, Fernando E.
2017-01-21
We report on a facility login software, whose objective is to improve safety in multi-user research facilities. Its most important safety features are: 1) blocks users from entering the lab after being absent for more than a predetermined number of days; 2) gives users a random safety quiz question, which they need to answer satisfactorily in order to use the facility; 3) blocks unauthorized users from using the facility afterhours; and 4) displays the current users in the facility. Besides restricting access to unauthorized users, the software keeps users mindful of key safety concepts. In addition, integration of the softwaremore » with a door controller system can convert it into an effective physical safety mechanism. Depending on DOE approval, the code may be available as open source.« less
Make safety awareness a priority: Use a login software in your research facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camino, Fernando E.
We report on a facility login software, whose objective is to improve safety in multi-user research facilities. Its most important safety features are: 1) blocks users from entering the lab after being absent for more than a predetermined number of days; 2) gives users a random safety quiz question, which they need to answer satisfactorily in order to use the facility; 3) blocks unauthorized users from using the facility afterhours; and 4) displays the current users in the facility. Besides restricting access to unauthorized users, the software keeps users mindful of key safety concepts. In addition, integration of the softwaremore » with a door controller system can convert it into an effective physical safety mechanism. Depending on DOE approval, the code may be available as open source.« less
ACON: a multipurpose production controller for plasma physics codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snell, C.
1983-01-01
ACON is a BCON controller designed to run large production codes on the CTSS Cray-1 or the LTSS 7600 computers. ACON can also be operated interactively, with input from the user's terminal. The controller can run one code or a sequence of up to ten codes during the same job. Options are available to get and save Mass storage files, to perform Historian file updating operations, to compile and load source files, and to send out print and film files. Special features include ability to retry after Mass failures, backup options for saving files, startup messages for the various codes,more » and ability to reserve specified amounts of computer time after successive code runs. ACON's flexibility and power make it useful for running a number of different production codes.« less
An Open-source Community Web Site To Support Ground-Water Model Testing
NASA Astrophysics Data System (ADS)
Kraemer, S. R.; Bakker, M.; Craig, J. R.
2007-12-01
A community wiki wiki web site has been created as a resource to support ground-water model development and testing. The Groundwater Gourmet wiki is a repository for user supplied analytical and numerical recipes, howtos, and examples. Members are encouraged to submit analytical solutions, including source code and documentation. A diversity of code snippets are sought in a variety of languages, including Fortran, C, C++, Matlab, Python. In the spirit of a wiki, all contributions may be edited and altered by other users, and open source licensing is promoted. Community accepted contributions are graduated into the library of analytic solutions and organized into either a Strack (Groundwater Mechanics, 1989) or Bruggeman (Analytical Solutions of Geohydrological Problems, 1999) classification. The examples section of the wiki are meant to include laboratory experiments (e.g., Hele Shaw), classical benchmark problems (e.g., Henry Problem), and controlled field experiments (e.g., Borden landfill and Cape Cod tracer tests). Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
Bracken, Robert E.
2004-01-01
A subroutine (FFTDC2) coded in Fortran 77 is described, which performs a Fast Fourier Transform or Discrete Fourier Transform together with necessary conditioning steps of trend removal, extension, and windowing. The source code for the entire library of required subroutines is provided with the digital release of this report. But, there is only one required entry point, the subroutine call to FFTDC2; all the other subroutines are operationally transparent to the user. Complete instructions for use of FFTDC2.F (as well as for all the other subroutines) and some practical theoretical discussions are included as comments at the beginning of the source code. This subroutine is intended to be an efficient tool for the programmer in a variety of production-level signal-processing applications.
Instrumentino: An Open-Source Software for Scientific Instruments.
Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C
2015-01-01
Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.
Pre-calculated protein structure alignments at the RCSB PDB website.
Prlic, Andreas; Bliven, Spencer; Rose, Peter W; Bluhm, Wolfgang F; Bizon, Chris; Godzik, Adam; Bourne, Philip E
2010-12-01
With the continuous growth of the RCSB Protein Data Bank (PDB), providing an up-to-date systematic structure comparison of all protein structures poses an ever growing challenge. Here, we present a comparison tool for calculating both 1D protein sequence and 3D protein structure alignments. This tool supports various applications at the RCSB PDB website. First, a structure alignment web service calculates pairwise alignments. Second, a stand-alone application runs alignments locally and visualizes the results. Third, pre-calculated 3D structure comparisons for the whole PDB are provided and updated on a weekly basis. These three applications allow users to discover novel relationships between proteins available either at the RCSB PDB or provided by the user. A web user interface is available at http://www.rcsb.org/pdb/workbench/workbench.do. The source code is available under the LGPL license from http://www.biojava.org. A source bundle, prepared for local execution, is available from http://source.rcsb.org andreas@sdsc.edu; pbourne@ucsd.edu.
Perspective: Semantic Data Management for the Home
2008-05-01
8 the more flexible policies found in many management tasks must be made in an ad - hoc fashion at the application level, leading to a loss of user...this mismatch as a significant source of disorganization: Aaron: “I’m very conscious about the way I name things; I have a coding system. But the...thing is, that doesn’t work if you have everything spread out. The coding system makes sense when there’s a lot of other things around, but not when it’s
NASA Technical Reports Server (NTRS)
Hall, E. J.; Topp, D. A.; Delaney, R. A.
1996-01-01
The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields. The current version of the computer code resulting from this study is referred to as ADPAC (Advanced Ducted Propfan Analysis Codes-Version 7). This report is intended to serve as a computer program user's manual for the ADPAC code developed under Tasks 6 and 7 of the NASA Contract. The ADPAC program is based on a flexible multiple- block grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. An iterative implicit algorithm is available for rapid time-dependent flow calculations, and an advanced two equation turbulence model is incorporated to predict complex turbulent flows. The consolidated code generated during this study is capable of executing in either a serial or parallel computing mode from a single source code. Numerous examples are given in the form of test cases to demonstrate the utility of this approach for predicting the aerodynamics of modem turbomachinery configurations.
Computational Fluids Domain Reduction to a Simplified Fluid Network
2012-04-19
readily available read/ write software library. Code components from the open source projects OpenFoam and Paraview were explored for their adaptability...to the project. Both Paraview and OpenFoam read polyhedral mesh. OpenFoam does not read results data. Paraview actually allows for user “filters
MCNP Version 6.2 Release Notes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, Christopher John; Bull, Jeffrey S.; Solomon, C. J.
Monte Carlo N-Particle or MCNP ® is a general-purpose Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. This MCNP Version 6.2 follows the MCNP6.1.1 beta version and has been released in order to provide the radiation transport community with the latest feature developments and bug fixes for MCNP. Since the last release of MCNP major work has been conducted to improve the code base, add features, and provide tools to facilitate ease of use of MCNP version 6.2 as well as the analysis of results. These release notes serve as a general guidemore » for the new/improved physics, source, data, tallies, unstructured mesh, code enhancements and tools. For more detailed information on each of the topics, please refer to the appropriate references or the user manual which can be found at http://mcnp.lanl.gov. This release of MCNP version 6.2 contains 39 new features in addition to 172 bug fixes and code enhancements. There are still some 33 known issues the user should familiarize themselves with (see Appendix).« less
Applying Standard Interfaces to a Process-Control Language
NASA Technical Reports Server (NTRS)
Berthold, Richard T.
2005-01-01
A method of applying open-operating-system standard interfaces to the NASA User Interface Language (UIL) has been devised. UIL is a computing language that can be used in monitoring and controlling automated processes: for example, the Timeliner computer program, written in UIL, is a general-purpose software system for monitoring and controlling sequences of automated tasks in a target system. In providing the major elements of connectivity between UIL and the target system, the present method offers advantages over the prior method. Most notably, unlike in the prior method, the software description of the target system can be made independent of the applicable compiler software and need not be linked to the applicable executable compiler image. Also unlike in the prior method, it is not necessary to recompile the source code and relink the source code to a new executable compiler image. Abstraction of the description of the target system to a data file can be defined easily, with intuitive syntax, and knowledge of the source-code language is not needed for the definition.
Software Attribution for Geoscience Applications in the Computational Infrastructure for Geodynamics
NASA Astrophysics Data System (ADS)
Hwang, L.; Dumit, J.; Fish, A.; Soito, L.; Kellogg, L. H.; Smith, M.
2015-12-01
Scientific software is largely developed by individual scientists and represents a significant intellectual contribution to the field. As the scientific culture and funding agencies move towards an expectation that software be open-source, there is a corresponding need for mechanisms to cite software, both to provide credit and recognition to developers, and to aid in discoverability of software and scientific reproducibility. We assess the geodynamic modeling community's current citation practices by examining more than 300 predominantly self-reported publications utilizing scientific software in the past 5 years that is available through the Computational Infrastructure for Geodynamics (CIG). Preliminary results indicate that authors cite and attribute software either through citing (in rank order) peer-reviewed scientific publications, a user's manual, and/or a paper describing the software code. Attributions maybe found directly in the text, in acknowledgements, in figure captions, or in footnotes. What is considered citable varies widely. Citations predominantly lack software version numbers or persistent identifiers to find the software package. Versioning may be implied through reference to a versioned user manual. Authors sometimes report code features used and whether they have modified the code. As an open-source community, CIG requests that researchers contribute their modifications to the repository. However, such modifications may not be contributed back to a repository code branch, decreasing the chances of discoverability and reproducibility. Survey results through CIG's Software Attribution for Geoscience Applications (SAGA) project suggest that lack of knowledge, tools, and workflows to cite codes are barriers to effectively implement the emerging citation norms. Generated on-demand attributions on software landing pages and a prototype extensible plug-in to automatically generate attributions in codes are the first steps towards reproducibility.
Python-Assisted MODFLOW Application and Code Development
NASA Astrophysics Data System (ADS)
Langevin, C.
2013-12-01
The U.S. Geological Survey (USGS) has a long history of developing and maintaining free, open-source software for hydrological investigations. The MODFLOW program is one of the most popular hydrologic simulation programs released by the USGS, and it is considered to be the most widely used groundwater flow simulation code. MODFLOW was written using a modular design and a procedural FORTRAN style, which resulted in code that could be understood, modified, and enhanced by many hydrologists. The code is fast, and because it uses standard FORTRAN it can be run on most operating systems. Most MODFLOW users rely on proprietary graphical user interfaces for constructing models and viewing model results. Some recent efforts, however, have focused on construction of MODFLOW models using open-source Python scripts. Customizable Python packages, such as FloPy (https://code.google.com/p/flopy), can be used to generate input files, read simulation results, and visualize results in two and three dimensions. Automating this sequence of steps leads to models that can be reproduced directly from original data and rediscretized in space and time. Python is also being used in the development and testing of new MODFLOW functionality. New packages and numerical formulations can be quickly prototyped and tested first with Python programs before implementation in MODFLOW. This is made possible by the flexible object-oriented design capabilities available in Python, the ability to call FORTRAN code from Python, and the ease with which linear systems of equations can be solved using SciPy, for example. Once new features are added to MODFLOW, Python can then be used to automate comprehensive regression testing and ensure reliability and accuracy of new versions prior to release.
PharmTeX: a LaTeX-Based Open-Source Platform for Automated Reporting Workflow.
Rasmussen, Christian Hove; Smith, Mike K; Ito, Kaori; Sundararajan, Vijayakumar; Magnusson, Mats O; Niclas Jonsson, E; Fostvedt, Luke; Burger, Paula; McFadyen, Lynn; Tensfeldt, Thomas G; Nicholas, Timothy
2018-03-16
Every year, the pharmaceutical industry generates a large number of scientific reports related to drug research, development, and regulatory submissions. Many of these reports are created using text processing tools such as Microsoft Word. Given the large number of figures, tables, references, and other elements, this is often a tedious task involving hours of copying and pasting and substantial efforts in quality control (QC). In the present article, we present the LaTeX-based open-source reporting platform, PharmTeX, a community-based effort to make reporting simple, reproducible, and user-friendly. The PharmTeX creators put a substantial effort into simplifying the sometimes complex elements of LaTeX into user-friendly functions that rely on advanced LaTeX and Perl code running in the background. Using this setup makes LaTeX much more accessible for users with no prior LaTeX experience. A software collection was compiled for users not wanting to manually install the required software components. The PharmTeX templates allow for inclusion of tables directly from mathematical software output as well and figures from several formats. Code listings can be included directly from source. No previous experience and only a few hours of training are required to start writing reports using PharmTeX. PharmTeX significantly reduces the time required for creating a scientific report fully compliant with regulatory and industry expectations. QC is made much simpler, since there is a direct link between analysis output and report input. PharmTeX makes available to report authors the strengths of LaTeX document processing without the need for extensive training. Graphical Abstract ᅟ.
Implementation of GenePattern within the Stanford Microarray Database.
Hubble, Jeremy; Demeter, Janos; Jin, Heng; Mao, Maria; Nitzberg, Michael; Reddy, T B K; Wymore, Farrell; Zachariah, Zachariah K; Sherlock, Gavin; Ball, Catherine A
2009-01-01
Hundreds of researchers across the world use the Stanford Microarray Database (SMD; http://smd.stanford.edu/) to store, annotate, view, analyze and share microarray data. In addition to providing registered users at Stanford access to their own data, SMD also provides access to public data, and tools with which to analyze those data, to any public user anywhere in the world. Previously, the addition of new microarray data analysis tools to SMD has been limited by available engineering resources, and in addition, the existing suite of tools did not provide a simple way to design, execute and share analysis pipelines, or to document such pipelines for the purposes of publication. To address this, we have incorporated the GenePattern software package directly into SMD, providing access to many new analysis tools, as well as a plug-in architecture that allows users to directly integrate and share additional tools through SMD. In this article, we describe our implementation of the GenePattern microarray analysis software package into the SMD code base. This extension is available with the SMD source code that is fully and freely available to others under an Open Source license, enabling other groups to create a local installation of SMD with an enriched data analysis capability.
Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J
2013-04-21
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
NASA Astrophysics Data System (ADS)
Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.
2013-04-01
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
HEMCO v1.0: A Versatile, ESMF-Compliant Component for Calculating Emissions in Atmospheric Models
NASA Technical Reports Server (NTRS)
Keller, C. A.; Long, M. S.; Yantosca, R. M.; Da Silva, A. M.; Pawson, S.; Jacob, D. J.
2014-01-01
We describe the Harvard-NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any preprocessing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF) environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA Goddard Earth Observing System (GEOS-5) Earth system model (ESM) and in the GEOS-Chem chemical transport model (CTM). By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and the full set of emissions data files used in GEOS-Chem are available at http: //wiki.geos-chem.org/HEMCO.
Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frambati, S.; Frignani, M.
2012-07-01
We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less
Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms
Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon
2011-01-01
Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532
User Interface Design in Medical Distributed Web Applications.
Serban, Alexandru; Crisan-Vida, Mihaela; Mada, Leonard; Stoicu-Tivadar, Lacramioara
2016-01-01
User interfaces are important to facilitate easy learning and operating with an IT application especially in the medical world. An easy to use interface has to be simple and to customize the user needs and mode of operation. The technology in the background is an important tool to accomplish this. The present work aims to creating a web interface using specific technology (HTML table design combined with CSS3) to provide an optimized responsive interface for a complex web application. In the first phase, the current icMED web medical application layout is analyzed, and its structure is designed using specific tools, on source files. In the second phase, a new graphic adaptable interface to different mobile terminals is proposed, (using HTML table design (TD) and CSS3 method) that uses no source files, just lines of code for layout design, improving the interaction in terms of speed and simplicity. For a complex medical software application a new prototype layout was designed and developed using HTML tables. The method uses a CSS code with only CSS classes applied to one or multiple HTML table elements, instead of CSS styles that can be applied to just one DIV tag at once. The technique has the advantage of a simplified CSS code, and a better adaptability to different media resolutions compared to DIV-CSS style method. The presented work is a proof that adaptive web interfaces can be developed just using and combining different types of design methods and technologies, using HTML table design, resulting in a simpler to learn and use interface, suitable for healthcare services.
Parallel community climate model: Description and user`s guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, J.B.; Flanery, R.E.; Semeraro, B.D.
This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain intomore » geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.« less
NASA Astrophysics Data System (ADS)
Laune, Jordan; Tzeferacos, Petros; Feister, Scott; Fatenejad, Milad; Yurchak, Roman; Flocke, Norbert; Weide, Klaus; Lamb, Donald
2017-10-01
Thermodynamic and opacity properties of materials are necessary to accurately simulate laser-driven laboratory experiments. Such data are compiled in tabular format since the thermodynamic range that needs to be covered cannot be described with one single theoretical model. Moreover, tabulated data can be made available prior to runtime, reducing both compute cost and code complexity. This approach is employed by the FLASH code. Equation of state (EoS) and opacity data comes in various formats, matrix-layouts, and file-structures. We discuss recent developments on opacplot2, an open-source Python module that manipulates tabulated EoS and opacity data. We present software that builds upon opacplot2 and enables easy-to-use conversion of different table formats into the IONMIX format, the native tabular input used by FLASH. Our work enables FLASH users to take advantage of a wider range of accurate EoS and opacity tables in simulating HELP experiments at the National Laser User Facilities.
Development of the FITS tools package for multiple software environments
NASA Technical Reports Server (NTRS)
Pence, W. D.; Blackburn, J. K.
1992-01-01
The HEASARC is developing a package of general purpose software for analyzing data files in FITS format. This paper describes the design philosophy which makes the software both machine-independent (it runs on VAXs, Suns, and DEC-stations) and software environment-independent. Currently the software can be compiled and linked to produce IRAF tasks, or alternatively, the same source code can be used to generate stand-alone tasks using one of two implementations of a user-parameter interface library. The machine independence of the software is achieved by writing the source code in ANSI standard Fortran or C, using the machine-independent FITSIO subroutine interface for all data file I/O, and using a standard user-parameter subroutine interface for all user I/O. The latter interface is based on the Fortran IRAF Parameter File interface developed at STScI. The IRAF tasks are built by linking to the IRAF implementation of this parameter interface library. Two other implementations of this parameter interface library, which have no IRAF dependencies, are now available which can be used to generate stand-alone executable tasks. These stand-alone tasks can simply be executed from the machine operating system prompt either by supplying all the task parameters on the command line or by entering the task name after which the user will be prompted for any required parameters. A first release of this FTOOLS package is now publicly available. The currently available tasks are described, along with instructions on how to obtain a copy of the software.
CellAnimation: an open source MATLAB framework for microscopy assays.
Georgescu, Walter; Wikswo, John P; Quaranta, Vito
2012-01-01
Advances in microscopy technology have led to the creation of high-throughput microscopes that are capable of generating several hundred gigabytes of images in a few days. Analyzing such wealth of data manually is nearly impossible and requires an automated approach. There are at present a number of open-source and commercial software packages that allow the user to apply algorithms of different degrees of sophistication to the images and extract desired metrics. However, the types of metrics that can be extracted are severely limited by the specific image processing algorithms that the application implements, and by the expertise of the user. In most commercial software, code unavailability prevents implementation by the end user of newly developed algorithms better suited for a particular type of imaging assay. While it is possible to implement new algorithms in open-source software, rewiring an image processing application requires a high degree of expertise. To obviate these limitations, we have developed an open-source high-throughput application that allows implementation of different biological assays such as cell tracking or ancestry recording, through the use of small, relatively simple image processing modules connected into sophisticated imaging pipelines. By connecting modules, non-expert users can apply the particular combination of well-established and novel algorithms developed by us and others that are best suited for each individual assay type. In addition, our data exploration and visualization modules make it easy to discover or select specific cell phenotypes from a heterogeneous population. CellAnimation is distributed under the Creative Commons Attribution-NonCommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/). CellAnimationsource code and documentation may be downloaded from www.vanderbilt.edu/viibre/software/documents/CellAnimation.zip. Sample data are available at www.vanderbilt.edu/viibre/software/documents/movies.zip. walter.georgescu@vanderbilt.edu Supplementary data available at Bioinformatics online.
MDSplus quality improvement project
Fredian, Thomas W.; Stillerman, Joshua; Manduchi, Gabriele; ...
2016-05-31
MDSplus is a data acquisition and analysis system used worldwide predominantly in the fusion research community. Development began 29 years ago on the OpenVMS operating system. Since that time there have been many new features added and the code has been ported to many different operating systems. There have been contributions to the MDSplus development from the fusion community in the way of feature suggestions, feature implementations, documentation and porting to different operating systems. The bulk of the development and support of MDSplus, however, has been provided by a relatively small core developer group of three or four members. Givenmore » the size of the development team and the large number of users much more effort was focused on providing new features for the community than on keeping the underlying code and documentation up to date with the evolving software development standards. To ensure that MDSplus will continue to provide the needs of the community in the future, the MDSplus development team along with other members of the MDSplus user community has commenced on a major quality improvement project. The planned improvements include changes to software build scripts to better use GNU Autoconf and Automake tools, refactoring many of the source code modules using new language features available in modern compilers, using GNU MinGW-w64 to create MS Windows distributions, migrating to a more modern source code management system, improvement of source documentation as well as improvements to the www.mdsplus.org web site documentation and layout, and the addition of more comprehensive test suites to apply to MDSplus code builds prior to releasing installation kits to the community. This paper should lead to a much more robust product and establish a framework to maintain stability as more enhancements and features are added. Finally, this paper will describe these efforts that are either in progress or planned for the near future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, T.D. Jr.
1996-05-01
The Monte Carlo Model System (MCMS) for the Washington State University (WSU) Radiation Center provides a means through which core criticality and power distributions can be calculated, as well as providing a method for neutron and photon transport necessary for BNCT epithermal neutron beam design. The computational code used in this Model System is MCNP4A. The geometric capability of this Monte Carlo code allows the WSU system to be modeled very accurately. A working knowledge of the MCNP4A neutron transport code increases the flexibility of the Model System and is recommended, however, the eigenvalue/power density problems can be run withmore » little direct knowledge of MCNP4A. Neutron and photon particle transport require more experience with the MCNP4A code. The Model System consists of two coupled subsystems; the Core Analysis and Source Plane Generator Model (CASP), and the BeamPort Shell Particle Transport Model (BSPT). The CASP Model incorporates the S({alpha}, {beta}) thermal treatment, and is run as a criticality problem yielding, the system eigenvalue (k{sub eff}), the core power distribution, and an implicit surface source for subsequent particle transport in the BSPT Model. The BSPT Model uses the source plane generated by a CASP run to transport particles through the thermal column beamport. The user can create filter arrangements in the beamport and then calculate characteristics necessary for assessing the BNCT potential of the given filter want. Examples of the characteristics to be calculated are: neutron fluxes, neutron currents, fast neutron KERMAs and gamma KERMAs. The MCMS is a useful tool for the WSU system. Those unfamiliar with the MCNP4A code can use the MCMS transparently for core analysis, while more experienced users will find the particle transport capabilities very powerful for BNCT filter design.« less
Dadaev, Tokhir; Leongamornlert, Daniel A; Saunders, Edward J; Eeles, Rosalind; Kote-Jarai, Zsofia
2016-03-15
: In this article, we present LocusExplorer, a data visualization and exploration tool for genetic association data. LocusExplorer is written in R using the Shiny library, providing access to powerful R-based functions through a simple user interface. LocusExplorer allows users to simultaneously display genetic, statistical and biological data for humans in a single image and allows dynamic zooming and customization of the plot features. Publication quality plots may then be produced in a variety of file formats. LocusExplorer is open source and runs through R and a web browser. It is available at www.oncogenetics.icr.ac.uk/LocusExplorer/ or can be installed locally and the source code accessed from https://github.com/oncogenetics/LocusExplorer tokhir.dadaev@icr.ac.uk. © The Author 2015. Published by Oxford University Press.
The General Mission Analysis Tool (GMAT): Current Features And Adding Custom Functionality
NASA Technical Reports Server (NTRS)
Conway, Darrel J.; Hughes, Steven P.
2010-01-01
The General Mission Analysis Tool (GMAT) is a software system for trajectory optimization, mission analysis, trajectory estimation, and prediction developed by NASA, the Air Force Research Lab, and private industry. GMAT's design and implementation are based on four basic principles: open source visibility for both the source code and design documentation; platform independence; modular design; and user extensibility. The system, released under the NASA Open Source Agreement, runs on Windows, Mac and Linux. User extensions, loaded at run time, have been built for optimization, trajectory visualization, force model extension, and estimation, by parties outside of GMAT's development group. The system has been used to optimize maneuvers for the Lunar Crater Observation and Sensing Satellite (LCROSS) and ARTEMIS missions and is being used for formation design and analysis for the Magnetospheric Multiscale Mission (MMS).
Pulse sequence programming in a dynamic visual environment: SequenceTree.
Magland, Jeremy F; Li, Cheng; Langham, Michael C; Wehrli, Felix W
2016-01-01
To describe SequenceTree, an open source, integrated software environment for implementing MRI pulse sequences and, ideally, exporting them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for programmers and nonprogrammers alike. The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically, allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally, other types of scanners will be supported in the future. SequenceTree has been used for 8 years in our laboratory and elsewhere and has contributed to more than 50 peer-reviewed publications in areas such as cardiovascular imaging, solid state and nonproton NMR, MR elastography, and high-resolution structural imaging. SequenceTree is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal both for advanced users and users with limited programming experience. © 2015 Wiley Periodicals, Inc.
OpenFOAM: Open source CFD in research and industry
NASA Astrophysics Data System (ADS)
Jasak, Hrvoje
2009-12-01
The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... when discharges change as a result of the use of an alternative methodology or data for computing flood... land use regulation. (ii) It must be well-documented including source codes and user's manuals. (iii... projects that may effect map changes when they are completed. (4) The datum and date of releveling of...
DESIGN: a program to create data entry programs
J. Michael Wuerth; David R. Weise
1994-01-01
Scientific data entry can be an exacting process. The specific information needs change from investigation to investigation. A computer program to design custom data screens is described. The program, DESIGN, generates the necessary C programming language source code to create a basic data entry program. Data entry screens can contain multiple nested screens. Users can...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Chao
Sparx, a new environment for Cryo-EM image processing; Cryo-EM, Single particle reconstruction, principal component analysis; Hardware Req.: PC, MAC, Supercomputer, Mainframe, Multiplatform, Workstation. Software Req.: operating system is Unix; Compiler C++; type of files: source code, object library, executable modules, compilation instructions; sample problem input data. Location/transmission: http://sparx-em.org; User manual & paper: http://sparx-em.org;
Automated verification of flight software. User's manual
NASA Technical Reports Server (NTRS)
Saib, S. H.
1982-01-01
(Automated Verification of Flight Software), a collection of tools for analyzing source programs written in FORTRAN and AED is documented. The quality and the reliability of flight software are improved by: (1) indented listings of source programs, (2) static analysis to detect inconsistencies in the use of variables and parameters, (3) automated documentation, (4) instrumentation of source code, (5) retesting guidance, (6) analysis of assertions, (7) symbolic execution, (8) generation of verification conditions, and (9) simplification of verification conditions. Use of AVFS in the verification of flight software is described.
LSDCat: Detection and cataloguing of emission-line sources in integral-field spectroscopy datacubes
NASA Astrophysics Data System (ADS)
Herenz, Edmund Christian; Wisotzki, Lutz
2017-06-01
We present a robust, efficient, and user-friendly algorithm for detecting faint emission-line sources in large integral-field spectroscopic datacubes together with the public release of the software package Line Source Detection and Cataloguing (LSDCat). LSDCat uses a three-dimensional matched filter approach, combined with thresholding in signal-to-noise, to build a catalogue of individual line detections. In a second pass, the detected lines are grouped into distinct objects, and positions, spatial extents, and fluxes of the detected lines are determined. LSDCat requires only a small number of input parameters, and we provide guidelines for choosing appropriate values. The software is coded in Python and capable of processing very large datacubes in a short time. We verify the implementation with a source insertion and recovery experiment utilising a real datacube taken with the MUSE instrument at the ESO Very Large Telescope. The LSDCat software is available for download at http://muse-vlt.eu/science/tools and via the Astrophysics Source Code Library at http://ascl.net/1612.002
NASA Technical Reports Server (NTRS)
Jones, Jeremy; Grosvenor, Sandy; Wolf, Karl; Li, Connie; Koratkar, Anuradha; Powers, Edward I. (Technical Monitor)
2001-01-01
In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing between groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for SOFIA, the SIRTF planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, defacto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA - both successes and failures - and offer some lessons learned that may promote further successes in collaboration and re-use.
NASA Technical Reports Server (NTRS)
Korathkar, Anuradha; Grosvenor, Sandy; Jones, Jeremy; Li, Connie; Mackey, Jennifer; Neher, Ken; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing among groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for the SIRTF (Space Infrared Telescope Facility) planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, de facto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA--both successes and failures, and offer some lessons learned that might promote further successes in collaboration and re-use.
Development of Alabama Resources Information System (ARIS)
NASA Technical Reports Server (NTRS)
Herring, B. E.; Vachon, R. I.
1976-01-01
A formal, organized set of information concerning the development status of the Alabama Resources Information System (ARIS) as of September 1976 is provided. A series of computer source language programs, and flow charts related to each of the computer programs to provide greater ease in performing future change are presented. Listings of the variable names, and their meanings, used in the various source code programs, and copies of the various user manuals which were prepared through this time are given.
Coastal Online Analysis and Synthesis Tool 2.0 (COAST)
NASA Technical Reports Server (NTRS)
Brown, Richard B.; Navard, Andrew R.; Nguyen, Beth T.
2009-01-01
The Coastal Online Assessment and Synthesis Tool (COAST) 3D geobrowser has been developed to integrate disparate coastal datasets from NASA and other sources into a desktop tool that provides new data visualization and analysis capabilities for coastal researchers, managers, and residents. It is built upon the widely used NASA-developed open source World Wind geobrowser from NASA Ames (Patrick Hogan et al.) .Net and C# version is used for development. It is leveraged off of World Wind community shared code samples and COAST 2.0 enhancement direction is based on Coastal science community feedback and needs assessment (GOMA). The main objective is to empower the user to bring more user-meaningful data into multi-layered, multi-temporal spatial context.
An Evolving Worldview: Making Open Source Easy
NASA Astrophysics Data System (ADS)
Rice, Z.
2017-12-01
NASA Worldview is an interactive interface for browsing full-resolution, global satellite imagery. Worldview supports an open data policy so that academia, private industries and the general public can use NASA's satellite data to address Earth science related issues. Worldview was open sourced in 2014. By shifting to an open source approach, the Worldview application has evolved to better serve end-users. Project developers are able to have discussions with end-users and community developers to understand issues and develop new features. Community developers are able to track upcoming features, collaborate on them and make their own contributions. Developers who discover issues are able to address those issues and submit a fix. This reduces the time it takes for a project developer to reproduce an issue or develop a new feature. Getting new developers to contribute to the project has been one of the most important and difficult aspects of open sourcing Worldview. After witnessing potential outside contributors struggle, a focus has been made on making the installation of Worldview simple to reduce the initial learning curve and make contributing code easy. One way we have addressed this is through a simplified setup process. Our setup documentation includes a set of prerequisites and a set of straightforward commands to clone, configure, install and run. This presentation will emphasize our focus to simplify and standardize Worldview's open source code so that more people are able to contribute. The more people who contribute, the better the application will become over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiani, D.; Dubrovin, M.; Gaponenko, I.
Psana(Photon Science Analysis) is a software package that is used to analyze data produced by the Linac Coherent Light Source X-ray free-electron laser at the SLAC National Accelerator Laboratory. The project began in 2011, is written primarily in C++ with some Python, and provides user interfaces in both C++ and Python. Most users use the Python interface. The same code can be run in real time while data are being taken as well as offline, executing on many nodes/cores using MPI for parallelization. It is publicly available and installable on the RHEL5/6/7 operating systems.
GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids
NASA Astrophysics Data System (ADS)
Hubber, D. A.; Rosotti, G. P.; Booth, R. A.
2018-01-01
GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.
NASA Astrophysics Data System (ADS)
Giorgino, Toni
2018-07-01
The proper choice of collective variables (CVs) is central to biased-sampling free energy reconstruction methods in molecular dynamics simulations. The PLUMED 2 library, for instance, provides several sophisticated CV choices, implemented in a C++ framework; however, developing new CVs is still time consuming due to the need to provide code for the analytical derivatives of all functions with respect to atomic coordinates. We present two solutions to this problem, namely (a) symbolic differentiation and code generation, and (b) automatic code differentiation, in both cases leveraging open-source libraries (SymPy and Stan Math, respectively). The two approaches are demonstrated and discussed in detail implementing a realistic example CV, the local radius of curvature of a polymer. Users may use the code as a template to streamline the implementation of their own CVs using high-level constructs and automatic gradient computation.
The SeaDAS Processing and Analysis System: SeaWiFS, MODIS, and Beyond
NASA Astrophysics Data System (ADS)
MacDonald, M. D.; Ruebens, M.; Wang, L.; Franz, B. A.
2005-12-01
The SeaWiFS Data Analysis System (SeaDAS) is a comprehensive software package for the processing, display, and analysis of ocean data from a variety of satellite sensors. Continuous development and user support by programmers and scientists for more than a decade has helped to make SeaDAS the most widely used software package in the world for ocean color applications, with a growing base of users from the land and sea surface temperature community. Full processing support for past (CZCS, OCTS, MOS) and present (SeaWiFS, MODIS) sensors, and anticipated support for future missions such as NPP/VIIRS, enables end users to reproduce the standard ocean archive product suite distributed by NASA's Ocean Biology Processing Group (OBPG), as well as a variety of evaluation and intermediate ocean, land, and atmospheric products. Availability of the processing algorithm source codes and a software build environment also provide users with the tools to implement custom algorithms. Recent SeaDAS enhancements include synchronization of MODIS processing with the latest code and calibration updates from the MODIS Calibration Support Team (MCST), support for all levels of MODIS processing including Direct Broadcast, a port to the Macintosh OS X operating system, release of the display/analysis-only SeaDAS-Lite, and an extremely active web-based user support forum.
MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less
Cloudy - simulating the non-equilibrium microphysics of gas and dust, and its observed spectrum
NASA Astrophysics Data System (ADS)
Ferland, Gary J.
2014-01-01
Cloudy is an open-source plasma/spectral simulation code, last described in the open-access journal Revista Mexicana (Ferland et al. 2013, 2013RMxAA..49..137F). The project goal is a complete simulation of the microphysics of gas and dust over the full range of density, temperature, and ionization that we encounter in astrophysics, together with a prediction of the observed spectrum. Cloudy is one of the more widely used theory codes in astrophysics with roughly 200 papers citing its documentation each year. It is developed by graduate students, postdocs, and an international network of collaborators. Cloudy is freely available on the web at trac.nublado.org, the user community can post questions on http://groups.yahoo.com/neo/groups/cloudy_simulations/info, and summer schools are organized to learn more about Cloudy and its use (http://cloud9.pa.uky.edu gary/cloudy/CloudySummerSchool/). The code’s widespread use is possible because of extensive automatic testing. It is exercised over its full range of applicability whenever the source is changed. Changes in predicted quantities are automatically detected along with any newly introduced problems. The code is designed to be autonomous and self-aware. It generates a report at the end of a calculation that summarizes any problems encountered along with suggestions of potentially incorrect boundary conditions. This self-monitoring is a core feature since the code is now often used to generate large MPI grids of simulations, making it impossible for a user to verify each calculation by hand. I will describe some challenges in developing a large physics code, with its many interconnected physical processes, many at the frontier of research in atomic or molecular physics, all in an open environment.
