Combinational concentration gradient confinement through stagnation flow.
Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung
2016-01-21
Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.
Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.
Yu, Shuizi Rachel; Burkhardt, Markus; Nowak, Matthias; Ries, Jonas; Petrásek, Zdenek; Scholpp, Steffen; Schwille, Petra; Brand, Michael
2009-09-24
It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.
NASA Technical Reports Server (NTRS)
Tegen, Ina; Rind, David
2000-01-01
To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.
Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min
2012-06-01
Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.
NASA Astrophysics Data System (ADS)
Liu, Dan; Shi, Tielin; Xi, Shuang; Lai, Wuxing; Liu, Shiyuan; Li, Xiaoping; Tang, Zirong
2012-09-01
The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor-liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features.
Meridional distribution of molecular hydrogen and its deuterium content in the atmosphere
NASA Astrophysics Data System (ADS)
Rice, Andrew; Quay, Paul; Stutsman, Johnny; Gammon, Richard; Price, Heather; Jaeglé, Lyatt
2010-06-01
The atmospheric molecular hydrogen concentration and its deuterium abundance were measured in remote air samples collected onboard six Pacific Ocean ship transects between 37°N and 77°S during years 2001 through 2005. The data reveal a year-round interhemispheric gradient in H2 concentration and isotopic composition with the extratropical Northern Hemisphere lower in H2 concentration by 17 ± 11 ppb and δD of H2 by 16 ± 12‰ than the Southern Hemisphere (95% confidence). On the basis of these snapshots, the interhemispheric gradient in δD was observed to be smallest in September through November, a time that experiences the largest gradient in concentration, and the largest in April, a time that has a small gradient in concentration. A simple hemispheric box model of the atmosphere indicates that, while the hemispheric asymmetry in soil sink of H2 is primarily responsible for the observed interhemispheric gradient in H2 concentration, the hemispheric difference in the δD of the H2 sources and sinks are equally responsible for the observed interhemispheric gradient in δD. Both the inverse correlation between interhemispheric H2 and δD gradients and their seasonal changes point to the importance of the H2 produced by photochemical sources. Comparisons with a three-dimensional chemical transport model shows reasonable agreement with mean behavior in both variables and provides an accounting for H2 sources and sinks within ±15% without a dramatic change in the H2 budget. Anomalous H2 concentrations and δD in tropics and low-latitude regions observed during the November-December 2001 meridional H2 and δD snapshot is thought to be a result of H2 emissions from biomass burning, possibly from continental Africa.
Hardcastle, Chris D; Harris, Joel M
2015-08-04
The ability of a vesicle membrane to preserve a pH gradient, while allowing for diffusion of neutral molecules across the phospholipid bilayer, can provide the isolation and preconcentration of ionizable compounds within the vesicle interior. In this work, confocal Raman microscopy is used to observe (in situ) the pH-gradient preconcentration of compounds into individual optically trapped vesicles that provide sub-femtoliter collectors for small-volume samples. The concentration of analyte accumulated in the vesicle interior is determined relative to a perchlorate-ion internal standard, preloaded into the vesicle along with a high-concentration buffer. As a guide to the experiments, a model for the transfer of analyte into the vesicle based on acid-base equilibria is developed to predict the concentration enrichment as a function of source-phase pH and analyte concentration. To test the concept, the accumulation of benzyldimethylamine (BDMA) was measured within individual 1 μm phospholipid vesicles having a stable initial pH that is 7 units lower than the source phase. For low analyte concentrations in the source phase (100 nM), a concentration enrichment into the vesicle interior of (5.2 ± 0.4) × 10(5) was observed, in agreement with the model predictions. Detection of BDMA from a 25 nM source-phase sample was demonstrated, a noteworthy result for an unenhanced Raman scattering measurement. The developed model accurately predicts the falloff of enrichment (and measurement sensitivity) at higher analyte concentrations, where the transfer of greater amounts of BDMA into the vesicle titrates the internal buffer and decreases the pH gradient. The predictable calibration response over 4 orders of magnitude in source-phase concentration makes it suitable for quantitative analysis of ionizable compounds from small-volume samples. The kinetics of analyte accumulation are relatively fast (∼15 min) and are consistent with the rate of transfer of a polar aromatic molecule across a gel-phase phospholipid membrane.
Wu, Chih Cheng; Lee, Grace W M; Yang, Shinhao; Yu, Kuo-Pin; Lou, Chia Ling
2006-10-15
Although negative air ionizer is commonly used for indoor air cleaning, few studies examine the concentration gradient of negative air ion (NAI) in indoor environments. This study investigated the concentration gradient of NAI at various relative humidities and distances form the source in indoor air. The NAI was generated by single-electrode negative electric discharge; the discharge was kept at dark discharge and 30.0 kV. The NAI concentrations were measured at various distances (10-900 cm) from the discharge electrode in order to identify the distribution of NAI in an indoor environment. The profile of NAI concentration was monitored at different relative humidities (38.1-73.6% RH) and room temperatures (25.2+/-1.4 degrees C). Experimental results indicate that the influence of relative humidity on the concentration gradient of NAI was complicated. There were four trends for the relationship between NAI concentration and relative humidity at different distances from the discharge electrode. The changes of NAI concentration with an increase in relative humidity at different distances were quite steady (10-30 cm), strongly declining (70-360 cm), approaching stability (420-450 cm) and moderately increasing (560-900 cm). Additionally, the regression analysis of NAI concentrations and distances from the discharge electrode indicated a logarithmic linear (log-linear) relationship; the distance of log-linear tendency (lambda) decreased with an increase in relative humidity such that the log-linear distance of 38.1% RH was 2.9 times that of 73.6% RH. Moreover, an empirical curve fit based on this study for the concentration gradient of NAI generated by negative electric discharge in indoor air was developed for estimating the NAI concentration at different relative humidities and distances from the source of electric discharge.
Generation and precise control of dynamic biochemical gradients for cellular assays
NASA Astrophysics Data System (ADS)
Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.
2017-03-01
Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.
NASA Astrophysics Data System (ADS)
Beitone, C.; Balandraud, X.; Delpueyo, D.; Grédiac, M.
2017-01-01
This paper presents a post-processing technique for noisy temperature maps based on a gradient anisotropic diffusion (GAD) filter in the context of heat source reconstruction. The aim is to reconstruct heat source maps from temperature maps measured using infrared (IR) thermography. Synthetic temperature fields corrupted by added noise are first considered. The GAD filter, which relies on a diffusion process, is optimized to retrieve as well as possible a heat source concentration in a two-dimensional plate. The influence of the dimensions and the intensity of the heat source concentration are discussed. The results obtained are also compared with two other types of filters: averaging filter and Gaussian derivative filter. The second part of this study presents an application for experimental temperature maps measured with an IR camera. The results demonstrate the relevancy of the GAD filter in extracting heat sources from noisy temperature fields.
Moore, Travis I.; Tanaka, Hiromasa; Kim, Hyung Joon; Jeon, Noo Li; Yi, Tau-Mu
2013-01-01
Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change. PMID:23242998
Carbonyl Sulfide: is it AN Isotope of CO2 on Steroids?
NASA Astrophysics Data System (ADS)
Berry, J. A.; Campbell, J. E.; Baker, I. T.; Whelan, M.; Hilton, T. W.
2015-12-01
The behavior of OCS in the atmosphere is very similar to that of CO2 and reminiscent of an isotopologue. It is stable, has a turnover time of a couple of years (similar to that of 18O in CO2). It can be measured with adequate accuracy - despite the fact that its abundance is one millionth that of CO2, but there is one dramatic difference. The seasonal variation in the concentration of OCS relative to its background concentration can be 6-10 fold larger than the corresponding variation in CO2 concentration. Furthermore there are large spatial gradients in atmospheric OCS, with the concentrations being generally lower over the continents than the ocean, and lower in the atmospheric boundary layer over vegetated surfaces than in the free troposphere. These gradients have been clearly resolved by flask sampling from aircraft and recently by satellite measurements. The dynamics of OCS are larger than any other conserved atmospheric gas and certainly dwarf isotopic gradients. There are strong differences in the kinetics of CO2 and OCS exchange with leaves (similar to an isotopic fractionation), but these are not responsible for the large atmospheric signals. The major driver of these gradients is a large spatial separation between the major sources of OCS (the tropical ocean) and the major sink (the terrestrial biosphere). This talk will review the biogeochemical cycle of OCS; the kinetics of its exchange with leaves and soils; the distribution of sources and sinks, and the local and large scale gradients of OCS concentration in the atmosphere.
Theoretical analysis of degradation mechanisms in the formation of morphogen gradients
NASA Astrophysics Data System (ADS)
Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.
2015-07-01
Fundamental biological processes of development of tissues and organs in multicellular organisms are governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in the concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that linear degradation processes lead to a dynamic behavior specified by times to form the morphogen gradients that depend linearly on the distance from the source. This is because the effective potential due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a quadratic scaling in the morphogen gradients formation times since the effective potentials are much weaker. Physical-chemical explanations of these phenomena are presented.
Pereira, W.E.; Hostettler, F.D.; Rapp, J.B.
1996-01-01
The distribution and fate of chlorinated pesticides, biomarkers, and polycyclic aromatic hydrocarbons (PAHs) in surficial sediments along a contamination gradient in the Lauritzen Canal and Richmond Harbor in San Francisco Bay was investigated. Compounds were identified and quantified using gas chromatography-ion trap mass spectrometry. Biomarkers and PAHs were derived primarily from weathered petroleum. DDT was reductively dechlorinated under anoxic conditions to DDD and several minor degradation products, DDMU, DDMS, and DDNU. Under aerobic conditions, DDT was dehydrochlorinated to DDE and DBP. Aerobic degradation of DDT was diminished or inhibited in zones of high concentration, and increased significantly in zones of lower concentration: Other chlorinated pesticides identified in sediment included dieldrin and chlordane isomers. Multivariate analysis of the distributions of the DDTs suggested that there are probably two sources of DDD. In addition, DDE and DDMU are probably formed by similar mechanisms, i.e. dehydrochlorination. A steep concentration gradient existed from the Canal to the Outer Richmond Harbor, but higher levels of DDD than those found in the remainder of the Bay indicated that these contaminants are transported on particulates and colloidal organic matter from this source into San Francisco Bay. Chlorinated pesticides and PAHs may pose a potential problem to biota in San Francisco Bay.
Model intra-comparison of transboundary sulfate loadings over springtime east Asia
NASA Astrophysics Data System (ADS)
Goto, D.; Ohara, T.; Nakajima, T.; Takemura, T.; Kajino, M.; Dai, T.; Matsui, H.; Takami, A.; Hatakeyama, S.; Aoki, K.; Sugimoto, N.; Shimizu, A.
2013-12-01
Over east Asia, a spatial gradient of sulfate aerosols from source to outflow regions has not fully evaluated by simulations. In the present study, we executed a global aerosol-transport model (SPRINTARS) during April 2006 to investigate the spatial gradient of sulfate aerosols using multiple measurements including surface mass concentration, aerosol optical thickness, and vertical profiles of extinction coefficients for spherical particles. We also performed sensitivity experiments to estimate possible uncertainties of sulfate mass loadings caused by macrophysical processes; emission inventory, dynamic core, and spatial resolution. Among the experiments, although a difference in the surface sulfate mass concentrations over east Asia was large, none of the simulations in the present study as well as regional models reproduced the spatial gradient of the surface sulfate from the source over China to the outflow regions in Japan. The sensitivity of different macrophysical factors to the surface sulfate differs from that to sulfate loadings in the column especially in the marine boundary layers (MBL). Therefore, to properly simulate the transboundary air pollution over east Asia is required to use multiple measurements in both the source and outflow regions especially in the MBL during the polluted days.
Wang, Xiao-Ping; Yao, Tan-Dong; Cong, Zhi-Yuan; Yan, Xing-Liang; Kang, Shi-Chang; Zhang, Yong
2006-12-15
High mountains may serve as condenser for persistent organic pollutants (POPs) and the vegetation in remote areas has been used as a means to characterized atmospheric concentrations of air pollutants. In this study, organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in Himalayan spruce needle samples from Zhangmu-Nyalam region (central-Himalayas) were analyzed and the altitudinal gradient of these pollutants was investigated. Total HCHs and DDTs concentration in needles were in the range of 1.3-2.9 ng g(-1) dry weight and 1.7-11 ng g(-1) dry weight, which were lower than concentrations reported in spruce needles from Alps, however higher than concentrations in conifer needles from mountain areas of Alberta. Total Himalayan spruce needle PAHs was below 600 ng g(-1) and fluorene, phenanthrene and acenaphthene were abundant individual compounds measured. The ratios of alpha-HCH/gamma-HCH in pine needles were similar with the usual values for technical HCH, implying technical HCHs might be used in this region. The high ratios of o-p'-DDT/p-p'-DDT and no p-p'-DDE measured in this study led to the suspicion that a new source of o-p'-DDT and/or p-p'-DDT existed in this region. In addition, higher ratios of low molecular weight-/high molecular weight-PAHs in this region indicated that petroleum combustion, vehicle emission and low-temperature combustion might be the major contributions of PAH source. To examine the POPs distillation, the analyte concentrations were correlated with altitude. The more volatile OCPs, alpha-HCH, gamma-HCH, aldrin and alpha-endosulfan positively correlated with altitude, however, less volatile OCPs (DDT and DDD) inversely related with elevation. Almost all PAHs detected in this area showed positive correlations with altitude. It is worthy to note that heavy PAHs (Benzo[k] fluoranthene and Benzo[a]anthracene) displayed positive correlation, which implied the sources of PAHs were near the sampling sites. The distillation of POPs was strongly affected by the proximity between sampling sites and contaminant sources. If the contaminant sources are close to the mountains, it may be the dominant factor that controls the concentration gradient.
NASA Astrophysics Data System (ADS)
Papaspiropoulos, Giorgos; Martinsson, Bengt G.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Hermann, Markus; Heintzenberg, Jost; Fischer, Herbert; van Velthoven, Peter F. J.
2002-12-01
This study with the Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) platform investigates the aerosol elemental concentrations at 9-11 km altitude in the northern hemisphere. Measurements from 31 intercontinental flights over a 2-year period between Germany and Sri Lanka/Maldives in the Indian Ocean are presented. Aerosol samples were collected with an impaction technique and were analyzed for the concentration of 18 elements using particle-induced X-ray emission (PIXE). Additional measurements of particle number concentrations, ozone and carbon monoxide concentrations, and meteorological modeling were included in the interpretation of the aerosol elemental concentrations. Particulate sulphur was found to be by far the most abundant element. Its upper tropospheric concentration increased, on average, by a factor of 2 from the tropics to midlatitudes, with another factor 2 higher concentrations in the lowermost stratosphere over midlatitudes. Correlation patterns and source profiles suggest contributions from crustal sources and biomass burning, but not from meteor ablation. Coinciding latitudinal gradients in particulate sulphur concentrations and emissions suggest that fossil fuel combustion is an important source of the aerosol in the upper troposphere and lowermost stratosphere. The measurements indicate aerosol transport along isentropic surfaces across the tropopause into the lowermost stratosphere. As a result of the prolonged residence time, ageing via oxidation of sulphur dioxide in the lowermost stratosphere was found to be a likely high-altitude, strong source that, along with downward transport of stratospheric air, could explain the vertical gradient of particulate sulphur mass concentration around the extratropical tropopause.
Barata, David; Spennati, Giulia; Correia, Cristina; Ribeiro, Nelson; Harink, Björn; van Blitterswijk, Clemens; Habibovic, Pamela; van Rijt, Sabine
2017-09-07
Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.
MODELING TRANSPORT IN THE DOWN GRADIENT PORTION OF THE 200-PO-1 OPERABLE UNIT AT THE HANFORD SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
MEHTA S; ALY AH; MILLER CW
2009-12-03
Remedial Investigations are underway for the 200-PO-l Operable Unit (OU) at the U.S. Department of Energy's Hanford Site in Washington State. To support the baseline risk assessment and evaluation of remedial alternatives, fate and transport modeling is being conducted to predict the future concentration of contaminants of potential concern in the 200-PO-1 OU. This study focuses on modeling the 'down gradient' transport of those contaminants that migrate beyond the 3-D model domain selected for performing detailed 'source area' modeling within the 200-PO-1 OU. The down gradient portion is defined as that region of the 200-PO-1 OU that is generally outsidemore » the 200 Area (considered 'source area') of the Hanford Site. A 1-D transport model is developed for performing down gradient contaminant fate and transport modeling. The 1-D transport model is deemed adequate based on the inferred transport pathway of tritium in the past and the observation that most of the contaminant mass remains at or near the water table within the unconfined aquifer of the Hanford Formation and the Cold-Creek/Pre-Missoula Gravel unit. The Pipe Pathway feature of the GoldSim software is used to perform the calculations. The Pipe Pathway uses a Laplace transform approach to provide analytical solutions to a broad range of advection-dominated mass transport systems involving one-dimensional advection, longitudinal dispersion, retardation, decay and ingrowth, and exchanges with immobile storage zones. Based on the historical concentration distribution data for the extensive tritium plume in this area, three Pipe Pathways are deemed adequate for modeling transport of contaminants. Each of these three Pipe Pathways is discretized into several zones, based on the saturated thickness variation in the unconfined aquifer and the location of monitoring wells used for risk assessment calculation. The mass fluxes of contaminants predicted to exit the source area model domain are used as an input to the down gradient model, while the flow velocities applied are based on the present-day hydraulic gradients and estimation of hydraulic conductivity in the unconfined aquifer. The results of the calculation indicate that the future concentrations of contaminants of potential concern in the down gradient portion of the 200-PO-1 OU declines with time and distance.« less
Bacterial chemotaxis along vapor-phase gradients of naphthalene.
Hanzel, Joanna; Harms, Hauke; Wick, Lukas Y
2010-12-15
The role of bacterial growth and translocation for the bioremediation of organic contaminants in the vadose zone is poorly understood. Whereas air-filled pores restrict the mobility of bacteria, diffusion of volatile organic compounds in air is more efficient than in water. Past research, however, has focused on chemotactic swimming of bacteria along gradients of water-dissolved chemicals. In this study we tested if and to what extent Pseudomonas putida PpG7 (NAH7) chemotactically reacts to vapor-phase gradients forming above their swimming medium by the volatilization from a spot source of solid naphthalene. The development of an aqueous naphthalene gradient by air-water partitioning was largely suppressed by means of activated carbon in the agar. Surprisingly, strain PpG7 was repelled by vapor-phase naphthalene although the steady state gaseous concentrations were 50-100 times lower than the aqueous concentrations that result in positive chemotaxis of the same strain. It is thus assumed that the efficient gas-phase diffusion resulting in a steady, and possibly toxic, naphthalene flux to the cells controlled the chemotactic reaction rather than the concentration to which the cells were exposed. To our knowledge this is the first demonstration of apparent chemotactic behavior of bacteria in response to vapor-phase effector gradients.
Development of morphogen gradient: The role of dimension and discreteness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teimouri, Hamid; Kolomeisky, Anatoly B.
2014-02-28
The fundamental processes of biological development are governed by multiple signaling molecules that create non-uniform concentration profiles known as morphogen gradients. It is widely believed that the establishment of morphogen gradients is a result of complex processes that involve diffusion and degradation of locally produced signaling molecules. We developed a multi-dimensional discrete-state stochastic approach for investigating the corresponding reaction-diffusion models. It provided a full analytical description for stationary profiles and for important dynamic properties such as local accumulation times, variances, and mean first-passage times. The role of discreteness in developing of morphogen gradients is analyzed by comparing with available continuummore » descriptions. It is found that the continuum models prediction about multiple time scales near the source region in two-dimensional and three-dimensional systems is not supported in our analysis. Using ideas that view the degradation process as an effective potential, the effect of dimensionality on establishment of morphogen gradients is also discussed. In addition, we investigated how these reaction-diffusion processes are modified with changing the size of the source region.« less
Nurse plants transfer more nitrogen to distantly related species.
Montesinos-Navarro, Alicia; Verdú, Miguel; Querejeta, José Ignacio; Valiente-Banuet, Alfonso
2017-05-01
Plant facilitative interactions enhance co-occurrence between distant relatives, partly due to limited overlap in resource requirements. We propose a different mechanism for the coexistence of distant relatives based on positive interactions of nutrient sharing. Nutrients move between plants following source-sink gradients driven by plant traits that allow these gradients to establish. Specifically, nitrogen (N) concentration gradients can arise from variation in leaf N content across plants species. As many ecologically relevant traits, we hypothesize that leaf N content is phylogenetically conserved and can result in N gradients promoting N transfer among distant relatives. In a Mexican desert community governed by facilitation, we labelled nurse plants (Mimosa luisana) with 15 N and measured its transfer to 14 other species in the community, spanning the range of phylogenetic distances to the nurse plant. Nurses established steeper N source-sink gradients with distant relatives, increasing 15 N transfer toward these species. Nutrient sharing may provide long-term benefits to facilitated plants and may be an overlooked mechanism maintaining coexistence and increasing the phylogenetic diversity of plant communities. © 2017 by the Ecological Society of America.
Shadowgraph Study of Gradient Driven Fluctuations
NASA Technical Reports Server (NTRS)
Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William
2002-01-01
A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.
The paper presents the Community Line Source (C-LINE) modeling system that estimates toxic air pollutant (air toxics) concentration gradients within 500 meters of busy roadways for community-sized areas on the order of 100 km2. C-LINE accesses publicly available datasets with nat...
Contaminant dispersal in bounded turbulent shear flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J.M.; Bernard, P.S.; Chiang, K.F.
The dispersion of smoke downstream of a line source at the wall and at y{sup +} = 30 in a turbulent boundary layer has been predicted with a non-local model of the scalar fluxes {bar u}c and {bar v}c. The predicted plume from the wall source has been compared to high Schmidt number experimental measurements using a combination of hot-wire anemometry to obtain velocity component data synchronously with concentration data obtained optically. The predicted plumes from the source at y{sup +} = 30 and at the wall also have been compared to a low Schmidt number direct numerical simulation. Nearmore » the source, the non-local flux models give considerably better predictions than models which account solely for mean gradient transport. At a sufficient distance downstream the gradient models gives reasonably good predictions.« less
Foti, Ludovic; Dubs, Florence; Gignoux, Jacques; Lata, Jean-Christophe; Lerch, Thomas Z; Mathieu, Jérôme; Nold, François; Nunan, Naoise; Raynaud, Xavier; Abbadie, Luc; Barot, Sébastien
2017-11-15
The concentration, degree of contamination and pollution of 7 trace elements (TEs) along an urban pressure gradient were measured in 180 lawn and wood soils of the Paris region (France). Iron (Fe), a major element, was used as reference element. Copper (Cu), cadmium (Cd), lead (Pb) and zinc (Zn) were of anthropogenic origin, while arsenic (As), chromium (Cr) and nickel (Ni) were of natural origin. Road traffic was identified as the main source of anthropogenic TEs. In addition, the industrial activity of the Paris region, especially cement plants, was identified as secondary source of Cd. Soil characteristics (such as texture, organic carbon (OC) and total nitrogen (tot N) contents) tell the story of the soil origins and legacies along the urban pressure gradient and often can explain TE concentrations. The history of the land-use types was identified as a factor that allowed understanding the contamination and pollution by TEs. Urban wood soils were found to be more contaminated and polluted than urban lawns, probably because woods are much older than lawns and because of the legacy of the historical management of soils in the Paris region (Haussmann period). Lawn soils are similar to the fertile agricultural soils and relatively recently (mostly from the 1950s onwards) imported from the surrounding of Paris, so that they may be less influenced by urban conditions in terms of TE concentrations. Urban wood soils are heavily polluted by Cd, posing a high risk to the biological communities. The concentration of anthropogenic TEs increased from the rural to the urban areas, and the concentrations of most anthropogenic TEs in urban areas were equivalent to or above the regulatory reference values, raising the question of longer-term monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
Colman, John A.
2001-01-01
Measurements of elevated concentrations of polychlorinated biphenyls (PCBs) in fish and in streambed sediments of the Millers River Basin, Massachusetts and New Hampshire, have been reported without evidence of the PCB source. In 1999, an investigation was initiated to determine the source(s) of the elevated PCB concentrations observed in fish and to establish the extent of fish exposure to PCBs along the entire main stems of the Millers River and one of its tributaries, the Otter River. Passive samplers deployed for 2-week intervals in the water-column at 3 1 stations, during summer and fall 1999, were used to assess PCB concentrations in the Millers River Basin. The samplers concentrate PCBs, which diffuse from the water column through a polyethylene membrane to hexane (0.200 liters) contained inside the samplers. Only dissolved PCBs (likely equivalent to the bioavailable fraction) are subject to diffusion through the membrane. The summed concentrations of all targeted PCB congeners (summed PCB) retrieved from the samplers ranged from 1 to 8,000 nanograms per hexane sample. Concentration and congener-pattern comparisons indicated that the historical release of PCBs in the Millers River Basin likely occurred on the Otter River at the upstream margin of Baldwinville, Mass. Elevated water-column concentrations measured in a wetland reach on the Otter River downstream from Baldwinville were compatible with a conceptual model for a present-day (1999) source in streambed sediments, to which the PCBs partitioned after their original introduction into the Otter River and from which PCBs are released to the water now that the original discharge has ceased or greatly decreased. Two four-fold decreases in summed PCB concentrations in the Millers River, by comparison with the highest concentration on the Otter River, likely were caused by (1) dilution with water from the relatively uncontaminated upstream Millers River and (2) volatilization of PCBs from the Millers River in steep-gradient reaches. A relatively constant concentration of summed PCBs in the reach of the Millers River from river mile 20 to river mile 10 was likely a consequence of a balance between decreased volatilization rates in that relatively low-gradient reach and resupply of PCBs to the water column from contaminated streambed sediments. A second high-gradient reach from river mile 10 to the confluence of the Millers River with the Connecticut River also was associated with a decrease in concentration of water-column summed PCBs. Volatilization as a loss mechanism was supported by evidence in the form of slight changes of the congener pattern in the reaches where decreases occurred. Exposure of fish food webs to concentrations of dissolved PCBs exceeded the U.S. Environmental Protection Agency's water-quality criterion for PCBs throughout most of the Millers River and Otter River main stems. Because the apparent source of PCBs discharged was upstream on the Otter River, a large number of river miles downstream (more than 30 mi) had summer water-column PCB concentrations that would likely lead to high concentrations of PCBs in fish.
Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan
2016-01-01
Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes.
Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan
2016-01-01
Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes. PMID:27337100
Essential basal cytonemes take up Hedgehog in the Drosophila wing imaginal disc.
Chen, Weitao; Huang, Hai; Hatori, Ryo; Kornberg, Thomas B
2017-09-01
Morphogen concentration gradients that extend across developmental fields form by dispersion from source cells. In the Drosophila wing disc, Hedgehog (Hh) produced by posterior compartment cells distributes in a concentration gradient to adjacent cells of the anterior compartment. We monitored Hh:GFP after pulsed expression, and analyzed the movement and colocalization of Hh, Patched (Ptc) and Smoothened (Smo) proteins tagged with GFP or mCherry and expressed at physiological levels from bacterial artificial chromosome transgenes. Hh:GFP moved to basal subcellular locations prior to release from posterior compartment cells that express it, and was taken up by basal cytonemes that extend to the source cells. Hh and Ptc were present in puncta that moved along the basal cytonemes and formed characteristic apical-basal distributions in the anterior compartment cells. The basal cytonemes required diaphanous , SCAR , N euroglian and S ynaptobrevin , and both the Hh gradient and Hh signaling declined under conditions in which the cytonemes were compromised. These findings show that in the wing disc, Hh distributions and signaling are dependent upon basal release and uptake, and on cytoneme-mediated movement. No evidence for apical dispersion was obtained. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Wiegner, T. N.
2005-05-01
Dissolved organic matter (DOM) is metabolically important in streams. Its bioavailability is influenced by organic matter sources to streams and inorganic nutrient availability. As forest canopies and soils develop over time, organic matter inputs to streams should switch from algal to watershed sources. Across this succession gradient, nutrient limitation should also change. This study examines how chemical composition and bioavailability of DOM from tropical montane rainforest streams on Hawaii change across a geologic age gradient from 4 ky to 150 ky. Dissolved organic C (DOC) and N (DON) concentrations, chemical characteristics, and bioavailability varied with site age. With increasing stream age, DOC and DON concentrations, DOM aromaticity, and the C:N of the stream DOM increased. Changes in stream DOM chemistry and inorganic nutrient availability affected DOM bioavailability. Fifty percent of the DOC from the 4 ky site was bioavailable, where little to none was bioavailable from the older streams. Inorganic nutrient availability did not affect DOC bioavailability. In contrast, DON bioavailability was similar (12%) across sites and was affected by inorganic nutrient availability. This study demonstrates that the chemistry and metabolism of streams draining forests change with ecosystem age and development.
Visualization of an endogenous retinoic acid gradient across embryonic development.
Shimozono, Satoshi; Iimura, Tadahiro; Kitaguchi, Tetsuya; Higashijima, Shin-Ichi; Miyawaki, Atsushi
2013-04-18
In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source-sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and regenerative medicine.
Buvaneshwari, Sriramulu; Riotte, Jean; Sekhar, M; Mohan Kumar, M S; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Giriraja, P R; Praveenkumarreddy, Yerabham; Moger, Hemanth; Durand, Patrick; Braun, Jean-Jacques; Ruiz, Laurent
2017-02-01
Agriculture has been increasingly relying on groundwater irrigation for the last decades, leading to severe groundwater depletion and/or nitrate contamination. Understanding the links between nitrate concentration and groundwater resource is a prerequisite for assessing the sustainability of irrigated systems. The Berambadi catchment (ORE-BVET/Kabini Critical Zone Observatory) in Southern India is a typical example of intensive irrigated agriculture and then an ideal site to study the relative influences of land use, management practices and aquifer properties on NO 3 spatial distribution in groundwater. The monitoring of >200 tube wells revealed nitrate concentrations from 1 to 360mg/L. Three configurations of groundwater level and elevation gradient were identified: i) NO 3 hot spots associated to deep groundwater levels (30-60m) and low groundwater elevation gradient suggest small groundwater reserve with absence of lateral flow, then degradation of groundwater quality due to recycling through pumping and return flow; ii) high groundwater elevation gradient, moderate NO 3 concentrations suggest that significant lateral flow prevented NO 3 enrichment; iii) low NO 3 concentrations, low groundwater elevation gradient and shallow groundwater indicate a large reserve. We propose that mapping groundwater level and gradient could be used to delineate zones vulnerable to agriculture intensification in catchments where groundwater from low-yielding aquifers is the only source of irrigation. Then, wells located in low groundwater elevation gradient zones are likely to be suitable for assessing the impacts of local agricultural systems, while wells located in zones with high elevation gradient would reflect the average groundwater quality of the catchment, and hence should be used for regional mapping of groundwater quality. Irrigation with NO 3 concentrated groundwater induces a "hidden" input of nitrogen to the crop which can reach 200kgN/ha/yr in hotspot areas, enhancing groundwater contamination. Such fluxes, once taken into account in fertilizer management, would allow optimizing fertilizer consumption and mitigate high nitrate concentrations in groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Variation in mineral content of red maple sap across an atmospheric deposition gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, L.H.
1997-11-01
Xylem sap was collected from red maple (Acer rubrum L.) trees during the spring of 1988 and 1989 at seven forest sites along an atmospheric deposition gradient in north central Pennsylvania and analyzed for pH and twelve mineral constituents. The objectives of the study were to examine the sources and patterns of variation in red maple sap chemistry across an atmospheric deposition gradient and to assess the feasibility of using sap analysis as an indicator of nutrient bioavailability. For most sap constituents, there was considerable spatial and temporal variation in concentration. Sources of variation included within and between site variation,more » date, and year of collection. The nature and extent of variation varied for different constituents. Site differences were similar in 1988 and 1989 for most sap constituents and for some constituents corresponded with differences in soil levels.« less
Neal, Colin; Martin, Ellie; Neal, Margaret; Hallett, John; Wickham, Heather D; Harman, Sarah A; Armstrong, Linda K; Bowes, Mike J; Wade, Andrew J; Keay, David
2010-10-15
Information is provided on phosphorus in the River Kennet and the adjacent Kennet and Avon Canal in southern England to assess their interactions and the changes following phosphorus reductions in sewage treatment work (STW) effluent inputs. A step reduction in soluble reactive phosphorus (SRP) concentration within the effluent (5 to 13 fold) was observed from several STWs discharging to the river in the mid-2000s. This translated to over halving of SRP concentrations within the lower Kennet. Lower Kennet SRP concentrations change from being highest under base-flow to highest under storm-flow conditions. This represented a major shift from direct effluent inputs to a within-catchment source dominated system characteristic of the upper part to the catchment. Average SRP concentrations in the lower Kennet reduced over time towards the target for good water quality. Critically, there was no corresponding reduction in chlorophyll-a concentration, the waters remaining eutrophic when set against standards for lakes. Following the up gradient input of the main water and SRP source (Wilton Water), SRP concentrations in the canal reduced down gradient to below detection limits at times near its junction with the Kennet downstream. However, chlorophyll concentrations in the canal were in an order of magnitude higher than in the river. This probably resulted from long water residence times and higher temperatures promoting progressive algal and suspended sediment generations that consumed SRP. The canal acted as a point source for sediment, algae and total phosphorus to the river especially during the summer months when boat traffic disturbed the canal's bottom sediments and the locks were being regularly opened. The short-term dynamics of this transfer was complex. For the canal and the supply source at Wilton Water, conditions remained hypertrophic when set against standards for lakes even when SRP concentrations were extremely low. Copyright © 2010 Elsevier B.V. All rights reserved.
Elevational and Spatial Gradients of Atmospheric Metal Pollution in the North Pacific
NASA Astrophysics Data System (ADS)
Jongebloed, U. A.; Osterberg, E. C.; Kreutz, K. J.; Ferris, D. G.; Campbell, S.; Saylor, P. L.; Winski, D.; Handley, M.
2017-12-01
The industrial revolution has led to a several-fold increase in the atmospheric concentrations of heavy metals and metalloids including Pb, Cd, Cu, Zn, Hg and As. Modern emissions inventories identify Asia as the largest emitter of many of these toxic pollutants, which are subsequently transported eastwards across the North Pacific Ocean by prevailing westerly winds in the mid-upper troposphere. Previous ice cores collected from the Yukon Territory in the eastern North Pacific reveal evolution-dependent metal pollution histories; the highest (5300 m elevation) core from Mt. Logan records a nearly pure trans-Pacific Asian pollution record, whereas cores from lower sites like the Eclipse Icefield (3017 m) record a complex combination of Asian and more local North American emission. However, it is unclear if this elevation gradient of pollution sources is found in other regions of the North Pacific. Furthermore, the previous ice core records end in the late 1990's, before efforts by some Asian nations to reduce metal pollution, and it is unknown if North Pacific atmospheric metal concentrations have declined in response to these efforts. Here we investigate metal and metalloid concentrations and sources recorded in ice core and snow pit samples recovered from a vertical transect spanning 2200 - 5242 m within Denali National Park in the Central Alaska Range. We compare these metal concentrations and crustal enrichment factors to data from the Yukon Territory to investigate North Pacific regional metal gradients. We also present preliminary results from a new 60 m ice core from the Eclipse Icefield to evaluate recent trends in metal concentrations since the end of the Mt. Logan and original Eclipse records in 1998, and compare this to the recent metal pollution history recorded in the 2013 Denali Ice Core collected from the summit plateau (3900 m) of Mt. Hunter.
Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion
NASA Astrophysics Data System (ADS)
Nandi, Saroj Kumar; Safran, Sam A.
2018-05-01
One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen," whose action is similar to that of morphogens in multi-cell assemblies; the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use stability analysis to show that these gradients are linearly stable with respect to perturbations.
Smith, R.L.; Harvey, R.W.; LeBlanc, D.R.
1991-01-01
Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, U.S.A. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in groundwater studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, USA. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in ground-water studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.
Spatial Gradients and Source Apportionment of Volatile Organic Compounds Near Roadways
Concentrations of 55 volatile organic compounds (VOCs) are reported near a highway in Raleigh, NC (traffic volume of approximately 125,000 vehicles/day). Levels of VOCs generally decreased exponentially with perpendicular distance from the roadway 10-100m). The EPA Chemical Mass ...
2014-01-01
Background Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. Methods We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. Results During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Conclusions Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling. PMID:24735818
Shmool, Jessie Lc; Michanowicz, Drew R; Cambal, Leah; Tunno, Brett; Howell, Jeffery; Gillooly, Sara; Roper, Courtney; Tripathy, Sheila; Chubb, Lauren G; Eisl, Holger M; Gorczynski, John E; Holguin, Fernando E; Shields, Kyra Naumoff; Clougherty, Jane E
2014-04-16
Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling.
Modeling Yeast Cell Polarization Induced by Pheromone Gradients
NASA Astrophysics Data System (ADS)
Yi, Tau-Mu; Chen, Shanqin; Chou, Ching-Shan; Nie, Qing
2007-07-01
Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical model of the yeast pheromone response that describes the dynamics of the heterotrimeric and Cdc42p G-protein cycles, which are linked in a cascade. Two key performance objectives of this system are (1) amplification—converting a shallow external gradient of ligand to a steep internal gradient of protein components and (2) tracking—following changes in gradient direction. We used simulations to investigate amplification mechanisms that allow tracking. We identified specific strategies for regulating the spatial dynamics of the protein components (i.e. their changing location in the cell) that would enable the cell to achieve both objectives.
Factors affecting low summer dissolved oxygen concentrations in Mississippi Delta bayous
USDA-ARS?s Scientific Manuscript database
Streams in watersheds supporting intensive row-crop agriculture are vulnerable to ecological degradation due to non-point source pollutants such as nutrients. Low gradient streams such as bayous are especially susceptible to pollutants due to increased water residence time, and they often exhibit po...
NASA Astrophysics Data System (ADS)
Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo
2017-04-01
Back diffusion of organic contaminants is often the cause of groundwater plumes' persistence and can significantly hinder cleanup interventions [1, 2]. In this study we perform a high-resolution investigation of back diffusion in a well-controlled flow-through laboratory setup. We considered cis-dichloroethene (cis-DCE) as model contaminant and we investigated its back diffusion from an impermeable source into a permeable saturated layer, in which advection-dominated flow conditions were established. We used concentration and stable chlorine isotope measurements to investigate the plumes originated by cis-DCE back diffusion in a series of flow-through experiments, performed in porous media with different hydraulic conductivity and at different seepage velocities (i.e., 0.4, 0.8 and 1.2 m/day). A two-centimeter thick agarose gel layer was placed at the bottom of the setup to simulate the source of cis-DCE back diffusion from an impervious layer. Intensive sampling (>1000 measurements) was carried out, including the withdrawal of aqueous samples at closely spaced (1 cm) outlet ports, as well as the high-resolution sampling of the source zone (agarose gel) at the end of each experiment. The transient behavior of the plumes originated by back diffusion was investigated by sampling the outlet ports at regular intervals in the experiments, each run for a total time corresponding to 15 pore volumes. The high-resolution sampling allowed us to resolve the spatial and temporal evolution of concentration and stable isotope gradients in the flow-through setup. In particular, steep concentration and stable isotope gradients were observed at the outlet. Lateral isotope gradients corresponding to chlorine isotope fractionation up to 20‰ were induced by cis-DCE back diffusion and subsequent advection-dominated transport in all flow-through experiments. A numerical modeling approach, tracking individually all chlorine isotopologues, based on the accurate parameterization of local dispersion, as well as on the values of aqueous diffusion coefficients and diffusion-induced isotope fractionation from a previous study [3], provided a good agreement with the experimental data. References [1] Mackay, D. M.; Cherry, J. A. Groundwater contamination: Pumpand-treat remediation. Environ. Sci. Technol. 1989, 23, 630-636. [2] Parker, B. L.; Chapman, S. W.; Guilbeault, M. A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. J. Contam. Hydrol. 2008, 102, 19-19. [3] Jin, B., Rolle, M., Li, T., Haderlein, S.B., 2014. Diffusive fractionation of BTEX and chlorinated ethenes in aqueous solution: quantification of spatial isotope gradients. Environ. Sci. Technol. 48, 6141-6150.
Spatial & temporal variations of PM10 and particle number concentrations in urban air.
Johansson, Christer; Norman, Michael; Gidhagen, Lars
2007-04-01
The size of particles in urban air varies over four orders of magnitude (from 0.001 microm to 10 microm in diameter). In many cities only particle mass concentrations (PM10, i.e. particles <10 microm diameter) is measured. In this paper we analyze how differences in emissions, background concentrations and meteorology affect the temporal and spatial distribution of PM10 and total particle number concentrations (PNC) based on measurements and dispersion modeling in Stockholm, Sweden. PNC at densely trafficked kerbside locations are dominated by ultrafine particles (<0.1 microm diameter) due to vehicle exhaust emissions as verified by high correlation with NOx. But PNC contribute only marginally to PM10, due to the small size of exhaust particles. Instead wear of the road surface is an important factor for the highest PM10 concentrations observed. In Stockholm, road wear increases drastically due to the use of studded tires and traction sand on streets during winter; up to 90% of the locally emitted PM10 may be due to road abrasion. PM10 emissions and concentrations, but not PNC, at kerbside are controlled by road moisture. Annual mean urban background PM10 levels are relatively uniformly distributed over the city, due to the importance of long range transport. For PNC local sources often dominate the concentrations resulting in large temporal and spatial gradients in the concentrations. Despite these differences in the origin of PM10 and PNC, the spatial gradients of annual mean concentrations due to local sources are of equal magnitude due to the common source, namely traffic. Thus, people in different areas experiencing a factor of 2 different annual PM10 exposure due to local sources will also experience a factor of 2 different exposure in terms of PNC. This implies that health impact studies based solely on spatial differences in annual exposure to PM10 may not separate differences in health effects due to ultrafine and coarse particles. On the other hand, health effect assessments based on time series exposure analysis of PM10 and PNC, should be able to observe differences in health effects of ultrafine particles versus coarse particles.
Air-snow exchange of nitrogen oxides and ozone at a polluted mid-latitude site
NASA Astrophysics Data System (ADS)
Murphy, Jennifer G.; Hong, Angela C.; Quinn, Patricia K.; Bates, Tim
2017-04-01
Vertical gradients of O3, NO, NO2 and NOywere measured within and above the snowpack between January 17 to February 14, 2014 as part of the Uintah Basin Winter Ozone Study. During the first half of the campaign, the snowpack was relatively aged and contained high levels of inorganic ions and dissolved and particulate organics. A snowfall on Jan 31 added 5 cm of fresh snow with lower solute concentrations to the top of the snowpack. Vertical gradients (ΔC = C(25cm) - C(125cm)) in the measured gas phase species were used to investigate the role of the snowpack as a source or sink. Small positive gradients were seen for NO, peaking in the middle of the day, which much larger negative gradients were seen for O3 and NOy. Comparing the fresh to the aged snowpacks, there was a noticeable decrease in the gradient for O3, but not for NOy over the fresh snow, implying a chemical control of O3 deposition to the snow. The ratio of the gradient of NOx to the gradient of NOy was used to determine a snowpack NOy recycling ratio (emission/deposition) of approximately 4 %, consistent with independent estimates of low nitrate photolysis rates inferred from nitrogen isotopes by Zatko et al., (2016). Reference Zatko et al., The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA, Atmos. Chem. Phys., 16, 13837-13851, 2016.
Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony R.; Romanok, Kristin M.; Wengrowski, Edward W
2015-01-01
A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenico Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.
Factors affecting low summer dissolved oxygen concentrations in Mississippi Delta bayous
USDA-ARS?s Scientific Manuscript database
Streams in watersheds supporting intensive row-crop agriculture are vulnerable to ecological degradation due to non-point source discharge of pollutants such as nutrients. Low gradient streams such as bayous are especially susceptible due to increased water residence time, and often result in poor w...
Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J
2014-09-06
A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.
A microfluidic multi-injector for gradient generation.
Chung, Bong Geun; Lin, Francis; Jeon, Noo Li
2006-06-01
This paper describes a microfluidic multi-injector (MMI) that can generate temporal and spatial concentration gradients of soluble molecules. Compared to conventional glass micropipette-based methods that generate a single gradient, the MMI exploits microfluidic integration and actuation of multiple pulsatile injectors to generate arbitrary overlapping gradients that have not previously been possible. The MMI device is fabricated in poly(dimethylsiloxane) (PDMS) using multi-layer soft lithography and consists of fluidic channels and control channels with pneumatically actuated on-chip barrier valves. Repetitive actuation of on-chip valves control pulsatile release of solution that establishes microscopic chemical gradients around the orifice. The volume of solution released per actuation cycle ranged from 30 picolitres to several hundred picolitres and increased linearly with the duration of valve opening. The shape of the measured gradient profile agreed closely with the simulated diffusion profile from a point source. Steady state gradient profiles could be attained within 10 minutes, or less with an optimized pulse sequence. Overlapping gradients from 2 injectors were generated and characterized to highlight the advantages of MMI over conventional micropipette assays. The MMI platform should be useful for a wide range of basic and applied studies on chemotaxis and axon guidance.
On the Concentration Gradient across a Spherical Source Washed by Slow Flow
Jaffe, Lionel
1965-01-01
A model has been numerically analyzed to help interpret the orienting effects of flow upon cells. The model is a sphere steadily and uniformly emitting a diffusible stuff into a medium otherwise free of it and moving past with Stokes flow. Its properties depend primarily upon the Peclet number, Pe, equal to a · v∞/D, i.e., the sphere's radius, a, times the free stream speed, v∞, over the stuff's diffusion constant, D. As Pe rises, and washing becomes more effective, the average surface concentration, C̄s a falls (Figs. 2 and 5) and the residual material becomes relatively concentrated on the sphere's lee pole (Figs. 2 and 4). Specifically, as Pe rises from 0.1 to 1, the relative concentration gradient, G, rises from 0.7 to 5.0 per cent and to the point where it is rising at about 8 per cent per decade; by Pe 1000, G = 22.1 per cent. From Pe 1 through 1000, G/(1 - C̄s a), or the gradient per concentration deficiency remains at about 26 per cent suggesting that G approaches a ceiling of about 26 per cent. Also from Pe 1 through 1000, the average mass transfer co-efficient nearly equals that previously calculated for spheres maintaining constant surface concentration instead of flux. The complete differential equation without approximations, the Gauss-Seidel method, and an approximation for the outer boundary condition were used. PMID:14268954
NASA Astrophysics Data System (ADS)
Wymore, A.; Rodriguez-Cardona, B.; Coble, A. A.; Potter, J.; Lopez Lloreda, C.; Perez Rivera, K.; De Jesus Roman, A.; Bernal, S.; Martí Roca, E.; Kram, P.; Hruska, J.; Prokishkin, A. S.; McDowell, W. H.
2016-12-01
Watershed nitrogen exports are often dominated by dissolved organic nitrogen (DON); yet, little is known about the role ambient DON plays in ecosystems. As an organic nutrient, DON may serve as either an energy source or as a nutrient source. One hypothesized control on DON is nitrate (NO3-) availability. Here we examine the interaction of NO3- and DON in streams across temperate forests, tropical rainforests, and Mediterranean and taiga biomes. Experimental streams also drain contrasting Critical Zones which provide gradients of vegetation, soil type and lithology (e.g. volcaniclastic, granitic, ultramafic, Siberian Traps Flood Basalt) in which to explore how the architecture of the Critical Zone affects microbial biogeochemical reactions. Streams ranged in background dissolved organic carbon (DOC) concentration (1-50 mg C/L) and DOC: NO3- ratios (10-2000). We performed a series of ecosystem-scale NO3- additions in multiple streams within each environment and measured the change in DON concentration. Results demonstrate that there is considerable temporal and spatial variation across systems with DON both increasing and decreasing in response to NO3- addition. Ecologically this suggests that DON can serve as both a nutrient source and an energy source to aquatic microbial communities. In contrast, DOC concentrations rarely changed in response to NO3- additions suggesting that the N-rich fraction of the ambient dissolved organic matter pool is more bioreactive than the C-rich fraction. Contrasting responses of the DON and DOC pools indicate different mechanisms controlling their respective cycling. It is likely that DON plays a larger role in ecosystems than previously recognized.
Methylmercury bioaccumulation in an urban estuary: Delaware River USA.
Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia
2017-09-01
Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.
Rosen, Michael R; Alvarez, David A; Goodbred, Steven L; Leiker, Thomas J; Patiño, Reynaldo
2010-01-01
The delineation of lateral and vertical gradients of organic contaminants in lakes is hampered by low concentrationsand nondetection of many organic compounds in water. Passive samplers (semipermeable membrane devices [SPMDs] and polar organic chemical integrative samplers [POCIS]) are well suited for assessing gradients because they can detect synthetic organic compounds (SOCs) at pg L(-1) concentrations. Semi-permeable membrane devices and POCIS were deployed in Lake Mead, at two sites in Las Vegas Wash, at four sites across Lake Mead, and in the Colorado River downstream from Hoover Dam. Concentrations of hydrophobic SOCs were highest in Las Vegas Wash downstream from waste water and urban inputs and at 8 m depth in Las Vegas Bay (LVB) where Las Vegas Wash enters Lake Mead. The distribution of hydrophobic SOCs showed a lateral distribution across 10 km of Lake Mead from LVB to Boulder Basin. To assess possible vertical gradient SOCs, SPMDs were deployed at 4-m intervals in 18 m of water in LVB. Fragrances and legacy SOCs were found at the greatest concentrations at the deepest depth. The vertical gradient of SOCs indicated that contaminants were generally confined to within 6 m of the lake bottom during the deployment interval. The high SOC concentrations, warmer water temperatures, and higher total dissolved solids concentrations at depth are indicative of a plume of Las Vegas Wash water moving along the lake bottom. The lateral and vertical distribution of SOCs is discussed in the context of other studies that have shown impaired health of fish exposed to SOCs.
Lucy A. Rose; Emily M. Elliott; Mary Beth. Adams
2015-01-01
Nitrogen (N) deposition affects forest biogeochemical cycles worldwide, often contributing to N saturation. Using long-term (>30-year) records of stream nitrate (NO3-) concentrations at Fernow Experimental Forest (West Virginia, USA), we classified four watersheds into N saturation stages ranging from Stage 0 (N-...
Is Forest Ground and Soil a Net Source or Sink for HONO?
NASA Astrophysics Data System (ADS)
Kim, T.; Kim, K.; Zhou, X.
2017-12-01
Ambient measurements and chamber experiments were conducted at the PROPHET site during the PROPHET-AMOS 2016 field campaign, to investigate the exchange of nitrous acid (HONO) between the forest ground and the atmosphere. HONO concentrations measured at 1.3 m and 10 cm above the ground surface consistently showed positive gradients with height, suggesting that the ground surface was a net sink for HONO. The HONO concentration gradients were significantly more pronounced during rainy and foggy periods than during dry periods, indicating an enhancement of HONO deposition onto the wet ground surface. Significant loss of HONO from the gas phase to the ground surface in an open-bottom chamber supports the argument that forest ground is a net HONO sink via deposition. Despite the ground surface was not a net HONO source, HONO was found to accumulate in the atmosphere within the forest canopy during the first half of the night. Heterogeneous reactions of NO2 on the surfaces of tree trunks and branches is proposed to be responsible for the observed nighttime HONO production.