NASA Astrophysics Data System (ADS)
Sandalski, Stou
Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yidong Xia; Mitch Plummer; Robert Podgorney
2016-02-01
Performance of heat production process over a 30-year period is assessed in a conceptual EGS model with a geothermal gradient of 65K per km depth in the reservoir. Water is circulated through a pair of parallel wells connected by a set of single large wing fractures. The results indicate that the desirable output electric power rate and lifespan could be obtained under suitable material properties and system parameters. A sensitivity analysis on some design constraints and operation parameters indicates that 1) the fracture horizontal spacing has profound effect on the long-term performance of heat production, 2) the downward deviation anglemore » for the parallel doublet wells may help overcome the difficulty of vertical drilling to reach a favorable production temperature, and 3) the thermal energy production rate and lifespan has close dependence on water mass flow rate. The results also indicate that the heat production can be improved when the horizontal fracture spacing, well deviation angle, and production flow rate are under reasonable conditions. To conduct the reservoir modeling and simulations, an open-source, finite element based, fully implicit, fully coupled hydrothermal code, namely FALCON, has been developed and used in this work. Compared with most other existing codes that are either closed-source or commercially available in this area, this new open-source code has demonstrated a code development strategy that aims to provide an unparalleled easiness for user-customization and multi-physics coupling. Test results have shown that the FALCON code is able to complete the long-term tests efficiently and accurately, thanks to the state-of-the-art nonlinear and linear solver algorithms implemented in the code.« less
Gnuastro: GNU Astronomy Utilities
NASA Astrophysics Data System (ADS)
Akhlaghi, Mohammad
2018-01-01
Gnuastro (GNU Astronomy Utilities) manipulates and analyzes astronomical data. It is an official GNU package of a large collection of programs and C/C++ library functions. Command-line programs perform arithmetic operations on images, convert FITS images to common types like JPG or PDF, convolve an image with a given kernel or matching of kernels, perform cosmological calculations, crop parts of large images (possibly in multiple files), manipulate FITS extensions and keywords, and perform statistical operations. In addition, it contains programs to make catalogs from detection maps, add noise, make mock profiles with a variety of radial functions using monte-carlo integration for their centers, match catalogs, and detect objects in an image among many other operations. The command-line programs share the same basic command-line user interface for the comfort of both the users and developers. Gnuastro is written to comply fully with the GNU coding standards and integrates well with all Unix-like operating systems. This enables astronomers to expect a fully familiar experience in the source code, building, installing and command-line user interaction that they have seen in all the other GNU software that they use. Gnuastro's extensive library is included for users who want to build their own unique programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, J.J.
A fast running and simple computer code has been developed to calculate pressure loadings inside light water reactor containments/confinements under loss-of-coolant accident conditions. PACER was originally developed to calculate containment/confinement pressure and temperature time histories for loss-of-coolant accidents in Soviet-designed VVER reactors and is relevant to the activities of the US International Nuclear Safety Center. The code employs a multicompartment representation of the containment volume and is focused upon application to early time containment phenomena during and immediately following blowdown. PACER has been developed for FORTRAN 77 and earlier versions of FORTRAN. The code has been successfully compiled and executedmore » on SUN SPARC and Hewlett-Packard HP-735 workstations provided that appropriate compiler options are specified. The code incorporates both capabilities built around a hardwired default generic VVER-440 Model V230 design as well as fairly general user-defined input. However, array dimensions are hardwired and must be changed by modifying the source code if the number of compartments/cells differs from the default number of nine. Detailed input instructions are provided as well as a description of outputs. Input files and selected output are presented for two sample problems run on both HP-735 and SUN SPARC workstations.« less
Rcount: simple and flexible RNA-Seq read counting.
Schmid, Marc W; Grossniklaus, Ueli
2015-02-01
Analysis of differential gene expression by RNA sequencing (RNA-Seq) is frequently done using feature counts, i.e. the number of reads mapping to a gene. However, commonly used count algorithms (e.g. HTSeq) do not address the problem of reads aligning with multiple locations in the genome (multireads) or reads aligning with positions where two or more genes overlap (ambiguous reads). Rcount specifically addresses these issues. Furthermore, Rcount allows the user to assign priorities to certain feature types (e.g. higher priority for protein-coding genes compared to rRNA-coding genes) or to add flanking regions. Rcount provides a fast and easy-to-use graphical user interface requiring no command line or programming skills. It is implemented in C++ using the SeqAn (www.seqan.de) and the Qt libraries (qt-project.org). Source code and 64 bit binaries for (Ubuntu) Linux, Windows (7) and MacOSX are released under the GPLv3 license and are freely available on github.com/MWSchmid/Rcount. marcschmid@gmx.ch Test data, genome annotation files, useful Python and R scripts and a step-by-step user guide (including run-time and memory usage tests) are available on github.com/MWSchmid/Rcount. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Topping, David; Barley, Mark; Bane, Michael K.; Higham, Nicholas; Aumont, Bernard; Dingle, Nicholas; McFiggans, Gordon
2016-03-01
In this paper we describe the development and application of a new web-based facility, UManSysProp (http://umansysprop.seaes.manchester.ac.uk), for automating predictions of molecular and atmospheric aerosol properties. Current facilities include pure component vapour pressures, critical properties, and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN (cloud condensation nuclei) activation potential of mixed inorganic-organic aerosol particles; and absorptive partitioning calculations with/without a treatment of non-ideality. The aim of this new facility is to provide a single point of reference for all properties relevant to atmospheric aerosol that have been checked for applicability to atmospheric compounds where possible. The group contribution approach allows users to upload molecular information in the form of SMILES (Simplified Molecular Input Line Entry System) strings and UManSysProp will automatically extract the relevant information for calculations. Built using open-source chemical informatics, and hosted at the University of Manchester, the facilities are provided via a browser and device-friendly web interface, or can be accessed using the user's own code via a JSON API (application program interface). We also provide the source code for all predictive techniques provided on the site, covered by the GNU GPL (General Public License) license to encourage development of a user community. We have released this via a Github repository (doi:10.5281/zenodo.45143). In this paper we demonstrate its use with specific examples that can be simulated using the web-browser interface.
SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Costello, F. A.
1994-01-01
The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component. On the first pass, the user finds that the calculated outlet conditions of the last component do not match the estimated inlet conditions of the first. The user then modifies the estimated inlet conditions of the first component in an attempt to match the calculated values. The user estimated values are called State Variables. The differences between the user estimated values and calculated values are called the Error Variables. The procedure systematically changes the State Variables until all of the Error Variables are less than the user-specified iteration limits. The solution procedure is referred to as SCX. It consists of two phases, the Systems phase and the Controller phase. The X is to imply experimental. SCX computes each next set of State Variables in two phases. In the first phase, SCX fixes the controller positions and modifies the other State Variables by the Newton-Raphson method. This first phase is the Systems phase. Once the Newton-Raphson method has solved the problem for the fixed controller positions, SCX next calculates new controller positions based on Newton's method while treating each sensor-controller pair independently but allowing all to change in one iteration. This phase is the Controller phase. SINFAC is available by license for a period of ten (10) years to approved licensees. The licenced program product includes the source code for the additional routines to SINDA, the SINDA object code, command procedures, sample data and supporting documentation. Additional documentation may be purchased at the price below. SINFAC was created for use on a DEC VAX under VMS. Source code is written in FORTRAN 77, requires 180k of memory, and should be fully transportable. The program was developed in 1988.
TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (DEC VAX ULTRIX VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. Data-driven graphical objects such as dials, thermometers, and strip charts are also included. TAE Plus updates the strip chart as the data values change. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. The Silicon Graphics version of TAE Plus now has a font caching scheme and a color caching scheme to make color allocation more efficient. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides an extremely powerful means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif Toolkit 1.1 or 1.1.1. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus comes with InterViews and idraw, two software packages developed by Stanford University and integrated in TAE Plus. TAE Plus was developed in 1989 and version 5.1 was released in 1991. TAE Plus is currently available on media suitable for eight different machine platforms: 1) DEC VAX computers running VMS 5.3 or higher (TK50 cartridge in VAX BACKUP format), 2) DEC VAXstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX 8.0 (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX 8.05 (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun3 series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), 7) Sun4 (SPARC) series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), and 8) SGI Indigo computers running IRIX 4.0.1 and IRIX/Motif 1.0.1 (.25 inch IRIS tape cartridge in UNIX tar format). An optional Motif Object Code License is available for either Sun version. TAE is a trademark of the National Aeronautics and Space Administration. X Window System is a trademark of the Massachusetts Institute of Technology. Motif is a trademark of the Open Software Foundation. DEC, VAX, VMS, TK50 and ULTRIX are trademarks of Digital Equipment Corporation. HP9000 and HP-UX are trademarks of Hewlett-Packard Co. Sun3, Sun4, SunOS, and SPARC are trademarks of Sun Microsystems, Inc. SGI and IRIS are registered trademarks of Silicon Graphics, Inc.
TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (SUN3 VERSION)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. Data-driven graphical objects such as dials, thermometers, and strip charts are also included. TAE Plus updates the strip chart as the data values change. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. The Silicon Graphics version of TAE Plus now has a font caching scheme and a color caching scheme to make color allocation more efficient. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides an extremely powerful means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif Toolkit 1.1 or 1.1.1. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus comes with InterViews and idraw, two software packages developed by Stanford University and integrated in TAE Plus. TAE Plus was developed in 1989 and version 5.1 was released in 1991. TAE Plus is currently available on media suitable for eight different machine platforms: 1) DEC VAX computers running VMS 5.3 or higher (TK50 cartridge in VAX BACKUP format), 2) DEC VAXstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX 8.0 (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX 8.05 (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun3 series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), 7) Sun4 (SPARC) series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), and 8) SGI Indigo computers running IRIX 4.0.1 and IRIX/Motif 1.0.1 (.25 inch IRIS tape cartridge in UNIX tar format). An optional Motif Object Code License is available for either Sun version. TAE is a trademark of the National Aeronautics and Space Administration. X Window System is a trademark of the Massachusetts Institute of Technology. Motif is a trademark of the Open Software Foundation. DEC, VAX, VMS, TK50 and ULTRIX are trademarks of Digital Equipment Corporation. HP9000 and HP-UX are trademarks of Hewlett-Packard Co. Sun3, Sun4, SunOS, and SPARC are trademarks of Sun Microsystems, Inc. SGI and IRIS are registered trademarks of Silicon Graphics, Inc.
TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (SUN3 VERSION WITH MOTIF)
NASA Technical Reports Server (NTRS)
TAE SUPPORT OFFICE
1994-01-01
TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. Data-driven graphical objects such as dials, thermometers, and strip charts are also included. TAE Plus updates the strip chart as the data values change. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. The Silicon Graphics version of TAE Plus now has a font caching scheme and a color caching scheme to make color allocation more efficient. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides an extremely powerful means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif Toolkit 1.1 or 1.1.1. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus comes with InterViews and idraw, two software packages developed by Stanford University and integrated in TAE Plus. TAE Plus was developed in 1989 and version 5.1 was released in 1991. TAE Plus is currently available on media suitable for eight different machine platforms: 1) DEC VAX computers running VMS 5.3 or higher (TK50 cartridge in VAX BACKUP format), 2) DEC VAXstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX 8.0 (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX 8.05 (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun3 series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), 7) Sun4 (SPARC) series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), and 8) SGI Indigo computers running IRIX 4.0.1 and IRIX/Motif 1.0.1 (.25 inch IRIS tape cartridge in UNIX tar format). An optional Motif Object Code License is available for either Sun version. TAE is a trademark of the National Aeronautics and Space Administration. X Window System is a trademark of the Massachusetts Institute of Technology. Motif is a trademark of the Open Software Foundation. DEC, VAX, VMS, TK50 and ULTRIX are trademarks of Digital Equipment Corporation. HP9000 and HP-UX are trademarks of Hewlett-Packard Co. Sun3, Sun4, SunOS, and SPARC are trademarks of Sun Microsystems, Inc. SGI and IRIS are registered trademarks of Silicon Graphics, Inc.
A step-by-step solution for embedding user-controlled cines into educational Web pages.
Cornfeld, Daniel
2008-03-01
The objective of this article is to introduce a simple method for embedding user-controlled cines into a Web page using a simple JavaScript. Step-by-step instructions are included and the source code is made available. This technique allows the creation of portable Web pages that allow the user to scroll through cases as if seated at a PACS workstation. A simple JavaScript allows scrollable image stacks to be included on Web pages. With this technique, you can quickly and easily incorporate entire stacks of CT or MR images into online teaching files. This technique has the potential for use in case presentations, online didactics, teaching archives, and resident testing.
NARMER-1: a photon point-kernel code with build-up factors
NASA Astrophysics Data System (ADS)
Visonneau, Thierry; Pangault, Laurence; Malouch, Fadhel; Malvagi, Fausto; Dolci, Florence
2017-09-01
This paper presents an overview of NARMER-1, the new generation of photon point-kernel code developed by the Reactor Studies and Applied Mathematics Unit (SERMA) at CEA Saclay Center. After a short introduction giving some history points and the current context of development of the code, the paper exposes the principles implemented in the calculation, the physical quantities computed and surveys the generic features: programming language, computer platforms, geometry package, sources description, etc. Moreover, specific and recent features are also detailed: exclusion sphere, tetrahedral meshes, parallel operations. Then some points about verification and validation are presented. Finally we present some tools that can help the user for operations like visualization and pre-treatment.
Condor-COPASI: high-throughput computing for biochemical networks
2012-01-01
Background Mathematical modelling has become a standard technique to improve our understanding of complex biological systems. As models become larger and more complex, simulations and analyses require increasing amounts of computational power. Clusters of computers in a high-throughput computing environment can help to provide the resources required for computationally expensive model analysis. However, exploiting such a system can be difficult for users without the necessary expertise. Results We present Condor-COPASI, a server-based software tool that integrates COPASI, a biological pathway simulation tool, with Condor, a high-throughput computing environment. Condor-COPASI provides a web-based interface, which makes it extremely easy for a user to run a number of model simulation and analysis tasks in parallel. Tasks are transparently split into smaller parts, and submitted for execution on a Condor pool. Result output is presented to the user in a number of formats, including tables and interactive graphical displays. Conclusions Condor-COPASI can effectively use a Condor high-throughput computing environment to provide significant gains in performance for a number of model simulation and analysis tasks. Condor-COPASI is free, open source software, released under the Artistic License 2.0, and is suitable for use by any institution with access to a Condor pool. Source code is freely available for download at http://code.google.com/p/condor-copasi/, along with full instructions on deployment and usage. PMID:22834945
Apollo: a community resource for genome annotation editing
Ed, Lee; Nomi, Harris; Mark, Gibson; Raymond, Chetty; Suzanna, Lewis
2009-01-01
Summary: Apollo is a genome annotation-editing tool with an easy to use graphical interface. It is a component of the GMOD project, with ongoing development driven by the community. Recent additions to the software include support for the generic feature format version 3 (GFF3), continuous transcriptome data, a full Chado database interface, integration with remote services for on-the-fly BLAST and Primer BLAST analyses, graphical interfaces for configuring user preferences and full undo of all edit operations. Apollo's user community continues to grow, including its use as an educational tool for college and high-school students. Availability: Apollo is a Java application distributed under a free and open source license. Installers for Windows, Linux, Unix, Solaris and Mac OS X are available at http://apollo.berkeleybop.org, and the source code is available from the SourceForge CVS repository at http://gmod.cvs.sourceforge.net/gmod/apollo. Contact: elee@berkeleybop.org PMID:19439563
Apollo: a community resource for genome annotation editing.
Lee, Ed; Harris, Nomi; Gibson, Mark; Chetty, Raymond; Lewis, Suzanna
2009-07-15
Apollo is a genome annotation-editing tool with an easy to use graphical interface. It is a component of the GMOD project, with ongoing development driven by the community. Recent additions to the software include support for the generic feature format version 3 (GFF3), continuous transcriptome data, a full Chado database interface, integration with remote services for on-the-fly BLAST and Primer BLAST analyses, graphical interfaces for configuring user preferences and full undo of all edit operations. Apollo's user community continues to grow, including its use as an educational tool for college and high-school students. Apollo is a Java application distributed under a free and open source license. Installers for Windows, Linux, Unix, Solaris and Mac OS X are available at http://apollo.berkeleybop.org, and the source code is available from the SourceForge CVS repository at http://gmod.cvs.sourceforge.net/gmod/apollo.
Sweeney, Angela; Greenwood, Kathryn E; Williams, Sally; Wykes, Til; Rose, Diana S
2013-12-01
Health research is frequently conducted in multi-disciplinary teams, with these teams increasingly including service user researchers. Whilst it is common for service user researchers to be involved in data collection--most typically interviewing other service users--it is less common for service user researchers to be involved in data analysis and interpretation. This means that a unique and significant perspective on the data is absent. This study aims to use an empirical report of a study on Cognitive Behavioural Therapy for psychosis (CBTp) to demonstrate the value of multiple coding in enabling service users voices to be heard in team-based qualitative data analysis. The CBTp study employed multiple coding to analyse service users' discussions of CBT for psychosis (CBTp) from the perspectives of a service user researcher, clinical researcher and psychology assistant. Multiple coding was selected to enable multiple perspectives to analyse and interpret data, to understand and explore differences and to build multi-disciplinary consensus. Multiple coding enabled the team to understand where our views were commensurate and incommensurate and to discuss and debate differences. Through the process of multiple coding, we were able to build strong consensus about the data from multiple perspectives, including that of the service user researcher. Multiple coding is an important method for understanding and exploring multiple perspectives on data and building team consensus. This can be contrasted with inter-rater reliability which is only appropriate in limited circumstances. We conclude that multiple coding is an appropriate and important means of hearing service users' voices in qualitative data analysis. © 2012 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Charley; Kamboj, Sunita; Wang, Cheng
2015-09-01
This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook.more » The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.« less
SIGNUM: A Matlab, TIN-based landscape evolution model
NASA Astrophysics Data System (ADS)
Refice, A.; Giachetta, E.; Capolongo, D.
2012-08-01
Several numerical landscape evolution models (LEMs) have been developed to date, and many are available as open source codes. Most are written in efficient programming languages such as Fortran or C, but often require additional code efforts to plug in to more user-friendly data analysis and/or visualization tools to ease interpretation and scientific insight. In this paper, we present an effort to port a common core of accepted physical principles governing landscape evolution directly into a high-level language and data analysis environment such as Matlab. SIGNUM (acronym for Simple Integrated Geomorphological Numerical Model) is an independent and self-contained Matlab, TIN-based landscape evolution model, built to simulate topography development at various space and time scales. SIGNUM is presently capable of simulating hillslope processes such as linear and nonlinear diffusion, fluvial incision into bedrock, spatially varying surface uplift which can be used to simulate changes in base level, thrust and faulting, as well as effects of climate changes. Although based on accepted and well-known processes and algorithms in its present version, it is built with a modular structure, which allows to easily modify and upgrade the simulated physical processes to suite virtually any user needs. The code is conceived as an open-source project, and is thus an ideal tool for both research and didactic purposes, thanks to the high-level nature of the Matlab environment and its popularity among the scientific community. In this paper the simulation code is presented together with some simple examples of surface evolution, and guidelines for development of new modules and algorithms are proposed.
Duct flow nonuniformities for Space Shuttle Main Engine (SSME)
NASA Technical Reports Server (NTRS)
1987-01-01
A three-duct Space Shuttle Main Engine (SSME) Hot Gas Manifold geometry code was developed for use. The methodology of the program is described, recommendations on its implementation made, and an input guide, input deck listing, and a source code listing provided. The code listing is strewn with an abundance of comments to assist the user in following its development and logic. A working source deck will be provided. A thorough analysis was made of the proper boundary conditions and chemistry kinetics necessary for an accurate computational analysis of the flow environment in the SSME fuel side preburner chamber during the initial startup transient. Pertinent results were presented to facilitate incorporation of these findings into an appropriate CFD code. The computation must be a turbulent computation, since the flow field turbulent mixing will have a profound effect on the chemistry. Because of the additional equations demanded by the chemistry model it is recommended that for expediency a simple algebraic mixing length model be adopted. Performing this computation for all or selected time intervals of the startup time will require an abundance of computer CPU time regardless of the specific CFD code selected.
PuffinPlot: A versatile, user-friendly program for paleomagnetic analysis
NASA Astrophysics Data System (ADS)
Lurcock, P. C.; Wilson, G. S.
2012-06-01
PuffinPlot is a user-friendly desktop application for analysis of paleomagnetic data, offering a unique combination of features. It runs on several operating systems, including Windows, Mac OS X, and Linux; supports both discrete and long core data; and facilitates analysis of very weakly magnetic samples. As well as interactive graphical operation, PuffinPlot offers batch analysis for large volumes of data, and a Python scripting interface for programmatic control of its features. Available data displays include demagnetization/intensity, Zijderveld, equal-area (for sample, site, and suite level demagnetization data, and for magnetic susceptibility anisotropy data), a demagnetization data table, and a natural remanent magnetization intensity histogram. Analysis types include principal component analysis, Fisherian statistics, and great-circle path intersections. The results of calculations can be exported as CSV (comma-separated value) files; graphs can be printed, and can also be saved as publication-quality vector files in SVG or PDF format. PuffinPlot is free, and the program, user manual, and fully documented source code may be downloaded from http://code.google.com/p/puffinplot/.
Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials
NASA Astrophysics Data System (ADS)
Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove
2013-01-01
This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.
GenomeDiagram: a python package for the visualization of large-scale genomic data.
Pritchard, Leighton; White, Jennifer A; Birch, Paul R J; Toth, Ian K
2006-03-01
We present GenomeDiagram, a flexible, open-source Python module for the visualization of large-scale genomic, comparative genomic and other data with reference to a single chromosome or other biological sequence. GenomeDiagram may be used to generate publication-quality vector graphics, rastered images and in-line streamed graphics for webpages. The package integrates with datatypes from the BioPython project, and is available for Windows, Linux and Mac OS X systems. GenomeDiagram is freely available as source code (under GNU Public License) at http://bioinf.scri.ac.uk/lp/programs.html, and requires Python 2.3 or higher, and recent versions of the ReportLab and BioPython packages. A user manual, example code and images are available at http://bioinf.scri.ac.uk/lp/programs.html.
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.
1982-01-01
A user's manual describing the operation of three computer codes (ADD code, PTRAK code, and VAPDIF code) is presented. The general features of the computer codes, the input/output formats, run streams, and sample input cases are described.
Hamilton, Liberty S; Chang, David L; Lee, Morgan B; Chang, Edward F
2017-01-01
In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.
Guo, Weixing; Langevin, C.D.
2002-01-01
This report documents a computer program (SEAWAT) that simulates variable-density, transient, ground-water flow in three dimensions. The source code for SEAWAT was developed by combining MODFLOW and MT3DMS into a single program that solves the coupled flow and solute-transport equations. The SEAWAT code follows a modular structure, and thus, new capabilities can be added with only minor modifications to the main program. SEAWAT reads and writes standard MODFLOW and MT3DMS data sets, although some extra input may be required for some SEAWAT simulations. This means that many of the existing pre- and post-processors can be used to create input data sets and analyze simulation results. Users familiar with MODFLOW and MT3DMS should have little difficulty applying SEAWAT to problems of variable-density ground-water flow.
Hamilton, Liberty S.; Chang, David L.; Lee, Morgan B.; Chang, Edward F.
2017-01-01
In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. PMID:29163118
User's guide for RAM. Volume II. Data preparation and listings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, D.B.; Novak, J.H.
1978-11-01
The information presented in this user's guide is directed to air pollution scientists having an interest in applying air quality simulation models. RAM is a method of estimating short-term dispersion using the Gaussian steady-state model. These algorithms can be used for estimating air quality concentrations of relatively nonreactive pollutants for averaging times from an hour to a day from point and area sources. The algorithms are applicable for locations with level or gently rolling terrain where a single wind vector for each hour is a good approximation to the flow over the source area considered. Calculations are performed for eachmore » hour. Hourly meteorological data required are wind direction, wind speed, temperature, stability class, and mixing height. Emission information required of point sources consists of source coordinates, emission rate, physical height, stack diameter, stack gas exit velocity, and stack gas temperature. Emission information required of area sources consists of southwest corner coordinates, source side length, total area emission rate and effective area source-height. Computation time is kept to a minimum by the manner in which concentrations from area sources are estimated using a narrow plume hypothesis and using the area source squares as given rather than breaking down all sources into an area of uniform elements. Options are available to the user to allow use of three different types of receptor locations: (1) those whose coordinates are input by the user, (2) those whose coordinates are determined by the model and are downwind of significant point and area sources where maxima are likely to occur, and (3) those whose coordinates are determined by the model to give good area coverage of a specific portion of the region. Computation time is also decreased by keeping the number of receptors to a minimum. Volume II presents RAM example outputs, typical run streams, variable glossaries, and Fortran source codes.« less
Earthquake Early Warning ShakeAlert System: Testing and certification platform
Cochran, Elizabeth S.; Kohler, Monica D.; Given, Douglas; Guiwits, Stephen; Andrews, Jennifer; Meier, Men-Andrin; Ahmad, Mohammad; Henson, Ivan; Hartog, Renate; Smith, Deborah
2017-01-01
Earthquake early warning systems provide warnings to end users of incoming moderate to strong ground shaking from earthquakes. An earthquake early warning system, ShakeAlert, is providing alerts to beta end users in the western United States, specifically California, Oregon, and Washington. An essential aspect of the earthquake early warning system is the development of a framework to test modifications to code to ensure functionality and assess performance. In 2016, a Testing and Certification Platform (TCP) was included in the development of the Production Prototype version of ShakeAlert. The purpose of the TCP is to evaluate the robustness of candidate code that is proposed for deployment on ShakeAlert Production Prototype servers. TCP consists of two main components: a real‐time in situ test that replicates the real‐time production system and an offline playback system to replay test suites. The real‐time tests of system performance assess code optimization and stability. The offline tests comprise a stress test of candidate code to assess if the code is production ready. The test suite includes over 120 events including local, regional, and teleseismic historic earthquakes, recentering and calibration events, and other anomalous and potentially problematic signals. Two assessments of alert performance are conducted. First, point‐source assessments are undertaken to compare magnitude, epicentral location, and origin time with the Advanced National Seismic System Comprehensive Catalog, as well as to evaluate alert latency. Second, we describe assessment of the quality of ground‐motion predictions at end‐user sites by comparing predicted shaking intensities to ShakeMaps for historic events and implement a threshold‐based approach that assesses how often end users initiate the appropriate action, based on their ground‐shaking threshold. TCP has been developed to be a convenient streamlined procedure for objectively testing algorithms, and it has been designed with flexibility to accommodate significant changes in development of new or modified system code. It is expected that the TCP will continue to evolve along with the ShakeAlert system, and the framework we describe here provides one example of how earthquake early warning systems can be evaluated.
Interfacing Computer Aided Parallelization and Performance Analysis
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)
2003-01-01
When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.
Mars Global Reference Atmospheric Model 2010 Version: Users Guide
NASA Technical Reports Server (NTRS)
Justh, H. L.
2014-01-01
This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.
NASA Technical Reports Server (NTRS)
Cowings, Patricia S.; Naifeh, Karen; Thrasher, Chet
1988-01-01
This report contains the source code and documentation for a computer program used to process impedance cardiography data. The cardiodynamic measures derived from impedance cardiography are ventricular stroke column, cardiac output, cardiac index and Heather index. The program digitizes data collected from the Minnesota Impedance Cardiograph, Electrocardiography (ECG), and respiratory cycles and then stores these data on hard disk. It computes the cardiodynamic functions using interactive graphics and stores the means and standard deviations of each 15-sec data epoch on floppy disk. This software was designed on a Digital PRO380 microcomputer and used version 2.0 of P/OS, with (minimally) a 4-channel 16-bit analog/digital (A/D) converter. Applications software is written in FORTRAN 77, and uses Digital's Pro-Tool Kit Real Time Interface Library, CORE Graphic Library, and laboratory routines. Source code can be readily modified to accommodate alternative detection, A/D conversion and interactive graphics. The object code utilizing overlays and multitasking has a maximum of 50 Kbytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.
This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARCmore » and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.« less
Users manual for the improved NASA Lewis ice accretion code LEWICE 1.6
NASA Technical Reports Server (NTRS)
Wright, William B.
1995-01-01
This report is intended as an update/replacement to NASA CR 185129 'User's Manual for the NASALewis Ice Accretion Prediction Code (LEWICE)' and as an update to NASA CR 195387 'Update to the NASA Lewis Ice Accretion Code LEWICE'. In addition to describing the changes specifically made for this version, information from previous manuals will be duplicated so that the user will not need three manuals to use this code.
JLIFE: THE JEFFERSON LAB INTERACTIVE FRONT END FOR THE OPTICAL PROPAGATION CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Anne M.; Shinn, Michelle D.
2013-08-01
We present details on a graphical interface for the open source software program Optical Propagation Code, or OPC. This interface, written in Java, allows a user with no knowledge of OPC to create an optical system, with lenses, mirrors, apertures, etc. and the appropriate drifts between them. The Java code creates the appropriate Perl script that serves as the input for OPC. The mode profile is then output at each optical element. The display can be either an intensity profile along the x axis, or as an isometric 3D plot which can be tilted and rotated. These profiles can bemore » saved. Examples of the input and output will be presented.« less
Support of Multidimensional Parallelism in the OpenMP Programming Model
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Jost, Gabriele
2003-01-01
OpenMP is the current standard for shared-memory programming. While providing ease of parallel programming, the OpenMP programming model also has limitations which often effect the scalability of applications. Examples for these limitations are work distribution and point-to-point synchronization among threads. We propose extensions to the OpenMP programming model which allow the user to easily distribute the work in multiple dimensions and synchronize the workflow among the threads. The proposed extensions include four new constructs and the associated runtime library. They do not require changes to the source code and can be implemented based on the existing OpenMP standard. We illustrate the concept in a prototype translator and test with benchmark codes and a cloud modeling code.
The MIMIC Code Repository: enabling reproducibility in critical care research.
Johnson, Alistair Ew; Stone, David J; Celi, Leo A; Pollard, Tom J
2018-01-01
Lack of reproducibility in medical studies is a barrier to the generation of a robust knowledge base to support clinical decision-making. In this paper we outline the Medical Information Mart for Intensive Care (MIMIC) Code Repository, a centralized code base for generating reproducible studies on an openly available critical care dataset. Code is provided to load the data into a relational structure, create extractions of the data, and reproduce entire analysis plans including research studies. Concepts extracted include severity of illness scores, comorbid status, administrative definitions of sepsis, physiologic criteria for sepsis, organ failure scores, treatment administration, and more. Executable documents are used for tutorials and reproduce published studies end-to-end, providing a template for future researchers to replicate. The repository's issue tracker enables community discussion about the data and concepts, allowing users to collaboratively improve the resource. The centralized repository provides a platform for users of the data to interact directly with the data generators, facilitating greater understanding of the data. It also provides a location for the community to collaborate on necessary concepts for research progress and share them with a larger audience. Consistent application of the same code for underlying concepts is a key step in ensuring that research studies on the MIMIC database are comparable and reproducible. By providing open source code alongside the freely accessible MIMIC-III database, we enable end-to-end reproducible analysis of electronic health records. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.
2004-09-14
This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.
flexCloud: Deployment of the FLEXPART Atmospheric Transport Model as a Cloud SaaS Environment
NASA Astrophysics Data System (ADS)
Morton, Don; Arnold, Dèlia
2014-05-01
FLEXPART (FLEXible PARTicle dispersion model) is a Lagrangian transport and dispersion model used by a growing international community. We have used it to simulate and forecast the atmospheric transport of wildfire smoke, volcanic ash and radionuclides. Additionally, FLEXPART may be run in backwards mode to provide information for the determination of emission sources such as nuclear emissions and greenhouse gases. This open source software is distributed in source code form, and has several compiler and library dependencies that users need to address. Although well-documented, getting it compiled, set up, running, and post-processed is often tedious, making it difficult for the inexperienced user. Our interest is in moving scientific modeling and simulation activities from site-specific clusters and supercomputers to a cloud model as a service paradigm. Choosing FLEXPART for our prototyping, our vision is to construct customised IaaS images containing fully-compiled and configured FLEXPART codes, including pre-processing, execution and postprocessing components. In addition, with the inclusion of a small web server in the image, we introduce a web-accessible graphical user interface that drives the system. A further initiative being pursued is the deployment of multiple, simultaneous FLEXPART ensembles in the cloud. A single front-end web interface is used to define the ensemble members, and separate cloud instances are launched, on-demand, to run the individual models and to conglomerate the outputs into a unified display. The outcome of this work is a Software as a Service (Saas) deployment whereby the details of the underlying modeling systems are hidden, allowing modelers to perform their science activities without the burden of considering implementation details.
Open Source Paradigm: A Synopsis of The Cathedral and the Bazaar for Health and Social Care.
Benson, Tim
2016-07-04
Open source software (OSS) is becoming more fashionable in health and social care, although the ideas are not new. However progress has been slower than many had expected. The purpose is to summarise the Free/Libre Open Source Software (FLOSS) paradigm in terms of what it is, how it impacts users and software engineers and how it can work as a business model in health and social care sectors. Much of this paper is a synopsis of Eric Raymond's seminal book The Cathedral and the Bazaar, which was the first comprehensive description of the open source ecosystem, set out in three long essays. Direct quotes from the book are used liberally, without reference to specific passages. The first part contrasts open and closed source approaches to software development and support. The second part describes the culture and practices of the open source movement. The third part considers business models. A key benefit of open source is that users can access and collaborate on improving the software if they wish. Closed source code may be regarded as a strategic business risk that that may be unacceptable if there is an open source alternative. The sharing culture of the open source movement fits well with that of health and social care.
An assessment of multibody simulation tools for articulated spacecraft
NASA Technical Reports Server (NTRS)
Man, Guy K.; Sirlin, Samuel W.
1989-01-01
A survey of multibody simulation codes was conducted in the spring of 1988, to obtain an assessment of the state of the art in multibody simulation codes from the users of the codes. This survey covers the most often used articulated multibody simulation codes in the spacecraft and robotics community. There was no attempt to perform a complete survey of all available multibody codes in all disciplines. Furthermore, this is not an exhaustive evaluation of even robotics and spacecraft multibody simulation codes, as the survey was designed to capture feedback on issues most important to the users of simulation codes. We must keep in mind that the information received was limited and the technical background of the respondents varied greatly. Therefore, only the most often cited observations from the questionnaire are reported here. In this survey, it was found that no one code had both many users (reports) and no limitations. The first section is a report on multibody code applications. Following applications is a discussion of execution time, which is the most troublesome issue for flexible multibody codes. The representation of component flexible bodies, which affects both simulation setup time as well as execution time, is presented next. Following component data preparation, two sections address the accessibility or usability of a code, evaluated by considering its user interface design and examining the overall simulation integrated environment. A summary of user efforts at code verification is reported, before a tabular summary of the questionnaire responses. Finally, some conclusions are drawn.
MEG and EEG data analysis with MNE-Python.
Gramfort, Alexandre; Luessi, Martin; Larson, Eric; Engemann, Denis A; Strohmeier, Daniel; Brodbeck, Christian; Goj, Roman; Jas, Mainak; Brooks, Teon; Parkkonen, Lauri; Hämäläinen, Matti
2013-12-26
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.
MEG and EEG data analysis with MNE-Python
Gramfort, Alexandre; Luessi, Martin; Larson, Eric; Engemann, Denis A.; Strohmeier, Daniel; Brodbeck, Christian; Goj, Roman; Jas, Mainak; Brooks, Teon; Parkkonen, Lauri; Hämäläinen, Matti
2013-01-01
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne. PMID:24431986
Liu, Zhongyang; Guo, Feifei; Gu, Jiangyong; Wang, Yong; Li, Yang; Wang, Dan; Lu, Liang; Li, Dong; He, Fuchu
2015-06-01
Anatomical Therapeutic Chemical (ATC) classification system, widely applied in almost all drug utilization studies, is currently the most widely recognized classification system for drugs. Currently, new drug entries are added into the system only on users' requests, which leads to seriously incomplete drug coverage of the system, and bioinformatics prediction is helpful during this process. Here we propose a novel prediction model of drug-ATC code associations, using logistic regression to integrate multiple heterogeneous data sources including chemical structures, target proteins, gene expression, side-effects and chemical-chemical associations. The model obtains good performance for the prediction not only on ATC codes of unclassified drugs but also on new ATC codes of classified drugs assessed by cross-validation and independent test sets, and its efficacy exceeds previous methods. Further to facilitate the use, the model is developed into a user-friendly web service SPACE ( S: imilarity-based P: redictor of A: TC C: od E: ), which for each submitted compound, will give candidate ATC codes (ranked according to the decreasing probability_score predicted by the model) together with corresponding supporting evidence. This work not only contributes to knowing drugs' therapeutic, pharmacological and chemical properties, but also provides clues for drug repositioning and side-effect discovery. In addition, the construction of the prediction model also provides a general framework for similarity-based data integration which is suitable for other drug-related studies such as target, side-effect prediction etc. The web service SPACE is available at http://www.bprc.ac.cn/space. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Scalable nanohelices for predictive studies and enhanced 3D visualization.
Meagher, Kwyn A; Doblack, Benjamin N; Ramirez, Mercedes; Davila, Lilian P
2014-11-12
Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications. For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately. To study the effect of local structure on the properties of these complex geometries one must develop realistic models. To date, software packages are rather limited in creating atomistic helical models. This work focuses on producing atomistic models of silica glass (SiO₂) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of "bulk" silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented. The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix. With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions. The second method involves a more robust code which allows flexibility in modeling nanohelical structures. This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models. Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created. An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material. In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures. One application of these methods is the recent study of nanohelices via MD simulations for mechanical energy harvesting purposes.