NASA Astrophysics Data System (ADS)
Kompalli, Sobhan Kumar; Suresh Babu, S.; Krishna Moorthy, K.; Nair, Vijayakumar S.; Gogoi, Mukunda M.; Chaubey, Jai Prakash
2013-01-01
Synthesizing data from several cruise experiments over the Bay of Bengal (BoB), the seasonal characterization of aerosol black carbon (BC) mass concentration was made. The study indicated that the BC mass concentration (MBC) showed significant seasonal variation over the oceanic region with MBC being the highest during the winter season (˜2407 ± 1756 ng m-3) and lowest in summer monsoon (˜765 ± 235 ng m-3). The seasonal changes in the BC mass concentration were more prominent over the northern BoB (having an annual amplitude of ˜4) compared to southern BoB (amplitude ˜ 2). Significant spatial gradients in MBC, latitudinal as well as longitudinal, existed in all the seasons. Latitudinal gradients, despite being consistently increasing northwards, were found to be sharper during winter and weakest during summer monsoon with e-fold scaling distances of ˜7.7° and ˜15.6° during winter and summer monsoon seasons respectively. Longitudinally, BC concentrations tend to increase toward east during winter and premonsoon seasons, but an opposite trend was seen in monsoon season highlighting the seasonally changing source impacts on BC loading over BoB. Examination of the results in light of possible role of transport from adjoining landmasses, using airmass back trajectory cluster analysis, also supported spatially and temporally varying source influence on oceanic region.
Evolution of vehicle exhaust particles in the atmosphere.
Canagaratna, Manjula R; Onasch, Timothy B; Wood, Ezra C; Herndon, Scott C; Jayne, John T; Cross, Eben S; Miake-Lye, Richard C; Kolb, Charles E; Worsnop, Douglas R
2010-10-01
Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.
Activin signalling and response to a morphogen gradient.
Gurdon, J B; Harger, P; Mitchell, A; Lemaire, P
1994-10-06
Using combinations of amphibian embryo tissues, it is shown that the selection of genes expressed by a cell is determined by its distance from a source of activin, a peptide growth factor contained in vegetal cells and able to induce other cells to form mesoderm. This long-range signal spreads over at least 10 cell diameters in a few hours. It does so by passive diffusion, because it can by-pass cells that do not themselves respond to the signal nor synthesize protein. These results provide direct support for the operation of a morphogen concentration gradient in vertebrate development.
NASA Technical Reports Server (NTRS)
Snow, W. L.
1974-01-01
The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.
Hydraulic and biochemical gradients limit wetland mercury supply to an Adirondack stream
Bradley, Paul M.; Burns, Douglas A.; Harvey, Judson; Journey, Celeste A.; Brigham, Mark E.; Murray, Karen
2016-01-01
Net fluxes (change between upstream and downstream margins) for water, methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and chloride (Cl) were assessed twice in an Adirondack stream reach (Sixmile Brook, USA), to test the hypothesized importance of wetland-stream hydraulic and chemical gradients as fundamental controls on fluvial mercury (Hg) supply. The 500 m study reach represented less than 4% of total upstream basin area. During a snowmelt high-flow event in May 2009 surface water, DOC, and chloride fluxes increased by 7.1±1.3%, 8.0±1.3%, and 9.0±1.3%, respectively, within the reach, demonstrating that the adjacent wetlands are important sources of water and solutes to the stream. However, shallow groundwater Hg concentrations lower than in the surface water limited groundwater-surface water Hg exchange and no significant changes in Hg (filtered MeHg and THg) fluxes were observed within the reach despite the favorable hydraulic gradient. In August 2009, the lack of significant wetland-stream hydraulic gradient resulted in no net flux of water or solutes (MeHg, THg, DOC, or Cl) within the reach. The results are consistent with the wetland-Hg-source hypothesis and indicate that hydraulic and chemical gradient (direction and magnitude) interactions are fundamental controls on the supply of wetland Hg to the stream.
Neutrophil migration under spatially-varying chemoattractant gradient profiles.
Halilovic, Iris; Wu, Jiandong; Alexander, Murray; Lin, Francis
2015-01-01
Chemotaxis plays an important role in biological processes such as cancer metastasis, embryogenesis, wound healing, and immune response. Neutrophils are the frontline defenders against invasion of foreign microorganisms into our bodies. To achieve this important immune function, a neutrophil can sense minute chemoattractant concentration differences across its cell body and effectively migrate toward the chemoattractant source. Furthermore, it has been demonstrated in various studies that neutrophils are highly sensitive to changes in the surrounding chemoattractant environments, suggesting the role of a chemotactic memory for processing the complex spatiotemporal chemical guiding signals. Using a microfluidic device, in the present study we characterized neutrophil migration under spatially varying profiles of interleukine-8 gradients, which consist of three spatially ordered regions of a shallow gradient, a steep gradient and a nearly saturated gradient. This design allowed us to examine how neutrophils migrate under different chemoattractant gradient profiles, and how the migratory response is affected when the cell moves from one gradient profile to another in a single experiment. Our results show robust neutrophil chemotaxis in the shallow and steep gradient, but not the saturated gradient. Furthermore, neutrophils display a transition from chemotaxis to flowtaxis when they migrate across the steep gradient interface, and the relative efficiency of this transition depends on the cell's chemotaxis history. Finally, some neutrophils were observed to adjust their morphology to different gradient profiles.
Directional phytoscreening: contaminant gradients in trees for plume delineation.
Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G
2013-08-20
Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.
Quantification of the effect of temperature gradients in soils on subsurface radon signal
NASA Astrophysics Data System (ADS)
Haquin, Gustavo; Ilzycer, Danielle; Kamai, Tamir; Zafrir, Hovav; Weisbrod, Noam
2017-04-01
Temperature gradients that develop in soils due to atmospheric temperature cycles are factors of primary importance in determining the rates and directions of subsurface gas flow. Models including mechanisms of thermal convection and thermal diffusion partially explain the impact of temperature gradients on subsurface radon transport. However, the overall impact of temperature gradients on subsurface radon transport is still not well understood. A laboratory setup was designed and built to experimentally investigate the influence of temperature gradients on radon transport under well controlled conditions. A 60 cm diameter and 120 cm tall column was thermally insulated except from the atmosphere-soil interface, such that it was constructed to simulate field conditions where temperature gradients in soils are developed following atmospheric temperature cycles. The column was filled with fine grinded phosphate rock which provided the porous media with radon source. Radon in soil-air was continuously monitored using NaI gamma detectors positioned at different heights along the column. Soil temperature, differential pressure, and relative humidity were monitored along the column. Experiments based on steep and gradual stepwise changes in ambient temperature were conducted. Absolute changes on radon levels in the order of 10-30% were measured at temperature gradients of up to ±20oC/m. Results showed a non-linear correlation between the temperature gradient and the subsurface radon concentration. An asymmetric relationship between the radon concentration and the temperature gradients for ΔT>0 and ΔT<0 was also observed. Laboratory simulations of the time- and depth-dependent temperature wave functions with frequencies ranged from a daily cycle to few days were performed. In response to the harmonic temperature behaviour radon oscillations at similar frequencies were detected correspondingly. In this work a quantitative relationship between radon and temperature gradients will be presented for cases beyond the classical conditions for thermal convection and thermal diffusion.
Plants as sources of airborne bacteria, including ice nucleation-active bacteria.
Lindemann, J; Constantinidou, H A; Barchet, W R; Upper, C D
1982-11-01
Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m over young corn and wet soil to 663 colony-forming units per m over dry soil and 6,500 colony-forming units per m over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalfa field were fourfold higher than those over a field with dry, bare soil immediately upwind. The upward flux of viable bacteria over alfalfa was three- to fourfold greater than over dry soil. Concentrations of ice nucleation-active bacteria were higher over plants than over soil. Thus, plant canopies may constitute a major source of bacteria, including ice nucleation-active bacteria, in the air.
Motion-based threat detection using microrods: experiments and numerical simulations.
Ezhilan, Barath; Gao, Wei; Pei, Allen; Rozen, Isaac; Dong, Renfeng; Jurado-Sanchez, Beatriz; Wang, Joseph; Saintillan, David
2015-05-07
Motion-based chemical sensing using microscale particles has attracted considerable recent attention. In this paper, we report on new experiments and Brownian dynamics simulations that cast light on the dynamics of both passive and active microrods (gold wires and gold-platinum micromotors) in a silver ion gradient. We demonstrate that such microrods can be used for threat detection in the form of a silver ion source, allowing for the determination of both the location of the source and concentration of silver. This threat detection strategy relies on the diffusiophoretic motion of both passive and active microrods in the ionic gradient and on the speed acceleration of the Au-Pt micromotors in the presence of silver ions. A Langevin model describing the microrod dynamics and accounting for all of these effects is presented, and key model parameters are extracted from the experimental data, thereby providing a reliable estimate for the full spatiotemporal distribution of the silver ions in the vicinity of the source.
Soil amino acid composition across a boreal forest successional sequence
Nancy R. Werdin-Pfisterer; Knut Kielland; Richard D. Boone
2009-01-01
Soil amino acids are important sources of organic nitrogen for plant nutrition, yet few studies have examined which amino acids are most prevalent in the soil. In this study, we examined the composition, concentration, and seasonal patterns of soil amino acids across a primary successional sequence encompassing a natural gradient of plant productivity and soil...
NASA Astrophysics Data System (ADS)
Yuan, Wei; Hu, Jinyi; Zhou, Bo; Deng, Jun; Zhang, Zhaochun; Tang, Yong
2015-09-01
The passive direct methanol fuel cell (DMFC) is a promising candidate power source for portable applications but has to deal with many technical challenges before practical use. This study presents a preliminary investigation on the use of a woven carbon fiber fabric (WCFF) for constructing a gradient porous structure based on the traditional design. The WCFF, carbon paper and carbon-black micro porous layer (MPL) combine into a carbon-based assembly which acts as a mass-transfer-controlling medium at the anode of a passive DMFC. Results show that this novel setup is able to significantly improve the cell performance and facilitate high-concentration operation. A maximum power density of 16.4 mWcm-2 is obtained when two layers of the WCFF are used at a methanol concentration of 8M. This work provides an effective method for using concentrated methanol with no need for major change of the fuel cell configuration.
Novel determinants of the neuronal Cl− concentration
Delpire, Eric; Staley, Kevin J
2014-01-01
It is now a well-accepted view that cation-driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes. PMID:25107928
NASA Astrophysics Data System (ADS)
Leinov, E.; Jackson, M. D.
2014-09-01
Exclusion-diffusion potentials arising from temperature gradients are widely neglected in self-potential (SP) surveys, despite the ubiquitous presence of temperature gradients in subsurface settings such as volcanoes and hot springs, geothermal fields, and oil reservoirs during production via water or steam injection. Likewise, with the exception of borehole SP logging, exclusion-diffusion potentials arising from concentration gradients are also neglected or, at best, it is assumed that the diffusion potential dominates. To better interpret these SP sources requires well-constrained measurements of the various coupling terms. We report measurements of thermoelectric and electrochemical exclusion-diffusion potentials across sandstones saturated with NaCl brine and find that electrode effects can dominate the measured voltage. After correcting for these, we find that Hittorf transport numbers are the same within experimental error regardless of whether ion transport occurs in response to temperature or concentration gradients over the range of NaCl concentration investigated that is typical of natural systems. Diffusion potentials dominate only if the pore throat radius is more than approximately 4000 times larger than the diffuse layer thickness. In fine-grained sandstones with small pore throat diameter, this condition is likely to be met only if the saturating brine is of relatively high salinity; thus, in many cases of interest to earth scientists, exclusion-diffusion potentials will comprise significant contributions from both ionic diffusion through, and ionic exclusion from, the pore space of the rock. However, in coarse-grained sandstones, or sandstones saturated with high-salinity brine, exclusion-diffusion potentials can be described using end-member models in which ionic exclusion is neglected. Exclusion-diffusion potentials in sandstones depend upon pore size and salinity in a complex way: they may be positive, negative, or zero depending upon sandstone rock texture (expressed here by the pore radius r) and salinity.
Gaseous templates in ant nests.
Cox, M D; Blanchard, G B
2000-05-21
We apply a diffusion model to the atmosphere of ant nests. With particular reference to carbon dioxide (CO2), we explore analytically and numerically the spatial and temporal patterns of brood- or worker-produced gases in nests. The maximum concentration within a typical one-chamber ant nest with approximately 200 ants can reach 12.5 times atmospheric concentration, reaching 95% of equilibrium concentrations within 15 min. Maximum concentration increases with increasing number of ants in the nest (or production rate of the gas), distance between the centre of the nest ants and the nest entrance, entrance length, wall thickness, and with decreasing entrance width, wall permeability and diffusion coefficient. The nest can be divided into three qualitatively distinct regions according to the shape of the gradient: a plateau of high concentration in the back half of the nest; an intermediate region of increasingly steep gradient towards the entrance; and a steep linear gradient in the entrance tunnel. These regions are robust to changes in gas concentrations, but vary with changes in nest architecture. The pattern of diffusing gases contains information about position and orientation relative to gas sources and sinks, and about colony state, including colony size, activity state and aspects of nest architecture. We discuss how this diffusion pattern may act as a "dynamic template", providing local cues which trigger behavioural acts appropriate to colony needs, which in turn may feed back to changes in the gas template. In particular, wall building occurs along lines of similar concentration for a variety of nest geometries; there is surprising convergence between the period of cycles of synchronously active ants and the time taken for CO2 levels to equilibrate; and the qualitatively distinct regions of the "dynamic template" correspond to regions occupied by different groups of ants.
Observational constraints on the global atmospheric CO2 budget
NASA Technical Reports Server (NTRS)
Tans, Pieter P.; Fung, Inez Y.; Takahashi, Taro
1990-01-01
Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.
Jani, Jariani; Toor, Gurpal S
2018-06-15
Nitrogen (N) transport from land to water is a dominant contributor of N in estuarine waters leading to eutrophication, harmful algal blooms, and hypoxia. Our objectives were to (1) investigate the composition of inorganic and organic N forms, (2) distinguish the sources and biogeochemical mechanisms of nitrate-N (NO 3 -N) transport using stable isotopes of NO 3 - and Bayesian mixing model, and (3) determine the dissolved organic N (DON) bioavailability using bioassays in a longitudinal gradient from freshwater to estuarine ecosystem located in the Tampa Bay, Florida, United States. We found that DON was the most dominant N form (mean: 64%, range: 46-83%) followed by particulate organic N (PON, mean: 22%, range: 14-37%), whereas inorganic N forms (NO x -N: 7%, NH 4 -N: 7%) were 14% of total N in freshwater and estuarine waters. Stable isotope data of NO 3 - revealed that nitrification was the main contributor (36.4%), followed by soil and organic N sources (25.5%), NO 3 - fertilizers (22.4%), and NH 4 + fertilizers (15.7%). Bioassays showed that 14 to 65% of DON concentrations decreased after 5-days of incubation indicating utilization of DON by microbes in freshwater and estuarine waters. These results suggest that despite low proportion of inorganic N forms, the higher concentrations and bioavailability of DON can be a potential source of N for algae and bacteria leading to water quality degradation in the estuarine waters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Schubert, Michael; Musolff, Andreas; Weiss, Holger
2018-06-13
Elevated indoor radon concentrations ( 222 Rn) in dwellings pose generally a potential health risk to the inhabitants. During the last decades a considerable number of studies discussed both the different sources of indoor radon and the drivers for diurnal and multi day variations of its concentration. While the potential sources are undisputed, controversial opinions exist regarding their individual relevance and regarding the driving influences that control varying radon indoor concentrations. These drivers include (i) cyclic forced ventilation of dwellings, (ii) the temporal variance of the radon exhalation from soil and building materials due to e.g. a varying moisture content and (iii) diurnal and multi day temperature and pressure patterns. The presented study discusses the influences of last-mentioned temporal meteorological parameters by effectively excluding the influences of forced ventilation and undefined radon exhalation. The results reveal the continuous variation of the indoor/outdoor pressure gradient as key driver for a constant "breathing" of any interior space, which affects the indoor radon concentration with both diurnal and multi day patterns. The diurnally recurring variation of the pressure gradient is predominantly triggered by the day/night cycle of the indoor temperature that is associated with an expansion/contraction of the indoor air volume. Multi day patterns, on the other hand, are mainly due to periods of negative air pressure indoors that is triggered by periods of elevated wind speeds as a result of Bernoulli's principle. Copyright © 2018 Elsevier Ltd. All rights reserved.
Identifying risk sources of air contamination by polycyclic aromatic hydrocarbons.
Huzlik, Jiri; Bozek, Frantisek; Pawelczyk, Adam; Licbinsky, Roman; Naplavova, Magdalena; Pondelicek, Michael
2017-09-01
This article is directed to determining concentrations of polycyclic aromatic hydrocarbons (PAHs), which are sorbed to solid particles in the air. Pollution sources were identified on the basis of the ratio of benzo[ghi]perylene (BghiPe) to benzo[a]pyrene (BaP). Because various important information is lost by determining the simple ratio of concentrations, least squares linear regression (classic ordinary least squares regression), reduced major axis, orthogonal regression, and Kendall-Theil robust diagnostics were utilized for identification. Statistical evaluation using all aforementioned methods demonstrated different ratios of the monitored PAHs in the intervals examined during warmer and colder periods. Analogous outputs were provided by comparing gradients of the emission factors acquired from the measured concentrations of BghiPe and BaP in motor vehicle exhaust gases. Based on these outputs, it was possible plausibly to state that the influence of burning organic fuels in heating stoves is prevalent in colder periods whereas in warmer periods transport was the exclusive source because other sources of PAH emissions were not found in the examined locations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hinkle, S.R.; Böhlke, J.K.; Duff, J.H.; Morgan, D.S.; Weick, R.J.
2007-01-01
Geochemical and isotopic tools were applied at aquifer, transect, and subtransect scales to provide a framework for understanding sources, transport, and fate of dissolved inorganic N in a sandy aquifer near La Pine, Oregon. NO3 is a common contaminant in shallow ground water in this area, whereas high concentrations of NH4-N (up to 39 mg/L) are present in deep ground water. N concentrations, N/Cl ratios, tracer-based apparent ground-water ages, N isotope data, and hydraulic gradients indicate that septic tank effluent is the primary source of NO3. N isotope data, N/Cl and N/C relations, 3H data, and hydraulic considerations point to a natural, sedimentary organic matter source for the high concentrations of NH4, and are inconsistent with an origin as septic tank N. Low recharge rates and flow velocities have largely restricted anthropogenic NO3 to isolated plumes within several meters of the water table. A variety of geochemical and isotopic data indicate that denitrification also affects NO3 gradients in the aquifer. Ground water in the La Pine aquifer evolves from oxic to increasingly reduced conditions. Suboxic conditions are achieved after about 15-30 y of transport below the water table. NO3 is denitrified near the oxic/suboxic boundary. Denitrification in the La Pine aquifer is characterized well at the aquifer scale with a redox boundary approach that inherently captures spatial variability in the distribution of electron donors. ?? 2006 Elsevier B.V. All rights reserved.
Plontke, Stefan K; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Salt, Alec N
2008-04-01
Local application of dexamethasone-21-dihydrogen-phosphate (Dex-P) to the round window (RW) membrane of guinea pigs produces a substantial basal-apical concentration gradient in scala tympani (ST) perilymph. In recent years, intratympanically applied glucocorticoids are increasingly being used for the treatment of inner ear disease. Although measurements of intracochlear concentrations after RW application exist, there is limited information on the distribution of these drugs in the inner ear fluids. It has been predicted from computer simulations that substantial concentration gradients will occur after RW application, with lower concentrations expected in apical turns. Concentration gradients of other substances along the cochlea have recently been confirmed using a sequential apical sampling method to obtain perilymph. Dexamethasone-21-dihydrogen-phosphate (10 mg/ml) was administered to the RW membrane of guinea pigs (n = 9) in vivo for 2 to 3 hours. Perilymph was then collected using a protocol in which 10 samples, each of approximately 1 mul, were taken sequentially from the cochlear apex into capillary tubes. Dexamethasone-21-dihydrogen-phosphate concentration of the samples was analyzed by high-performance liquid chromatography. Interpretation of sample data using a finite element model allowed the longitudinal gradients of Dex-P in ST to be quantified. The Dex-P content of the first sample in each experiment (dominated by perilymph from apical regions) was substantially lower than that of the third and fourth sample (dominated by basal turn perilymph). These findings qualitatively demonstrated the existence of a concentration gradient along ST. After detailed analysis of the measured sample concentrations using an established finite element computer model, the mean basal-apical concentration gradient was estimated to be 17,000. Both absolute concentrations of Dex-P in ST and the basal-apical gradients were found to vary substantially. The existence of substantial basal-apical concentration gradients of Dex-P in ST perilymph were demonstrated experimentally. If the variability in peak concentration and gradient is also present under clinical conditions, this may contribute to the heterogeneity of outcome that is observed after intratympanic application of glucocorticoids for various inner ear diseases.
Salt, Alec N
2008-01-01
Hypothesis Local application of dexamethasone-21-dihydrogene-phosphate (Dex-P) to the round window membrane (RWM) of guinea pigs produces a substantial basal-apical concentration gradient in scala tympani (ST) perilymph. Background In recent years, intratympanically-applied glucocorticoids are increasingly being used for the treatment of inner ear disease. Although measurements of intracochlear concentrations after round window (RW) application exist, there is limited information on the distribution of these drugs in the inner ear fluids. It has been predicted from computer simulations that substantial concentration gradients will occur with lower concentrations expected in apical turns after RW application. Concentration gradients of other substances along the cochlea have recently been confirmed using a sequential apical sampling method to obtain perilymph. Methods Dex-P (10mg/ml) was administered to the RWM of guinea pigs (n=9) in vivo for 2 to 3 hours. Perilymph was then collected using a protocol in which ten samples, each of approximately 1μl, were taken sequentially from the cochlear apex into capillary tubes. Dex-P concentration of the samples was determined by HPLC. Interpretation of sample data using a finite element model allowed the longitudinal gradients of Dex-P in scala tympani to be quantified. Results The Dex-P content of the first sample in each experiment (dominated by perilymph from apical regions) was substantially lower than that of the third and fourth sample (dominated by basal turn perilymph). These findings qualitatively demonstrated the existence of a concentration gradient along scala tympani (ST). After detailed analysis of the measured sample concentrations using an established finite element computer model, the mean basal-apical concentration gradient was estimated to be 17•103. Both absolute concentrations of Dex-P in ST and the basal-apical gradients were found to vary substantially. Conclusion The existence of substantial basal-apical concentration gradients of Dex-P in ST perilymph was demonstrated experimentally. If the variability in peak concentration and gradient is also present under clinical conditions this may contribute to the heterogeneity of outcome that is observed after intratympanic application of glucocorticoids for various inner ear diseases. PMID:18277312
NASA Astrophysics Data System (ADS)
Freed, R.; Smith, L.; Bugai, D.
2001-12-01
In the Borschi watershed, 3 km south of the Chernobyl nuclear power plant, we have found the transfer of 90Sr in wetlands pore waters to surface waters and the subsequent flow of wetland surface waters to the stream, largely effect the concentration of 90Sr in the Borschi channel. In Borschi, we have observed that during most of the year, wetlands are the main source of 90Sr contributing to the Borschi stream and channel bottom sediments are a secondary source. Wetland pore waters have at least an order of magnitude higher concentration of 90Sr than all other surface and subsurface waters. Pore water data obtained using peepers shows the 90Sr diffusion gradient is high in near-surface wetland sediments while the 90Sr diffusion gradient is moderate to insignificant in near-surface channel sediments. Channel and wetland sediments are highly depleted in 90Sr compared with immobile nuclear fission products such as europium-154 and can account for all of the 90Sr removed by the stream since the accident. While channel sediments are largely depleted in exchangeable 90Sr, wetland sediments represent a large source of exchangeable 90Sr. Removal of 90Sr by the stream from the wetland and channel sediments is on the same order as mass loss by decay.
Tree Rings as Chroniclers of Mercury Exposure in Shenandoah National Park, Virginia
NASA Astrophysics Data System (ADS)
Riscassi, A. L.; Camper, T.; Lee, T. R.; Druckenbrod, D.; Scanlon, T. M.
2016-12-01
Although historical Hg emissions and subsequent deposition play a dominant role in shaping present and future Hg cycling, our knowledge of this is limited in both space and time. Recent studies have shown Hg concentrations in tree rings have the potential to archive historical Hg exposure from local, regional, and global sources, however, no studies have evaluated tree rings in the eastern U.S., a region of elevated Hg deposition from upwind power plants. In order to chronicle the historical Hg exposure of the central Appalachian region through dendrochemical analysis, tree rings were cored along a latitudinal gradient in Shenandoah National Park with sites clustered in North, Central and Southern regions. Long-lived tree species with low radial permeability, chosen to avoid the potential for chemical translocation, included white oak (Quercus Alba), northern red oak (Quercus rubra), and pitch pine (Pinus rigida). In each of the three regions, we collected a core from three individuals of each tree species (27 total cores) and analyzed each for Hg content in 10-yr increments. Overall, tree ring Hg concentrations (average 0.88 ng Hg g-1) were similar to other studies and varied between species. Temporal tree-core Hg trends did not relate to trends in modeled global atmospheric Hg concentrations or regional sources (e.g., fire, coal production), but rather tracked the use of Hg from a local industrial point source. Contemporary wind data originating from the location of the local Hg source in conjunction with an atmospheric model indicate emissions from the plant likely impact the southern region of the park, with a lesser influence in the central and north regions, matching the longitudinal gradient observed in tree rings. This study raises questions about the extent of historical contamination from the industrial site and demonstrates the potential usefulness of tree ring dendrochemistry for identifying historical sources of atmospheric Hg exposure.
Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.
2018-02-16
In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.
Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream
Flanders, J.R.; Turner, R.R.; Morrison, T.; Jensen, R.; Pizzuto, J.; Skalak, K.; Stahl, R.
2010-01-01
Concentrations of Hg remain elevated in physical and biological media of the South River (Virginia, USA), despite the cessation of the industrial use of Hg in its watershed nearly six decades ago, and physical characteristics that would not seem to favor Hg(II)-methylation. A 3-a study of inorganic Hg (IHg) and methylmercury (MeHg) was conducted in physical media (soil, sediment, surface water, porewater and soil/sediment extracts) to identify non-point sources, transport mechanisms, and potential controls on Hg(II)-methylation. Data collected from surface water and sediment indicate that the majority of the non-point sources of IHg to the South River are within the first 14. km downstream from the historic point source. Partitioning data indicate that particle bound IHg is introduced in this reach, releasing dissolved and colloidal bound IHg, which is transported downstream. Extraction experiments revealed that floodplain soils released a higher fraction of their IHg content in aqueous extractions than fine-grained sediment (FGS). Based on ultrafiltration [<5000 nominal molecular weight cutoff (NMWC)] the majority of soil IHg released was colloidal in nature, providing evidence for the continued evolution of IHg for Hg(II)-methylation from soil. Strong seasonal patterns in MeHg concentrations were observed in surface water and sediment. The highest concentrations of MeHg in surface water were observed at moderate temperatures, suggesting that other factors limit net Hg(II)-methylation. Seasonal changes in sediment organic content and the fraction of 1. N KOH-extractable THg were also observed and may be important factors in controlling net Hg(II)-methylation rates. Sulfate concentrations in surface water are low and the evidence suggests that Fe reduction may be an important Hg(II)-methylation process. The highest sediment MeHg concentrations were observed in habitats with large amounts of FGS, which are more prevalent in the upper half of the study area due to the lower hydrologic gradient and agricultural impacts. Past and present land use practices and other geomorphologic controls contribute to the erosion of banks and accumulation of fine-grained sediment in this section of the river, acting as sources of IHg. ?? 2010 Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony
2015-09-15
Highlights: • A spreadsheet-based risk screening tool for groundwater affected by landfills is presented. • Domenico solute transport equations are used to estimate downgradient contaminant concentrations. • Landfills are categorized as presenting high, moderate or low risks. • Analysis of parameter sensitivity and examples of the method’s application are given. • The method has value to regulators and those considering redeveloping closed landfills. - Abstract: A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenicomore » Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.« less
Marty, Michael T.; Kuhnline Sloan, Courtney D.; Bailey, Ryan C.; Sligar, Stephen G.
2012-01-01
Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics. PMID:22686186
Marty, Michael T; Sloan, Courtney D Kuhnline; Bailey, Ryan C; Sligar, Stephen G
2012-07-03
Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes, and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics.
Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.
Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang
2016-08-22
Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Collective organization in aerotactic motion
NASA Astrophysics Data System (ADS)
Mazza, Marco G.
Some bacteria exhibit interesting behavior in the presence of an oxygen concentration. They perform an aerotactic motion along the gradient until they reach their optimal oxygen concentration. But they often organize collectively by forming dense regions, called 'bands', that travel towards the oxygen source. We have developed a model of swimmers with stochastic interaction rules moving in proximity of an air bubble. We perform molecular dynamics simulations and also solve advection-diffusion equations that reproduce the aerotactic behavior of mono-flagellated, facultative anaerobic bacteria. If the oxygen concentration in the system sinks locally below a threshold value, the formation of a migrating aerotactic band toward the bubble can be observed.
NASA Astrophysics Data System (ADS)
Hayat, T.; Ahmad, Salman; Ijaz Khan, M.; Alsaedi, A.
2018-05-01
In this article we investigate the flow of Sutterby liquid due to rotating stretchable disk. Mass and heat transport are analyzed through Brownian diffusion and thermophoresis. Further the effects of magnetic field, chemical reaction and heat source are also accounted. We employ transformation procedure to obtain a system of nonlinear ODE’s. This system is numerically solved by Built-in-Shooting method. Impacts of different involved parameter on velocity, temperature and concentration are described. Velocity, concentration and temperature gradients are numerically computed. Obtained results show that velocity is reduced through material parameter. Temperature and concentration are enhanced with thermophoresis parameter.
Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
Yip, Ngai Yin; Brogioli, Doriano; Hamelers, Hubertus V M; Nijmeijer, Kitty
2016-11-15
Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage. While research attention is squarely focused on efficiency and power improvements, efforts to mitigate fouling and lower membrane and electrode cost will be equally important to reduce levelized cost of salinity gradient energy production and, thus, boost PRO, RED, and CapMix power generation to be competitive with other renewable technologies. Cognizance of the recent key developments and technical progress on the different technological fronts can help steer the strategic advancement of salinity gradient as a sustainable energy source.
Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.
Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua
2013-09-28
We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.
Kwok, Karen Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Taniyasu, Sachi; Murphy, Margaret B; Horii, Yuichi; Petrick, Gert; Kallerborn, Roland; Kannan, Kurunthachalam; Murano, Kentaro; Lam, Paul K S
2013-03-01
Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations. Copyright © 2012 Elsevier B.V. All rights reserved.
Designing in vivo concentration gradients with discrete controlled release: a computational model
NASA Astrophysics Data System (ADS)
Walker, Edgar Y.; Barbour, Dennis L.
2010-08-01
One promising neurorehabilitation therapy involves presenting neurotrophins directly into the brain to induce growth of new neural connections. The precise control of neurotrophin concentration gradients deep within neural tissue that would be necessary for such a therapy is not currently possible, however. Here we evaluate the theoretical potential of a novel method of drug delivery, discrete controlled release (DCR), to control effective neurotrophin concentration gradients in an isotropic region of neocortex. We do so by constructing computational models of neurotrophin concentration profiles resulting from discrete release locations into the cortex and then optimizing their design for uniform concentration gradients. The resulting model indicates that by rationally selecting initial neurotrophin concentrations for drug-releasing electrode coatings in a square 16-electrode array, nearly uniform concentration gradients (i.e. planar concentration profiles) from one edge of the electrode array to the other should be obtainable. DCR therefore represents a promising new method of precisely directing neuronal growth in vivo over a wider spatial profile than would be possible with single release points.
NASA Astrophysics Data System (ADS)
Jimenez, Joselyn; Goubert, Evelyne; Labeyrie, Laurent; Coynel, Alexandra; Menier, David
2014-05-01
The Morbihan Coast (South Brittany, France) has an intense coastal activity: farming, industry, urban habitation run-off, yachting and transportation. In the past centuries, tin mining industry was also developed. These different factors may introduce metal trace elements (MTE) into the marine environment at toxic concentration levels. This pollution can particularly affect the oyster production, widely developed in the area. Monitoring MTE in surface sediments at high spatial resolution has been programmed to assess pollutants and their sources in two of the major Morbihan coastal systems concerned with oyster farming, and where available information on MTE impact and sediment quality is limited: the Bay of Quiberon, partly protected from the open ocean by the Quiberon Peninsula and several islands, mostly sandy (coarse to fine, with a significant shelly fraction), with water depths shallower that 25 m, and the Gulf of Morbihan, a shallow depth (less than 5 m, apart from the two paleoriver beds), semi-enclosed, estuarine system with very coarse sand to fine mud, mostly distributed by a strong tidal current system. Fifty two surface sediment samples were collected in April 2013 to characterize the MTE spatial distribution through the salinity and pollution gradients, from the small local rivers and harbor areas to the open marine environments. Analyses cover sedimentological and biogeochemical properties (particulate organic carbon using a LECO-CS-230; MTE using ICP-MS or DMA for Hg). Statistical analyses help to discriminate within the spatial variability the natural (e.g. grain-size effect) and anthropogenic factors. MTE concentrations were also compared to local geochemical background as measured at the bottom of three sediment cores collected in representative sites, for calculating the enrichment index of each MTE and evaluating the degree of sediment contamination. The initial interpretation of the results would indicate a clear distinction between the geochemical gradients linked to natural processes: sediment sources and size fractionation (for example, the relationship between Sr and carbonate concentration in the sand fraction), and gradients linked to polluting factors, in particular in the harbors and protected arias, probably associated with boat maintenance (with Cu, Zn and Sn concentrations exceeding 100 ppm, up to 300 ppm in isolated places). More detailed statistical analyses and implications will be presented at the conference.
Role of spatial averaging in multicellular gradient sensing.
Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
2016-05-20
Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.
Role of spatial averaging in multicellular gradient sensing
NASA Astrophysics Data System (ADS)
Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
2016-06-01
Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.
NASA Technical Reports Server (NTRS)
Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.
1993-01-01
An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.
Wang, Lei; Liu, Wenming; Wang, Yaolei; Wang, Jian-chun; Tu, Qin; Liu, Rui; Wang, Jinyi
2013-02-21
Recent microfluidic advancements in oxygen gradients have greatly promoted controllable oxygen-sensitive cellular investigations at microscale resolution. However, multi-gradient integration in a single microfluidic device for tissue-mimicking cell investigation is not yet well established. In this study, we describe a method that can generate oxygen and chemical concentration gradients in a single microfluidic device via the formation of an oxygen gradient in a chamber and a chemical concentration gradient between adjacent chambers. The oxygen gradient dynamics were systematically investigated, and were quantitatively controlled using simple exchange between the aerial oxygen and the oxygen-free conditions in the gas-permeable polydimethylsiloxane channel. Meanwhile, the chemical gradient dynamics was generated using a special channel-branched device. For potential medical applications of the established oxygen and chemical concentration gradients, a tumor cell therapy assessment was performed using two antitumor drugs (tirapazamine and bleomycin) and two tumor cell lines (human lung adenocarcinoma A549 cells and human cervical carcinoma HeLa cells). The results of the proof-of-concept experiment indicate the dose-dependent antitumor effect of the drugs and hypoxia-induced cytotoxicity of tirapazamine. We demonstrate that the integration of oxygen and chemical concentration gradients in a single device can be applied to investigating oxygen- and chemical-sensitive cell events, which can also be valuable in the development of multi-gradient generating procedures and specific drug screening.
Didar, Tohid Fatanat; Tabrizian, Maryam
2012-11-07
Here we present a microfluidic platform to generate multiplex gradients of biomolecules within parallel microfluidic channels, in which a range of multiplex concentration gradients with different profile shapes are simultaneously produced. Nonlinear polynomial gradients were also generated using this device. The gradient generation principle is based on implementing parrallel channels with each providing a different hydrodynamic resistance. The generated biomolecule gradients were then covalently functionalized onto the microchannel surfaces. Surface gradients along the channel width were a result of covalent attachments of biomolecules to the surface, which remained functional under high shear stresses (50 dyn/cm(2)). An IgG antibody conjugated to three different fluorescence dyes (FITC, Cy5 and Cy3) was used to demonstrate the resulting multiplex concentration gradients of biomolecules. The device enabled generation of gradients with up to three different biomolecules in each channel with varying concentration profiles. We were also able to produce 2-dimensional gradients in which biomolecules were distributed along the length and width of the channel. To demonstrate the applicability of the developed design, three different multiplex concentration gradients of REDV and KRSR peptides were patterned along the width of three parallel channels and adhesion of primary human umbilical vein endothelial cell (HUVEC) in each channel was subsequently investigated using a single chip.
Environmental impact of ongoing sources of metal contamination on remediated sediments
Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.; ...
2016-04-29
One challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixedmore » amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 hour experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Moreover, Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p<0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. Finally, these findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination.« less
The Consistency of Isotopologues of Ambient Atmospheric Nitric Acid in Passively Collected Samples
NASA Astrophysics Data System (ADS)
Bell, M. D.; Sickman, J. O.; Bytnerowicz, A.; Padgett, P.; Allen, E. B.
2012-12-01
Anthropogenic sources of nitrogen oxides have previously been shown to have distinctive isotopic signatures of oxygen and nitrogen. Nylon filters are currently used in passive sampling arrays to measure ambient atmospheric nitric acid concentrations and estimate deposition rates. This experiment measured the ability of nylon filters to consistently collect isotopologues of atmospheric nitric acid in the same ratios as they are present in the atmosphere. Samplers were deployed in continuous stirred tank reactors (CSTR) and at field sites across a nitrogen deposition gradient in Southern California. Filters were exposed over a four week period with individual filters being subjected to 1-4 week exposure times. Extracted nitric acid were measured for δ18O and δ15N ratios and compared for consistency based on length of exposure and amount of HNO3 collected. Filters within the CSTRs collected HNO3 at a consistent rate in both high and low concentration chambers. After two weeks of exposure, the mean δ18O values were within 0.5‰ of the δ18O of the source HNO3 solution. The mean of all weekly exposures were within 0.5‰ of the δ15N of the source solution, but after three weeks, the mean δ15N of adsorbed HNO3 was within 0.2‰. As the length of the exposure increased, the variability of measured delta values decreased for both elements. The field samplers collected HNO3 consistent with previously measured values along a deposition gradient. The mean δ18O at high deposition sites was 52.2‰ compared to 35.7‰ at the low deposition sites. Mean δ15N values were similar at all sites across the deposition gradient. Due to precipitation events occurring during the exposure period, the δ15N and δ18O of nitric acid were highly variable at all field sites. At single sites, changes in δ15N and δ18O were negatively correlated, consistent with two-sourcing mixing dynamics, but the slope of the regressions differed between high and low deposition sites. Anthropogenic sources of atmospheric nitric acid accounted for 58% of the atmospheric nitric acid at the high deposition sites and 36.5% of the atmospheric nitric acid at the low deposition sites. The nylon filters proved to be an effective means of collecting isotopologues of HNO3 consistent with atmospheric concentrations. A length of the exposure of two weeks stabilizes isotopologue composition and minimizes the chance of variable weather events altering atmospheric values.
Systems biology derived source-sink mechanism of BMP gradient formation
Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei
2017-01-01
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development. PMID:28826472
Systems biology derived source-sink mechanism of BMP gradient formation.
Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei; Umulis, David; Mullins, Mary C
2017-08-09
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.
Wang, Qi; Xie, Zhiyi; Li, Fangbai
2015-11-01
This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.
Numerical investigation of spontaneous flame propagation under RCCI conditions
Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; ...
2015-06-30
This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less
Patton, Allison P; Perkins, Jessica; Zamore, Wig; Levy, Jonathan I; Brugge, Doug; Durant, John L
2014-12-01
Relatively few studies have characterized differences in intra- and inter-neighborhood traffic-related air pollutant (TRAP) concentrations and distance-decay gradients in along an urban highway for the purposes of exposure assessment. The goal of this work was to determine the extent to which intra- and inter-neighborhood differences in TRAP concentrations can be explained by traffic and meteorology in three pairs of neighborhoods along Interstate 93 (I-93) in the metropolitan Boston area (USA). We measured distance-decay gradients of seven TRAPs (PNC, pPAH, NO, NO X , BC, CO, PM 2.5 ) in near-highway (<400 m) and background areas (>1 km) in Somerville, Dorchester/South Boston, Chinatown and Malden to determine whether (1) spatial patterns in concentrations and inter-pollutant correlations differ between neighborhoods, and (2) variation within and between neighborhoods can be explained by traffic and meteorology. The neighborhoods ranged in area from 0.5 to 2.3 km 2 . Mobile monitoring was performed over the course of one year in each pair of neighborhoods (one pair of neighborhoods per year in three successive years; 35-47 days of monitoring in each neighborhood). Pollutant levels generally increased with highway proximity, consistent with I-93 being a major source of TRAP; however, the slope and extent of the distance-decay gradients varied by neighborhood as well as by pollutant, season and time of day. Correlations among pollutants differed between neighborhoods (e.g., ρ = 0.35-0.80 between PNC and NO X and ρ = 0.11-0.60 between PNC and BC) and were generally lower in Dorchester/South Boston than in the other neighborhoods. We found that the generalizability of near-road gradients and near-highway/urban background contrasts was limited for near-highway neighborhoods in a metropolitan area with substantial local street traffic. Our findings illustrate the importance of measuring gradients of multiple pollutants under different ambient conditions in individual near-highway neighborhoods for health studies involving inter-neighborhood comparisons.
Patton, Allison P.; Perkins, Jessica; Zamore, Wig; Levy, Jonathan I.; Brugge, Doug; Durant, John L.
2014-01-01
Relatively few studies have characterized differences in intra- and inter-neighborhood traffic-related air pollutant (TRAP) concentrations and distance-decay gradients in along an urban highway for the purposes of exposure assessment. The goal of this work was to determine the extent to which intra- and inter-neighborhood differences in TRAP concentrations can be explained by traffic and meteorology in three pairs of neighborhoods along Interstate 93 (I-93) in the metropolitan Boston area (USA). We measured distance-decay gradients of seven TRAPs (PNC, pPAH, NO, NOX, BC, CO, PM2.5) in near-highway (<400 m) and background areas (>1 km) in Somerville, Dorchester/South Boston, Chinatown and Malden to determine whether (1) spatial patterns in concentrations and inter-pollutant correlations differ between neighborhoods, and (2) variation within and between neighborhoods can be explained by traffic and meteorology. The neighborhoods ranged in area from 0.5 to 2.3 km2. Mobile monitoring was performed over the course of one year in each pair of neighborhoods (one pair of neighborhoods per year in three successive years; 35-47 days of monitoring in each neighborhood). Pollutant levels generally increased with highway proximity, consistent with I-93 being a major source of TRAP; however, the slope and extent of the distance-decay gradients varied by neighborhood as well as by pollutant, season and time of day. Correlations among pollutants differed between neighborhoods (e.g., ρ = 0.35-0.80 between PNC and NOX and ρ = 0.11-0.60 between PNC and BC) and were generally lower in Dorchester/South Boston than in the other neighborhoods. We found that the generalizability of near-road gradients and near-highway/urban background contrasts was limited for near-highway neighborhoods in a metropolitan area with substantial local street traffic. Our findings illustrate the importance of measuring gradients of multiple pollutants under different ambient conditions in individual near-highway neighborhoods for health studies involving inter-neighborhood comparisons. PMID:25364295
Cimetta, Elisa; Cannizzaro, Christopher; James, Richard; Biechele, Travis; Moon, Randall T; Elvassore, Nicola; Vunjak-Novakovic, Gordana
2010-12-07
In developing tissues, proteins and signaling molecules present themselves in the form of concentration gradients, which determine the fate specification and behavior of the sensing cells. To mimic these conditions in vitro, we developed a microfluidic device designed to generate stable concentration gradients at low hydrodynamic shear and allowing long term culture of adhering cells. The gradient forms in a culture space between two parallel laminar flow streams of culture medium at two different concentrations of a given morphogen. The exact algorithm for defining the concentration gradients was established with the aid of mathematical modeling of flow and mass transport. Wnt3a regulation of β-catenin signaling was chosen as a case study. The highly conserved Wnt-activated β-catenin pathway plays major roles in embryonic development, stem cell proliferation and differentiation. Wnt3a stimulates the activity of β-catenin pathway, leading to translocation of β-catenin to the nucleus where it activates a series of target genes. We cultured A375 cells stably expressing a Wnt/β-catenin reporter driving the expression of Venus, pBARVS, inside the microfluidic device. The extent to which the β-catenin pathway was activated in response to a gradient of Wnt3a was assessed in real time using the BARVS reporter gene. On a single cell level, the β-catenin signaling was proportionate to the concentration gradient of Wnt3a; we thus propose that the modulation of Wnt3a gradients in real time can provide new insights into the dynamics of β-catenin pathway, under conditions that replicate some aspects of the actual cell-tissue milieu. Our device thus offers a highly controllable platform for exploring the effects of concentration gradients on cultured cells.
Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4;#8201;Å
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Zachary Lee; Cheong, Cheom-Gil; Lee, Seok-Yong
2012-07-11
Nucleosides are required for DNA and RNA synthesis, and the nucleoside adenosine has a function in a variety of signalling processes. Transport of nucleosides across cell membranes provides the major source of nucleosides in many cell types and is also responsible for the termination of adenosine signalling. As a result of their hydrophilic nature, nucleosides require a specialized class of integral membrane proteins, known as nucleoside transporters (NTs), for specific transport across cell membranes. In addition to nucleosides, NTs are important determinants for the transport of nucleoside-derived drugs across cell membranes. A wide range of nucleoside-derived drugs, including anticancer drugsmore » (such as Ara-C and gemcitabine) and antiviral drugs (such as zidovudine and ribavirin), have been shown to depend, at least in part, on NTs for transport across cell membranes. Concentrative nucleoside transporters, members of the solute carrier transporter superfamily SLC28, use an ion gradient in the active transport of both nucleosides and nucleoside-derived drugs against their chemical gradients. The structural basis for selective ion-coupled nucleoside transport by concentrative nucleoside transporters is unknown. Here we present the crystal structure of a concentrative nucleoside transporter from Vibrio cholerae in complex with uridine at 2.4 {angstrom}. Our functional data show that, like its human orthologues, the transporter uses a sodium-ion gradient for nucleoside transport. The structure reveals the overall architecture of this class of transporter, unravels the molecular determinants for nucleoside and sodium binding, and provides a framework for understanding the mechanism of nucleoside and nucleoside drug transport across cell membranes.« less
Yu, K.; Faulkner, S.P.; Patrick, W.H.
2006-01-01
Soil redox potential (Eh), concentrations of oxygen (O2) and three greenhouse gases (CO2, CH4, and N2O) were measured in the soil profile of a coastal forest at ridge, transition, and swamp across a hydrological gradient. The results delineated a distinct boundary in soil Eh and O2 concentration between the ridge and swamp with essentially no overlap between the two locations. Critical soil Eh to initiate significant CH4 production under this field conditions was about +300 mV, much higher than in the homogenous soils (about -150 mV). The strength of CH4 source to the atmosphere was strong for the swamp, minor for the transition, and negligible or even negative (consumption) for the ridge. Maximum N2O concentration in the soils was found at about Eh +250 mV, and the soil N2O emission was estimated to account for less than 4% for the ridge and transition, and almost negligible for the swamp in the cumulative global warming potential (GWP) of these three gases. The dynamic nature of this study site in response to water table fluctuations across a hydrological gradient makes it an ideal model of impact of future sea level rise to coastal ecosystems. Soil carbon (C) sequestration potential due to increasing soil water content upon sea level rise and subsidence in this coastal forest was likely limited and temporal, and at the expense of increasing soil CH4 production and emission. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Parsey, J. M.; Nanishi, Y.; Lagowski, J.; Gatos, H. C.
1982-01-01
A precision Bridgman-type apparatus is described which was designed and constructed for the investigation of relationships between crystal growth parameters and the properties of GaAs crystals. Several key features of the system are highlighted, such as the use of a heat pipe for precise arsenic vapor pressure control and seeding without the presence of a viewing window. Pertinent growth parameters, such as arsenic source temperature, thermal gradients in the growing crystal and in the melt, and the macroscopic growth velocity can be independently controlled. During operation, thermal stability better than + or - 0.02 C is realized; thermal gradients can be varied up to 30 C/cm in the crystal region, and up to 20 C/cm in the melt region; the macroscopic growth velocity can be varied from 50 microns/hr to 6.0 cm/hr. It was found that the density of dislocations depends critically on As partial pressure; and essentially dislocation-free, undoped, crystals were grown under As pressure precisely controlled by an As source maintained at 617 C. The free carrier concentration varied with As pressure variations. This variation in free carrier concentration was found to be associated with variations in the compensation ratio rather than with standard segregation phenomena.
Exchange pattern of gaseous elemental mercury in an active urban landfill facility.
Nguyen, Hang Thi; Kim, Ki-Hyun; Kim, Min-Young; Shon, Zang-Ho
2008-01-01
The environmental behavior of gaseous elemental mercury (Hg) in the ambient air was investigated from the center of a municipal landfill site (area approximately 0.6km(2)) located in Dae Gu, Korea in the winter of 2004. In order to provide insight on the Hg exchange processes in strong source areas, we continuously analyzed Hg concentration gradients developed across two heights between 1m and 5m over soil surfaces at hourly intervals. The results displayed Hg concentrations in the lower and upper levels in the range of 1.46-13.1ngm(-3) (3.33+/-1.29ngm(-3): N=139) and 1.20-13.7ngm(-3) (3.27+/-1.23ngm(-3): N=139), respectively. The results of our analysis, when divided separately into emission and dry deposition, showed that emission of Hg was fairly dominant in frequency (up to 58%) over dry deposition. By multiplying our Hg gradient data with the K-values predicted indirectly from the results of previous studies, the emission and deposition fluxes of Hg were estimated as 39.0+/-43.3ngm(-2)h(-1) (N=80) and -60.0+/-80.2ngm(-2)h(-1) (N=59), respectively. Although the magnitudes of exchange were moderately lower than previously investigated anthropogenic sources, the overall results of this study suggest that an active landfill site can act as an important source of Hg in an urban environment along with other man-made activities.
NASA Astrophysics Data System (ADS)
Koutzoukis, S.; Jenerette, D.; Chandler, M.; Wang, J.; Ge, C.; Ripplinger, J.
2017-12-01
Urban air quality and climate directly affect resident health. The Los Angeles (LA) Basin is a highly populated metropolitan area, with widespread point sources of ozone (O3) precursors (NOx , Volatile Organic Compounds, CO) from fossil fuel combustion. The LA basin exists on a coast-to-mountain gradient, with increasing temperatures towards the Transverse Ranges, which rise to 1700m. Frequently not compliant with 8-hour O3 standards, the LA and South Coast Air Basins are designated as severe and extreme non-attainment areas. Summer weather in the LA basin is characterized by a persistent high pressure system, creating an inversion that traps air pollutants, including O3 precursors, coupled with physical geography that blocks prevailing upper atmosphere air flow. These interactions make neighborhood-level O3 levels more variable than common regional models. Over the summer of 2017, we investigated the importance of local meteorology, wind patterns and air temperature, in transporting and mixing ozone precursors from point sources along the coast-to-mountain gradient. We deployed a network of six EPA federal equivalent method ozone and meteorological sensors in three campaigns in the LA basin along the coast-to-mountain transect. Each campaign, we collaborated with citizen scientists to deploy three sensor stations in two, 4 km2 quadrats, for a total of six high-resolution 4 km2 pixels. O3 concentrations vary greatly along the transect. At the coastal sites, daily O3 ranges from 0ppm to 60ppm and the range increases at the inland sites, to 100ppm. At all sites, there was a positive relationship between wind speed, air temperature, and O3 concentration, with increasing correlation inland. The Pearson correlation coefficient between wind speed and O3 concentration doubles from the coast to inland, and triples between air temperature and O3. The site-specific relationships between O3 and wind direction and temperature vary, suggesting neighborhood-effects from local point sources.
Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)
NASA Astrophysics Data System (ADS)
Isakov, V.
2010-12-01
Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features, regional-scale transport, and photochemical transformations. Since these needs are currently not met by a single model, hybrid air quality modeling has recently been developed to combine these capabilities. In this paper, we present the results of two studies where we applied the hybrid modeling approach to provide spatial and temporal details in air quality concentrations to support exposure and health studies: a) an urban-scale air quality accountability study involving near-source exposures to multiple ambient air pollutants, and b) an urban-scale epidemiological study involving human health data based on emergency department visits.
NASA Astrophysics Data System (ADS)
Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.; Pushkarev, Alexander B.; Savolainen, Tuomas
2012-10-01
We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal Faraday rotation is needed.
NASA Astrophysics Data System (ADS)
Gang, Yin; Yingtang, Zhang; Hongbo, Fan; Zhining, Li; Guoquan, Ren
2016-05-01
We have developed a method for automatic detection, localization and classification (DLC) of multiple dipole sources using magnetic gradient tensor data. First, we define modified tilt angles to estimate the approximate horizontal locations of the multiple dipole-like magnetic sources simultaneously and detect the number of magnetic sources using a fixed threshold. Secondly, based on the isotropy of the normalized source strength (NSS) response of a dipole, we obtain accurate horizontal locations of the dipoles. Then the vertical locations are calculated using magnitude magnetic transforms of magnetic gradient tensor data. Finally, we invert for the magnetic moments of the sources using the measured magnetic gradient tensor data and forward model. Synthetic and field data sets demonstrate effectiveness and practicality of the proposed method.
Experimental Measurements of Two-dimensional Planar Propagating Edge Flames
NASA Technical Reports Server (NTRS)
Villa-Gonzalez, Marcos; Marchese, Anthony J.; Easton, John W.; Miller, Fletcher J.
2007-01-01
The study of edge flames has received increased attention in recent years. This work reports the results of a recent study into two-dimensional, planar, propagating edge flames that are remote from solid surfaces (called here, free-layer flames, as opposed to layered flames along floors or ceilings). They represent an ideal case of a flame propagating down a flammable plume, or through a flammable layer in microgravity. The results were generated using a new apparatus in which a thin stream of gaseous fuel is injected into a low-speed laminar wind tunnel thereby forming a flammable layer along the centerline. An airfoil-shaped fuel dispenser downstream of the duct inlet issues ethane from a slot in the trailing edge. The air and ethane mix due to mass diffusion while flowing up towards the duct exit, forming a flammable layer with a steep lateral fuel concentration gradient and smaller axial fuel concentration gradient. We characterized the flow and fuel concentration fields in the duct using hot wire anemometer scans, flow visualization using smoke traces, and non-reacting, numerical modeling using COSMOSFloWorks. In the experiment, a hot wire near the exit ignites the ethane air layer, with the flame propagating downwards towards the fuel source. Reported here are tests with the air inlet velocity of 25 cm/s and ethane flows of 967-1299 sccm, which gave conditions ranging from lean to rich along the centerline. In these conditions the flame spreads at a constant rate faster than the laminar burning rate for a premixed ethane air mixture. The flame spread rate increases with increasing transverse fuel gradient (obtained by increasing the fuel flow rate), but appears to reach a maximum. The flow field shows little effect due to the flame approach near the igniter, but shows significant effect, including flow reversal, well ahead of the flame as it approaches the airfoil fuel source.
NASA Astrophysics Data System (ADS)
Raven, Sara
2015-09-01
Background: Studies have shown that students' knowledge of osmosis and diffusion and the concepts associated with these processes is often inaccurate. This is important to address, as these concepts not only provide the foundation for more advanced topics in biology and chemistry, but are also threaded throughout both state and national science standards. Purpose: In this study, designed to determine the completeness and accuracy of three specific students' knowledge of molecule movement, concentration gradients, and equilibrium, I sought to address the following question: Using multiple evaluative methods, how can students' knowledge of molecule movement, concentration gradients, and equilibrium be characterized? Sample: This study focuses on data gathered from three students - Emma, Henry, and Riley - all of whom were gifted/honors ninth-grade biology students at a suburban high school in the southeast United States. Design and Methods: Using various qualitative data analysis techniques, I analyzed multiple sources of data from the three students, including multiple-choice test results, written free-response answers, think-aloud interview responses, and student drawings. Results: Results of the analysis showed that students maintained misconceptions about molecule movement, concentration gradients, and equilibrium. The conceptual knowledge students demonstrated differed depending on the assessment method, with the most distinct differences appearing on the multiple-choice versus the free-response questions, and in verbal versus written formats. Conclusions: Multiple levels of assessment may be required to obtain an accurate picture of content knowledge, as free-response and illustrative tasks made it difficult for students to conceal any misconceptions. Using a variety of assessment methods within a section of the curriculum can arguably help to provide a deeper understanding of student knowledge and learning, as well as illuminate misconceptions that may have remained unknown if only one assessment method was used. Furthermore, beyond simply evaluating past learning, multiple assessment methods may aid in student comprehension of key concepts.
De Jonge, Maarten; Van de Vijver, Bart; Blust, Ronny; Bervoets, Lieven
2008-12-15
The role of macroinvertebrates and diatoms as indicator for metal pollution was investigated by assessing both biota along a metal gradient in the Belgian river the Dommel. Macroinvertebrates and diatoms were sampled in summer and winter and physical-chemical characteristics of the water were measured at four different sample periods and related to sediment characteristics. Although metal concentrations, except cadmium, in the water nowhere exceeded water quality standards, high metal concentrations were measured in the sediment, indicating historical contamination of the Dommel. At the sites that were situated downstream of the pollution source, high levels of conductivity and chloride were measured in the water. Redundancy Analysis (RDA) indicated pH, phosphate and zinc as the significant environmental variables explaining each respectively 7.7%, 11.6% and 22.6% of the macroinvertebrate community composition. Two clusters could be separated, with Gammarus pulex, Leptocerus interruptus, Baetis rhodani and Cloeon dipterum associated with low zinc concentrations and Tubificidae, Asellus aquaticus, Erpobdella sp. and Chironomus thummi-plumosus associated with higher zinc concentrations. Ammonium (10.6%), conductivity (16.5%), chloride (11.4%) and zinc (5.9%) turned out to be significant variables explaining the diatom community structure. Based on physical-chemical differences and species composition, three different groups could be separated. With this Tabellaria flocculosa and Fragilaria capucina var. rumpens were associated with low metal concentrations, Gomphonema parvulum and Nitzschia palea with elevated concentrations and Eolimna minima and Sellaphora seminulum with high zinc concentrations. In conclusion, the diatom community best reflected the metal gradient. With regard to water quality indices, those based on macroinvertebrates best followed the metal pollution gradient and were most strongly correlated with physical-chemical variables of water and sediment. This study indicated that to assess the effect of metal pollution in lowland rivers, the combined use of macroinvertebrates and diatoms is more appropriate than the use of both biota separately.
Hu, Jicheng; Wu, Jing; Zha, Xiaoshuo; Yang, Chen; Hua, Ying; Wang, Ying; Jin, Jun
2017-04-01
A total of 35 surface soil samples around two secondary copper smelters and one secondary aluminum smelter were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The concentrations of PAHs were highest when the soil sample sites were closest to the secondary copper smelters. And, a level gradient of PAHs was observed in soil samples according to the distance from two secondary copper smelters, respectively. The results suggested that PAH concentrations in surrounding soils may be influenced by secondary copper smelters investigated, whereas no such gradient was observed in soils around the secondary aluminum smelter. Further analysis revealed that PAH patterns in soil samples also showed some difference between secondary copper and aluminum smelter, which may be attributed to the difference in their fuel and smelting process. PAH patterns and diagnostic ratios indicated that biomass burning may be also an important source of PAHs in the surrounding soil in addition to the emissions from the plants investigated.
Modeling sediment concentration of rill flow
NASA Astrophysics Data System (ADS)
Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen
2018-06-01
Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.
[Distribution characteristics of heavy metals along an elevation gradient of montane forest].
Wan, Jia-rong; Nie, Ming; Zou, Qin; Hu, Shao-chang; Chen, Jia-kuan
2011-12-01
In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.
Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.
Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung
2018-04-11
Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.
Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio
2018-04-27
Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.
Statistics of chemical gradients in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Le Borgne, T.; Huck, P. D.; Dentz, M.; Villermaux, E.
2017-12-01
As they create chemical disequilibrium and drive mixing fluxes, spatial gradients in solute concentrations exert a strong control on mixing and biogeochemical reactions in the subsurface. Large concentration gradients may develop in particular at interfaces between surface water and groundwater bodies, such as hyporheic zones, sea water - surface water interfaces or recharge areas. They also develop around contaminant plumes and fluids injected in subsurface operations. While macrodispersion theories predict smooth gradients, decaying in time due to dispersive dissipation, we show that concentration gradients are sustained by flow heterogeneity and have broadly distributed values. We present a general theory predicting the statistics of concentration gradients from the flow heterogeneity (Le Borgne et al., 2017). Analytical predictions are validated from high resolution simulations of transport in heterogeneous Darcy fields ranging from low to high permeability variances and low to high Peclet numbers. This modelling framework hence opens new perspectives for quantifying the dynamics of chemical gradients and the kinetics of associated biogeochemical reactions in heterogeneous subsurface environments.Reference:Le Borgne T., P.D. Huck, M. Dentz and E. Villermaux (2017) Scalar gradients in stirred mixtures and the deconstruction of random fields, J. of Fluid Mech. vol. 812, pp. 578-610 doi:10.1017/jfm.2016.799
What is the concentration of hydrogen peroxide in blood and plasma?
Forman, Henry Jay; Bernardo, Angelito; Davies, Kelvin J A
2016-08-01
The concentration of hydrogen peroxide (H2O2) in blood and plasma is a measurement that has often been made, but the absolute values remain unsettled due the great variability of results actually published in the literature. As in every tissue, the concentration of H2O2 in blood and plasma is determined by the dynamics of its production versus its removal. The major sources of H2O2 in cells will only be briefly described as they are already well documented, The production of H2O2 in red blood cells will be described as it is less well known. But, the concentration of H2O2 within cells is more problematic. Intracellular H2O2 concentration has been estimated based on the kinetics of production and elimination, while its determination is technically difficult. Furthermore, compartmentalization and gradients result in its quantitation only as an average. The sources of extracellular H2O2, particularly in plasma, will also be described briefly. The major question addressed here however, is the actual concentration of H2O2 in plasma, which has been studied extensively, but still remains controversial. Copyright © 2016 Elsevier Inc. All rights reserved.
Sloto, Ronald A.; Conger, Randall W.; Grazul, Kevin E.
1998-01-01
Casey Village and the adjoining part of the U.S. Naval Air Warfare Center (NAWC) are underlain by the Late Triassic-age Stockton Formation, which consists of a dipping series of siltstones and sandstones.The direction of vertical ground-water gradients in the Stockton Formation varies among well locations and sometimes with time. Vertical gradients can be substantial; the difference in water levels at one well pair (two wells screened at different depths) was 7.1 ft (feet) over a 32-ft vertical section of the aquifer.Potentiometric-surface maps show a groundwater divide that bisects the Casey Village area. For wells screened between 18 and 64 ft below land surface (bls), the general ground-water gradient is to the east and northeast on the east side of the divide and to the south and southwest on the west side of the divide. For wells screened between 48 and 106 ft bls, the general ground-water gradient is to the northeast on the east side of the divide and to the southwest and northwest on the west side of the divide. An aquifer test at one well in Casey Village caused drawdown in wells on the opposite side of the ground-water divide on the NAWC and shifted the ground-water divide in the deeper potentiometric surface to the west. Drawdowns formed an elliptical pattern, which indicates anisotropy; however, anisotropy is not aligned with strike or dip. Hydraulic stress caused by pumping crosses stratigraphic boundaries.Between 1993 and 1996, the trichloroethylene (TCE) concentration in water samples collected from wells in Casey Village decreased. The highest concentration of TCE measured in water from one well decreased from 1,200 mg/L (micrograms per liter) in 1993 when domestic wells were pumped in Casey Village to 140 mg/L in 1996, 3 years after the installation of public water and the cessation of domestic pumping. This suggests that pumping of domestic wells may have contributed to TCE migration. Between 1993 and 1996, the tetrachloroethylene (PCE) concentration in water samples collected from wells in Casey Village decreased only slightly. The highest concentration of PCE measured in water from one well decreased from 720 mg/L in 1993 to 630 mg/L in 1996.The distribution of TCE and PCE in ground water indicates the presence of separate PCE and TCE plumes, each with a different source area. The TCE plume appears to be moving in two directions away from the ground-water divide area. The pumping of a domestic well may have caused TCE migration into the ground-water divide area. From the divide area, the TCE plume appears to be moving both to the east and the west under the natural hydraulic gradient.Aquifer-isolation tests conducted in the well with the highest TCE concentrations showed that concentrations of TCE in water samples from the isolated intervals were similar but slightly lower in the deeper isolated zones than in the shallower isolated zones. Upward flow was measured in this well during geophysical logging. If the source of TCE to the well was from shallow fractures, upward flow of less contaminated water could be flushing TCE from the immediate vicinity of this well. This may help explain why the concentration of TCE in water from this well decreased an order of magnitude between 1993 and 1996.
A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications
Miralles, Vincent; Huerre, Axel; Malloggi, Florent; Jullien, Marie-Caroline
2013-01-01
This review presents an overview of the different techniques developed over the last decade to regulate the temperature within microfluidic systems. A variety of different approaches has been adopted, from external heating sources to Joule heating, microwaves or the use of lasers to cite just a few examples. The scope of the technical solutions developed to date is impressive and encompasses for instance temperature ramp rates ranging from 0.1 to 2,000 °C/s leading to homogeneous temperatures from −3 °C to 120 °C, and constant gradients from 6 to 40 °C/mm with a fair degree of accuracy. We also examine some recent strategies developed for applications such as digital microfluidics, where integration of a heating source to generate a temperature gradient offers control of a key parameter, without necessarily requiring great accuracy. Conversely, Temperature Gradient Focusing requires high accuracy in order to control both the concentration and separation of charged species. In addition, the Polymerase Chain Reaction requires both accuracy (homogeneous temperature) and integration to carry out demanding heating cycles. The spectrum of applications requiring temperature regulation is growing rapidly with increasingly important implications for the physical, chemical and biotechnological sectors, depending on the relevant heating technique. PMID:26835667
Licen, Sabina; Tolloi, Arianna; Briguglio, Sara; Piazzalunga, Andrea; Adami, Gianpiero; Barbieri, Pierluigi
2016-05-15
Benzene is known as a human carcinogen, whose annual mean concentration exceeded the EU limit value (5 μg/m(3)) only in very few locations in Europe during 2012. Nevertheless 10% to 12% of the EU-28 urban population was still exposed to benzene concentrations above the WHO reference level of 1.7 μg/m(3). WHO recommended a wise choice of monitoring stations positioning in proximity of "hot spots" to define and assess the representativeness of each site paying attention to micro-scale conditions. In this context benzene and other VOCs of health concern (toluene, ethylbenzene, xylenes) concentrations have been investigated, with weekly passive sampling for one year, both in outdoor and indoor air in inhabited buildings in close proximity (180 m far up to 1100 m) of an integrated steel plant in NE of Italy. Even though the outdoor mean annual benzene concentration was below the EU limit in every site, in the site closest to the works the benzene concentration was above 5 μg/m(3) in 14 weeks. These events were related to a benzene over toluene ratio above one, which is diagnostic for the presence of an industrial source, and to meteorological factors. These information pointed at the identification of the coke ovens of the plant as the dominant outdoor source of benzene. Benzene gradients with the increasing distance from coke ovens have been found for both outdoor and indoor air. Linear models linking outdoor to indoor benzene concentrations have been then identified, allowing to estimate indoor exposure from ambient air benzene data. In the considered period, a narrow area of about 250 m appeared impacted at a higher degree than the other sites both considering outdoor and indoor air. Passive BTEX sampling permits to collect information on both ambient air and daily life settings, allowing to assemble a valuable data support for further environmental cost-benefit analyses. Copyright © 2016 Elsevier B.V. All rights reserved.
Estimating Critical Nitrogen Loads for a California Grassland
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2007-12-01
Rigorously established critical nitrogen loads to protect biodiversity can be effective policy tools for addressing the insidious impacts of atmospheric N-deposition on ecosystems. This presentation describes methods for determining critical N-loads to a California grassland ecosystem by careful examination of the continuum from emissions, transport, atmospheric chemistry, deposition, ecosystem response, and impacts on biodiversity. Nutrient-poor soils derived from serpentinite bedrock support diverse native grasslands with dazzling wildflower displays and numerous threatened and endangered species, including the Bay checkerspot butterfly. Under moderate atmospheric N-deposition, these sites are rapidly invaded by introduced nitrophilous annual grasses in the absence of appropriate grazing or other management. Critical loads to this ecosystem have been approached by measurements of atmospheric concentrations of reactive N gases using Ogawa passive samplers and seasonally averaged deposition velocities. A regional-scale pollution gradient was complemented by a very local-scale pollution gradient extending a few hundred meters downwind of a heavily traveled road in a relatively unpolluted area. The local gradient suggests a critical load of 5 kg-N ha-1 a-1 or less. The passive monitor calculations largely agree with deposition calculated with the CMAQ model at 4 km scale. Emissions of NH3 from catalytic converters are the dominant N-source at the roadway site, and are a function of traffic volume and speed. Plant tissue N-content and 15N gradients support the existence of N-deposition gradients. The complexities of more detailed calculations and measurements specific to this ecosystem include seasonal changes in LAI, temporal coincidence of traffic emissions and stomatal conductance, surface moisture, changes in oxidized versus reduced N sources, and annual weather variation. The concept of a "critical cumulative load" may be appropriate over decadal time scales in this ecosystem and other semi-arid systems where N-export is minimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrell, C.; Okla, L.; Larsson, P.
Annual cycles of the atmospheric concentrations of PCBs were determined at 16 (mostly rural) stations around the Baltic Sea between 1990 and 1993. The concentration levels of individual congeners were found to be influenced by their physical-chemical properties, ambient temperature, and geographical location. Median levels of PCBs were similar at all stations except at one urban site near Riga. A latitudinal gradient with higher levels in the south was found for the sum of PCB as well as for individual congeners, and the gradient was more pronounced for the low volatility congeners. As a result, the high volatility congeners increasedmore » in relative importance with latitude. Generally, PCB concentrations increased with temperature, but slopes of the partial pressure in air versus reciprocal temperature were different between congeners and between stations. In general, the low volatility congeners were more temperature dependent than the high volatility PCB congeners. Steep slopes at a sampling location indicate that the concentration in air is largely determined by diffusive exchange with soils. Lack of a temperature dependence may be due to the influence of long-range transported air masses at remote sites and due to the episodic or random nature of PCB sources at urban sites.« less
Aldarf, M; Fourcade, F; Amrane, A; Prigent, Y
2004-07-05
Geotrichum candidum was cultivated at the surface of solid model media containing peptone to simulate the composition of Camembert cheese. The surface growth of G. candidum induced the diffusion of substrates from the core to the rind and the diffusion of produced metabolites from the rind to the core. In the range of pH measured during G. candidum growth, constant diffusion coefficients were found for lactate and ammonium, 0.4 and 0.8 cm(2) day(-1), respectively, determined in sterile culture medium. Growth kinetics are described using the Verlhust model and both lactate consumption and ammonium production are considered as partially linked to growth. The experimental diffusion gradients of lactate and ammonium recorded during G. candidum growth have been fitted. The diffusion/reaction model was found to match with experimental data until the end of growth, except with regard to ammonium concentration gradients in the presence of lactate in the medium. Indeed, G. candidum preferentially assimilated peptone over lactate as a carbon source, resulting in an almost cessation of ammonium release before the end of growth. On peptone, it was found that the proton transfer did not account for the ammonium concentration gradients. Indeed, amino acids, being positively charged, are involved in the proton transfer at the beginning of growth. This effect can be neglected in the presence of lactate within the medium, and the sum of both lactate consumption and ammonium release gradients corresponded well to the proton transfer gradients, confirming that both components are responsible for the pH increase observed during the ripening of soft Camembert cheese. Copyright 2004 Wiley Periodicals, Inc.
Stability and nuclear dynamics of the Bicoid morphogen gradient
Gregor, Thomas; Wieschaus, Eric F.; McGregor, Alistair P.; Bialek, William; Tank, David W.
2008-01-01
Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remains largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (~1 hour after fertilization) with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (±10%), demonstrating a form of gradient stability, but subsequently decays by approximately 30%. Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D ≤ 1 μm2/s), provide a consistent picture of Bicoid transport on short (~min) time scales, but challenge traditional models of long range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient. PMID:17632061
Bradley, Paul M; Barber, Larry B; Clark, Jimmy M; Duris, Joseph W; Foreman, William T; Furlong, Edward T; Givens, Carrie E; Hubbard, Laura E; Hutchinson, Kasey J; Journey, Celeste A; Keefe, Steffanie H; Kolpin, Dana W
2016-10-15
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem. Published by Elsevier B.V.
Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.
2016-01-01
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.
Wang, Wei; Chen, Jun; Cai, Bao-Chang; Fang, Yun
2008-09-01
To study the influencing factors in preparation of brucine liposomes by ammonium sulfate transmembrane gradients. The brucine liposomes were separated by Sephadex G-50, and the influence of various factors on the entrapment efficiencies were investigated. The entrapment efficiency was enhanced by increased ammonium sulfate concentration, ethanol volume and PC concentration. Burcine liposomes prepared by ammonium sulfate transmembrance gradients can get a high entrapment efficiency, the main influencing factors were ammonium sulfate concentration, ethanol volume and PC concentration.
Rosen, Michael R.; Alvarez, David A.; Goodbred, Steven L.; Leiker, Thomas J.; Patino, Reynaldo
2009-01-01
compounds (SOCs) at pg L-1 concentrations. Semi-permeable membrane devices and POCIS were deployed in Lake Mead, at two sites in Las Vegas Wash, at four sites across Lake Mead, and in the Colorado River downstream from Hoover Dam. Concentrations of hydrophobic SOCs were highest in Las Vegas Wash downstream from waste water and urban inputs and at 8 m depth in Las Vegas Bay (LVB) where Las Vegas Wash enters Lake Mead. Th e distribution of hydrophobic SOCs showed a lateral distribution across 10 km of Lake Mead from LVB to Boulder Basin. To assess possible vertical gradients of SOCs, SPMDs were deployed at 4-m intervals in 18 m of water in LVB. Fragrances and legacy SOCs were found at the greatest concentrations at the deepest depth. Th e vertical gradient of SOCs indicated that contaminants were generally confi ned to within 6 m of the lake bottom during the deployment interval. The high SOC concentrations, warmer water temperatures, and higher total dissolved solids concentrations at depth are indicative of a plume of Las Vegas Wash water moving along the lake bottom. Th e lateral and vertical distribution of SOCs is discussed in the context of other studies that have shown impaired health of fi sh exposed to SOCs.
Mohammadi, Zargham; Gharaat, Mohammad Javad; Field, Malcolm
2018-03-13
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers. © 2018, National Ground Water Association.
Pendyam, Sandeep; Mohan, Ashwin; Kalivas, Peter W.; Nair, Satish S.
2015-01-01
Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, non-synaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require non-synaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis, and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, non-synaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient. PMID:22460547
NASA Astrophysics Data System (ADS)
Clark, David A.
2012-09-01
Acquisition of magnetic gradient tensor data is likely to become routine in the near future. New methods for inverting gradient tensor surveys to obtain source parameters have been developed for several elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalised source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and is independent of magnetisation direction. In combination the NSS and its vector gradient determine source locations uniquely. NSS analysis can be extended to other useful models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the gradient tensor. Inversion based on the vector gradient of the NSS over the Tallawang magnetite deposit obtained good agreement between the inferred geometry of the tabular magnetite skarn body and drill hole intersections. Besides the geological applications, the algorithms for the dipole model are readily applicable to the detection, location and characterisation (DLC) of magnetic objects, such as naval mines, unexploded ordnance, shipwrecks, archaeological artefacts, and buried drums.
Southeast Pacific atmospheric composition and variability sampled along 20˚S during VOCALS-REx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, G.; Kleinman, L.; Coe, H.
2011-01-10
The VAMOS Ocean-Climate-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALS-REx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL) and Free Troposphere (FT) along the 20{sup o} S parallel between 70{sup o} W and 85{sup o} W. Significant zonal gradients inmore » mean MBL sub-micron aerosol particle size and composition, carbon monoxide, ozone and sulphur dioxide were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients are observed to be associated with strong gradients in cloud droplet number. The FT is often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and long-range sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore - coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75{sup o} W was observed to be dominated by coastal emissions from sources to the west of the Andes, with evidence for diurnal pumping of the Andean boundary layer above the height of the marine capping inversion. The climatology presented here aims to provide a valuable dataset to inform model simulation and future process studies, particularly in the context of aerosol-cloud interaction and further evaluation of dynamical processes in the SEP region for conditions analogous to those during VOCALS-REx.« less
Analysis of bacterial migration; 1: Numerical solution of balance equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frymier, P.D.; Ford, R.M.; Cummings, P.T.
1994-04-01
Chemotaxis describes the ability of motile bacteria to bias their motion in the direction of increasing gradients of chemicals, usually energy sources, known as attractants. In experimental studies of the migration of chemotactic bacteria, 1-D phenomenological cell balance equations have been used to quantitatively analyze experimental observations. While attractive for their simplicity and the ease of solution, they are limited in the strict mathematical sense to the situation in which individual bacteria are confined to motion in one dimension and respond to attractant gradients in one dimension only. Recently, Ford and Cummings (1992) reduced the general 3-D cell balance equationmore » of Alt (1980) to obtain an equation describing the migration of a bacterial population in response to a 1-D attractant gradient. Solutions of this equation for single gradients of attractants are compared to those of 1-D balance equations, results from cellular dynamics simulations, and experimental data from the authors' laboratory for E. coli responding to [alpha]-methylaspartate. The authors also investigate two aspects of the experimentally derived expression for the tumbling probability: the effect of different models for the down-gradient swimming behavior of the bacteria and the validity of ignoring the temporal derivative of the attractant concentration.« less
Microbial response to environmental gradients in a ceramic-based diffusion system.
Wolfaardt, G M; Hendry, M J; Birkham, T; Bressel, A; Gardner, M N; Sousa, A J; Korber, D R; Pilaski, M
2008-05-01
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Copyright 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Godard, G.; Paranthoen, P.; Gonzalez, M.
Anisotropic small-scale injection of a scalar (e.g. heat) in a turbulent medium can be performed by means of a small-diameter line source as already done in a turbulent plane jet and a turbulent boundary layer (Rosset et al., Phys. Fluids 13, 3729, 2001). In such conditions, however, experiment is revealed delicate especially, as regard to temperature gradient measurements in the near-field of the source. In the present study, we get rid of previous difficulties by setting up the heated line source in a simpler flow namely, a Bénard-von Kármán street. Under this situation, owing to a phase reference, the history of the instantaneous temperature gradient can be scrutinized from the vicinity of the source. Gradient statistics (second-order mo- ments, skewness, kurtosis ...) is derived which allows us to follow the evolution of anisotropy downstream of the line source. Alignment of temperature gradient with respect to strain principal axes is also analyzed. This experiment provides a precise knowledge of the way in which a scalar gradient evolves under the combined actions of strain, vorticity and molecular diffusion.
Simulation of Paramecium Chemotaxis Exposed to Calcium Gradients.
Sarvestani, Ali N; Shamloo, Amir; Ahmadian, Mohammad Taghi
2016-06-01
Paramecium or other ciliates have the potential to be utilized for minimally invasive surgery systems, making internal body organs accessible. Paramecium shows interesting responses to changes in the concentration of specific ions such as K(+), Mg(2+), and Ca(2+) in the ambient fluid. Some specific responses are observed as, changes in beat pattern of cilia and swimming toward or apart from the ion source. Therefore developing a model for chemotactic motility of small organisms is necessary in order to control the directional movements of these microorganisms before testing them. In this article, we have developed a numerical model, investigating the effects of Ca(2+) on swimming trajectory of Paramecium. Results for Ca(2+)-dependent chemotactic motility show that calcium gradients are efficient actuators for controlling the Paramecium swimming trajectory. After applying a very low Ca(2+) gradient, a directional chemotaxis of swimming Paramecium is observable in this model. As a result, chemotaxis is shown to be an efficient method for controlling the propulsion of these small organisms.
Rocker, Melissa M; Francis, David S; Fabricius, Katharina E; Willis, Bette L; Bay, Line K
2017-06-30
This study explores how plasticity in biochemical attributes, used as indicators of health and condition, enables the coral Acropora tenuis to respond to differing water quality regimes in inshore regions of the Great Barrier Reef. Health attributes were monitored along a strong and weak water quality gradient, each with three reefs at increasing distances from a major river source. Attributes differed significantly only along the strong gradient; corals grew fastest, had the least dense skeletons, highest symbiont densities and highest lipid concentrations closest to the river mouth, where water quality was poorest. High nutrient and particulate loads were only detrimental to skeletal density, which decreased as linear extension increased, highlighting a trade-off. Our study underscores the importance of assessing multiple health attributes in coral reef monitoring. For example, autotrophic indices are poor indicators of coral health and condition, but improve when combined with attributes like lipid content and biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yi; Thompson, Tammy M.; Van Damme, Martin; Chen, Xi; Benedict, Katherine B.; Shao, Yixing; Day, Derek; Boris, Alexandra; Sullivan, Amy P.; Ham, Jay; Whitburn, Simon; Clarisse, Lieven; Coheur, Pierre-François; Collett, Jeffrey L., Jr.
2017-05-01
Concentrated agricultural activities and animal feeding operations in the northeastern plains of Colorado represent an important source of atmospheric ammonia (NH3). The NH3 from these sources contributes to regional fine particle formation and to nitrogen deposition to sensitive ecosystems in Rocky Mountain National Park (RMNP), located ˜ 80 km to the west. In order to better understand temporal and spatial differences in NH3 concentrations in this source region, weekly concentrations of NH3 were measured at 14 locations during the summers of 2010 to 2015 using Radiello passive NH3 samplers. Weekly (biweekly in 2015) average NH3 concentrations ranged from 2.66 to 42.7 µg m-3, with the highest concentrations near large concentrated animal feeding operations (CAFOs). The annual summertime mean NH3 concentrations were stable in this region from 2010 to 2015, providing a baseline against which concentration changes associated with future changes in regional NH3 emissions can be assessed. Vertical profiles of NH3 were also measured on the 300 m Boulder Atmospheric Observatory (BAO) tower throughout 2012. The highest NH3 concentration along the vertical profile was always observed at the 10 m height (annual average concentration of 4.63 µg m-3), decreasing toward the surface (4.35 µg m-3) and toward higher altitudes (1.93 µg m-3). The NH3 spatial distributions measured using the passive samplers are compared with NH3 columns retrieved by the Infrared Atmospheric Sounding Interferometer (IASI) satellite and concentrations simulated by the Comprehensive Air Quality Model with Extensions (CAMx). The satellite comparison adds to a growing body of evidence that IASI column retrievals of NH3 provide very useful insight into regional variability in atmospheric NH3, in this case even in a region with strong local sources and sharp spatial gradients. The CAMx comparison indicates that the model does a reasonable job simulating NH3 concentrations near sources but tends to underpredict concentrations at locations farther downwind. Excess NH3 deposition by the model is hypothesized as a possible explanation for this trend.
Inferring Models of Bacterial Dynamics toward Point Sources
Jashnsaz, Hossein; Nguyen, Tyler; Petrache, Horia I.; Pressé, Steve
2015-01-01
Experiments have shown that bacteria can be sensitive to small variations in chemoattractant (CA) concentrations. Motivated by these findings, our focus here is on a regime rarely studied in experiments: bacteria tracking point CA sources (such as food patches or even prey). In tracking point sources, the CA detected by bacteria may show very large spatiotemporal fluctuations which vary with distance from the source. We present a general statistical model to describe how bacteria locate point sources of food on the basis of stochastic event detection, rather than CA gradient information. We show how all model parameters can be directly inferred from single cell tracking data even in the limit of high detection noise. Once parameterized, our model recapitulates bacterial behavior around point sources such as the “volcano effect”. In addition, while the search by bacteria for point sources such as prey may appear random, our model identifies key statistical signatures of a targeted search for a point source given any arbitrary source configuration. PMID:26466373
Cai, Long-Fei; Zhu, Ying; Du, Guan-Sheng; Fang, Qun
2012-01-03
We described a microfluidic chip-based system capable of generating droplet array with a large scale concentration gradient by coupling flow injection gradient technique with droplet-based microfluidics. Multiple modules including sample injection, sample dispersion, gradient generation, droplet formation, mixing of sample and reagents, and online reaction within the droplets were integrated into the microchip. In the system, nanoliter-scale sample solution was automatically injected into the chip under valveless flow injection analysis mode. The sample zone was first dispersed in the microchannel to form a concentration gradient along the axial direction of the microchannel and then segmented into a linear array of droplets by immiscible oil phase. With the segmentation and protection of the oil phase, the concentration gradient profile of the sample was preserved in the droplet array with high fidelity. With a single injection of 16 nL of sample solution, an array of droplets with concentration gradient spanning 3-4 orders of magnitude could be generated. The present system was applied in the enzyme inhibition assay of β-galactosidase to preliminarily demonstrate its potential in high throughput drug screening. With a single injection of 16 nL of inhibitor solution, more than 240 in-droplet enzyme inhibition reactions with different inhibitor concentrations could be performed with an analysis time of 2.5 min. Compared with multiwell plate-based screening systems, the inhibitor consumption was reduced 1000-fold. © 2011 American Chemical Society
Bayesian source term estimation of atmospheric releases in urban areas using LES approach.
Xue, Fei; Kikumoto, Hideki; Li, Xiaofeng; Ooka, Ryozo
2018-05-05
The estimation of source information from limited measurements of a sensor network is a challenging inverse problem, which can be viewed as an assimilation process of the observed concentration data and the predicted concentration data. When dealing with releases in built-up areas, the predicted data are generally obtained by the Reynolds-averaged Navier-Stokes (RANS) equations, which yields building-resolving results; however, RANS-based models are outperformed by large-eddy simulation (LES) in the predictions of both airflow and dispersion. Therefore, it is important to explore the possibility of improving the estimation of the source parameters by using the LES approach. In this paper, a novel source term estimation method is proposed based on LES approach using Bayesian inference. The source-receptor relationship is obtained by solving the adjoint equations constructed using the time-averaged flow field simulated by the LES approach based on the gradient diffusion hypothesis. A wind tunnel experiment with a constant point source downwind of a single building model is used to evaluate the performance of the proposed method, which is compared with that of the existing method using a RANS model. The results show that the proposed method reduces the errors of source location and releasing strength by 77% and 28%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Sources of fatty acids in Lake Michigan surface microlayers and subsurface waters
NASA Astrophysics Data System (ADS)
Meyers, Philip A.; Owen, Robert M.
1980-11-01
Fatty acid and organic carbon contents have been measured in the particulate and dissolved phases of surface microlayer and subsurface water samples collected from Lake Michigan. Concentrations are highest close to fluvial sources and lowest in offshore areas, yet surface/subsurface fractionation is lowest near river mouths and highest in open lake locations. These gradients plus accompanying fatty acid compositional changes indicate that river-borne organic materials are important constituents of coastal Lake Michigan microlayers and that sinking and turbulent resuspension of particulates affect surface film characteristics. Lake neuston and plankton contribute organic components which partially replace potamic materials removed by sinking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.
One challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixedmore » amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 hour experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Moreover, Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p<0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. Finally, these findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination.« less
Oh, Se Heang; Kang, Jun Goo; Kim, Tae Ho; Namgung, Uk; Song, Kyu Sang; Jeon, Byeong Hwa; Lee, Jin Ho
2018-01-01
In this study, we fabricated a nerve guide conduit (NGC) with nerve growth factor (NGF) gradient along the longitudinal direction by rolling a porous polycaprolactone membrane with NGF concentration gradient. The NGF immobilized on the membrane was continuously released for up to 35 days, and the released amount of the NGF from the membrane gradually increased from the proximal to distal NGF ends, which may allow a neurotrophic factor gradient in the tubular NGC for a sufficient period. From the in vitro cell culture experiment, it was observed that the PC12 cells sense the NGF concentration gradient on the membrane for the cell proliferation and differentiation. From the in vivo animal experiment using a long gap (20 mm) sciatic nerve defect model of rats, the NGC with NGF concentration gradient allowed more rapid nerve regeneration through the NGC than the NGC itself and NGC immobilized with uniformly distributed NGF. The NGC with NGF concentration gradient seems to be a promising strategy for the peripheral nerve regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 52-64, 2018. © 2017 Wiley Periodicals, Inc.
Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis.
Halnes, Geir; Mäki-Marttunen, Tuomo; Pettersen, Klas H; Andreassen, Ole A; Einevoll, Gaute T
2017-07-01
Current-source density (CSD) analysis is a well-established method for analyzing recorded local field potentials (LFPs), that is, the low-frequency part of extracellular potentials. Standard CSD theory is based on the assumption that all extracellular currents are purely ohmic, and thus neglects the possible impact from ionic diffusion on recorded potentials. However, it has previously been shown that in physiological conditions with large ion-concentration gradients, diffusive currents can evoke slow shifts in extracellular potentials. Using computer simulations, we here show that diffusion-evoked potential shifts can introduce errors in standard CSD analysis, and can lead to prediction of spurious current sources. Further, we here show that the diffusion-evoked prediction errors can be removed by using an improved CSD estimator which accounts for concentration-dependent effects. NEW & NOTEWORTHY Standard CSD analysis does not account for ionic diffusion. Using biophysically realistic computer simulations, we show that unaccounted-for diffusive currents can lead to the prediction of spurious current sources. This finding may be of strong interest for in vivo electrophysiologists doing extracellular recordings in general, and CSD analysis in particular. Copyright © 2017 the American Physiological Society.
Implementing Marine Organic Aerosols Into the GEOS-Chem Model
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.
2015-01-01
Marine-sourced organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large under-prediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.
Gas Diffusion in Fluids Containing Bubbles
NASA Technical Reports Server (NTRS)
Zak, M.; Weinberg, M. C.
1982-01-01
Mathematical model describes movement of gases in fluid containing many bubbles. Model makes it possible to predict growth and shrink age of bubbles as function of time. New model overcomes complexities involved in analysis of varying conditions by making two simplifying assumptions. It treats bubbles as point sources, and it employs approximate expression for gas concentration gradient at liquid/bubble interface. In particular, it is expected to help in developing processes for production of high-quality optical glasses in space.
Urban-rural differences in atmospheric mercury speciation
NASA Astrophysics Data System (ADS)
Liu, Bian; Keeler, Gerald J.; Timothy Dvonch, J.; Barres, James A.; Lynam, Mary M.; Marsik, Frank J.; Morgan, Joy Taylor
2010-05-01
Measurements of gaseous elemental mercury (GEM), particulate mercury (Hg p), and reactive gaseous mercury (RGM) were concurrently recorded at an urban site in Detroit and a rural site in Dexter, both in Michigan for the calendar year 2004. Their average concentrations (±standard deviation) for the urban area were 2.5 ± 1.4 ng m -3, 18.1 ± 61.0 pg m -3, and 15.5 ± 54.9 pg m -3, respectively, while their rural counterparts were 1.6 ± 0.6 ng m -3, 6.1 ± 5.5 pg m -3, and 3.8 ± 6.6 pg m -3, respectively. The medians of urban-to-rural ratios of Hg concentrations indicate approximately 1-fold, 2-fold, and 3-fold gradients between Detroit and Dexter for GEM, Hg p, and RGM, respectively. The urban-rural differences in Hg also varied considerably on different temporal scales and with wind flow patterns, which was most evident in RGM. Our results show that while Hg at both sites was impacted by regional sources, meteorological conditions, and photochemical transformations, the extent of variations in the observed urban-to-rural gradients, particularly in RGM, cannot be fully accounted for by these processes. Both analyses of the annual data and case studies indicate that the more variable and episodic nature of Hg, particularly RGM, seen in Detroit compared with Dexter, was the result of direct impact from local anthropogenic sources.
Cetin, Banu; Yurdakul, Sema; Keles, Melek; Celik, Isil; Ozturk, Fatma; Dogan, Cevdet
2017-09-01
Dilovasi is one of the heavily industrialized areas in Turkey with serious environmental problems. In this study, the atmospheric concentration of PAHs and PCBs were measured for a whole year at 23 sites. The average ambient air Σ 15 PAH and Σ 41 PCB concentrations were found as 285 ± 431 ng m -3 and 4152 ± 6072 pg m -3 , respectively. PAH concentrations increased with decreasing temperature especially in urban areas, indicating the impact of residential heating. However, PCB concentrations mostly increased with temperature probably due to enhanced volatilization from their sources. The gradient obtained for PCBs, rural < suburban < urban < industrial/urban, is more clear than those obtained for PAHs. The average Σ 15 PAH and Σ 41 PCB soil concentrations were found as 992 ± 1323 and 18.8 ± 32.0 μg kg -1 , respectively. PCB soil concentrations did not show significant temporal variations while PAH concentrations were variable especially for urban areas. The volatilization tendencies of low and medium molecular weight PAHs from soil to air were higher in industrial-urban areas than rural sites, showing that soil was a secondary source for PAHs. Fugacity ratios of PCBs were mostly <1.0 for the whole sampling period. Although the source/sink tendency of soil for some PCBs depends on their volatility, considering the whole data, PCBs were generally deposited to soil. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Qingguana; Wang, Cheng; Han, Yong; Gao, Dayuan; Duan, Yingliang
2017-06-01
Since detonation often initiates and propagates in the non-homogeneous mixtures, investigating its behavior in non-uniform mixtures is significant not only for the industrial explosion in the leakage combustible gas, but also for the experimental investigations with a vertical concentration gradient caused by the difference in the molecular weight of gas mixture. Objective of this work is to show the detonation behavior in the mixture with different concentration gradients with detailed chemical reaction mechanism. A globally planar detonation in H2-O2 system is simulated by a high-resolution code based on the fifth-order weighted essentially non-oscillatory (WENO) scheme in spatial discretization and the third-order Additive Runge-Kutta schemes in time discretization. The different shocked combustion modes appear in the rich-fuel and poor-fuel layers due to the concentration gradient effect. Globally, for the cases with the lower gradient detonation can be sustained in a way of the alternation of the multi-heads mode and single-head mode, whereas for the cases with the higher gradient detonation propagates with a single-head mode. Institute of Chemical Materials, CAEP.
The design features cells use to build their transmembrane proton gradient
NASA Astrophysics Data System (ADS)
Gunner, M. R.; Koder, Ronald
2017-02-01
Organisms store energy from food and sunlight as an electrochemical gradient across the membranes of mitochondria, chloroplasts and bacteria. The gradient arises from differences in the concentration of protons and ions on the negative (N) and positive (P) sides of these membranes. This perspective describes how the proton gradient is formed. One strategy is the movement of electrons but not protons across a membrane-embedded protein from a site of proton-releasing oxidative chemistry on the P-side of the protein to a site of proton-binding reductive chemistry on the N-side. Alternately, protons are directly pumped across membrane-embedded proteins, which have gated proton transfer pathways that are opened and closed, as well as internal sites where the proton affinity varies as the protein goes through the reaction cycle. The molecules that carry out these roles are complex, utilizing non-amino acid cofactors and earth-abundant metals. However, these are also potential sources of high-energy toxic byproducts. Understanding these reactions can open the door to their rational redesign, with possible beneficial effects as far-reaching as improving the global food supply, preventing neurodegenerative diseases, and better understanding the role of metabolism in aging.
The design features cells use to build their transmembrane proton gradient.
Gunner, M R; Koder, Ronald
2017-02-07
Organisms store energy from food and sunlight as an electrochemical gradient across the membranes of mitochondria, chloroplasts and bacteria. The gradient arises from differences in the concentration of protons and ions on the negative (N) and positive (P) sides of these membranes. This perspective describes how the proton gradient is formed. One strategy is the movement of electrons but not protons across a membrane-embedded protein from a site of proton-releasing oxidative chemistry on the P-side of the protein to a site of proton-binding reductive chemistry on the N-side. Alternately, protons are directly pumped across membrane-embedded proteins, which have gated proton transfer pathways that are opened and closed, as well as internal sites where the proton affinity varies as the protein goes through the reaction cycle. The molecules that carry out these roles are complex, utilizing non-amino acid cofactors and earth-abundant metals. However, these are also potential sources of high-energy toxic byproducts. Understanding these reactions can open the door to their rational redesign, with possible beneficial effects as far-reaching as improving the global food supply, preventing neurodegenerative diseases, and better understanding the role of metabolism in aging.
A model for jet-noise analysis using pressure-gradient correlations on an imaginary cone
NASA Technical Reports Server (NTRS)
Norum, T. D.
1974-01-01
The technique for determining the near and far acoustic field of a jet through measurements of pressure-gradient correlations on an imaginary conical surface surrounding the jet is discussed. The necessary analytical developments are presented, and their feasibility is checked by using a point source as the sound generator. The distribution of the apparent sources on the cone, equivalent to the point source, is determined in terms of the pressure-gradient correlations.
Multiphysics Modelling of Sodium Sulfur Battery
NASA Astrophysics Data System (ADS)
Mason, Jerry Hunter
Due to global climate change and the desire to decrease greenhouse gas emissions, large scale energy storage has become a critical issue. Renewable energy sources such as wind and solar will not be a viable energy source unless the storage problem is solved. One of the practical and cost effective solutions for this problem is sodium sulfur batteries. These batteries are comprised of liquid electrode materials suspended in porous media and operate at relatively high temperatures (>300°C). The sodium anode and the sulfur/sodium-polysulfide cathode are separated by a solid electrolyte made of beta-alumina or NASICON material. Due to the use of porous materials in the electrodes, capillary pressure and the combination of capillary action and gravity become important. Capillary pressure has a strong dependence on the wetting phase (liquid electrode material) saturation; therefore sharp concentration gradients can occur between the inert gas and the electrode liquid, especially within the cathode. These concentration gradients can have direct impacts on the electrodynamics of the battery as they may produce areas of high electrical potential variation, which can decrease efficiency and even cause failures. Then, thermal management also becomes vital since the electrochemistry and material properties are sensitive to temperature gradients. To investigate these phenomena in detail and to attempt to improve upon battery design a multi-dimensional, multi-phase code has been developed and validated in this study. Then a porous media flow model is implemented. Transport equations for charge, mass and heat are solved in a time marching fashion using finite volume method. Material properties are calculated and updated as a function of time. The porous media model is coupled with the continuity equation and a separate diffusion equation for the liquid sodium in the melt. The total mass transport model is coupled with charge transport via Faraday's law. Results show that overpotential is significantly higher in the porous region of the cathode as was predicted by models in the literature. Overpotential is also high on the electrolyte surface and wall. Alternative electrode configurations with high resistive layers recommended by previous researchers also produce areas of high potential gradient. New electrode designs including conductivity gradients and porous media property variations are simulated and compared to previous designs and then recommendations are made for optimum cell operating conditions.
Convective boundary conditions effect on peristaltic flow of a MHD Jeffery nanofluid
NASA Astrophysics Data System (ADS)
Kothandapani, M.; Prakash, J.
2016-03-01
This work is aimed at describing the influences of MHD, chemical reaction, thermal radiation and heat source/sink parameter on peristaltic flow of Jeffery nanofluids in a tapered asymmetric channel along with slip and convective boundary conditions. The governing equations of a nanofluid are first formulated and then simplified under long-wavelength and low-Reynolds number approaches. The equation of nanoparticles temperature and concentration is coupled; hence, homotopy perturbation method has been used to obtain the solutions of temperature and concentration of nanoparticles. Analytical solutions for axial velocity, stream function and pressure gradient have also constructed. Effects of various influential flow parameters have been pointed out through with help of the graphs. Analysis indicates that the temperature of nanofluids decreases for a given increase in heat transfer Biot number and chemical reaction parameter, but it possesses converse behavior in respect of mass transfer Biot number and heat source/sink parameter.
Birgül, Aşkın; Kurt-Karakus, Perihan Binnur; Alegria, Henry; Gungormus, Elif; Celik, Halil; Cicek, Tugba; Güven, Emine Can
2017-02-01
Polyurethane foam (PUF) passive samplers were employed to assess air concentrations of polychlorinated biphenyls (PCBs) in background, agricultural, semi-urban, urban and industrial sites in Bursa, Turkey. Samplers were deployed for approximately 2-month periods from February to December 2014 in five sampling campaign. Results showed a clear rural-agricultural-semi-urban-urban-industrial PCBs concentration gradient. Considering all sampling periods, ambient air concentrations of Σ 43 PCBs ranged from 9.6 to 1240 pg/m 3 at all sites with an average of 24.1 ± 8.2, 43.8 ± 24.4, 140 ± 190, 42.8 ± 24.6, 160 ± 280, 84.1 ± 105, 170 ± 150 and 280 ± 540 pg/m 3 for Mount Uludag, Uludag University Campus, Camlica, Bursa Technical University Osmangazi Campus, Hamitler, Agakoy, Kestel Organised Industrial District and Demirtas Organised Industrial District sampling sites, respectively. The ambient air PCB concentrations increased along a gradient from background to industrial areas by a factor of 1.7-11.4. 4-Cl PCBs (31.50-81.60%) was the most dominant homologue group at all sampling sites followed by 3-Cl, 7-Cl, 6-Cl and 5-Cl homologue groups. Sampling locations and potential sources grouped in principal component analysis. Results of PCA plots highlighted a large variability of the PCB mixture in air, hence possible related sources, in Bursa area. Calculated inhalation risk levels in this study indicated no serious adverse health effects. This study is one of few efforts to characterize PCB composition in ambient air seasonally and spatially for urban and industrial areas of Turkey by using passive samplers as an alternative sampling method for concurrent monitoring at multiple sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Volatile halogenated hydrocarbons over the western Pacific between 43° and 4°N
NASA Astrophysics Data System (ADS)
Quack, Birgit; Suess, Erwin
1999-01-01
A spectrum of halogenated hydrocarbon compounds in marine air masses were surveyed over an area in the western Pacific between 43°N, 150°E and 4°N, 113°E in September 1994. The ship's track between northern Japan and Singapore traversed three climatic zones of the northern hemisphere. Recently polluted air, clean marine air derived from the central Pacific Ocean from different latitudes, and marine air from the Indonesian archipelago were collected. Tetrachloroethene and trichloroethene of anthropogenic origin, brominated halocarbons as tribromomethane, dibromochloromethane and bromodichloromethane of anthropogenic and natural sources, and other trace gases were measured in the air samples. Very sparse data on the distribution of these compounds exist for the western Pacific atmosphere. The distribution patterns of the compounds were related to synoptic-scale meteorology, spatial conditions, and origin of the air masses. Anthropogenic and natural sources for both chlorinated and brominated substances were identified. Tetrachloroethene and trichloroethene concentrations and their ratios identify anthropogenic sources. Their mixing ratios were quite low compared to previously published data. They are in agreement with expected low concentrations of photochemically active substances during autumn, with an overall decrease in concentrations toward lower latitudes, and with a decrease of emissions during recent years. Strong evidence for a natural source of trichloroethene was discovered in the tropical region. The concentrations of naturally released brominated species were high compared to other measurements over the Pacific. Gradients toward the coasts and elevated concentrations in air masses influenced by coastal emissions point to significant coastal sources of these compounds. The trace gas composition of anthropogenic and natural compounds clearly identified the air masses which were traversed during the cruise.