Augmenting Traditional Static Analysis With Commonly Available Metadata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Devin
Developers and security analysts have been using static analysis for a long time to analyze programs for defects and vulnerabilities with some success. Generally a static analysis tool is run on the source code for a given program, flagging areas of code that need to be further inspected by a human analyst. These areas may be obvious bugs like potential bu er over flows, information leakage flaws, or the use of uninitialized variables. These tools tend to work fairly well - every year they find many important bugs. These tools are more impressive considering the fact that they only examinemore » the source code, which may be very complex. Now consider the amount of data available that these tools do not analyze. There are many pieces of information that would prove invaluable for finding bugs in code, things such as a history of bug reports, a history of all changes to the code, information about committers, etc. By leveraging all this additional data, it is possible to nd more bugs with less user interaction, as well as track useful metrics such as number and type of defects injected by committer. This dissertation provides a method for leveraging development metadata to find bugs that would otherwise be difficult to find using standard static analysis tools. We showcase two case studies that demonstrate the ability to find 0day vulnerabilities in large and small software projects by finding new vulnerabilities in the cpython and Roundup open source projects.« less
NASA Astrophysics Data System (ADS)
Gao, Shanghua; Fu, Guangyu; Liu, Tai; Zhang, Guoqing
2017-03-01
Tanaka et al. (Geophys J Int 164:273-289, 2006, Geophys J Int 170:1031-1052, 2007) proposed the spherical dislocation theory (SDT) in a spherically symmetric, self-gravitating visco-elastic earth model. However, to date there have been no reports on easily adopted, widely used software that utilizes Tanaka's theory. In this study we introduce a new code to compute post-seismic deformations (PSD), including displacements as well as Geoid and gravity changes, caused by a seismic source at any position. This new code is based on the above-mentioned SDT. The code consists of two parts. The first part is the numerical frame of the dislocation Green function (DGF), which contains a set of two-dimensional discrete numerical frames of DGFs on a symmetric earth model. The second part is an integration function, which performs bi-quadratic spline interpolation operations on the frame of DGFs. The inputs are the information on the seismic fault models and the information on the observation points. After the user prepares the inputs in a file with given format, the code will automatically compute the PSD. As an example, we use the new code to calculate the co-seismic displacements caused by the Tohoku-Oki Mw 9.0 earthquake. We compare the result with observations and the result from a full-elastic SDT, and we found that the Root Mean Square error between the calculated and observed results is 7.4 cm. This verifies the suitability of our new code. Finally, we discuss several issues that require attention when using the code, which should be helpful for users.
TEMPUS: Simulating personnel and tasks in a 3-D environment
NASA Technical Reports Server (NTRS)
Badler, N. I.; Korein, J. D.
1985-01-01
The latest TEMPUS installation occurred in March, 1985. Another update is slated for early June, 1985. An updated User's Manual is in preparation and will be delivered approximately mid-June, 1985. NASA JSC has full source code listings and internal documentation for installed software. NASA JSC staff has received instruction in the use of TEMPUS. Telephone consultations have augmented on-site instruction.
Chips: A Tool for Developing Software Interfaces Interactively.
1987-10-01
of the application through the objects on the screen. Chips makes this easy by supplying simple and direct access to the source code and data ...object-oriented programming, user interface management systems, programming environments. Typographic Conventions Technical terms appearing in the...creating an environment in which we could do our work. This project could not have happened without him. Jeff Bonar started and managed the Chips
gemcWeb: A Cloud Based Nuclear Physics Simulation Software
NASA Astrophysics Data System (ADS)
Markelon, Sam
2017-09-01
gemcWeb allows users to run nuclear physics simulations from the web. Being completely device agnostic, scientists can run simulations from anywhere with an Internet connection. Having a full user system, gemcWeb allows users to revisit and revise their projects, and share configurations and results with collaborators. gemcWeb is based on simulation software gemc, which is based on standard GEant4. gemcWeb requires no C++, gemc, or GEant4 knowledge. Using a simple but powerful GUI allows users to configure their project from geometries and configurations stored on the deployment server. Simulations are then run on the server, with results being posted to the user, and then securely stored. Python based and open-source, the main version of gemcWeb is hosted internally at Jefferson National Labratory and used by the CLAS12 and Electron-Ion Collider Project groups. However, as the software is open-source, and hosted as a GitHub repository, an instance can be deployed on the open web, or any institution's intra-net. An instance can be configured to host experiments specific to an institution, and the code base can be modified by any individual or group. Special thanks to: Maurizio Ungaro, PhD., creator of gemc; Markus Diefenthaler, PhD., advisor; and Kyungseon Joo, PhD., advisor.
Pulse Sequence Programming in a Dynamic Visual Environment: SequenceTree
Magland, Jeremy F.; Li, Cheng; Langham, Michael C.; Wehrli, Felix W.
2015-01-01
Purpose To describe SequenceTree (ST), an open source. integrated software environment for implementing MRI pulse sequences, and ideally exported them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for non-programmers and programmers alike. Methods The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally other types of scanners will be supported in the future. Results The software has been used for eight years in the authors’ laboratory and elsewhere and has been utilized in more than fifty peer-reviewed publications in areas such as cardiovascular imaging, solid state and non-proton NMR, MR elastography, and high resolution structural imaging. Conclusion ST is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal for both advanced users and those with limited programming experience. PMID:25754837
SDTM - SYSTEM DESIGN TRADEOFF MODEL FOR SPACE STATION FREEDOM RELEASE 1.1
NASA Technical Reports Server (NTRS)
Chamberlin, R. G.
1994-01-01
Although extensive knowledge of space station design exists, the information is widely dispersed. The Space Station Freedom Program (SSFP) needs policies and procedures that ensure the use of consistent design objectives throughout its organizational hierarchy. The System Design Tradeoff Model (SDTM) produces information that can be used for this purpose. SDTM is a mathematical model of a set of possible designs for Space Station Freedom. Using the SDTM program, one can find the particular design which provides specified amounts of resources to Freedom's users at the lowest total (or life cycle) cost. One can also compare alternative design concepts by changing the set of possible designs, while holding the specified user services constant, and then comparing costs. Finally, both costs and user services can be varied simultaneously when comparing different designs. SDTM selects its solution from a set of feasible designs. Feasibility constraints include safety considerations, minimum levels of resources required for station users, budget allocation requirements, time limitations, and Congressional mandates. The total, or life cycle, cost includes all of the U.S. costs of the station: design and development, purchase of hardware and software, assembly, and operations throughout its lifetime. The SDTM development team has identified, for a variety of possible space station designs, the subsystems that produce the resources to be modeled. The team has also developed formulas for the cross consumption of resources by other resources, as functions of the amounts of resources produced. SDTM can find the values of station resources, so that subsystem designers can choose new design concepts that further reduce the station's life cycle cost. The fundamental input to SDTM is a set of formulas that describe the subsystems which make up a reference design. Most of the formulas identify how the resources required by each subsystem depend upon the size of the subsystem. Some of the formulas describe how the subsystem costs depend on size. The formulas can be complicated and nonlinear (if nonlinearity is needed to describe how designs change with size). SDTM's outputs are amounts of resources, life-cycle costs, and marginal costs. SDTM will run on IBM PC/XTs, ATs, and 100% compatibles with 640K of RAM and at least 3Mb of fixed-disk storage. A printer which can print in 132-column mode is also required, and a mathematics co-processor chip is highly recommended. This code is written in Turbo C 2.0. However, since the developers used a modified version of the proprietary Vitamin C source code library, the complete source code is not available. The executable is provided, along with all non-proprietary source code. This program was developed in 1989.
48 CFR 304.7001 - Numbering acquisitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... contracting office identification codes currently in use is contained in the DCIS Users' Manual, available at... than one code may apply in a specific situation, or for additional codes, refer to the DCIS Users' Manual or consult with the cognizant DCIS coordinator/focal point for guidance on which code governs...
Convergence Acceleration and Documentation of CFD Codes for Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Marquart, Jed E.
2005-01-01
The development and analysis of turbomachinery components for industrial and aerospace applications has been greatly enhanced in recent years through the advent of computational fluid dynamics (CFD) codes and techniques. Although the use of this technology has greatly reduced the time required to perform analysis and design, there still remains much room for improvement in the process. In particular, there is a steep learning curve associated with most turbomachinery CFD codes, and the computation times need to be reduced in order to facilitate their integration into standard work processes. Two turbomachinery codes have recently been developed by Dr. Daniel Dorney (MSFC) and Dr. Douglas Sondak (Boston University). These codes are entitled Aardvark (for 2-D and quasi 3-D simulations) and Phantom (for 3-D simulations). The codes utilize the General Equation Set (GES), structured grid methodology, and overset O- and H-grids. The codes have been used with success by Drs. Dorney and Sondak, as well as others within the turbomachinery community, to analyze engine components and other geometries. One of the primary objectives of this study was to establish a set of parametric input values which will enhance convergence rates for steady state simulations, as well as reduce the runtime required for unsteady cases. The goal is to reduce the turnaround time for CFD simulations, thus permitting more design parametrics to be run within a given time period. In addition, other code enhancements to reduce runtimes were investigated and implemented. The other primary goal of the study was to develop enhanced users manuals for Aardvark and Phantom. These manuals are intended to answer most questions for new users, as well as provide valuable detailed information for the experienced user. The existence of detailed user s manuals will enable new users to become proficient with the codes, as well as reducing the dependency of new users on the code authors. In order to achieve the objectives listed, the following tasks were accomplished: 1) Parametric Study Of Preconditioning Parameters And Other Code Inputs; 2) Code Modifications To Reduce Runtimes; 3) Investigation Of Compiler Options To Reduce Code Runtime; and 4) Development/Enhancement of Users Manuals for Aardvark and Phantom
MetaJC++: A flexible and automatic program transformation technique using meta framework
NASA Astrophysics Data System (ADS)
Beevi, Nadera S.; Reghu, M.; Chitraprasad, D.; Vinodchandra, S. S.
2014-09-01
Compiler is a tool to translate abstract code containing natural language terms to machine code. Meta compilers are available to compile more than one languages. We have developed a meta framework intends to combine two dissimilar programming languages, namely C++ and Java to provide a flexible object oriented programming platform for the user. Suitable constructs from both the languages have been combined, thereby forming a new and stronger Meta-Language. The framework is developed using the compiler writing tools, Flex and Yacc to design the front end of the compiler. The lexer and parser have been developed to accommodate the complete keyword set and syntax set of both the languages. Two intermediate representations have been used in between the translation of the source program to machine code. Abstract Syntax Tree has been used as a high level intermediate representation that preserves the hierarchical properties of the source program. A new machine-independent stack-based byte-code has also been devised to act as a low level intermediate representation. The byte-code is essentially organised into an output class file that can be used to produce an interpreted output. The results especially in the spheres of providing C++ concepts in Java have given an insight regarding the potential strong features of the resultant meta-language.
Warthog: Coupling Status Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Shane W. D.; Reardon, Bradley T.
The Warthog code was developed to couple codes that are developed in both the Multi-Physics Object-Oriented Simulation Environment (MOOSE) from Idaho National Laboratory (INL) and SHARP from Argonne National Laboratory (ANL). The initial phase of this work, focused on coupling the neutronics code PROTEUS with the fuel performance code BISON. The main technical challenge involves mapping the power density solution determined by PROTEUS to the fuel in BISON. This presents a challenge since PROTEUS uses the MOAB mesh format, but BISON, like all other MOOSE codes, uses the libMesh format. When coupling the different codes, one must consider that Warthogmore » is a light-weight MOOSE-based program that uses the Data Transfer Kit (DTK) to transfer data between the various mesh types. Users set up inputs for the codes they want to run, and then Warthog transfers the data between them. Currently Warthog supports XSProc from SCALE or the Sub-Group Application Programming Interface (SGAPI) in PROTEUS for generating cross sections. It supports arbitrary geometries using PROTEUS and BISON. DTK will transfer power densities and temperatures between the codes where the domains overlap. In the past fiscal year (FY), much work has gone into demonstrating two-way coupling for simple pin cells of various materials. XSProc was used to calculate the cross sections, which were then passed to PROTEUS in an external file. PROTEUS calculates the fission/power density, and Warthog uses DTK to pass this information to BISON, where it is used as the heat source. BISON then calculates the temperature profile of the pin cell and sends it back to XSProc to obtain the temperature corrected cross sections. This process is repeated until the convergence criteria (tolerance on BISON solve, or number of time steps) is reached. Models have been constructed and run for both uranium oxide and uranium silicide fuels. These models demonstrate a clear difference in power shape that is not accounted for in a stand-alone BISON run. Future work involves improving the user interface (UI), likely through integration with the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench. Furthermore, automating the input creation would ease the user experience. The next priority is to continue coupling the work with other codes in the SHARP package. Efforts on other projects include work to couple the Nek5000 thermo-hydraulics code to MOOSE, but this is in the preliminary stages.« less
User's Manual for FEMOM3DR. Version 1.0
NASA Technical Reports Server (NTRS)
Reddy, C. J.
1998-01-01
FEMoM3DR is a computer code written in FORTRAN 77 to compute radiation characteristics of antennas on 3D body using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. The code is written to handle different feeding structures like coaxial line, rectangular waveguide, and circular waveguide. This code uses the tetrahedral elements, with vector edge basis functions for FEM and triangular elements with roof-top basis functions for MoM. By virtue of FEM, this code can handle any arbitrary shaped three dimensional bodies with inhomogeneous lossy materials; and due to MoM the computational domain can be terminated in any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.
Structure and software tools of AIDA.
Duisterhout, J S; Franken, B; Witte, F
1987-01-01
AIDA consists of a set of software tools to allow for fast development and easy-to-maintain Medical Information Systems. AIDA supports all aspects of such a system both during development and operation. It contains tools to build and maintain forms for interactive data entry and on-line input validation, a database management system including a data dictionary and a set of run-time routines for database access, and routines for querying the database and output formatting. Unlike an application generator, the user of AIDA may select parts of the tools to fulfill his needs and program other subsystems not developed with AIDA. The AIDA software uses as host language the ANSI-standard programming language MUMPS, an interpreted language embedded in an integrated database and programming environment. This greatly facilitates the portability of AIDA applications. The database facilities supported by AIDA are based on a relational data model. This data model is built on top of the MUMPS database, the so-called global structure. This relational model overcomes the restrictions of the global structure regarding string length. The global structure is especially powerful for sorting purposes. Using MUMPS as a host language allows the user an easy interface between user-defined data validation checks or other user-defined code and the AIDA tools. AIDA has been designed primarily for prototyping and for the construction of Medical Information Systems in a research environment which requires a flexible approach. The prototyping facility of AIDA operates terminal independent and is even to a great extent multi-lingual. Most of these features are table-driven; this allows on-line changes in the use of terminal type and language, but also causes overhead. AIDA has a set of optimizing tools by which it is possible to build a faster, but (of course) less flexible code from these table definitions. By separating the AIDA software in a source and a run-time version, one is able to write implementation-specific code which can be selected and loaded by a special source loader, being part of the AIDA software. This feature is also accessible for maintaining software on different sites and on different installations.
Development of a web application for water resources based on open source software
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri P.
2014-01-01
This article presents research and development of a prototype web application for water resources using latest advancements in Information and Communication Technologies (ICT), open source software and web GIS. The web application has three web services for: (1) managing, presenting and storing of geospatial data, (2) support of water resources modeling and (3) water resources optimization. The web application is developed using several programming languages (PhP, Ajax, JavaScript, Java), libraries (OpenLayers, JQuery) and open source software components (GeoServer, PostgreSQL, PostGIS). The presented web application has several main advantages: it is available all the time, it is accessible from everywhere, it creates a real time multi-user collaboration platform, the programing languages code and components are interoperable and designed to work in a distributed computer environment, it is flexible for adding additional components and services and, it is scalable depending on the workload. The application was successfully tested on a case study with concurrent multi-users access.
NASA Astrophysics Data System (ADS)
Khakpour, Mohammad; Paulik, Christoph; Hahn, Sebastian
2016-04-01
Communication about remote sensing data quality between data providers and users as well as between the users is often difficult. The users have a hard time figuring out if a product has known problems over their region of interest and data providers have to spend a lot of effort to make this information available, if it exists. Scientific publications are one tool for communicating with the users base but they are static and mostly one way. As a data provider it is also often difficult to make feedback, received from users, available to the complete user base. The Geo Issue Tracking System (GeoITS) is an Open Source Web Application which has been developed to mitigate these problems. GeoITS combines a mapping interface (Google Maps) with a simple wiki platform. It allows users to give region specific feedback on a remote sensing product by drawing a polygon on the map and describing the problems they had using the remote sensing product in this area. These geolocated wiki entries are then viewable by other users as well as the data providers which can modify and extend the entries. In this way the conversations between the users and the data provider are no longer hidden in e.g. emails but open for all users of the dataset. This new kind of communication platform can enable better cooperation between users and data providers. It will also provide data providers with the ability to track problems their dataset might have in certain areas and resolve them with new product releases. The source code is available via http://github.com/TUW-GEO/geoits_dev A running instance can be tried at https://geoits.herokuapp.com/
Matsumoto, Masaki; Yamanaka, Tsuneyasu; Hayakawa, Nobuhiro; Iwai, Satoshi; Sugiura, Nobuyuki
2015-03-01
This paper describes the Basic Radionuclide vAlue for Internal Dosimetry (BRAID) code, which was developed to calculate the time-dependent activity distribution in each organ and tissue characterised by the biokinetic compartmental models provided by the International Commission on Radiological Protection (ICRP). Translocation from one compartment to the next is taken to be governed by first-order kinetics, which is formulated by the first-order differential equations. In the source program of this code, the conservation equations are solved for the mass balance that describes the transfer of a radionuclide between compartments. This code is applicable to the evaluation of the radioactivity of nuclides in an organ or tissue without modification of the source program. It is also possible to handle easily the cases of the revision of the biokinetic model or the application of a uniquely defined model by a user, because this code is designed so that all information on the biokinetic model structure is imported from an input file. The sample calculations are performed with the ICRP model, and the results are compared with the analytic solutions using simple models. It is suggested that this code provides sufficient result for the dose estimation and interpretation of monitoring data. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ray-tracing 3D dust radiative transfer with DART-Ray: code upgrade and public release
NASA Astrophysics Data System (ADS)
Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard J.; Clarke, Adam J.; Debattista, Victor P.; Fischera, Jörg; Pasetto, Stefano; Rushton, Mark; Thirlwall, Jordan J.
2017-11-01
We present an extensively updated version of the purely ray-tracing 3D dust radiation transfer code DART-Ray. The new version includes five major upgrades: 1) a series of optimizations for the ray-angular density and the scattered radiation source function; 2) the implementation of several data and task parallelizations using hybrid MPI+OpenMP schemes; 3) the inclusion of dust self-heating; 4) the ability to produce surface brightness maps for observers within the models in HEALPix format; 5) the possibility to set the expected numerical accuracy already at the start of the calculation. We tested the updated code with benchmark models where the dust self-heating is not negligible. Furthermore, we performed a study of the extent of the source influence volumes, using galaxy models, which are critical in determining the efficiency of the DART-Ray algorithm. The new code is publicly available, documented for both users and developers, and accompanied by several programmes to create input grids for different model geometries and to import the results of N-body and SPH simulations. These programmes can be easily adapted to different input geometries, and for different dust models or stellar emission libraries.
Software design for analysis of multichannel intracardial and body surface electrocardiograms.
Potse, Mark; Linnenbank, André C; Grimbergen, Cornelis A
2002-11-01
Analysis of multichannel ECG recordings (body surface maps (BSMs) and intracardial maps) requires special software. We created a software package and a user interface on top of a commercial data analysis package (MATLAB) by a combination of high-level and low-level programming. Our software was created to satisfy the needs of a diverse group of researchers. It can handle a large variety of recording configurations. It allows for interactive usage through a fast and robust user interface, and batch processing for the analysis of large amounts of data. The package is user-extensible, includes routines for both common and experimental data processing tasks, and works on several computer platforms. The source code is made intelligible using software for structured documentation and is available to the users. The package is currently used by more than ten research groups analysing ECG data worldwide.
Field Encapsulation Library The FEL 2.2 User Guide
NASA Technical Reports Server (NTRS)
Moran, Patrick J.; Henze, Chris; Ellsworth, David
1999-01-01
This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL authors. This type of flexibility would be difficult to offer without the support of the language. For users who may be having template-related problems, we offer the consolation that support for C++ templates is destined to improve with time. Efforts such as the Standard Template Library (STL) will inevitably drive vendors to provide more thorough, optimized tools for template code development. Furthermore, the benefits will become harder to resist for those who currently subscribe to the least-common-denominator "code it all in C" strategy. May FEL bring you both increased productivity and aesthetic satisfaction.
NASA Astrophysics Data System (ADS)
Menthe, R. W.; McColgan, C. J.; Ladden, R. M.
1991-05-01
The Unified AeroAcoustic Program (UAAP) code calculates the airloads on a single rotation prop-fan, or propeller, and couples these airloads with an acoustic radiation theory, to provide estimates of near-field or far-field noise levels. The steady airloads can also be used to calculate the nonuniform velocity components in the propeller wake. The airloads are calculated using a three dimensional compressible panel method which considers the effects of thin, cambered, multiple blades which may be highly swept. These airloads may be either steady or unsteady. The acoustic model uses the blade thickness distribution and the steady or unsteady aerodynamic loads to calculate the acoustic radiation. The users manual for the UAAP code is divided into five sections: general code description; input description; output description; system description; and error codes. The user must have access to IMSL10 libraries (MATH and SFUN) for numerous calls made for Bessel functions and matrix inversion. For plotted output users must modify the dummy calls to plotting routines included in the code to system-specific calls appropriate to the user's installation.
NASA Technical Reports Server (NTRS)
Menthe, R. W.; Mccolgan, C. J.; Ladden, R. M.
1991-01-01
The Unified AeroAcoustic Program (UAAP) code calculates the airloads on a single rotation prop-fan, or propeller, and couples these airloads with an acoustic radiation theory, to provide estimates of near-field or far-field noise levels. The steady airloads can also be used to calculate the nonuniform velocity components in the propeller wake. The airloads are calculated using a three dimensional compressible panel method which considers the effects of thin, cambered, multiple blades which may be highly swept. These airloads may be either steady or unsteady. The acoustic model uses the blade thickness distribution and the steady or unsteady aerodynamic loads to calculate the acoustic radiation. The users manual for the UAAP code is divided into five sections: general code description; input description; output description; system description; and error codes. The user must have access to IMSL10 libraries (MATH and SFUN) for numerous calls made for Bessel functions and matrix inversion. For plotted output users must modify the dummy calls to plotting routines included in the code to system-specific calls appropriate to the user's installation.
Powerlaw: a Python package for analysis of heavy-tailed distributions.
Alstott, Jeff; Bullmore, Ed; Plenz, Dietmar
2014-01-01
Power laws are theoretically interesting probability distributions that are also frequently used to describe empirical data. In recent years, effective statistical methods for fitting power laws have been developed, but appropriate use of these techniques requires significant programming and statistical insight. In order to greatly decrease the barriers to using good statistical methods for fitting power law distributions, we developed the powerlaw Python package. This software package provides easy commands for basic fitting and statistical analysis of distributions. Notably, it also seeks to support a variety of user needs by being exhaustive in the options available to the user. The source code is publicly available and easily extensible.
P1198: software for tracing decision behavior in lending to small businesses.
Andersson, P
2001-05-01
This paper describes a process-tracing software program specially designed to capture decision behavior in lending to small businesses. The source code was written in Lotus Notes. The software runs in a Web browser and consists of two interacting systems: a database and a user interface. The database includes three realistic loan applications. The user interface consists of different but interacting screens that enable the participant to operate the software. Log files register the decision behavior of the participant. An empirical example is presented in order to show the software's potential in providing insights into judgment and decision making. The implications of the software are discussed.
SysSon - A Framework for Systematic Sonification Design
NASA Astrophysics Data System (ADS)
Vogt, Katharina; Goudarzi, Visda; Holger Rutz, Hanns
2015-04-01
SysSon is a research approach on introducing sonification systematically to a scientific community where it is not yet commonly used - e.g., in climate science. Thereby, both technical and socio-cultural barriers have to be met. The approach was further developed with climate scientists, who participated in contextual inquiries, usability tests and a workshop of collaborative design. Following from these extensive user tests resulted our final software framework. As frontend, a graphical user interface allows climate scientists to parametrize standard sonifications with their own data sets. Additionally, an interactive shell allows to code new sonifications for users competent in sound design. The framework is a standalone desktop application, available as open source (for details see http://sysson.kug.ac.at/) and works with data in NetCDF format.
ARES: automated response function code. Users manual. [HPGAM and LSQVM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maung, T.; Reynolds, G.M.
This ARES user's manual provides detailed instructions for a general understanding of the Automated Response Function Code and gives step by step instructions for using the complete code package on a HP-1000 system. This code is designed to calculate response functions of NaI gamma-ray detectors, with cylindrical or rectangular geometries.
MODEST: A Tool for Geodesy and Astronomy
NASA Technical Reports Server (NTRS)
Sovers, Ojars J.; Jacobs, Christopher S.; Lanyi, Gabor E.
2004-01-01
Features of the JPL VLBI modeling and estimation software "MODEST" are reviewed. Its main advantages include thoroughly documented model physics, portability, and detailed error modeling. Two unique models are included: modeling of source structure and modeling of both spatial and temporal correlations in tropospheric delay noise. History of the code parallels the development of the astrometric and geodetic VLBI technique and the software retains many of the models implemented during its advancement. The code has been traceably maintained since the early 1980s, and will continue to be updated with recent IERS standards. Scripts are being developed to facilitate user-friendly data processing in the era of e-VLBI.
Earth Global Reference Atmospheric Model (GRAM99): Short Course
NASA Technical Reports Server (NTRS)
Leslie, Fred W.; Justus, C. G.
2007-01-01
Earth-GRAM is a FORTRAN software package that can run on a variety of platforms including PC's. For any time and location in the Earth's atmosphere, Earth-GRAM provides values of atmospheric quantities such as temperature, pressure, density, winds, constituents, etc.. Dispersions (perturbations) of these parameters are also provided and have realistic correlations, means, and variances - useful for Monte Carlo analysis. Earth-GRAM is driven by observations including a tropospheric database available from the National Climatic Data Center. Although Earth-GRAM can be run in a "stand-alone" mode, many users incorporate it into their trajectory codes. The source code is distributed free-of-charge to eligible recipients.
Nexus: A modular workflow management system for quantum simulation codes
NASA Astrophysics Data System (ADS)
Krogel, Jaron T.
2016-01-01
The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.
High Speed Research Noise Prediction Code (HSRNOISE) User's and Theoretical Manual
NASA Technical Reports Server (NTRS)
Golub, Robert (Technical Monitor); Rawls, John W., Jr.; Yeager, Jessie C.
2004-01-01
This report describes a computer program, HSRNOISE, that predicts noise levels for a supersonic aircraft powered by mixed flow turbofan engines with rectangular mixer-ejector nozzles. It fully documents the noise prediction algorithms, provides instructions for executing the HSRNOISE code, and provides predicted noise levels for the High Speed Research (HSR) program Technology Concept (TC) aircraft. The component source noise prediction algorithms were developed jointly by Boeing, General Electric Aircraft Engines (GEAE), NASA and Pratt & Whitney during the course of the NASA HSR program. Modern Technologies Corporation developed an alternative mixer ejector jet noise prediction method under contract to GEAE that has also been incorporated into the HSRNOISE prediction code. Algorithms for determining propagation effects and calculating noise metrics were taken from the NASA Aircraft Noise Prediction Program.
NASA Astrophysics Data System (ADS)
Liu, Maw-Yang; Hsu, Yi-Kai
2017-03-01
Three-arm dual-balanced detection scheme is studied in an optical code division multiple access system. As the MAI and beat noise are the main deleterious source of system performance, we utilize optical hard-limiters to alleviate such channel impairment. In addition, once the channel condition is improved effectively, the proposed two-dimensional error correction code can remarkably enhance the system performance. In our proposed scheme, the optimal thresholds of optical hard-limiters and decision circuitry are fixed, and they will not change with other system parameters. Our proposed scheme can accommodate a large number of users simultaneously and is suitable for burst traffic with asynchronous transmission. Therefore, it is highly recommended as the platform for broadband optical access network.
Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.
Majumder, Saikat; Verma, Shrish
2015-01-01
Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.
Web-Based Environment for Maintaining Legacy Software
NASA Technical Reports Server (NTRS)
Tigges, Michael; Thompson, Nelson; Orr, Mark; Fox, Richard
2007-01-01
Advanced Tool Integration Environment (ATIE) is the name of both a software system and a Web-based environment created by the system for maintaining an archive of legacy software and expertise involved in developing the legacy software. ATIE can also be used in modifying legacy software and developing new software. The information that can be encapsulated in ATIE includes experts documentation, input and output data of tests cases, source code, and compilation scripts. All of this information is available within a common environment and retained in a database for ease of access and recovery by use of powerful search engines. ATIE also accommodates the embedment of supporting software that users require for their work, and even enables access to supporting commercial-off-the-shelf (COTS) software within the flow of the experts work. The flow of work can be captured by saving the sequence of computer programs that the expert uses. A user gains access to ATIE via a Web browser. A modern Web-based graphical user interface promotes efficiency in the retrieval, execution, and modification of legacy code. Thus, ATIE saves time and money in the support of new and pre-existing programs.
AMPS/PC - AUTOMATIC MANUFACTURING PROGRAMMING SYSTEM
NASA Technical Reports Server (NTRS)
Schroer, B. J.
1994-01-01
The AMPS/PC system is a simulation tool designed to aid the user in defining the specifications of a manufacturing environment and then automatically writing code for the target simulation language, GPSS/PC. The domain of problems that AMPS/PC can simulate are manufacturing assembly lines with subassembly lines and manufacturing cells. The user defines the problem domain by responding to the questions from the interface program. Based on the responses, the interface program creates an internal problem specification file. This file includes the manufacturing process network flow and the attributes for all stations, cells, and stock points. AMPS then uses the problem specification file as input for the automatic code generator program to produce a simulation program in the target language GPSS. The output of the generator program is the source code of the corresponding GPSS/PC simulation program. The system runs entirely on an IBM PC running PC DOS Version 2.0 or higher and is written in Turbo Pascal Version 4 requiring 640K memory and one 360K disk drive. To execute the GPSS program, the PC must have resident the GPSS/PC System Version 2.0 from Minuteman Software. The AMPS/PC program was developed in 1988.
NASA Technical Reports Server (NTRS)
Smith, S. D.
1984-01-01
A users manual for the RAMP2 computer code is provided. The RAMP2 code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. The general structure and operation of RAMP2 are discussed. A user input/output guide for the modified TRAN72 computer code and the RAMP2F code is given. The application and use of the BLIMPJ module are considered. Sample problems involving the space shuttle main engine and motor are included.
Exposure calculation code module for reactor core analysis: BURNER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.; Cunningham, G.W.
1979-02-01
The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also providesmore » user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.« less
Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code
NASA Astrophysics Data System (ADS)
Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.
2015-12-01
WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).
Fostering Team Awareness in Earth System Modeling Communities
NASA Astrophysics Data System (ADS)
Easterbrook, S. M.; Lawson, A.; Strong, S.
2009-12-01
Existing Global Climate Models are typically managed and controlled at a single site, with varied levels of participation by scientists outside the core lab. As these models evolve to encompass a wider set of earth systems, this central control of the modeling effort becomes a bottleneck. But such models cannot evolve to become fully distributed open source projects unless they address the imbalance in the availability of communication channels: scientists at the core site have access to regular face-to-face communication with one another, while those at remote sites have access to only a subset of these conversations - e.g. formally scheduled teleconferences and user meetings. Because of this imbalance, critical decision making can be hidden from many participants, their code contributions can interact in unanticipated ways, and the community loses awareness of who knows what. We have documented some of these problems in a field study at one climate modeling centre, and started to develop tools to overcome these problems. We report on one such tool, TracSNAP, which analyzes the social network of the scientists contributing code to the model by extracting the data in an existing project code repository. The tool presents the results of this analysis to modelers and model users in a number of ways: recommendation for who has expertise on particular code modules, suggestions for code sections that are related to files being worked on, and visualizations of team communication patterns. The tool is currently available as a plugin for the Trac bug tracking system.
Support for Systematic Code Reviews with the SCRUB Tool
NASA Technical Reports Server (NTRS)
Holzmann, Gerald J.
2010-01-01
SCRUB is a code review tool that supports both large, team-based software development efforts (e.g., for mission software) as well as individual tasks. The tool was developed at JPL to support a new, streamlined code review process that combines human-generated review reports with program-generated review reports from a customizable range of state-of-the-art source code analyzers. The leading commercial tools include Codesonar, Coverity, and Klocwork, each of which can achieve a reasonably low rate of false-positives in the warnings that they generate. The time required to analyze code with these tools can vary greatly. In each case, however, the tools produce results that would be difficult to realize with human code inspections alone. There is little overlap in the results produced by the different analyzers, and each analyzer used generally increases the effectiveness of the overall effort. The SCRUB tool allows all reports to be accessed through a single, uniform interface (see figure) that facilitates brows ing code and reports. Improvements over existing software include significant simplification, and leveraging of a range of commercial, static source code analyzers in a single, uniform framework. The tool runs as a small stand-alone application, avoiding the security problems related to tools based on Web browsers. A developer or reviewer, for instance, must have already obtained access rights to a code base before that code can be browsed and reviewed with the SCRUB tool. The tool cannot open any files or folders to which the user does not already have access. This means that the tool does not need to enforce or administer any additional security policies. The analysis results presented through the SCRUB tool s user interface are always computed off-line, given that, especially for larger projects, this computation can take longer than appropriate for interactive tool use. The recommended code review process that is supported by the SCRUB tool consists of three phases: Code Review, Developer Response, and Closeout Resolution. In the Code Review phase, all tool-based analysis reports are generated, and specific comments from expert code reviewers are entered into the SCRUB tool. In the second phase, Developer Response, the developer is asked to respond to each comment and tool-report that was produced, either agreeing or disagreeing to provide a fix that addresses the issue that was raised. In the third phase, Closeout Resolution, all disagreements are discussed in a meeting of all parties involved, and a resolution is made for all disagreements. The first two phases generally take one week each, and the third phase is concluded in a single closeout meeting.
User's Manual for FEMOM3DS. Version 1.0
NASA Technical Reports Server (NTRS)
Reddy, C.J.; Deshpande, M. D.
1997-01-01
FEMOM3DS is a computer code written in FORTRAN 77 to compute electromagnetic(EM) scattering characteristics of a three dimensional object with complex materials using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity and the triangular elements with the basis functions similar to that described for MoM at the outer boundary. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.
Telemetry: Summary of concept and rationale
NASA Astrophysics Data System (ADS)
1987-12-01
This report presents the concept and supporting rationale for the telemetry system developed by the Consultative Committee for Space Data Systems (CCSDS). The concepts, protocols and data formats developed for the telemetry system are designed for flight and ground data systems supporting conventional, contemporary free-flyer spacecraft. Data formats are designed with efficiency as a primary consideration, i.e., format overhead is minimized. The results reflect the consensus of experts from many space agencies. An overview of the CCSDS telemetry system introduces the notion of architectural layering to achieve transparent and reliable delivery of scientific and engineering sensor data (generated aboard space vehicles) to users located in space or on earth. The system is broken down into two major conceptual categories: a packet telemetry concept and a telemetry channel coding concept. Packet telemetry facilitates data transmission from source to user in a standardized and highly automated manner. It provides a mechanism for implementing common data structures and protocols which can enhance the development and operation of space mission systems. Telemetry channel coding is a method by which data can be sent from a source to a destination by processing it in such a way that distinct messages are created which are easily distinguishable from one another. This allows construction of the data with low error probability, thus improving performance of the channel.
The IRGen infrared data base modeler
NASA Technical Reports Server (NTRS)
Bernstein, Uri
1993-01-01
IRGen is a modeling system which creates three-dimensional IR data bases for real-time simulation of thermal IR sensors. Starting from a visual data base, IRGen computes the temperature and radiance of every data base surface with a user-specified thermal environment. The predicted gray shade of each surface is then computed from the user specified sensor characteristics. IRGen is based on first-principles models of heat transport and heat flux sources, and it accurately simulates the variations of IR imagery with time of day and with changing environmental conditions. The starting point for creating an IRGen data base is a visual faceted data base, in which every facet has been labeled with a material code. This code is an index into a material data base which contains surface and bulk thermal properties for the material. IRGen uses the material properties to compute the surface temperature at the specified time of day. IRGen also supports image generator features such as texturing and smooth shading, which greatly enhance image realism.
Web3DMol: interactive protein structure visualization based on WebGL.