NASA Astrophysics Data System (ADS)
Ludovic, Foti
2017-04-01
Urban soils differ greatly from natural ones as they are located in areas of intense anthropogenic activity (e.g. pollution, physical disturbance, surface transformation). Urban soils are a crucial component of urban ecosystems, especially in public green spaces, and contribute to many ecosystem services from the mitigation of urban heat island to recreational services. In the last decade, the study of urban soils has emerged as an important frontier in environmental research, at least because of their impact on the quality of life of urban populations, because of the services they deliver and because they are more and more recognized as a valuable resource. One of the key issues is the pollution of urban soils because they receive a variety of deposits from local (vehicle emissions, industrial discharges, domestic heating, waste incineration and other anthropogenic activities) and from remote sources (through atmospheric transport). Typical contaminants include persistent toxic substances, such as trace metals (TMs) that have drawn wide attention due to their long persistence in the environment, their tendency to bioaccumulate in the food chain and their toxicity for humans and other organisms. Concentrations, spatial distributions, dynamics, impacts and sources of TMs (e.g. industry or fossil fuels combustion) have attracted a global interest in urban soils and are the subject of ongoing research (e.g. ecotoxicological urban ecology). Some studies have already documented soil pollution with TMs at both the town and regional scales. So far, several monitoring programs (e.g. National Network for the long term Monitoring of Forest Ecosystem, Regional Monitoring Quality of Soil in France) and studies have been carried out on a national scale to measure the ranges of TM concentrations and natural background values in French soils. These studies have focused on French agricultural and forest soils and have not tackled urban soils. No study has described TM concentrations and subsequent risks in soils of Paris and Paris region (Île-de-France). Our study aims at filling this knowledge gap, focusing on contamination and pollution by TMs in lawns and forests that constitute the main types of vegetation in urban areas of Paris region. Considering the rational described above, the aims of the present study were (i) to examine the concentration of eight selected TMs (As, Cd, Cr, Cu, Fe, Ni, Pb, Zn) in soils of two land-uses (public lawns and woods) along an urban pressure gradient in Paris region, (ii) to distinguish origins and sources of contamination or pollution, (iii) to evaluate the individual and overall TM contamination degree as well as the individual and overall TM pollution degree, (iiii) to use soil characteristics to better understand soil origins and histories along the urban pressure gradient and the relationship between these characteristics and TM concentrations. Ultimately, this study provides a baseline TM assessment for the long-term monitoring of the evolution of TM soil contents in urban area of the Paris region.
Liu, Xiaoyang; Abbott, Nicholas L
2011-04-15
We report principles for a continuous flow process that can separate solutes based on a driving force for selective transport that is generated by a lateral concentration gradient of a redox-active surfactant across a microfluidic channel. Microfluidic channels fabricated with gold electrodes lining each vertical wall were used to electrochemically generate concentration gradients of the redox-active surfactant 11-ferrocenylundecyl-trimethylammonium bromide (FTMA) in a direction perpendicular to the flow. The interactions of three solutes (a hydrophobic dye, 1-phenylazo-2-naphthylamine (yellow AB), an amphiphilic molecule, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY C(5)-HPC), and an organic salt, 1-methylpyridinium-3-sulfonate (MPS)) with the lateral gradients in surfactant/micelle concentration were shown to drive the formation of solute-specific concentration gradients. Two distinct physical mechanisms were identified to lead to the solute concentration gradients: solubilization of solutes by micelles and differential adsorption of the solutes onto the walls of the microchannels in the presence of the surfactant concentration gradient. These two mechanisms were used to demonstrate delipidation of a mixture of BODIPY C(5)-HPC (lipid) and MPS and purification of BODIPY C(5)-HPC from a mixture of BODIPY C(5)-HPC and yellow AB. Overall, the results of this study demonstrate that lateral concentration gradients of redox-active surfactants formed within microfluidic channels can be used to transport solutes across the microfluidic channels in a solute-dependent manner. The approach employs electrical potentials (<1 V) that are sufficiently small to avoid electrolysis of water, can be performed in solutions having high ionic strength (>0.1M), and offers the basis of continuous processes for the purification or separation of solutes in microscale systems. © 2011 American Chemical Society
Somaweera, Himali; Haputhanthri, Shehan O; Ibraguimov, Akif; Pappas, Dimitri
2015-08-07
A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies. The microfluidic diffusion diluter used in this study consisted of 128 culture chambers on each side of the main fluidic channel. A calibration method was used to find unknown concentrations with 12% error. Flow rate dependent studies showed that changing the flow rates generated different gradient patterns. Mathematical simulations using COMSOL Multi-physics were performed to validate the experimental data. The experimental data obtained for the flow rate studies agreed with the simulation results. Cells could be loaded into culture chambers using vacuum actuation and cultured for long times under low shear stress. Decreasing the size of the culture chambers resulted in faster gradient formation (20 min). Mass transport into the side channels of the microfluidic diffusion diluter used in this study is an important factor in creating the gradient using diffusional mixing as a function of the distance. To demonstrate the device's utility, an H2O2 gradient was generated while culturing Ramos cells. Cell viability was assayed in the 256 culture chambers, each at a discrete H2O2 concentration. As expected, the cell viability for the high concentration side channels increased (by injecting H2O2) whereas the cell viability in the low concentration side channels decreased along the chip due to diffusional mixing as a function of distance. COMSOL simulations were used to identify the effective concentration of H2O2 for cell viability in each side chamber at 45 min. The gradient effects were confirmed using traditional H2O2 culture experiments. Viability of cells in the microfluidic device under gradient conditions showed a linear relationship with the viability of the traditional culture experiment. Development of the microfluidic device used in this study could be used to study hundreds of concentrations of a compound in a single experiment.
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.; Howard, Alan D.
2004-01-01
Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently formed around the time of the Noachian-Hesperian boundary. We infer that these fans formed during an episode of enhanced precipitation (probably snow) and runoff, which exhibited both sudden onset and termination.
NASA Astrophysics Data System (ADS)
Clark, D.
2012-12-01
In the future, acquisition of magnetic gradient tensor data is likely to become routine. New methods developed for analysis of magnetic gradient tensor data can also be applied to high quality conventional TMI surveys that have been processed using Fourier filtering techniques, or otherwise, to calculate magnetic vector and tensor components. This approach is, in fact, the only practical way at present to analyze vector component data, as measurements of vector components are seriously afflicted by motion noise, which is not as serious a problem for gradient components. In many circumstances, an optimal approach to extracting maximum information from magnetic surveys would be to combine analysis of measured gradient tensor data with vector components calculated from TMI measurements. New methods for inverting gradient tensor surveys to obtain source parameters have been developed for a number of elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, horizontal line current and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalized source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and is independent of magnetization direction for these sources (and only very weakly dependent on magnetization direction in general). In combination the NSS and its vector gradient enable estimation of the Euler structural index, thereby constraining source geometry, and determine source locations uniquely. NSS analysis can be extended to other useful models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the gradient tensor. Once source locations are determined, information of source magnetizations can be obtained by simple linear inversion of measured or calculated vector and/or tensor data. Inversions based on the vector gradient of the NSS over the Tallawang magnetite deposit in central New South Wales obtained good agreement between the inferred geometry of the tabular magnetite skarn body and drill hole intersections. Inverted magnetizations are consistent with magnetic property measurements on drill core samples from this deposit. Similarly, inversions of calculated tensor data over the Mount Leyshold gold-mineralized porphyry system in Queensland yield good estimates of the centroid location, total magnetic moment and magnetization direction of the magnetite-bearing potassic alteration zone that are consistent with geological and petrophysical information.
NASA Astrophysics Data System (ADS)
Mao, D.; Revil, A.; Hort, R. D.; Munakata-Marr, J.; Atekwana, E. A.; Kulessa, B.
2015-11-01
Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity gradient.
Ricca, Mark A.; Miles, A. Keith; Anthony, Robert G.
2008-01-01
Persistent organochlorine compounds and mercury (Hg) have been detected in numerous coastal organisms of the Aleutian archipelago of Alaska, yet sources of these contaminants are unclear. We collected glaucous-winged gulls, northern fulmars, and tufted puffins along a natural longitudinal gradient across the western and central Aleutian Islands (Buldir, Kiska, Amchitka, Adak), and an additional 8 seabird species representing different foraging and migratory guilds from Buldir Island to evaluate: 1) point source input from former military installations, 2) westward increases in contaminant concentrations suggestive of distant source input, and 3) effects of trophic status (δ15N) and carbon source (δ13C) on contaminant accumulation. Concentrations of Σ polychlorinated biphenyls (PCBs) and most chlorinated pesticides in glaucous-winged gulls consistently exhibited a ‘U’-shaped pattern of high levels at Buldir and the east side of Adak and low levels at Kiska and Amchitka. In contrast, concentrations of Σ PCBs and chlorinated pesticides in northern fulmars and tufted puffins did not differ among islands. Hg concentrations increased westward in glaucous-winged gulls and were highest in northern fulmars from Buldir. Among species collected only at Buldir, Hg was notably elevated in pelagic cormorants, and relatively high Σ PCBs were detected in black-legged kittiwakes. Concentrations of Σ PCBs, dichlorodiphenyldichloroethylene (p,p′ DDE), and Hg were positively correlated with δ15N across all seabird species, indicating biomagnification across trophic levels. The east side of Adak Island (a former military installation) was a likely point source of Σ PCBs and p,p′ DDE, particularly in glaucous-winged gulls. In contrast, elevated levels of these contaminants and Hg, along with PCB congener and chlorinated pesticide compositional patterns detected at Buldir Island indicated exposure from distant sources influenced by a combination of atmospheric–oceanic processes and the migratory movements of seabirds.
McMahon, Peter B.
2001-01-01
The central High Plains aquifer is the primary source of water for domestic, industrial, and irrigation uses in parts of Colorado, Kansas, New Mexico, Oklahoma, and Texas. Water-level declines of more than 100 feet in some areas of the aquifer have increased the demand for water deeper in the aquifer. The maximum saturated thickness of the aquifer ranged from 500 to 600 feet in 1999. As the demand for deeper water increases, it becomes increasingly important for resource managers to understand how the quality of water in the aquifer changes with depth. In 1998?99, 18 monitoring wells at nine sites in southwestern Kansas and the Oklahoma Panhandle were completed at various depths in the central High Plains aquifer, and one monitoring well was completed in sediments of Permian age underlying the aquifer. Water samples were collected once from each well in 1999 to measure vertical gradients in water chemistry in the aquifer. Tritium concentrations measured in ground water indicate that water samples collected in the upper 30 feet of the aquifer were generally recharged within the last 50 years, whereas all of the water samples collected at depths more than 30 feet below the water table were recharged more than 50 years ago. Dissolved oxygen was present throughout the aquifer, with concentrations ranging from 1.7 to 8.4 mg/L. Water in the central High Plains aquifer was predominantly a calcium-bicarbonate type that exhibited little variability in concentrations of dissolved solids with depth (290 to 642 mg/L). Exceptions occurred in some areas where there had been upward movement of mineralized water from underlying sediments of Permian age and areas where there had been downward movement of mineralized Arkansas River water to the aquifer. Calcium-sulfate and sodium-chloride waters dominated and concentrations of dissolved solids were elevated (862 to 4,030 mg/L) near the base of the aquifer in the areas of upward leakage. Dissolution of gypsum or anhydrite and halite in sediments of Permian age by ground water was the likely source of calcium, sulfate, sodium, and chloride in those waters. Calcium-sodium-sulfate waters dominated, and concentrations of dissolved solids were as large as 4,916 mg/L near the water table in the area of downward leakage. Dissolution of minerals in sedimentary deposits of marine origin in upstream areas of the Arkansas River drainage were the likely sources of calcium, sodium, and sulfate in those waters. Nitrate was detected throughout the aquifer and the background concentration was estimated to be 2.45 mg/L as N. The largest nitrate concentrations (8.28, 22, and 54.4 mg/L as N) occurred in recently recharged water collected adjacent to irrigated fields. Three pesticides (atrazine, metolachlor, simazine) and five pesticide degradation products (alachlor ethanesulfonic acid, alachlor oxanilic acid, deethylatrazine, metolachlor ethanesulfonic acid, metolachlor oxanilic acid) were detected in recently recharged water from six water-table wells. Five of the six wells were adjacent to irrigated fields. These data indicate that concentrations of nitrate and pesticides increased over time in some areas of the aquifer as a result of agricultural activities. Results from this study indicate that vertical gradients in water chemistry existed in the central High Plains aquifer. The chemical gradients resulted from chemical inputs to the aquifer from underlying sediments of Permian age, from the Arkansas River, and from agricultural activities. In areas where those chemical inputs occurred, water quality in the aquifer was impaired and may not have been suitable for some intended uses.
Surface treatment of alumina-based ceramics using combined laser sources
NASA Astrophysics Data System (ADS)
Triantafyllidis, D.; Li, L.; Stott, F. H.
2002-01-01
Alumina-based refractory materials are extensively used as linings in incinerators and furnaces. These materials are subject to molten salt corrosion and chemical degradation because of the existence of porosity and material inhomogeneity. Efforts to improve the performance of these materials have so far concentrated mainly on the optimisation of the manufacturing processes (e.g. producing denser refractory bricks) and in-service monitoring. Laser surface treatment has also been used to improve performance. The main problem identified with laser surface treatment is solidification cracking due to the generation of very large temperature gradients. The aim of this paper is to investigate the surface modification of alumina-based ceramics by using two combined laser sources in order to control the thermal gradients and cooling rates during processing so that crack formation can be eliminated. The material under investigation is 85% alumina refractory ceramic, used as lining material in incineration plants. The surface morphology and cross-section of the treated samples are analysed using optical and scanning electron microscopy (SEM) and compared with single laser beam treated samples.
NASA Astrophysics Data System (ADS)
Rumsey, Ian C.; Walker, John T.
2016-06-01
The dry component of total nitrogen and sulfur atmospheric deposition remains uncertain. The lack of measurements of sufficient chemical speciation and temporal extent make it difficult to develop accurate mass budgets and sufficient process level detail is not available to improve current air-surface exchange models. Over the past decade, significant advances have been made in the development of continuous air sampling measurement techniques, resulting with instruments of sufficient sensitivity and temporal resolution to directly quantify air-surface exchange of nitrogen and sulfur compounds. However, their applicability is generally restricted to only one or a few of the compounds within the deposition budget. Here, the performance of the Monitor for AeRosols and GAses in ambient air (MARGA 2S), a commercially available online ion-chromatography-based analyzer is characterized for the first time as applied for air-surface exchange measurements of HNO3, NH3, NH4+, NO3-, SO2 and SO42-. Analytical accuracy and precision are assessed under field conditions. Chemical concentrations gradient precision are determined at the same sampling site. Flux uncertainty measured by the aerodynamic gradient method is determined for a representative 3-week period in fall 2012 over a grass field. Analytical precision and chemical concentration gradient precision were found to compare favorably in comparison to previous studies. During the 3-week period, percentages of hourly chemical concentration gradients greater than the corresponding chemical concentration gradient detection limit were 86, 42, 82, 73, 74 and 69 % for NH3, NH4+, HNO3, NO3-, SO2 and SO42-, respectively. As expected, percentages were lowest for aerosol species, owing to their relatively low deposition velocities and correspondingly smaller gradients relative to gas phase species. Relative hourly median flux uncertainties were 31, 121, 42, 43, 67 and 56 % for NH3, NH4+, HNO3, NO3-, SO2 and SO42-, respectively. Flux uncertainty is dominated by uncertainty in the chemical concentrations gradients during the day but uncertainty in the chemical concentration gradients and transfer velocity are of the same order at night. Results show the instrument is sufficiently precise for flux gradient applications.
Gas1 extends the range of Hedgehog action by facilitating its signaling
Martinelli, David C.; Fan, Chen-Ming
2007-01-01
Cellular signaling initiated by Hedgehog binding to Patched1 has profound importance in mammalian embryogenesis, genetic disease, and cancer. Hedgehog acts as a morphogen to specify distinctive cell fates using different concentration thresholds, but our knowledge of how the concentration gradient is interpreted into the activity gradient is incomplete. The membrane protein Growth Arrest-Specific Gene 1 (GAS1) was thought to be a negative regulator of the Hedgehog concentration gradient. Here, we report unexpected genetic evidence that Gas1 positively regulates Hedgehog signaling in multiple developmental contexts, an effect particularly noticeable at regions where Hedgehog acts at low concentration. Using a combination of in vitro cell culture and in ovo electroporation assays, we demonstrate that GAS1 acts cooperatively with Patched1 for Hedgehog binding and enhances signaling activity in a cell-autonomous manner. Our data support a model in which GAS1 helps transform the Hedgehog protein gradient into the observed activity gradient. We propose that Gas1 is an evolutionarily novel, vertebrate-specific Hedgehog pathway regulator. PMID:17504940
NASA Astrophysics Data System (ADS)
Keylock, Christopher J.
2017-08-01
A method is presented for deriving random velocity gradient tensors given a source tensor. These synthetic tensors are constrained to lie within mathematical bounds of the non-normality of the source tensor, but we do not impose direct constraints upon scalar quantities typically derived from the velocity gradient tensor and studied in fluid mechanics. Hence, it becomes possible to ask hypotheses of data at a point regarding the statistical significance of these scalar quantities. Having presented our method and the associated mathematical concepts, we apply it to homogeneous, isotropic turbulence to test the utility of the approach for a case where the behavior of the tensor is understood well. We show that, as well as the concentration of data along the Vieillefosse tail, actual turbulence is also preferentially located in the quadrant where there is both excess enstrophy (Q>0 ) and excess enstrophy production (R<0 ). We also examine the topology implied by the strain eigenvalues and find that for the statistically significant results there is a particularly strong relative preference for the formation of disklike structures in the (Q<0 ,R<0 ) quadrant. With the method shown to be useful for a turbulence that is already understood well, it should be of even greater utility for studying complex flows seen in industry and the environment.
Revisiting chemoaffinity theory: Chemotactic implementation of topographic axonal projection
2017-01-01
Neural circuits are wired by chemotactic migration of growth cones guided by extracellular guidance cue gradients. How growth cone chemotaxis builds the macroscopic structure of the neural circuit is a fundamental question in neuroscience. I addressed this issue in the case of the ordered axonal projections called topographic maps in the retinotectal system. In the retina and tectum, the erythropoietin-producing hepatocellular (Eph) receptors and their ligands, the ephrins, are expressed in gradients. According to Sperry’s chemoaffinity theory, gradients in both the source and target areas enable projecting axons to recognize their proper terminals, but how axons chemotactically decode their destinations is largely unknown. To identify the chemotactic mechanism of topographic mapping, I developed a mathematical model of intracellular signaling in the growth cone that focuses on the growth cone’s unique chemotactic property of being attracted or repelled by the same guidance cues in different biological situations. The model presented mechanism by which the retinal growth cone reaches the correct terminal zone in the tectum through alternating chemotactic response between attraction and repulsion around a preferred concentration. The model also provided a unified understanding of the contrasting relationships between receptor expression levels and preferred ligand concentrations in EphA/ephrinA- and EphB/ephrinB-encoded topographic mappings. Thus, this study redefines the chemoaffinity theory in chemotactic terms. PMID:28792499
Wilkin, Richard T; Acree, Steven D; Ross, Randall R; Puls, Robert W; Lee, Tony R; Woods, Leilani L
2014-01-15
The fifteen-year performance of a granular iron, permeable reactive barrier (PRB; Elizabeth City, North Carolina) is reviewed with respect to contaminant treatment (hexavalent chromium and trichloroethylene) and hydraulic performance. Due to in-situ treatment of the chromium source zone, reactive and hydraulic longevity of the PRB has outlived the mobile chromate plume. Chromium concentrations exceeding 3 μg/L have not been detected in regions located hydraulically down-gradient of the PRB. Trichloroethylene treatment has also been effective, although non-constant influent concentrations of trichloroethylene have at times resulted in incomplete dechlorination. Daughter products: cis-1,2-dichloroethylene, vinyl chloride, ethene, and ethane have been observed within and down-gradient of the PRB at levels <10% of the influent trichloroethylene. Analysis of potentiometric surfaces up-gradient and across the PRB suggests that the PRB may currently represent a zone of reduced hydraulic conductivity; however, measurements of the in-situ hydraulic conductivity provide values in excess of 200 m/d in some intervals and indicate no discernible loss of bulk hydraulic conductivity within the PRB. The results presented here are particularly significant because they provide the longest available record of performance of a PRB. The longevity of the Elizabeth City PRB is principally the result of favorable groundwater geochemistry and hydrologic properties of the site. © 2013.
Diffusion of radon through concrete block walls: A significant source of indoor radon
Lively, R.S.; Goldberg, L.F.
1999-01-01
Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.
2012-10-01
We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure andmore » the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal Faraday rotation is needed.« less
Modeling hyporheic zone processes
Runkel, Robert L.; McKnight, Diane M.; Rajaram, Harihar
2003-01-01
Stream biogeochemistry is influenced by the physical and chemical processes that occur in the surrounding watershed. These processes include the mass loading of solutes from terrestrial and atmospheric sources, the physical transport of solutes within the watershed, and the transformation of solutes due to biogeochemical reactions. Research over the last two decades has identified the hyporheic zone as an important part of the stream system in which these processes occur. The hyporheic zone may be loosely defined as the porous areas of the stream bed and stream bank in which stream water mixes with shallow groundwater. Exchange of water and solutes between the stream proper and the hyporheic zone has many biogeochemical implications, due to differences in the chemical composition of surface and groundwater. For example, surface waters are typically oxidized environments with relatively high dissolved oxygen concentrations. In contrast, reducing conditions are often present in groundwater systems leading to low dissolved oxygen concentrations. Further, microbial oxidation of organic materials in groundwater leads to supersaturated concentrations of dissolved carbon dioxide relative to the atmosphere. Differences in surface and groundwater pH and temperature are also common. The hyporheic zone is therefore a mixing zone in which there are gradients in the concentrations of dissolved gasses, the concentrations of oxidized and reduced species, pH, and temperature. These gradients lead to biogeochemical reactions that ultimately affect stream water quality. Due to the complexity of these natural systems, modeling techniques are frequently employed to quantify process dynamics.
Factors associated with NO2 and NOX concentration gradients near a highway
NASA Astrophysics Data System (ADS)
Richmond-Bryant, J.; Snyder, M. G.; Owen, R. C.; Kimbrough, S.
2018-02-01
The objective of this research is to learn how the near-road gradient, in which NO2 and NOX (NO + NO2) concentrations are elevated, varies with changes in meteorological and traffic variables. Measurements of NO2 and NOX were obtained east of I-15 in Las Vegas and fit to functions whose slopes (dCNO2/dx and dCNOX/dx, respectively) characterize the size of the near-road zone where NO2 and NOX concentrations from mobile sources on the highway are elevated. These metrics were used to learn about the near-road gradient by modeling dCNO2/dx and dCNOX/dx as functions of meteorological variables (e.g., wind direction, wind speed), traffic (vehicle count), NOX concentration upwind of the road, and O3 concentration at two fixed-site ambient monitors. Generalized additive models (GAM) were used to model dCNO2/dx and dCNOX/dx versus the independent variables because they allowed for nonlinearity of the variables being compared. When data from all wind directions were included in the analysis, variability in O3 concentration comprised the largest proportion of variability in dCNO2/dx, followed by variability in wind direction. In a second analysis constrained to winds from the west, variability in O3 concentration remained the largest contributor to variability in dCNO2/dx, but the relative contribution of variability in wind speed to variability in dCNO2/dx increased relative to its contribution for the all-wind analysis. When data from all wind directions were analyzed, variability in wind direction was by far the largest contributor to variability in dCNOX/dx, with smaller contributions from hour of day and upwind NOX concentration. When only winds from the west were analyzed, variability in upwind NOX concentration, wind speed, hour of day, and traffic count all were associated with variability in dCNOX/dx. Increases in O3 concentration were associated with increased magnitude near-road dCNO2/dx, possibly shrinking the zone of elevated concentrations occurring near roads. Wind direction parallel to the highway was also related to an increased magnitude of both dCNO2/dx and dCNOX/dx, again likely shrinking the zone of elevated concentrations occurring near roads. Wind direction perpendicular to the road decreased the magnitude of dCNO2/dx and dCNOX/dx and likely contributed to growth of the zone of elevated concentrations occurring near roads. Thus, variability in near-road concentrations is influenced by local meteorology and ambient O3 concentration.
NASA Technical Reports Server (NTRS)
Cannell, David
2005-01-01
We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.
Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors
1977-01-01
Polymorphonuclear leukocyte (PMN) chemotaxis has been examined under conditions which allow phase microscope observations of cells responding to controlled gradients of chemotactic factors. With this visual assay, PMNs can be seen to orient rapidly and reversibly to gradients of N-formylmethionyl peptides. The level of orientation depends upon the mean concentration of peptide present as well as the concentration gradient. The response allows an estimation of the binding constant of the peptide to the cell. In optimal gradients, PMNs can detect a 1% difference in the concentration of peptide. At high cell densities, PMNs incubated with active peptides orient their locomotion away from the center of the cell population. This orientation appears to be due to inactivation of the peptides by the cells. Such inactivation in vivo could help to limit an inflammatory response. PMID:264125
Drift and Behavior of E. coli Cells
NASA Astrophysics Data System (ADS)
Micali, Gabriele; Colin, Rémy; Sourjik, Victor; Endres, Robert G.
2017-12-01
Chemotaxis of the bacterium Escherichia coli is well understood in shallow chemical gradients, but its swimming behavior remains difficult to interpret in steep gradients. By focusing on single-cell trajectories from simulations, we investigated the dependence of the chemotactic drift velocity on attractant concentration in an exponential gradient. While maxima of the average drift velocity can be interpreted within analytical linear-response theory of chemotaxis in shallow gradients, limits in drift due to steep gradients and finite number of receptor-methylation sites for adaptation go beyond perturbation theory. For instance, we found a surprising pinning of the cells to the concentration in the gradient at which cells run out of methylation sites. To validate the positions of maximal drift, we recorded single-cell trajectories in carefully designed chemical gradients using microfluidics.
Hydraulic effects in a radiative atmosphere with ionization
NASA Astrophysics Data System (ADS)
Bhat, P.; Brandenburg, A.
2016-03-01
Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.
The effect of reactions on the formation and readout of the gradient of Bicoid
NASA Astrophysics Data System (ADS)
Perez Ipiña, Emiliano; Ponce Dawson, Silvina
2017-02-01
During early development, the establishment of gradients of transcriptional factors determines the patterning of cell fates. The case of Bicoid (Bcd) in Drosophila melanogaster embryos is well documented and studied. There are still controversies as to whether SDD models in which Bcd is Synthesized at one end, then Diffuses and is Degraded can explain the gradient formation within the timescale observed experimentally. The Bcd gradient is observed in embryos that express a Bicoid-eGFP fusion protein (Bcd-GFP) which cannot differentiate if Bcd is freely diffusing or bound to immobile sites. In this work we analyze an SDID model that includes the Interaction of Bcd with binding sites. We simulate numerically the resulting full reaction-diffusion system in a cylindrical domain using previously determined biophysical parameters and a simplified version of the Bcd source. In this way we obtain solutions that depend on the spatial location approximately as observed experimentally and that reach such dependence at a time that is also compatible with the experimental observations. Analyzing the differences between the free and bound Bcd distributions we observe that the latter spans over a longer lengthscale. We conclude that deriving the lengthscale from the distribution of Bcd-GFP can lead to an overestimation of the gradient lengthscale and of the Hill coefficient that relates the concentrations of Bcd and of the protein, Hunchback, whose production is regulated by Bcd.
Schulte, Jill K.; Fox, Julie R.; Oron, Assaf P.; Larson, Timothy V.; Simpson, Christopher D.; Paulsen, Michael; Beaudet, Nancy; Kaufman, Joel D.; Magzamen, Sheryl
2016-01-01
With emerging evidence that diesel exhaust exposure poses distinct risks to human health, the need for fine-scale models of diesel exhaust pollutants is growing. We modeled the spatial distribution of several nitrated polycyclic aromatic hydrocarbons (NPAHs) to identify fine-scale gradients in diesel exhaust pollution in two Seattle, WA neighborhoods. Our modeling approach fused land-use regression, meteorological dispersion modeling, and pollutant monitoring from both fixed and mobile platforms. We applied these modeling techniques to concentrations of 1-nitropyrene (1-NP), a highly specific diesel exhaust marker, at the neighborhood scale. We developed models of two additional nitroarenes present in secondary organic aerosol: 2-nitro-pyrene and 2-nitrofluoranthene. Summer predictors of 1-NP, including distance to railroad, truck emissions, and mobile black carbon measurements, showed a greater specificity to diesel sources than predictors of other NPAHs. Winter sampling results did not yield stable models, likely due to regional mixing of pollutants in turbulent weather conditions. The model of summer 1-NP had an R2 of 0.87 and cross-validated R2 of 0.73. The synthesis of high-density sampling and hybrid modeling was successful in predicting diesel exhaust pollution at a very fine scale and identifying clear gradients in NPAH concentrations within urban neighborhoods. PMID:26501773
Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate
NASA Astrophysics Data System (ADS)
Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.
2018-06-01
Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.
Chen, Celia Y.; Borsuk, Mark E.; Bugge, Deenie M.; Hollweg, Terill; Balcom, Prentiss H.; Ward, Darren M.; Williams, Jason; Mason, Robert P.
2014-01-01
Methylmercury (MeHg) is a contaminant of global concern that bioaccumulates and bioamagnifies in marine food webs. Lower trophic level fauna are important conduits of MeHg from sediment and water to estuarine and coastal fish harvested for human consumption. However, the sources and pathways of MeHg to these coastal fisheries are poorly known particularly the potential for transfer of MeHg from the sediment to biotic compartments. Across a broad gradient of human land impacts, we analyzed MeHg concentrations in food webs at ten estuarine sites in the Northeast US (from the Hackensack Meadowlands, NJ to the Gulf of Maine). MeHg concentrations in water column particulate material, but not in sediments, were predictive of MeHg concentrations in fish (killifish and Atlantic silversides). Moreover, MeHg concentrations were higher in pelagic fauna than in benthic-feeding fauna suggesting that MeHg delivery to the water column from methylation sites from within or outside of the estuary may be an important driver of MeHg bioaccumulation in estuarine pelagic food webs. In contrast, bulk sediment MeHg concentrations were only predictive of concentrations of MeHg in the infaunal worms. Our results across a broad gradient of sites demonstrate that the pathways of MeHg to lower trophic level estuarine organisms are distinctly different between benthic deposit feeders and forage fish. Thus, even in systems with contaminated sediments, transfer of MeHg into estuarine food webs maybe driven more by the efficiency of processes that determine MeHg input and bioavailability in the water column. PMID:24558491
Physical and biogeochemical controls on polymictic behavior in Sierra Nevada stream pools
NASA Astrophysics Data System (ADS)
Lucas, R. G.; Conklin, M. H.; Tyler, S. W.; Suarez, F. I.; Moran, J. E.; Esser, B. K.
2011-12-01
We observed polymictic behavior in stream pools in a low gradient montane meadow in the southern Sierra Nevada mountains, California. Thermal stratification in stream pools has been observed in various environments; stratification generally persists where the buoyancy forces created by a variation in water density, as a function of water temperature, are able to overcome turbulent forces resulting from stream flow. Because the density gradient creates a relatively weak buoyancy force, low flow conditions are generally required in order to overcome the turbulent forces. In some studies, a cold water source in to the pool bottoms can help to increase the density gradient and perpetuate thermal stratification. Our study took place in Long Meadow, Sequoia National Park, California. Long Meadow lies in the Wolverton Creek watershed and is part of the Southern Sierra Critical Zone Observatory. The 1-4 m diameter and 1-2 m deep pools in our study stratified thermally during the day and mixed completely at night. The low gradient of the meadow provided low stream flows. Piezometers in the meadow indicated groundwater discharge into the meadow in the months during which stratification was observed. Radon 222 activity measured in the pools also indicated groundwater influx to the pool bottoms. We used Fluent, a computational fluid dynamics equation solver, to construct a model of one of the observed pools. Initially we attempted to model the physical mechanisms controlling thermal stratification in the pool including stream flow, groundwater discharge, solar radiation, wind speed, and air, stream and ground water temperatures. Ultimately we found the model best agreed with our observed pool temperatures when we considered the light attenuation coefficients as a function of the dissolve organic carbon (DOC) concentration. Elevated DOC concentrations are expected in low stream flow regimes associated with highly organic soils such as a montane meadow. DOC concentrations measured in samples collected from the meadow stream, pools, and ground water wells ranged from 3.09 to 5.25 mg/L. We used a power equation taken from the literature to vary the visible light attenuation with DOC values measured in the meadow system. Light attenuation coefficients determined from measured DOC concentrations ranged from 0.507 m-1 to 0.899 m-1. The results from our modeling efforts indicate that in low flow streams and rivers elevated concentrations of DOC can increase the potential for thermal stratification in stream pools.
Fractional calculus and morphogen gradient formation
NASA Astrophysics Data System (ADS)
Yuste, Santos Bravo; Abad, Enrique; Lindenberg, Katja
2012-12-01
Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the morphogens diffuse normally.
NASA Astrophysics Data System (ADS)
Christianson, E. M.; Keeler, G. J.; Landis, M. S.
2008-12-01
Mercury (Hg) is a bioaccumulative neurotoxin that has been shown to enter water bodies, and consequently the food chain, via atmospheric deposition to the earth's surface. Anthropogenic emissions of the pollutant play a significant role in contributing to the atmospheric pool of Hg, but the near filed impact from point source on surface deposition has been poorly defined to date. An intensive study during July-September 2006 established eight networked precipitation collection sites in northeastern Ohio, U.S.A., located at varying proximities to coal combustion facilities to evaluate the spatial scale of Hg wet deposition concentration enhancement about the sources. It was found that an average of 42% of the Hg wet deposited at sites in the immediate vicinity (<1 km) of coal fired utilities could be attributed to that adjacent source. Several meteorological variables were shown to account for the degree to which Hg concentration in precipitation was enhanced. A detailed meteorological analysis of the individual precipitation events as well as overall implications of local deposition gradients will be discussed.
Biomimetic approaches to control soluble concentration gradients in biomaterials.
Nguyen, Eric H; Schwartz, Michael P; Murphy, William L
2011-04-08
Soluble concentration gradients play a critical role in controlling tissue formation during embryonic development. The importance of soluble signaling in biology has motivated engineers to design systems that allow precise and quantitative manipulation of gradient formation in vitro. Engineering techniques have increasingly moved to the third dimension in order to provide more physiologically relevant models to study the biological role of gradient formation and to guide strategies for controlling new tissue formation for therapeutic applications. This review provides an overview of efforts to design biomimetic strategies for soluble gradient formation, with a focus on microfluidic techniques and biomaterials approaches for moving gradient generation to the third dimension. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Waste Load Allocation for Conservative Substances to Protect Aquatic Organisms
NASA Astrophysics Data System (ADS)
Hutcheson, M. R.
1992-01-01
A waste load allocation process is developed to determine the maximum effluent concentration of a conservative substance that will not harm fish and wildlife propagation. If this concentration is not exceeded in the effluent, the acute toxicity criterion will not be violated in the receiving stream, and the chronic criterion will not be exceeded in the zone of passage, defined in many state water quality standards to allow the movement of aquatic organisms past a discharge. Considerable simplification of the concentration equation, which is the heart of any waste load allocation, is achieved because it is based on the concentration in the receiving stream when the concentration gradient on the zone of passage boundary is zero. Consequently, the expression obtained for effluent concentration is independent of source location or stream morphology. Only five independent variables, which are routinely available to regulatory agencies, are required to perform this allocation. It aids in developing permit limits which are protective without being unduly restrictive or requiring large expenditures of money and manpower on field investigations.
Aerosol concentrations and composition in the North Pacific marine boundary layer
NASA Astrophysics Data System (ADS)
Choi, Yongjoo; Rhee, Tae Siek; Collett, Jeffrey L.; Park, Taehyun; Park, Seung-Myung; Seo, Beom-Keun; Park, Gyutae; Park, Keyhong; Lee, Taehyoung
2017-12-01
Ship-borne measurements of inorganic and organic aerosols, including methanesulfonic acid (MSA), were conducted over the Northern Pacific using a High Resolution Time of Flight Aerosol Mass Spectrometer (AMS). This study, conducted aboard the Korean ice breaker R/V Araon, was part of the SHIP-borne Pole-to-Pole Observations (SHIPPO) project. Based on air mass source region, the cruise track could be divided into five sections. Overall, the South Asia and Northern Japan ship transects showed higher aerosol concentrations due to continental pollution and biomass burning sources, respectively. In all five regions, the average mass concentrations of sulfate and organic aerosols (OA) were much higher than concentrations of nitrate and ammonium. Positive matrix factorization (PMF) analysis distinguished two organic aerosol factors as hydrocarbon-like and oxidized OA (HOA and OOA). HOA peaked in South Asia under the influence of anthropogenic pollution source areas, such as China and Korea, and generally decreased with increasing latitude across the full study region. OOA concentrations peaked in Northern Japan near the Tsugaru Strait and appear to reflect fine particle contributions from biomass burning. The mean HOA concentration in the clean marine area (Aleutian Island to Siberia) was 0.06 μg/m3 and comprised approximately 8% of the OA mass fraction. The highest MSA concentrations peaked in the Aleutian Islands at nearly 15 μg/m3, suggesting influence from higher dimethyl sulfide (DMS) emissions resulting from biological nutrient uptake during summer. The MSA/sulfate ratio, an indicator of the relative fine particle contributions of DMS and anthropogenic sources, revealed a sharp gradient as the ship approached the clean marine areas where the dominance of DMS increased. The patterns in OOA, HOA, and MSA concentrations found in this study provide a better understanding of the characteristics of inorganic and organic aerosols in the Northern Pacific Ocean.
Cortés, J; González, C M; Morales, L; Abalos, M; Abad, E; Aristizábal, B H
2014-09-01
Concentration gradients were observed in gas and particulate phases of PCDD/F originating from industrial and vehicular sources in the densely populated tropical Andean city of Manizales, using passive and active air samplers. Preliminary results suggest greater concentrations of dl-PCB in the mostly gaseous fraction (using quarterly passive samplers) and greater concentrations of PCDD/F in the mostly particle fraction (using daily active samplers). Dioxin-like PCB predominance was associated with the semi-volatility property, which depends on ambient temperature. Slight variations of ambient temperature in Manizales during the sampling period (15°C-27°C) may have triggered higher concentrations in all passive samples. This was the first passive air sampling monitoring of PCDD/F conducted in an urban area of Colombia. Passive sampling revealed that PCDD/F in combination with dioxin-like PCB ranged from 16 WHO-TEQ2005/m(3) near industrial sources to 7 WHO-TEQ2005/m(3) in an intermediate zone-a reduction of 56% over 2.8 km. Active sampling of particulate phase PCDD/F and dl-PCB were analyzed in PM10 samples. PCDD/F combined with dl-PCB ranged from 46 WHO-TEQ2005/m(3) near vehicular sources to 8 WHO-TEQ2005/m(3) in the same intermediate zone, a reduction of 83% over 2.6 km. Toxic equivalent quantities in both PCDD/F and dl-PCB decreased toward an intermediate zone of the city. Variations in congener profiles were consistent with variations expected from nearby sources, such as a secondary metallurgy plant, areas of concentrated vehicular emissions and a municipal solid waste incinerator (MSWI). These variations in congener profile measurements of dioxins and dl-PCBs in passive and active samples can be partly explained by congener variations expected from the various sources. Copyright © 2014 Elsevier B.V. All rights reserved.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1988-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1989-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi
2018-05-01
Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our results provide the underlying insights needed to guide the control of nitrogen and phosphorus loss on loess hills.
NASA Astrophysics Data System (ADS)
Deng, J.; Sanford, R. A.; Dong, Y.; Shechtman, L. A.; Zhou, L.; Alcalde, R.; Werth, C. J.; Fouke, B. W.
2016-12-01
Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients of temperature, pH, substrate availability and aqueous chemistry. While environmental stresses are considered to be the driving forces of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, the antibiotic Ciprofloxacin was used as a stressor and systematically applied to E. coli st. 307 cells via a spatial gradient in a microfluidic pore network and a temporal gradient in batch cultures. The microfluidic device facilitated in vitro real-time tracking of bacterial abundances and dynamic spatial distributions in response to the gradients of both the antibiotic and nutrients. Cells collected from the microfluidic device showed growth on plates containing up to 10-times the original minimum inhibition concentration (MIC). In batch systems, Ciprofloxacin was used to evaluate adaptive responses via temporal gradients, in which the stressor concentration was incrementally increased over time with each transfer of the culture after 24 hours of growth. Responses of E. coli 307 to these stress patterns were measured by quantifying changes in the MIC for Ciprofloxacin. Over a period of 18 days of step-wise concentration increments, bacterial cells were observed to acquire tolerance gradually and eventually adapt to a 28-fold increase in the original MIC. Samples at different stages within the temporal Ciprofloxacin gradient treatment show different extents of resistance. All samples exhibited resistance exceeding the highest exposure stress concentration. In combination with the spatial and temporal gradient systems, this work provides the first comprehensive measure of the dynamic resistance of E. coli in response to Ciprofloxacin concentration gradients. These will provide invaluable insights to understand the effects of antibiotic stresses on bacterial adaptive evolution in medical settings and shed light on understanding the mechanics of microbial evolution.
Fácio, Cássio L; Previato, Lígia F; Machado-Paula, Ligiane A; Matheus, Paulo Cs; Araújo, Edilberto
2016-12-01
This study aimed to assess and compare sperm motility, concentration, and morphology recovery rates, before and after processing through sperm washing followed by swim-up or discontinuous density gradient centrifugation in normospermic individuals. Fifty-eight semen samples were used in double intrauterine insemination procedures; 17 samples (group 1) were prepared with sperm washing followed by swim-up, and 41 (group 2) by discontinuous density gradient centrifugation. This prospective non-randomized study assessed seminal parameters before and after semen processing. A dependent t-test was used for the same technique to analyze seminal parameters before and after semen processing; an independent t-test was used to compare the results before and after processing for both techniques. The two techniques produced decreases in sample concentration (sperm washing followed by swim-up: P<0.000006; discontinuous density gradient centrifugation: P=0.008457) and increases in motility and normal morphology sperm rates after processing. The difference in sperm motility between the two techniques was not statistically significant. Sperm washing followed by swim-up had better morphology recovery rates than discontinuous density gradient centrifugation (P=0.0095); and the density gradient group had better concentration recovery rates than the swim-up group (P=0.0027). The two methods successfully recovered the minimum sperm values needed to perform intrauterine insemination. Sperm washing followed by swim-up is indicated for semen with high sperm concentration and better morphology recovery rates. Discontinuous density gradient centrifugation produced improved concentration recovery rates.
Implementing marine organic aerosols into the GEOS-Chem model
Gantt, B.; Johnson, M. S.; Crippa, M.; ...
2015-03-17
Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less
The effect of solute concentration on hindered gradient diffusion in polymeric gels
NASA Astrophysics Data System (ADS)
Buck, Kristan K. S.; Dungan, Stephanie R.; Phillips, Ronald J.
1999-10-01
The effect of solute concentration on hindered diffusion of sphere-like colloidal solutes in stiff polymer hydrogels is examined theoretically and experimentally. In the theoretical development, it is shown that the presence of the gel fibres enhances the effect of concentration on the thermodynamic driving force for gradient diffusion, while simultaneously reducing the effect of concentration on the hydrodynamic drag. The result is that gradient diffusion depends more strongly on solute concentration in gels than it does in pure solution, by an amount that depends on the partition coefficient and hydraulic permeability of the gel solute system. Quantitative calculations are made to determine the concentration-dependent diffusivity correct to first order in solute concentration. In order to compare the theoretical predictions with experimental data, rates of diffusion have been measured for nonionic micelles and globular proteins in solution and agarose hydrogels at two gel concentrations. The measurements were performed by using holographic interferometry, through which one monitors changes in refractive index as gradient diffusion takes place within a transparent gel. If the solutes are modelled as spheres with short-range repulsive interactions, then the experimentally measured concentration dependence of the diffusivities of both the protein and micelles is in good agreement with the theoretical predictions.
Mechanisms of cooperation and competition of two-species transport in narrow nanochannels
NASA Astrophysics Data System (ADS)
Bauer, Wolfgang Rudolf
2017-12-01
Flow of particles of two different species through a narrow channel with solely two discrete spatial positions is analyzed with respect to the species' capability to cooperate or compete for transport. The origin of the latter arises from particle-channel and interparticle interactions within the channel, i.e., blocking the position of a particle, and its interaction with its neighbors in the channel. The variety of occupation options within the channel defines the state space. The transition dynamics within is considered as a continuous Markov process, which, in contrast to mean-field approaches, conserves explicitly spatial correlations. A strong repulsive interaction between particles of the same kind and a very attractive empty channel imply a strong entanglement of transport of both species. In the limiting case of perfect coupling, flows in state space are restricted to a cyclic subspace, where they become all equivalent in the steady state. In particular, this implies equal particle flows of the two species. Entanglement of transport implies that the species mutually exert entropic forces on each other. For parallel directed concentration gradients this implies that the species' ability to cooperate increases with the degree of entanglement. Thus, the gradient of one species reciprocally induces a higher flow of the other species when compared to that in its absence. The opposite holds for antiparallel gradients where species mutually hamper their transport. For a sufficient strong coupling, the species under the influence of the stronger concentration gradient drives the other against its gradient, i.e., the positive mixing entropy production of the driving species becomes the motor for the negative mixing entropy production of the driven one. The degree of effectiveness by which negative entropy production emerges at the cost of positive entropy production increases with the coupling strength. This becomes evident from location and connectivity of the sources of entropy production in state space.
NASA Astrophysics Data System (ADS)
Osburn, Christopher L.; Anderson, Nicholas J.; Stedmon, Colin A.; Giles, Madeline E.; Whiteford, Erika J.; McGenity, Terry J.; Dumbrell, Alex J.; Underwood, Graham J. C.
2017-12-01
Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differences in mean annual precipitation between sites would result in a reduced hydrological connectivity between lakes and their catchments and that this concentrates degraded DOM. The DOM in the inland lake group was characterized by a lower aromaticity and molecular weight, a low soil-like fluorescence, and carbon stable isotope (δ13C-DOC) values enriched by 2‰ relative to the coastal group. DOC-specific absorbance (SUVA254) and DOC-specific soil-like fluorescence (SUVFC1) revealed seasonal and climatic gradients across which DOM exhibited a dynamic we term "pulse-process": Pulses of DOM exported from soils to lakes during snow and ice melt were followed by pulses of autochthonous DOM inputs (possibly from macrophytes), and their subsequent photochemical and microbial processing. These effects regulated the dynamics of DOM in the inland lakes and suggested that if circumpolar lakes currently situated in cool wetter climatic regimes with strong hydrological connectivity have reduced connectivity under a drier future climate, they may evolve toward an end-point of large stocks of highly degraded DOC, equivalent to the inland lakes in the present study. The regional climatic gradient across SW Greenland and its influence on DOM properties in these lakes provide a model of possible future changes to lake C cycling in high-latitude systems where climatic changes are most pronounced.
Characterizing Intra-Urban Air Quality Gradients with a Spatially-Distributed Network
NASA Astrophysics Data System (ADS)
Zimmerman, N.; Ellis, A.; Schurman, M. I.; Gu, P.; Li, H.; Snell, L.; Gu, J.; Subramanian, R.; Robinson, A. L.; Apte, J.; Presto, A. A.
2016-12-01
City-wide air pollution measurements have typically relied on regulatory or research monitoring sites with low spatial density to assess population-scale exposure. However, air pollutant concentrations exhibit significant spatial variability depending on local sources and features of the built environment, which may not be well captured by the existing monitoring regime. To better understand urban spatial and temporal pollution gradients at 1 km resolution, a network of 12 real-time air quality monitoring stations was deployed beginning July 2016 in Pittsburgh, PA. The stations were deployed at sites along an urban-rural transect and in urban locations with a range of traffic, restaurant, and tall building densities to examine the impact of various modifiable factors. Measurements from the stationary monitoring stations were further supported by mobile monitoring, which provided higher spatial resolution pollutant measurements on nearby roadways and enabled routine calibration checks. The stationary monitoring measurements comprise ultrafine particle number (Aerosol Dynamics "MAGIC" CPC), PM2.5 (Met One Neighborhood PM Monitor), black carbon (Met One BC 1050), and a new low-cost air quality monitor, the Real-time Affordable Multi-Pollutant (RAMP) sensor package for measuring CO, NO2, SO2, O3, CO2, temperature and relative humidity. High time-resolution (sub-minute) measurements across the distributed monitoring network enable insight into dynamic pollutant behaviour. Our preliminary findings show that our instruments are sensitive to PM2.5 gradients exceeding 2 micro-grams per cubic meter and ultrafine particle gradients exceeding 1000 particles per cubic centimeter. Additionally, we have developed rigorous calibration protocols to characterize the RAMP sensor response and drift, as well as multiple linear regression models to convert sensor response into pollutant concentrations that are comparable to reference instrumentation.
Effects of near-surface hydraulic gradients on nitrate and phosphorus losses in surface runoff.
Zheng, Fen-Li; Huang, Chi-Hua; Norton, L Darrell
2004-01-01
Phosphorous (P) and nitrogen (N) in runoff from agricultural fields are key components of nonpoint-source pollution and can accelerate eutrophication of surface waters. A laboratory study was designed to evaluate effects of near-surface hydraulic gradients on P and N losses in surface runoff from soil pans at 5% slope under simulated rainfall. Experimental treatments included three rates of fertilizer input (control [no fertilizer input], low [40 kg P ha(-1), 100 kg N ha(-1)], and high [80 kg P ha(-1), 200 kg N ha(-1)]) and four near-surface hydraulic gradients (free drainage [FD], saturation [Sa], artesian seepage without rain [Sp], and artesian seepage with rain [Sp + R]). Simulated rainfall of 50 mm h(-1) was applied for 90 min. The results showed that near-surface hydraulic gradients have dramatic effects on NO(3)-N and PO(4)-P losses and runoff water quality. Under the low fertilizer treatment, the average concentrations in surface runoff from FD, Sa, Sp, and Sp + R were 0.08, 2.20, 529.5, and 71.8 mg L(-1) for NO(3)-N and 0.11, 0.54, 0.91, and 0.72 mg L(-1) for PO(4)-P, respectively. Similar trends were observed for the concentrations of NO(3)-N and PO(4)-P under the high fertilizer treatment. The total NO(3)-N loss under the FD treatment was only 0.01% of the applied nitrogen, while under the Sp and Sp + R treatments, the total NO(3)-N loss was 11 to 16% of the applied nitrogen. These results show that artesian seepage could make a significant contribution to water quality problems.
Establishment of spatial pattern.
Slack, Jonathan
2014-01-01
An overview and perspective are presented of mechanisms for the development of spatial pattern in animal embryos. It is intended both for new entrants to developmental biology and for specialists in other fields, with only a basic knowledge of animal life cycles being required. The first event of pattern formation is normally the localization of a cytoplasmic determinant in the egg, either during oogenesis or post-fertilization. Following cleavage to a multicellular stage, some cells contain the determinant and others do not. The determinant confers a specific developmental pathway on the cells that contain it, often making them the source of the first extracellular signal, or inducing factor. Inducing factors often form concentration gradients to which cells respond by up or downregulating genes at various concentration thresholds. This enables an initial situation consisting of two cell states (with or without the determinant) to generate a multistate pattern. Multiple rounds of gradient signaling, interspersed with phases of morphogenetic movements, can generate a complex pattern using a small number of signals and responding genes. Development proceeds in a hierarchical manner, with broad body subdivisions being specified initially, and becoming successively subdivided to give individual organs and tissues composed of multiple cell types in a characteristic arrangement. Double gradient models can account for embryonic regulation, whereby a similarly proportioned body pattern is formed following removal of material. Processes that are involved at the later stages include the formation of repeating structures by the combination of an oscillator with a gradient, and the formation of tissues with one cell type scattered in a background of another through a process called lateral inhibition. This set of processes make up a 'developmental toolkit' which can be deployed in various sequences and combinations to generate a very wide variety of structures and cell types. © 2014 Wiley Periodicals, Inc.
Trail-following behavior ofReticulitermes hesperus Banks (Isoptera: Rhinotermitidae).
Grace, J K; Wood, D L; Frankie, G W
1988-02-01
The behavior ofReticulitermes hesperus Banks pseudergates (workers) was assessed on artificial trails containing different concentrations of sternal gland extract. On nongiadient trails, more pseudergates were recruited to trails of greater pheromone concentration, they traveled a greater distance without pausing, and their rate of locomotion increased over that observed on trails of lesser concentration (positive orthokinesis). Of the individuals pausing before completing trails of high concentration, fewer left the trails or reversed direction (negative klinokinesis) than on trails of lower concentration. Termites walking down concentration gradients failed to complete these trails to the low-concentration termini. At a point representing an average decrease of slightly more than 10-fold in the original concentration of pheromone, individuals reversed their direction of travel and returned to the high-concentration terminus. Termites walking up pheromone gradients proceeded to the high-concentration termini without reversing direction.R. hesperus pseudergates are thus able to orient along a gradient of trail pheromone by longitudinal klinotaxis.
NASA Astrophysics Data System (ADS)
Wang, W.; Ganzeveld, L.; Helmig, D.; Hueber, J.; Rossabi, S.; Vogel, C. S.
2017-12-01
During the month-long PROPHET-AMOS campaign in July, 2016 we investigated NOx and ozone dynamics at the University of Michigan AmeriFlux Tower (US-UMB tower) and the PROPHET Tower research sites at the University of Michigan Biological Station (UMBS), using a multi-pronged experimental approach. The two sites are within 100 m of each other, located in a mixed forest on the northern lower peninsula of Michigan, USA. In a previous study, it was found that invoking a leaf-level compensation point for NOx uptake and emission provided better agreement between observed and model-simulated in- and above-canopy NOx concentrations in this forest. To further examine the role of foliar exchange relative to other in-canopy sources and sinks of NOx, we conducted detailed vertical gradient measurements of NOx and ozone at ten heights from the forest floor to above the canopy, along with micrometeorological conditions at the AmeriFlux Tower. In parallel, to investigate the leaf-level exchanges of NOx and ozone, we carried out branch enclosure experiments near the PROPHET tower on the dominant tree species of this forest. We combine these observations with micrometeorological data from the AmeriFlux Tower to constrain simulations with the Multi-Layer Canopy Chemical Exchange Model (MLC-CHEM) for investigation of sources, sinks, and dynamics that determine NOx concentrations, vertical gradients, and fluxes in this forest. We will compare our results with previous studies and other observations during the PHOPHET-AMOS campaign.
Versatile Action of Picomolar Gradients of Progesterone on Different Sperm Subpopulations
Uñates, Diego Rafael; Guidobaldi, Héctor Alejandro; Gatica, Laura Virginia; Cubilla, Marisa Angélica; Teves, María Eugenia; Moreno, Ayelén; Giojalas, Laura Cecilia
2014-01-01
High step concentrations of progesterone may stimulate various sperm physiological processes, such as priming and the acrosome reaction. However, approaching the egg, spermatozoa face increasing concentrations of the hormone, as it is secreted by the cumulus cells and then passively diffuses along the cumulus matrix and beyond. In this context, several questions arise: are spermatozoa sensitive to the steroid gradients as they undergo priming and the acrosome reaction? If so, what are the functional gradual concentrations of progesterone? Do spermatozoa in different physiological states respond differentially to steroid gradients? To answer these questions, spermatozoa were confronted with progesterone gradients generated by different hormone concentrations (1 pM to 100 µM). Brief exposure to a 10 pM progesterone gradient stimulated priming for the acrosome reaction in one sperm subpopulation, and simultaneously induced the acrosome reaction in a different sperm subpopulation. This effect was not observed in non-capacitated cells or when progesterone was homogeneously distributed. The results suggest a versatile role of the gradual distribution of very low doses of progesterone, which selectively stimulate the priming and the acrosome reaction in different sperm subpopulations. PMID:24614230
AGN Unification at z ~ 1: u - R Colors and Gradients in X-Ray AGN Hosts
NASA Astrophysics Data System (ADS)
Ammons, S. Mark; Rosario, David J. V.; Koo, David C.; Dutton, Aaron A.; Melbourne, Jason; Max, Claire E.; Mozena, Mark; Kocevski, Dale D.; McGrath, Elizabeth J.; Bouwens, Rychard J.; Magee, Daniel K.
2011-10-01
We present uncontaminated rest-frame u - R colors of 78 X-ray-selected active galactic nucleus (AGN) hosts at 0.5 < z < 1.5 in the Chandra Deep Fields measured with Hubble Space Telescope (HST)/Advanced Camera for Surveys/NICMOS and Very Large Telescope/ISAAC imaging. We also present spatially resolved NUV - R color gradients for a subsample of AGN hosts imaged by HST/Wide Field Camera 3 (WFC3). Integrated, uncorrected photometry is not reliable for comparing the mean properties of soft and hard AGN host galaxies at z ~ 1 due to color contamination from point-source AGN emission. We use a cloning simulation to develop a calibration between concentration and this color contamination and use this to correct host galaxy colors. The mean u - R color of the unobscured/soft hosts beyond ~6 kpc is statistically equivalent to that of the obscured/hard hosts (the soft sources are 0.09 ± 0.16 mag bluer). Furthermore, the rest-frame V - J colors of the obscured and unobscured hosts beyond ~6 kpc are statistically equivalent, suggesting that the two populations have similar distributions of dust extinction. For the WFC3/infrared sample, the mean NUV - R color gradients of unobscured and obscured sources differ by less than ~0.5 mag for r > 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond ~1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGNs at z ~ 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.
AGN UNIFICATION AT z {approx} 1: u - R COLORS AND GRADIENTS IN X-RAY AGN HOSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Ammons, S.; Rosario, David J. V.; Koo, David C., E-mail: ammons@as.arizona.edu, E-mail: rosario@ucolick.org, E-mail: koo@ucolick.org
2011-10-10
We present uncontaminated rest-frame u - R colors of 78 X-ray-selected active galactic nucleus (AGN) hosts at 0.5 < z < 1.5 in the Chandra Deep Fields measured with Hubble Space Telescope (HST)/Advanced Camera for Surveys/NICMOS and Very Large Telescope/ISAAC imaging. We also present spatially resolved NUV - R color gradients for a subsample of AGN hosts imaged by HST/Wide Field Camera 3 (WFC3). Integrated, uncorrected photometry is not reliable for comparing the mean properties of soft and hard AGN host galaxies at z {approx} 1 due to color contamination from point-source AGN emission. We use a cloning simulation tomore » develop a calibration between concentration and this color contamination and use this to correct host galaxy colors. The mean u - R color of the unobscured/soft hosts beyond {approx}6 kpc is statistically equivalent to that of the obscured/hard hosts (the soft sources are 0.09 {+-} 0.16 mag bluer). Furthermore, the rest-frame V - J colors of the obscured and unobscured hosts beyond {approx}6 kpc are statistically equivalent, suggesting that the two populations have similar distributions of dust extinction. For the WFC3/infrared sample, the mean NUV - R color gradients of unobscured and obscured sources differ by less than {approx}0.5 mag for r > 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond {approx}1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGNs at z {approx} 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.« less
The influence of copper concentration and source on ileal microbiota.
Pang, Y; Patterson, J A; Applegate, T J
2009-03-01
Copper is normally supplemented in poultry diets as a growth promotant and antimicrobial. However, there are conflicting reports about the growth benefits and little information about how Cu affects the microbiota in the intestinal tract of poultry. Therefore, in vitro and in vivo experiments were conducted with broilers to determine the effects of Cu source and supplementation on ileal microbiota. The influence of Cu on growth of lactobacilli and Escherichia coli in media inoculated with ileal contents was determined in the first study. When Cu sulfate pentahydrate was supplemented to the cultures, quadratic increases in lactobacilli to graded concentrations of Cu up to 125 mg/kg and quadratic decreases in E. coli up to 250 mg/kg of Cu were observed after 24 h of incubation at 37 degrees C. However, when tribasic Cu chloride (TBCC) was supplemented, neither linear nor quadratic responses to graded concentrations of dietary Cu were observed on number of lactobacilli or number of E. coli. The effects of Cu and Cu source on ileal microbiota and growth performance in broiler chickens were determined in the second study. Bird performance was not affected by Cu source or concentration. The bacterial culture enumeration results revealed that supplementation with 187.5 mg/kg of Cu from Cu sulfate pentahydrate and TBCC had no effect on number of ileal lactobacilli of birds. The denaturing gradient gel electrophoresis analyses of ileal microbial communities revealed that neither Cu supplementation nor source had effects on the number of bacterial species predominant in the ileal digesta or associated with the ileal mucosa. Supplementation with TBCC supplementation significantly increased the similarity coefficients of microbiota in the ileal mucosa compared with cross-products of all individuals. This suggests that TBCC may alter the intestinal microbiota, yet this shift had no effect on bird performance.
Ziska, Lewis H; Pettis, Jeffery S; Edwards, Joan; Hancock, Jillian E; Tomecek, Martha B; Clark, Andrew; Dukes, Jeffrey S; Loladze, Irakli; Polley, H Wayne
2016-04-13
At present, there is substantive evidence that the nutritional content of agriculturally important food crops will decrease in response to rising levels of atmospheric carbon dioxide, Ca However, whether Ca-induced declines in nutritional quality are also occurring for pollinator food sources is unknown. Flowering late in the season, goldenrod (Solidago spp.) pollen is a widely available autumnal food source commonly acknowledged by apiarists to be essential to native bee (e.g. Bombus spp.) and honeybee (Apis mellifera) health and winter survival. Using floral collections obtained from the Smithsonian Natural History Museum, we quantified Ca-induced temporal changes in pollen protein concentration of Canada goldenrod (Solidago canadensis), the most wide spread Solidago taxon, from hundreds of samples collected throughout the USA and southern Canada over the period 1842-2014 (i.e. a Ca from approx. 280 to 398 ppm). In addition, we conducted a 2 year in situtrial of S. Canadensis populations grown along a continuous Ca gradient from approximately 280 to 500 ppm. The historical data indicated a strong significant correlation between recent increases in Ca and reductions in pollen protein concentration (r(2)= 0.81). Experimental data confirmed this decrease in pollen protein concentration, and indicated that it would be ongoing as Ca continues to rise in the near term, i.e. to 500 ppm (r(2)= 0.88). While additional data are needed to quantify the subsequent effects of reduced protein concentration for Canada goldenrod on bee health and population stability, these results are the first to indicate that increasing Ca can reduce protein content of a floral pollen source widely used by North American bees. © 2016 The Author(s).
Highton, Matthew P; Roosa, Stéphanie; Crawshaw, Josie; Schallenberg, Marc; Morales, Sergio E
2016-01-01
Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries) creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN) and phosphorous gradient (DRP). Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH , nirS , nosZI , and nosZII using qPCR), potential activity (via denitrification enzyme activity), as well as using changes in total community (via 16S rRNA gene amplicon sequencing). Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance) and functional level (proportion of the microbial community carrying nifH and nosZI genes) were most strongly associated with physical gradients (e.g., lake depth, sediment grain size, sediment porosity) and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.
Carbon and nitrogen stoichiometry across stream ecosystems
NASA Astrophysics Data System (ADS)
Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.
2017-12-01
Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio (3-100) of stream water dissolved organic matter.
A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa.
De Frenne, P; Kolb, A; Graae, B J; Decocq, G; Baltora, S; De Schrijver, A; Brunet, J; Chabrerie, O; Cousins, S A O; Dhondt, R; Diekmann, M; Gruwez, R; Heinken, T; Hermy, M; Liira, J; Saguez, R; Shevtsova, A; Baskin, C C; Verheyen, K
2011-05-01
The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours >5 °C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
Inferring Source Regions and Supply Mechanisms of Iron in the Southern Ocean from Satellite Data
NASA Astrophysics Data System (ADS)
Graham, R. M.
2016-02-01
In many biogeochemical models a large shelf sediment iron flux is prescribed through the seafloor over all areas of bathymetry shallower than 1000 m. Here we infer the likely location of shelf sediment iron sources by identifying where mean annual satellite chlorophyll concentrations are enhanced over shallow bathymetry ( < 1000 m). We show that mean annual chlorophyll concentrations are not visibly enhanced over areas of shallow bathymetry located more than 500 km from a coastline. Chlorophyll concentrations > 2 mg m-3are only found within 50 km of a continental or island coastline. These results suggest that large sedimentary iron fluxes only exist on continental or island shelves. Large sedimentary iron fluxes are unlikely to be found on isolated seamounts and submerged plateaus. We further compare satellite chlorophyll concentrations to the position of ocean fronts to assess the relative role of horizontal advection and upwelling for supplying iron to the ocean surface. Sharp gradients in chlorophyll concentrations are observed across western boundary currents. Large chlorophyll blooms develop where western boundary currents detach from the continental shelves and turn eastwards into the Southern Ocean. Chlorophyll concentrations are enhanced along contours of sea surface height extending off continental and island shelves. These observations support the hypothesis that bioavailable iron from continental shelves is entrained into western boundary currents and advected into the Sub-Antarctic Zone along the Dynamical Subtropical Front. Likewise, iron from island shelves is entrained into nearby fronts and advected downstream. Mean annual chlorophyll concentrations are very low in open ocean regions with large modelled upwelling velocities, where fronts cross over topographic ridges. These results suggests that open ocean upwelling is unlikely to deliver iron to the surface from deep sources such as hydrothermal vents.
USDA-ARS?s Scientific Manuscript database
Continuing increases in atmospheric CO2 concentrations mandate techniques for examining impacts on terrestrial ecosystems. Most experiments examine only two or a few levels of CO2 concentration and a single soil type, but if CO2 can be varied as a gradient from subambient to superambient concentra...
Savill, George P; Michalski, Adam; Powers, Stephen J; Wan, Yongfang; Tosi, Paola; Buchner, Peter; Hawkesford, Malcolm J
2018-05-25
Gradients exist in the distribution of storage proteins in the wheat (Triticum aestivum) endosperm and determine the milling properties and protein recovery rate of the grain. A novel image analysis technique was developed to quantify both the gradients in protein concentration, and the size distribution of protein bodies within the endosperm of wheat plants grown under two different (20 or 28 °C) post-anthesis temperatures, and supplied with a nutrient solution with either high or low nitrogen content. Under all treatment combinations, protein concentration was greater in the endosperm cells closest to the aleurone layer and decreased towards the centre of the two lobes of the grain, i.e. a negative gradient. This was accompanied by a decrease in size of protein bodies from the outer to the inner endosperm layers in all but one of the treatments. Elevated post-anthesis temperature had the effect of increasing the magnitude of the negative gradients in both protein concentration and protein body size, whilst limiting nitrogen supply decreased the gradients.
Simultaneous concentration and purification through gradient deformation chromatography
NASA Technical Reports Server (NTRS)
Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)
1995-01-01
Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.
Plontke, Stefan K; Mynatt, Robert; Gill, Ruth M; Borgmann, Stefan; Salt, Alec N
2007-07-01
The distribution of gentamicin along the fluid spaces of the cochlea after local applications has never previously been demonstrated. Computer simulations have predicted that significant basal-apical concentration gradients might be expected, and histologic studies indicate that hair cell damage is greater at the base than at the apex after local gentamicin application. In the present study, gradients of gentamicin along the cochlea were measured. A recently developed method of sampling perilymph from the cochlear apex of guinea pigs was used in which the samples represent fluid originating from different regions along the scala tympani. Gentamicin concentration was determined in sequential apical samples that were taken after up to 3 hours of local application to the round window niche. Substantial gradients of gentamicin along the length of the scala tympani were demonstrated and quantified, averaging more than 4,000 times greater concentration at the base compared with the apex at the time of sampling. Peak concentrations and gradients for gentamicin varied considerably between animals, likely resulting from variations in round window membrane permeability and rates of perilymph flow. The large gradients for gentamicin demonstrated here in guinea pigs account for how it is possible to suppress vestibular function in some patients with a local application of gentamicin without damaging auditory function. Variations in round window membrane permeability and in perilymph flow could account for why hearing losses are observed in some patients.
Plontke, Stefan K.; Mynatt, Robert; Gill, Ruth M.; Borgmann, Stefan; Salt, Alec N.
2008-01-01
Objectives The distribution of gentamicin along the fluid spaces of the cochlea following local applications has never previously been demonstrated. Computer simulations have predicted that significant basal-apical concentration gradients might be expected and histological studies indicate that hair cell damage is greater at the base than at the apex following local gentamicin application. In the present study, gradients of gentamicin along the cochlea were measured. Methods A recently-developed method of sampling perilymph from the cochlear apex of guinea pigs was used, in which the samples represent fluid originating from different regions along scala tympani. Gentamicin concentration was determined in sequential apical samples which were taken following up to three hours of local application to the round window niche. Results Substantial gradients of gentamicin along the length of scala tympani were demonstrated and quantified, averaging more than 4000 times greater concentration at the base compared to the apex at the time of sampling. Peak concentrations and gradients for gentamicin varied considerably between animals, likely resulting from variations in round window membrane permeability and rates of perilymph flow. Conclusions The large gradients for gentamicin demonstrated here in guinea pigs account for how it is possible to suppress vestibular function in some patients with a local application of gentamicin without damaging auditory function. Variations in round window membrane permeability and in perilymph flow could account for why hearing losses are observed in some patients. PMID:17603318
NASA Astrophysics Data System (ADS)
Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.
2018-05-01
In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.
Foster, Guy M.; Graham, Jennifer L.; Williams, Thomas J.; King, Lindsey R.
2016-10-31
Nutrients, particularly nitrogen and phosphorus, are a leading cause of water-quality impairment in Kansas and the Nation. Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereinafter Middle Basin) wastewater treatment facility (WWTF) is the largest point-source discharge on Indian Creek. A second facility, the Tomahawk Creek WWTF, discharges into Indian Creek approximately 11.6 kilometers downstream from the Middle Basin WWTF. To better characterize the spatiotemporal variability of nutrients in Indian Creek, the U.S. Geological Survey, in cooperation with the Kansas Department of Health and Environment and Johnson County Wastewater, collected high-resolution spatial and temporal (a large number of samples collected over the entire reach or at single locations over a long period of time) inorganic nutrient (nitrate plus nitrite and orthophosphorus) data using a combination of discrete samples and sensor-measured data during 2012 through 2015.Nutrient patterns observed in Indian Creek along the upstream-downstream gradient during wastewater effluent dominated streamflow conditions were largely affected by the WWTFs and by travel time of the parcels of water. Nitrate plus nitrite concentrations in the Middle Basin WWTF effluent and at downstream sites varied by as much as 6 milligrams per liter over a 24-hour period. The cyclical variability in the Middle Basin WWTF effluent generated a nitrate plus nitrite pulse that could be tracked for approximately 11.5 kilometers downstream in Indian Creek, until the effect was masked by the Tomahawk Creek WWTF effluent discharge. All longitudinal surveys showed the same general patterns along the upstream-downstream gradient, though streamflows, wastewater effluent contributions to streamflow, and nutrient concentrations spanned a wide range. Differences in orthophosphorus and nitrate plus nitrite patterns were clear along the upstream-downstream gradient in Indian Creek, and orthophosphorus concentrations were not as variable as nitrate plus nitrite concentrations. In general, nitrate plus nitrite concentrations decreased downstream from the Middle Basin WWTF to minima near the confluence with Tomahawk Creek, increased downstream from the Tomahawk Creek WWTF, and then varied little within the study reach. Orthophosphorus concentrations generally decreased downstream from the Middle Basin WWTF.Despite the marked variability in nitrate plus nitrite concentrations caused by the Middle Basin WWTF effluent discharges, decreases in nitrate plus nitrite concentrations were discernable along the study reach between the two WWTFs. Decreases in nitrate plus nitrite concentrations along study reach were less variable than the cyclical variability typically measured, reiterating the effect of the Middle Basin WWTF effluent discharges on the spatiotemporal variability of nitrate plus nitrite in Indian Creek. Although decreases and rates of change in nitrate plus nitrite concentration were similar between the upper and lower reaches of Indian Creek, relations with initial nitrate plus nitrite concentrations and seasonal patterns were different between the upper (from College to the Marty study sites) and lower reaches (from Marty to the Mission Farms study sites) and did not reflect patterns observed for the overall reach. Quantifying the decreases in nitrate plus nitrite concentration caused by dilution and other in-stream processes were beyond the scope of this study, and were limited by available data. The data that are available suggest that dilution and other in-stream processes play a role in decreasing nitrate plus nitrite concentrations downstream from the Middle Basin WWTF in Indian Creek.Analysis of the spatiotemporal variability of nutrients focused on below-normal and normal streamflow conditions, when streamflow and nutrient conditions in Indian Creek were largely controlled by WWTF effluent flows and nutrient removal processes. Spatial and temporal data indicate there are decreases in nutrient concentrations along the upstream-downstream gradient in Indian Creek, but quantifying decreases is complicated by the variability in nutrient concentrations caused by the WWTFs. During below-normal and normal streamflow conditions, Indian Creek nutrient concentrations downstream from the Middle Basin WWTF primarily reflect effluent concentrations in the hours or days before depending on relative distance downstream.
A Photometric Technique for Determining Fluid Concentration using Consumer-Grade Hardware
NASA Technical Reports Server (NTRS)
Leslie, F.; Ramachandran, N.
1999-01-01
In support of a separate study to produce an exponential concentration gradient in a magnetic fluid, a noninvasive technique for determining, species concentration from off-the-shelf hardware has been developed. The approach uses a backlighted fluid test cell photographed with a commercial digital camcorder. Because the light extinction coefficient is wavelength dependent, tests were conducted to determine the best filter color to use, although some guidance was also provided using an absorption spectrophotometer. With the appropriate filter in place, the provide attenuation of the light passing, through the test cell was captured by the camcorder. The digital image was analyzed for intensity using, software from Scion Image Corp. downloaded from the Internet. The analysis provides a two-dimensional array of concentration with an average error of 0.0095 ml/ml. This technique is superior to invasive techniques, which require extraction of a sample that disturbs the concentration distribution in the test cell. Refinements of this technique using a true monochromatic laser light Source are also discussed.
Fink, Laurel A; Manley, Steven L
2011-12-01
This study introduces an innovative method for biomonitoring using giant kelp (Macrocystis pyrifera) sieve tube sap (STS) metal concentrations as an indication of pollution influence. STS was sampled from fronds collected from 10 southern California locations, including two reference sites on Santa Catalina Island. Using ICP-MS methodology, STS concentrations of 17 different metals were measured (n=495). Several metals associated with pollution showed the highest STS concentrations and most seasonal variation from populations inside the Port of Los Angeles/Long Beach. Lowest concentrations were measured at less-urbanized areas: Santa Catalina Island and Malibu. Some metals showed a spatial gradient in STS metal concentration with increasing distance from point sources (i.e. Los Angeles River). Cluster analyses indicate that polluted seawater may affect kelp uptake of metals essential for cellular function. Results show that this method can be useful in describing bioavailable metal pollution with implications for accumulation within an important ecosystem. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ding, Yong-Xue; Streitmatter, Seth; Wright, Bryon E.; Hlady, Vladimir
2010-01-01
A gradient of negative surface charge based on 1-D spatial variation from surface sulfhydryl to mixed sulfhydryl-sulfonate moities was prepared by controlled UV oxidation of 3-mercaptopropylsilane monolayer on fused silica. Adsorption of three human plasma proteins, albumin (HSA), immunoglobulin G (IgG), and fibrinogen (Fgn) onto such surface gradient was studied using spatially-resolved total internal reflection fluorescence (TIRF) and autoradiography. Adsorption was measured from dilute solutions equivalent to 1/100 (TIRF, autoradiography), and 1/500 and 1/1000 (autoradiography) of protein’s physiological concentrations in plasma. All three proteins adsorbed more to the non-oxidized sulfhydryl region than to the oxidized, mixed sulfhydryl-sulfonate region of the gradient. In the case of HSA the adsorption contrast along the gradient was largest when the adsorption took place from more dilute protein solutions. Increasing the concentration to 1/100 of protein plasma concentration eliminated the effect of the gradient on HSA adsorption and to the lesser extent on IgG adsorption. In the case of Fgn the greatest adsorption contrast was observed at the highest concentration used. Based on adsorption kinetics, the estimated binding affinity of HSA for the sulfhydryl region what twice the affinity for the mixed sulfhydryl-sulfonate region of the gradient. For IgG and Fgn the initial adsorption was transport-limited and the initial adsorption rates approached the computed flux of the protein to the surface. PMID:20568822
Detection of ferromagnetic target based on mobile magnetic gradient tensor system
NASA Astrophysics Data System (ADS)
Gang, Y. I. N.; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren
2016-03-01
Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source-sensor displacement vector. Secondly, unit source-sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source-sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source-sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source-sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method.
Phelps, G.G.; Schiffer, D.M.
1996-01-01
The Floridan aquifer system, an approximately 2,000-foot thick sequence of Eocene-age limestone and dolomite, is the main source of water supply in central Florida. Hydraulic conductivity is different in strata of different lithology and is the basis for separating the aquifer system into the Upper Floridan aquifer, a middle semi- confining unit, and the Lower Floridan aquifer. The coastal city of Cocoa withdraws about 26 million gallons of water per day from the Upper Floridan aquifer from a well field in east Orange County, about 25 miles inland. About 60 million gallons per day are withdrawn from the Upper Floridan aquifer and 56 million gallons per day from the Lower Floridan aquifer in the Orlando area, about 15 miles west of the Cocoa well field. Wells drilled in the Cocoa well field from 1955-61 yielded water with chloride concentrations ranging from 25-55 milligrams per liter. Soon after the wells were put in service, chloride concentrations increased; therefore, new wells were drilled further inland. Chloride concen- trations in water from many of the new wells also have increased. Possible sources of saline water are lateral movement of relict seawater in the Upper Floridan aquifer from the east, regional upconing of saline water from the Lower Floridan aquifer or underlying older rocks, or localized upward movement of saline water through fractures. Several test wells were drilled to provide information about chloride concentration changes with depth and to monitor changes with time, including a multi-zone well drilled in 1965 (well C) and two wells drilled in the 1990's (wells R and S). Chloride concentrations have increased in the zone pumped by the supply wells (the upper 500 feet of the aquifer) and in the 1,351-1,357-foot deep zone of well C, but not in the two intervening zones. This indicates that the source of saline water is located laterally, rather than vertically, from the pumped zone in the area of well C. The potential for upward movement of saline water depends on the direction of the vertical hydraulic gradient and on the vertical hydraulic conductivity of the aquifer. A series of aquifer tests was run in 1993-94 and existing water-level and water-quality data were analyzed to evaluate the potential for upward movement of saline water in the well field. The transmissivity of the upper 500 feet of the aquifer is about 100,000 feet squared per day (the horizontal hydraulic conductivity is about 200 feet per day) and the storage coefficient is about 2x10 -4. Horizontal hydraulic conductivities determined from slug tests of the three deepest zones of well C ranged from 20-50 feet per day. Vertical hydraulic conductivities probably do not exceed 0.05 feet per day. The vertical hydraulic gradient is determined by comparing water levels in the various zones, but because of density differences, unadjusted water levels in the deepest zone investigated cannot be directly compared to water levels in the overlying freshwater zones. The difference between environmental-water heads (adjusted for density differences) in the saline-water zone of well C and the overlying freshwater zone were calculated from measured water levels for the period 1966 to 1994. During most of this time period, the gradient was downward, indicating that saline water did not move upward. Upconing of saline water probably is not taking place in the center and western part of the well field, based on the low vertical hydraulic conductivity values estimated for the middle semi-confining unit, the generally downward vertical hydraulic gradient, and the constant chloride concentrations in the intermediate zones of well C. However, there is no information about the extent of the zone of low vertical hydraulic conductivity gradient in the eastern part of the well field. Thus, increased chloride concentrations in supply wells in the eastern part of the well field could be caused either by lateral movement of saline water from the east, or by upwar
Factors associated with NO2 and NOX concentration gradients near a highway.
Richmond-Bryant, J; Snyder, M G; Owen, R C; Kimbrough, S
2017-11-21
The objective of this research is to learn how the near-road gradient, in which NO 2 and NO X (NO + NO 2 ) concentrations are elevated, varies with changes in meteorological and traffic variables. Measurements of NO 2 and NO X were obtained east of I-15 in Las Vegas and fit to functions whose slopes (dC NO 2 /dx and dC NO X /dx, respectively) characterize the size of the near-road zone where NO 2 and NO X concentrations from mobile sources on the highway are elevated. These metrics were used to learn about the near-road gradient by modeling dC NO 2 /dx and dC NO X /dx as functions of meteorological variables (e.g., wind direction, wind speed), traffic (vehicle count), NO X concentration upwind of the road, and O 3 concentration at two fixed-site ambient monitors. Generalized additive models (GAM) were used to model dC NO 2 /dx and dC NO X /dx versus the independent variables because they allowed for nonlinearity of the variables being compared. When data from all wind directions were included in the analysis, variability in O 3 concentration comprised the largest proportion of variability in dC NO 2 /dx, followed by variability in wind direction. In a second analysis constrained to winds from the west, variability in O 3 concentration remained the largest contributor to variability in dC NO 2 /dx, but the relative contribution of variability in wind speed to variability in dC NO 2 /dx increased relative to its contribution for the all-wind analysis. When data from all wind directions were analyzed, variability in wind direction was by far the largest contributor to variability in dC NO X /dx, with smaller contributions from hour of day and upwind NO X concentration. When only winds from the west were analyzed, variability in upwind NO X concentration, wind speed, hour of day, and traffic count all were associated with variability in dC NO X /dx. Increases in O 3 concentration were associated with increased magnitude near-road dC NO 2 /dx, possibly shrinking the zone of elevated concentrations occurring near roads. Wind direction parallel to the highway was also related to an increased magnitude of both dC NO 2 /dx and dC NO X /dx, again likely shrinking the zone of elevated concentrations occurring near roads. Wind direction perpendicular to the road decreased the magnitude of dC NO 2 /dx and dC NO X /dx and likely contributed to growth of the zone of elevated concentrations occurring near roads. Thus, variability in near-road concentrations is influenced by local meteorology and ambient O 3 concentration.
2D joint inversion of CSAMT and magnetic data based on cross-gradient theory
NASA Astrophysics Data System (ADS)
Wang, Kun-Peng; Tan, Han-Dong; Wang, Tao
2017-06-01
A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.
Design keys for paper-based concentration gradient generators.
Schaumburg, Federico; Urteaga, Raúl; Kler, Pablo A; Berli, Claudio L A
2018-08-03
The generation of concentration gradients is an essential operation for several analytical processes implemented on microfluidic paper-based analytical devices. The dynamic gradient formation is based on the transverse dispersion of chemical species across co-flowing streams. In paper channels, this transverse flux of molecules is dominated by mechanical dispersion, which is substantially different than molecular diffusion, which is the mechanism acting in conventional microchannels. Therefore, the design of gradient generators on paper requires strategies different from those used in traditional microfluidics. This work considers the foundations of transverse dispersion in porous substrates to investigate the optimal design of microfluidic paper-based concentration gradient generators (μPGGs) by computer simulations. A set of novel and versatile μPGGs were designed in the format of numerical prototypes, and virtual experiments were run to explore the ranges of operation and the overall performance of such devices. Then physical prototypes were fabricated and experimentally tested in our lab. Finally, some basic rules for the design of optimized μPGGs are proposed. Apart from improving the efficiency of mixers, diluters and μPGGs, the results of this investigation are relevant to attain highly controlled concentration fields on paper-based devices. Copyright © 2018 Elsevier B.V. All rights reserved.
Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air–surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM) and the modified Bowen rati...
NASA Astrophysics Data System (ADS)
Moore, J.; Bird, D. L.; Dobbis, S. K.; Woodward, G.
2016-12-01
Urban areas and associated impervious surface cover (ISC) are among the fastest growing land use types. Rapid growth of urban lands has significant implications for geochemical cycling and solute sources to streams, estuaries, and coastal waters. However, little work has been done to investigate the impacts of urbanization on Critical Processes, including on the export of solutes from urban watersheds. Despite observed elevated solute concentrations in urban streams in some previous studies, neither solute sources nor total solute fluxes have been quantified due to mixed bedrock geology, lack of a forested reference watershed, or the presence of point sources that confounded separation of anthropologic and natural sources. We investigated the geochemical signal of the urban built environment (e.g., roads, parking lots, buildings) in a set of five USGS-gaged watersheds across a rural (forested) to urban gradient in the Maryland Piedmont. These watersheds have ISC ranging from 0 to 25%, no point sources, and similar felsic bedrock chemistry. Weathering from the urban built environment and ISC produces dramatically higher solute concentrations in urban watersheds than in the forested watershed. Higher solute concentrations result in chemical weathering fluxes from urban watersheds that are 11-13 times higher than the forested watershed and are similar to fluxes from mountainous, weathering-limited watersheds rather than fluxes from transport-limited, dilute streams like the forested watershed. Weathering of concrete in urban watersheds produces geochemistry similar to weathering-limited watersheds with high concentrations of Ca2+, Mg2+, and DIC, which is similar to stream chemistry due to carbonate weathering. Road salt dissolution results in high Na+ and Cl- concentrations similar to evaporite weathering. Quantifying processes causing elevated solute fluxes from urban areas is essential to understanding cycling of Ca2+, Mg2+, and DIC in urban streams and in downgradient estuarine or coastal waters.
Yuan, Jie; Li, Siyue; Han, Xi; Chen, Qiuyang; Cheng, Xiaoli; Zhang, Quanfa
2017-08-15
There are increasing concerns in nitrogen (N) pollution worldwide, especially in aquatic ecosystems, and thus quantifying its sources in waterways is critical for pollution prevention and control. In this study, we investigated the spatio-temporal variabilities of inorganic N concentration (i.e., NO 3 - , NH 4 + ) and total dissolved N (TDN) and identified their sources in waters and suspended matters using an isotopical approach in the Jinshui River, a river with a length of 87km in the monsoon-climate region of China. The spatio-temporal inorganic N concentrations differed significantly along the longitudinal gradient in the river network. The NO 3 - , NH 4 + and TDN concentrations ranged from 0.02 to 1.12mgl -1 , 0.03 to 4.28mgl -1 , and 0.33 to 2.78mgl -1 , respectively. The 15 N tracing studies demonstrated that N in suspended organic matter was in the form of suspended particulate nitrogen (SPN) and was primarily from atmospheric deposition and agricultural fertilizer. In contrast, N in stream waters was mainly in the form of nitrate and was from atmospheric deposition, fertilizers, soil, and sewage. Meanwhile, both δ 15 N-SPN and δ 15 N-NO 3 - peaked in the rainy season (i.e., July) because of higher terrigenous sources via rain runoff, demonstrating the dominant diffusive N sources in the catchment. Thus, our results could provide critical information on N pollution control and sustainable watershed management of the riverine ecosystem in monsoon-climate region. Copyright © 2017 Elsevier B.V. All rights reserved.
Relative Importance of H2 and H2S as Energy Sources for Primary Production in Geothermal Springs▿ †
D'Imperio, Seth; Lehr, Corinne R.; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R.
2008-01-01
Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H2 and H2S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H2S and H2 concentration gradients were observed in the outflow channel, and vertical H2S and O2 gradients were evident within the microbial mat. H2S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H2. Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O2 requirements varied, as did energy source utilization: some isolates could grow only with H2S, some only with H2, while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H2S and H2 and that represented the dominant phylotype (70% of the PCR clones) showed that H2S and H2 were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H2S was better than that with H2. The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H2S can dominate over H2 as an energy source in terms of availability, apparent in situ consumption rates, and growth-supporting energy. PMID:18641166
NASA Astrophysics Data System (ADS)
Barzyk, Timothy M.; George, Barbara Jane; Vette, Alan F.; Williams, Ronald W.; Croghan, Carry W.; Stevens, Carvin D.
The primary objective of the Detroit Exposure and Aerosol Research Study (DEARS) was to compare air pollutant concentrations measured at various neighborhoods, or exposure monitoring areas (EMAs), throughout a major metropolitan area to levels measured at a central site or community monitor. One of the EMAs was located near a busy freeway (annual average daily traffic (AADT) of ˜130,000) so that impacts of mobile sources could be examined. Air pollution concentrations from the roadway-proximate sites were compared to the central site monitor. The volatile organic compounds (VOCs) selected (benzene, toluene, ethylbenzene, m,p- and o-xylene, 1,3 butadiene, 1,3,5-trimethylbenzene and 4-ethyltoluene) are typically associated with mobile sources. Gradients were also evident that demonstrated the amplification of pollutant levels near the roadway compared to the community monitor. A novel distance-to-roadway proximity metric was developed to plot the measurements and model these gradients. Effective distance represents the actual distance an air parcel travels from the middle of a roadway to a site and varies as a function of wind direction, whereas perpendicular distance is a fixed distance oriented normal to the roadway. Perpendicular distance is often used as a proxy for exposures to traffic emissions in epidemiological studies. Elevated concentrations of all the compounds were found for both a summer and winter season. Effective distance was found to be a statistically significant ( p < 0.05) univariate predictor for concentrations of toluene, ethylbenzene, m,p-xylene and o-xylene for summer 2005. For each of these pollutants, effective distance yielded lower p-values than the corresponding perpendicular distance models, and model fit improved. Results demonstrate that this near-road EMA had elevated levels of traffic-related VOCs compared to the community monitor, and that effective distance was a more accurate predictor of the degree to which they were elevated as a function of distance. Effective distance produced a range of distance-to-roadway values for a single site based on wind direction, thus increasing the number and range of values that could be used to plot and predict relative differences in pollutant concentrations between two sites.
Prediction and validation of concentration gradient generation in a paper-based microfluidic channel
NASA Astrophysics Data System (ADS)
Jang, Ilhoon; Kim, Gang-June; Song, Simon
2016-11-01
A paper-based microfluidic channel has obtained attention as a diagnosis device that can implement various chemical or biological reactions. With benefits of thin, flexible, and strong features of paper devices, for example, it is often utilized for cell culture where controlling oxygen, nutrients, metabolism, and signaling molecules gradient affects the growth and movement of the cells. Among various features of paper-based microfluidic devices, we focus on establishment of concentration gradient in a paper channel. The flow is subject to dispersion and capillary effects because a paper is a porous media. In this presentation, we describe facile, fast and accurate method of generating a concentration gradient by using flow mixing of different concentrations. Both theoretical prediction and experimental validation are discussed along with inter-diffusion characteristics of porous flows. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (No. 2016R1A2B3009541).
One-Dimension Diffusion Preparation of Concentration-Gradient Fe₂O₃/SiO₂ Aerogel.
Zhang, Ting; Wang, Haoran; Zhou, Bin; Ji, Xiujie; Wang, Hongqiang; Du, Ai
2018-06-21
Concentration-gradient Fe₂O₃/SiO₂ aerogels were prepared by placing an MTMS (methyltrimethoxysilane)-derived SiO₂ aerogel on an iron gauze with an HCl atmosphere via one-dimensional diffusion, ammonia-atmosphere fixing, supercritical fluid drying and thermal treatment. The energy dispersive spectra show that the Fe/Si molar ratios change gradually from 2.14% to 18.48% with a height of 40 mm. Pore-size distribution results show that the average pore size of the sample decreases from 15.8 nm to 3.1 nm after diffusion. This corresponds well with TEM results, indicating a pore-filling effect of the Fe compound. In order to precisely control the gradient, diffusion kinetics are further studied by analyzing the influence of time and position on the concentration of the wet gel. At last, it is found that the diffusion process could be fitted well with the one-dimensional model of Fick’s second law, demonstrating the feasibility of the precise design and control of the concentration gradient.
NASA Astrophysics Data System (ADS)
Troldborg, M.; Nowak, W.; Binning, P. J.; Bjerg, P. L.
2012-12-01
Estimates of mass discharge (mass/time) are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Mass discharge estimates are, however, prone to rather large uncertainties as they integrate uncertain spatial distributions of both concentration and groundwater flow velocities. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics (including the uncertainty in covariance functions), ii) measurement uncertainty, and iii) uncertain source zone geometry and transport parameters. The method generates multiple equally likely realizations of the spatial flow and concentration distribution, which all honour the measured data at the control plane. The flow realizations are generated by analytical co-simulation of the hydraulic conductivity and the hydraulic gradient across the control plane. These realizations are made consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. Tests show that the decoupled approach is both efficient and able to provide accurate uncertainty estimates. The method is demonstrated on a Danish field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the co-simulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.
Creasy, Arch; Barker, Gregory; Carta, Giorgio
2017-03-01
A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high-throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high-throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bai, Wei; Zhou, Yuan-Guo
2017-01-01
It is widely accepted that glutamate is the most important excitatory neurotransmitter in the central nervous system (CNS). However, there is also a large amount of glutamate in the blood. Generally, the concentration gradient of glutamate between intraparenchymal and blood environments is stable. However, this gradient is dramatically disrupted under a variety of pathological conditions, resulting in an amplifying cascade that causes a series of pathological reactions in the CNS and peripheral organs. This eventually seriously worsens a patient’s prognosis. These two “isolated” systems are rarely considered as a whole even though they mutually influence each other. In this review, we summarize what is currently known regarding the maintenance, imbalance and regulatory mechanisms that control the intraparenchymal-blood glutamate concentration gradient, discuss the interrelationships between these systems and further explore their significance in clinical practice. PMID:29259540
Temperature gradient effects on vapor diffusion in partially-saturated porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, S.W.
1999-07-01
Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used inmore » the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results indicate that EVD is predominantly driven by concentration gradients; temperature gradients are less important. Therefore, the EVD model of Philip and deVries may need to be modified to reflect these results.« less
NASA Astrophysics Data System (ADS)
Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus
2016-09-01
Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.
NASA Astrophysics Data System (ADS)
Aikawa, Masahide; Ohara, Toshimasa; Hiraki, Takatoshi; Oishi, Okihiro; Tsuji, Akihiro; Yamagami, Makiko; Murano, Kentaro; Mukai, Hitoshi
2010-01-01
We found a significant geographic gradient (longitudinal and latitudinal) in the sulfate (SO 42-) concentrations measured at multiple sites over the East Asian Pacific Rim region. Furthermore, the observed gradient was well reproduced by a regional chemical transport model. The observed and modeled SO 42- concentrations were higher at the sites closer to the Asian continent. The concentrations of SO 42- from China as calculated by the model also showed the fundamental features of the longitudinal/latitudinal gradient. The proportional contribution of Chinese SO 42- to the total in Japan throughout the year was above 50-70% in the control case, using data for Chinese sulfur dioxide (SO 2) emission from the Regional Emission Inventory in Asia (40-60% in the low Chinese emissions case, using Chinese SO 2 emissions data from the State Environmental Protection Administration of China), with a winter maximum of approximately 65-80%, although the actual concentrations of SO 42- from China were highest in summer. The multiple-site measurements and the model analysis strongly suggest that the SO 42- concentrations in Japan were influenced by the outflow from the Asian continent, and this influence was greatest in the areas closer to the Asian continent. In contrast, we found no longitudinal/latitudinal gradient in SO 2 concentrations; instead SO 2 concentrations were significantly correlated with local SO 2 emissions. Our results show that large amounts of particulate sulfate are transported over long distances from the East Asian Pacific Rim region, and consequently the SO 42- concentrations in Japan are controlled by the transboundary outflow from the Asian continent.
Interstitial rotating shield brachytherapy for prostate cancer.
Adams, Quentin E; Xu, Jinghzu; Breitbach, Elizabeth K; Li, Xing; Enger, Shirin A; Rockey, William R; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T
2014-05-01
To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources. For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.
Skolimowski, Maciej; Nielsen, Martin Weiss; Emnéus, Jenny; Molin, Søren; Taboryski, Rafael; Sternberg, Claus; Dufva, Martin; Geschke, Oliver
2010-08-21
A microfluidic chip for generation of gradients of dissolved oxygen was designed, fabricated and tested. The novel way of active oxygen depletion through a gas permeable membrane was applied. Numerical simulations for generation of O(2) gradients were correlated with measured oxygen concentrations. The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions.
NASA Astrophysics Data System (ADS)
Spencer, R.; Carey, J.; Tang, J.
2016-12-01
Silicon (Si) availability in Arctic coastal waters is a critical factor dictating phytoplankton species composition, as diatoms require as much Si as nitrogen (N) on a molar basis to survive. Riverine exports are the main source of Si to Arctic coastal waters annually and thus, the timing and magnitude of river Si fluxes have direct implications for marine ecology and global carbon dynamics. Although geochemical factors exert large controls on Si exports to marine waters, watershed land cover has recently been shown to alter the retention and transport of Si along the land-ocean continuum in lower latitudes, due in large part to the ability of terrestrial vegetation to store large quantities of Si in its tissue. However, it is unclear how shifts in basin land cover and climatic warming will alter Si exports in the Arctic, as increasing shrubiness and northward migration of treeline may increase Si retention on land, but permafrost thaw and elevated weathering rates may stimulate Si exports towards coastal waters. In this study we investigate how permafrost thaw and vegetation cover shifts are altering Arctic riverine Si export using the geochemical signatures of ten rivers draining a 700 km north-south gradient across the Yukon and Arctic North Slope basins in Alaska. Across the 2016 spring freshet, average dissolved Si (DSi) concentrations across sites ranged from 22 to 115 µM, with a significant negative relationship observed between average DSi concentration and latitude (r=-0.95, p<0.05). Conversely, average biogenic Si (BSi) concentrations showed no trends with latitude and were more uniform across the permafrost-vegetation cover gradient, ranging from 8 to 15 µM BSi. Si yields followed a similar pattern as concentrations across the gradient. We use data on basin lithology and land cover, instantaneous discharge, and the concentrations of inorganic nutrients (N, phosphorous), chlorophyll a, total suspended solids (TSS), and Ge (Germanium)/Si ratios, to determine the drivers of these patterns in Si behavior. In turn, our results will be used to create the first predictive framework to assess how future warming will alter fluvial Si exports to Arctic receiving waters.
Reference tissue quantification of DCE-MRI data without a contrast agent calibration
NASA Astrophysics Data System (ADS)
Walker-Samuel, Simon; Leach, Martin O.; Collins, David J.
2007-02-01
The quantification of dynamic contrast-enhanced (DCE) MRI data conventionally requires a conversion from signal intensity to contrast agent concentration by measuring a change in the tissue longitudinal relaxation rate, R1. In this paper, it is shown that the use of a spoiled gradient-echo acquisition sequence (optimized so that signal intensity scales linearly with contrast agent concentration) in conjunction with a reference tissue-derived vascular input function (VIF), avoids the need for the conversion to Gd-DTPA concentration. This study evaluates how to optimize such sequences and which dynamic time-series parameters are most suitable for this type of analysis. It is shown that signal difference and relative enhancement provide useful alternatives when full contrast agent quantification cannot be achieved, but that pharmacokinetic parameters derived from both contain sources of error (such as those caused by differences between reference tissue and region of interest proton density and native T1 values). It is shown in a rectal cancer study that these sources of uncertainty are smaller when using signal difference, compared with relative enhancement (15 ± 4% compared with 33 ± 4%). Both of these uncertainties are of the order of those associated with the conversion to Gd-DTPA concentration, according to literature estimates.
Hu, Yahu; Nan, Zhongren; Jin, Cheng; Wang, Ning; Luo, Huanzhang
2014-01-01
To investigate the phytoextraction potential of Populus alba L. var. pyramidalis Bunge for cadmium (Cd) contaminated calcareous soils, a concentration gradient experiment and a field sampling experiment (involving poplars of different ages) were conducted. The translocation factors for all experiments and treatments were greater than 1. The bioconcentration factor decreased from 2.37 to 0.25 with increasing soil Cd concentration in the concentration gradient experiment and generally decreased with stand age under field conditions. The Cd concentrations in P. pyramidalis organs decreased in the order of leaves > stems > roots. The shoot biomass production in the concentration gradient experiment was not significantly reduced with soil Cd concentrations up to or slightly over 50 mg kg(-1). The results show that the phytoextraction efficiency of P. pyramidalis depends on both the soil Cd concentration and the tree age. Populus pyramidalis is most suitable for remediation of slightly Cd contaminated calcareous soils through the combined harvest of stems and leaves under actual field conditions.
Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.
2008-01-01
Low dissolved oxygen concentrations in the waters of Hood Canal threaten marine life in late summer and early autumn. Oxygen depletion in the deep layers and landward reaches of the canal is caused by decomposition of excess phytoplankton biomass, which feeds on nutrients (primarily nitrogen compounds) that enter the canal from various sources, along with stratification of the water column that prevents mixing and replenishment of oxygen. Although seawater entering the canal is the largest source of nitrogen, ground-water discharge to the canal also contributes significant quantities, particularly during summer months when phytoplankton growth is most sensitive to nutrient availability. Quantifying ground-water derived nutrient loads entering an ecologically sensitive system such as Hood Canal is a critical component of constraining the total nutrient budget and ultimately implementing effective management strategies to reduce impacts of eutrophication. The amount of nutrients entering Hood Canal from ground water was estimated using traditional and indirect measurements of ground-water discharge, and analysis of nutrient concentrations. Ground-water discharge to Hood Canal is variable in space and time because of local geology, variable hydraulic gradients in the ground-water system adjacent to the shoreline, and a large tidal range of 3 to 5 meters. Intensive studies of ground-water seepage and hydraulic-head gradients in the shallow, nearshore areas were used to quantify the freshwater component of submarine ground-water discharge (SGD), whereas indirect methods using radon and radium geochemical tracers helped quantify total SGD and recirculated seawater. In areas with confirmed ground-water discharge, shore-perpendicular electrical resistivity profiles, continuous electromagnetic seepage-meter measurements, and continuous radon measurements were used to visualize temporal variations in ground-water discharge over several tidal cycles. The results of these field investigations show that ground-water discharge into the Lynch Cove area of Hood Canal is highly dynamic and strongly affected by the large tidal range. In areas with a steep shoreline and steep hydraulic gradient, ground-water discharge is spatially concentrated in or near the intertidal zone, with increased discharge during low tide. Topographically flat areas with weak hydraulic gradients had more spatial variability, including larger areas of seawater recirculation and more widely dispersed discharge. Measured total-dissolved-nitrogen concentrations in ground water ranged from below detection limits to 2.29 milligrams per liter and the total load entering Lynch Cove was estimated to be approximately 98 ? 10.3 metric tons per year (MT/yr). This estimate is based on net freshwater seepage rates from Lee-type seepage meter measurements and can be compared to estimates derived from geochemical tracer mass balance estimates (radon and radium) of 231 to 749 MT/yr, and previous water-mass-balance estimates (14 to 47 MT/ yr). Uncertainty in these loading estimates is introduced by complex biogeochemical cycles of relevant nutrient species, the representativeness of measurement sites, and by energetic dynamics at the coastal aquifer-seawater interface caused by tidal forcing.
Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient
NASA Astrophysics Data System (ADS)
Shia, R.