Shi, Maoxiang; Gao, Juntao; Zhang, Michael Q
2017-07-03
A growing number of web-based databases and tools for protein research are being developed. There is now a widespread need for visualization tools to present the three-dimensional (3D) structure of proteins in web browsers. Here, we introduce our 3D modeling program-Web3DMol-a web application focusing on protein structure visualization in modern web browsers. Users submit a PDB identification code or select a PDB archive from their local disk, and Web3DMol will display and allow interactive manipulation of the 3D structure. Featured functions, such as sequence plot, fragment segmentation, measure tool and meta-information display, are offered for users to gain a better understanding of protein structure. Easy-to-use APIs are available for developers to reuse and extend Web3DMol. Web3DMol can be freely accessed at http://web3dmol.duapp.com/, and the source code is distributed under the MIT license. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
The 2017 Bioinformatics Open Source Conference (BOSC)
Harris, Nomi L.; Cock, Peter J.A.; Chapman, Brad; Fields, Christopher J.; Hokamp, Karsten; Lapp, Hilmar; Munoz-Torres, Monica; Tzovaras, Bastian Greshake; Wiencko, Heather
2017-01-01
The Bioinformatics Open Source Conference (BOSC) is a meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. The 18th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2017) took place in Prague, Czech Republic in July 2017. The conference brought together nearly 250 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, open and reproducible science, and this year’s theme, open data. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community, called the OBF Codefest. PMID:29118973
The 2017 Bioinformatics Open Source Conference (BOSC).
Harris, Nomi L; Cock, Peter J A; Chapman, Brad; Fields, Christopher J; Hokamp, Karsten; Lapp, Hilmar; Munoz-Torres, Monica; Tzovaras, Bastian Greshake; Wiencko, Heather
2017-01-01
The Bioinformatics Open Source Conference (BOSC) is a meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. The 18th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2017) took place in Prague, Czech Republic in July 2017. The conference brought together nearly 250 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, open and reproducible science, and this year's theme, open data. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community, called the OBF Codefest.
NASA Astrophysics Data System (ADS)
Brandelik, Andreas
2009-07-01
CALCMIN, an open source Visual Basic program, was implemented in EXCEL™. The program was primarily developed to support geoscientists in their routine task of calculating structural formulae of minerals on the basis of chemical analysis mainly obtained by electron microprobe (EMP) techniques. Calculation programs for various minerals are already included in the form of sub-routines. These routines are arranged in separate modules containing a minimum of code. The architecture of CALCMIN allows the user to easily develop new calculation routines or modify existing routines with little knowledge of programming techniques. By means of a simple mouse-click, the program automatically generates a rudimentary framework of code using the object model of the Visual Basic Editor (VBE). Within this framework simple commands and functions, which are provided by the program, can be used, for example, to perform various normalization procedures or to output the results of the computations. For the clarity of the code, element symbols are used as variables initialized by the program automatically. CALCMIN does not set any boundaries in complexity of the code used, resulting in a wide range of possible applications. Thus, matrix and optimization methods can be included, for instance, to determine end member contents for subsequent thermodynamic calculations. Diverse input procedures are provided, such as the automated read-in of output files created by the EMP. Furthermore, a subsequent filter routine enables the user to extract specific analyses in order to use them for a corresponding calculation routine. An event-driven, interactive operating mode was selected for easy application of the program. CALCMIN leads the user from the beginning to the end of the calculation process.
Generalized Fluid System Simulation Program, Version 6.0
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.
2013-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.
Generalized Fluid System Simulation Program, Version 5.0-Educational
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.
Menegidio, Fabiano B; Jabes, Daniela L; Costa de Oliveira, Regina; Nunes, Luiz R
2018-02-01
This manuscript introduces and describes Dugong, a Docker image based on Ubuntu 16.04, which automates installation of more than 3500 bioinformatics tools (along with their respective libraries and dependencies), in alternative computational environments. The software operates through a user-friendly XFCE4 graphic interface that allows software management and installation by users not fully familiarized with the Linux command line and provides the Jupyter Notebook to assist in the delivery and exchange of consistent and reproducible protocols and results across laboratories, assisting in the development of open science projects. Source code and instructions for local installation are available at https://github.com/DugongBioinformatics, under the MIT open source license. Luiz.nunes@ufabc.edu.br. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
CellTracker (not only) for dummies.
Piccinini, Filippo; Kiss, Alexa; Horvath, Peter
2016-03-15
Time-lapse experiments play a key role in studying the dynamic behavior of cells. Single-cell tracking is one of the fundamental tools for such analyses. The vast majority of the recently introduced cell tracking methods are limited to fluorescently labeled cells. An equally important limitation is that most software cannot be effectively used by biologists without reasonable expertise in image processing. Here we present CellTracker, a user-friendly open-source software tool for tracking cells imaged with various imaging modalities, including fluorescent, phase contrast and differential interference contrast (DIC) techniques. CellTracker is written in MATLAB (The MathWorks, Inc., USA). It works with Windows, Macintosh and UNIX-based systems. Source code and graphical user interface (GUI) are freely available at: http://celltracker.website/ horvath.peter@brc.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot.
Kitson, Philip J; Glatzel, Stefan; Cronin, Leroy
2016-01-01
An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic 'programs' which can run on similar low cost, user-constructed robotic platforms towards an 'open-source' regime in the area of chemical synthesis.
Automated variance reduction for MCNP using deterministic methods.
Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B
2005-01-01
In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.
BioCIDER: a Contextualisation InDEx for biological Resources discovery
Horro, Carlos; Cook, Martin; Attwood, Teresa K.; Brazas, Michelle D.; Hancock, John M.; Palagi, Patricia; Corpas, Manuel; Jimenez, Rafael
2017-01-01
Abstract Summary The vast, uncoordinated proliferation of bioinformatics resources (databases, software tools, training materials etc.) makes it difficult for users to find them. To facilitate their discovery, various services are being developed to collect such resources into registries. We have developed BioCIDER, which, rather like online shopping ‘recommendations’, provides a contextualization index to help identify biological resources relevant to the content of the sites in which it is embedded. Availability and Implementation BioCIDER (www.biocider.org) is an open-source platform. Documentation is available online (https://goo.gl/Klc51G), and source code is freely available via GitHub (https://github.com/BioCIDER). The BioJS widget that enables websites to embed contextualization is available from the BioJS registry (http://biojs.io/). All code is released under an MIT licence. Contact carlos.horro@earlham.ac.uk or rafael.jimenez@elixir-europe.org or manuel@repositive.io PMID:28407033
A universal Model-R Coupler to facilitate the use of R functions for model calibration and analysis
Wu, Yiping; Liu, Shuguang; Yan, Wende
2014-01-01
Mathematical models are useful in various fields of science and engineering. However, it is a challenge to make a model utilize the open and growing functions (e.g., model inversion) on the R platform due to the requirement of accessing and revising the model's source code. To overcome this barrier, we developed a universal tool that aims to convert a model developed in any computer language to an R function using the template and instruction concept of the Parameter ESTimation program (PEST) and the operational structure of the R-Soil and Water Assessment Tool (R-SWAT). The developed tool (Model-R Coupler) is promising because users of any model can connect an external algorithm (written in R) with their model to implement various model behavior analyses (e.g., parameter optimization, sensitivity and uncertainty analysis, performance evaluation, and visualization) without accessing or modifying the model's source code.
RICH: OPEN-SOURCE HYDRODYNAMIC SIMULATION ON A MOVING VORONOI MESH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalinewich, Almog; Steinberg, Elad; Sari, Re’em
2015-02-01
We present here RICH, a state-of-the-art two-dimensional hydrodynamic code based on Godunov’s method, on an unstructured moving mesh (the acronym stands for Racah Institute Computational Hydrodynamics). This code is largely based on the code AREPO. It differs from AREPO in the interpolation and time-advancement schemeS as well as a novel parallelization scheme based on Voronoi tessellation. Using our code, we study the pros and cons of a moving mesh (in comparison to a static mesh). We also compare its accuracy to other codes. Specifically, we show that our implementation of external sources and time-advancement scheme is more accurate and robustmore » than is AREPO when the mesh is allowed to move. We performed a parameter study of the cell rounding mechanism (Lloyd iterations) and its effects. We find that in most cases a moving mesh gives better results than a static mesh, but it is not universally true. In the case where matter moves in one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving) a static mesh gives better results than a moving mesh. We perform an analytic analysis for finite difference schemes that reveals that a Lagrangian simulation is better than a Eulerian simulation in the case of a highly supersonic flow. Moreover, we show that Voronoi-based moving mesh schemes suffer from an error, which is resolution independent, due to inconsistencies between the flux calculation and the change in the area of a cell. Our code is publicly available as open source and designed in an object-oriented, user-friendly way that facilitates incorporation of new algorithms and physical processes.« less
NASA Technical Reports Server (NTRS)
Hartle, M.; McKnight, R. L.
2000-01-01
This manual is a combination of a user manual, theory manual, and programmer manual. The reader is assumed to have some previous exposure to the finite element method. This manual is written with the idea that the CSTEM (Coupled Structural Thermal Electromagnetic-Computer Code) user needs to have a basic understanding of what the code is actually doing in order to properly use the code. For that reason, the underlying theory and methods used in the code are described to a basic level of detail. The manual gives an overview of the CSTEM code: how the code came into existence, a basic description of what the code does, and the order in which it happens (a flowchart). Appendices provide a listing and very brief description of every file used by the CSTEM code, including the type of file it is, what routine regularly accesses the file, and what routine opens the file, as well as special features included in CSTEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Michael T.; Safdari, Masoud; Kress, Jessica E.
The project described in this report constructed and exercised an innovative multiphysics coupling toolkit called the Illinois Rocstar MultiPhysics Application Coupling Toolkit (IMPACT). IMPACT is an open source, flexible, natively parallel infrastructure for coupling multiple uniphysics simulation codes into multiphysics computational systems. IMPACT works with codes written in several high-performance-computing (HPC) programming languages, and is designed from the beginning for HPC multiphysics code development. It is designed to be minimally invasive to the individual physics codes being integrated, and has few requirements on those physics codes for integration. The goal of IMPACT is to provide the support needed to enablemore » coupling existing tools together in unique and innovative ways to produce powerful new multiphysics technologies without extensive modification and rewrite of the physics packages being integrated. There are three major outcomes from this project: 1) construction, testing, application, and open-source release of the IMPACT infrastructure, 2) production of example open-source multiphysics tools using IMPACT, and 3) identification and engagement of interested organizations in the tools and applications resulting from the project. This last outcome represents the incipient development of a user community and application echosystem being built using IMPACT. Multiphysics coupling standardization can only come from organizations working together to define needs and processes that span the space of necessary multiphysics outcomes, which Illinois Rocstar plans to continue driving toward. The IMPACT system, including source code, documentation, and test problems are all now available through the public gitHUB.org system to anyone interested in multiphysics code coupling. Many of the basic documents explaining use and architecture of IMPACT are also attached as appendices to this document. Online HTML documentation is available through the gitHUB site. There are over 100 unit tests provided that run through the Illinois Rocstar Application Development (IRAD) lightweight testing infrastructure that is also supplied along with IMPACT. The package as a whole provides an excellent base for developing high-quality multiphysics applications using modern software development practices. To facilitate understanding how to utilize IMPACT effectively, two multiphysics systems have been developed and are available open-source through gitHUB. The simpler of the two systems, named ElmerFoamFSI in the repository, is a multiphysics, fluid-structure-interaction (FSI) coupling of the solid mechanics package Elmer with a fluid dynamics module from OpenFOAM. This coupling illustrates how to combine software packages that are unrelated by either author or architecture and combine them into a robust, parallel multiphysics system. A more complex multiphysics tool is the Illinois Rocstar Rocstar Multiphysics code that was rebuilt during the project around IMPACT. Rocstar Multiphysics was already an HPC multiphysics tool, but now that it has been rearchitected around IMPACT, it can be readily expanded to capture new and different physics in the future. In fact, during this project, the Elmer and OpenFOAM tools were also coupled into Rocstar Multiphysics and demonstrated. The full Rocstar Multiphysics codebase is also available on gitHUB, and licensed for any organization to use as they wish. Finally, the new IMPACT product is already being used in several multiphysics code coupling projects for the Air Force, NASA and the Missile Defense Agency, and initial work on expansion of the IMPACT-enabled Rocstar Multiphysics has begun in support of a commercial company. These initiatives promise to expand the interest and reach of IMPACT and Rocstar Multiphysics, ultimately leading to the envisioned standardization and consortium of users that was one of the goals of this project.« less
SLIMS--a user-friendly sample operations and inventory management system for genotyping labs.
Van Rossum, Thea; Tripp, Ben; Daley, Denise
2010-07-15
We present the Sample-based Laboratory Information Management System (SLIMS), a powerful and user-friendly open source web application that provides all members of a laboratory with an interface to view, edit and create sample information. SLIMS aims to simplify common laboratory tasks with tools such as a user-friendly shopping cart for subjects, samples and containers that easily generates reports, shareable lists and plate designs for genotyping. Further key features include customizable data views, database change-logging and dynamically filled pre-formatted reports. Along with being feature-rich, SLIMS' power comes from being able to handle longitudinal data from multiple time-points and biological sources. This type of data is increasingly common from studies searching for susceptibility genes for common complex diseases that collect thousands of samples generating millions of genotypes and overwhelming amounts of data. LIMSs provide an efficient way to deal with this data while increasing accessibility and reducing laboratory errors; however, professional LIMS are often too costly to be practical. SLIMS gives labs a feasible alternative that is easily accessible, user-centrically designed and feature-rich. To facilitate system customization, and utilization for other groups, manuals have been written for users and developers. Documentation, source code and manuals are available at http://genapha.icapture.ubc.ca/SLIMS/index.jsp. SLIMS was developed using Java 1.6.0, JSPs, Hibernate 3.3.1.GA, DB2 and mySQL, Apache Tomcat 6.0.18, NetBeans IDE 6.5, Jasper Reports 3.5.1 and JasperSoft's iReport 3.5.1.
3Dmol.js: molecular visualization with WebGL.
Rego, Nicholas; Koes, David
2015-04-15
3Dmol.js is a modern, object-oriented JavaScript library that uses the latest web technologies to provide interactive, hardware-accelerated three-dimensional representations of molecular data without the need to install browser plugins or Java. 3Dmol.js provides a full featured API for developers as well as a straightforward declarative interface that lets users easily share and embed molecular data in websites. 3Dmol.js is distributed under the permissive BSD open source license. Source code and documentation can be found at http://3Dmol.csb.pitt.edu dkoes@pitt.edu. © The Author 2014. Published by Oxford University Press.
User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 1: General ADD code description
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Hankins, G. B., Jr.; Edwards, D. E.
1982-01-01
This User's Manual contains a complete description of the computer codes known as the AXISYMMETRIC DIFFUSER DUCT code or ADD code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The third volume contains a detailed description of the CODUCT code which generates coordinate systems for arbitrary axisymmetric ducts.
A Flexible Cosmic Ultraviolet Background Model
NASA Astrophysics Data System (ADS)
McQuinn, Matthew
2016-10-01
HST studies of the IGM, of the CGM, and of reionization-era galaxies are all aided by ionizing background models, which are a critical input in modeling the ionization state of diffuse, 10^4 K gas. The ionization state in turn enables the determination of densities and sizes of absorbing clouds and, when applied to the Ly-a forest, the global ionizing emissivity of sources. Unfortunately, studies that use these background models have no way of gauging the amount of uncertainty in the adopted model other than to recompute their results using previous background models with outdated observational inputs. As of yet there has been no systematic study of uncertainties in the background model and there unfortunately is no publicly available ultraviolet background code. A public code would enable users to update the calculation with the latest observational constraints, and it would allow users to experiment with varying the background model's assumptions regarding emissions and absorptions. We propose to develop a publicly available ionizing background code and, as an initial application, quantify the level of uncertainty in the ionizing background spectrum across cosmic time. As the background model improves, so does our understanding of (1) the sources that dominate ionizing emissions across cosmic time and (2) the properties of diffuse gas in the circumgalactic medium, the WHIM, and the Ly-a forest. HST is the primary telescope for studying both the highest redshift galaxies and low-redshift diffuse gas. The proposed program would benefit HST studies of the Universe at z 0 all the way up to z = 10, including of high-z galaxies observed in the HST Frontier Fields.
MuSim, a Graphical User Interface for Multiple Simulation Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Thomas; Cummings, Mary Anne; Johnson, Rolland
2016-06-01
MuSim is a new user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parametrized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer (with a slider to vary the transparency of solids), allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline, MAD-X,more » and MCNP; more coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.« less
Near-line Archive Data Mining at the Goddard Distributed Active Archive Center
NASA Astrophysics Data System (ADS)
Pham, L.; Mack, R.; Eng, E.; Lynnes, C.
2002-12-01
NASA's Earth Observing System (EOS) is generating immense volumes of data, in some cases too much to provide to users with data-intensive needs. As an alternative to moving the data to the user and his/her research algorithms, we are providing a means to move the algorithms to the data. The Near-line Archive Data Mining (NADM) system is the Goddard Earth Sciences Distributed Active Archive Center's (GES DAAC) web data mining portal to the EOS Data and Information System (EOSDIS) data pool, a 50-TB online disk cache. The NADM web portal enables registered users to submit and execute data mining algorithm codes on the data in the EOSDIS data pool. A web interface allows the user to access the NADM system. The users first develops personalized data mining code on their home platform and then uploads them to the NADM system. The C, FORTRAN and IDL languages are currently supported. The user developed code is automatically audited for any potential security problems before it is installed within the NADM system and made available to the user. Once the code has been installed the user is provided a test environment where he/she can test the execution of the software against data sets of the user's choosing. When the user is satisfied with the results, he/she can promote their code to the "operational" environment. From here the user can interactively run his/her code on the data available in the EOSDIS data pool. The user can also set up a processing subscription. The subscription will automatically process new data as it becomes available in the EOSDIS data pool. The generated mined data products are then made available for FTP pickup. The NADM system uses the GES DAAC-developed Simple Scalable Script-based Science Processor (S4P) to automate tasks and perform the actual data processing. Users will also have the option of selecting a DAAC-provided data mining algorithm and using it to process the data of their choice.
User's manual for CBS3DS, version 1.0
NASA Astrophysics Data System (ADS)
Reddy, C. J.; Deshpande, M. D.
1995-10-01
CBS3DS is a computer code written in FORTRAN 77 to compute the backscattering radar cross section of cavity backed apertures in infinite ground plane and slots in thick infinite ground plane. CBS3DS implements the hybrid Finite Element Method (FEM) and Method of Moments (MoM) techniques. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity/slot and the triangular elements with the basis functions for MoM at the apertures. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials; due to MoM, the apertures can be of any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computer the code is intended to run.
Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu
2011-03-15
Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, singlemore » Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since they are both based on the well-validated standard EGSnrc radiation transport physics model.« less
NASA Technical Reports Server (NTRS)
Suhs, Norman E.; Dietz, William E.; Rogers, Stuart E.; Nash, Steven M.; Onufer, Jeffrey T.
2000-01-01
PEGASUS 5.1 is the latest version of the PEGASUS series of mesh interpolation codes. It is a fully three-dimensional code. The main purpose for the development of this latest version was to significantly decrease the number of user inputs required and to allow for easier operation of the code. This guide is to be used with the user's manual for version 4 of PEGASUS. A basic description of methods used in both versions is described in the Version 4 manual. A complete list of all user inputs used in version 5.1 is given in this guide.
NASA Technical Reports Server (NTRS)
Chambers, Lin Hartung
1994-01-01
The theory for radiation emission, absorption, and transfer in a thermochemical nonequilibrium flow is presented. The expressions developed reduce correctly to the limit at equilibrium. To implement the theory in a practical computer code, some approximations are used, particularly the smearing of molecular radiation. Details of these approximations are presented and helpful information is included concerning the use of the computer code. This user's manual should benefit both occasional users of the Langley Optimized Radiative Nonequilibrium (LORAN) code and those who wish to use it to experiment with improved models or properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Femec, D.A.
This report discusses the sample tracking database in use at the Idaho National Engineering Laboratory (INEL) by the Radiation Measurements Laboratory (RML) and Analytical Radiochemistry. The database was designed in-house to meet the specific needs of the RML and Analytical Radiochemistry. The report consists of two parts, a user`s guide and a reference guide. The user`s guide presents some of the fundamentals needed by anyone who will be using the database via its user interface. The reference guide describes the design of both the database and the user interface. Briefly mentioned in the reference guide are the code-generating tools, CREATE-SCHEMAmore » and BUILD-SCREEN, written to automatically generate code for the database and its user interface. The appendices contain the input files used by the these tools to create code for the sample tracking database. The output files generated by these tools are also included in the appendices.« less
Coding and decoding for code division multiple user communication systems
NASA Technical Reports Server (NTRS)
Healy, T. J.
1985-01-01
A new algorithm is introduced which decodes code division multiple user communication signals. The algorithm makes use of the distinctive form or pattern of each signal to separate it from the composite signal created by the multiple users. Although the algorithm is presented in terms of frequency-hopped signals, the actual transmitter modulator can use any of the existing digital modulation techniques. The algorithm is applicable to error-free codes or to codes where controlled interference is permitted. It can be used when block synchronization is assumed, and in some cases when it is not. The paper also discusses briefly some of the codes which can be used in connection with the algorithm, and relates the algorithm to past studies which use other approaches to the same problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Robert; Moeller, Paul
Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jin-ja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is Warp. Warp is a particle-in-cell (PIC) code de-signed to simulate high-intensity charged particle beams and plasmas in both the electrostatic and electromagnetic regimes, with a wide variety of integrated physics models and diagnostics. At pre-sent, Sirepo supports a small subset of Warp’s capabilities. Warp is open source and is part of the Berkeley Lab Accelerator Simulation Toolkit.« less
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj
2016-04-01
Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.
Some User's Insights Into ADIFOR 2.0D
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.
2002-01-01
Some insights are given which were gained by one user through experience with the use of the ADIFOR 2.0D software for automatic differentiation of Fortran code. These insights are generally in the area of the user interface with the generated derivative code - particularly the actual form of the interface and the use of derivative objects, including "seed" matrices. Some remarks are given as to how to iterate application of ADIFOR in order to generate second derivative code.
Radiology Teacher: a free, Internet-based radiology teaching file server.
Talanow, Roland
2009-12-01
Teaching files are an essential ingredient in residency education. The online program Radiology Teacher was developed to allow the creation of interactive and customized teaching files in real time. Online access makes it available anytime and anywhere, and it is free of charge, user tailored, and easy to use. No programming skills, additional plug-ins, or installations are needed, allowing its use even on protected intranets. Special effects for enhancing the learning experience as well as the linking and the source code are created automatically by the program. It may be used in different modes by individuals and institutions to share cases from multiple authors in a single database. Radiology Teacher is an easy-to-use automatic teaching file program that may enhance users' learning experiences by offering different modes of user-defined presentations.
Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions.
Zakrzewski, Martha; Proietti, Carla; Ellis, Jonathan J; Hasan, Shihab; Brion, Marie-Jo; Berger, Bernard; Krause, Lutz
2017-03-01
Calypso is an easy-to-use online software suite that allows non-expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment-microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. The web-interface is accessible via http://cgenome.net/calypso/ . The software is programmed in Java, PERL and R and the source code is available from Zenodo ( https://zenodo.org/record/50931 ). The software is freely available for non-commercial users. l.krause@uq.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Plouff, Donald
2000-01-01
Gravity observations are directly made or are obtained from other sources by the U.S. Geological Survey in order to prepare maps of the anomalous gravity field and consequently to interpret the subsurface distribution of rock densities and associated lithologic or geologic units. Observations are made in the field with gravity meters at new locations and at reoccupations of previously established gravity "stations." This report illustrates an interactively-prompted series of steps needed to convert gravity "readings" to values that are tied to established gravity datums and includes computer programs to implement those steps. Inasmuch as individual gravity readings have small variations, gravity-meter (instrument) drift may not be smoothly variable, and acommodations may be needed for ties to previously established stations, the reduction process is iterative. Decision-making by the program user is prompted by lists of best values and graphical displays. Notes about irregularities of topography, which affect the value of observed gravity but are not shown in sufficient detail on topographic maps, must be recorded in the field. This report illustrates ways to record field notes (distances, heights, and slope angles) and includes computer programs to convert field notes to gravity terrain corrections. This report includes approaches that may serve as models for other applications, for example: portrayal of system flow; style of quality control to document and validate computer applications; lack of dependence on proprietary software except source code compilation; method of file-searching with a dwindling list; interactive prompting; computer code to write directly in the PostScript (Adobe Systems Incorporated) printer language; and high-lighting the four-digit year on the first line of time-dependent data sets for assured Y2K compatibility. Computer source codes provided are written in the Fortran scientific language. In order for the programs to operate, they first must be converted (compiled) into an executable form on the user's computer. Although program testing was done in a UNIX (tradename of American Telephone and Telegraph Company) computer environment, it is anticipated that only a system-dependent date-and-time function may need to be changed for adaptation to other computer platforms that accept standard Fortran code.d del iliscipit volorer sequi ting etue feum zzriliquatum zzriustrud esenibh ex esto esequat.
Nexus: a modular workflow management system for quantum simulation codes
Krogel, Jaron T.
2015-08-24
The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantummore » chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.« less
14 CFR 1215.108 - Defining user service requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to NASA Headquarters, Code OX, Space Network Division, Washington, DC 20546. Upon review and... submitted in writing to both NASA Headquarters, Code OX, Space Network Division, and GSFC, Code 501.... Request for services within priority groups shall be negotiated with non-NASA users on a first come, first...
Framework GRASP: routine library for optimize processing of aerosol remote sensing observation
NASA Astrophysics Data System (ADS)
Fuertes, David; Torres, Benjamin; Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Ducos, Fabrice; Aspetsberger, Michael; Federspiel, Christian
The present the development of a Framework for the Generalized Retrieval of Aerosol and Surface Properties (GRASP) developed by Dubovik et al., (2011). The framework is a source code project that attempts to strengthen the value of the GRASP inversion algorithm by transforming it into a library that will be used later for a group of customized application modules. The functions of the independent modules include the managing of the configuration of the code execution, as well as preparation of the input and output. The framework provides a number of advantages in utilization of the code. First, it implements loading data to the core of the scientific code directly from memory without passing through intermediary files on disk. Second, the framework allows consecutive use of the inversion code without the re-initiation of the core routine when new input is received. These features are essential for optimizing performance of the data production in processing of large observation sets, such as satellite images by the GRASP. Furthermore, the framework is a very convenient tool for further development, because this open-source platform is easily extended for implementing new features. For example, it could accommodate loading of raw data directly onto the inversion code from a specific instrument not included in default settings of the software. Finally, it will be demonstrated that from the user point of view, the framework provides a flexible, powerful and informative configuration system.
NASA Technical Reports Server (NTRS)
Scott, Peter J.
1989-01-01
ZED editing program for DEC VAX computer simple, powerful line editor for text, program source code, and nonbinary data. Excels in processing of text by use of procedure files. Also features versatile search qualifiers, global changes, conditionals, online help, hexadecimal mode, space compression, looping, logical combinations of search strings, journaling, visible control characters, and automatic detabbing. Users of Cambridge implementation devised such ZED procedures as chess games, calculators, and programs for evaluating pi. Written entirely in C.
Phylowood: interactive web-based animations of biogeographic and phylogeographic histories.
Landis, Michael J; Bedford, Trevor
2014-01-01
Phylowood is a web service that uses JavaScript to generate in-browser animations of biogeographic and phylogeographic histories from annotated phylogenetic input. The animations are interactive, allowing the user to adjust spatial and temporal resolution, and highlight phylogenetic lineages of interest. All documentation and source code for Phylowood is freely available at https://github.com/mlandis/phylowood, and a live web application is available at https://mlandis.github.io/phylowood.
1987-02-01
flowcharting . 3. ProEram Codin in HLL. This stage consists of transcribing the previously designed program into R an t at can be translated into the machine...specified conditios 7. Documentation. Program documentation is necessary for user information, for maintenance, and for future applications. Flowcharts ...particular CP U. Asynchronous. Operating without reference to an overall timing source. BASIC. Beginners ’ All-purpose Symbolic Instruction Code; a widely
Dynamic quality of service differentiation using fixed code weight in optical CDMA networks
NASA Astrophysics Data System (ADS)
Kakaee, Majid H.; Essa, Shawnim I.; Abd, Thanaa H.; Seyedzadeh, Saleh
2015-11-01
The emergence of network-driven applications, such as internet, video conferencing, and online gaming, brings in the need for a network the environments with capability of providing diverse Quality of Services (QoS). In this paper, a new code family of novel spreading sequences, called a Multi-Service (MS) code, has been constructed to support multiple services in Optical- Code Division Multiple Access (CDMA) system. The proposed method uses fixed weight for all services, however reducing the interfering codewords for the users requiring higher QoS. The performance of the proposed code is demonstrated using mathematical analysis. It shown that the total number of served users with satisfactory BER of 10-9 using NB=2 is 82, while they are only 36 and 10 when NB=3 and 4 respectively. The developed MS code is compared with variable-weight codes such as Variable Weight-Khazani Syed (VW-KS) and Multi-Weight-Random Diagonal (MW-RD). Different numbers of basic users (NB) are used to support triple-play services (audio, data and video) with different QoS requirements. Furthermore, reference to the BER of 10-12, 10-9, and 10-3 for video, data and audio, respectively, the system can support up to 45 total users. Hence, results show that the technique can clearly provide a relative QoS differentiation with lower value of basic users can support larger number of subscribers as well as better performance in terms of acceptable BER of 10-9 at fixed code weight.
Burns, A.W.
1988-01-01
This report describes an interactive-accounting model used to simulate streamflow, chemical-constituent concentrations and loads, and water-supply operations in a river basin. The model uses regression equations to compute flow from incremental (internode) drainage areas. Conservative chemical constituents (typically dissolved solids) also are computed from regression equations. Both flow and water quality loads are accumulated downstream. Optionally, the model simulates the water use and the simplified groundwater systems of a basin. Water users include agricultural, municipal, industrial, and in-stream users , and reservoir operators. Water users list their potential water sources, including direct diversions, groundwater pumpage, interbasin imports, or reservoir releases, in the order in which they will be used. Direct diversions conform to basinwide water law priorities. The model is interactive, and although the input data exist in files, the user can modify them interactively. A major feature of the model is its color-graphic-output options. This report includes a description of the model, organizational charts of subroutines, and examples of the graphics. Detailed format instructions for the input data, example files of input data, definitions of program variables, and listing of the FORTRAN source code are Attachments to the report. (USGS)
Status and Plans for the TRANSP Interpretive and Predictive Simulation Code
NASA Astrophysics Data System (ADS)
Kaye, Stanley; Andre, Robert; Marina, Gorelenkova; Yuan, Xingqui; Hawryluk, Richard; Jardin, Steven; Poli, Francesca
2015-11-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT_SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP also incorporates such source models as NUBEAM for neutral beam injection, GENRAY, TORAY, TORBEAM, TORIC and CQL3D for ICRH, LHCD, ECH and HHFW. The implementation of selected components makes efficient use of MPI for speed up of code calculations. TRANSP has a wide international user-base, and it is run on the FusionGrid to allow for timely support and quick turnaround by the PPPL Computational Plasma Physics Group. It is being used as a basis for both analysis and development of control algorithms and discharge operational scenarios, including simulation of ITER plasmas. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Progress on implementing TRANSP as a component in the ITER IMAS will also be described. This research was supported by the U.S. Department of Energy under contracts DE-AC02-09CH11466.
Airborne antenna radiation pattern code user's manual
NASA Technical Reports Server (NTRS)
Burnside, Walter D.; Kim, Jacob J.; Grandchamp, Brett; Rojas, Roberto G.; Law, Philip
1985-01-01
The use of a newly developed computer code to analyze the radiation patterns of antennas mounted on a ellipsoid and in the presence of a set of finite flat plates is described. It is shown how the code allows the user to simulate a wide variety of complex electromagnetic radiation problems using the ellipsoid/plates model. The code has the capacity of calculating radiation patterns around an arbitrary conical cut specified by the user. The organization of the code, definition of input and output data, and numerous practical examples are also presented. The analysis is based on the Uniform Geometrical Theory of Diffraction (UTD), and most of the computed patterns are compared with experimental results to show the accuracy of this solution.
Computer code for controller partitioning with IFPC application: A user's manual
NASA Technical Reports Server (NTRS)
Schmidt, Phillip H.; Yarkhan, Asim
1994-01-01
A user's manual for the computer code for partitioning a centralized controller into decentralized subcontrollers with applicability to Integrated Flight/Propulsion Control (IFPC) is presented. Partitioning of a centralized controller into two subcontrollers is described and the algorithm on which the code is based is discussed. The algorithm uses parameter optimization of a cost function which is described. The major data structures and functions are described. Specific instructions are given. The user is led through an example of an IFCP application.
Domestic Ice Breaking (DOMICE) Simulation Model User Guide
2013-02-01
Second, add new ice data to the variable “D9 Historical Ice Data (SIGRID Coded) NBL Waterways” (D9_historical_ice_d3), which contains the...within that “ NBL ” scheme. The interpretation of the SIGRID ice codes into ice thickness estimates is also contained within the sub- module “District 9...User Guide) “D9 Historical Ice Data (SIGRID Coded) NBL Waterways” (see Section 5.1.1.3.2 of this User Guide) “Historical District 1 Weekly Air
1982-11-01
Service code exceeded operational code in the ratio of 10 : I. No redundant information was required. It was modular. Internal parts of the program...to NASA’s analyses. We were to try to find an existing finite element program of a quality that would be worth recommending to all NASA Centers. We...Distinct manuals were published for users, programmers, theory, and demonstration problems. 3 It abounded with service code to provide user conveniences
Quicklook overview of model changes in Melcor 2.2: Rev 6342 to Rev 9496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, Larry L.
2017-05-01
MELCOR 2.2 is a significant official release of the MELCOR code with many new models and model improvements. This report provides the code user with a quick review and characterization of new models added, changes to existing models, the effect of code changes during this code development cycle (rev 6342 to rev 9496), a preview of validation results with this code version. More detailed information is found in the code Subversion logs as well as the User Guide and Reference Manuals.
SDM - A geodetic inversion code incorporating with layered crust structure and curved fault geometry
NASA Astrophysics Data System (ADS)
Wang, Rongjiang; Diao, Faqi; Hoechner, Andreas
2013-04-01
Currently, inversion of geodetic data for earthquake fault ruptures is most based on a uniform half-space earth model because of its closed-form Green's functions. However, the layered structure of the crust can significantly affect the inversion results. The other effect, which is often neglected, is related to the curved fault geometry. Especially, fault planes of most mega thrust earthquakes vary their dip angle with depth from a few to several tens of degrees. Also the strike directions of many large earthquakes are variable. For simplicity, such curved fault geometry is usually approximated to several connected rectangular segments, leading to an artificial loss of the slip resolution and data fit. In this presentation, we introduce a free FORTRAN code incorporating with the layered crust structure and curved fault geometry in a user-friendly way. The name SDM stands for Steepest Descent Method, an iterative algorithm used for the constrained least-squares optimization. The new code can be used for joint inversion of different datasets, which may include systematic offsets, as most geodetic data are obtained from relative measurements. These offsets are treated as unknowns to be determined simultaneously with the slip unknowns. In addition, a-priori and physical constraints are considered. The a-priori constraint includes the upper limit of the slip amplitude and the variation range of the slip direction (rake angle) defined by the user. The physical constraint is needed to obtain a smooth slip model, which is realized through a smoothing term to be minimized with the misfit to data. In difference to most previous inversion codes, the smoothing can be optionally applied to slip or stress-drop. The code works with an input file, a well-documented example of which is provided with the source code. Application examples are demonstrated.
Using Docker Containers to Extend Reproducibility Architecture for the NASA Earth Exchange (NEX)
NASA Technical Reports Server (NTRS)
Votava, Petr; Michaelis, Andrew; Spaulding, Ryan; Becker, Jeffrey C.
2016-01-01
NASA Earth Exchange (NEX) is a data, supercomputing and knowledge collaboratory that houses NASA satellite, climate and ancillary data where a focused community can come together to address large-scale challenges in Earth sciences. As NEX has been growing into a petabyte-size platform for analysis, experiments and data production, it has been increasingly important to enable users to easily retrace their steps, identify what datasets were produced by which process chains, and give them ability to readily reproduce their results. This can be a tedious and difficult task even for a small project, but is almost impossible on large processing pipelines. We have developed an initial reproducibility and knowledge capture solution for the NEX, however, if users want to move the code to another system, whether it is their home institution cluster, laptop or the cloud, they have to find, build and install all the required dependencies that would run their code. This can be a very tedious and tricky process and is a big impediment to moving code to data and reproducibility outside the original system. The NEX team has tried to assist users who wanted to move their code into OpenNEX on Amazon cloud by creating custom virtual machines with all the software and dependencies installed, but this, while solving some of the issues, creates a new bottleneck that requires the NEX team to be involved with any new request, updates to virtual machines and general maintenance support. In this presentation, we will describe a solution that integrates NEX and Docker to bridge the gap in code-to-data migration. The core of the solution is saemi-automatic conversion of science codes, tools and services that are already tracked and described in the NEX provenance system, to Docker - an open-source Linux container software. Docker is available on most computer platforms, easy to install and capable of seamlessly creating and/or executing any application packaged in the appropriate format. We believe this is an important step towards seamless process deployment in heterogeneous environments that will enhance community access to NASA data and tools in a scalable way, promote software reuse, and improve reproducibility of scientific results.
Using Docker Containers to Extend Reproducibility Architecture for the NASA Earth Exchange (NEX)
NASA Astrophysics Data System (ADS)
Votava, P.; Michaelis, A.; Spaulding, R.; Becker, J. C.
2016-12-01
NASA Earth Exchange (NEX) is a data, supercomputing and knowledge collaboratory that houses NASA satellite, climate and ancillary data where a focused community can come together to address large-scale challenges in Earth sciences. As NEX has been growing into a petabyte-size platform for analysis, experiments and data production, it has been increasingly important to enable users to easily retrace their steps, identify what datasets were produced by which process chains, and give them ability to readily reproduce their results. This can be a tedious and difficult task even for a small project, but is almost impossible on large processing pipelines. We have developed an initial reproducibility and knowledge capture solution for the NEX, however, if users want to move the code to another system, whether it is their home institution cluster, laptop or the cloud, they have to find, build and install all the required dependencies that would run their code. This can be a very tedious and tricky process and is a big impediment to moving code to data and reproducibility outside the original system. The NEX team has tried to assist users who wanted to move their code into OpenNEX on Amazon cloud by creating custom virtual machines with all the software and dependencies installed, but this, while solving some of the issues, creates a new bottleneck that requires the NEX team to be involved with any new request, updates to virtual machines and general maintenance support. In this presentation, we will describe a solution that integrates NEX and Docker to bridge the gap in code-to-data migration. The core of the solution is saemi-automatic conversion of science codes, tools and services that are already tracked and described in the NEX provenance system, to Docker - an open-source Linux container software. Docker is available on most computer platforms, easy to install and capable of seamlessly creating and/or executing any application packaged in the appropriate format. We believe this is an important step towards seamless process deployment in heterogeneous environments that will enhance community access to NASA data and tools in a scalable way, promote software reuse, and improve reproducibility of scientific results.
X-Antenna: A graphical interface for antenna analysis codes
NASA Technical Reports Server (NTRS)
Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.
1995-01-01
This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.
User's guide to the SEPHIS computer code for calculating the Thorex solvent extraction system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, S.B.; Rainey, R.H.
1979-05-01
The SEPHIS computer program was developed to simulate the countercurrent solvent extraction process. The code has now been adapted to model the Acid Thorex flow sheet. This report represents a practical user's guide to SEPHIS - Thorex containing a program description, user information, program listing, and sample input and output.
The Gift Code User Manual. Volume I. Introduction and Input Requirements
1975-07-01
REPORT & PERIOD COVERED ‘TII~ GIFT CODE USER MANUAL; VOLUME 1. INTRODUCTION AND INPUT REQUIREMENTS FINAL 6. PERFORMING ORG. REPORT NUMBER ?. AuTHOR(#) 8...reverua side if neceaeary and identify by block number] (k St) The GIFT code is a FORTRANcomputerprogram. The basic input to the GIFT ode is data called
NASA Lewis steady-state heat pipe code users manual
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.
1992-01-01
The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.
NASA Lewis steady-state heat pipe code users manual
NASA Astrophysics Data System (ADS)
Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.
1992-06-01
The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.
Near Zone: Basic scattering code user's manual with space station applications
NASA Technical Reports Server (NTRS)
Marhefka, R. J.; Silvestro, J. W.
1989-01-01
The Electromagnetic Code - Basic Scattering Code, Version 3, is a user oriented computer code to analyze near and far zone patterns of antennas in the presence of scattering structures, to provide coupling between antennas in a complex environment, and to determine radiation hazard calculations at UHF and above. The analysis is based on uniform asymptotic techniques formulated in terms of the Uniform Geometrical Theory of Diffraction (UTD). Complicated structures can be simulated by arbitrarily oriented flat plates and an infinite ground plane that can be perfectly conducting or dielectric. Also, perfectly conducting finite elliptic cylinder, elliptic cone frustum sections, and finite composite ellipsoids can be used to model the superstructure of a ship, the body of a truck, and airplane, a satellite, etc. This manual gives special consideration to space station modeling applications. This is a user manual designed to give an overall view of the operation of the computer code, to instruct a user in how to model structures, and to show the validity of the code by comparing various computed results against measured and alternative calculations such as method of moments whenever available.
Users manual and modeling improvements for axial turbine design and performance computer code TD2-2
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1992-01-01
Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.
The 2016 Bioinformatics Open Source Conference (BOSC).
Harris, Nomi L; Cock, Peter J A; Chapman, Brad; Fields, Christopher J; Hokamp, Karsten; Lapp, Hilmar; Muñoz-Torres, Monica; Wiencko, Heather
2016-01-01
Message from the ISCB: The Bioinformatics Open Source Conference (BOSC) is a yearly meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. BOSC has been run since 2000 as a two-day Special Interest Group (SIG) before the annual ISMB conference. The 17th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2016) took place in Orlando, Florida in July 2016. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community. The conference brought together nearly 100 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, and open and reproducible science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba
2005-12-20
In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users ofmore » EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version, a deliberate attempt was made to present example problems in order to help the user ''get started'', and we follow that spirit in this report. A series of elementary tutorial user codes are presented in Chapter 3, with more sophisticated sample user codes described in Chapter 4. Novice EGS users will find it helpful to read through the initial sections of the EGS5 User Manual (provided in Appendix B of this report), proceeding then to work through the tutorials in Chapter 3. The User Manuals and other materials found in the appendices contain detailed flow charts, variable lists, and subprogram descriptions of EGS5 and PEGS. Included are step-by-step instructions for developing basic EGS5 user codes and for accessing all of the physics options available in EGS5 and PEGS. Once acquainted with the basic structure of EGS5, users should find the appendices the most frequently consulted sections of this report.« less
Consistent Adjoint Driven Importance Sampling using Space, Energy and Angle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplow, Douglas E.; Mosher, Scott W; Evans, Thomas M
2012-08-01
For challenging radiation transport problems, hybrid methods combine the accuracy of Monte Carlo methods with the global information present in deterministic methods. One of the most successful hybrid methods is CADIS Consistent Adjoint Driven Importance Sampling. This method uses a deterministic adjoint solution to construct a biased source distribution and consistent weight windows to optimize a specific tally in a Monte Carlo calculation. The method has been implemented into transport codes using just the spatial and energy information from the deterministic adjoint and has been used in many applications to compute tallies with much higher figures-of-merit than analog calculations. CADISmore » also outperforms user-supplied importance values, which usually take long periods of user time to develop. This work extends CADIS to develop weight windows that are a function of the position, energy, and direction of the Monte Carlo particle. Two types of consistent source biasing are presented: one method that biases the source in space and energy while preserving the original directional distribution and one method that biases the source in space, energy, and direction. Seven simple example problems are presented which compare the use of the standard space/energy CADIS with the new space/energy/angle treatments.« less
PMAnalyzer: a new web interface for bacterial growth curve analysis.
Cuevas, Daniel A; Edwards, Robert A
2017-06-15
Bacterial growth curves are essential representations for characterizing bacteria metabolism within a variety of media compositions. Using high-throughput, spectrophotometers capable of processing tens of 96-well plates, quantitative phenotypic information can be easily integrated into the current data structures that describe a bacterial organism. The PMAnalyzer pipeline performs a growth curve analysis to parameterize the unique features occurring within microtiter wells containing specific growth media sources. We have expanded the pipeline capabilities and provide a user-friendly, online implementation of this automated pipeline. PMAnalyzer version 2.0 provides fast automatic growth curve parameter analysis, growth identification and high resolution figures of sample-replicate growth curves and several statistical analyses. PMAnalyzer v2.0 can be found at https://edwards.sdsu.edu/pmanalyzer/ . Source code for the pipeline can be found on GitHub at https://github.com/dacuevas/PMAnalyzer . Source code for the online implementation can be found on GitHub at https://github.com/dacuevas/PMAnalyzerWeb . dcuevas08@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Proceedings of the Third International Workshop on Proof-Carrying Code and Software Certification
NASA Technical Reports Server (NTRS)
Ewen, Denney, W. (Editor); Jensen, Thomas (Editor)
2009-01-01
This NASA conference publication contains the proceedings of the Third International Workshop on Proof-Carrying Code and Software Certification, held as part of LICS in Los Angeles, CA, USA, on August 15, 2009. Software certification demonstrates the reliability, safety, or security of software systems in such a way that it can be checked by an independent authority with minimal trust in the techniques and tools used in the certification process itself. It can build on existing validation and verification (V&V) techniques but introduces the notion of explicit software certificates, Vvilich contain all the information necessary for an independent assessment of the demonstrated properties. One such example is proof-carrying code (PCC) which is an important and distinctive approach to enhancing trust in programs. It provides a practical framework for independent assurance of program behavior; especially where source code is not available, or the code author and user are unknown to each other. The workshop wiII address theoretical foundations of logic-based software certification as well as practical examples and work on alternative application domains. Here "certificate" is construed broadly, to include not just mathematical derivations and proofs but also safety and assurance cases, or any fonnal evidence that supports the semantic analysis of programs: that is, evidence about an intrinsic property of code and its behaviour that can be independently checked by any user, intermediary, or third party. These guarantees mean that software certificates raise trust in the code itself, distinct from and complementary to any existing trust in the creator of the code, the process used to produce it, or its distributor. In addition to the contributed talks, the workshop featured two invited talks, by Kelly Hayhurst and Andrew Appel. The PCC 2009 website can be found at http://ti.arc.nasa.gov /event/pcc 091.
EMPHASIS/Nevada UTDEM user guide. Version 2.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, C. David; Seidel, David Bruce; Pasik, Michael Francis
The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest. UTDEM is a general-purpose code for solving Maxwell's equations on arbitrary, unstructured tetrahedral meshes. The geometries and the meshes thereof are limited only by the patience of the user in meshing and by the available computing resources for the solution. UTDEM solves Maxwell's equations using finite-element method (FEM) techniques on tetrahedral elements using vector, edge-conforming basis functions. EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetic Particle-In-Cell (UTDEM PIC) ismore » a superset of the capabilities found in UTDEM. It adds the capability to simulate systems in which the effects of free charge are important and need to be treated in a self-consistent manner. This is done by integrating the equations of motion for macroparticles (a macroparticle is an object that represents a large number of real physical particles, all with the same position and momentum) being accelerated by the electromagnetic forces upon the particle (Lorentz force). The motion of these particles results in a current, which is a source for the fields in Maxwell's equations.« less
The ATLAS PanDA Monitoring System and its Evolution
NASA Astrophysics Data System (ADS)
Klimentov, A.; Nevski, P.; Potekhin, M.; Wenaus, T.
2011-12-01
The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.
Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide
NASA Technical Reports Server (NTRS)
Justus, C. G.; James, B. F.
2000-01-01
This report presents Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000) and its new features. All parameterizations for temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and L(sub s) have been replaced by input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 170 km. A modified Stewart thermospheric model is still used for higher altitudes and for dependence on solar activity. "Climate factors" to tune for agreement with GCM data are no longer needed. Adjustment of exospheric temperature is still an option. Consistent with observations from Mars Global Surveyor, a new longitude-dependent wave model is included with user input to specify waves having 1 to 3 wavelengths around the planet. A simplified perturbation model has been substituted for the earlier one. An input switch allows users to select either East or West longitude positive. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.
MODIS Technical Report Series. Volume 4: MODIS data access user's guide: Scan cube format
NASA Technical Reports Server (NTRS)
Kalb, Virginia L.; Goff, Thomas E.
1994-01-01
The software described in this document provides I/O functions to be used with Moderate Resolution Spectroradiometer (MODIS) level 1 and 2 data, and could be easily extended to other data sources. This data is in a scan cube data format: a 3-dimensional ragged array containing multiple bands which have resolutions ranging from 250 to 1000 meters. The complexity of the data structure is handled internally by the library. The I/O calls allow the user to access any pixel in any band through 'C' structure syntax. The high MODIS data volume (approaching half a terabyte per day) has been a driving factor in the library design. To avoid recopying data for user access, all I/O is performed through dynamic 'C' pointer manipulation. This manual contains background material on MODIS, several coding examples of library usage, in-depth discussions of each function, reference 'man' type pages, and several appendices with details of the included files used to customize a user's data product for use with the library.
RNAiFold 2.0: a web server and software to design custom and Rfam-based RNA molecules.
Garcia-Martin, Juan Antonio; Dotu, Ivan; Clote, Peter
2015-07-01
Several algorithms for RNA inverse folding have been used to design synthetic riboswitches, ribozymes and thermoswitches, whose activity has been experimentally validated. The RNAiFold software is unique among approaches for inverse folding in that (exhaustive) constraint programming is used instead of heuristic methods. For that reason, RNAiFold can generate all sequences that fold into the target structure or determine that there is no solution. RNAiFold 2.0 is a complete overhaul of RNAiFold 1.0, rewritten from the now defunct COMET language to C++. The new code properly extends the capabilities of its predecessor by providing a user-friendly pipeline to design synthetic constructs having the functionality of given Rfam families. In addition, the new software supports amino acid constraints, even for proteins translated in different reading frames from overlapping coding sequences; moreover, structure compatibility/incompatibility constraints have been expanded. With these features, RNAiFold 2.0 allows the user to design single RNA molecules as well as hybridization complexes of two RNA molecules. the web server, source code and linux binaries are publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold2.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NIFTY - Numerical Information Field Theory. A versatile PYTHON library for signal inference
NASA Astrophysics Data System (ADS)
Selig, M.; Bell, M. R.; Junklewitz, H.; Oppermann, N.; Reinecke, M.; Greiner, M.; Pachajoa, C.; Enßlin, T. A.
2013-06-01
NIFTy (Numerical Information Field Theory) is a software package designed to enable the development of signal inference algorithms that operate regardless of the underlying spatial grid and its resolution. Its object-oriented framework is written in Python, although it accesses libraries written in Cython, C++, and C for efficiency. NIFTy offers a toolkit that abstracts discretized representations of continuous spaces, fields in these spaces, and operators acting on fields into classes. Thereby, the correct normalization of operations on fields is taken care of automatically without concerning the user. This allows for an abstract formulation and programming of inference algorithms, including those derived within information field theory. Thus, NIFTy permits its user to rapidly prototype algorithms in 1D, and then apply the developed code in higher-dimensional settings of real world problems. The set of spaces on which NIFTy operates comprises point sets, n-dimensional regular grids, spherical spaces, their harmonic counterparts, and product spaces constructed as combinations of those. The functionality and diversity of the package is demonstrated by a Wiener filter code example that successfully runs without modification regardless of the space on which the inference problem is defined. NIFTy homepage http://www.mpa-garching.mpg.de/ift/nifty/; Excerpts of this paper are part of the NIFTy source code and documentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User`s Guide that documents the use of the code for all users. To release the code and the User`s Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less
Complete Decoding and Reporting of Aviation Routine Weather Reports (METARs)
NASA Technical Reports Server (NTRS)
Lui, Man-Cheung Max
2014-01-01
Aviation Routine Weather Report (METAR) provides surface weather information at and around observation stations, including airport terminals. These weather observations are used by pilots for flight planning and by air traffic service providers for managing departure and arrival flights. The METARs are also an important source of weather data for Air Traffic Management (ATM) analysts and researchers at NASA and elsewhere. These researchers use METAR to correlate severe weather events with local or national air traffic actions that restrict air traffic, as one example. A METAR is made up of multiple groups of coded text, each with a specific standard coding format. These groups of coded text are located in two sections of a report: Body and Remarks. The coded text groups in a U.S. METAR are intended to follow the coding standards set by National Oceanic and Atmospheric Administration (NOAA). However, manual data entry and edits made by a human report observer may result in coded text elements that do not follow the standards, especially in the Remarks section. And contrary to the standards, some significant weather observations are noted only in the Remarks section and not in the Body section of the reports. While human readers can infer the intended meaning of non-standard coding of weather conditions, doing so with a computer program is far more challenging. However such programmatic pre-processing is necessary to enable efficient and faster database query when researchers need to perform any significant historical weather analysis. Therefore, to support such analysis, a computer algorithm was developed to identify groups of coded text anywhere in a report and to perform subsequent decoding in software. The algorithm considers common deviations from the standards and data entry mistakes made by observers. The implemented software code was tested to decode 12 million reports and the decoding process was able to completely interpret 99.93 of the reports. This document presents the deviations from the standards and the decoding algorithm. Storing all decoded data in a database allows users to quickly query a large amount of data and to perform data mining on the data. Users can specify complex query criteria not only on date or airport but also on weather condition. This document also describes the design of a database schema for storing the decoded data, and a Data Warehouse web application that allows users to perform reporting and analysis on the decoded data. Finally, this document presents a case study correlating dust storms reported in METARs from the Phoenix International airport with Ground Stops issued by Air Route Traffic Control Centers (ATCSCC). Blowing widespread dust is one of the weather conditions when dust storm occurs. By querying the database, 294 METARs were found to report blowing widespread dust at the Phoenix airport and 41 of them reported such condition only in the Remarks section of the reports. When METAR is a data source for an ATM research, it is important to include weather conditions not only from the Body section but also from the Remarks section of METARs.
Development of a new version of the Vehicle Protection Factor Code (VPF3)
NASA Astrophysics Data System (ADS)
Jamieson, Terrance J.
1990-10-01
The Vehicle Protection Factor (VPF) Code is an engineering tool for estimating radiation protection afforded by armoured vehicles and other structures exposed to neutron and gamma ray radiation from fission, thermonuclear, and fusion sources. A number of suggestions for modifications have been offered by users of early versions of the code. These include: implementing some of the more advanced features of the air transport rating code, ATR5, used to perform the air over ground radiation transport analyses; allowing the ability to study specific vehicle orientations within the free field; implementing an adjoint transport scheme to reduce the number of transport runs required; investigating the possibility of accelerating the transport scheme; and upgrading the computer automated design (CAD) package used by VPF. The generation of radiation free field fluences for infinite air geometries as required for aircraft analysis can be accomplished by using ATR with the air over ground correction factors disabled. Analysis of the effects of fallout bearing debris clouds on aircraft will require additional modelling of VPF.
PLUMED 2: New feathers for an old bird
NASA Astrophysics Data System (ADS)
Tribello, Gareth A.; Bonomi, Massimiliano; Branduardi, Davide; Camilloni, Carlo; Bussi, Giovanni
2014-02-01
Enhancing sampling and analyzing simulations are central issues in molecular simulation. Recently, we introduced PLUMED, an open-source plug-in that provides some of the most popular molecular dynamics (MD) codes with implementations of a variety of different enhanced sampling algorithms and collective variables (CVs). The rapid changes in this field, in particular new directions in enhanced sampling and dimensionality reduction together with new hardware, require a code that is more flexible and more efficient. We therefore present PLUMED 2 here—a complete rewrite of the code in an object-oriented programming language (C++). This new version introduces greater flexibility and greater modularity, which both extends its core capabilities and makes it far easier to add new methods and CVs. It also has a simpler interface with the MD engines and provides a single software library containing both tools and core facilities. Ultimately, the new code better serves the ever-growing community of users and contributors in coping with the new challenges arising in the field.
Development of Web Interfaces for Analysis Codes
NASA Astrophysics Data System (ADS)
Emoto, M.; Watanabe, T.; Funaba, H.; Murakami, S.; Nagayama, Y.; Kawahata, K.
Several codes have been developed to analyze plasma physics. However, most of them are developed to run on supercomputers. Therefore, users who typically use personal computers (PCs) find it difficult to use these codes. In order to facilitate the widespread use of these codes, a user-friendly interface is required. The authors propose Web interfaces for these codes. To demonstrate the usefulness of this approach, the authors developed Web interfaces for two analysis codes. One of them is for FIT developed by Murakami. This code is used to analyze the NBI heat deposition, etc. Because it requires electron density profiles, electron temperatures, and ion temperatures as polynomial expressions, those unfamiliar with the experiments find it difficult to use this code, especially visitors from other institutes. The second one is for visualizing the lines of force in the LHD (large helical device) developed by Watanabe. This code is used to analyze the interference caused by the lines of force resulting from the various structures installed in the vacuum vessel of the LHD. This code runs on PCs; however, it requires that the necessary parameters be edited manually. Using these Web interfaces, users can execute these codes interactively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, J; Culberson, W; DeWerd, L
Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation chamber to provide accurate dose rate measurements for a planar ophthalmic applicator.« less
Data as a Service: A Seismic Web Service Pipeline
NASA Astrophysics Data System (ADS)
Martinez, E.
2016-12-01
Publishing data as a service pipeline provides an improved, dynamic approach over static data archives. A service pipeline is a collection of micro web services that each perform a specific task and expose the results of that task. Structured request/response formats allow micro web services to be chained together into a service pipeline to provide more complex results. The U.S. Geological Survey adopted service pipelines to publish seismic hazard and design data supporting both specific and generalized audiences. The seismic web service pipeline starts at source data and exposes probability and deterministic hazard curves, response spectra, risk-targeted ground motions, and seismic design provision metadata. This pipeline supports public/private organizations and individual engineers/researchers. Publishing data as a service pipeline provides a variety of benefits. Exposing the component services enables advanced users to inspect or use the data at each processing step. Exposing a composite service enables new users quick access to published data with a very low barrier to entry. Advanced users may re-use micro web services by chaining them in new ways or injecting new micros services into the pipeline. This allows the user to test hypothesis and compare their results to published results. Exposing data at each step in the pipeline enables users to review and validate the data and process more quickly and accurately. Making the source code open source, per USGS policy, further enables this transparency. Each micro service may be scaled independent of any other micro service. This ensures data remains available and timely in a cost-effective manner regardless of load. Additionally, if a new or more efficient approach to processing the data is discovered, this new approach may replace the old approach at any time, keeping the pipeline running while not affecting other micro services.
The Helicopter Antenna Radiation Prediction Code (HARP)
NASA Technical Reports Server (NTRS)
Klevenow, F. T.; Lynch, B. G.; Newman, E. H.; Rojas, R. G.; Scheick, J. T.; Shamansky, H. T.; Sze, K. Y.
1990-01-01
The first nine months effort in the development of a user oriented computer code, referred to as the HARP code, for analyzing the radiation from helicopter antennas is described. The HARP code uses modern computer graphics to aid in the description and display of the helicopter geometry. At low frequencies the helicopter is modeled by polygonal plates, and the method of moments is used to compute the desired patterns. At high frequencies the helicopter is modeled by a composite ellipsoid and flat plates, and computations are made using the geometrical theory of diffraction. The HARP code will provide a user friendly interface, employing modern computer graphics, to aid the user to describe the helicopter geometry, select the method of computation, construct the desired high or low frequency model, and display the results.
Using the NASA GRC Sectored-One-Dimensional Combustor Simulation
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Mehta, Vishal R.
2014-01-01
The document is a user manual for the NASA GRC Sectored-One-Dimensional (S-1-D) Combustor Simulation. It consists of three sections. The first is a very brief outline of the mathematical and numerical background of the code along with a description of the non-dimensional variables on which it operates. The second section describes how to run the code and includes an explanation of the input file. The input file contains the parameters necessary to establish an operating point as well as the associated boundary conditions (i.e. how it is fed and terminated) of a geometrically configured combustor. It also describes the code output. The third section describes the configuration process and utilizes a specific example combustor to do so. Configuration consists of geometrically describing the combustor (section lengths, axial locations, and cross sectional areas) and locating the fuel injection point and flame region. Configuration requires modifying the source code and recompiling. As such, an executable utility is included with the code which will guide the requisite modifications and insure that they are done correctly.
ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings
NASA Astrophysics Data System (ADS)
Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.
2002-12-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.
GridMan: A grid manipulation system
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Wang, Zhu
1992-01-01
GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.
A Novel Technique to Detect Code for SAC-OCDMA System
NASA Astrophysics Data System (ADS)
Bharti, Manisha; Kumar, Manoj; Sharma, Ajay K.
2018-04-01
The main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.
Ham, Timothy S; Dmytriv, Zinovii; Plahar, Hector; Chen, Joanna; Hillson, Nathan J; Keasling, Jay D
2012-10-01
The Joint BioEnergy Institute Inventory of Composable Elements (JBEI-ICEs) is an open source registry platform for managing information about biological parts. It is capable of recording information about 'legacy' parts, such as plasmids, microbial host strains and Arabidopsis seeds, as well as DNA parts in various assembly standards. ICE is built on the idea of a web of registries and thus provides strong support for distributed interconnected use. The information deposited in an ICE installation instance is accessible both via a web browser and through the web application programming interfaces, which allows automated access to parts via third-party programs. JBEI-ICE includes several useful web browser-based graphical applications for sequence annotation, manipulation and analysis that are also open source. As with open source software, users are encouraged to install, use and customize JBEI-ICE and its components for their particular purposes. As a web application programming interface, ICE provides well-developed parts storage functionality for other synthetic biology software projects. A public instance is available at public-registry.jbei.org, where users can try out features, upload parts or simply use it for their projects. The ICE software suite is available via Google Code, a hosting site for community-driven open source projects.
Monochromator Configurations for Wavelength Division Multiplexing
1989-10-01
CLASSIFICATION M UNCLASSIFIED/UNLIMITED 3 SAME AS RPT. Q DTIC USERS UNCLASSIFIED 22. NAME OF RESPONSIBLE INDIVIDUAL 2Zb. TELEPHONE (Incude Area Code) 22c...one along focus and one perpendicular to the direction of focus, allowed precise positioning of the fiber. 2.1.6 Photodetector The output end of the...designed to measure the output power of an optical source by coupling the output end of a fiber to the appropriate sensor head. In our case, the sensor
An Infrared Spectral Radiance Code for the Auroral Thermosphere (AARC)
1987-11-24
Program Description and Usage 136 3,1 Main Modules 136 3.2 Input, Output, and Program Communication 138 3.2.1 Input of User-Defined Program Control ...a test date set with which to compare the model predic- tions. Secondly, a number of theoretical papers are available describing some of the basic...necessary since secondary electrons aro a very important source of molecular nitrogen in vibrationally excited states [N2(v)), and the N2 (v) controls
Users manual for the IMA program. Appendix C: Profile design program listing
NASA Technical Reports Server (NTRS)
1991-01-01
The source code for the Profile Design Program (PDP) for the Impulsive Mission Analysis (IMA) program is divided into several files. In a similar manner, the FORTRAN listings of the PDP's subroutines and function routines are organized into several groups in this appendix. Within each group, the FORTRAN listings are ordered alphabetically by routine name. Names and brief descriptions of each routine are listed in the same order as the Fortran listings.
An Embedded Rule-Based Diagnostic Expert System in Ada
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Liberman, Eugene M.
1992-01-01
Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with it portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assumed a growing role in providing human-like reasoning capability expertise for computer systems. The integration is discussed of expert system technology with Ada programming language, especially a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell. NASA Lewis was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-based power expert system, in ART-Ada. Three components, the rule-based expert systems, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The rules were written in the ART-Ada development environment and converted to Ada source code. The graphics interface was developed with the Transportable Application Environment (TAE) Plus, which generates Ada source code to control graphics images. SMART-Ada communicates with a remote host to obtain either simulated or real data. The Ada source code generated with ART-Ada, TAE Plus, and communications code was incorporated into an Ada expert system that reads the data from a power distribution test bed, applies the rule to determine a fault, if one exists, and graphically displays it on the screen. The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.
Sustaining Open Source Communities through Hackathons - An Example from the ASPECT Community
NASA Astrophysics Data System (ADS)
Heister, T.; Hwang, L.; Bangerth, W.; Kellogg, L. H.
2016-12-01
The ecosystem surrounding a successful scientific open source software package combines both social and technical aspects. Much thought has been given to the technology side of writing sustainable software for large infrastructure projects and software libraries, but less about building the human capacity to perpetuate scientific software used in computational modeling. One effective format for building capacity is regular multi-day hackathons. Scientific hackathons bring together a group of science domain users and scientific software contributors to make progress on a specific software package. Innovation comes through the chance to work with established and new collaborations. Especially in the domain sciences with small communities, hackathons give geographically distributed scientists an opportunity to connect face-to-face. They foster lively discussions amongst scientists with different expertise, promote new collaborations, and increase transparency in both the technical and scientific aspects of code development. ASPECT is an open source, parallel, extensible finite element code to simulate thermal convection, that began development in 2011 under the Computational Infrastructure for Geodynamics. ASPECT hackathons for the past 3 years have grown the number of authors to >50, training new code maintainers in the process. Hackathons begin with leaders establishing project-specific conventions for development, demonstrating the workflow for code contributions, and reviewing relevant technical skills. Each hackathon expands the developer community. Over 20 scientists add >6,000 lines of code during the >1 week event. Participants grow comfortable contributing to the repository and over half continue to contribute afterwards. A high return rate of participants ensures continuity and stability of the group as well as mentoring for novice members. We hope to build other software communities on this model, but anticipate each to bring their own unique challenges.
Clawpack: Building an open source ecosystem for solving hyperbolic PDEs
Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.
2016-01-01
Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.
Summary of papers on current and anticipated uses of thermal-hydraulic codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, R.
1997-07-01
The author reviews a range of recent papers which discuss possible uses and future development needs for thermal/hydraulic codes in the nuclear industry. From this review, eight common recommendations are extracted. They are: improve the user interface so that more people can use the code, so that models are easier and less expensive to prepare and maintain, and so that the results are scrutable; design the code so that it can easily be coupled to other codes, such as core physics, containment, fission product behaviour during severe accidents; improve the numerical methods to make the code more robust and especiallymore » faster running, particularly for low pressure transients; ensure that future code development includes assessment of code uncertainties as integral part of code verification and validation; provide extensive user guidelines or structure the code so that the `user effect` is minimized; include the capability to model multiple fluids (gas and liquid phase); design the code in a modular fashion so that new models can be added easily; provide the ability to include detailed or simplified component models; build on work previously done with other codes (RETRAN, RELAP, TRAC, CATHARE) and other code validation efforts (CSAU, CSNI SET and IET matrices).« less
Uhlirova, Hana; Tian, Peifang; Kılıç, Kıvılcım; Thunemann, Martin; Sridhar, Vishnu B; Chmelik, Radim; Bartsch, Hauke; Dale, Anders M; Devor, Anna; Saisan, Payam A
2018-05-04
The importance of sharing experimental data in neuroscience grows with the amount and complexity of data acquired and various techniques used to obtain and process these data. However, the majority of experimental data, especially from individual studies of regular-sized laboratories never reach wider research community. A graphical user interface (GUI) engine called Neurovascular Network Explorer 2.0 (NNE 2.0) has been created as a tool for simple and low-cost sharing and exploring of vascular imaging data. NNE 2.0 interacts with a database containing optogenetically-evoked dilation/constriction time-courses of individual vessels measured in mice somatosensory cortex in vivo by 2-photon microscopy. NNE 2.0 enables selection and display of the time-courses based on different criteria (subject, branching order, cortical depth, vessel diameter, arteriolar tree) as well as simple mathematical manipulation (e.g. averaging, peak-normalization) and data export. It supports visualization of the vascular network in 3D and enables localization of the individual functional vessel diameter measurements within vascular trees. NNE 2.0, its source code, and the corresponding database are freely downloadable from UCSD Neurovascular Imaging Laboratory website 1 . The source code can be utilized by the users to explore the associated database or as a template for databasing and sharing their own experimental results provided the appropriate format.
Wang, Anliang; Yan, Xiaolong; Wei, Zhijun
2018-04-27
This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis. ImagePy is free and open source software, with documentation and code available at https://github.com/Image-Py/imagepy under the BSD license. It has been tested on the Windows, Mac and Linux operating systems. wzjdlut@dlut.edu.cn or yxdragon@imagepy.org.
SBEToolbox: A Matlab Toolbox for Biological Network Analysis
Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J.
2013-01-01
We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases. PMID:24027418
SBEToolbox: A Matlab Toolbox for Biological Network Analysis.
Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J
2013-01-01
We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.
Taylor, Philip D; Brzustowski, John M; Matkovich, Carolyn; Peckford, Michael L; Wilson, Dave
2010-10-26
Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets.
2010-01-01
Background Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Results Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Conclusions Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets. PMID:20977735
ERIC Educational Resources Information Center
Uehara, Suwako; Noriega, Edgar Josafat Martinez
2016-01-01
The availability of user-friendly coding software is increasing, yet teachers might hesitate to use this technology to develop for educational needs. This paper discusses studies related to technology for educational uses and introduces an evaluation application being developed. Through questionnaires by student users and open-ended discussion by…
NASA Astrophysics Data System (ADS)
Lindholm, D. M.; Wilson, A.
2012-12-01
The steps many scientific data users go through to use data (after discovering it) can be rather tedious, even when dealing with datasets within their own discipline. Accessing data across domains often seems intractable. We present here, LaTiS, an Open Source brokering solution that bridges the gap between the source data and the user's code by defining a unified data model plus a plugin framework for "adapters" to read data from their native source, "filters" to perform server side data processing, and "writers" to output any number of desired formats or streaming protocols. A great deal of work is being done in the informatics community to promote multi-disciplinary science with a focus on search and discovery based on metadata - information about the data. The goal of LaTiS is to go that last step to provide a uniform interface to read the dataset into computer programs and other applications once it has been identified. The LaTiS solution for integrating a wide variety of data models is to return to mathematical fundamentals. The LaTiS data model emphasizes functional relationships between variables. For example, a time series of temperature measurements can be thought of as a function that maps a time to a temperature. With just three constructs: "Scalar" for a single variable, "Tuple" for a collection of variables, and "Function" to represent a set of independent and dependent variables, the LaTiS data model can represent most scientific datasets at a low level that enables uniform data access. Higher level abstractions can be built on top of the basic model to add more meaningful semantics for specific user communities. LaTiS defines its data model in terms of the Unified Modeling Language (UML). It also defines a very thin Java Interface that can be implemented by numerous existing data interfaces (e.g. NetCDF-Java) such that client code can access any dataset via the Java API, independent of the underlying data access mechanism. LaTiS also provides a reference implementation of the data model and server framework (with a RESTful service interface) in the Scala programming language. Scala can be thought of as the next generation of Java. It runs on the Java Virtual Machine and can directly use Java code. Scala improves upon Java's object-oriented capabilities and adds support for functional programming paradigms which are particularly well suited for scientific data analysis. The Scala implementation of LaTiS can be thought of as a Domain Specific Language (DSL) which presents an API that better matches the semantics of the problems scientific data users are trying to solve. Instead of working with bytes, ints, or arrays, the data user can directly work with data as "time series" or "spectra". LaTiS provides many layers of abstraction with which users can interact to support a wide variety of data access and analysis needs.
Medical Applications of the PHITS Code (3): User Assistance Program for Medical Physics Computation.
Furuta, Takuya; Hashimoto, Shintaro; Sato, Tatsuhiko
2016-01-01
DICOM2PHITS and PSFC4PHITS are user assistance programs for medical physics PHITS applications. DICOM2PHITS is a program to construct the voxel PHITS simulation geometry from patient CT DICOM image data by using a conversion table from CT number to material composition. PSFC4PHITS is a program to convert the IAEA phase-space file data to PHITS format to be used as a simulation source of PHITS. Both of the programs are useful for users who want to apply PHITS simulation to verification of the treatment planning of radiation therapy. We are now developing a program to convert dose distribution obtained by PHITS to DICOM RT-dose format. We also want to develop a program which is able to implement treatment information included in other DICOM files (RT-plan and RT-structure) as a future plan.
BurnMan: Towards a multidisciplinary toolkit for reproducible deep Earth science
NASA Astrophysics Data System (ADS)
Myhill, R.; Cottaar, S.; Heister, T.; Rose, I.; Unterborn, C. T.; Dannberg, J.; Martin-Short, R.