2011-12-01
The instantaneous radiative forcing (IRF) at the top of the atmosphere (ToA) is the initial change of the total energy in the climate system when the concentration of greenhouse gas (GHG) increases. In my previous presentation at the 2010 Fall AGU meeting (A11J-02, "Mechanism of Radiative Forcing of Greenhouse Gas its Implication to the Global Warming"), it was demonstrated that IRF at TOA is generated by moving up of the emission weighting function. Thus, the temperature gradient plays a critical role in determining the climate effect of GHG. In this presentation the change of the outgoing infrared radiation flux at ToA is studied from a perturbation point of view. After the cancellation between the changes in the outgoing radiation flux from the surface emission and from the reemission of the atmosphere, the derivative of the outgoing flux to the concentration of GHG is found to be proportional to the temperature gradients below the level where the concentration of GHG changes. Therefore, the greenhouse gas contribute only to the magnitude of the radiative forcing, the temperature gradients decide the direction of the radiative forcing, i.e. warming or cooling, in addition to contributing to its magnitude. In response to the question "Does the negative IRF at ToA lead to the surface cooling or it only cools the upper part of the atmosphere?" the Eddington grey radiative equilibrium model is modified to simulate different scenarios. The original model has been used to illustrate the warming effect of GHG in textbooks of the atmospheric physics. It is modified by adding source terms from the absorption of the solar flux and the internal energy exchange in the atmosphere. In two cases the modified model generates atmospheres with a large and warm stratosphere and negative IRF at ToA when GHG increases by 25%. This negative radiative forcing can lead to the cooling of the atmosphere all the way down to the surface. The implications of the cooling effect of GHG to the climate change, including paleoclimatology and the prerequests for climate models to include cooling effect of GHG properly are discussed.
NASA Astrophysics Data System (ADS)
Davis, K. J.; Pal, S.; Baier, B.; Browell, E. V.; Choi, Y.; DiGangi, J. P.; Dobler, J. T.; Erxleben, W. H.; Feng, S.; Gaudet, B. J.; Kooi, S. A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Hoffman, K.; Obland, M. D.; Pauly, R.; Sweeney, C.
2017-12-01
Synoptic scale weather events like cold front passages play an important role in distributing greenhouse gases (GHG, e.g., CO2, CH4) in the atmosphere. However, our knowledge and observational evidence on the GHG structures across frontal boundaries are limited. The second airborne field campaign of the Atmospheric Carbon and Transport - America (ACT-America) project in winter (January 30 - March 10 2017) documented gradients in GHGs across 9 frontal systems in three regions of the US, namely, Mid-Atlantic, Upper Mid-West, and South. High-resolution remote and in-situ airborne observations were collected with two aircraft: NASA C-130 and B-200. Using both active remote sensing and in-situ observations, we will discuss the magnitude of GHG frontal gradients in the atmospheric boundary layer (ABL) and free troposphere (FT) and how they vary among cases during winter. Three mechanisms for creating these gradients will be investigated: 1) local ecosystem or anthropogenic GHG sources; 2) horizontal transport of planetary scale, seasonal gradients; and 3) vertical mixing, especially associated with clouds and boundary layer depth depths. Preliminary analyses indicate higher front-related CO2 gradients in the boundary layer compared to the upper and lower FT as well as larger case-to-case variability in front-related CO2 gradients in the ABL compared to the FT. GHG gradients across fronts were smaller than in the summer, but still present. Tentatively, the signs of the CO2 gradients (vertical and frontal) in winter appear to have switched compared to the summer with higher CO2 concentrations in the cold sector of the frontal region than in the warm sector during the wintertime, but the CH4 gradients were similar in the two seasons. Using observations and simulations for both summer and winter, we will build toward a conceptual framework of the CO2 and CH4 gradients across frontal boundaries and provide insights into how boundary layer-regimes and synoptic-scale transport redistributes CO2 and CH4 across the midlatitudes.
Gao, Yun-qiu; Liu, Shou-dong; Hu, Ning; Wang, Shu-min; Deng, Li-chen; Yu, Zhou; Zhang, Zhen; Li, Xu-hui
2015-07-01
Direct observation of urban atmospheric CO2 concentration is vital for the research in the contribution of anthropogenic activity to the atmospheric abundance since cities are important CO2 sources. The observations of the atmospheric CO2 concentration at multiple sites/heights can help us learn more about the temporal and spatial patterns and influencing mechanisms. In this study, the CO2 concentration was observed at 5 sites (east, west, south, north and middle) in the main city area of Nanjing from July 18 to 25, 2014, and the vertical profile of atmospheric CO2 concentration was measured in the middle site at 3 heights (30 m, 65 m and 110 m). The results indicated that: (1) An obvious vertical CO2 gradient was found, with higher CO2 concentration [molar fraction of 427. 3 x 10(-6) (±18. 2 x 10(-6))] in the lower layer due to the strong influences of anthropogenic emissions, and lower CO2 concentration in the upper layers [411. 8 x 10(-6) (±15. 0 x 10(-6)) and 410. 9 x 10(-6) (±14. 6 x 10(-6)) at 65 and 110 m respectively] for the well-mixed condition. The CO2 concentration was higher and the vertical gradient was larger when the atmosphere was stable. (2) The spatial distribution pattern of CO2 concentration was dominated by wind and atmospheric stability. During the observation, the CO2 concentration in the southwest was higher than that in the northeast region with the CO2 concentration difference of 7. 8 x 10(-6), because the northwest wind was prevalent. And the CO2 concentration difference reduced with increasing wind speed since stronger wind diluted CO2 more efficiently. The more stable the atmosphere was, the higher the CO2 concentration was. (3) An obvious diurnal variation of CO2 concentration was shown in the 5 sites. A peak value occurred during the morning rush hours, the valley value occurred around 17:00 (Local time) and another high value occurred around 19:00 because of evening rush hour sometimes.
Smith, Richard L.; Repert, Deborah A.; Barber, Larry B.; LeBlanc, Denis R.
2013-01-01
The consequences of groundwater contamination can remain long after a contaminant source has been removed. Documentation of natural aquifer recoveries and empirical tools to predict recovery time frames and associated geochemical changes are generally lacking. This study characterized the long-term natural attenuation of a groundwater contaminant plume in a sand and gravel aquifer on Cape Cod, Massachusetts, after the removal of the treated-wastewater source. Although concentrations of dissolved organic carbon (DOC) and other soluble constituents have decreased substantially in the 15 years since the source was removed, the core of the plume remains anoxic and has sharp redox gradients and elevated concentrations of nitrate and ammonium. Aquifer sediment was collected from near the former disposal site at several points in time and space along a 0.5-km-long transect extending downgradient from the disposal site and analyses of the sediment was correlated with changes in plume composition. Total sediment carbon content was generally low (< 8 to 55.8 μmol (g dry wt)− 1) but was positively correlated with oxygen consumption rates in laboratory incubations, which ranged from 11.6 to 44.7 nmol (g dry wt)− 1 day− 1. Total water extractable organic carbon was < 10–50% of the total carbon content but was the most biodegradable portion of the carbon pool. Carbon/nitrogen (C/N) ratios in the extracts increased more than 10-fold with time, suggesting that organic carbon degradation and oxygen consumption could become N-limited as the sorbed C and dissolved inorganic nitrogen (DIN) pools produced by the degradation separate with time by differential transport. A 1-D model using total degradable organic carbon values was constructed to simulate oxygen consumption and transport and calibrated by using observed temporal changes in oxygen concentrations at selected wells. The simulated travel velocity of the oxygen gradient was 5–13% of the groundwater velocity. This suggests that the total sorbed carbon pool is large relative to the rate of oxygen entrainment and will be impacting groundwater geochemistry for many decades. This has implications for long-term oxidation of reduced constituents, such as ammonium, that are being transported downgradient away from the infiltration beds toward surface and coastal discharge zones.
Human sperm pattern of movement during chemotactic re-orientation towards a progesterone source
Blengini, Cecilia Soledad; Teves, Maria Eugenia; Uñates, Diego Rafael; Guidobaldi, Héctor Alejandro; Gatica, Laura Virginia; Giojalas, Laura Cecilia
2011-01-01
Human spermatozoa may chemotactically find out the egg by following an increasing gradient of attractant molecules. Although human spermatozoa have been observed to show several of the physiological characteristics of chemotaxis, the chemotactic pattern of movement has not been easy to describe. However, it is apparent that chemotactic cells may be identified while returning to the attractant source. This study characterizes the pattern of movement of human spermatozoa during chemotactic re-orientation towards a progesterone source, which is a physiological attractant candidate. By means of videomicroscopy and image analysis, a chemotactic pattern of movement was identified as the spermatozoon returned towards the source of a chemotactic concentration of progesterone (10 pmol l−1). First, as a continuation of its original path, the spermatozoon swims away from the progesterone source with linear movement and then turns back with a transitional movement that can be characterized by an increased velocity and decreased linearity. This sperm behaviour may help the spermatozoon to re-orient itself towards a progesterone source and may be used to identify the few cells that are undergoing chemotaxis at a given time. PMID:21765441
NASA Astrophysics Data System (ADS)
Makowski Giannoni, Sandro; Trachte, Katja; Rollenbeck, Ruetger; Lehnert, Lukas; Fuchs, Julia; Bendix, Joerg
2016-08-01
Sea salt (NaCl) has recently been proven to be of the utmost importance for ecosystem functioning in Amazon lowland forests because of its impact on herbivory, litter decomposition and, thus, carbon cycling. Sea salt deposition should generally decline as distance from its marine source increases. For the Amazon, a negative east-west gradient of sea salt availability is assumed as a consequence of the barrier effect of the Andes Mountains for Pacific air masses. However, this generalized pattern may not hold for the tropical mountain rainforest in the Andes of southern Ecuador. To analyse sea salt availability, we investigated the deposition of sodium (Na+) and chloride (Cl-), which are good proxies of sea spray aerosol. Because of the complexity of the terrain and related cloud and rain formation processes, sea salt deposition was analysed from both, rain and occult precipitation (OP) along an altitudinal gradient over a period between 2004 and 2009. To assess the influence of easterly and westerly air masses on the deposition of sodium and chloride over southern Ecuador, sea salt aerosol concentration data from the Monitoring Atmospheric Composition and Climate (MACC) reanalysis data set and back-trajectory statistical methods were combined. Our results, based on deposition time series, show a clear difference in the temporal variation of sodium and chloride concentration and Na+ / Cl- ratio in relation to height and exposure to winds. At higher elevations, sodium and chloride present a higher seasonality and the Na+ / Cl- ratio is closer to that of sea salt. Medium- to long-range sea salt transport exhibited a similar seasonality, which shows the link between our measurements at high elevations and the sea salt synoptic transport. Although the influence of the easterlies was predominant regarding the atmospheric circulation, the statistical analysis of trajectories and hybrid receptor models revealed a stronger impact of the north equatorial Atlantic, Caribbean, and Pacific sea salt sources on the atmospheric sea salt concentration in southern Ecuador. The highest concentration in rain and cloud water was found between September and February when air masses originated from the north equatorial Atlantic, the Caribbean Sea and the equatorial Pacific. Together, these sources accounted for around 82.4 % of the sea salt budget over southern Ecuador.
Microbial communities and microprofiles of sulfide and oxygen of alum rock sulfur springs
NASA Technical Reports Server (NTRS)
Fischer, U.
1985-01-01
The microbial community of Alum Rock sulfur spring Site 3 was studied along one branch of the main stream and between the two branches, 150 cm distant from the source. The community at the source was dominated by green sulfur photosynthetic bacteria of the genus Chlorobium. At 15 cm to 35 cm from the source dominance in the community shifted to the genus Flexibacter at the surface of the mat and purple bacteria of the genus Chromatium underneath. At 50 cm to 80 cm colorless sulfur oxidizing bacteria of the genus Thiothrix began to appear. At 100 cm to 150 cm, the surface of the mat was still dominated by Flexibacter, but underneath dominance shifted to purple sulfur bacteria as above, as well as cyanobacteria of the genus Oscillatoria and Pseudonabaena. The measurements of temperature along the stream showed no significant gradient. Community variations appear to be controlled more by sulfide than temperature. Ten ml of the overlying water were taken and fixed immediately to determine the sulfide concentration by the methylene blue method. A sulfide concentration of 106 micro-m was calculated for the overlying water.
Zakrzewska, Marta; Klimek, Beata
2018-02-01
The aim of the study was to assess the metal pollution in the vicinity of the Bukowno smelter near Olkusz in southern Poland. Birch and oak leaves, pine needles and a lichen Hypogymnia physodes, overgrowing pine bark were collected at stands at different distances from the smelter and analysed for cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) content. Concentrations of metals in the lichen were usually higher than in the tree leaves/needles and decreased with distance from the smelter, apart from the Cu content. The strongest correlation was noticed between Cd and Pb concentrations, which indicates a common pollution source (the smelter). Our results show that birch leaves can be potentially useful as a bioindicator of Zn air pollution since this species was shown to accumulate high amounts of zinc, related to environmental pollution with that metal, in their leaves.
Reimann, Clemens; Arnoldussen, Arnold; Boyd, Rognvald; Finne, Tor Erik; Koller, Friedrich; Nordgulen, Øystein; Englmaier, Peter
2007-05-15
Forty samples each of leaves of birch (Betula pubescens Ehrh.), European mountain ash (Sorbus aucuparia (L.)) and bracken fern (Pteridium aquilinum (L.) Kuhn) as well as spruce needles (Picea abies (L.) Karsten) were collected along a 120 km south-north transect running through Norway's largest city, Oslo. Concentrations of 25 chemical elements (Ag, Au, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sr, Ti, and Zn) as well as loss on ignition for the 4 sample materials are reported. The decline of input of sea spray with distance from the coast, geology, pH and anthropogenic contamination all played a role for the observed element concentrations in the leaves. Although growing under exactly the same natural conditions each plant species displayed quite unique uptake characteristics. Plant-species dependency and individual differences in the reaction of the plant leaves to different element sources make the investigated species of very limited value as bioindicators of anthropogenic activities. Anthropogenic contamination influences plant-leaf element content within a limited distance ( approximately 20 km) from the source.
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Studies of bacterial aerotaxis in a microfluidic device
Adler, Micha; Erickstad, Michael; Gutierrez, Edgar; Groisman, Alex
2012-01-01
Aerotaxis, the directional motion of bacteria in gradients of oxygen, was discovered in late 19th century and has since been reported in a variety of bacterial species. Nevertheless, quantitative studies of aerotaxis have been complicated by the lack of tools for generation of stable gradients of oxygen concentration, [O2]. Here we report a series of experiments on aerotaxis of Escherichia coli in a specially built experimental setup consisting of a computer-controlled gas mixer and a two-layer microfluidic device made of polydimethylsiloxane (PDMS). The setup enables generation of a variety of stable linear profiles of [O2] across a long gradient channel, with characteristic [O2] ranging from aerobic to microaerobic conditions. A suspension of E. coli cells is perfused through the gradient channel at a low speed, allowing cells enough time to explore the [O2] gradient, and the distribution of cells across the channel is analyzed near the channel outlet at a throughput of >105 cells per hour. Aerotaxis experiments are performed in [O2] gradients with identical logarithmic slopes and varying mean concentrations, as well as in gradients with identical mean concentrations and varying slopes. Experiments in gradients with [O2] ranging from 0 to ~11.5% indicate that, in contrast to some previous reports, E. coli cells do not congregate at some intermediate level of [O2], but rather prefer the highest accessible [O2]. The presented technology can be applied to studies of aerotaxis of other aerobic and microaerobic bacteria. PMID:23010909
Ge, Zhengwei; Wang, Wei; Yang, Chun
2011-04-07
It is challenging to continuously concentrate sample solutes in microfluidic channels. We present an improved electrokinetic technique for enhancing microfluidic temperature gradient focusing (TGF) of sample solutes using combined AC and DC field induced Joule heating effects. The introduction of an AC electric field component services dual functions: one is to produce Joule heat for generating temperature gradient; the other is to suppress electroosmotic flow. Consequently the required DC voltages for achieving sample concentration by Joule heating induced TGF are reduced, thereby leading to smaller electroosmotic flow (EOF) and thus backpressure effects. As a demonstration, the proposed technique can lead to concentration enhancement of sample solutes of more than 2500-fold, which is much higher than the existing literature reported microfluidic concentration enhancement by utilizing the Joule heating induced TGF technique.
Claire Botner, E; Townsend-Small, Amy; Nash, David B; Xu, Xiaomei; Schimmelmann, Arndt; Miller, Joshua H
2018-05-03
Degradation of groundwater quality is a primary public concern in rural hydraulic fracturing areas. Previous studies have shown that natural gas methane (CH 4 ) is present in groundwater near shale gas wells in the Marcellus Shale of Pennsylvania, but did not have pre-drilling baseline measurements. Here, we present the results of a free public water testing program in the Utica Shale of Ohio, where we measured CH 4 concentration, CH 4 stable isotopic composition, and pH and conductivity along temporal and spatial gradients of hydraulic fracturing activity. Dissolved CH 4 ranged from 0.2 μg/L to 25 mg/L, and stable isotopic measurements indicated a predominantly biogenic carbonate reduction CH 4 source. Radiocarbon dating of CH 4 in combination with stable isotopic analysis of CH 4 in three samples indicated that fossil C substrates are the source of CH 4 in groundwater, with one 14 C date indicative of modern biogenic carbonate reduction. We found no relationship between CH 4 concentration or source in groundwater and proximity to active gas well sites. No significant changes in CH 4 concentration, CH 4 isotopic composition, pH, or conductivity in water wells were observed during the study period. These data indicate that high levels of biogenic CH 4 can be present in groundwater wells independent of hydraulic fracturing activity and affirm the need for isotopic or other fingerprinting techniques for CH 4 source identification. Continued monitoring of private drinking water wells is critical to ensure that groundwater quality is not altered as hydraulic fracturing activity continues in the region. Graphical abstract A shale gas well in rural Appalachian Ohio. Photo credit: Claire Botner.
Sangiorgi, G; Ferrero, L; Perrone, M G; Bolzacchini, E; Duane, M; Larsen, B R
2011-12-01
A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 ± 20 min. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada.
Carrara, Cherilyn; Ptacek, Carol J; Robertson, William D; Blowes, David W; Moncur, Michael C; Sverko, Ed; Backus, Sean
2008-04-15
Three high volume septic systems in Ontario, Canada, were examined to assess the potential for onsite wastewatertreatment systems to release pharmaceutical compounds to the environment and to evaluate the mobility of these compounds in receiving aquifers. Wastewater samples were collected from the septic tanks, and groundwater samples were collected below and down gradient of the infiltration beds and analyzed for a suite of commonly used pharmaceutical and trace organic compounds. The septic tank samples contained elevated concentrations of several pharmaceutical compounds. Ten of the 12 compounds analyzed were detected in groundwater at one or more sites at concentrations in the low ng L(-1) to low microg L(-1) range. Large differences among the sites were observed in both the number of detections and the concentrations of the pharmaceutical compounds. Of the compounds analyzed, ibuprofen, gemfibrozil, and naproxen were observed to be transported atthe highest concentrations and greatest distances from the infiltration source areas, particularly in anoxic zones of the plumes.
Hahn, Hartmut; Salt, Alec N.; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Hartsock, Jared; Plontke, Stefan K.
2012-01-01
Hypothesis To determine whether intracochlearly applied dexamethasone will lead to better control of drug levels, higher peak concentrations and lower base-to apex concentration gradients in scala tympani (ST) of the guinea pig than after intratympanic (round window, RW) application. Background Local application of drugs to the RW results in substantial variation of intracochlear drug levels and significant base-to apex concentration gradients in ST. Methods Two μL of dexamethasone-phosphate (10 mg/mL) were injected into ST either through the RW membrane which was covered with 1% sodium hyaluronate gel or through a cochleostomy with a fluid tight seal of the micropipette. Perilymph was sequentially sampled from the apex at a single time point for each animal, at 20, 80, or 200 min after the injection ended. Results were mathematically interpreted by the means of an established computer model and compared with prior experiments performed by our group with the same experimental techniques but using intratympanic applications. Results Single intracochlear injections over 20 min resulted in approximately ten times higher peak concentrations (on average) than 2-3 hours of intratympanic application to the round window niche. Intracochlear drug levels were less variable and could be measured for at least up to 220 min. Concentration gradients along scala tympani were less pronounced. The remaining variability in intracochlear drug levels was attributable to perilymph and drug leak from the injection site. Conclusion With significantly higher, less variable drug levels and smaller base-to apex concentration gradients, intracochlear applications have advantages to intratympanic injections. For further development of this technique, it is of importance to control leaks of perilymph and drug from the injection site and to evaluate its clinical feasibility and associated risks. PMID:22588238
Hahn, Hartmut; Salt, Alec N; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Hartsock, Jared J; Plontke, Stefan K
2012-06-01
To determine whether intracochlearly applied dexamethasone will lead to better control of drug levels, higher peak concentrations, and lower base-to-apex concentration gradients in the scala tympani (ST) of the guinea pig than after intratympanic (round window [RW]) application. Local application of drugs to the RW results in substantial variation of intracochlear drug levels and significant base-to-apex concentration gradients in ST. Two microliters of dexamethasone-phosphate (10 mg/ml) were injected into ST either through the RW membrane, which was covered with 1% sodium hyaluronate gel or through a cochleostomy with a fluid tight seal of the micropipette. Perilymph was sequentially sampled from the apex at a single time point for each animal, at 20, 80, or 200 min after the injection ended. Results were mathematically interpreted by means of an established computer model and compared with previous experiments performed by our group with the same experimental techniques but using intratympanic applications. Single intracochlear injections of 20 minutes resulted in approximately 10 times higher peak concentrations (on average) than 2 to 3 hours of intratympanic application to the RW niche. Intracochlear drug levels were less variable and could be measured for over 220 minutes. Concentration gradients along the scala tympani were less pronounced. The remaining variability in intracochlear drug levels was attributable to perilymph and drug leak from the injection site. With significantly higher, less variable drug levels and smaller base-to-apex concentration gradients, intracochlear applications have advantages to intratympanic injections. For further development of this technique, it is of importance to control leaks of perilymph and drug from the injection site and to evaluate its clinical feasibility and associated risks.
Density and fluence dependence of lithium cell damage and recovery characteristics
NASA Technical Reports Server (NTRS)
Faith, T. J.
1971-01-01
Experimental results on lithium-containing solar cells point toward the lithium donor density gradient dN sub L/dw as being the crucial parameter in the prediction of cell behavior after irradiation by electrons. Recovery measurements on a large number of oxygen-rich and oxygen-lean lithium cells have confirmed that cell recovery speed is directly proportional to the value of the lithium gradient for electron fluences. Gradient measurements have also been correlated with lithium diffusion schedules. Results have shown that long diffusion times (25 h) with a paint-on source result in large cell-to-cell variations in gradient, probably due to a loss of the lithium source with time.
NASA Astrophysics Data System (ADS)
Karthe, Daniel; Lin, Pei-Ying; Westphal, Katja
2017-09-01
The Holtemme is a small headwater stream in North Germany's Elbe River Basin. According to German and European legislation, hygienic monitoring is not mandatory for such water bodies which are neither drinking water sources nor categorized as bathing waters. Consequently, relatively little is known about the occurrence of-potentially pathogenic-bacteria and viruses in Germany's streams and rivers. The Holtemme was selected for a case study because it is relatively well monitored for both chemical water quality and aquatic ecology, but not for hygiene. Originating in the mountains of Harz Nature Park, the 47 km long Holtemme is characterized by a strong longitudinal gradient in chemical water quality, which is related to different land uses and the influx of treated wastewater from two urban areas (Wernigerode and Halberstadt). Waste water loads received by the Holtemme are comparatively high when compared to similarly small streams. In 2015, total coliform concentrations between more than 200 and 77,010 bacteria per 100 mL, and fecal coliform concentrations between 5 and 24,060 bacteria per 100 mL were observed in the Holtemme's main channel. The highest concentrations were typically found below the outlets of the two wastewater treatment plants. The treated wastewater contained total and fecal coliform concentrations of up to 200,500 and 83,100 per 100 mL, respectively; however, there were significant temporal variations. While the observed concentrations are unproblematic from a legal perspective (because no maximum permissible limits are defined for streams in Germany), they would exceed the tolerable limits for bathing waters in the EU, indicating moderate to critical pollution limits.
Improved alternating gradient transport and focusing of neutral molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalnins, Juris; Lambertson, Glen; Gould, Harvey
2001-12-02
Polar molecules, in strong-field seeking states, can be transported and focused by an alternating sequence of electric field gradients that focus in one transverse direction while defocusing in the other. We show by calculation and numerical simulation, how one may greatly improve the alternating gradient transport and focusing of molecules. We use a new optimized multipole lens design, a FODO lattice beam transport line, and lenses to match the beam transport line to the beam source and the final focus. We derive analytic expressions for the potentials, fields, and gradients that may be used to design these lenses. We describemore » a simple lens optimization procedure and derive the equations of motion for tracking molecules through a beam transport line. As an example, we model a straight beamline that transports a 560 m/s jet-source beam of methyl fluoride molecules 15 m from its source and focuses it to 2 mm diameter. We calculate the beam transport line acceptance and transmission, for a beam with velocity spread, and estimate the transmitted intensity for specified source conditions. Possible applications are discussed.« less
NASA Astrophysics Data System (ADS)
Saha, Provat K.; Khlystov, Andrey; Snyder, Michelle G.; Grieshop, Andrew P.
2018-03-01
We present field measurement data and modeling of multiple traffic-related air pollutants during two seasons at a site adjoining Interstate 40, near Durham, North Carolina. We analyze spatial-temporal and seasonal trends and fleet-average pollutant emission factors and use our data to evaluate a line source dispersion model. Month-long measurement campaigns were performed in summer 2015 and winter 2016. Data were collected at a fixed near-road site located within 10 m from the highway edge, an upwind background site and, under favorable meteorological conditions, along downwind perpendicular transects. Measurements included the size distribution, chemical composition, and volatility of submicron particles, black carbon (BC), nitrogen oxides (NOx), meteorological conditions and traffic activity data. Results show strong seasonal and diurnal differences in spatial distribution of traffic sourced pollutants. A strong signature of vehicle emissions was observed within 100-150 m from the highway edge with significantly higher concentrations during morning. Substantially higher concentrations and less-sharp near-road gradients were observed in winter for many species. Season-specific fleet-average fuel-based emission factors for NO, NOx, BC, and particle number (PN) were derived based on up- and down-wind roadside measurements. The campaign-average NOx and PN emission factors were 20% and 300% higher in winter than summer, respectively. These results suggest that the combined effect of higher emissions and their slower downwind dispersion in winter dictate the observed higher downwind concentrations and wider highway influence zone in winter for several species. Finally, measurements of traffic data, emission factors, and pollutant concentrations were integrated to evaluate a line source dispersion model (R-LINE). The dispersion model captured the general trends in the spatial and temporal patterns in near-road concentrations. However, there was a tendency for the model to under-predict concentrations near the road in the mornings and over-predict concentrations in the evenings.
NASA Astrophysics Data System (ADS)
Chitaru, George; Berville, Charles; Dogeanu, Angel
2018-02-01
This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.
Measurement of DDT fluxes from a historically treated agricultural soil in Canada.
Kurt-Karakus, Perihan Binnur; Bidleman, Terry F; Staebler, Ralf M; Jones, Kevin C
2006-08-01
Organocohlorine pesticide (OCP) residues in agricultural soils are of concern due to the uptake of these compounds by crops, accumulation in the foodchain, and reemission from soils to the atmosphere. Although it has been about three decades since DDT was banned for agricultural uses in Canada, residues persist in soils of some agricultural areas. Emission of DDT compounds to the atmosphere from a historically treated field in southern Ontario was determined in fall 2004 and spring 2005. The sigmaDDTs concentration in the high organic matter (71%) soil was 19 +/- 4 microg g(-1) dry weight. Concentration gradients in the air were measured at 5, 20, 72, and 200 cm above soil using glass fiber filter-polyurethane foam cartridges. Air concentrations of sigmaDDTs averaged 5.7 +/- 5.1 ng m(-3) at 5 cm and decreased to 1.3 +/- 0.8 ng m(-3) at 200 cm and were 60-300 times higher than levels measured at a background site 30 km away. Soil-air fugacity fractions, fs/(fs + fa), of p,p'-DDE, p,p'-DDD, and p,p'-DDT ranged from 0.42 to 0.91 using air concentrations measured above the soil and > or = 0.99 using background air concentrations, indicating that the soil was a net source to the background air. Fractionation of DDT compounds during volatilization was predicted using either liquid-phase vapor pressures (PL) or octanol-air partition coefficients (KOA). Relative emissions of p,p'-DDE and p,p'-DDT were better described by PL than KOA, whereas either PL or KOA successfully accounted for the fractionation of p,p'-DDT and o,p'-DDT. Soil-to-air fluxes were calculated from air concentration gradients and turbulent exchange coefficients determined from micrometeorological measurements. Average fluxes of sigmaDDTs were 90 +/- 24 ng m(-2) h(-1) in fall and 660 +/- 370 ng m(-2) h(-1) in spring. Higher soil temperatures in spring accounted for the higher fluxes. A volatilization half-life of approximately 200 y was estimated for sigmaDDT in the upper 5 cm of the soil column, assuming the average flux rate for 12 h d-(1) over 8 months of the year. Thus, in the absence of other dissipation processes, the soil will continue to be a source of atmospheric contamination for a very long time.
Peguero-Pina, José Javier; Gil-Pelegrín, Eustaquio; Morales, Fermín
2009-01-01
The existence of major vertical gradients within the leaf is often overlooked in studies of photosynthesis. These gradients, which involve light heterogeneity, cell composition, and CO(2) concentration across the mesophyll, can generate differences in the maximum potential PSII efficiency (F (V)/F (M) or F (V)/F (P)) of the different cell layers. Evidence is presented for a step gradient of F (V)/F (P) ratios across the mesophyll, from the adaxial (palisade parenchyma, optimal efficiencies) to the abaxial (spongy parenchyma, sub-optimal efficiencies) side of Quercus coccifera leaves. For this purpose, light sources with different wavelengths that penetrate more or less deep within the leaf were employed, and measurements from the adaxial and abaxial sides were performed. To our knowledge, this is the first report where a low photosynthetic performance in the abaxial side of leaves is accompanied by impaired F (V)/F (P) ratios. This low photosynthetic efficiency of the abaxial side could be related to the occurrence of bundle sheath extensions, which facilitates the penetration of high light intensities deep within the mesophyll. Also, leaf morphology (twisted in shape) and orientation (with a marked angle from the horizontal plane) imply direct sunlight illumination of the abaxial side. The existence of cell layers within leaves with different photosynthetic efficiencies makes appropriate the evaluation of how light penetrates within the mesophyll when using Chl fluorescence or gas exchange techniques that use different wavelengths for excitation and/or for driving photosynthesis.
Metal concentrations in urban riparian sediments along an urbanization gradient
Daniel J. Bain; Ian D. Yesilonis; Richard V. Pouyat
2012-01-01
Urbanization impacts fluvial systems via a combination of changes in sediment chemistry and basin hydrology. While chemical changes in urban soils have been well characterized, similar surveys of riparian sediments in urbanized areas are rare. Metal concentrations were measured in sediments collected from riparian areas across the urbanization gradient in Baltimore, MD...
Wu, Fei; Pelster, Lindsey N; Minteer, Shelley D
2015-01-25
Dynamics of metabolon formation in mitochondria was probed by studying diffusional motion of two sequential Krebs cycle enzymes in a microfluidic channel. Enhanced directional co-diffusion of both enzymes against a substrate concentration gradient was observed in the presence of intermediate generation. This reveals a metabolite directed compartmentation of metabolic pathways.
Changes in the dissolved nitrogen pool across land cover gradients in Wisconsin streams.
Stanley, Emily H; Maxted, Jeffrey T
2008-10-01
Increases in anthropogenic nitrogen fixation have resulted in wide-scale enrichment of aquatic ecosystems. Existing biogeochemical theory suggests that N enrichment is associated with increasing concentrations of nitrate; however, dissolved organic nitrogen (DON) is often a major component of the total dissolved nitrogen (TDN) pool in streams and rivers, and its concentration can be significantly elevated in human-influenced basins. We examined N concentrations during summer base flow conditions in 324 Wisconsin streams to determine whether DON was a significant component of TDN and how its relative contribution changed across a gradient of increasing human (agriculture and urban) land use for 84 of these sites. Total dissolved nitrogen varied from 0.09 to 20.74 mg/L, and although DON was significantly higher in human-dominated basins relative to forested and mixed-cover basins, its concentration increased relatively slowly in response to increasing human land cover. This limited response reflected a replacement of wetland-derived DON in low-N streams by anthropogenic sources in human-dominated sites, such that net changes in DON were small across the land use gradient. Nitrate-N increased exponentially in response to greater human land cover, and NH4-N and NO2-N were present at low levels. Nitrite-N exceeded NH4-N at 20% of sites and reached a maximum concentration of 0.10 mg/L. This examination suggests that basic mechanisms driving N losses from old-growth forests subject to N saturation also shape the summertime N pool in Wisconsin streams, in addition to other processes dictated by landscape context. The overwhelming role of human land use in determining the relative and absolute composition of the summertime N pool included (1) rapid increases in NO3-N, (2) limited changes in DON, and (3) the unexpected occurrence of NO2-N. High (>3 mg/L) TDN conditions dominated by NO3-N, regardless of landscape context or forms of N inputs, indicate a state of "N hypersaturation", which appears to be increasingly common in human-influenced streams and rivers. Many sites in agriculturally rich areas had NO2-N and NO3-N concentrations that, if sustained, are at chronically toxic levels for sensitive aquatic biota, suggesting that N enrichment now has local consequences for resident stream biota in addition to contributing to coastal eutrophication.
NASA Astrophysics Data System (ADS)
Clark, David A.
2013-04-01
Acquisition of magnetic gradient tensor data is anticipated to become routine in the near future. In the meantime, modern ultrahigh resolution conventional magnetic data can be used, with certain important caveats, to calculate magnetic vector components and gradient tensor elements from total magnetic intensity (TMI) or TMI gradient surveys. An accompanying paper presented new methods for inverting gradient tensor data to obtain source parameters for several elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalised source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets, and contacts, independent of magnetisation direction. Source locations can be inverted directly from the NSS and its vector gradient. Some of these new methods have been applied to analysis of the magnetic signature of the Early Permian Mount Leyshon gold-mineralised system, Queensland. The Mount Leyshon magnetic anomaly is a prominent TMI low that is produced by rock units with strong reversed remanence acquired during the Late Palaeozoic Reverse Superchron. The inferred magnetic moment for the source zone of the Mount Leyshon magnetic anomaly is ~1010Am2. Its direction is consistent with petrophysical measurements. Given estimated magnetisation from samples and geological information, this suggests a volume of ~1.5km×1.5km×2km (vertical). The inferred depth of the centre of magnetisation is ~900m below surface, suggesting that the depth extent of the magnetic zone is ~1800m. Some of the deeper, undrilled portion of the magnetic zone could be a mafic intrusion similar to the nearby coeval Fenian Diorite, representing part of the parent magma chamber beneath the Mount Leyshon Intrusive Complex.
GRADFLEX: Fluctuations in Microgravity
NASA Technical Reports Server (NTRS)
Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.
2004-01-01
We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.
NASA Astrophysics Data System (ADS)
Bock, M.; Schmitt, J.; Möller, L.; Spahni, R.; Blunier, T.; Fischer, H.
2010-12-01
Air enclosures in polar ice cores represent the only direct paleoatmospheric archive (besides firn air) and show that atmospheric CH4 concentrations changed in concert with northern hemisphere temperature during both glacial/interglacial transitions as well as rapid climate changes (Dansgaard-Oeschger events). For stadials and interstadials during Marine Isotope Stage 3 concentration jumps of 100 - 200 ppbv within a few decades are observed. A concentration gradient with higher values in the northern versus the southern hemisphere during warm stages was reconstructed from ice core methane data from Greenland and Antarctica. This gradient indicates additional methane emissions during warm periods located in the northern hemisphere. However, the underlying processes for these changes are still not well understood. With tropical and boreal wetlands, biomass burning, thermokarst lakes, ruminants, termites, UV-induced emissions from organic matter and marine gas hydrates all contributing to the natural atmospheric CH4 level, an unambiguous source attribution remains difficult. Also changes in the methane sinks can modify the tropospheric CH4 budget, as trace gases like volatile organic compounds are competing for the major reactant - the OH radical. Additionally, the changing global atmospheric methane concentration itself feeds back on its lifetime. Together with the CH4 interhemispheric gradient, stable hydrogen and carbon isotopic studies on methane (δD(CH4) and δ13CH4) in ice cores allow to constrain individual CH4 source/sink changes. Here we present clear evidence from the North Greenland Ice Core Project ice core based on the hydrogen isotopic composition of methane δD(CH4) that clathrates did not cause atmospheric methane concentration to rise at the onset of Dansgaard-Oeschger (DO) events 7 and 8 (34 - 41 kilo years before present), however, we can not exclude that they played a minor role during and at the end of an interstadial. Box modeling supports boreal wetland emissions as the most likely explanation for the interstadial increase, strengthening from ~6 to ~30 Tg CH4 yr-1 from stadial to interstadial conditions, respectively. Our steady state model results suggest constant background clathrate emissions for the investigated time slices (~25 Tg CH4 yr-1). Tropical wetland emissions strengthened only moderately for the long interstadial 8 (from ~84 to ~118 Tg CH4 yr-1) and biomass burning emissions show slightly higher values during the interstadial time slices (~55 to ~60 versus ~45 Tg CH4 yr-1 in the stadial). Moreover, our data show that δD(CH4) dropped 500 years before the onset of DO 8, with CH4 concentration rising only slightly. This can be explained by an early climate response of boreal wetlands, which carry the strongly depleted isotopic signature of high-latitude precipitation at that time. Reference: Bock et al., 2010, Science, 328, p1686
Dynamics of reactive microbial hotspots in concentration gradients
NASA Astrophysics Data System (ADS)
Hubert, Antoine; Farasin, Julien; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy
2017-04-01
In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as a quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. To quantify bacterial activity we use Fluorescein Diacetate (FDA) hydrolysis by bacterial enzymes which transforms FDA into Fluorescein, whose local concentration is measured optically. We thus measure bacterial activity locally from the time derivative of the measured fluorescence. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.
NASA Astrophysics Data System (ADS)
Lineweaver, C. H.
2005-12-01
The principle of Maximum Entropy Production (MEP) is being usefully applied to a wide range of non-equilibrium processes including flows in planetary atmospheres and the bioenergetics of photosynthesis. Our goal of applying the principle of maximum entropy production to an even wider range of Far From Equilibrium Dissipative Systems (FFEDS) depends on the reproducibility of the evolution of the system from macro-state A to macro-state B. In an attempt to apply the principle of MEP to astronomical and cosmological structures, we investigate the problematic relationship between gravity and entropy. In the context of open and non-equilibrium systems, we use a generalization of the Gibbs free energy to include the sources of free energy extracted by non-living FFEDS such as hurricanes and convection cells. Redox potential gradients and thermal and pressure gradients provide the free energy for a broad range of FFEDS, both living and non-living. However, these gradients have to be within certain ranges. If the gradients are too weak, FFEDS do not appear. If the gradients are too strong FFEDS disappear. Living and non-living FFEDS often have different source gradients (redox potential gradients vs thermal and pressure gradients) and when they share the same gradient, they exploit different ranges of the gradient. In a preliminary attempt to distinguish living from non-living FFEDS, we investigate the parameter space of: type of gradient and steepness of gradient.
NASA Astrophysics Data System (ADS)
Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin
2018-03-01
Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t<{{t}B} , the unsynchronized aggregation is dominant and the particles slightly migrate along the thermal gradient. When t>{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.
Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci
2016-05-01
Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility quantification at high-concentrated iron accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Unique mechanism of Helicobacter pylori for colonizing the gastric mucus.
Yoshiyama, H; Nakazawa, T
2000-01-01
Helicobacter pylori is a human gastric pathogen causing chronic infection. Urease and motility using flagella are essential factors for its colonization. Urease of H. pylori exists both on the surface and in the cytoplasm, and is involved in neutralizing gastric acid and in chemotactic motility. H. pylori senses the concentration gradients of urea in the gastric mucus layer, then moves toward the epithelial surface by chemotactic movement. The energy source for the flagella movement is the proton motive force. The hydrolysis of urea by the cytoplasmic urease possibly generates additional energy for the flagellar rotation in the mucus gel layer.
2011 Mound Site Groundwater Plume Rebound Exercise and Follow-Up - 13440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooten, Gwendolyn; Cato, Rebecca; Lupton, Greg
2013-07-01
The Mound Site facility near Miamisburg, Ohio, opened in 1948 to support early atomic weapons programs. It grew into a research, development, and production facility performing work in support of the U.S. Department of Energy (DOE) weapons and energy programs. The plant was in operation until 1995. During the course of operation, an onsite landfill was created. The landfill was located over a finger of a buried valley aquifer, which is a sole drinking water source for much of the Miami Valley. In the 1980's, volatile organic compounds (VOCs) were discovered in groundwater at the Mound site. The site wasmore » placed on the National Priorities List on November 21, 1989. DOE signed a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Federal Facility Agreement with the U.S. Environmental Protection Agency (EPA) and the Ohio Environmental Protection Agency. The agreement became effective in October 1990. The area that included the landfill was designated Operational Unit 1 (OU-1). In 1995, a Record of Decision was signed that called for the installation and operation of a pump and treatment (P and T) system in order to prevent the VOCs in OU-1 groundwater from being captured by the onsite water production wells. In addition to the P and T system, a soil vapor extraction (SVE) system was installed in 1997 to accelerate removal of VOCs from groundwater in the OU-1 area. The SVE system was successful in removing large amounts of VOCs and continued to operate until 2007, when the amount of VOCs removed became minimal. A rebound study was started in February 2003 to determine how the groundwater system and contaminants would respond to shutting down the P and T system. The rebound test was stopped in February 2004 because predetermined VOC threshold concentrations were exceeded down-gradient of the landfill. The P and T and SVE systems were restarted after the termination of the rebound test. In 2006, the remediation of the Mound site was completed and the site was declared to be protective of human health and the environment, as long as the institutional controls are observed. The institutional controls that apply to the OU-1 area include provisions that no soil be allowed to leave the site, no wells be installed for drinking water, and the site may be approved only for industrial use. The onsite landfill with the operating CERCLA remedy remained. However, the Mound Development Corporation lobbied Congress for funds to remediate the remaining onsite landfill to allow for property reuse. In 2007 DOE received funding from Congress to perform non-CERCLA removal actions at OU-1 to excavate the site sanitary landfill. In 2009, DOE received American Recovery and Reinvestment Act funding to complete the project. Excavation of the landfill occurred intermittently from 2006 through 2010 and the majority of the VOC source was removed; however, VOC levels near the P and T system remained greater than the EPA maximum contaminant levels (MCLs). Presently, groundwater is contained using two extraction wells to create a hydraulic barrier to prevent down-gradient migration of VOC-impacted groundwater. Since the primary contamination source has been removed, the feasibility of moving away from containment to a more passive remedy, namely monitored natural attenuation (MNA), is being considered. A second rebound study was started in June 2011. If contaminant and groundwater behavior met specific conditions during the study, MNA would be evaluated and considered as a viable alternative for the groundwater in the OU-1 area. From June through December 2011, the second rebound study evaluated the changes in VOC concentrations in groundwater when the P and T system was not in operation. As the study progressed, elevated concentrations of VOCs that exceeded predetermined trigger values were measured along the down-gradient boundary of the study area, and so the P and T system was restarted. It was determined that a discrete area with VOC concentrations greater than the MCLs was present in groundwater down-gradient of the extraction wells. The source was not identified, but the contamination was thought not to be caused by residually contaminated soil beneath the former landfill. The data collected so far supports the consideration of MNA as a viable alternative to hydraulic containment. Additional investigations are being performed to identify possible sources or pathways of VOCs in groundwater that may be contributing to the elevated VOC levels measured down-gradient of the extraction well system. Data from this additional investigation will be used to determine whether the VOCs detected down-gradient of the hydraulic boundary are the result of residual soil contamination, a previously unknown contribution of VOC-contaminated water entering the groundwater outside the capture zone of the extraction wells, or a pulse of VOC-contaminated groundwater from the OU-1 landfill that occurred during the rebound study. (authors)« less
He, Jiankang; Du, Yanan; Guo, Yuqi; Hancock, Matthew J.; Wang, Ben; Shin, Hyeongho; Wu, Jinhui; Li, Dichen; Khademhosseini, Ali
2010-01-01
Combinatorial material synthesis is a powerful approach for creating composite material libraries for the high-throughput screening of cell–material interactions. Although current combinatorial screening platforms have been tremendously successful in identifying target (termed “hit”) materials from composite material libraries, new material synthesis approaches are needed to further optimize the concentrations and blending ratios of the component materials. Here we employed a microfluidic platform to rapidly synthesize composite materials containing cross-gradients of gelatin and chitosan for investigating cell–biomaterial interactions. The microfluidic synthesis of the cross-gradient was optimized experimentally and theoretically to produce quantitatively controllable variations in the concentrations and blending ratios of the two components. The anisotropic chemical compositions of the gelatin/chitosan cross-gradients were characterized by Fourier transform infrared spectrometry and X-ray photoelectron spectrometry. The three-dimensional (3D) porous gelatin/chitosan cross-gradient materials were shown to regulate the cellular morphology and proliferation of smooth muscle cells (SMCs) in a gradient-dependent manner. We envision that our microfluidic cross-gradient platform may accelerate the material development processes involved in a wide range of biomedical applications. PMID:20721897
Mathematical modeling of sample stacking methods in microfluidic systems
NASA Astrophysics Data System (ADS)
Horek, Jon
Gradient focusing methods are a general class of experimental techniques used to simultaneously separate and increase the cross-sectionally averaged concentration of charged particle mixtures. In comparison, Field Amplified Sample Stacking (FASS) techniques first concentrate the collection of molecules before separating them. Together, we denote gradient focusing and FASS methods "sample stacking" and study the dynamics of a specific method, Temperature Gradient Focusing (TGF), in which an axial temperature gradient is applied along a channel filled with weak buffer. Gradients in electroosmotic fluid flow and electrophoretic species velocity create the simultaneous separating and concentrating mechanism mentioned above. In this thesis, we begin with the observation that very little has been done to model the dynamics of gradient focusing, and proceed to solve the fundamental equations of fluid mechanics and scalar transport, assuming the existence of slow axial variations and the Taylor-Aris dispersion coefficient. In doing so, asymptotic methods reduce the equations from 3D to 1D, and we arrive at a simple 1D model which can be used to predict the transient evolution of the cross-sectionally averaged analyte concentration. In the second half of this thesis, we run several numerical focusing experiments with a 3D finite volume code. Comparison of the 1D theory and 3D simulations illustrates not only that the asymptotic theory converges as a certain parameter tends to zero, but also that fairly large axial slip velocity gradients lead to quite small errors in predicted steady variance. Additionally, we observe that the axial asymmetry of the electrophoretic velocity model leads to asymmetric peak shapes, a violation of the symmetric Gaussians predicted by the 1D theory. We conclude with some observations on the effect of Peclet number and gradient strength on the performance of focusing experiments, and describe a method for experimental optimization. Such knowledge is useful for design of lab-on-a-chip devices.
NASA Astrophysics Data System (ADS)
Murugesan, Nithya; Singha, Siddhartha; Panda, Tapobrata; Das, Sarit K.
2016-03-01
Studies on chemotaxis in microfluidics device have become a major area of research to generate physiologically similar environment in vitro. In this work, a novel micro-fluidic device has been developed to study chemo-taxis of cells in near physiological condition which can create controllable, steady and long-range chemical gradients using various chemo-effectors in a micro-channel. Hydrogels like agarose, collagen, etc, can be used in the device to maintain exclusive diffusive flux of various chemical species into the micro-channel under study. Variations of concentrations and flow rates of Texas Red dextran in the device revealed that an increase in the concentration of the dye in the feed from 6 to 18 μg ml-1, causes a steeper chemical gradient in the device, whereas the flow rate of the dye has practically no effect on the chemical gradient in the device. This observation confirms that a diffusion controlled chemical gradient is generated in the micro-channel. Chemo-taxis of E. coli cells were studied under the steady gradient of a chemo-attractant and a chemo-repellent separately in the same chemical gradient generator. For sorbitol and NiSO4·6H2O, the bacterial cells exhibit a steady distribution in the micro channel after 1 h and 30 min, respectively. From the distribution of bacterial population chemo-tactic strength of the chemo-effectors was estimated for E. coli. In a long microfluidic channel, migration behavior of bacterial cells under diffusion controlled chemical gradient showed chemotaxis, random movement, aggregation, and concentration dependent reverse chemotaxis.
Soil concentrations and soil-atmosphere exchange of alkylamines in a boreal Scots pine forest
NASA Astrophysics Data System (ADS)
Kieloaho, Antti-Jussi; Pihlatie, Mari; Launiainen, Samuli; Kulmala, Markku; Riekkola, Marja-Liisa; Parshintsev, Jevgeni; Mammarella, Ivan; Vesala, Timo; Heinonsalo, Jussi
2017-03-01
Alkylamines are important precursors in secondary aerosol formation in the boreal forest atmosphere. To better understand the behavior and sources of two alkylamines, dimethylamine (DMA) and diethylamine (DEA), we estimated the magnitudes of soil-atmosphere fluxes of DMA and DEA using a gradient-diffusion approximation based on measured concentrations in soil solution and in the canopy air space. The ambient air concentration of DMA used in this study was a sum of DMA and ethylamine. To compute the amine fluxes, we first estimated the soil air space concentration from the measured soil solution amine concentration using soil physical (temperature, soil water content) and chemical (pH) state variables. Then, we used the resistance analogy to account for gas transport mechanisms in the soil, soil boundary layer, and canopy air space. The resulting flux estimates revealed that the boreal forest soil with a typical long-term mean pH 5.3 is a possible source of DMA (170 ± 51 nmol m-2 day-1) and a sink of DEA (-1.2 ± 1.2 nmol m-2 day-1). We also investigated the potential role of fungi as a reservoir for alkylamines in boreal forest soil. We found high DMA and DEA concentrations both in fungal hyphae collected from field humus samples and in fungal pure cultures. The highest DMA and DEA concentrations were found in fungal strains belonging to decay and ectomycorrhizal fungal groups, indicating that boreal forest soil and, in particular, fungal biomass may be important reservoirs for these alkylamines.
Kim, Sun Kyu; Burris, David R; Bryant-Genevier, Jonathan; Gorder, Kyle A; Dettenmaier, Erik M; Zellers, Edward T
2012-06-05
We demonstrate the use of two prototype Si-microfabricated gas chromatographs (μGC) for continuous, short-term measurements of indoor trichloroethylene (TCE) vapor concentrations related to the investigation of TCE vapor intrusion (VI) in two houses. In the first house, with documented TCE VI, temporal variations in TCE air concentrations were monitored continuously for up to 48 h near the primary VI entry location under different levels of induced differential pressure (relative to the subslab). Concentrations ranged from 0.23 to 27 ppb by volume (1.2-150 μg/m(3)), and concentration trends agreed closely with those determined from concurrent reference samples. The sensitivity and temporal resolution of the measurements were sufficiently high to detect transient fluctuations in concentration resulting from short-term changes in variables affecting the extent of VI. Spatial monitoring showed a decreasing TCE concentration gradient with increasing distance from the primary VI entry location. In the second house, with no TCE VI, spatial profiles derived from the μGC prototype data revealed an intentionally hidden source of TCE within a closet, demonstrating the capability for locating non-VI sources. Concentrations measured in this house ranged from 0.51 to 56 ppb (2.7-300 μg/m(3)), in good agreement with reference method values. This first field demonstration of μGC technology for automated, near-real-time, selective VOC monitoring at low- or subppb levels augurs well for its use in short- and long-term on-site analysis of indoor air in support of VI assessments.