2016-12-01
BurnMan (www.burnman.org) is an open-source toolbox to compute thermodynamic and thermoelastic properties as a function of pressure and temperature using published mineral physical parameters and equations-of-state. The framework is user-friendly, written in Python, and modular, allowing the user to implement their own equations of state, endmember and solution model libraries, geotherms, and averaging schemes. Here we introduce various new modules, which can be used to: Fit thermodynamic variables to data from high pressure static and shock wave experiments, Calculate equilibrium assemblages given a bulk composition, pressure and temperature, Calculate chemical potentials and oxygen fugacities for given assemblages Compute 3D synthetic seismic models using output from geodynamic models and compare these results with global seismic tomographic models, Create input files for synthetic seismogram codes. Users can contribute scripts that reproduce the results from peer-reviewed articles and practical demonstrations (e.g. Cottaar et al., 2014).
Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.
Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin
2018-01-01
We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.
Nimbus-7 ERB Solar Analysis Tape (ESAT) user's guide
NASA Technical Reports Server (NTRS)
Major, Eugene; Hickey, John R.; Kyle, H. Lee; Alton, Bradley M.; Vallette, Brenda J.
1988-01-01
Seven years and five months of Nimbus-7 Earth Radiation Budget (ERB) solar data are available on a single ERB Solar Analysis Tape (ESAT). The period covered is November 16, 1978 through March 31, 1986. The Nimbus-7 satellite performs approximately 14 orbits per day and the ERB solar telescope observes the sun once per orbit as the satellite crosses the southern terminator. The solar data were carefully calibrated and screened. Orbital and daily mean values are given for the total solar irradiance plus other spectral intervals (10 solar channels in all). In addition, selected solar activity indicators are included on the ESAT. The ESAT User's Guide is an update of the previous ESAT User's Guide (NASA TM 86143) and includes more detailed information on the solar data calibration, screening procedures, updated solar data plots, and applications to solar variability. Details of the tape format, including source code to access ESAT, are included.
Evaluating progressive-rendering algorithms in appearance design tasks.
Jiawei Ou; Karlik, Ondrej; Křivánek, Jaroslav; Pellacini, Fabio
2013-01-01
Progressive rendering is becoming a popular alternative to precomputational approaches to appearance design. However, progressive algorithms create images exhibiting visual artifacts at early stages. A user study investigated these artifacts' effects on user performance in appearance design tasks. Novice and expert subjects performed lighting and material editing tasks with four algorithms: random path tracing, quasirandom path tracing, progressive photon mapping, and virtual-point-light rendering. Both the novices and experts strongly preferred path tracing to progressive photon mapping and virtual-point-light rendering. None of the participants preferred random path tracing to quasirandom path tracing or vice versa; the same situation held between progressive photon mapping and virtual-point-light rendering. The user workflow didn’t differ significantly with the four algorithms. The Web Extras include a video showing how four progressive-rendering algorithms converged (at http://youtu.be/ck-Gevl1e9s), the source code used, and other supplementary materials.
Hazan, Lynn; Zugaro, Michaël; Buzsáki, György
2006-09-15
Recent technological advances now allow for simultaneous recording of large populations of anatomically distributed neurons in behaving animals. The free software package described here was designed to help neurophysiologists process and view recorded data in an efficient and user-friendly manner. This package consists of several well-integrated applications, including NeuroScope (http://neuroscope.sourceforce.net), an advanced viewer for electrophysiological and behavioral data with limited editing capabilities, Klusters (http://klusters.sourceforge.net), a graphical cluster cutting application for manual and semi-automatic spike sorting, NDManager (GPL,see http://www.gnu.org/licenses/gpl.html), an experimental parameter and data processing manager. All of these programs are distributed under the GNU General Public License (GPL, see ), which gives its users legal permission to copy, distribute and/or modify the software. Also included are extensive user manuals and sample data, as well as source code and documentation.
FAME, a microprocessor based front-end analysis and modeling environment
NASA Technical Reports Server (NTRS)
Rosenbaum, J. D.; Kutin, E. B.
1980-01-01
Higher order software (HOS) is a methodology for the specification and verification of large scale, complex, real time systems. The HOS methodology was implemented as FAME (front end analysis and modeling environment), a microprocessor based system for interactively developing, analyzing, and displaying system models in a low cost user-friendly environment. The nature of the model is such that when completed it can be the basis for projection to a variety of forms such as structured design diagrams, Petri-nets, data flow diagrams, and PSL/PSA source code. The user's interface with the analyzer is easily recognized by any current user of a structured modeling approach; therefore extensive training is unnecessary. Furthermore, when all the system capabilities are used one can check on proper usage of data types, functions, and control structures thereby adding a new dimension to the design process that will lead to better and more easily verified software designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.
1994-02-01
The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters,more » and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.« less
SHARP pre-release v1.0 - Current Status and Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Vijay S.; Rahaman, Ronald O.
The NEAMS Reactor Product Line effort aims to develop an integrated multiphysics simulation capability for the design and analysis of future generations of nuclear power plants. The Reactor Product Line code suite’s multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. In this report, building on a several previous report issued in September 2014, we describe our continued efforts to integrate thermal/hydraulics, neutronics, and structural mechanics modeling codes to perform coupled analysis of a representativemore » fast sodium-cooled reactor core in preparation for a unified release of the toolkit. The work reported in the current document covers the software engineering aspects of managing the entire stack of components in the SHARP toolkit and the continuous integration efforts ongoing to prepare a release candidate for interested reactor analysis users. Here we report on the continued integration effort of PROTEUS/Nek5000 and Diablo into the NEAMS framework and the software processes that enable users to utilize the capabilities without losing scientific productivity. Due to the complexity of the individual modules and their necessary/optional dependency library chain, we focus on the configuration and build aspects for the SHARP toolkit, which includes capability to autodownload dependencies and configure/install with optimal flags in an architecture-aware fashion. Such complexity is untenable without strong software engineering processes such as source management, source control, change reviews, unit tests, integration tests and continuous test suites. Details on these processes are provided in the report as a building step for a SHARP user guide that will accompany the first release, expected by Mar 2016.« less
Fostering successful scientific software communities
NASA Astrophysics Data System (ADS)
Bangerth, W.; Heister, T.; Hwang, L.; Kellogg, L. H.
2016-12-01
Developing sustainable open source software packages for the sciences appears at first to be primarily a technical challenge: How can one create stable and robust algorithms, appropriate software designs, sufficient documentation, quality assurance strategies such as continuous integration and test suites, or backward compatibility approaches that yield high-quality software usable not only by the authors, but also the broader community of scientists? However, our experience from almost two decades of leading the development of the deal.II software library (http://www.dealii.org, a widely-used finite element package) and the ASPECT code (http://aspect.dealii.org, used to simulate convection in the Earth's mantle) has taught us that technical aspects are not the most difficult ones in scientific open source software. Rather, it is the social challenge of building and maintaining a community of users and developers interested in answering questions on user forums, contributing code, and jointly finding solutions to common technical and non-technical challenges. These problems are posed in an environment where project leaders typically have no resources to reward the majority of contributors, where very few people are specifically paid for the work they do on the project, and with frequent turnover of contributors as project members rotate into and out of jobs. In particular, much software work is done by graduate students who may become fluent enough in a software only a year or two before they leave academia. We will discuss strategies we have found do and do not work in maintaining and growing communities around the scientific software projects we lead. Specifically, we will discuss the management style necessary to keep contributors engaged, ways to give credit where credit is due, and structuring documentation to decrease reliance on forums and thereby allow user communities to grow without straining those who answer questions.
Report of AAPM Task Group 162: Software for planar image quality metrology.
Samei, Ehsan; Ikejimba, Lynda C; Harrawood, Brian P; Rong, John; Cunningham, Ian A; Flynn, Michael J
2018-02-01
The AAPM Task Group 162 aimed to provide a standardized approach for the assessment of image quality in planar imaging systems. This report offers a description of the approach as well as the details of the resultant software bundle to measure detective quantum efficiency (DQE) as well as its basis components and derivatives. The methodology and the associated software include the characterization of the noise power spectrum (NPS) from planar images acquired under specific acquisition conditions, modulation transfer function (MTF) using an edge test object, the DQE, and effective DQE (eDQE). First, a methodological framework is provided to highlight the theoretical basis of the work. Then, a step-by-step guide is included to assist in proper execution of each component of the code. Lastly, an evaluation of the method is included to validate its accuracy against model-based and experimental data. The code was built using a Macintosh OSX operating system. The software package contains all the source codes to permit an experienced user to build the suite on a Linux or other *nix type system. The package further includes manuals and sample images and scripts to demonstrate use of the software for new users. The results of the code are in close alignment with theoretical expectations and published results of experimental data. The methodology and the software package offered in AAPM TG162 can be used as baseline for characterization of inherent image quality attributes of planar imaging systems. © 2017 American Association of Physicists in Medicine.
The National Transport Code Collaboration Module Library
NASA Astrophysics Data System (ADS)
Kritz, A. H.; Bateman, G.; Kinsey, J.; Pankin, A.; Onjun, T.; Redd, A.; McCune, D.; Ludescher, C.; Pletzer, A.; Andre, R.; Zakharov, L.; Lodestro, L.; Pearlstein, L. D.; Jong, R.; Houlberg, W.; Strand, P.; Wiley, J.; Valanju, P.; John, H. St.; Waltz, R.; Mandrekas, J.; Mau, T. K.; Carlsson, J.; Braams, B.
2004-12-01
This paper reports on the progress in developing a library of code modules under the auspices of the National Transport Code Collaboration (NTCC). Code modules are high quality, fully documented software packages with a clearly defined interface. The modules provide a variety of functions, such as implementing numerical physics models; performing ancillary functions such as I/O or graphics; or providing tools for dealing with common issues in scientific programming such as portability of Fortran codes. Researchers in the plasma community submit code modules, and a review procedure is followed to insure adherence to programming and documentation standards. The review process is designed to provide added confidence with regard to the use of the modules and to allow users and independent reviews to validate the claims of the modules' authors. All modules include source code; clear instructions for compilation of binaries on a variety of target architectures; and test cases with well-documented input and output. All the NTCC modules and ancillary information, such as current standards and documentation, are available from the NTCC Module Library Website http://w3.pppl.gov/NTCC. The goal of the project is to develop a resource of value to builders of integrated modeling codes and to plasma physics researchers generally. Currently, there are more than 40 modules in the module library.
Design Aspects of the Rayleigh Convection Code
NASA Astrophysics Data System (ADS)
Featherstone, N. A.
2017-12-01
Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.
Data Sciences Summer Institute Topology Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Seth
DSSI_TOPOPT is a 2D topology optimization code that designs stiff structures made of a single linear elastic material and void space. The code generates a finite element mesh of a rectangular design domain on which the user specifies displacement and load boundary conditions. The code iteratively designs a structure that minimizes the compliance (maximizes the stiffness) of the structure under the given loading, subject to an upper bound on the amount of material used. Depending on user options, the code can evaluate the performance of a user-designed structure, or create a design from scratch. Output includes the finite element mesh,more » design, and visualizations of the design.« less
Flexible Environmental Modeling with Python and Open - GIS
NASA Astrophysics Data System (ADS)
Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann
2015-04-01
Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We illustrate this approach with several case studies in groundwater hydrology and geochemistry and provide links to several python libraries that facilitate pre- and post-processing operations.
NASA Astrophysics Data System (ADS)
Estelles, V.; Smyth, T.; Campanelli, M.; Utrillas, M. P.
2009-04-01
The European SkyRad users network (ESR) is a joint initiative from the Institute of Atmospheric and Climate Sciences (ISAC) at the National Research Council (CNR) in Italy, the Group of Solar Radiation (GRSV) at the University of Valencia (UV) in Spain, and the Plymouth Marine Laboratory (PML) in the United Kingdom. It was started as a Protocol of Agreement between the three institutions, in 2003. The main objective was to collaborate on the improvement of some technical aspects of the Skyrad.pack algorithm. Currently the network is addressed at European research groups that are users of sun - sky photometers and mainly focus their research on the study of atmospheric aerosols and their application to remote sensing or climatological studies. There exist well known international networks such as AERONET (Aerosol Robotic Network) or SKYNET (SKYrad NETwork, in Asia) but they have some characteristics that actually prevent many European research groups to get involved with them. These limitations mean that a number of European groups are working independently, with no coordination. The resultant databases are not made public or the employed methodology is not homogeneous. In turn, it means that a great amount of data is being lost for critical regional studies in Europe. One of these limitations is related to the supported instrumentation. International networks usually adopt a given model of sun photometer as a standard. The ESR is a multi instrumental network using both Prede POM and Cimel CE318 sun - sky photometers. Another limitation is related to the calibration. In the case of AERONET, a centralized and stringent calibration protocol is adopted. This protocol is designed in order to offer a well tracked and quality assured calibration and data elaboration; it is in fact the key stone for the homogeneity of the network results. But centralization raises other problems. The instruments must be periodically sent every 6 - 12 months to United States or France; therefore, 1) the instrument absence generates considerable data gaps, 2) it is also a chance for equipment damage during the transport, and 3) the proprietary group must cope with the economical cost of these international insured deliveries. Moreover, the protocol constrains the network capability to handle a large amount of instruments. In fact, AERONET is very reluctant at the moment to accept new sites in Europe. ESR has developed an improved version of the Langley plot technique (SKYIL) that allows the users to perform a continuous in situ calibration. Previous results show that the obtained uncertainties in the calibration factors (1.0 - 2.5%) are very similar to the uncertainty values for field instruments in AERONET (1.0 - 2.0%). A third difference that could make ESR more appealing to some European research groups is related to the algorithms itself. The core inversion code (Skyrad.pack), the calibration codes and all the automatization scripts are free open source codes that can be further customized by the users. Therefore, an advanced user could easily access and modify the algorithms for new improvements. As a conclusion, the ESR users network has been conceived as a flexible network and collaborative platform for European groups whose main research is focused on atmospheric aerosols characterization and model development. The package we have developed for the network is an open source product that is available for public use, both for Cimel CE318 and Prede POM instruments.
Manual for obscuration code with space station applications
NASA Technical Reports Server (NTRS)
Marhefka, R. J.; Takacs, L.
1986-01-01
The Obscuration Code, referred to as SHADOW, is a user-oriented computer code to determine the case shadow of an antenna in a complex environment onto the far zone sphere. The surrounding structure can be composed of multiple composite cone frustums and multiply sided flat plates. These structural pieces are ideal for modeling space station configurations. The means of describing the geometry input is compatible with the NEC-BASIC Scattering Code. In addition, an interactive mode of operation has been provided for DEC VAX computers. The first part of this document is a user's manual designed to give a description of the method used to obtain the shadow map, to provide an overall view of the operation of the computer code, to instruct a user in how to model structures, and to give examples of inputs and outputs. The second part is a code manual that details how to set up the interactive and non-interactive modes of the code and provides a listing and brief description of each of the subroutines.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.
Crowdsourcing quality control for Dark Energy Survey images
Melchior, P.
2016-07-01
We have developed a crowdsourcing web application for image quality control employed by the Dark Energy Survey. Dubbed the "DES exposure checker", it renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes. Users can also generate custom labels and thus help identify previously unknown problem classes. User reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. We report on the implementation of the application and our experience with its over 100 users, the majority of which are professional or prospective astronomersmore » but not data management experts. We discuss aspects of user training and engagement, and demonstrate how problem reports have been pivotal to rapidly correct artifacts which would likely have been too subtle or infrequent to be recognized otherwise. We conclude with a number of important lessons learned, suggest possible improvements, and recommend this collective exploratory approach for future astronomical surveys or other extensive data sets with a sufficiently large user base. We also release open-source code of the web application and host an online demo versionat http://des-exp-checker.pmelchior.net« less
Crowdsourcing quality control for Dark Energy Survey images
NASA Astrophysics Data System (ADS)
Melchior, P.; Sheldon, E.; Drlica-Wagner, A.; Rykoff, E. S.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Doel, P.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kuehn, K.; Li, T. S.; Maia, M. A. G.; March, M.; Marshall, J. L.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Vikram, V.; Walker, A. R.; Wester, W.; Zhang, Y.
2016-07-01
We have developed a crowdsourcing web application for image quality control employed by the Dark Energy Survey. Dubbed the "DES exposure checker", it renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes. Users can also generate custom labels and thus help identify previously unknown problem classes. User reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. We report on the implementation of the application and our experience with its over 100 users, the majority of which are professional or prospective astronomers but not data management experts. We discuss aspects of user training and engagement, and demonstrate how problem reports have been pivotal to rapidly correct artifacts which would likely have been too subtle or infrequent to be recognized otherwise. We conclude with a number of important lessons learned, suggest possible improvements, and recommend this collective exploratory approach for future astronomical surveys or other extensive data sets with a sufficiently large user base. We also release open-source code of the web application and host an online demo version at http://des-exp-checker.pmelchior.net.
Crowdsourcing quality control for Dark Energy Survey images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melchior, P.
We have developed a crowdsourcing web application for image quality control employed by the Dark Energy Survey. Dubbed the "DES exposure checker", it renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes. Users can also generate custom labels and thus help identify previously unknown problem classes. User reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. We report on the implementation of the application and our experience with its over 100 users, the majority of which are professional or prospective astronomersmore » but not data management experts. We discuss aspects of user training and engagement, and demonstrate how problem reports have been pivotal to rapidly correct artifacts which would likely have been too subtle or infrequent to be recognized otherwise. We conclude with a number of important lessons learned, suggest possible improvements, and recommend this collective exploratory approach for future astronomical surveys or other extensive data sets with a sufficiently large user base. We also release open-source code of the web application and host an online demo versionat http://des-exp-checker.pmelchior.net« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
The 2006 NESCent Phyloinformatics Hackathon: A Field Report
Lapp, Hilmar; Bala, Sendu; Balhoff, James P.; Bouck, Amy; Goto, Naohisa; Holder, Mark; Holland, Richard; Holloway, Alisha; Katayama, Toshiaki; Lewis, Paul O.; Mackey, Aaron J.; Osborne, Brian I.; Piel, William H.; Kosakovsky Pond, Sergei L.; Poon, Art F.Y.; Qiu, Wei-Gang; Stajich, Jason E.; Stoltzfus, Arlin; Thierer, Tobias; Vilella, Albert J.; Vos, Rutger A.; Zmasek, Christian M.; Zwickl, Derrick J.; Vision, Todd J.
2007-01-01
In December, 2006, a group of 26 software developers from some of the most widely used life science programming toolkits and phylogenetic software projects converged on Durham, North Carolina, for a Phyloinformatics Hackathon, an intense five-day collaborative software coding event sponsored by the National Evolutionary Synthesis Center (NESCent). The goal was to help researchers to integrate multiple phylogenetic software tools into automated workflows. Participants addressed deficiencies in interoperability between programs by implementing “glue code” and improving support for phylogenetic data exchange standards (particularly NEXUS) across the toolkits. The work was guided by use-cases compiled in advance by both developers and users, and the code was documented as it was developed. The resulting software is freely available for both users and developers through incorporation into the distributions of several widely-used open-source toolkits. We explain the motivation for the hackathon, how it was organized, and discuss some of the outcomes and lessons learned. We conclude that hackathons are an effective mode of solving problems in software interoperability and usability, and are underutilized in scientific software development.
The diagnosis related groups enhanced electronic medical record.
Müller, Marcel Lucas; Bürkle, Thomas; Irps, Sebastian; Roeder, Norbert; Prokosch, Hans-Ulrich
2003-07-01
The introduction of Diagnosis Related Groups as a basis for hospital payment in Germany announced essential changes in the hospital reimbursement practice. A hospital's economical survival will depend vitally on the accuracy and completeness of the documentation of DRG relevant data like diagnosis and procedure codes. In order to enhance physicians' coding compliance, an easy-to-use interface integrating coding tasks seamlessly into clinical routine had to be developed. A generic approach should access coding and clinical guidelines from different information sources. Within the Electronic Medical Record (EMR) a user interface ('DRG Control Center') for all DRG relevant clinical and administrative data has been built. A comprehensive DRG-related web site gives online access to DRG grouping software and an electronic coding expert. Both components are linked together using an application supporting bi-directional communication. Other web based services like a guideline search engine can be integrated as well. With the proposed method, the clinician gains quick access to context sensitive clinical guidelines for appropriate treatment of his/her patient and administrative guidelines for the adequate coding of the diagnoses and procedures. This paper describes the design and current implementation and discusses our experiences.
PASCO: Structural panel analysis and sizing code: Users manual - Revised
NASA Technical Reports Server (NTRS)
Anderson, M. S.; Stroud, W. J.; Durling, B. J.; Hennessy, K. W.
1981-01-01
A computer code denoted PASCO is described for analyzing and sizing uniaxially stiffened composite panels. Buckling and vibration analyses are carried out with a linked plate analysis computer code denoted VIPASA, which is included in PASCO. Sizing is based on nonlinear mathematical programming techniques and employs a computer code denoted CONMIN, also included in PASCO. Design requirements considered are initial buckling, material strength, stiffness and vibration frequency. A user's manual for PASCO is presented.
A New Source Biasing Approach in ADVANTG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevill, Aaron M; Mosher, Scott W
2012-01-01
The ADVANTG code has been developed at Oak Ridge National Laboratory to generate biased sources and weight window maps for MCNP using the CADIS and FW-CADIS methods. In preparation for an upcoming RSICC release, a new approach for generating a biased source has been developed. This improvement streamlines user input and improves reliability. Previous versions of ADVANTG generated the biased source from ADVANTG input, writing an entirely new general fixed-source definition (SDEF). Because volumetric sources were translated into SDEF-format as a finite set of points, the user had to perform a convergence study to determine whether the number of sourcemore » points used accurately represented the source region. Further, the large number of points that must be written in SDEF-format made the MCNP input and output files excessively long and difficult to debug. ADVANTG now reads SDEF-format distributions and generates corresponding source biasing cards, eliminating the need for a convergence study. Many problems of interest use complicated source regions that are defined using cell rejection. In cell rejection, the source distribution in space is defined using an arbitrarily complex cell and a simple bounding region. Source positions are sampled within the bounding region but accepted only if they fall within the cell; otherwise, the position is resampled entirely. When biasing in space is applied to sources that use rejection sampling, current versions of MCNP do not account for the rejection in setting the source weight of histories, resulting in an 'unfair game'. This problem was circumvented in previous versions of ADVANTG by translating volumetric sources into a finite set of points, which does not alter the mean history weight ({bar w}). To use biasing parameters without otherwise modifying the original cell-rejection SDEF-format source, ADVANTG users now apply a correction factor for {bar w} in post-processing. A stratified-random sampling approach in ADVANTG is under development to automatically report the correction factor with estimated uncertainty. This study demonstrates the use of ADVANTG's new source biasing method, including the application of {bar w}.« less
RATFOR user's guide version 2.0
NASA Technical Reports Server (NTRS)
Helmle, L. C.
1985-01-01
This document is a user's guide for RATFOR at Ames Research Center. The main part of the document is a general description of RATFOR, and the appendix is devoted to a machine specific implementation for the Cray X-MP. The general stylistic features of RATFOR are discussed, including the block structure, keywords, source code, format, and the notion of tokens. There is a section on the basic control structures (IF-ELSE, ELSE IF, WHILE, FOR, DO, REPEAT-UNTIL, BREAK, NEXT), and there is a section on the statements that extend FORTRAN's capabilities (DEFINE, MACRO, INCLUDE, STRING). THE appendix discusses everything needed to compile and run a basic job, the preprocessor options, the supported character sets, the generated listings, fatal errors, and program limitations and the differences from standard FORTRAN.
NASA Astrophysics Data System (ADS)
Jenness, Tim; Robitaille, Thomas; Tollerud, Erik; Mumford, Stuart; Cruz, Kelle
2016-04-01
The second Python in Astronomy conference will be held from 21-25 March 2016 at the University of Washington eScience Institute in Seattle, WA, USA. Similarly to the 2015 meeting (which was held at the Lorentz Center), we are aiming to bring together researchers, Python developers, users, and educators. The conference will include presentations, tutorials, unconference sessions, and coding sprints. In addition to sharing information about state-of-the art Python Astronomy packages, the workshop will focus on improving interoperability between astronomical Python packages, providing training for new open-source contributors, and developing educational materials for Python in Astronomy. The meeting is therefore not only aimed at current developers, but also users and educators who are interested in being involved in these efforts.
Branch: an interactive, web-based tool for testing hypotheses and developing predictive models.
Gangavarapu, Karthik; Babji, Vyshakh; Meißner, Tobias; Su, Andrew I; Good, Benjamin M
2016-07-01
Branch is a web application that provides users with the ability to interact directly with large biomedical datasets. The interaction is mediated through a collaborative graphical user interface for building and evaluating decision trees. These trees can be used to compose and test sophisticated hypotheses and to develop predictive models. Decision trees are built and evaluated based on a library of imported datasets and can be stored in a collective area for sharing and re-use. Branch is hosted at http://biobranch.org/ and the open source code is available at http://bitbucket.org/sulab/biobranch/ asu@scripps.edu or bgood@scripps.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
ERIC Educational Resources Information Center
Cole, Charles; Mandelblatt, Bertie
2000-01-01
Uses Kintsch's proposition-based construction-integration theory of discourse comprehension to detail the user coding operations that occur in each of the three subsystems (Perception, Comprehension, Application) in which users process an information retrieval systems (IRS) message. Describes an IRS device made up of two separate parts that enable…
A step-by-step introduction to rule-based design of synthetic genetic constructs using GenoCAD.
Wilson, Mandy L; Hertzberg, Russell; Adam, Laura; Peccoud, Jean
2011-01-01
GenoCAD is an open source web-based system that provides a streamlined, rule-driven process for designing genetic sequences. GenoCAD provides a graphical interface that allows users to design sequences consistent with formalized design strategies specific to a domain, organization, or project. Design strategies include limited sets of user-defined parts and rules indicating how these parts are to be combined in genetic constructs. In addition to reducing design time to minutes, GenoCAD improves the quality and reliability of the finished sequence by ensuring that the designs follow established rules of sequence construction. GenoCAD.org is a publicly available instance of GenoCAD that can be found at www.genocad.org. The source code and latest build are available from SourceForge to allow advanced users to install and customize GenoCAD for their unique needs. This chapter focuses primarily on how the GenoCAD tools can be used to organize genetic parts into customized personal libraries, then how these libraries can be used to design sequences. In addition, GenoCAD's parts management system and search capabilities are described in detail. Instructions are provided for installing a local instance of GenoCAD on a server. Some of the future enhancements of this rapidly evolving suite of applications are briefly described. Copyright © 2011 Elsevier Inc. All rights reserved.
User's manual for the BNW-I optimization code for dry-cooled power plants. Volume III. [PLCIRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, D.J.; Daniel, D.J.; De Mier, W.V.
1977-01-01
This appendix to User's Manual for the BNW-1 Optimization Code for Dry-Cooled Power Plants provides a listing of the BNW-I optimization code for determining, for a particular size power plant, the optimum dry cooling tower design using a plastic tube cooling surface and circular tower arrangement of the tube bundles. (LCL)
WorldWide Telescope: A Newly Open Source Astronomy Visualization System
NASA Astrophysics Data System (ADS)
Fay, Jonathan; Roberts, Douglas A.
2016-01-01
After eight years of development by Microsoft Research, WorldWide Telescope (WWT) was made an open source project at the end of June 2015. WWT was motivated by the desire to put new surveys of objects, such as the Sloan Digital Sky Survey in the context of the night sky. The development of WWT under Microsoft started with the creation of a Windows desktop client that is widely used in various education, outreach and research projects. Using this, users can explore the data built into WWT as well as data that is loaded in. Beyond exploration, WWT can be used to create tours that present various datasets a narrative format.In the past two years, the team developed a collection of web controls, including an HTML5 web client, which contains much of the functionality of the Windows desktop client. The project under Microsoft has deep connections with several user communities such as education through the WWT Ambassadors program, http://wwtambassadors.org/ and with planetariums and museums such as the Adler Planetarium. WWT can also support research, including using WWT to visualize the Bones of the Milky Way and rich connections between WWT and the Astrophysical Data Systems (ADS, http://labs.adsabs.harvard.edu/adsabs/). One important new research connection is the use of WWT to create dynamic and potentially interactive supplements to journal articles, which have been created in 2015.Now WWT is an open source community lead project. The source code is available in GitHub (https://github.com/WorldWideTelescope). There is significant developer documentation on the website (http://worldwidetelescope.org/Developers/) and an extensive developer workshops (http://wwtworkshops.org/?tribe_events=wwt-developer-workshop) has taken place in the fall of 2015.Now that WWT is open source anyone who has the interest in the project can be a contributor. As important as helping out with coding, the project needs people interested in documentation, testing, training and other roles.
JACOB: an enterprise framework for computational chemistry.
Waller, Mark P; Dresselhaus, Thomas; Yang, Jack
2013-06-15
Here, we present just a collection of beans (JACOB): an integrated batch-based framework designed for the rapid development of computational chemistry applications. The framework expedites developer productivity by handling the generic infrastructure tier, and can be easily extended by user-specific scientific code. Paradigms from enterprise software engineering were rigorously applied to create a scalable, testable, secure, and robust framework. A centralized web application is used to configure and control the operation of the framework. The application-programming interface provides a set of generic tools for processing large-scale noninteractive jobs (e.g., systematic studies), or for coordinating systems integration (e.g., complex workflows). The code for the JACOB framework is open sourced and is available at: www.wallerlab.org/jacob. Copyright © 2013 Wiley Periodicals, Inc.
Development of FWIGPR, an open-source package for full-waveform inversion of common-offset GPR data
NASA Astrophysics Data System (ADS)
Jazayeri, S.; Kruse, S.
2017-12-01
We introduce a package for full-waveform inversion (FWI) of Ground Penetrating Radar (GPR) data based on a combination of open-source programs. The FWI requires a good starting model, based on direct knowledge of field conditions or on traditional ray-based inversion methods. With a good starting model, the FWI can improve resolution of selected subsurface features. The package will be made available for general use in educational and research activities. The FWIGPR package consists of four main components: 3D to 2D data conversion, source wavelet estimation, forward modeling, and inversion. (These four components additionally require the development, by the user, of a good starting model.) A major challenge with GPR data is the unknown form of the waveform emitted by the transmitter held close to the ground surface. We apply a blind deconvolution method to estimate the source wavelet, based on a sparsity assumption about the reflectivity series of the subsurface model (Gholami and Sacchi 2012). The estimated wavelet is deconvolved from the data and the sparsest reflectivity series with fewest reflectors. The gprMax code (www.gprmax.com) is used as the forward modeling tool and the PEST parameter estimation package (www.pesthomepage.com) for the inversion. To reduce computation time, the field data are converted to an effective 2D equivalent, and the gprMax code can be run in 2D mode. In the first step, the user must create a good starting model of the data, presumably using ray-based methods. This estimated model will be introduced to the FWI process as an initial model. Next, the 3D data is converted to 2D, then the user estimates the source wavelet that best fits the observed data by sparsity assumption of the earth's response. Last, PEST runs gprMax with the initial model and calculates the misfit between the synthetic and observed data, and using an iterative algorithm calling gprMax several times ineach iteration, finds successive models that better fit the data. To gauge whether the iterative process has arrived at a local or global minima, the process can be repeated with a range of starting models. Tests have shown that this package can successfully improve estimates of selected subsurface model parameters for simple synthetic and real data. Ongoing research will focus on FWI of more complex scenarios.
Karthikeyan, M; Krishnan, S; Pandey, Anil Kumar; Bender, Andreas; Tropsha, Alexander
2008-04-01
We present the application of a Java remote method invocation (RMI) based open source architecture to distributed chemical computing. This architecture was previously employed for distributed data harvesting of chemical information from the Internet via the Google application programming interface (API; ChemXtreme). Due to its open source character and its flexibility, the underlying server/client framework can be quickly adopted to virtually every computational task that can be parallelized. Here, we present the server/client communication framework as well as an application to distributed computing of chemical properties on a large scale (currently the size of PubChem; about 18 million compounds), using both the Marvin toolkit as well as the open source JOELib package. As an application, for this set of compounds, the agreement of log P and TPSA between the packages was compared. Outliers were found to be mostly non-druglike compounds and differences could usually be explained by differences in the underlying algorithms. ChemStar is the first open source distributed chemical computing environment built on Java RMI, which is also easily adaptable to user demands due to its "plug-in architecture". The complete source codes as well as calculated properties along with links to PubChem resources are available on the Internet via a graphical user interface at http://moltable.ncl.res.in/chemstar/.
NASA Technical Reports Server (NTRS)
Saltsman, James F.
1992-01-01
This manual presents computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of Strainrange Partitioning (TS-SRP). An extensive database has also been developed in a parallel effort. This database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life prediction methods as well. This users manual, software, and database are all in the public domain and are available through COSMIC (382 East Broad Street, Athens, GA 30602; (404) 542-3265, FAX (404) 542-4807). Two disks accompany this manual. The first disk contains the source code, executable files, and sample output from these programs. The second disk contains the creep-fatigue data in a format compatible with these programs.
SENR /NRPy + : Numerical relativity in singular curvilinear coordinate systems
NASA Astrophysics Data System (ADS)
Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.
2018-03-01
We report on a new open-source, user-friendly numerical relativity code package called SENR /NRPy + . Our code extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it ideally suited to modeling physical configurations with approximate or exact symmetries. In the context of modeling black hole dynamics, it is orders of magnitude more efficient than other widely used open-source numerical relativity codes. NRPy + provides a Python-based interface in which equations are written in natural tensorial form and output at arbitrary finite difference order as highly efficient C code, putting complex tensorial equations at the scientist's fingertips without the need for an expensive software license. SENR provides the algorithmic framework that combines the C codes generated by NRPy + into a functioning numerical relativity code. We validate against two other established, state-of-the-art codes, and achieve excellent agreement. For the first time—in the context of moving puncture black hole evolutions—we demonstrate nearly exponential convergence of constraint violation and gravitational waveform errors to zero as the order of spatial finite difference derivatives is increased, while fixing the numerical grids at moderate resolution in a singular coordinate system. Such behavior outside the horizons is remarkable, as numerical errors do not converge to zero near punctures, and all points along the polar axis are coordinate singularities. The formulation addresses such coordinate singularities via cell-centered grids and a simple change of basis that analytically regularizes tensor components with respect to the coordinates. Future plans include extending this formulation to allow dynamical coordinate grids and bispherical-like distribution of points to efficiently capture orbiting compact binary dynamics.
FRAGS: estimation of coding sequence substitution rates from fragmentary data
Swart, Estienne C; Hide, Winston A; Seoighe, Cathal
2004-01-01
Background Rates of substitution in protein-coding sequences can provide important insights into evolutionary processes that are of biomedical and theoretical interest. Increased availability of coding sequence data has enabled researchers to estimate more accurately the coding sequence divergence of pairs of organisms. However the use of different data sources, alignment protocols and methods to estimate substitution rates leads to widely varying estimates of key parameters that define the coding sequence divergence of orthologous genes. Although complete genome sequence data are not available for all organisms, fragmentary sequence data can provide accurate estimates of substitution rates provided that an appropriate and consistent methodology is used and that differences in the estimates obtainable from different data sources are taken into account. Results We have developed FRAGS, an application framework that uses existing, freely available software components to construct in-frame alignments and estimate coding substitution rates from fragmentary sequence data. Coding sequence substitution estimates for human and chimpanzee sequences, generated by FRAGS, reveal that methodological differences can give rise to significantly different estimates of important substitution parameters. The estimated substitution rates were also used to infer upper-bounds on the amount of sequencing error in the datasets that we have analysed. Conclusion We have developed a system that performs robust estimation of substitution rates for orthologous sequences from a pair of organisms. Our system can be used when fragmentary genomic or transcript data is available from one of the organisms and the other is a completely sequenced genome within the Ensembl database. As well as estimating substitution statistics our system enables the user to manage and query alignment and substitution data. PMID:15005802
Ye, Zhan; Kadolph, Christopher; Strenn, Robert; Wall, Daniel; McPherson, Elizabeth; Lin, Simon
2015-01-01
Background Identification and evaluation of incidental findings in patients following whole exome (WGS) or whole genome sequencing (WGS) is challenging for both practicing physicians and researchers. The American College of Medical Genetics and Genomics (ACMG) recently recommended a list of reportable incidental genetic findings. However, no informatics tools are currently available to support evaluation of incidental findings in next-generation sequencing data. Methods The Wisconsin Hierarchical Analysis Tool for Incidental Findings (WHATIF), was developed as a stand-alone Windows-based desktop executable, to support the interactive analysis of incidental findings in the context of the ACMG recommendations. WHATIF integrates the European Bioinformatics Institute Variant Effect Predictor (VEP) tool for biological interpretation and the National Center for Biotechnology Information ClinVar tool for clinical interpretation. Results An open-source desktop program was created to annotate incidental findings and present the results with a user-friendly interface. Further, a meaningful index (WHATIF Index) was devised for each gene to facilitate ranking of the relative importance of the variants and estimate the potential workload associated with further evaluation of the variants. Our WHATIF application is available at: http://tinyurl.com/WHATIF-SOFTWARE Conclusions The WHATIF application offers a user-friendly interface and allows users to investigate the extracted variant information efficiently and intuitively while always accessing the up to date information on variants via application programming interfaces (API) connections. WHATIF’s highly flexible design and straightforward implementation aids users in customizing the source code to meet their own special needs. PMID:25890833
An experimental MOSFET approach to characterize (192)Ir HDR source anisotropy.