Virus and bacteria transport in a sandy aquifer, Cape Cod, MA
Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.; Harvey, Ronald W.
1995-01-01
Transport of the bacteriophage PRD-1, bacteria, and latex microspheres was studied in a sandy aquifer under natural-gradient conditions. The field injection was carried out at the U.S. Geological Survey's Toxic Substances Hydrology research site on Cape Cod. The three colloids and a salt tracer (Br−) moved along the same path. There was significant attenuation of the phage, with PRD-1 peak concentrations less than 0.001 percent of Br− peaks 6 m from the source; but the low detection limit (one per ml) enabled tracking movement of the PRD-1 plume for 12 m downgradient over the 25-day experiment. Attenuation of phage was apparently due to retention on soil particles (adsorption). Attenuation of bacteria and microspheres was less, with peak concentrations 6 m from the source on the order of 10 and 0.4 percent of Br−, respectively. Injection of a high-pH pulse of water 20 days into the experiment resulted in significant remobilization of retained phage, demonstrating that attached phage remained viable, and that PRD-1 attachment to and detachment from the sandy soil particles was highly pH dependent. Phage behavior in this experiment, i.e. attenuation at pH 5.7 and rapid resuspension at pH 6–8, was consistent with that observed previously in laboratory column studies. Results illustrate that biocolloids travel in a fairly narrow plume in sandy (relatively homogeneous) media, with virus concentrations dropping below detection limit several meters away from the source; bacteria concentrations above detection limits can persist over longer distances.
Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach.
Whitman, Richard L; Nevers, Meredith B
2003-09-01
Swimming advisories due to excessive Escherichia coli concentrations are common at 63rd Street Beach, Chicago, Ill. An intensive study was undertaken to characterize the source and fate of E. coli in beach water and sand at the beach. From April through September 2000, water and sand samples were collected daily or twice daily at two depths on three consecutive days per week (water samples, n = 1,747; sand samples, n = 858); hydrometeorological conditions and bird and bather distributions were also recorded. E. coli concentrations in sand and water were significantly correlated, with the highest concentration being found in foreshore sand, followed by those in submerged sediment and water of increasing depth. Gull contributions to E. coli densities in sand and water were most apparent on the day following gull activity in a given area. E. coli recolonized newly placed foreshore sand within 2 weeks. Analysis of variance, correlation, cluster analyses, concentration gradients, temporal-spatial distribution, demographic patterns, and DNA fingerprinting suggest that E. coli may be able to sustain population density in temperate beach sand during summer months without external inputs. This research presents evidence that foreshore beach sand (i) plays a major role in bacterial lake water quality, (ii) is an important non-point source of E. coli to lake water rather than a net sink, (iii) may be environmentally, and perhaps hygienically, problematic, and (iv) is possibly capable of supporting an autochthonous, high density of indicator bacteria for sustained periods, independent of lake, human, or animal input.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
External contribution to urban air pollution.
Grima, Ramon; Micallef, Alfred; Colls, Jeremy J
2002-02-01
Elevated particulate matter concentrations in urban locations have normally been associated with local traffic emissions. Recently it has been suggested that such episodes are influenced to a high degree by PM10 sources external to urban areas. To further corroborate this hypothesis, linear regression was sought between PM10 concentrations measured at eight urban sites in the U.K., with particulate sulphate concentration measured at two rural sites, for the years 1993-1997. Analysis of the slopes, intercepts and correlation coefficients indicate a possible relationship between urban PM10 and rural sulphate concentrations. The influences of wind direction and of the distance of the urban from the rural sites on the values of the three statistical parameters are also explored. The value of linear regression as an analysis tool in such cases is discussed and it is shown that an analysis of the sign of the rate of change of the urban PM10 and rural sulphate concentrations provides a more realistic method of correlation. The results indicate a major influence on urban PM10 concentrations from the eastern side of the United Kingdom. Linear correlation was also sought using PM10 data from nine urban sites in London and nearby rural Rochester. Analysis of the magnitude of the gradients and intercepts together with episode correlation analysis between the two sites showed the effect of transported PM10 on the local London concentrations. This article also presents methods to estimate the influence of rural and urban PM10 sources on urban PM10 concentrations and to obtain a rough estimate of the transboundary contribution to urban air pollution from the PM10 concentration data of the urban site.
Schmidt, Susanne; Mackintosh, Katrina; Gillett, Rob; Pudmenzky, Alex; Allen, Diane E; Rennenberg, Heinz; Mueller, Jochen F
2010-02-01
Ecosystems with high seabird densities can receive extremely high inputs of nitrogen (N) from bird guano. Seabirds deposit up to 1000 kg N ha(-1) y(-1) on Heron Island, a tropical coral cay of the Great Barrier Reef. We quantified atmospheric concentrations of ammonia (NH(3)) and nitrogen dioxide (NO(2)) with passive air samplers at beach, woodland and forest along a gradient of low, intermediate and high bird densities, respectively. NO(2) concentrations at all studied sites were generally low (average 0.2-2.3 microg NO(2) m(-3)) and similar to other ecosystems. An exception was the main traffic zone of helicopter and barge traffic which had elevated concentrations (average 6.2, maximum 25 microg NO(2) m(-3)) comparable to traffic-intense urban areas elsewhere. Increasing average NH(3) concentrations from 0.7 to 17 microg NH(3) m(-3) was associated with greater seabird nesting density. In areas of intermediate and high bird density, NH(3) concentrations were substantially higher than those typically detected in natural and agricultural systems, supporting the notion that seabird guano is a major source of NH(3). The steep decline of NH(3) concentrations in areas with low bird density indicates that trans-island transport of NH(3) is low. NH(3) may not only be re-deposited in close vicinity of the source but is also transported vertically as concentrations above the tree canopy averaged 7.5 microg NH(3) m(-3). How much guano-derived NH(3) contributes to reefal waters via the possible transfer path water --> land --> water remains to be established. We discuss atmospheric concentrations of NH(3) and NO(2) in context of N-based gaseous pollutants and effects on vegetation.
Archana, Anand; Thibodeau, Benoit; Geeraert, Naomi; Xu, Min Nina; Kao, Shuh-Ji; Baker, David M
2018-06-05
Elevated nutrient inputs have led to increased eutrophication in coastal marine ecosystems worldwide. An understanding of the relative contribution of different nutrient sources is imperative for effective water quality management. Stable isotope values of nitrate (δ 15 N NO3- , δ 18 O NO3- ) can complement conventional water quality monitoring programs to help differentiate natural sources of NO 3 - from anthropogenic inputs and estimate the processes involved in N cycling within an ecosystem. We measured nutrient concentrations, δ 15 N NO3- , and δ 18 O NO3- in 76 locations along a salinity gradient from the lower end of the Pearl River Estuary, one of China's largest rivers discharging into the South China Sea, towards the open ocean. NO 3 - concentrations decreased with increasing salinity, indicative of conservative mixing of eutrophic freshwater and oligotrophic seawater. However, our data did not follow conservative mixing patterns. At salinities <20 psu, samples exhibited decreasing NO 3 - concentrations with almost unchanged NO 3 - isotope values, indicating simple dilution. At salinities >20 psu, NO 3 - concentrations decreased, while dual NO 3 - isotopes increased, suggesting mixing and/or other transformation processes. Our analysis yielded mean estimates for isotope enrichment factors ( 15 ε = -2.02‰ and 18 ε = -3.37‰), Δ(15,18) = -5.5‰ and δ 15 N NO3- - δ 15 N NO2- = 12.3‰. After consideration of potential alternative sources (sewage, atmospheric deposition and groundwater) we concluded that there are three plausible interpretations for deviations from conservative mixing behaviour (1) NO 3 - uptake by assimilation (2) in situ NO 3 - production (from fixation-derived nitrogen and nitrification of sewage-derived effluents) and (3) input of groundwater nitrate carrying a denitrification signal. Through this study, we propose a simple workflow that incorporates a synthesis of numerous isotope-based studies to constrain sources and behaviour of NO 3 - in urbanized marine environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Python-Based Applications for Hydrogeological Modeling
NASA Astrophysics Data System (ADS)
Khambhammettu, P.
2013-12-01
Python is a general-purpose, high-level programming language whose design philosophy emphasizes code readability. Add-on packages supporting fast array computation (numpy), plotting (matplotlib), scientific /mathematical Functions (scipy), have resulted in a powerful ecosystem for scientists interested in exploratory data analysis, high-performance computing and data visualization. Three examples are provided to demonstrate the applicability of the Python environment in hydrogeological applications. Python programs were used to model an aquifer test and estimate aquifer parameters at a Superfund site. The aquifer test conducted at a Groundwater Circulation Well was modeled with the Python/FORTRAN-based TTIM Analytic Element Code. The aquifer parameters were estimated with PEST such that a good match was produced between the simulated and observed drawdowns. Python scripts were written to interface with PEST and visualize the results. A convolution-based approach was used to estimate source concentration histories based on observed concentrations at receptor locations. Unit Response Functions (URFs) that relate the receptor concentrations to a unit release at the source were derived with the ATRANS code. The impact of any releases at the source could then be estimated by convolving the source release history with the URFs. Python scripts were written to compute and visualize receptor concentrations for user-specified source histories. The framework provided a simple and elegant way to test various hypotheses about the site. A Python/FORTRAN-based program TYPECURVEGRID-Py was developed to compute and visualize groundwater elevations and drawdown through time in response to a regional uniform hydraulic gradient and the influence of pumping wells using either the Theis solution for a fully-confined aquifer or the Hantush-Jacob solution for a leaky confined aquifer. The program supports an arbitrary number of wells that can operate according to arbitrary schedules. The python wrapper invokes the underlying FORTRAN layer to compute transient groundwater elevations and processes this information to create time-series and 2D plots.
Particulate sulfur in the upper troposphere and lowermost stratosphere - sources and climate forcing
NASA Astrophysics Data System (ADS)
Martinsson, Bengt G.; Friberg, Johan; Sandvik, Oscar S.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas
2017-09-01
This study is based on fine-mode aerosol samples collected in the upper troposphere (UT) and the lowermost stratosphere (LMS) of the Northern Hemisphere extratropics during monthly intercontinental flights at 8.8-12 km altitude of the IAGOS-CARIBIC platform in the time period 1999-2014. The samples were analyzed for a large number of chemical elements using the accelerator-based methods PIXE (particle-induced X-ray emission) and PESA (particle elastic scattering analysis). Here the particulate sulfur concentrations, obtained by PIXE analysis, are investigated. In addition, the satellite-borne lidar aboard CALIPSO is used to study the stratospheric aerosol load. A steep gradient in particulate sulfur concentration extends several kilometers into the LMS, as a result of increasing dilution towards the tropopause of stratospheric, particulate sulfur-rich air. The stratospheric air is diluted with tropospheric air, forming the extratropical transition layer (ExTL). Observed concentrations are related to the distance to the dynamical tropopause. A linear regression methodology handled seasonal variation and impact from volcanism. This was used to convert each data point into stand-alone estimates of a concentration profile and column concentration of particulate sulfur in a 3 km altitude band above the tropopause. We find distinct responses to volcanic eruptions, and that this layer in the LMS has a significant contribution to the stratospheric aerosol optical depth and thus to its radiative forcing. Further, the origin of UT particulate sulfur shows strong seasonal variation. We find that tropospheric sources dominate during the fall as a result of downward transport of the Asian tropopause aerosol layer (ATAL) formed in the Asian monsoon, whereas transport down from the Junge layer is the main source of UT particulate sulfur in the first half of the year. In this latter part of the year, the stratosphere is the clearly dominating source of particulate sulfur in the UT during times of volcanic influence and under background conditions.
Active-passive gradient shielding for MRI acoustic noise reduction.
Edelstein, William A; Kidane, Tesfaye K; Taracila, Victor; Baig, Tanvir N; Eagan, Timothy P; Cheng, Yu-Chung N; Brown, Robert W; Mallick, John A
2005-05-01
An important source of MRI acoustic noise-magnet cryostat warm-bore vibrations caused by eddy-current-induced forces-can be mitigated by a passive metal shield mounted on the outside of a vibration-isolated, vacuum-enclosed shielded gradient set. Finite-element (FE) calculations for a z-gradient indicate that a 2-mm-thick Cu layer wrapped on the gradient assembly can decrease mechanical power deposition in the warm bore and reduce warm-bore acoustic noise production by about 25 dB. Eliminating the conducting warm bore and other magnet parts as significant acoustic noise sources could lead to the development of truly quiet, fully functioning MRI systems with noise levels below 70 dB. Copyright 2005 Wiley-Liss, Inc.
Fugacity and concentration gradients in a gravity field
NASA Technical Reports Server (NTRS)
May, C. E.
1986-01-01
Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.
Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings
NASA Astrophysics Data System (ADS)
Hong, Suck Won; Jeong, Wonje; Ko, Hyunhyub; Tsukruk, Vladimir; Kessler, Michael; Lin, Zhiqun
2008-03-01
Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4- phenylenevinylene], i.e., MEH-PPV) with remarkable regularity over large areas were produced by controlled, repetitive ``stick- slip'' motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Subsequently, MEH-PPV rings exploited as template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self-assembly processes, namely, evaporation-induced self- assembly of polymers in a sphere-on-flat geometry, followed by subsequent directed self-assembly of MWNTs on the polymer- templated surfaces.
Zhao, Huawei; Crozier, Stuart; Liu, Feng
2002-12-01
Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model. Copyright 2002 Wiley-Liss, Inc.
Nauditt, A; Soulsby, C; Birkel, C; Rusman, A; Schüth, C; Ribbe, L; Álvarez, P; Kretschmer, N
2017-09-01
Headwater catchments in the Andes provide critical sources of water for downstream areas with large agricultural communities dependent upon irrigation. Data from such remote headwater catchments are sparse, and there is limited understanding of their hydrological function to guide sustainable water management. Here, we present the findings of repeat synoptic tracer surveys as rapid appraisal tools to understand dominant hydrological flow paths in the semi-arid Rio Grande basin, a 572-km 2 headwater tributary of the 11,696-km 2 Limarí basin in central Chile. Stable isotopes in stream water show a typical altitudinal effect, with downstream enrichment in δ 2 H and δ 18 O ratios. Seasonal signals are displayed in the isotopic composition of the springtime melting season water line with a steeper gradient, whilst evaporative effects are represented by lower seasonal gradients for autumn and summer. Concentrations of solutes indexed by electrical conductivity indicate that there are limited contributions of deeper mineralised groundwater to streamflow and that weathering rates vary in the different sub-catchments. Although simplistic, the insights gained from the study could be used to inform the structure and parameterisation of rainfall runoff models to provide seasonal discharge predictions as an evidence base for decision making in local water management.
Variability in organic carbon reactivity across lake residence time and trophic gradients
NASA Astrophysics Data System (ADS)
Evans, Chris D.; Futter, Martyn N.; Moldan, Filip; Valinia, Salar; Frogbrook, Zoe; Kothawala, Dolly N.
2017-11-01
The transport of dissolved organic carbon from land to ocean is a large dynamic component of the global carbon cycle. Inland waters are hotspots for organic matter turnover, via both biological and photochemical processes, and mediate carbon transfer between land, oceans and atmosphere. However, predicting dissolved organic carbon reactivity remains problematic. Here we present in situ dissolved organic carbon budget data from 82 predominantly European and North American water bodies with varying nutrient concentrations and water residence times ranging from one week to 700 years. We find that trophic status strongly regulates whether water bodies act as net dissolved organic carbon sources or sinks, and that rates of both dissolved organic carbon production and consumption can be predicted from water residence time. Our results suggest a dominant role of rapid light-driven removal in water bodies with a short water residence time, whereas in water bodies with longer residence times, slower biotic production and consumption processes are dominant and counterbalance one another. Eutrophication caused lakes to transition from sinks to sources of dissolved organic carbon. We conclude that rates and locations of dissolved organic carbon processing and associated CO2 emissions in inland waters may be misrepresented in global carbon budgets if temporal and spatial reactivity gradients are not accounted for.
Murine intracochlear drug delivery: reducing concentration gradients within the cochlea.
Borkholder, David A; Zhu, Xiaoxia; Hyatt, Brad T; Archilla, Alfredo S; Livingston, William J; Frisina, Robert D
2010-09-01
Direct delivery of compounds to the mammalian inner ear is most commonly achieved by absorption or direct injection through the round window membrane (RWM), or infusion through a basal turn cochleostomy. These methods provide direct access to cochlear structures, but with a strong basal-to-apical concentration gradient consistent with a diffusion-driven distribution. This gradient limits the efficacy of therapeutic approaches for apical structures, and puts constraints on practical therapeutic dose ranges. A surgical approach involving both a basal turn cochleostomy and a posterior semicircular canal canalostomy provides opportunities for facilitated perfusion of cochlear structures to reduce concentration gradients. Infusion of fixed volumes of artificial perilymph (AP) and sodium salicylate were used to evaluate two surgical approaches in the mouse: cochleostomy-only (CO), or cochleostomy-plus-canalostomy (C+C). Cochlear function was evaluated via closed-system distortion product otoacoustic emissions (DPOAE) threshold level measurements from 8 to 49 kHz. AP infusion confirmed no surgical impact to auditory function, while shifts in DPOAE thresholds were measured during infusion of salicylate and AP (washout). Frequency dependent shifts were compared for the CO and C+C approaches. Computer simulations modeling diffusion, volume flow, interscala transport, and clearance mechanisms provided estimates of drug concentration as a function of cochlear position. Simulated concentration profiles were compared to frequency-dependent shifts in measured auditory responses using a cochlear tonotopic map. The impact of flow rate on frequency dependent DPOAE threshold shifts was also evaluated for both surgical approaches. Both the C+C approach and a flow rate increase were found to provide enhanced response for lower frequencies, with evidence suggesting the C+C approach reduces concentration gradients within the cochlea. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Murine Intracochlear Drug Delivery: Reducing Concentration Gradients within the Cochlea
Borkholder, David A.; Zhu, Xiaoxia; Hyatt, Brad T.; Archilla, Alfredo S.; Livingston, William J.; Frisina, Robert D.
2010-01-01
Direct delivery of compounds to the mammalian inner ear is most commonly achieved by absorption or direct injection through the round window membrane (RWM), or infusion through a basal turn cochleostomy. These methods provide direct access to cochlear structures, but with a strong basal-to-apical concentration gradient consistent with a diffusion-driven distribution. This gradient limits the efficacy of therapeutic approaches for apical structures, and puts constraints on practical therapeutic dose ranges. A surgical approach involving both a basal turn cochleostomy and a posterior semicircular canal canalostomy provides opportunities for facilitated perfusion of cochlear structures to reduce concentration gradients. Infusion of fixed volumes of artificial perilymph (AP) and sodium salicylate were used to evaluate two surgical approaches in the mouse: cochleostomy-only (CO), or cochleostomy-plus-canalostomy (C+C). Cochlear function was evaluated via closed-system distortion product otoacoustic emissions (DPOAE) threshold level measurements from 8-49 kHz. AP infusion confirmed no surgical impact to auditory function, while shifts in DPOAE thresholds were measured during infusion of salicylate and AP (washout). Frequency dependent shifts were compared for the CO and C+C approaches. Computer simulations modeling diffusion, volume flow, interscala transport, and clearance mechanisms provided estimates of drug concentration as a function of cochlear position. Simulated concentration profiles were compared to frequency-dependent shifts in measured auditory responses using a cochlear tonotopic map. The impact of flow rate on frequency dependent DPOAE threshold shifts was also evaluated for both surgical approaches. Both the C+C approach and a flow rate increase were found to provide enhanced response for lower frequencies, with evidence suggesting the C+C approach reduces concentration gradients within the cochlea. PMID:20451593
Spherical gradient-index lenses as perfect imaging and maximum power transfer devices.
Gordon, J M
2000-08-01
Gradient-index lenses can be viewed from the perspectives of both imaging and nonimaging optics, that is, in terms of both image fidelity and achievable flux concentration. The simple class of gradient-index lenses with spherical symmetry, often referred to as modified Luneburg lenses, is revisited. An alternative derivation for established solutions is offered; the method of Fermat's strings and the principle of skewness conservation are invoked. Then these nominally perfect imaging devices are examined from the additional vantage point of power transfer, and the degree to which they realize the thermodynamic limit to flux concentration is determined. Finally, the spherical gradient-index lens of the fish eye is considered as a modified Luneburg lens optimized subject to material constraints.
Abeysinghe, Kasun S; Yang, Xiao-Dong; Goodale, Eben; Anderson, Christopher W N; Bishop, Kevin; Cao, Axiang; Feng, Xinbin; Liu, Shengjie; Mammides, Christos; Meng, Bo; Quan, Rui-Chang; Sun, Jing; Qiu, Guangle
2017-05-01
Mercury (Hg) deposited from emissions or from local contamination, can have serious health effects on humans and wildlife. Traditionally, Hg has been seen as a threat to aquatic wildlife, because of its conversion in suboxic conditions into bioavailable methylmercury (MeHg), but it can also threaten contaminated terrestrial ecosystems. In Asia, rice paddies in particular may be sensitive ecosystems. Earthworms are soil-dwelling organisms that have been used as indicators of Hg bioavailability; however, the MeHg concentrations they accumulate in rice paddy environments are not well known. Earthworm and soil samples were collected from rice paddies at progressive distances from abandoned mercury mines in Guizhou, China, and at control sites without a history of Hg mining. Total Hg (THg) and MeHg concentrations declined in soil and earthworms as distance increased from the mines, but the percentage of THg that was MeHg, and the bioaccumulation factors in earthworms, increased over this gradient. This escalation in methylation and the incursion of MeHg into earthworms may be influenced by more acidic soil conditions and higher organic content further from the mines. In areas where the source of Hg is deposition, especially in water-logged and acidic rice paddy soil, earthworms may biomagnify MeHg more than was previously reported. It is emphasized that rice paddy environments affected by acidifying deposition may be widely dispersed throughout Asia. Environ Toxicol Chem 2017;36:1202-1210. © 2016 SETAC. © 2016 SETAC.
Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials.
Kim, Min-Cheol; Kim, Byeong Jo; Son, Dae-Yong; Park, Nam-Gyu; Jung, Hyun Suk; Choi, Mansoo
2016-09-14
Enhancing hole extraction inside the perovskite layer is the key factor for boosting photovoltaic performance. Realization of halide concentration gradient perovskite materials has been expected to exhibit rapid hole extraction due to the precise bandgap tuning. Moreover, a formation of Br-rich region on the tri-iodide perovskite layer is expected to enhance moisture stability without a loss of current density. However, conventional synthetic techniques of perovskite materials such as the solution process have not achieved the realization of halide concentration gradient perovskite materials. In this report, we demonstrate the fabrication of Br concentration gradient mixed halide perovskite materials using a novel and facile halide conversion method based on vaporized hydrobromic acid. Accelerated hole extraction and enhanced lifetime due to Br gradient was verified by observing photoluminescence properties. Through the combination of secondary ion mass spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis, the diffusion behavior of Br ions in perovskite materials was investigated. The Br-gradient was found to be eventually converted into a homogeneous mixed halide layer after undergoing an intermixing process. Br-substituted perovskite solar cells exhibited a power conversion efficiency of 18.94% due to an increase in open circuit voltage from 1.08 to 1.11 V and an advance in fill-factor from 0.71 to 0.74. Long-term stability was also dramatically enhanced after the conversion process, i.e., the power conversion efficiency of the post-treated device has remained over 97% of the initial value under high humid conditions (40-90%) without any encapsulation for 4 weeks.
Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers
Inaba, Shusei; Vohra, Varun
2017-01-01
Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878
Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers.
Inaba, Shusei; Vohra, Varun
2017-05-09
Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED-EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows.
Photomixing of chlamydomonas rheinhardtii suspensions
NASA Astrophysics Data System (ADS)
Dervaux, Julien; Capellazzi Resta, Marina; Abou, Bérengère; Brunet, Philippe
2014-11-01
Chlamydomonas rheinhardtii is a fast swimming unicellular alga able to bias its swimming direction in gradients of light intensity, an ability know as phototaxis. We have investigated experimentally both the swimming behavior of individual cells and the macroscopic response of shallow suspensions of these micro-organisms in response to a localized light source. At low light intensity, algae exhibit positive phototaxis and accumulate beneath the excitation light. In weakly concentrated thin layers, the balance between phototaxis and cell motility results in steady symmetrical patterns compatible with a purely diffusive model using effective diffusion coefficients extracted from the analysis of individual cell trajectories. However, at higher cell density and layer depth, collective effects induce convective flows around the light source. These flows disturb the cell concentration patterns which spread and may then becomes unstable. Using large passive tracer particles, we have characterized the velocity fields associated with this forced bioconvection and their dependence on the cell density and layer depth. By tuning the light distribution, this mechanism of photo-bioconvection allows a fine control over the local fluid flows, and thus the mixing efficiency, in algal suspensions.
Arruda-Santos, Roxanny Helen de; Schettini, Carlos Augusto França; Yogui, Gilvan Takeshi; Maciel, Daniele Claudino; Zanardi-Lamardo, Eliete
2018-05-15
Goiana estuary is a well preserved marine protected area (MPA) located on the northeastern coast of Brazil. Despite its current state, human activities in the watershed represent a potential threat to long term local preservation. Dissolved/dispersed aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were investigated in water and sediments across the estuarine salt gradient. Concentration of aromatic hydrocarbons was low in all samples. According to results, aromatic hydrocarbons are associated to suspended particulate matter (SPM) carried to the estuary by river waters. An estuarine turbidity maximum (ETM) was identified in the upper estuary, indicating that both sediments and contaminants are trapped prior to an occasional export to the adjacent sea. PAHs distribution in sediments were associated with organic matter and mud content. Diagnostic ratios indicated pyrolytic processes as the main local source of PAHs that are probably associated with sugarcane burning and combustion engines. Low PAH concentrations probably do not cause adverse biological effects to the local biota although their presence indicate anthropogenic contamination and pressure on the Goiana estuary MPA. Copyright © 2017 Elsevier B.V. All rights reserved.
Complex Diffusion Mechanisms for Li in Feldspar: Re-thinking Li-in-Plag Geospeedometry
NASA Astrophysics Data System (ADS)
Holycross, M.; Watson, E. B.
2017-12-01
In recent years, the lithium isotope system has been applied to model processes in a wide variety of terrestrial environments. In igneous settings, Li diffusion gradients have been frequently used to time heating episodes. Lithium partitioning behavior during decompression or cooling events drives Li transfer between phases, but the extent of Li exchange may be limited by its diffusion rate in geologic materials. Lithium is an exceptionally fast diffuser in silicate media, making it uniquely suited to record short-lived volcanic phenomena. The Li-in-plagioclase geospeedometer is often used to time explosive eruptions by applying laboratory-calibrated Li diffusion coefficients to model concentration profiles in magmatic feldspar samples. To quantify Li transport in natural scenarios, experimental measurements are needed that account for changing temperature and oxygen fugacity as well as different feldspar compositions and crystallographic orientation. Ambient pressure experiments were run at RPI to diffuse Li from a powdered spodumene source into polished sanidine, albite, oligoclase or anorthite crystals over the temperature range 500-950 ºC. The resulting 7Li concentration gradients developed in the mineral specimens were evaluated using laser ablation ICP-MS. The new data show that Li diffusion in all feldspar compositions simultaneously operates by both a "fast" and "slow" diffusion mechanism. Fast path diffusivities are similar to those found by Giletti and Shanahan [1997] for Li diffusion in plagioclase and are typically 10 to 20 times greater than slow path diffusivities. Lithium concentration gradients in the feldspar experiments plot in the shape of two superimposed error function curves with the slow diffusion regime in the near-surface of the crystal. Lithium diffusion is most sluggish in sanidine and is significantly faster in the plagioclase feldspars. It is still unclear what diffusion mechanism operates in nature, but the new measurements may impact how Li-in-plagioclase geospeedometry is used to time igneous processes. Giletti, B.J., and T.M. Shanahan (1997) Alkali diffusion in plagioclase feldspar, Chem. Geol., 139, 3-20
NASA Technical Reports Server (NTRS)
Strong, A. W.; Moskalenko, I. V.; Reimer, O.; Diehl, S.; Diehl, R.
2004-01-01
We present a solution to the apparent discrepancy between the radial gradient in the diffuse Galactic gamma-ray emissivity and the distribution of supernova remnants, believed to be the sources of cosmic rays. Recent determinations of the pulsar distribution have made the discrepancy even more apparent. The problem is shown to be plausibly solved by a variation in the Wco-to-N(H2) scaling factor. If this factor increases by a factor of 5-10 from the inner to the outer Galaxy, as expected from the Galactic metallicity gradient and supported by other evidence, we show that the source distribution required to match the radial gradient of gamma-rays can be reconciled with the distribution of supernova remnants as traced by current studies of pulsars. The resulting model fits the EGRET gamma-ray profiles extremely well in longitude, and reproduces the mid-latitude inner Galaxy intensities better than previous models.
Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G
2017-12-19
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Schumacher, John G.; Burken, Joel G.
2017-01-01
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman’s coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in-planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
Adaptive microfluidic gradient generator for quantitative chemotaxis experiments.
Anielski, Alexander; Pfannes, Eva K B; Beta, Carsten
2017-03-01
Chemotactic motion in a chemical gradient is an essential cellular function that controls many processes in the living world. For a better understanding and more detailed modelling of the underlying mechanisms of chemotaxis, quantitative investigations in controlled environments are needed. We developed a setup that allows us to separately address the dependencies of the chemotactic motion on the average background concentration and on the gradient steepness of the chemoattractant. In particular, both the background concentration and the gradient steepness can be kept constant at the position of the cell while it moves along in the gradient direction. This is achieved by generating a well-defined chemoattractant gradient using flow photolysis. In this approach, the chemoattractant is released by a light-induced reaction from a caged precursor in a microfluidic flow chamber upstream of the cell. The flow photolysis approach is combined with an automated real-time cell tracker that determines changes in the cell position and triggers movement of the microscope stage such that the cell motion is compensated and the cell remains at the same position in the gradient profile. The gradient profile can be either determined experimentally using a caged fluorescent dye or may be alternatively determined by numerical solutions of the corresponding physical model. To demonstrate the function of this adaptive microfluidic gradient generator, we compare the chemotactic motion of Dictyostelium discoideum cells in a static gradient and in a gradient that adapts to the position of the moving cell.
Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl
2010-12-14
A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.
Neotropical peatland methane emissions along a vegetation and biogeochemical gradient.
Winton, R Scott; Flanagan, Neal; Richardson, Curtis J
2017-01-01
Tropical wetlands are thought to be the most important source of interannual variability in atmospheric methane (CH4) concentrations, yet sparse data prevents them from being incorporated into Earth system models. This problem is particularly pronounced in the neotropics where bottom-up models based on water table depth are incongruent with top-down inversion models suggesting unaccounted sinks or sources of CH4. The newly documented vast areas of peatlands in the Amazon basin may account for an important unrecognized CH4 source, but the hydrologic and biogeochemical controls of CH4 dynamics from these systems remain poorly understood. We studied three zones of a peatland in Madre de Dios, Peru, to test whether CH4 emissions and pore water concentrations varied with vegetation community, soil chemistry and proximity to groundwater sources. We found that the open-canopy herbaceous zone emitted roughly one-third as much CH4 as the Mauritia flexuosa palm-dominated areas (4.7 ± 0.9 and 14.0 ± 2.4 mg CH4 m-2 h-1, respectively). Emissions decreased with distance from groundwater discharge across the three sampling sites, and tracked changes in soil carbon chemistry, especially increased soil phenolics. Based on all available data, we calculate that neotropical peatlands contribute emissions of 43 ± 11.9 Tg CH4 y-1, however this estimate is subject to geographic bias and will need revision once additional studies are published.
An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements
NASA Astrophysics Data System (ADS)
Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Remy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.
2015-02-01
Atmospheric concentration measurements are used to adjust the daily to monthly budget of fossil fuel CO2 emissions of the Paris urban area from the prior estimates established by the Airparif local air quality agency. Five atmospheric monitoring sites are available, including one at the top of the Eiffel Tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion adjusts prior knowledge about the anthropogenic and biogenic CO2 fluxes from the Airparif inventory and an ecosystem model, respectively, with corrections at a temporal resolution of 6 h, while keeping the spatial distribution from the emission inventory. These corrections are based on assumptions regarding the temporal autocorrelation of prior emissions uncertainties within the daily cycle, and from day to day. The comparison of the measurements against the atmospheric transport simulation driven by the a priori CO2 surface fluxes shows significant differences upwind of the Paris urban area, which suggests a large and uncertain contribution from distant sources and sinks to the CO2 concentration variability. This contribution advocates that the inversion should aim at minimising model-data misfits in upwind-downwind gradients rather than misfits in mole fractions at individual sites. Another conclusion of the direct model-measurement comparison is that the CO2 variability at the top of the Eiffel Tower is large and poorly represented by the model for most wind speeds and directions. The model's inability to reproduce the CO2 variability at the heart of the city makes such measurements ill-suited for the inversion. This and the need to constrain the budgets for the whole city suggests the assimilation of upwind-downwind mole fraction gradients between sites at the edge of the urban area only. The inversion significantly improves the agreement between measured and modelled concentration gradients. Realistic emissions are retrieved for two 30-day periods and suggest a significant overestimate by the AirParif inventory. Similar inversions over longer periods are necessary for a proper evaluation of the optimised CO2 emissions against independent data.
Wingless promotes proliferative growth in a gradient-independent manner.
Baena-Lopez, Luis Alberto; Franch-Marro, Xavier; Vincent, Jean-Paul
2009-10-06
Morphogens form concentration gradients that organize patterns of cells and control growth. It has been suggested that, rather than the intensity of morphogen signaling, it is its gradation that is the relevant modulator of cell proliferation. According to this view, the ability of morphogens to regulate growth during development depends on their graded distributions. Here, we describe an experimental test of this model for Wingless, one of the key organizers of wing development in Drosophila. Maximal Wingless signaling suppresses cellular proliferation. In contrast, we found that moderate and uniform amounts of exogenous Wingless, even in the absence of endogenous Wingless, stimulated proliferative growth. Beyond a few cell diameters from the source, Wingless was relatively constant in abundance and thus provided a homogeneous growth-promoting signal. Although morphogen signaling may act in combination with as yet uncharacterized graded growth-promoting pathways, we suggest that the graded nature of morphogen signaling is not required for proliferation, at least in the developing Drosophila wing, during the main period of growth.
Tracer concentration profiles measured in central London as part of the REPARTEE campaign
NASA Astrophysics Data System (ADS)
Martin, D.; Petersson, K. F.; White, I. R.; Henshaw, S. J.; Nickless, G.; Lovelock, A.; Barlow, J. F.; Dunbar, T.; Wood, C. R.; Shallcross, D. E.
2009-11-01
There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from cyclic perfluorocarbon tracer experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent's Park and Tower Environmental Experiment) campaign. The height of the tower gives a unique opportunity to study dispersion over a large vertical gradient. These gradients are then compared with classical Gaussian profiles of the relevant stability classes over a range of distances as well as interpretation of data with reference to both anemometry and LIDAR measurements made. Data are then compared with an operational model and contrasted with data taken in central London as part of the DAPPLE campaign looking at dosage compared with non-dimensionalised distance from source. Such analysis illustrates the feasibility of the use of these empirical correlations over these prescribed distances in central London.
The Carbon Tetrachloride (CCl4) Budget: Mystery or Not
NASA Technical Reports Server (NTRS)
Liang, Qing; Newman, Paul A.; Daniel, John S.; Reimann, Stefan; Hall, Bradley; Dutton, Geoff; Kuijpers, Lambert J. M.
2014-01-01
Carbon tetrachloride (CCl4) is a major anthropogenic ozone-depleting substance and greenhouse gas and has been regulated under the Montreal Protocol. However, atmospheric observations show a very slow decline in CCl4 concentrations, inconsistent with the nearly zero emissions estimate based on the UNEP reported production and feedstock usage in recent years. It is now apparent that there are either unidentified industrial leakages, an unknown production source of CCl4, or large legacy emissions from CCl4 contaminated sites. In this paper we use a global chemistry climate model to assess the budget mystery of atmospheric CCl4. We explore various factors that affect the global trend and the gradient between the Northern and Southern hemispheres or interhemispheric gradient (IHG): emissions, emission hemispheric partitioning, and lifetime variations. We find a present-day emission of 30-50 Gg per yr and a total lifetime 25 - 36 years are necessary to reconcile both the observed CCl4 global trend and IHG.
Thermal diffusion of radon in porous media.
Minkin, L
2003-01-01
Based on the non-intersection model of cylindrical capillaries, the mean radius of the pores of some soils and building materials are estimated. In size, the above-mentioned radii are usually of the order of the free path of gas molecules at atmospheric pressure. A review of pore size distribution data also reveals that a large fraction of concrete pores belong to Knudsen's region. This fact indicates that the thermal gradient in these media must cause gas (radon) transport. The interpretation of the experimental data concerning the rate of emanation of 222Rn from a concrete-capped source subjected to a sudden increase in temperature is given, based on irreversible thermodynamics theory. The calculations given here for radon flux, caused by concentration and thermal gradients, are in satisfactory agreement with the experimental data. It is shown that thermodiffusion can significantly contribute to radon flux in concrete. The need to include the thermodiffusion radon flux in the radon entry model is discussed.
Magnetic Control of Concentration Gradient in Microgravity
NASA Technical Reports Server (NTRS)
Leslie, Fred; Ramachandran, Narayanan
2005-01-01
A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions.
Jardine, Timothy D; Kidd, Karen A; Rasmussen, Joseph B
2012-04-01
The relative contribution of aquatic vs. terrestrial organic matter to the diet of consumers in fluvial environments and its effects on bioaccumulation of contaminants such as mercury (Hg) remain poorly understood. We used stable isotopes of carbon and nitrogen in a gradient approach (consumer isotope ratio vs. periphyton isotope ratio) across temperate streams that range in their pH to assess consumer reliance on aquatic (periphyton) vs. terrestrial (riparian vegetation) organic matter, and whether Hg concentrations in fish and their prey were related to these energy sources. Taxa varied in their use of the two sources, with grazing mayflies (Heptageniidae), predatory stoneflies (Perlidae), one species of water strider (Metrobates hesperius), and the fish blacknose dace (Rhinichthys atratulus) showing strong connections to aquatic sources, while Aquarius remigis water striders and brook trout (Salvelinus fontinalis) showed a weak link to in-stream production. The aquatic food source for consumers, periphyton, had higher Hg concentrations in low-pH waters, and pH was a much better predictor of Hg in predatory invertebrates that relied mainly on this food source vs. those that used terrestrial C. These findings suggest that stream biota relying mainly on dietary inputs from the riparian zone will be partially insulated from the effects of water chemistry on Hg availability. This has implications for the development of a whole-system understanding of nutrient and material cycling in streams, the choice of taxa in contaminant monitoring studies, and in understanding the fate of Hg in stream food webs.
Walker, T R; Crittenden, P D; Young, S D
2003-01-01
The chemical composition of snow and terricolous lichens was determined along transects through the Subarctic towns of Vorkuta (130 km west-east), Inta (240 km south-north) and Usinsk (140 km, southwest-northeast) in the Usa river basin, northeast European Russia. Evidence of pollution gradients was found on two spatial scales. First, on the Inta transect, northward decreases in concentrations of N in the lichen Cladonia stellaris (from 0.57 mmol N g(-1) at 90 km south to 0.43 mmol N g(-1) at 130 km north of Inta) and winter deposition of non-sea salt sulphate (from 29.3 to 12.8 mol ha(-1) at 90 km south and 110 km north of Inta, respectively) were attributed to long range transport of N and S from lower latitudes. Second, increased ionic content (SO42-, Ca2+, K+) and pH of snow, and modified N concentration and the concentration ratios K+:Mg2+ and K+: (Mg2++Ca2+) in lichens (Cladonia arbuscula and Flavocetraria cucullata) within ca. 25-40 km of Vorkuta and Inta were largely attributed to local deposition of alkaline coal ash. Total sulphate concentrations in snow varied from ca. 5 micromol l(-1) at remote sites to ca. 19 micromol l(-1) near Vorkuta. Nitrate concentration in snow (typically ca. 9 micromol l(-1)) did not vary with proximity to perceived pollution sources.
Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.
2007-01-01
The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.
Ge, Zhengwei; Wang, Wei; Yang, Chun
2015-02-09
This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. Copyright © 2014 Elsevier B.V. All rights reserved.
Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe
2017-08-30
In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.
NASA Technical Reports Server (NTRS)
Loo, B. H.; Burns, D. H.; Lee, Y. G. L.; Emerson, M. T.
1991-01-01
Fourier transform infrared (FTIR) and Raman spectroscopic techniques were used to study the solution concentration gradient in succino nitrile-rich and water-rich homogeneous solutions. The spectroscopic data shows significant concentration dependency. Although FTIR-attenuated total reflectance could not yield surface spectra since the evanescent infrared wave penetrated deep into the bulk solution, it showed that water-rich clusters were decreased at higher temperatures. This result is consistent with the calorimetric results reported earlier.
Response of soil microbial communities to roxarsone pollution along a concentration gradient.
Liu, Yaci; Zhang, Zhaoji; Li, Yasong; Wen, Yi; Fei, Yuhong
2017-07-29
The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone degradation.
Zhang, Mingliang; Wang, Haixia; Han, Xuemei
2016-07-01
Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baez-Cazull, S.; McGuire, J.T.; Cozzarelli, I.M.; Raymond, A.; Welsh, L.
2007-01-01
Steep biogeochemical gradients were measured at mixing interfaces in a wetland-aquifer system impacted by landfill leachate in Norman, Oklahoma. The system lies within a reworked alluvial plain and is characterized by layered low hydraulic conductivity wetland sediments interbedded with sandy aquifer material. Using cm-scale passive diffusion samplers, "peepers", water samples were collected in a depth profile to span interfaces between surface water and a sequence of deeper sedimentary layers. Geochemical indicators including electron acceptors, low-molecular-weight organic acids, base cations, and NH4+ were analyzed by capillary electrophoresis (CE) and field techniques to maximize the small sample volumes available from the centimeter-scale peepers. Steep concentration gradients of biogeochemical indicators were observed at various interfaces including those created at sedimentary boundaries and boundaries created by heterogeneities in organic C and available electron acceptors. At the sediment-water interface, chemical profiles with depth suggest that SO42 - and Fe reduction dominate driven by inputs of organic C from the wetland and availability of electron acceptors. Deeper in the sediments (not associated with a lithologic boundary), a steep gradient of organic acids (acetate maximum 8.8 mM) and NH4+ (maximum 36 mM) is observed due to a localized source of organic matter coupled with the lack of electron acceptor inputs. These findings highlight the importance of quantifying the redox reactions occurring in small interface zones and assessing their role on biogeochemical cycling at the system scale. ?? 2007 Elsevier Ltd. All rights reserved.
Interstitial rotating shield brachytherapy for prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Quentin E., E-mail: quentin-adams@uiowa.edu; Xu, Jinghzu; Breitbach, Elizabeth K.
Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535more » μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%–44% if the clinician allows a urethral dose gradient volume of 0–5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed {sup 153}Gd-based I-RSBT technique in reasonable treatment times.« less
Assessment of ground-water contamination in the alluvial aquifer near West Point, Kentucky
Lyverse, M.A.; Unthank, M.D.
1988-01-01
Well inventories, water level measurements, groundwater quality samples, surface geophysical techniques (specifically, electromagnetic techniques), and test drilling were used to investigate the extent and sources of groundwater contamination in the alluvial aquifer near West Point, Kentucky. This aquifer serves as the principal source of drinking water for over 50,000 people. Groundwater flow in the alluvial aquifer is generally unconfined and moves in a northerly direction toward the Ohio River. Two large public supply well fields and numerous domestic wells are located in this natural flow path. High concentrations of chloride in groundwater have resulted in the abandonment of several public supply wells in the West Point areas. Chloride concentrations in water samples collected for this study were as high as 11,000 mg/L. Electromagnetic techniques indicated and test drilling later confirmed that the source of chloride in well waters was probably improperly plugged or unplugged, abandoned oil and gas exploration wells. The potential for chloride contamination of wells exists in the study area and is related to proximity to improperly abandoned oil and gas exploration wells and to gradients established by drawdowns associated with pumped wells. Periodic use of surface geophysical methods, in combination with added observation wells , could be used to monitor significant changes in groundwater quality related to chloride contamination. (USGS)
Denton, Gary R W; Trianni, Michael S; Bearden, Brian G; Houk, Peter C; Starmer, John A
2011-01-01
In 2004-2005, several species of marine fish were collected for mercury (Hg) analysis from Saipan Lagoon, Saipan, Commonwealth of the Northern Mariana Islands. Relatively high concentrations were found in representatives from the Hafa Adai Beach area located some distance from known sources of Hg contamination. A follow-up investigation aimed at identifying additional land-based sources of Hg in the area was launched in early 2007. The study identified a medical waste incinerator as the primary source of Hg enrichment. The incinerator was operational for about 20 years before it was closed down by the U.S. Environmental Protection Agency (EPA) in January 2006, for multiple violations of the Clean Air Act. Stormwater runoff from this facility entered a drainage network that discharged into the ocean at the southern end of Hafa Adai Beach, about 1 km away. At the time of this investigation storm drain sediments at the coast were only marginally enriched with mercury although values some 50x above background were detected in drainage deposits a few meters down-gradient of the incinerator site. Mercury concentrations in fish from the Hafa Adai Beach area were also significantly lower than those determined in similar species 3 yr earlier. The implications of the data are briefly discussed.
NASA Technical Reports Server (NTRS)
Venable, D. D.; Punjabi, A. R.; Poole, L. R.
1984-01-01
A semianalytic Monte Carlo radiative transfer simulation model for airborne laser fluorosensors has been extended to investigate the effects of inhomogeneities in the vertical distribution of phytoplankton concentrations in clear seawater. Simulation results for linearly varying step concentrations of chlorophyll are presented. The results indicate that statistically significant differences can be seen under certain conditions in the water Raman-normalized fluorescence signals between nonhomogeneous and homogeneous cases. A statistical test has been used to establish ranges of surface concentrations and/or verticl gradients in which calibration by surface samples would by inappropriate, and the results are discussed.
Design of a microbial contamination detector and analysis of error sources in its optical path.
Zhang, Chao; Yu, Xiang; Liu, Xingju; Zhang, Lei
2014-05-01
Microbial contamination is a growing concern in the food safety today. To effectively control the types and degree of microbial contamination during food production, this paper introduces a design for a microbial contamination detector that can be used for quick in-situ examination. The designed detector can identify the category of microbial contamination by locating its characteristic absorption peak and then can calculate the concentration of the microbial contamination by fitting the absorbance vs. concentration lines of standard samples with gradient concentrations. Based on traditional scanning grating detection system, this design improves the light splitting unit to expand the scanning range and enhance the accuracy of output wavelength. The motor rotation angle φ is designed to have a linear relationship with the output wavelength angle λ, which simplifies the conversion of output spectral curves into wavelength vs. light intensity curves. In this study, we also derive the relationship between the device's major sources of errors and cumulative error of the output wavelengths, and suggest a simple correction for these errors. The proposed design was applied to test pigments and volatile basic nitrogen (VBN) which evaluated microbial contamination degrees of meats, and the deviations between the measured values and the pre-set values were only in a low range of 1.15% - 1.27%.
The mechanism of phloem loading in rice (Oryza sativa).
Eom, Joon-Seob; Choi, Sang-Bong; Ward, John M; Jeon, Jong-Seong
2012-05-01
Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.
NASA Astrophysics Data System (ADS)
Rose, Seth
2007-07-01
SummaryA comprehensive network of stream data ( n = 50) was used to assess the effects of urbanization upon the hydrochemical variation within base flow in the Chattahoochee River Basin (CRB), Georgia (USA). Base flow solute concentrations (particularly sulfate, chloride, bicarbonate alkalinity, and sodium) increase with the degree of urbanization and any degree of urbanization within the Atlanta Metropolitan Region (AMR) results in elevated base flow solute concentrations. This suggests that there are pervasive low-level non-point sources of contamination such as septic tanks systems and leaky sewer lines affecting the chemistry of shallow groundwater throughout much of the AMR and CRB. Six groups or subsets representing the "rural-to-urban gradient" were defined, characterized by the following order of increasing solute concentrations: rural basins < Chattahoochee River. semi-urbanized basins < urbanized basins < urban basins with main sewer trunk lines < urbanized basins directly receiving treated effluent and combined sewer overflow (CSO) basins. There is a strong and unusual basin-wide correlation ( r2 values >0.79) between Na-K-Cl within the CRB that likely reflects the widespread input of electrolytes present in human wastes and wastewater. The most likely source and pathway for contaminant input involves the mobilization of salts, originally present in waste water, within the riparian or hypoheric zone.
Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources.
Osman, O; Zanini, L F; Frénéa-Robin, M; Dumas-Bouchiat, F; Dempsey, N M; Reyne, G; Buret, F; Haddour, N
2012-10-01
Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤10⁶ T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).
Dispersion and Deposition of Fine Particulates, Heavy Metals and Nitrogen in Urban Landscapes
NASA Astrophysics Data System (ADS)
Whitlow, T. H.; Tong, Z.
2015-12-01
Cities are characterized by networks of heavily trafficked roads, abrupt environmental gradients and local sources of airborne pollutants. Because urban dwellers are inevitably in close proximity to near ground pollution, there has been recent interest in using trees and green roofs to reduce human exposure yet there have been few empirical studies documenting the effect of vegetation and spatial heterogeneity on pollution concentration, human exposure and food safety. In this paper we describe the results of 2 studies in the New York metropolitan area. The first describes the effect of roadside trees on the concentration of fine particulates downwind of a major highway. The second examines vertical attenuation of fine particulates between street level and a rooftop vegetable farm and the deposition of nitrogen and heavy metals to vegetables and soil on the roof.
Hagiwara, Masaya; Peng, Fei; Ho, Chih-Ming
2015-01-27
We have succeeded in developing hollow branching structure in vitro commonly observed in lung airway using primary lung airway epithelial cells. Cell concentration gradient is the key factor that determines production of the branching cellular structures, as optimization of this component removes the need for heterotypic culture. The higher cell concentration leads to the more production of morphogens and increases the growth rate of cells. However, homogeneous high cell concentration does not make a branching structure. Branching requires sufficient space in which cells can grow from a high concentration toward a low concentration. Simulation performed using a reaction-diffusion model revealed that long-range inhibition prevents cells from branching when they are homogeneously spread in culture environments, while short-range activation from neighboring cells leads to positive feedback. Thus, a high cell concentration gradient is required to make branching structures. Spatial distributions of morphogens, such as BMP-4, play important roles in the pattern formation. This simple yet robust system provides an optimal platform for the further study and understanding of branching mechanisms in the lung airway, and will facilitate chemical and genetic studies of lung morphogenesis programs.
Increased dimensionality of cell-cell communication can decrease the precision of gradient sensing
NASA Astrophysics Data System (ADS)
Smith, Tyler; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
Gradient sensing is a biological computation that involves comparison of concentrations measured in at least two different locations. As such, the pre- cision of gradient sensing is limited by the intrinsic stochasticity in the com- munication that brings such distributed information to the same location. We have recently analyzed such limitations experimentally and theoretically in multicellular gradient sensing in mammary epithelial cell organoids. For 1d chains of collectively sensing cells, the communication noise puts a se- vere constraint on how the accuracy of gradient sensing increases with the number of cells in the sensor. A question remains as to whether the effect of the noise can be mitigated by the extra spatial averaging allowed in sensing by 2d and 3d cellular organoids. Here we show using computer simulations that, counterintuitively, such spatial averaging decreases gradient sensitiv- ity (while it increases concentration sensitivity). We explain the findings analytically and propose that a recently introduced Regional Excitation - Global Inhibition model of gradient sensing can overcome this limitation and use 2d or 3d spatial averaging to improve the sensing accuracy. Supported by NSF Grant PHY/1410978 and James S. McDonnell Foundation Grant # 220020321.