Toye, W C; Das, K R; Todd, S P; Kenny, M B; Franich, R D; Johnston, P N
2007-09-07
The dose anisotropy around a (192)Ir HDR source in a water phantom has been measured using MOSFETs as relative dosimeters. In addition, modeling using the EGSnrc code has been performed to provide a complete dose distribution consistent with the MOSFET measurements. Doses around the Nucletron 'classic' (192)Ir HDR source were measured for a range of radial distances from 5 to 30 mm within a 40 x 30 x 30 cm(3) water phantom, using a TN-RD-50 MOSFET dosimetry system with an active area of 0.2 mm by 0.2 mm. For each successive measurement a linear stepper capable of movement in intervals of 0.0125 mm re-positioned the MOSFET at the required radial distance, while a rotational stepper enabled angular displacement of the source at intervals of 0.9 degrees . The source-dosimeter arrangement within the water phantom was modeled using the standardized cylindrical geometry of the DOSRZnrc user code. In general, the measured relative anisotropy at each radial distance from 5 mm to 30 mm is in good agreement with the EGSnrc simulations, benchmark Monte Carlo simulation and TLD measurements where they exist. The experimental approach employing a MOSFET detection system of small size, high spatial resolution and fast read out capability allowed a practical approach to the determination of dose anisotropy around a HDR source.
Fisher Matrix Preloaded — FISHER4CAST
NASA Astrophysics Data System (ADS)
Bassett, Bruce A.; Fantaye, Yabebal; Hlozek, Renée; Kotze, Jacques
The Fisher Matrix is the backbone of modern cosmological forecasting. We describe the Fisher4Cast software: A general-purpose, easy-to-use, Fisher Matrix framework. It is open source, rigorously designed and tested and includes a Graphical User Interface (GUI) with automated LATEX file creation capability and point-and-click Fisher ellipse generation. Fisher4Cast was designed for ease of extension and, although written in Matlab, is easily portable to open-source alternatives such as Octave and Scilab. Here we use Fisher4Cast to present new 3D and 4D visualizations of the forecasting landscape and to investigate the effects of growth and curvature on future cosmological surveys. Early releases have been available at since mid-2008. The current release of the code is Version 2.2 which is described here. For ease of reference a Quick Start guide and the code used to produce the figures in this paper are included, in the hope that it will be useful to the cosmology and wider scientific communities.
Current and anticipated uses of the thermal hydraulics codes at the NRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, R.
1997-07-01
The focus of Thermal-Hydraulic computer code usage in nuclear regulatory organizations has undergone a considerable shift since the codes were originally conceived. Less work is being done in the area of {open_quotes}Design Basis Accidents,{close_quotes}, and much more emphasis is being placed on analysis of operational events, probabalistic risk/safety assessment, and maintenance practices. All of these areas need support from Thermal-Hydraulic computer codes to model the behavior of plant fluid systems, and they all need the ability to perform large numbers of analyses quickly. It is therefore important for the T/H codes of the future to be able to support thesemore » needs, by providing robust, easy-to-use, tools that produce easy-to understand results for a wider community of nuclear professionals. These tools need to take advantage of the great advances that have occurred recently in computer software, by providing users with graphical user interfaces for both input and output. In addition, reduced costs of computer memory and other hardware have removed the need for excessively complex data structures and numerical schemes, which make the codes more difficult and expensive to modify, maintain, and debug, and which increase problem run-times. Future versions of the T/H codes should also be structured in a modular fashion, to allow for the easy incorporation of new correlations, models, or features, and to simplify maintenance and testing. Finally, it is important that future T/H code developers work closely with the code user community, to ensure that the code meet the needs of those users.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, D.
1997-07-01
This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items tomore » be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.« less
The 2016 Bioinformatics Open Source Conference (BOSC)
Harris, Nomi L.; Cock, Peter J.A.; Chapman, Brad; Fields, Christopher J.; Hokamp, Karsten; Lapp, Hilmar; Muñoz-Torres, Monica; Wiencko, Heather
2016-01-01
Message from the ISCB: The Bioinformatics Open Source Conference (BOSC) is a yearly meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. BOSC has been run since 2000 as a two-day Special Interest Group (SIG) before the annual ISMB conference. The 17th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2016) took place in Orlando, Florida in July 2016. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community. The conference brought together nearly 100 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, and open and reproducible science. PMID:27781083
Hernández, Yözen; Bernstein, Rocky; Pagan, Pedro; Vargas, Levy; McCaig, William; Ramrattan, Girish; Akther, Saymon; Larracuente, Amanda; Di, Lia; Vieira, Filipe G; Qiu, Wei-Gang
2018-03-02
Automated bioinformatics workflows are more robust, easier to maintain, and results more reproducible when built with command-line utilities than with custom-coded scripts. Command-line utilities further benefit by relieving bioinformatics developers to learn the use of, or to interact directly with, biological software libraries. There is however a lack of command-line utilities that leverage popular Open Source biological software toolkits such as BioPerl ( http://bioperl.org ) to make many of the well-designed, robust, and routinely used biological classes available for a wider base of end users. Designed as standard utilities for UNIX-family operating systems, BpWrapper makes functionality of some of the most popular BioPerl modules readily accessible on the command line to novice as well as to experienced bioinformatics practitioners. The initial release of BpWrapper includes four utilities with concise command-line user interfaces, bioseq, bioaln, biotree, and biopop, specialized for manipulation of molecular sequences, sequence alignments, phylogenetic trees, and DNA polymorphisms, respectively. Over a hundred methods are currently available as command-line options and new methods are easily incorporated. Performance of BpWrapper utilities lags that of precompiled utilities while equivalent to that of other utilities based on BioPerl. BpWrapper has been tested on BioPerl Release 1.6, Perl versions 5.10.1 to 5.25.10, and operating systems including Apple macOS, Microsoft Windows, and GNU/Linux. Release code is available from the Comprehensive Perl Archive Network (CPAN) at https://metacpan.org/pod/Bio::BPWrapper . Source code is available on GitHub at https://github.com/bioperl/p5-bpwrapper . BpWrapper improves on existing sequence utilities by following the design principles of Unix text utilities such including a concise user interface, extensive command-line options, and standard input/output for serialized operations. Further, dozens of novel methods for manipulation of sequences, alignments, and phylogenetic trees, unavailable in existing utilities (e.g., EMBOSS, Newick Utilities, and FAST), are provided. Bioinformaticians should find BpWrapper useful for rapid prototyping of workflows on the command-line without creating custom scripts for comparative genomics and other bioinformatics applications.
JADAMILU: a software code for computing selected eigenvalues of large sparse symmetric matrices
NASA Astrophysics Data System (ADS)
Bollhöfer, Matthias; Notay, Yvan
2007-12-01
A new software code for computing selected eigenvalues and associated eigenvectors of a real symmetric matrix is described. The eigenvalues are either the smallest or those closest to some specified target, which may be in the interior of the spectrum. The underlying algorithm combines the Jacobi-Davidson method with efficient multilevel incomplete LU (ILU) preconditioning. Key features are modest memory requirements and robust convergence to accurate solutions. Parameters needed for incomplete LU preconditioning are automatically computed and may be updated at run time depending on the convergence pattern. The software is easy to use by non-experts and its top level routines are written in FORTRAN 77. Its potentialities are demonstrated on a few applications taken from computational physics. Program summaryProgram title: JADAMILU Catalogue identifier: ADZT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 101 359 No. of bytes in distributed program, including test data, etc.: 7 493 144 Distribution format: tar.gz Programming language: Fortran 77 Computer: Intel or AMD with g77 and pgf; Intel EM64T or Itanium with ifort; AMD Opteron with g77, pgf and ifort; Power (IBM) with xlf90. Operating system: Linux, AIX RAM: problem dependent Word size: real:8; integer: 4 or 8, according to user's choice Classification: 4.8 Nature of problem: Any physical problem requiring the computation of a few eigenvalues of a symmetric matrix. Solution method: Jacobi-Davidson combined with multilevel ILU preconditioning. Additional comments: We supply binaries rather than source code because JADAMILU uses the following external packages: MC64. This software is copyrighted software and not freely available. COPYRIGHT (c) 1999 Council for the Central Laboratory of the Research Councils. AMD. Copyright (c) 2004-2006 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. Source code is distributed by the authors under the GNU LGPL licence. BLAS. The reference BLAS is a freely-available software package. It is available from netlib via anonymous ftp and the World Wide Web. LAPACK. The complete LAPACK package or individual routines from LAPACK are freely available on netlib and can be obtained via the World Wide Web or anonymous ftp. For maximal benefit to the community, we added the sources we are proprietary of to the tar.gz file submitted for inclusion in the CPC library. However, as explained in the README file, users willing to compile the code instead of using binaries should first obtain the sources for the external packages mentioned above (email and/or web addresses are provided). Running time: Problem dependent; the test examples provided with the code only take a few seconds to run; timing results for large scale problems are given in Section 5.
PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy.
Müller, Paul; Schwille, Petra; Weidemann, Thomas
2014-09-01
We present a graphical user interface (PyCorrFit) for the fitting of theoretical model functions to experimental data obtained by fluorescence correlation spectroscopy (FCS). The program supports many data file formats and features a set of tools specialized in FCS data evaluation. The Python source code is freely available for download from the PyCorrFit web page at http://pycorrfit.craban.de. We offer binaries for Ubuntu Linux, Mac OS X and Microsoft Windows. © The Author 2014. Published by Oxford University Press.
1986-10-17
INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION U. S. Army (If applicable) Corps of Engineers NCE-IA-84-0127 Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE...Technological University CA Houghton, Michigan October 17, 1986 I I I I TABLE OF CONTENTSI Introduction ......................................... . Main...4 Option 2: Changes in Existing Cross-Section Data File . . .. 10 Option 3: Print Cross-Section Data ... .............. ... 15
Eddylicious: A Python package for turbulent inflow generation
NASA Astrophysics Data System (ADS)
Mukha, Timofey; Liefvendahl, Mattias
2018-01-01
A Python package for generating inflow for scale-resolving computer simulations of turbulent flow is presented. The purpose of the package is to unite existing inflow generation methods in a single code-base and make them accessible to users of various Computational Fluid Dynamics (CFD) solvers. The currently existing functionality consists of an accurate inflow generation method suitable for flows with a turbulent boundary layer inflow and input/output routines for coupling with the open-source CFD solver OpenFOAM.
CHROMA: consensus-based colouring of multiple alignments for publication.
Goodstadt, L; Ponting, C P
2001-09-01
CHROMA annotates multiple protein sequence alignments by consensus to produce formatted and coloured text suitable for incorporation into other documents for publication. The package is designed to be flexible and reliable, and has a simple-to-use graphical user interface running under Microsoft Windows. Both the executables and source code for CHROMA running under Windows and Linux (portable command-line only) are freely available at http://www.lg.ndirect.co.uk/chroma. Software enquiries should be directed to CHROMA@lg.ndirect.co.uk.
NASA Technical Reports Server (NTRS)
Snyder, W. V.; Hanson, R. J.
1986-01-01
Text Exchange System (TES) exchanges and maintains organized textual information including source code, documentation, data, and listings. System consists of two computer programs and definition of format for information storage. Comprehensive program used to create, read, and maintain TES files. TES developed to meet three goals: First, easy and efficient exchange of programs and other textual data between similar and dissimilar computer systems via magnetic tape. Second, provide transportable management system for textual information. Third, provide common user interface, over wide variety of computing systems, for all activities associated with text exchange.
User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.
NASA Technical Reports Server (NTRS)
Reddy, C. J.
2000-01-01
PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.
Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications
Khodak, Andrei
2017-08-21
Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less
Open Source Subtitle Editor Software Study for Section 508 Close Caption Applications
NASA Technical Reports Server (NTRS)
Murphy, F. Brandon
2013-01-01
This paper will focus on a specific item within the NASA Electronic Information Accessibility Policy - Multimedia Presentation shall have synchronized caption; thus making information accessible to a person with hearing impairment. This synchronized caption will assist a person with hearing or cognitive disability to access the same information as everyone else. This paper focuses on the research and implementation for CC (subtitle option) support to video multimedia. The goal of this research is identify the best available open-source (free) software to achieve synchronized captions requirement and achieve savings, while meeting the security requirement for Government information integrity and assurance. CC and subtitling are processes that display text within a video to provide additional or interpretive information for those whom may need it or those whom chose it. Closed captions typically show the transcription of the audio portion of a program (video) as it occurs (either verbatim or in its edited form), sometimes including non-speech elements (such as sound effects). The transcript can be provided by a third party source or can be extracted word for word from the video. This feature can be made available for videos in two forms: either Soft-Coded or Hard-Coded. Soft-Coded is the more optional version of CC, where you can chose to turn them on if you want, or you can turn them off. Most of the time, when using the Soft-Coded option, the transcript is also provided to the view along-side the video. This option is subject to compromise, whereas the transcript is merely a text file that can be changed by anyone who has access to it. With this option the integrity of the CC is at the mercy of the user. Hard-Coded CC is a more permanent form of CC. A Hard-Coded CC transcript is embedded within a video, without the option of removal.
Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodak, Andrei
Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less
NASA Astrophysics Data System (ADS)
Roach, Colin; Carlsson, Johan; Cary, John R.; Alexander, David A.
2002-11-01
The National Transport Code Collaboration (NTCC) has developed an array of software, including a data client/server. The data server, which is written in C++, serves local data (in the ITER Profile Database format) as well as remote data (by accessing one or several MDS+ servers). The client, a web-invocable Java applet, provides a uniform, intuitive, user-friendly, graphical interface to the data server. The uniformity of the interface relieves the user from the trouble of mastering the differences between different data formats and lets him/her focus on the essentials: plotting and viewing the data. The user runs the client by visiting a web page using any Java capable Web browser. The client is automatically downloaded and run by the browser. A reference to the data server is then retrieved via the standard Web protocol (HTTP). The communication between the client and the server is then handled by the mature, industry-standard CORBA middleware. CORBA has bindings for all common languages and many high-quality implementations are available (both Open Source and commercial). The NTCC data server has been installed at the ITPA International Multi-tokamak Confinement Profile Database, which is hosted by the UKAEA at Culham Science Centre. The installation of the data server is protected by an Internet firewall. To make it accessible to clients outside the firewall some modifications of the server were required. The working version of the ITPA confinement profile database is not open to the public. Authentification of legitimate users is done utilizing built-in Java security features to demand a password to download the client. We present an overview of the NTCC data client/server and some details of how the CORBA firewall-traversal issues were resolved and how the user authentification is implemented.
CFL3D User's Manual (Version 5.0)
NASA Technical Reports Server (NTRS)
Krist, Sherrie L.; Biedron, Robert T.; Rumsey, Christopher L.
1998-01-01
This document is the User's Manual for the CFL3D computer code, a thin-layer Reynolds-averaged Navier-Stokes flow solver for structured multiple-zone grids. Descriptions of the code's input parameters, non-dimensionalizations, file formats, boundary conditions, and equations are included. Sample 2-D and 3-D test cases are also described, and many helpful hints for using the code are provided.
NASA Technical Reports Server (NTRS)
Penn, John M.
2013-01-01
This paper describes the adoption of a Test Driven Development approach and a Continuous Integration System in the development of the Trick Simulation Toolkit, a generic simulation development environment for creating high fidelity training and engineering simulations at the NASA/Johnson Space Center and many other NASA facilities. It describes what was learned and the significant benefits seen, such as fast, thorough, and clear test feedback every time code is checked-in to the code repository. It also describes a system that encourages development of code that is much more flexible, maintainable, and reliable. The Trick Simulation Toolkit development environment provides a common architecture for user-defined simulations. Trick builds executable simulations using user-supplied simulation-definition files (S_define) and user supplied "model code". For each Trick-based simulation, Trick automatically provides job scheduling, checkpoint / restore, data-recording, interactive variable manipulation (variable server), and an input-processor. Also included are tools for plotting recorded data and various other supporting tools and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX. Prior to adopting this new development approach, Trick testing consisted primarily of running a few large simulations, with the hope that their complexity and scale would exercise most of Trick's code and expose any recently introduced bugs. Unsurprising, this approach yielded inconsistent results. It was obvious that a more systematic, thorough approach was required. After seeing examples of some Java-based projects that used the JUnit test framework, similar test frameworks for C and C++ were sought. Several were found, all clearly inspired by JUnit. Googletest, a freely available Open source testing framework, was selected as the most appropriate and capable. The new approach was implemented while rewriting the Trick memory management component, to eliminate a fundamental design flaw. The benefits became obvious almost immediately, not just in the correctness of the individual functions and classes but also in the correctness and flexibility being added to the overall design. Creating code to be testable, and testing as it was created resulted not only in better working code, but also in better-organized, flexible, and readable (i.e., articulate) code. This was, in essence the Test-driven development (TDD) methodology created by Kent Beck. Seeing the benefits of Test Driven Development, other Trick components were refactored to make them more testable and tests were designed and implemented for them.
The HYPE Open Source Community
NASA Astrophysics Data System (ADS)
Strömbäck, L.; Pers, C.; Isberg, K.; Nyström, K.; Arheimer, B.
2013-12-01
The Hydrological Predictions for the Environment (HYPE) model is a dynamic, semi-distributed, process-based, integrated catchment model. It uses well-known hydrological and nutrient transport concepts and can be applied for both small and large scale assessments of water resources and status. In the model, the landscape is divided into classes according to soil type, vegetation and altitude. The soil representation is stratified and can be divided in up to three layers. Water and substances are routed through the same flow paths and storages (snow, soil, groundwater, streams, rivers, lakes) considering turn-over and transformation on the way towards the sea. HYPE has been successfully used in many hydrological applications at SMHI. For Europe, we currently have three different models; The S-HYPE model for Sweden; The BALT-HYPE model for the Baltic Sea; and the E-HYPE model for the whole Europe. These models simulate hydrological conditions and nutrients for their respective areas and are used for characterization, forecasts, and scenario analyses. Model data can be downloaded from hypeweb.smhi.se. In addition, we provide models for the Arctic region, the Arab (Middle East and Northern Africa) region, India, the Niger River basin, the La Plata Basin. This demonstrates the applicability of the HYPE model for large scale modeling in different regions of the world. An important goal with our work is to make our data and tools available as open data and services. For this aim we created the HYPE Open Source Community (OSC) that makes the source code of HYPE available for anyone interested in further development of HYPE. The HYPE OSC (hype.sourceforge.net) is an open source initiative under the Lesser GNU Public License taken by SMHI to strengthen international collaboration in hydrological modeling and hydrological data production. The hypothesis is that more brains and more testing will result in better models and better code. The code is transparent and can be changed and learnt from. New versions of the main code are delivered frequently. HYPE OSC is open to everyone interested in hydrology, hydrological modeling and code development - e.g. scientists, authorities, and consultancies. By joining the HYPE OSC you get access a state-of-the-art operational hydrological model. The HYPE source code is designed to efficiently handle large scale modeling for forecast, hindcast and climate applications. The code is under constant development to improve the hydrological processes, efficiency and readability. In the beginning of 2013 we released a version with new and better modularization based on hydrological processes. This will make the code easier to understand and further develop for a new user. An important challenge in this process is to produce code that is easy for anyone to understand and work with, but still maintain the properties that make the code efficient enough for large scale applications. Input from the HYPE Open Source Community is an important source for future improvements of the HYPE model. Therefore, by joining the community you become an active part of the development, get access to the latest features and can influence future versions of the model.
NASA Astrophysics Data System (ADS)
Lea, J.
2017-12-01
The quantification of glacier change is a key variable within glacier monitoring, with the method used potentially being crucial to ensuring that data can be appropriately compared with environmental data. The topic and timescales of study (e.g. land/marine terminating environments; sub-annual/decadal/centennial/millennial timescales) often mean that different methods are more suitable for different problems. However, depending on the GIS/coding expertise of the user, some methods can potentially be time consuming to undertake, making large-scale studies problematic. In addition, examples exist where different users have nominally applied the same methods in different studies, though with minor methodological inconsistencies in their approach. In turn, this will have implications for data homogeneity where regional/global datasets may be constructed. Here, I present a simple toolbox scripted in a Matlab® environment that requires only glacier margin and glacier centreline data to quantify glacier length, glacier change between observations, rate of change, in addition to other metrics. The toolbox includes the option to apply the established centreline or curvilinear box methods, or a new method: the variable box method - designed for tidewater margins where box width is defined as the total width of the individual terminus observation. The toolbox is extremely flexible, and has the option to be applied as either Matlab® functions within user scripts, or via a graphical user interface (GUI) for those unfamiliar with a coding environment. In both instances, there is potential to apply the methods quickly to large datasets (100s-1000s of glaciers, with potentially similar numbers of observations each), thus ensuring large scale methodological consistency (and therefore data homogeneity) and allowing regional/global scale analyses to be achievable for those with limited GIS/coding experience. The toolbox has been evaluated against idealised scenarios demonstrating its accuracy, while feedback from undergraduate students who have trialled the toolbox is that it is intuitive and simple to use. When released, the toolbox will be free and open source allowing users to potentially modify, improve and expand upon the current version.
LTCP 2D Graphical User Interface. Application Description and User's Guide
NASA Technical Reports Server (NTRS)
Ball, Robert; Navaz, Homayun K.
1996-01-01
A graphical user interface (GUI) written for NASA's LTCP (Liquid Thrust Chamber Performance) 2 dimensional computational fluid dynamic code is described. The GUI is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. Through the use of common and familiar dialog boxes, features, and tools, the user can easily and quickly create and modify input files for the LTCP code. In addition, old input files used with the LTCP code can be opened and modified using the GUI. The application is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. The program and its capabilities are presented, followed by a detailed description of each menu selection and the method of creating an input file for LTCP. A cross reference is included to help experienced users quickly find the variables which commonly need changes. Finally, the system requirements and installation instructions are provided.
Zero-forcing pre-coding for MIMO WiMAX transceivers: Performance analysis and implementation issues
NASA Astrophysics Data System (ADS)
Cattoni, A. F.; Le Moullec, Y.; Sacchi, C.
Next generation wireless communication networks are expected to achieve ever increasing data rates. Multi-User Multiple-Input-Multiple-Output (MU-MIMO) is a key technique to obtain the expected performance, because such a technique combines the high capacity achievable using MIMO channel with the benefits of space division multiple access. In MU-MIMO systems, the base stations transmit signals to two or more users over the same channel, for this reason every user can experience inter-user interference. This paper provides a capacity analysis of an online, interference-based pre-coding algorithm able to mitigate the multi-user interference of the MU-MIMO systems in the context of a realistic WiMAX application scenario. Simulation results show that pre-coding can significantly increase the channel capacity. Furthermore, the paper presents several feasibility considerations for implementation of the analyzed technique in a possible FPGA-based software defined radio.
TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE
NASA Technical Reports Server (NTRS)
Dougherty, F. C.
1994-01-01
The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters. Output from TAIR may include aerodynamic coefficients, the airfoil surface solution, convergence histories, and printer plots of Mach number and density contour maps. The TAIR program is written in FORTRAN IV for batch execution and has been implemented on a CDC 7600 computer with a central memory requirement of approximately 155K (octal) of 60 bit words. The TAIR program was developed in 1981.
Reporting Codes and Fuel Pathways for the EPA Moderated Transaction System (EMTS)
Users should reference this document for a complete list of all reporting codes and all possible fuel pathways for Renewable Fuel Standard (RFS) and Fuels Averaging, Banking and Trading (ABT) users of the EPA Moderated Transaction System (EMTS).
The discounting model selector: Statistical software for delay discounting applications.
Gilroy, Shawn P; Franck, Christopher T; Hantula, Donald A
2017-05-01
Original, open-source computer software was developed and validated against established delay discounting methods in the literature. The software executed approximate Bayesian model selection methods from user-supplied temporal discounting data and computed the effective delay 50 (ED50) from the best performing model. Software was custom-designed to enable behavior analysts to conveniently apply recent statistical methods to temporal discounting data with the aid of a graphical user interface (GUI). The results of independent validation of the approximate Bayesian model selection methods indicated that the program provided results identical to that of the original source paper and its methods. Monte Carlo simulation (n = 50,000) confirmed that true model was selected most often in each setting. Simulation code and data for this study were posted to an online repository for use by other researchers. The model selection approach was applied to three existing delay discounting data sets from the literature in addition to the data from the source paper. Comparisons of model selected ED50 were consistent with traditional indices of discounting. Conceptual issues related to the development and use of computer software by behavior analysts and the opportunities afforded by free and open-sourced software are discussed and a review of possible expansions of this software are provided. © 2017 Society for the Experimental Analysis of Behavior.
Coupled Physics Environment (CouPE) library - Design, Implementation, and Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Vijay S.
Over several years, high fidelity, validated mono-physics solvers with proven scalability on peta-scale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a unified mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. In this report, we present details on the design decisions and developments on CouPE, an acronym that stands for Coupled Physics Environment that orchestrates a coupled physics solver through the interfaces exposed by MOAB array-based unstructured mesh, both of which are part of SIGMA (Scalable Interfaces for Geometry and Mesh-Based Applications) toolkit.more » The SIGMA toolkit contains libraries that enable scalable geometry and unstructured mesh creation and handling in a memory and computationally efficient implementation. The CouPE version being prepared for a full open-source release along with updated documentation will contain several useful examples that will enable users to start developing their applications natively using the native MOAB mesh and couple their models to existing physics applications to analyze and solve real world problems of interest. An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is also being investigated as part of the NEAMS RPL, to tightly couple neutron transport, thermal-hydraulics and structural mechanics physics under the SHARP framework. This report summarizes the efforts that have been invested in CouPE to bring together several existing physics applications namely PROTEUS (neutron transport code), Nek5000 (computational fluid-dynamics code) and Diablo (structural mechanics code). The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The design of CouPE along with motivations that led to implementation choices are also discussed. The first release of the library will be different from the current version of the code that integrates the components in SHARP and explanation on the need for forking the source base will also be provided. Enhancements in the functionality and improved user guides will be available as part of the release. CouPE v0.1 is scheduled for an open-source release in December 2014 along with SIGMA v1.1 components that provide support for language-agnostic mesh loading, traversal and query interfaces along with scalable solution transfer of fields between different physics codes. The coupling methodology and software interfaces of the library are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the CouPE library.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwo, J.P.; Jardine, P.M.; Yeh, G.T.
Matrix diffusion, a diffusive mass transfer process,in the structured soils and geologic units at ORNL, is believe to be an important subsurface mass transfer mechanism; it may affect off-site movement of radioactive wastes and remediation of waste disposal sites by locally exchanging wastes between soil/rock matrix and macropores/fractures. Advective mass transfer also contributes to waste movement but is largely neglected by researchers. This report presents the first documented 2-D multiregion solute transport code (MURT) that incorporates not only diffusive but also advective mass transfer and can be applied to heterogeneous porous media under transient flow conditions. In this report, theoreticalmore » background is reviewed and the derivation of multiregion solute transport equations is presented. Similar to MURF (Gwo et al. 1994), a multiregion subsurface flow code, multiplepore domains as suggested by previous investigators (eg, Wilson and Luxmoore 1988) can be implemented in MURT. Transient or steady-state flow fields of the pore domains can be either calculated by MURF or by modelers. The mass transfer process is briefly discussed through a three-pore-region multiregion solute transport mechanism. Mass transfer equations that describe mass flux across pore region interfaces are also presented and parameters needed to calculate mass transfer coefficients detailed. Three applications of MURT (tracer injection problem, sensitivity analysis of advective and diffusive mass transfer, hillslope ponding infiltration and secondary source problem) were simulated and results discussed. Program structure of MURT and functions of MURT subroutiness are discussed so that users can adapt the code; guides for input data preparation are provided in appendices.« less
A Graphical User Interface for a Method to Infer Kinetics and Network Architecture (MIKANA)
Mourão, Márcio A.; Srividhya, Jeyaraman; McSharry, Patrick E.; Crampin, Edmund J.; Schnell, Santiago
2011-01-01
One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis–Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1). PMID:22096591
A graphical user interface for a method to infer kinetics and network architecture (MIKANA).
Mourão, Márcio A; Srividhya, Jeyaraman; McSharry, Patrick E; Crampin, Edmund J; Schnell, Santiago
2011-01-01
One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis-Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1).
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Alter, Stephen J.
1995-01-01
This document is a users' manual for a new three-dimensional structured multiple-block volume g generator called 3DGRAPE/AL. It is a significantly improved version of the previously-released a widely-distributed programs 3DGRAPE and 3DMAGGS. It generates volume grids by iteratively solving the Poisson Equations in three-dimensions. The right-hand-side terms are designed so that user-specific; grid cell heights and user-specified grid cell skewness near boundary surfaces result automatically, with little user intervention. The code is written in Fortran-77, and can be installed with or without a simple graphical user interface which allows the user to watch as the grid is generated. An introduction describing the improvements over the antecedent 3DGRAPE code is presented first. Then follows a chapter on the basic grid generator program itself, and comments on installing it. The input is then described in detail. After that is a description of the Graphical User Interface. Five example cases are shown next, with plots of the results. Following that is a chapter on two input filters which allow use of input data generated elsewhere. Last is a treatment of the theory embodied in the code.
MX: A beamline control system toolkit
NASA Astrophysics Data System (ADS)
Lavender, William M.
2000-06-01
The development of experimental and beamline control systems for two Collaborative Access Teams at the Advanced Photon Source has resulted in the creation of a portable data acquisition and control toolkit called MX. MX consists of a set of servers, application programs and libraries that enable the creation of command line and graphical user interface applications that may be easily retargeted to new and different kinds of motor and device controllers. The source code for MX is written in ANSI C and Tcl/Tk with interprocess communication via TCP/IP. MX is available for several versions of Unix, Windows 95/98/NT and DOS. It may be downloaded from the web site http://www.imca.aps.anl.gov/mx/.
Evaluation of the OpenCL AES Kernel using the Intel FPGA SDK for OpenCL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal
The OpenCL standard is an open programming model for accelerating algorithms on heterogeneous computing system. OpenCL extends the C-based programming language for developing portable codes on different platforms such as CPU, Graphics processing units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to abstract away the complex FPGA-based development flow for a high-level software development flow. Users can focus on the design of hardware-accelerated kernel functions in OpenCL and then direct the tools to generate the low-level FPGA implementations. The approach makes themore » FPGA-based development more accessible to software users as the needs for hybrid computing using CPUs and FPGAs are increasing. It can also significantly reduce the hardware development time as users can evaluate different ideas with high-level language without deep FPGA domain knowledge. In this report, we evaluate the performance of the kernel using the Intel FPGA SDK for OpenCL and Nallatech 385A FPGA board. Compared to the M506 module, the board provides more hardware resources for a larger design exploration space. The kernel performance is measured with the compute kernel throughput, an upper bound to the FPGA throughput. The report presents the experimental results in details. The Appendix lists the kernel source code.« less
Improvements in the MGA Code Provide Flexibility and Better Error Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhter, W D; Kerr, J
2005-05-26
The Multi-Group Analysis (MGA) code is widely used to determine nondestructively the relative isotopic abundances of plutonium by gamma-ray spectrometry. MGA users have expressed concern about the lack of flexibility and transparency in the code. Users often have to ask the code developers for modifications to the code to accommodate new measurement situations, such as additional peaks being present in the plutonium spectrum or expected peaks being absent. We are testing several new improvements to a prototype, general gamma-ray isotopic analysis tool with the intent of either revising or replacing the MGA code. These improvements will give the user themore » ability to modify, add, or delete the gamma- and x-ray energies and branching intensities used by the code in determining a more precise gain and in the determination of the relative detection efficiency. We have also fully integrated the determination of the relative isotopic abundances with the determination of the relative detection efficiency to provide a more accurate determination of the errors in the relative isotopic abundances. We provide details in this paper on these improvements and a comparison of results obtained with current versions of the MGA code.« less
Computer program BL2D for solving two-dimensional and axisymmetric boundary layers
NASA Technical Reports Server (NTRS)
Iyer, Venkit
1995-01-01
This report presents the formulation, validation, and user's manual for the computer program BL2D. The program is a fourth-order-accurate solution scheme for solving two-dimensional or axisymmetric boundary layers in speed regimes that range from low subsonic to hypersonic Mach numbers. A basic implementation of the transition zone and turbulence modeling is also included. The code is a result of many improvements made to the program VGBLP, which is described in NASA TM-83207 (February 1982), and can effectively supersede it. The code BL2D is designed to be modular, user-friendly, and portable to any machine with a standard fortran77 compiler. The report contains the new formulation adopted and the details of its implementation. Five validation cases are presented. A detailed user's manual with the input format description and instructions for running the code is included. Adequate information is presented in the report to enable the user to modify or customize the code for specific applications.
NASA Technical Reports Server (NTRS)
Ancheta, T. C., Jr.
1976-01-01
A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A 'universal' generalization of syndrome-source-coding is formulated which provides robustly effective distortionless coding of source ensembles. Two examples are given, comparing the performance of noiseless universal syndrome-source-coding to (1) run-length coding and (2) Lynch-Davisson-Schalkwijk-Cover universal coding for an ensemble of binary memoryless sources.
A user's manual for the Electromagnetic Surface Patch code: ESP version 3
NASA Technical Reports Server (NTRS)
Newman, E. H.; Dilsavor, R. L.
1987-01-01
This report serves as a user's manual for Version III of the Electromagnetic Surface Patch Code or ESP code. ESP is user-oriented, based on the method of moments (MM) for treating geometries consisting of an interconnection of thin wires and perfectly conducting polygonal plates. Wire/plate junctions must be about 0.1 lambda or more from any plate edge. Several plates may intersect along a common edge. Excitation may be by either a delta-gap voltage generator or by a plane wave. The thin wires may have finite conductivity and also may contain lumped loads. The code computes most of the usual quantities of interest such as current distribution, input impedance, radiation efficiency, mutual coupling, far zone gain patterns (both polarizations) and radar-cross-section (both/cross polarizations).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y. Q.; Shemon, E. R.; Thomas, J. W.
SHARP is an advanced modeling and simulation toolkit for the analysis of nuclear reactors. It is comprised of several components including physical modeling tools, tools to integrate the physics codes for multi-physics analyses, and a set of tools to couple the codes within the MOAB framework. Physics modules currently include the neutronics code PROTEUS, the thermal-hydraulics code Nek5000, and the structural mechanics code Diablo. This manual focuses on performing multi-physics calculations with the SHARP ToolKit. Manuals for the three individual physics modules are available with the SHARP distribution to help the user to either carry out the primary multi-physics calculationmore » with basic knowledge or perform further advanced development with in-depth knowledge of these codes. This manual provides step-by-step instructions on employing SHARP, including how to download and install the code, how to build the drivers for a test case, how to perform a calculation and how to visualize the results. Since SHARP has some specific library and environment dependencies, it is highly recommended that the user read this manual prior to installing SHARP. Verification tests cases are included to check proper installation of each module. It is suggested that the new user should first follow the step-by-step instructions provided for a test problem in this manual to understand the basic procedure of using SHARP before using SHARP for his/her own analysis. Both reference output and scripts are provided along with the test cases in order to verify correct installation and execution of the SHARP package. At the end of this manual, detailed instructions are provided on how to create a new test case so that user can perform novel multi-physics calculations with SHARP. Frequently asked questions are listed at the end of this manual to help the user to troubleshoot issues.« less
PyPedia: using the wiki paradigm as crowd sourcing environment for bioinformatics protocols.
Kanterakis, Alexandros; Kuiper, Joël; Potamias, George; Swertz, Morris A
2015-01-01
Today researchers can choose from many bioinformatics protocols for all types of life sciences research, computational environments and coding languages. Although the majority of these are open source, few of them possess all virtues to maximize reuse and promote reproducible science. Wikipedia has proven a great tool to disseminate information and enhance collaboration between users with varying expertise and background to author qualitative content via crowdsourcing. However, it remains an open question whether the wiki paradigm can be applied to bioinformatics protocols. We piloted PyPedia, a wiki where each article is both implementation and documentation of a bioinformatics computational protocol in the python language. Hyperlinks within the wiki can be used to compose complex workflows and induce reuse. A RESTful API enables code execution outside the wiki. Initial content of PyPedia contains articles for population statistics, bioinformatics format conversions and genotype imputation. Use of the easy to learn wiki syntax effectively lowers the barriers to bring expert programmers and less computer savvy researchers on the same page. PyPedia demonstrates how wiki can provide a collaborative development, sharing and even execution environment for biologists and bioinformaticians that complement existing resources, useful for local and multi-center research teams. PyPedia is available online at: http://www.pypedia.com. The source code and installation instructions are available at: https://github.com/kantale/PyPedia_server. The PyPedia python library is available at: https://github.com/kantale/pypedia. PyPedia is open-source, available under the BSD 2-Clause License.
Final Report A Multi-Language Environment For Programmable Code Optimization and Empirical Tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Qing; Whaley, Richard Clint; Qasem, Apan
This report summarizes our effort and results of building an integrated optimization environment to effectively combine the programmable control and the empirical tuning of source-to-source compiler optimizations within the framework of multiple existing languages, specifically C, C++, and Fortran. The environment contains two main components: the ROSE analysis engine, which is based on the ROSE C/C++/Fortran2003 source-to-source compiler developed by Co-PI Dr.Quinlan et. al at DOE/LLNL, and the POET transformation engine, which is based on an interpreted program transformation language developed by Dr. Yi at University of Texas at San Antonio (UTSA). The ROSE analysis engine performs advanced compiler analysis,more » identifies profitable code transformations, and then produces output in POET, a language designed to provide programmable control of compiler optimizations to application developers and to support the parameterization of architecture-sensitive optimizations so that their configurations can be empirically tuned later. This POET output can then be ported to different machines together with the user application, where a POET-based search engine empirically reconfigures the parameterized optimizations until satisfactory performance is found. Computational specialists can write POET scripts to directly control the optimization of their code. Application developers can interact with ROSE to obtain optimization feedback as well as provide domain-specific knowledge and high-level optimization strategies. The optimization environment is expected to support different levels of automation and programmer intervention, from fully-automated tuning to semi-automated development and to manual programmable control.« less
Unipro UGENE: a unified bioinformatics toolkit.
Okonechnikov, Konstantin; Golosova, Olga; Fursov, Mikhail
2012-04-15
Unipro UGENE is a multiplatform open-source software with the main goal of assisting molecular biologists without much expertise in bioinformatics to manage, analyze and visualize their data. UGENE integrates widely used bioinformatics tools within a common user interface. The toolkit supports multiple biological data formats and allows the retrieval of data from remote data sources. It provides visualization modules for biological objects such as annotated genome sequences, Next Generation Sequencing (NGS) assembly data, multiple sequence alignments, phylogenetic trees and 3D structures. Most of the integrated algorithms are tuned for maximum performance by the usage of multithreading and special processor instructions. UGENE includes a visual environment for creating reusable workflows that can be launched on local resources or in a High Performance Computing (HPC) environment. UGENE is written in C++ using the Qt framework. The built-in plugin system and structured UGENE API make it possible to extend the toolkit with new functionality. UGENE binaries are freely available for MS Windows, Linux and Mac OS X at http://ugene.unipro.ru/download.html. UGENE code is licensed under the GPLv2; the information about the code licensing and copyright of integrated tools can be found in the LICENSE.3rd_party file provided with the source bundle.
Sirepo for Synchrotron Radiation Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Robert; Moeller, Paul; Rakitin, Maksim
Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.« less
NASA Astrophysics Data System (ADS)
Peterson, Ethan; Anderson, Jay; Clark, Mike; Egedal, Jan; Endrizzi, Douglass; Flanagan, Ken; Harvey, Robert; Lynn, Jacob; Milhone, Jason; Wallace, John; Waleffe, Roger; Mirnov, Vladimir; Forest, Cary
2017-10-01
Equilibrium reconstructions of rotating magnetospheres in the lab are computed using a user-friendly extended Grad-Shafranov solver written in Python and various magnetic and kinetic measurements. The stability of these equilibria are investigated using the NIMROD code with two goals: understand the onset of the classic ``wobble'' in the heliospheric current sheet and demonstrating proof-of-principle for a laboratory source of high- β turbulence. Using the same extended Grad-Shafranov solver, equilibria for an axisymmetric, non-paraxial magnetic mirror are used as a design foundation for a high-field magnetic mirror neutron source. These equilibria are numerically shown to be stable to the m=1 flute instability, with higher modes likely stabilized by FLR effects; this provides stability to gross MHD modes in an axisymmetric configuration. Numerical results of RF heating and neutral beam injection (NBI) from the GENRAY/CQL3D code suite show neutron fluxes promising for medical radioisotope production as well as materials testing. Synergistic effects between NBI and high-harmonic fast wave heating show large increases in neutron yield for a modest increase in RF power. work funded by DOE, NSF, NASA.
Environmental factor(tm) system: RCRA hazardous waste handler information (on CD-ROM). Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
Environmental Factor(trademark) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity, and compliance history for facilities found in the EPA Research Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management, and minimization by companies who are large quantity generators; and (3) Data on the waste management practices of treatment, storage, and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action, or violation information, TSD status, generator and transporter status, and more. (2) View compliance information - dates of evaluation, violation, enforcement, and corrective action. (3) Lookup facilities by waste processing categories of marketing, transporting, processing, and energy recovery. (4) Use owner/operator information and names, titles, and telephone numbers of project managers for prospecting. (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving, and exporting.« less
GAMSOR: Gamma Source Preparation and DIF3D Flux Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. A.; Lee, C. H.; Hill, R. N.
2016-12-15
Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To further this aspect, an additional utility code was created which demonstrates how to merge the neutron and gamma cross section data together to carry out a simultaneous solve of the two systems.« less
Operational manual for two-dimensional transonic code TSFOIL
NASA Technical Reports Server (NTRS)
Stahara, S. S.
1978-01-01
This code solves the two-dimensional, transonic, small-disturbance equations for flow past lifting airfoils in both free air and various wind-tunnel environments by using a variant of the finite-difference method. A description of the theoretical and numerical basis of the code is provided, together with complete operating instructions and sample cases for the general user. In addition, a programmer's manual is also presented to assist the user interested in modifying the code. Included in the programmer's manual are a dictionary of subroutine variables in common and a detailed description of each subroutine.
Shiny-phyloseq: Web application for interactive microbiome analysis with provenance tracking.
McMurdie, Paul J; Holmes, Susan
2015-01-15
We have created a Shiny-based Web application, called Shiny-phyloseq, for dynamic interaction with microbiome data that runs on any modern Web browser and requires no programming, increasing the accessibility and decreasing the entrance requirement to using phyloseq and related R tools. Along with a data- and context-aware dynamic interface for exploring the effects of parameter and method choices, Shiny-phyloseq also records the complete user input and subsequent graphical results of a user's session, allowing the user to archive, share and reproduce the sequence of steps that created their result-without writing any new code themselves. Shiny-phyloseq is implemented entirely in the R language. It can be hosted/launched by any system with R installed, including Windows, Mac OS and most Linux distributions. Information technology administrators can also host Shiny--phyloseq from a remote server, in which case users need only have a Web browser installed. Shiny-phyloseq is provided free of charge under a GPL-3 open-source license through GitHub at http://joey711.github.io/shiny-phyloseq/. © The Author 2014. Published by Oxford University Press.
Development and Use of Health-Related Technologies in Indigenous Communities: Critical Review
Jacklin, Kristen; O'Connell, Megan E
2017-01-01
Background Older Indigenous adults encounter multiple challenges as their age intersects with health inequities. Research suggests that a majority of older Indigenous adults prefer to age in place, and they will need culturally safe assistive technologies to do so. Objective The aim of this critical review was to examine literature concerning use, adaptation, and development of assistive technologies for health purposes by Indigenous peoples. Methods Working within Indigenous research methodologies and from a decolonizing approach, searches of peer-reviewed academic and gray literature dated to February 2016 were conducted using keywords related to assistive technology and Indigenous peoples. Sources were reviewed and coded thematically. Results Of the 34 sources captured, only 2 concerned technology specifically for older Indigenous adults. Studies detailing technology with Indigenous populations of all ages originated primarily from Canada (n=12), Australia (n=10), and the United States (n=9) and were coded to four themes: meaningful user involvement and community-based processes in development, the digital divide, Indigenous innovation in technology, and health technology needs as holistic and interdependent. Conclusions A key finding is the necessity of meaningful user involvement in technology development, especially in communities struggling with the digital divide. In spite of, or perhaps because of this divide, Indigenous communities are enthusiastically adapting mobile technologies to suit their needs in creative, culturally specific ways. This enthusiasm and creativity, coupled with the extensive experience many Indigenous communities have with telehealth technologies, presents opportunity for meaningful, culturally safe development processes. PMID:28729237
DVB-S2 Experiment over NASA's Space Network
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Evans, Michael A.; Tollis, Nicholas S.
2017-01-01
The commercial DVB-S2 standard was successfully demonstrated over NASAs Space Network (SN) and the Tracking Data and Relay Satellite System (TDRSS) during testing conducted September 20-22nd, 2016. This test was a joint effort between NASA Glenn Research Center (GRC) and Goddard Space Flight Center (GSFC) to evaluate the performance of DVB-S2 as an alternative to traditional NASA SN waveforms. Two distinct sets of tests were conducted: one was sourced from the Space Communication and Navigation (SCaN) Testbed, an external payload on the International Space Station, and the other was sourced from GRCs S-band ground station to emulate a Space Network user through TDRSS. In both cases, a commercial off-the-shelf (COTS) receiver made by Newtec was used to receive the signal at White Sands Complex. Using SCaN Testbed, peak data rates of 5.7 Mbps were demonstrated. Peak data rates of 33 Mbps were demonstrated over the GRC S-band ground station through a 10MHz channel over TDRSS, using 32-amplitude phase shift keying (APSK) and a rate 89 low density parity check (LDPC) code. Advanced features of the DVB-S2 standard were evaluated, including variable and adaptive coding and modulation (VCMACM), as well as an adaptive digital pre-distortion (DPD) algorithm. These features provided additional data throughput and increased link performance reliability. This testing has shown that commercial standards are a viable, low-cost alternative for future Space Network users.
Software for Better Documentation of Other Software
NASA Technical Reports Server (NTRS)
Pinedo, John
2003-01-01
The Literate Programming Extraction Engine is a Practical Extraction and Reporting Language- (PERL-)based computer program that facilitates and simplifies the implementation of a concept of self-documented literate programming in a fashion tailored to the typical needs of scientists. The advantage for the programmer is that documentation and source code are written side-by-side in the same file, reducing the likelihood that the documentation will be inconsistent with the code and improving the verification that the code performs its intended functions. The advantage for the user is the knowledge that the documentation matches the software because they come from the same file. This program unifies the documentation process for a variety of programming languages, including C, C++, and several versions of FORTRAN. This program can process the documentation in any markup language, and incorporates the LaTeX typesetting software. The program includes sample Makefile scripts for automating both the code-compilation (when appropriate) and documentation-generation processes into a single command-line statement. Also included are macro instructions for the Emacs display-editor software, making it easy for a programmer to toggle between editing in a code or a documentation mode.
NASA Astrophysics Data System (ADS)
van Dijk, Jan; Hartgers, Bart; van der Mullen, Joost
2006-10-01
Self-consistent modelling of plasma sources requires a simultaneous treatment of multiple physical phenomena. As a result plasma codes have a high degree of complexity. And with the growing interest in time-dependent modelling of non-equilibrium plasma in three dimensions, codes tend to become increasingly hard to explain-and-maintain. As a result of these trends there has been an increased interest in the software-engineering and implementation aspects of plasma modelling in our group at Eindhoven University of Technology. In this contribution we will present modern object-oriented techniques in C++ to solve an old problem: that of the discretisation of coupled linear(ized) equations involving multiple field variables on ortho-curvilinear meshes. The `LinSys' code has been tailored to the transport equations that occur in transport physics. The implementation has been made both efficient and user-friendly by using modern idiom like expression templates and template meta-programming. Live demonstrations will be given. The code is available to interested parties; please visit www.dischargemodelling.org.
RadVel: The Radial Velocity Modeling Toolkit
NASA Astrophysics Data System (ADS)
Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan
2018-04-01
RadVel is an open-source Python package for modeling Keplerian orbits in radial velocity (RV) timeseries. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented real-time MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.
Rule-based interface generation on mobile devices for structured documentation.
Kock, Ann-Kristin; Andersen, Björn; Handels, Heinz; Ingenerf, Josef
2014-01-01
In many software systems to date, interactive graphical user interfaces (GUIs) are represented implicitly in the source code, together with the application logic. Hence, the re-use, development, and modification of these interfaces is often very laborious. Flexible adjustments of GUIs for various platforms and devices as well as individual user preferences are furthermore difficult to realize. These problems motivate a software-based separation of content and GUI models on the one hand, and application logic on the other. In this project, a software solution for structured reporting on mobile devices is developed. Clinical content archetypes developed in a previous project serve as the content model while the Android SDK provides the GUI model. The necessary bindings between the models are specified using the Jess Rule Language.
Optically-energized, emp-resistant, fast-acting, explosion initiating device
Benson, David A.; Kuswa, Glenn W.
1987-01-01
Optical energy, provided from a remote user-operated source, is utilized to initially electrically charge a capacitor in a circuit that also contains an explosion initiating transducer in contact with a small explosive train contained in an attachable housing. Additional optical energy is subsequently supplied in a preferred embodiment to an optically responsive phototransistor acting in conjunction with a silicon controlled rectifer to release the stored electrical energy through the explosion initiating transducer to set off the explosive train. All energy transfers between the user and the explosive apparatus, either for charging it up or for setting it off, are conveyed optically and may be accomplished in a single optical fiber with coding to distinguish between specific optical energy transfers and between these and any extraneous signals.
The AMIDAS Website: An Online Tool for Direct Dark Matter Detection Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Chung-Lin
2010-02-10
Following our long-erm work on development of model-independent data analysis methods for reconstructing the one-dimensional velocity distribution function of halo WIMPs as well as for determining their mass and couplings on nucleons by using data from direct Dark Matter detection experiments directly, we combined the simulation programs to a compact system: AMIDAS (A Model-Independent Data Analysis System). For users' convenience an online system has also been established at the same time. AMIDAS has the ability to do full Monte Carlo simulations, faster theoretical estimations, as well as to analyze (real) data sets recorded in direct detection experiments without modifying themore » source code. In this article, I give an overview of functions of the AMIDAS code based on the use of its website.« less
NEQAIR96,Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User's Manual
NASA Technical Reports Server (NTRS)
Whiting, Ellis E.; Park, Chul; Liu, Yen; Arnold, James O.; Paterson, John A.
1996-01-01
This document is the User's Manual for a new version of the NEQAIR computer program, NEQAIR96. The program is a line-by-line and a line-of-sight code. It calculates the emission and absorption spectra for atomic and diatomic molecules and the transport of radiation through a nonuniform gas mixture to a surface. The program has been rewritten to make it easy to use, run faster, and include many run-time options that tailor a calculation to the user's requirements. The accuracy and capability have also been improved by including the rotational Hamiltonian matrix formalism for calculating rotational energy levels and Hoenl-London factors for dipole and spin-allowed singlet, doublet, triplet, and quartet transitions. Three sample cases are also included to help the user become familiar with the steps taken to produce a spectrum. A new user interface is included that uses check location, to select run-time options and to enter selected run data, making NEQAIR96 easier to use than the older versions of the code. The ease of its use and the speed of its algorithms make NEQAIR96 a valuable educational code as well as a practical spectroscopic prediction and diagnostic code.
The Navy/NASA Engine Program (NNEP89): A user's manual
NASA Technical Reports Server (NTRS)
Plencner, Robert M.; Snyder, Christopher A.
1991-01-01
An engine simulation computer code called NNEP89 was written to perform 1-D steady state thermodynamic analysis of turbine engine cycles. By using a very flexible method of input, a set of standard components are connected at execution time to simulate almost any turbine engine configuration that the user could imagine. The code was used to simulate a wide range of engine cycles from turboshafts and turboprops to air turborockets and supersonic cruise variable cycle engines. Off design performance is calculated through the use of component performance maps. A chemical equilibrium model is incorporated to adequately predict chemical dissociation as well as model virtually any fuel. NNEP89 is written in standard FORTRAN77 with clear structured programming and extensive internal documentation. The standard FORTRAN77 programming allows it to be installed onto most mainframe computers and workstations without modification. The NNEP89 code was derived from the Navy/NASA Engine program (NNEP). NNEP89 provides many improvements and enhancements to the original NNEP code and incorporates features which make it easier to use for the novice user. This is a comprehensive user's guide for the NNEP89 code.
Gpufit: An open-source toolkit for GPU-accelerated curve fitting.
Przybylski, Adrian; Thiel, Björn; Keller-Findeisen, Jan; Stock, Bernd; Bates, Mark
2017-11-16
We present a general purpose, open-source software library for estimation of non-linear parameters by the Levenberg-Marquardt algorithm. The software, Gpufit, runs on a Graphics Processing Unit (GPU) and executes computations in parallel, resulting in a significant gain in performance. We measured a speed increase of up to 42 times when comparing Gpufit with an identical CPU-based algorithm, with no loss of precision or accuracy. Gpufit is designed such that it is easily incorporated into existing applications or adapted for new ones. Multiple software interfaces, including to C, Python, and Matlab, ensure that Gpufit is accessible from most programming environments. The full source code is published as an open source software repository, making its function transparent to the user and facilitating future improvements and extensions. As a demonstration, we used Gpufit to accelerate an existing scientific image analysis package, yielding significantly improved processing times for super-resolution fluorescence microscopy datasets.
Interactive QR code beautification with full background image embedding
NASA Astrophysics Data System (ADS)
Lin, Lijian; Wu, Song; Liu, Sijiang; Jiang, Bo
2017-06-01
QR (Quick Response) code is a kind of two dimensional barcode that was first developed in automotive industry. Nowadays, QR code has been widely used in commercial applications like product promotion, mobile payment, product information management, etc. Traditional QR codes in accordance with the international standard are reliable and fast to decode, but are lack of aesthetic appearance to demonstrate visual information to customers. In this work, we present a novel interactive method to generate aesthetic QR code. By given information to be encoded and an image to be decorated as full QR code background, our method accepts interactive user's strokes as hints to remove undesired parts of QR code modules based on the support of QR code error correction mechanism and background color thresholds. Compared to previous approaches, our method follows the intention of the QR code designer, thus can achieve more user pleasant result, while keeping high machine readability.
Climate-Smart Seedlot Selection Tool: Reforestation and Restoration for the 21st Century
NASA Astrophysics Data System (ADS)
Stevenson-Molnar, N.; Howe, G.; St Clair, B.; Bachelet, D. M.; Ward, B. C.
2017-12-01
Local populations of trees are generally adapted to their local climates. Historically, this has meant that local seed zones based on geography and elevation have been used to guide restoration and reforestation. In the face of climate change, seeds from local sources will likely be subjected to climates significantly different from those to which they are currently adapted. The Seedlot Selection Tool (SST) offers a new approach for matching seed sources with planting sites based on future climate scenarios. The SST is a mapping program designed for forest managers and researchers. Users can use the tool to to find seedlots for a given planting site, or to find potential planting sites for a given seedlot. Users select a location (seedlot or planting site), climate scenarios (a climate to which seeds are adapted, and a current or future climate scenario), climate variables, and transfer limits (the maximum climatic distance that is considered a suitable match). Transfer limits are provided by the user, or derived from the range of values within a geographically defined seed zone. The tool calculates scores across the landscape based on an area's similarity, in a multivariate climate space, to the input. Users can explore results on an interactive map, and export PDF and PowerPoint reports, including a map of the results along with the inputs used. Planned future improvements include support for non-forest use cases and ability to download results as GeoTIFF data. The Seedlot Selection Tool and its source code are available online at https://seedlotselectiontool.org. It is co-developed by the United States Forest Service, Oregon State University, and the Conservation Biology Institute.
In this spreadsheet, user(s) provide their company’s manufacturer code, user contact information for EV-CIS, and user roles. This spreadsheet is used for the Company Authorizing Official (CAO), CROMERR Signer, and EV-CIS Submitters.
Flexible Generation of Kalman Filter Code
NASA Technical Reports Server (NTRS)
Richardson, Julian; Wilson, Edward
2006-01-01
Domain-specific program synthesis can automatically generate high quality code in complex domains from succinct specifications, but the range of programs which can be generated by a given synthesis system is typically narrow. Obtaining code which falls outside this narrow scope necessitates either 1) extension of the code generator, which is usually very expensive, or 2) manual modification of the generated code, which is often difficult and which must be redone whenever changes are made to the program specification. In this paper, we describe adaptations and extensions of the AUTOFILTER Kalman filter synthesis system which greatly extend the range of programs which can be generated. Users augment the input specification with a specification of code fragments and how those fragments should interleave with or replace parts of the synthesized filter. This allows users to generate a much wider range of programs without their needing to modify the synthesis system or edit generated code. We demonstrate the usefulness of the approach by applying it to the synthesis of a complex state estimator which combines code from several Kalman filters with user-specified code. The work described in this paper allows the complex design decisions necessary for real-world applications to be reflected in the synthesized code. When executed on simulated input data, the generated state estimator was found to produce comparable estimates to those produced by a handcoded estimator
YNOGK: A New Public Code for Calculating Null Geodesics in the Kerr Spacetime
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Wang, Jiancheng
2013-07-01
Following the work of Dexter & Agol, we present a new public code for the fast calculation of null geodesics in the Kerr spacetime. Using Weierstrass's and Jacobi's elliptic functions, we express all coordinates and affine parameters as analytical and numerical functions of a parameter p, which is an integral value along the geodesic. This is the main difference between our code and previous similar ones. The advantage of this treatment is that the information about the turning points does not need to be specified in advance by the user, and many applications such as imaging, the calculation of line profiles, and the observer-emitter problem, become root-finding problems. All elliptic integrations are computed by Carlson's elliptic integral method as in Dexter & Agol, which guarantees the fast computational speed of our code. The formulae to compute the constants of motion given by Cunningham & Bardeen have been extended, which allow one to readily handle situations in which the emitter or the observer has an arbitrary distance from, and motion state with respect to, the central compact object. The validation of the code has been extensively tested through applications to toy problems from the literature. The source FORTRAN code is freely available for download on our Web site http://www1.ynao.ac.cn/~yangxl/yxl.html.
Pritoni, Marco; Ford, Rebecca; Karlin, Beth; Sanguinetti, Angela
2018-02-01
Policymakers worldwide are currently discussing whether to include home energy management (HEM) products in their portfolio of technologies to reduce carbon emissions and improve grid reliability. However, very little data is available about these products. Here we present the results of an extensive review including 308 HEM products available on the US market in 2015-2016. We gathered these data from publicly available sources such as vendor websites, online marketplaces and other vendor documents. A coding guide was developed iteratively during the data collection and utilized to classify the devices. Each product was coded based on 96 distinct attributes, grouped into 11 categories: Identifying information, Product components, Hardware, Communication, Software, Information - feedback, Information - feedforward, Control, Utility interaction, Additional benefits and Usability. The codes describe product features and functionalities, user interaction and interoperability with other devices. A mix of binary attributes and more descriptive codes allow to sort and group data without losing important qualitative information. The information is stored in a large spreadsheet included with this article, along with an explanatory coding guide. This dataset is analyzed and described in a research article entitled "Categories and functionality of smart home technology for energy management" (Ford et al., 2017) [1].
WebProtégé: a collaborative Web-based platform for editing biomedical ontologies.
Horridge, Matthew; Tudorache, Tania; Nuylas, Csongor; Vendetti, Jennifer; Noy, Natalya F; Musen, Mark A
2014-08-15
WebProtégé is an open-source Web application for editing OWL 2 ontologies. It contains several features to aid collaboration, including support for the discussion of issues, change notification and revision-based change tracking. WebProtégé also features a simple user interface, which is geared towards editing the kinds of class descriptions and annotations that are prevalent throughout biomedical ontologies. Moreover, it is possible to configure the user interface using views that are optimized for editing Open Biomedical Ontology (OBO) class descriptions and metadata. Some of these views are shown in the Supplementary Material and can be seen in WebProtégé itself by configuring the project as an OBO project. WebProtégé is freely available for use on the Web at http://webprotege.stanford.edu. It is implemented in Java and JavaScript using the OWL API and the Google Web Toolkit. All major browsers are supported. For users who do not wish to host their ontologies on the Stanford servers, WebProtégé is available as a Web app that can be run locally using a Servlet container such as Tomcat. Binaries, source code and documentation are available under an open-source license at http://protegewiki.stanford.edu/wiki/WebProtege. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Morris, Joseph W.; Lowry, Mac; Boren, Brett; Towers, James B.; Trimble, Darian E.; Bunfield, Dennis H.
2011-06-01
The US Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) and the Redstone Test Center (RTC) has formed the Scene Generation Development Center (SGDC) to support the Department of Defense (DoD) open source EO/IR Scene Generation initiative for real-time hardware-in-the-loop and all-digital simulation. Various branches of the DoD have invested significant resources in the development of advanced scene and target signature generation codes. The SGDC goal is to maintain unlimited government rights and controlled access to government open source scene generation and signature codes. In addition, the SGDC provides development support to a multi-service community of test and evaluation (T&E) users, developers, and integrators in a collaborative environment. The SGDC has leveraged the DoD Defense Information Systems Agency (DISA) ProjectForge (https://Project.Forge.mil) which provides a collaborative development and distribution environment for the DoD community. The SGDC will develop and maintain several codes for tactical and strategic simulation, such as the Joint Signature Image Generator (JSIG), the Multi-spectral Advanced Volumetric Real-time Imaging Compositor (MAVRIC), and Office of the Secretary of Defense (OSD) Test and Evaluation Science and Technology (T&E/S&T) thermal modeling and atmospherics packages, such as EOView, CHARM, and STAR. Other utility packages included are the ContinuumCore for real-time messaging and data management and IGStudio for run-time visualization and scenario generation.
SIFTER search: a web server for accurate phylogeny-based protein function prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less
Fluidica CFD software for fluids instruction
NASA Astrophysics Data System (ADS)
Colonius, Tim
2008-11-01
Fluidica is an open-source freely available Matlab graphical user interface (GUI) to to an immersed-boundary Navier- Stokes solver. The algorithm is programmed in Fortran and compiled into Matlab as mex-function. The user can create external flows about arbitrarily complex bodies and collections of free vortices. The code runs fast enough for complex 2D flows to be computed and visualized in real-time on the screen. This facilitates its use in homework and in the classroom for demonstrations of various potential-flow and viscous flow phenomena. The GUI has been written with the goal of allowing the student to learn how to use the software as she goes along. The user can select which quantities are viewed on the screen, including contours of various scalars, velocity vectors, streamlines, particle trajectories, streaklines, and finite-time Lyapunov exponents. In this talk, we demonstrate the software in the context of worked classroom examples demonstrating lift and drag, starting vortices, separation, and vortex dynamics.
SIFTER search: a web server for accurate phylogeny-based protein function prediction
Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.
2015-05-15
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less
Forgács, Attila; Balkay, László; Trón, Lajos; Raics, Péter
2014-12-01
Excel2Genie, a simple and user-friendly Microsoft Excel interface, has been developed to the Genie-2000 Spectroscopic Software of Canberra Industries. This Excel application can directly control Canberra Multichannel Analyzer (MCA), process the acquired data and visualize them. Combination of Genie-2000 with Excel2Genie results in remarkably increased flexibility and a possibility to carry out repetitive data acquisitions even with changing parameters and more sophisticated analysis. The developed software package comprises three worksheets: display parameters and results of data acquisition, data analysis and mathematical operations carried out on the measured gamma spectra. At the same time it also allows control of these processes. Excel2Genie is freely available to assist gamma spectrum measurements and data evaluation by the interested Canberra users. With access to the Visual Basic Application (VBA) source code of this application users are enabled to modify the developed interface according to their intentions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio
2015-03-01
In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org. © The Author(s) 2013.
Otegui, Javier; Ariño, Arturo H
2012-08-15
In any data quality workflow, data publishers must become aware of issues in their data so these can be corrected. User feedback mechanisms provide one avenue, while global assessments of datasets provide another. To date, there is no publicly available tool to allow both biodiversity data institutions sharing their data through the Global Biodiversity Information Facility network and its potential users to assess datasets as a whole. Contributing to bridge this gap both for publishers and users, we introduce BIoDiversity DataSets Assessment Tool, an online tool that enables selected diagnostic visualizations on the content of data publishers and/or their individual collections. The online application is accessible at http://www.unav.es/unzyec/mzna/biddsat/ and is supported by all major browsers. The source code is licensed under the GNU GPLv3 license (http://www.gnu.org/licenses/gpl-3.0.txt) and is available at https://github.com/jotegui/BIDDSAT.
Definition and testing of the hydrologic component of the pilot land data system
NASA Technical Reports Server (NTRS)
Ragan, Robert M.; Sircar, Jayanta K.
1987-01-01
The specific aim was to develop within the Pilot Land Data System (PLDS) software design environment, an easily implementable and user friendly geometric correction procedure to readily enable the georeferencing of imagery data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA series spacecraft. A software subsystem was developed within the guidelines set by the PLDS development environment utilizing NASA Goddard Space Flight Center (GSFC) Image Analysis Facility's (IAF's) Land Analysis Software (LAS) coding standards. The IAS current program development environment, the Transportable Applications Executive (TAE), operates under a VAX VMS operating system and was used as the user interface. A brief overview of the ICARUS algorithm that was implemented in the set of functions developed, is provided. The functional specifications decription is provided, and a list of the individual programs and directory names containing the source and executables installed in the IAF system are listed. A user guide is provided for the LAS system documentation format for the three functions developed.
User's Guide for RESRAD-OFFSITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnanapragasam, E.; Yu, C.
2015-04-01
The RESRAD-OFFSITE code can be used to model the radiological dose or risk to an offsite receptor. This User’s Guide for RESRAD-OFFSITE Version 3.1 is an update of the User’s Guide for RESRAD-OFFSITE Version 2 contained in the Appendix A of the User’s Manual for RESRAD-OFFSITE Version 2 (ANL/EVS/TM/07-1, DOE/HS-0005, NUREG/CR-6937). This user’s guide presents the basic information necessary to use Version 3.1 of the code. It also points to the help file and other documents that provide more detailed information about the inputs, the input forms and features/tools in the code; two of the features (overriding the source termmore » and computing area factors) are discussed in the appendices to this guide. Section 2 describes how to download and install the code and then verify the installation of the code. Section 3 shows ways to navigate through the input screens to simulate various exposure scenarios and to view the results in graphics and text reports. Section 4 has screen shots of each input form in the code and provides basic information about each parameter to increase the user’s understanding of the code. Section 5 outlines the contents of all the text reports and the graphical output. It also describes the commands in the two output viewers. Section 6 deals with the probabilistic and sensitivity analysis tools available in the code. Section 7 details the various ways of obtaining help in the code.« less
Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components
NASA Technical Reports Server (NTRS)
Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.
1999-01-01
This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will provide a simpler, faster and user-friendly tool for conducting design studies of aircraft and spacecraft engines, applicable in high speed civil transport and space missions.
Liu, Yang; Han, Guangjie; Shi, Sulong; Li, Zhengquan
2018-06-20
This study investigates the superiority of cooperative broadcast transmission over traditional orthogonal schemes when applied in a downlink relaying broadcast channel (RBC). Two proposed cooperative broadcast transmission protocols, one with an amplify-and-forward (AF) relay, and the other with a repetition-based decode-and-forward (DF) relay, are investigated. By utilizing superposition coding (SupC), the source and the relay transmit the private user messages simultaneously instead of sequentially as in traditional orthogonal schemes, which means the channel resources are reused and an increased channel degree of freedom is available to each user, hence the half-duplex penalty of relaying is alleviated. To facilitate a performance evaluation, theoretical outage probability expressions of the two broadcast transmission schemes are developed, based on which, we investigate the minimum total power consumption of each scheme for a given traffic requirement by numerical simulation. The results provide details on the overall system performance and fruitful insights on the essential characteristics of cooperative broadcast transmission in RBCs. It is observed that better overall outage performances and considerable power gains can be obtained by utilizing cooperative broadcast transmissions compared to traditional orthogonal schemes.
The Julia programming language: the future of scientific computing
NASA Astrophysics Data System (ADS)
Gibson, John
2017-11-01
Julia is an innovative new open-source programming language for high-level, high-performance numerical computing. Julia combines the general-purpose breadth and extensibility of Python, the ease-of-use and numeric focus of Matlab, the speed of C and Fortran, and the metaprogramming power of Lisp. Julia uses type inference and just-in-time compilation to compile high-level user code to machine code on the fly. A rich set of numeric types and extensive numerical libraries are built-in. As a result, Julia is competitive with Matlab for interactive graphical exploration and with C and Fortran for high-performance computing. This talk interactively demonstrates Julia's numerical features and benchmarks Julia against C, C++, Fortran, Matlab, and Python on a spectral time-stepping algorithm for a 1d nonlinear partial differential equation. The Julia code is nearly as compact as Matlab and nearly as fast as Fortran. This material is based upon work supported by the National Science Foundation under Grant No. 1554149.
NASA Astrophysics Data System (ADS)
Yang, Lin; Zhang, Feng; Wang, Cai-Zhuang; Ho, Kai-Ming; Travesset, Alex
2018-04-01
We present an implementation of EAM and FS interatomic potentials, which are widely used in simulating metallic systems, in HOOMD-blue, a software designed to perform classical molecular dynamics simulations using GPU accelerations. We first discuss the details of our implementation and then report extensive benchmark tests. We demonstrate that single-precision floating point operations efficiently implemented on GPUs can produce sufficient accuracy when compared against double-precision codes, as demonstrated in test simulations of calculations of the glass-transition temperature of Cu64.5Zr35.5, and pair correlation function g (r) of liquid Ni3Al. Our code scales well with the size of the simulating system on NVIDIA Tesla M40 and P100 GPUs. Compared with another popular software LAMMPS running on 32 cores of AMD Opteron 6220 processors, the GPU/CPU performance ratio can reach as high as 4.6. The source code can be accessed through the HOOMD-blue web page for free by any interested user.
Direct-Y: Fast Acquisition of the GPS PPS Signal
NASA Technical Reports Server (NTRS)
Namoos, Omar M.; DiEsposti, Raymond S.
1996-01-01
The NAVSTAR Global Positioning System (GPS) provides positioning and time information to military users via the Precise Positioning Service (PPS) which typically allows users a significant margin of precision over the commercially available Standard Positioning Service (SPS), Military sets that rely on first acquiring the SPS Coarse Acquisition (C/A) code, read from the data message the handover word (HOW) that provides the time-of-signal transmission needed to acquire and lock onto the PPS Y-code. Under extreme battlefield conditions, the use of GPS would be denied to the warfighter who cannot pick up the un-encrypted C/A code. Studies are underway at the GPS Joint Program Office (JPO) at the Space and Missile Center, Los Angeles Air Force Base that are aimed at developing the capability to directly acquire Y-code without first acquiring C/A code. This paper briefly outlines efforts to develop 'direct-Y' acquisition, and various approaches to solving this problem. The potential ramifications of direct-Y to military users are also discussed.
Analysis of Delays in Transmitting Time Code Using an Automated Computer Time Distribution System
1999-12-01
jlevine@clock. bldrdoc.gov Abstract An automated computer time distribution system broadcasts standard tune to users using computers and modems via...contributed to &lays - sofhareplatform (50% of the delay), transmission speed of time- codes (25OA), telephone network (lS%), modem and others (10’4). The... modems , and telephone lines. Users dial the ACTS server to receive time traceable to the national time scale of Singapore, UTC(PSB). The users can in
Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller
NASA Astrophysics Data System (ADS)
Perdikis, S.; Leeb, R.; Williamson, J.; Ramsay, A.; Tavella, M.; Desideri, L.; Hoogerwerf, E.-J.; Al-Khodairy, A.; Murray-Smith, R.; Millán, J. d. R.
2014-06-01
Objective. While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. Approach. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. Main results. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. Significance. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.
Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
Perdikis, S; Leeb, R; Williamson, J; Ramsay, A; Tavella, M; Desideri, L; Hoogerwerf, E-J; Al-Khodairy, A; Murray-Smith, R; Millán, J D R
2014-06-01
While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Bobby
2012-06-01
The Advanced Multi-Physics (AMP) code, in its present form, will allow a user to build a multi-physics application code for existing mechanics and diffusion operators and extend them with user-defined material models and new physics operators. There are examples that demonstrate mechanics, thermo-mechanics, coupled diffusion, and mechanical contact. The AMP code is designed to leverage a variety of mathematical solvers (PETSc, Trilinos, SUNDIALS, and AMP solvers) and mesh databases (LibMesh and AMP) in a consistent interchangeable approach.