Measures of net oxidant concentration in seawater
NASA Astrophysics Data System (ADS)
Jackson, George A.; Williams, Peter M.
1988-02-01
Dissolved oxygen deficits in the ocean have been used as a measure of the organic matter oxidized in a volume of water. Such organic matter is usually assumed to be predominantly settled particles. Using dissolved oxygen concentration in this way has two problems: first, it does not differentiate between oxidant consumed by the pool of dissolved organic matter present near the ocean surface and oxidant consumed by organic matter contained by falling particles; second, it does not account for other oxidant sources, such as nitrate, which can be as important to organic matter decay as oxygen in low-oxygen water, such as off Peru or in the Southern California submarine basins. New parameters provide better measures of the net oxidant concentration in a water parcel. One such, NetOx, is changed only by gaseous exchange with the atmosphere, exchange with the benthos, or the production or consumption of sinking particles. A simplified version of NetOx, NetOx = [O2] + 1.25[NO3-] - [TOC], where TOC (total organic carbon), the dissolved organic carbon (DOC) plus the suspended particulate organic carbon (POC), provides an index based on the usually dominant variables. Calculation of NetOx and a second property, NetOC ([O2] - [TOC]), for data from GEOSECS and ourselves in the Atlantic and Pacific oceans using property-property graphs show differences from those from oxygen deficits alone. Comparison of NetOx and NetOC concentrations at high and low latitudes of the Pacific Ocean shows the difference in surface water oxidant concentrations is even larger than the difference in oxygen concentration. Vertical particle fluxes off Peru calculated from NetOx gradients are much greater than those calculated from oxygen gradients. The potential value of NetOx and NetOC as parameters to understand particle fluxes implies that determination of TOC should be a routine part of hydrographic measurements.
Fang, Shubo; Cui, Qu; Matherne, Brian; Hou, Aixin
2017-11-01
This study initiated an in-situ soil experimental system to quantify the annual dynamics of polychlorinated biphenyl (PCB) congener's concentrations and accumulation rates in soil from atmosphere deposition in a rural-urban fringe, and correlated them by landscape physical and demographic variables in the area. The results showed that the concentrations of all PCB congeners significantly increased with the sampling time (p < 0.05); nearly all the PCB congener concentrations decreased while moving outwards from the urban center. The moderate average concentrations along the gradient for PCB 8, 18, and 28 were 31.003, 18.825, and 19.505 ng g-1, respectively. Tetra-CBs including PCB 44, 52, 66, and 77 were 10.243, 31.214, 8.330 and 9.530 ng g-1, respectively. Penta-CBs including PCB 101, 105, 118, and 126 were 9.465, 7.896, 17.703, and 6.363 ng g-1, respectively. Hexa-CBs including PCB 128, 138, 153, 170, 180, and 187 were 6.798, 11.522, 4.969, 6.722, 6.317, and 8.243 ng g-1 respectively. PCB 195, 206, and 209 were 8.259, 9.506, and 14.169 ng g-1, respectively. Most of the PCB congeners had a higher accumulation rate approximately 28 km from the urban center. The computed variables were found to affect the soil PCB concentrations with a threshold effect (p < 0.05). Regression analysis showed that the thresholds were 10-20 km, 1 km/km 2 , 30%, and 20% for distance, road density, population change index, and built-up area percentage, respectively. It was concluded that factors related to industrial development, traffic, and urban sprawling (i.e. built-up areas expanding) were the sources of PCBs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Integrating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Wilton, Donald R.
2008-01-01
A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form
Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary.
Reinhart, Bethany L; Kidd, Karen A; Curry, R Allen; O'Driscoll, Nelson J; Pavey, Scott A
2018-06-01
Although estuaries are critical habitats for many aquatic species, the spatial trends of toxic methylmercury (MeHg) in biota from fresh to marine waters are poorly understood. Our objective was to determine if MeHg concentrations in biota changed along a salinity gradient in an estuary. Fourspine Stickleback (Apeltes quadracus), invertebrates (snails, amphipods, and chironomids), sediments, and water were collected from ten sites along the Saint John River estuary, New Brunswick, Canada in 2015 and 2016, with salinities ranging from 0.06 to 6.96. Total mercury (proxy for MeHg) was measured in whole fish and MeHg was measured in a subset of fish, pooled invertebrates, sediments, and water. Stable sulfur (δ 34 S), carbon (δ 13 C), and nitrogen (δ 15 N) isotope values were measured to assess energy sources (S, C) and relative trophic level (N). There were increases in biotic δ 13 C and δ 34 S from fresh to more saline sites and these measures were correlated with salinity. Though aqueous MeHg was higher at the freshwater than more saline sites, only chironomid MeHg increased significantly with salinity. In the Saint John River estuary, there was little evidence that MeHg and its associated risks increased along a salinity gradient. Copyright © 2018. Published by Elsevier B.V.
Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong
2016-01-01
This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475
Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng
2018-06-14
Biological conversion of CO 2 to value-added chemicals and biofuels has emerged as an attractive strategy to address the energy and environmental concerns caused by the over-reliance on fossil fuels. In this study, an innovative microbial reverse-electrodialysis electrolysis cell (MREC), which combines the strengths of reverse electrodialysis (RED) and microbial electrosynthesis technology platforms, was developed to achieve efficient CO 2 -to-value chemicals bioconversion by using the salinity gradient energy as driven energy sources. In the MREC, maximum acetate and ethanol concentrations of 477.5 ± 33.2 and 46.2 ± 8.2 mg L -1 were obtained at the cathode, catalyzed by Sporomusa ovata with production rates of 165.79 ± 11.52 and 25.11 ± 4.46 mmol m -2 d -1 , respectively. Electron balance analysis indicates that 94.4 ± 3.9% of the electrons derived from wastewater and salinity gradient were recovered in acetate and ethanol. This work for the first time proved the potential of innovative MREC configuration has the potential as an efficient technology platform for simultaneous CO 2 capture and electrosynthesis of valuable chemicals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reversible mechanosensitive ion pumping as a part of mechanoelectrical transduction.
Markin, V. S.; Tsong, T. Y.
1991-01-01
To explain the ability of some mechanosensitive cells to reverse the process of mechanotransduction and to generate mechanical oscillations and emit sound, a piezo-conformational coupling model (PCC model) is proposed. The model includes a transport protein which changes either its volume (PV-coupling) or its area in the membrane (gamma A-coupling) when undergoing conformational transitions. Such a protein can interact with an oscillating pressure to pump ions and create a transmembrane gradient if the affinities of the protein for ions are different at the two sides of membrane. The frequency and concentration windows for mechanical energy transduction were determined. Under optimal conditions, the efficiency of energy transduction can approach the theoretical maximum of 100%. If the concentration gradient exceeds the static head value (quasi-equilibrium which can be built up and maintained by this transport system), the energy transduction reverses and the transporter becomes a generator of mechanical oscillations at the expense of a concentration gradient. Estimation of thermodynamic parameters of the pump shows that the PV-coupling model would require large pressure oscillations to work while the gamma A-coupling model could work in physiological conditions. The gamma A-coupling mechanism may be used by cells for two purposes. In the reverse mode, it can be a force generator for various applications. In the direct mode, it may serve bioenergetic purposes by harvesting the energy of mechanical oscillations and storing it in the form of a concentration gradient. This pump has an unusual thermodynamic feature: it can distinguish the two components of the electrochemical potential gradient,i.e., the concentration gradient and the electrical potential, the latter serving as a permissive switch to open, or close, the pump when the potential reaches the threshold value.Predictions of the PCC model and its probable involvement in biological mechanotransduction are dicussed. PMID:1873468
NASA Astrophysics Data System (ADS)
Tang, Ming; Rudnick, Roberta L.; McDonough, William F.; Bose, Maitrayee; Goreva, Yulia
2017-09-01
Micron- to submicron-scale observations of Li distribution and Li isotope composition profiles can be used to infer the mechanisms of Li diffusion in natural zircon. Extreme fractionation (20-30‰) within each single crystal studied here confirms that Li diffusion commonly occurs in zircon. Sharp Li concentration gradients frequently seen in zircons suggest that the effective diffusivity of Li is significantly slower than experimentally determined (Cherniak and Watson, 2010; Trail et al., 2016), otherwise the crystallization/metamorphic heating of these zircons would have to be unrealistically fast (years to tens of years). Charge coupling with REE and Y has been suggested as a mechanism that may considerably reduce Li diffusivity in zircon (Ushikubo et al., 2008; Bouvier et al., 2012). We show that Li diffused in the direction of decreasing Li/Y ratio and increasing Li concentration (uphill diffusion) in one of the zircons, demonstrating charge coupling with REE and Y. Quantitative modeling reveals that Li may diffuse in at least two modes in natural zircons: one being slow and possibly coupled with REE+Y, and the other one being fast and not coupled with REE+Y. The partitioning of Li between these two modes during its diffusion may depend on the pre-diffusion substitution mechanism of REE and Y in the zircon lattice. Based on our results, sharp Li concentration gradients are not indicative of limited diffusion, and can be preserved at temperatures >700 °C on geologic timescales. Finally, large δ7 Li variations observed in the Hadean Jack Hills zircons may record kinetic fractionation, rather than a record of ancient intense weathering in the granite source materials.
Large-eddy simulation of dense gas dispersion over a simplified urban area
NASA Astrophysics Data System (ADS)
Wingstedt, E. M. M.; Osnes, A. N.; Åkervik, E.; Eriksson, D.; Reif, B. A. Pettersson
2017-03-01
Dispersion of neutral and dense gas over a simplified urban area, comprising four cubes, has been investigated by the means of large-eddy simulations (LES). The results have been compared to wind tunnel experiments and both mean and fluctuating quantities of velocity and concentration are in very good agreement. High-quality inflow profiles are necessary to achieve physically realistic LES results. In this study, profiles matching the atmospheric boundary layer flow in the wind tunnel, are generated by means of a separate precursor simulation. Emission of dense gas dramatically alters the flow in the near source region and introduces an upstream dispersion. The resulting dispersion patterns of neutral and dense gas differ significantly, where the plume in the latter case is wider and shallower. The dense gas is highly affected by the cube array, which seems to act as a barrier, effectively deflecting the plume. This leads to higher concentrations outside of the array than inside. On the contrary, the neutral gas plume has a Gaussian-type shape, with highest concentrations along the centreline. It is found that the dense gas reduces the vertical and spanwise turbulent momentum transport and, as a consequence, the turbulence kinetic energy. The reduction coincides with the area where the gradient Richardson number exceeds its critical value, i.e. where the flow may be characterized as stably stratified. Interestingly, this region does not correspond to where the concentration of dense gas is the highest (close to the ground), as this is also where the largest velocity gradients are to be found. Instead there is a layer in the middle of the dense gas cloud where buoyancy is dynamically dominant.
NASA Astrophysics Data System (ADS)
Dria, K. J.; Gamblin, D. E.; Smucker, A. J.; Park, E.; Filley, T. R.
2004-12-01
Much of the current research on the potential of agricultural and forest soils to act as sinks for greenhouse gases focuses on the capacity of the systems to form long-term stabilized fractions of soil organic matter (SOM). One proposed mechanism is that carbon is sequestered within soil aggregate interiors during the aggregation process. Repeated wetting-drying cycles change internal pore geometries and associated microhabitats and create more stable macro-aggregates. Research by Smucker and coworkers (EGU Abstracts, 2004) suggest that the exterior portions of aggregates contain greater concentrations of C and N than their interiors, establishing gradients of \\ä13C values across these aggregates. We present the results of a study to test if there exists molecular evidence of such gradients. Soil samples from forest, conventional tillage (CT) and no tillage (NT) agriculture ecosystems in Hoytville and Wooster LTER sites were gently sieved into various size fractions. Soil macro-aggregates (6.3-9.5mm) were peeled, by mechanical erosion chambers, into concentric layers and separated into exterior, transitional and interior regions. Alkaline CuO oxidation was used to determine the composition of lignin, suberin, and cutin biopolymers to determine changes in source and degradative states of SOM. Preliminary results indicate that both soils show similar relative yields of lignin and hydroxyl fatty acids with a greater abundance of lignin than cutin and suberin acids. Greater abundances (per 100mg organic carbon) of CuO products were observed in the native forest than in either agricultural system. The lignin in the NT agricultural soil was least oxidized, followed by the forest soils, then the CT agricultural soils. For both soils, slight trends in biopolymer concentrations were observed between the exterior, transitional and interior regions of the aggregates from the forest and CT or NT ecosystems.
Photokinetic Drug Delivery: Light-Enhanced Permeation in an In Vitro Eye Model.
Godley, Bernard F; Kraft, Edward R; Giannos, Steven A; Zhao, Zhen-Yang; Haag, Anthony M; Wen, Julie W
2015-12-01
To investigate light-enhanced molecular movement as a potential technology for drug delivery. To do this, we developed an in vitro eye model while representing similar concentration gradient conditions and compositions found in the eye. The eye model unit was fabricated by inserting a cross-linked type I collagen membrane in a spectrophotometer cuvette with 1% hyaluronic acid as the drug recipient medium. Photokinetic delivery was studied by illuminating 1 mg/mL methotrexate (MTX) placed in the drug donor compartment on top of the membrane, with noncoherent 450 nm light at 8.2 mW from an LED source pulsed at 25 cycles per second, placed in contact with the solution. A modified UV-visual spectrophotometer was employed to rapidly determine the concentration of MTX, at progressive 1 mm distances away from the membrane, within the viscous recipient medium of the model eye after 1 h. A defined, progressive concentration gradient was observed within the nonagitated drug recipient media, diminishing with greater distances from the membrane. Transport of MTX through the membrane was significantly enhanced (ranging from 2 to 3 times, P < 0.05 to P ≤ 0.001) by photokinetic methods compared with control conditions by determining drug concentrations at 4 defined distances from the membrane. According to scanning electron microscopy images, no structural damage or shunts were created on the surface of the cross-linked gelatin membrane. The application of pulsed noncoherent visible light significantly enhances the permeation of MTX through a cross-linked collagen membrane and hyaluronic acid recipient medium without causing structural damage to the membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Yehia M.; Chen, Tsung-Chi; Harrer, Marques B.
2017-11-21
An ion funnel device is disclosed. A first pair of electrodes is positioned in a first direction. A second pair of electrodes is positioned in a second direction. The device includes an RF voltage source and a DC voltage source. A RF voltage with a superimposed DC voltage gradient is applied to the first pair of electrodes, and a DC voltage gradient is applied to the second pair of electrodes.
Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.
Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena
2018-06-22
Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.
Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes
NASA Astrophysics Data System (ADS)
Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.
1995-09-01
Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on the other terrestrial planets. A modeled fault of 1.5 km displacement (slightly slumped block exterior and impact breccia interior) reproduces the steepest gradient feature. This model is incompatible with models that place these gradient features inside the collapsed transient cavity. Locations of the karst features of the northern Yucatan region were digitized from 1:50,000 topographic maps, which show most but not all the water-filled sinkholes (locally known as cenotes). A prominent ring of cenotes is visible over the crater that is spatially correlated to the outer steep gravity gradient feature. The mapped cenotes constitute an unbiased sampling of the region's karst surface features of >50 m diameter. The gradient maximum and the cenote ring both meander with amplitudes of up to 2 km. The wiggles in the gradient feature and the cenote distribution probably correspond to the "scalloping" observed at the headwall of terraces in large complex craters. A second partial cenote ring exterior to the southwest side of the main ring corresponds to a less-prominent gravity gradient feature. No concentric structure is observable in the distribution of karst features at radii >90 km. The cenote ring is bounded by the outer peripheral steep gradient feature and must be related to it; the slump faults must have been reactivated sufficiently to create fracturing in the overlying and much younger sediment. Long term subsidence, as found at other terrestrial craters is a possible mechanism for the reactivation. Such long term subsidence may be caused by differential compaction or thermal relaxation. Elevations acquired during gravity surveys show that the cenote ring also corresponds to a topographic low along some of its length that probably reflects preferential erosion.
Felloni, Paul; Duhamel, Alain; Faivre, Jean-Baptiste; Giordano, Jessica; Khung, Suonita; Deken, Valérie; Remy, Jacques; Remy-Jardin, Martine
2017-11-01
The noninvasive approach of lung perfusion generated from dual-energy computed tomography acquisitions has entered clinical practice. The purpose of this study was to analyze the regional distribution of iodine within distal portions of the pulmonary arterial bed on dual-source, dual-energy computed tomography examinations in a cohort of subjects without cardiopulmonary pathologies. The study population included 42 patients without cardiorespiratory disease, enabling quantitative and qualitative analysis of pulmonary blood volume after administration of a 40% contrast agent. Qualitative analysis was based on visual assessment. Quantitative analysis was obtained after semiautomatic division of each lung into 18 areas. The iodine concentration did not significantly differ between the right (R) and left (L) lungs (P = .49), with a mean attenuation of 41.35 Hounsfield units (HU) and 41.14 HU, respectively. Three regional gradients of attenuation were observed between: (a) lung bases and apices (P < .001), linked to the conditions of examination (mean Δ: 6.23 in the R lung; 5.96 in the L lung); (b) posterior and anterior parts of the lung (P < .001) due to gravity (mean Δ: 11.92 in the R lung ; 15.93 in the L lung); and (c) medullary and cortical lung zones (P < .001) (mean Δ: 9.35 in the R lung ; 8.37 in the L lung). The intensity of dependent-nondependent (r = 0.42; P < .001) and corticomedullary (r = 0.58; P < .0001) gradients was correlated to the overall iodine concentration. Distribution of pulmonary blood volume is influenced by physiological gradients and scanning conditions. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.
1993-01-01
Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are <5 pCi/l. Four ground water samples were analyzed for 210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for 210Pb; six contained <3 pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples. Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water. Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of 40K dissolved in the water and ingrowth of 238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present in ground water in the aquifer, but instead is produced in the sample after collection and before analysis. Potassium-40 is primarily from the dissolution of K-containing minerals, probably K-feldspar and biotite. Radon-222 is primarily from the decay of 226Ra in the aquifer materials. Radium in the ground water is thought to be mainly from alpha recoil associated with the decay of Th in the aquifer material. Some Ra may be from dissolution (or desorption) or Ra-rich coatings on sediments. ?? 1993.
Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density
NASA Astrophysics Data System (ADS)
Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing
2017-12-01
Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.
NASA Astrophysics Data System (ADS)
Bai, Yang; Wu, Lixin; Zhou, Yuan; Li, Ding
2017-04-01
Nitrogen oxides (NOX) and sulfur dioxide (SO2) emissions from coal combustion, which is oxidized quickly in the atmosphere resulting in secondary aerosol formation and acid deposition, are the main resource causing China's regional fog-haze pollution. Extensive literature has estimated quantitatively the lifetimes and emissions of NO2 and SO2 for large point sources such as coal-fired power plants and cities using satellite measurements. However, rare of these methods is suitable for sources located in a heterogeneously polluted background. In this work, we present a simplified emission effective radius extraction model for point source to study the NO2 and SO2 reduction trend in China with complex polluted sources. First, to find out the time range during which actual emissions could be derived from satellite observations, the spatial distribution characteristics of mean daily, monthly, seasonal and annual concentration of OMI NO2 and SO2 around a single power plant were analyzed and compared. Then, a 100 km × 100 km geographical grid with a 1 km step was established around the source and the mean concentration of all satellite pixels covered in each grid point is calculated by the area weight pixel-averaging approach. The emission effective radius is defined by the concentration gradient values near the power plant. Finally, the developed model is employed to investigate the characteristic and evolution of NO2 and SO2 emissions and verify the effectiveness of flue gas desulfurization (FGD) and selective catalytic reduction (SCR) devices applied in coal-fired power plants during the period of 10 years from 2006 to 2015. It can be observed that the the spatial distribution pattern of NO2 and SO2 concentration in the vicinity of large coal-burning source was not only affected by the emission of coal-burning itself, but also closely related to the process of pollutant transmission and diffusion caused by meteorological factors in different seasons. Our proposed model can be used to identify the effective operation time of FGD and SCR equipped in coal-fired power plant.
Geochemistry of halogens in the Milk River aquifer, Alberta, Canada
Fabryka-Martin, J.; Whittemore, Donald O.; Davis, S.N.; Kubik, P.W.; Sharma, Prakash
1991-01-01
Analytical data are presented for Cl, Br and I on a regional scale for the Milk River aquifer. The three halides show strikingly similar spatial distributions and are highly correlated. Concentrations are low in the freshwater portions of the aquifer but increase by as much as two orders of magnitude along the margins. However, halide ratios reach nearly constant values moving down-gradient, suggesting the dominance of a common subsurface source for these ions. Ratios of Cl/I and Cl/Br are less than those of seawater and fit an origin derived from the diagenesis of organic matter in the sediments. Halide ratios rule out leakage and/or diffusion from the underlying Colorado Group as a major influence on the chemistry; the favored hypothesis is altered connate seawater diffusing from low-permeability units within the Milk River Formation as the primary source of salts. This hypothesis of an internal source has important implications for solute sources in other aquifers affected by saline waters because it does not require the importation of a distant fluid. The 129I/I ratio has a meteoric value in groundwater collected near the recharge area, but ratios for downflow waters are only 8-70% of this value. Due to the 16 Ma half-life of 129I, these data indicate that most of the increase in dissolved I cannot derive from concentration of a meteoric source by ion filtration, but must have a subsurface origin. Concentrations of 129I produced in situ by spontaneous fission of 238U attain measurable levels only in the oldest waters sampled (ages ??? 105 a), in which it may account for nearly 90% of the total dissolved 129I concentration. Water ages based upon 36Cl/Cl data range up to 2 Ma if uncorrected for any dilution by subsurface sources of dead Cl. If one assumes that the subsurface contributions of Cl contribute at least 90% of total Cl in the distal portion, then the 36Cl-based ages are reduced to ??? 1 Ma, somewhat greater than those estimated by hydrodynamic modeling. ?? 1991.
Magnetic field gradients and their uses in the study of the earth's magnetic field
NASA Technical Reports Server (NTRS)
Harrison, C. G. A.; Southam, J. R.
1991-01-01
Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.
In Situ Bioremediation of MTBE in Groundwater
2003-06-01
by-products (carbon dioxide and water ). Groundwater leaving the down-gradient edge of the treatment zone contains MTBE at concentrations less than... groundwater treatment approaches ineffective or impracticable. Currently, conventional pump and treat (P&T) followed by aboveground water treatment and...carbon dioxide and water ). Groundwater leaving the down gradient edge of the treatment zone contains MTBE at concentrations less than or equal to the
Thermosolutal convection in high-aspect-ratio enclosures
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chen, C. T.
1988-01-01
Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.
A microfluidic device for 2D to 3D and 3D to 3D cell navigation
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Amirifar, Leyla
2016-01-01
Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.
Dynamics of Reactive Microbial Hotspots in Concentration Gradient.
NASA Astrophysics Data System (ADS)
Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.
2017-12-01
In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.
Gonsoulin, Mary E; Wilson, Barbara H; Wilson, John T
2004-12-01
The Refuse Hideaway Landfill (23-acre) received municipal, commercial, and industrial waste between 1974 and 1988. It was designed as a "natural attenuation" landfill and no provision was made to collect and treat contaminated water. Natural biological degradation through sequential reductive dechlorination had been an important mechanism for natural attenuation at the site. We used the concentration of hydrogen to forecast whether reductive dechlorination would continue over time at particular locations in the plume. Based on published literature, reductive dechlorination and natural attenuation of PCE, TCE, and cis-DCE can be expected in the aquifer if the concentration of molecular hydrogen in monitoring wells are adequate (> 1 nanomolar). Reductive dechlorination can be expected to continue as the ground water moves down gradient. Natural attenuation through reductive dechlorination is not expected in flow paths that originate at down gradient monitoring wells with low concentrations of molecular hydrogen (< 1 nanomolar). In three monitoring wells at the margin of the landfill and in five monitoring wells down gradient of the landfill, ground water maintained a molecular hydrogen concentration, ranging from 1.30 to 9.17 nanomolar, that is adequate for reductive dechlorination. In three of the monitoring wells far down gradient of the landfill, the concentration of molecular hydrogen (0.33 to 0.83 nanomolar) was not adequate to support reductive dechlorination. In wells with adequate concentrations of hydrogen, the concentrations of chlorinated volatile organic compounds were attenuated over time, or concentrations of chlorinated volatile organics were below the detection limit. In wells with inadequate concentrations of hydrogen, the concentrations of chlorinated organic compounds attenuated at a slower rate over time. In wells with adequate hydrogen the first order rate of attenuation of PCE, TCE, cis-DCE and total chlorinated volatile organic compounds varies from 0.38 to 0.18 per year. In wells without adequate hydrogen the rate varies from 0.015 to 0.006 per year.
Decontamination of combustion gases in fluidized bed incinerators
Leon, Albert M.
1982-01-01
Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.
Strategy for modeling putative multilevel ecosystems on Europa.
Irwin, Louis N; Schulze-Makuch, Dirk
2003-01-01
A general strategy for modeling ecosystems on other worlds is described. Two alternative biospheres beneath the ice surface of Europa are modeled, based on analogous ecosystems on Earth in potentially comparable habitats, with reallocation of biomass quantities consistent with different sources of energy and chemical constituents. The first ecosystem models a benthic biosphere supported by chemoautotrophic producers. The second models two concentrations of biota at the top and bottom of the subsurface water column supported by energy harvested from transmembrane ionic gradients. Calculations indicate the plausibility of both ecosystems, including small macroorganisms at the highest trophic levels, with ionotrophy supporting a larger biomass than chemoautotrophy.
Bidirectional transport model of morphogen gradient formation via cytonemes
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; Kim, Hyunjoong
2018-03-01
Morphogen protein gradients play an important role in the spatial regulation of patterning during embryonic development. The most commonly accepted mechanism for gradient formation is diffusion from a source combined with degradation. Recently, there has been growing interest in an alternative mechanism, which is based on the direct delivery of morphogens along thin, actin-rich cellular extensions known as cytonemes. In this paper, we develop a bidirectional motor transport model for the flux of morphogens along cytonemes, linking a source cell to a one-dimensional array of target cells. By solving the steady-state transport equations, we show how a morphogen gradient can be established, and explore how the mean velocity of the motors affects properties of the morphogen gradient such as accumulation time and robustness. In particular, our analysis suggests that in order to achieve robustness with respect to changes in the rate of synthesis of morphogen, the mean velocity has to be negative, that is, retrograde flow or treadmilling dominates. Thus the potential targeting precision of cytonemes comes at an energy cost. We then study the effects of non-uniformly allocating morphogens to the various cytonemes projecting from a source cell. This competition for resources provides a potential regulatory control mechanism not available in diffusion-based models.
Composition and sources of carbonaceous aerosols in Northern Europe during winter
NASA Astrophysics Data System (ADS)
Glasius, M.; Hansen, A. M. K.; Claeys, M.; Henzing, J. S.; Jedynska, A. D.; Kasper-Giebl, A.; Kistler, M.; Kristensen, K.; Martinsson, J.; Maenhaut, W.; Nøjgaard, J. K.; Spindler, G.; Stenström, K. E.; Swietlicki, E.; Szidat, S.; Simpson, D.; Yttri, K. E.
2018-01-01
Sources of elemental carbon (EC) and organic carbon (OC) in atmospheric aerosols (carbonaceous aerosols) were investigated by collection of weekly aerosol filter samples at six background sites in Northern Europe (Birkenes, Norway; Vavihill, Sweden; Risoe, Denmark; Cabauw and Rotterdam in The Netherlands; Melpitz, Germany) during winter 2013. Analysis of 14C and a set of molecular tracers were used to constrain the sources of EC and OC. During the four-week campaign, most sites (in particular those in Germany and The Netherlands) were affected by an episode during the first two weeks with high concentrations of aerosol, as continental air masses were transported westward. The analysis results showed a clear, increasing north to south gradient for most molecular tracers. Total carbon (TC = OC + EC) at Birkenes showed an average concentration of 0.5 ± 0.3 μg C m-3, whereas the average concentration at Melpitz was 6.0 ± 4.3 μg C m-3. One weekly mean TC concentration as high as 11 μg C m-3 was observed at Melpitz. Average levoglucosan concentrations varied by an order of magnitude from 25 ± 13 ng m-3 (Birkenes) to 249 ± 13 ng m-3 (Melpitz), while concentrations of tracers of fungal spores (arabitol and mannitol) and vegetative debris (cellulose) were very low, showing a minor influence of primary biological aerosol particles during the North European winter. The fraction of modern carbon generally varied from 0.57 (Melpitz) to 0.91 (Birkenes), showing an opposite trend compared to the molecular tracers and TC. Total concentrations of 10 biogenic and anthropogenic carboxylic acids, mainly of secondary origin, were 4-53 ng m-3, with the lowest concentrations observed at Birkenes and the highest at Melpitz. However, the highest relative concentrations of carboxylic acids (normalized to TC) were observed at the most northern sites. Levels of organosulphates and nitrooxy organosulphates varied more than two orders of magnitude, from 2 to 414 ng m-3, between individual sites and samples. The three sites Melpitz, Rotterdam and Cabauw, located closest to source regions in continental Europe, showed very high levels of organosulphates and nitrooxy organosulphates (up to 414 ng m-3) during the first two weeks of the study, while low levels (<7 ng m-3) were found at all sites except Melpitz during the last week. The large variation in organosulphate levels probably reflects differences in the presence of acidic sulphate aerosols, known from laboratory studies to accelerate the formation of these compounds. On average, the ratio of organic sulphate to inorganic sulphate was 1.5 ± 1.0% (range 0.1-3.4%). Latin-hypercube source apportionment techniques identified biomass burning as the major source of OC for all samples at all sites (typically >40% of TC), while use and combustion of fossil fuels was the second most important source. Furthermore, EC from biomass burning accounted for 7-16% of TC, whereas EC from fossil sources contributed to <2-23% of TC, of which the highest percentages were observed for low-concentration aerosol samples. Unresolved non-fossil sources (such as cooking and biogenic secondary organic aerosols) did not account for more than 5-12% of TC. The results confirm that wood combustion is a major source to OC and EC in Northern Europe during winter.
Predicting subtle behavioral responses of invertebrates to soil contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donkin, S.G.
1995-12-31
At concentration levels well below those which cause death and injury to soil invertebrates, a toxic chemical plume may yet effectively damage a soil ecosystem by triggering avoidance behavior among sensitive invertebrates as they move along the concentration gradient. The result may be a soil ecosystem lacking the benefits of effective nutrient cycling and mineralization which a thriving invertebrate population provides. While determining actual detection limits of invertebrates for chemical gradients in soils is experimentally difficult, theoretical calculations have suggested that such limits may be extremely low, and hence many organisms may sense and avoid concentrations of chemicals far belowmore » levels commonly considered acceptable. The minimum gradient (G) that can be detected by a receptor depends on the receptor radius (R), the chemical concentration (C), the diffusion constant of the chemical (D), the velocity of the organism (v), and the time over which the receptor integrates the chemical signal (t). In addition, the characteristics of that gradient are determined by interactions between the chemical and the soil particles (sorption/desorption), and advection through the pore spaces. The example of lead (Pb), a neurotoxic metal with demonstrated behavioral effects on the free-living nematode Caenorhabditis elegans, is used to model a chemical migrating through a soil. Based on experimentally determined Pb concentrations which elicited avoidance behavior in nematodes, and sorption characteristics of defined Pb-soil systems, the minimum detectable gradient (G) produced by a solubilized Pb plume in several soils was modeled. The results predict maximum allowable Pb levels in a soil if a healthy invertebrate community is desired, and suggest areas for further research into the subtle behavioral effects of environmental toxicants ore sensitive invertebrates.« less
Bashir, Adil; Gropler, Robert; Ackerman, Joseph
2015-01-01
Purpose Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. Methods A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. Results Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. Conclusions The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods. PMID:26633549
Coastal nutrification and coral health at Porto Seguro reefs, Brazil
NASA Astrophysics Data System (ADS)
Costa, O.; Attrill, M.; Nimmo, M.
2003-04-01
Human activities have substantially increased the natural flux of nutrients to coastal systems worldwide. In Brazilian reefs, all major stresses (sedimentation, overfishing, tourism-related activities and nutrification) are human induced. To assess nutrification levels in Brazilian coastal reefs, measurements of the distribution patterns of nutrients and chlorophyll concentrations were conducted in three nearshore and offshore reefs with distinct nutrient inputs along the south coast of Bahia State. Seawater and porewater samples were analysed for soluble reactive phosphorus, total oxidised nitrogen and reactive silica. Benthic surveys were performed at all sites to investigate the relationships between benthic community composition and nutrient and chlorophyll concentrations. Sampling was undertaken in dry and rainy seasons. Results of both seawater and porewater nutrient measurements revealed the occurrence of consistent spatial and temporal patterns. An inshore-offshore gradient reflects the occurrence of land-based point sources, with significant amount of nutrients being delivered by human activities on the coast (untreated sewage and groundwater seepage). Another spatial gradient is related to distance from a localized source of pollution (an urban settlement without sewerage treatment) with two nearshore reefs presenting distinct nutrient and chlorophyll concentrations. Seasonal variations suggest that submarine groundwater discharge (SGD) is the primary source of nutrients for the coastal reefs during rainy season. The data also suggests that the SGD effect is not restricted to nearshore reefs, and may be an important factor controlling the differences between landward and seaward sides on the offshore reef. Benthic community assessment revealed that turf alga is the dominant group in all studied reefs and that zoanthids are the organisms most adapted to take advantage of nutrient increase in coastal areas. At nearshore reefs, there was a negative correlation between zoanthids and algal abundance and a positive correlation with the amount of available space for settlement. On the offshore reef, correlation of algal cover with both zoanthids and available space were negative, suggesting that hard substrate may be the primary limiting factor for algal settlement and growth in the nearshore reefs. Highly variable physical disturbances (like wave energy and low tide exposure) between landward and seaward reef sides appear to be the factors controlling algal distribution in the offshore reef. Highly spatial variability in coral cover ultimately reflects the patchy distribution of stony corals over the reefs.
Nitrous acid (HONO) measurements during winter haze events in Beijing
NASA Astrophysics Data System (ADS)
Bloss, W.; Kramer, L. J.; Crilley, L.; Lee, J. D.; Squires, F. A.; Tong, S.
2017-12-01
Daytime HONO levels can reach several parts per billion in megacities during winter haze events and hence act as the dominant (primary) precursor to OH radicals in the urban boundary layer, and affect NOx abundance. Understanding the sources of HONO is therefore important to quantify atmospheric oxidative capacity and secondary pollutant formation during such haze events. Despite decades of research, there are still large uncertainties in HONO formation mechanisms, and as a result models often substantially underestimate peak HONO levels. In this study, measurements of HONO were performed at the Institute of Atmospheric Physics (IAP) site located in central Beijing during Nov/Dec 2016, across both haze and non-haze events. Using a commercial long-path absorption photometer (LOPAP), vertical profiles of HONO concentrations up to a height of 260 m on the IAP Meteorological Tower were performed, as well as continuous near-surface measurements. Preliminary results showed that HONO levels near the ground were very high during the winter haze events with concentrations over 10 ppbV observed. Typically, during the vertical profiles a negative gradient was observed, indicating a large HONO source close to the surface. However, during some of the profiles elevated HONO concentrations were also observed at higher altitudes pointing to a strong source within the boundary layer. Co-located NOx and SO2 measurements are used to elucidate potential HONO sources from direct emissions, homogeneous gas phase reactions and heterogeneous conversion of NO2 on surfaces. Results from ground level HONO/NOx ratios show a midday peak during clean periods indicating a photo-enhanced process, which was not apparent during hazy days. The potential impact of these findings on the OH radical budget in wintertime Beijing will be discussed.
Wilson, Doyle C
2018-04-15
Heavy metal, nutrient, and hydrocarbon levels in and adjacent to Lake Havasu, a regionally significant water supply reservoir with a highly controlled, dynamic flow regime, are assessed in relation to possible stormwater runoff impacts from an arid urban center. Shallow groundwater and sediment analyses from ephemeral drainage (wash) mouths that convey stormwater runoff from Lake Havasu City, Arizona to the reservoir, provided contaminant control points and correlation ties with the reservoir environment. Fine-grain sediments tend to contain higher heavy metal concentrations whereas nutrients are more evenly distributed, except low total organic carbon levels from young wash mouth surfaces devoid of vegetation. Heavy metal and total phosphate sediment concentrations in transects from wash mouths into the reservoir have mixed and decreasing trends, respectively. Both series may indicate chemical depositional influences from urban runoff, yet no statistically significant concentration differences occur between specific wash mouths and corresponding offshore transects. Heavy metal pollution indices of all sediments indicate no discernible to minor contamination, indicating that runoff impacts are minimal. Nevertheless, several heavy metal concentrations from mid-reservoir sediment sites increase southward through the length of the reservoir. Continual significant water flow through the reservoir may help to disperse locally derived runoff particulates, which could mix and settle down gradient with chemical loads from upriver sources and local atmospheric deposition. Incorporating the shoreline environment with the reservoir investigation provides spatial continuity in assessing contaminant sources and distribution patterns. This is particularly acute in the investigation of energetic, flow-through reservoirs in which sources may be overlooked if solely analyzing the reservoir environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.
Green, R; Giebisch, G
1975-11-01
Simultaneous perfusion of peritubular capillaries and proximal convoluted tubules was used to study the effect of varying transepithelial ionic gradients on ionic fluxes. Results show that net sodium influx and volume flux was one-third of normal when bicarbonate was absent, no chloride gradient existed, and glucose and amino acids were absent. Addition of bicarbonate to the luminal fluid did not restore the flux to normal, but peritubular bicarbonate did restore it. A chloride gradient imposed when no bicarbonate was present could only increase the fluxes slightly, but his flux was significant even after cyanide had poisoned transport. Reversing the chloride concentration gradient decreased the net sodium and volume fluxes whether bicarbonate was present or not. Glucose had no effect on fluxes, but substitution of Na by choline abolished them entirely. It is concluded that sodium is actively transported, that a chloride concentration gradient from lumen to plasma could account for up to 20% of net transport, and that peritubular bicarbonate is necessary for normal rates of sodium and fluid absorption.
Magnetophoresis of iron oxide nanoparticles at low field gradient: the role of shape anisotropy.
Lim, Jitkang; Yeap, Swee Pin; Leow, Chee Hoe; Toh, Pey Yi; Low, Siew Chun
2014-05-01
Magnetophoresis of iron oxide magnetic nanoparticle (IOMNP) under low magnetic field gradient (<100 T/m) is significantly enhanced by particle shape anisotropy. This unique feature of magnetophoresis is influenced by the particle concentration and applied magnetic field gradient. By comparing the nanosphere and nanorod magnetophoresis at different concentration, we revealed the ability for these two species of particles to achieve the same separation rate by adjusting the field gradient. Under cooperative magnetophoresis, the nanorods would first go through self- and magnetic field induced aggregation followed by the alignment of the particle clusters formed with magnetic field. Time scale associated to these two processes is investigated to understand the kinetic behavior of nanorod separation under low field gradient. Surface functionalization of nanoparticles can be employed as an effective strategy to vary the temporal evolution of these two aggregation processes which subsequently influence the magnetophoretic separation time and rate. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping
2016-01-01
Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees. PMID:27252112
Modeling chemical gradients in sediments under losing and gaining flow conditions: The GRADIENT code
NASA Astrophysics Data System (ADS)
Boano, Fulvio; De Falco, Natalie; Arnon, Shai
2018-02-01
Interfaces between sediments and water bodies often represent biochemical hotspots for nutrient reactions and are characterized by steep concentration gradients of different reactive solutes. Vertical profiles of these concentrations are routinely collected to obtain information on nutrient dynamics, and simple codes have been developed to analyze these profiles and determine the magnitude and distribution of reaction rates within sediments. However, existing publicly available codes do not consider the potential contribution of water flow in the sediments to nutrient transport, and their applications to field sites with significant water-borne nutrient fluxes may lead to large errors in the estimated reaction rates. To fill this gap, the present work presents GRADIENT, a novel algorithm to evaluate distributions of reaction rates from observed concentration profiles. GRADIENT is a Matlab code that extends a previously published framework to include the role of nutrient advection, and provides robust estimates of reaction rates in sediments with significant water flow. This work discusses the theoretical basis of the method and shows its performance by comparing the results to a series of synthetic data and to laboratory experiments. The results clearly show that in systems with losing or gaining fluxes, the inclusion of such fluxes is critical for estimating local and overall reaction rates in sediments.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping
2016-06-01
Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.
Blind separation of positive sources by globally convergent gradient search.
Oja, Erkki; Plumbley, Mark
2004-09-01
The instantaneous noise-free linear mixing model in independent component analysis is largely a solved problem under the usual assumption of independent nongaussian sources and full column rank mixing matrix. However, with some prior information on the sources, like positivity, new analysis and perhaps simplified solution methods may yet become possible. In this letter, we consider the task of independent component analysis when the independent sources are known to be nonnegative and well grounded, which means that they have a nonzero pdf in the region of zero. It can be shown that in this case, the solution method is basically very simple: an orthogonal rotation of the whitened observation vector into nonnegative outputs will give a positive permutation of the original sources. We propose a cost function whose minimum coincides with nonnegativity and derive the gradient algorithm under the whitening constraint, under which the separating matrix is orthogonal. We further prove that in the Stiefel manifold of orthogonal matrices, the cost function is a Lyapunov function for the matrix gradient flow, implying global convergence. Thus, this algorithm is guaranteed to find the nonnegative well-grounded independent sources. The analysis is complemented by a numerical simulation, which illustrates the algorithm.
Electrical characteristics in reverse electrodialysis using nanoporous membranes
NASA Astrophysics Data System (ADS)
Chanda, Sourayon; Tsai, Peichun Amy
2017-11-01
We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.
Forces in inhomogeneous open active-particle systems.
Razin, Nitzan; Voituriez, Raphael; Elgeti, Jens; Gov, Nir S
2017-11-01
We study the force that noninteracting pointlike active particles apply to a symmetric inert object in the presence of a gradient of activity and particle sources and sinks. We consider two simple patterns of sources and sinks that are common in biological systems. We analytically solve a one-dimensional model designed to emulate higher-dimensional systems, and study a two-dimensional model by numerical simulations. We specify when the particle flux due to the creation and annihilation of particles can act to smooth the density profile that is induced by a gradient in the velocity of the active particles, and find the net resultant force due to both the gradient in activity and the particle flux. These results are compared qualitatively to observations of nuclear motion inside the oocyte, that is driven by a gradient in activity of actin-coated vesicles.
Using Stable Isotopes to Assess Connectivity: the Importance ...
Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) data for dissolved inorganic nitrate, green macroalgae, seagrass (Zostera marina) and mussels in the nearshore and in estuaries along the west coast of North America to assess the relative importance of terrestrial and oceanic nutrient sources in these systems. We found a latitudinal gradient in nearshore δ15N of nitrate of -0.2 ‰ per degree latitude from Mexico to British Columbia with more depleted isotope ratio to the north. Primary producers (green macroalgae and Zostera marina) located in the nearshore and the marine dominated portion of Pacific Coast estuaries exhibited a similar latitudinal gradient in δ15N of -0.3 ‰ per degree latitude. This latitudinal gradient is similar to δ15N observed for intertidal mussels (Mytilus californianus), which are known to reflect the isotope ratio of the phytoplankton they feed on. The consistent latitudinal gradient for multiple primary producers and a consumer, and the agreement with the gradient in nearshore δ15N of nitrate, suggests that it is a result of oceanic source waters. On the watershed side, there is a gradient in the δ15N of nitrate with southern California systems receiving nitrate with a δ15N-NO3 of about +12 ‰,
Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Segre, P. N.; McClymer, J. P.
2004-01-01
The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.
Theory of Epithelial Cell Shape Transitions Induced by Mechanoactive Chemical Gradients.
Dasbiswas, Kinjal; Hannezo, Edouard; Gov, Nir S
2018-02-27
Cell shape is determined by a balance of intrinsic properties of the cell as well as its mechanochemical environment. Inhomogeneous shape changes underlie many morphogenetic events and involve spatial gradients in active cellular forces induced by complex chemical signaling. Here, we introduce a mechanochemical model based on the notion that cell shape changes may be induced by external diffusible biomolecules that influence cellular contractility (or equivalently, adhesions) in a concentration-dependent manner-and whose spatial profile in turn is affected by cell shape. We map out theoretically the possible interplay between chemical concentration and cellular structure. Besides providing a direct route to spatial gradients in cell shape profiles in tissues, we show that the dependence on cell shape helps create robust mechanochemical gradients. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Chamberlain, Chester E; Jeong, Juhee; Guo, Chaoshe; Allen, Benjamin L; McMahon, Andrew P
2008-03-01
Sonic hedgehog (Shh) ligand secreted by the notochord induces distinct ventral cell identities in the adjacent neural tube by a concentration-dependent mechanism. To study this process, we genetically engineered mice that produce bioactive, fluorescently labeled Shh from the endogenous locus. We show that Shh ligand concentrates in close association with the apically positioned basal body of neural target cells, forming a dynamic, punctate gradient in the ventral neural tube. Both ligand lipidation and target field response influence the gradient profile, but not the ability of Shh to concentrate around the basal body. Further, subcellular analysis suggests that Shh from the notochord might traffic into the neural target field by means of an apical-to-basal-oriented microtubule scaffold. This study, in which we directly observe, measure, localize and modify notochord-derived Shh ligand in the context of neural patterning, provides several new insights into mechanisms of Shh morphogen action.
NASA Astrophysics Data System (ADS)
Singh, Sarvesh Kumar; Turbelin, Gregory; Issartel, Jean-Pierre; Kumar, Pramod; Feiz, Amir Ali
2015-04-01
The fast growing urbanization, industrialization and military developments increase the risk towards the human environment and ecology. This is realized in several past mortality incidents, for instance, Chernobyl nuclear explosion (Ukraine), Bhopal gas leak (India), Fukushima-Daichi radionuclide release (Japan), etc. To reduce the threat and exposure to the hazardous contaminants, a fast and preliminary identification of unknown releases is required by the responsible authorities for the emergency preparedness and air quality analysis. Often, an early detection of such contaminants is pursued by a distributed sensor network. However, identifying the origin and strength of unknown releases following the sensor reported concentrations is a challenging task. This requires an optimal strategy to integrate the measured concentrations with the predictions given by the atmospheric dispersion models. This is an inverse problem. The measured concentrations are insufficient and atmospheric dispersion models suffer from inaccuracy due to the lack of process understanding, turbulence uncertainties, etc. These lead to a loss of information in the reconstruction process and thus, affect the resolution, stability and uniqueness of the retrieved source. An additional well known issue is the numerical artifact arisen at the measurement locations due to the strong concentration gradient and dissipative nature of the concentration. Thus, assimilation techniques are desired which can lead to an optimal retrieval of the unknown releases. In general, this is facilitated within the Bayesian inference and optimization framework with a suitable choice of a priori information, regularization constraints, measurement and background error statistics. An inversion technique is introduced here for an optimal reconstruction of unknown releases using limited concentration measurements. This is based on adjoint representation of the source-receptor relationship and utilization of a weight function which exhibits a priori information about the unknown releases apparent to the monitoring network. The properties of the weight function provide an optimal data resolution and model resolution to the retrieved source estimates. The retrieved source estimates are proved theoretically to be stable against the random measurement errors and their reliability can be interpreted in terms of the distribution of the weight functions. Further, the same framework can be extended for the identification of the point type releases by utilizing the maximum of the retrieved source estimates. The inversion technique has been evaluated with the several diffusion experiments, like, Idaho low wind diffusion experiment (1974), IIT Delhi tracer experiment (1991), European Tracer Experiment (1994), Fusion Field Trials (2007), etc. In case of point release experiments, the source parameters are mostly retrieved close to the true source parameters with least error. Primarily, the proposed technique overcomes two major difficulties incurred in the source reconstruction: (i) The initialization of the source parameters as required by the optimization based techniques. The converged solution depends on their initialization. (ii) The statistical knowledge about the measurement and background errors as required by the Bayesian inference based techniques. These are hypothetically assumed in case of no prior knowledge.
Protein gradient films of fibroin and gelatine.
Claussen, Kai U; Lintz, Eileen S; Giesa, Reiner; Schmidt, Hans-Werner; Scheibel, Thomas
2013-10-01
Gradients are a natural design principle in biological systems that are used to diminish stress concentration where materials of differing mechanical properties connect. An interesting example of a natural gradient material is byssus, which anchors mussels to rocks and other hard substrata. Building upon previous work with synthetic polymers and inspired by byssal threads, protein gradient films are cast using glycerine-plasticized gelatine and fibroin exhibiting a highly reproducible and smooth mechanical gradient, which encompasses a large range of modulus from 160 to 550 MPa. The reproducible production of biocompatible gradient films represents a first step towards medical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.
Peng, Ran; Li, Dongqing
2015-02-15
Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.
Wesner, Jeff S.; Walters, David; Schmidt, Travis S.; Kraus, Johanna M.; Stricker, Craig A.; Clements, William H.; Wolf, Ruth E.
2017-01-01
Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 µg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ15N and δ13C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ15N by ~0.8‰, but not δ13C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ15N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g. larvae) to assess risk to wildlife that feed on subsequent life stages (e.g. adults).
Wesner, Jeff S; Walters, David M; Schmidt, Travis S; Kraus, Johanna M; Stricker, Craig A; Clements, William H; Wolf, Ruth E
2017-02-21
Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 μg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ 15 N and δ 13 C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ 15 N by ∼0.8‰, but not δ 13 C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ 15 N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g., larvae) to assess risk to wildlife that feed on subsequent life stages (e.g., adults).
Automated agar plate streaker: a linear plater on Society for Biomolecular Sciences standard plates.
King, Gregory W; Kath, Gary S; Siciliano, Sal; Simpson, Neal; Masurekar, Prakash; Sigmund, Jan; Polishook, Jon; Skwish, Stephen; Bills, Gerald; Genilloud, Olga; Peláez, Fernando; Martín, Jesus; Dufresne, Claude
2006-09-01
Several protocols for bacterial isolation and techniques for aerobic plate counting rely on the use of a spiral plater to deposit concentration gradients of microbial suspensions onto a circular agar plate to isolate colony growth. The advantage of applying a gradient of concentrations across the agar surface is that the original microbiological sample can be applied at a single concentration rather than as multiple serial dilutions. The spiral plater gradually dilutes the sample across a compact area and therefore saves time preparing dilutions and multiple agar plates. Commercial spiral platers are not automated and require manual sample loading. Dispensing of the sample volume and rate of gradients are often very limited in range. Furthermore, the spiral sample application cannot be used with rectangular microplates. Another limitation of commercial spiral platers is that they are useful only for dilute, filtered suspensions and cannot plate suspensions of coarse organic particles therefore precluding the use of many kinds of microorganism-containing substrata. An automated agar plate spreader capable of processing 99 rectangular microplates in unattended mode is described. This novel instrument is capable of dispensing discrete volumes of sample in a linear pattern. It can be programmed to dispense a sample suspense at a uniform application rate or across a decreasing concentration gradient.
Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin
2013-01-01
In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.
Development of novel microfluidic platforms for neural stem cell research
NASA Astrophysics Data System (ADS)
Chung, Bonggeun
This dissertation describes the development and characterization of novel microfluidic platforms to study proliferation, differentiation, migration, and apoptosis of neural stem cells (NSCs). NSCs hold tremendous promise for fundamental biological studies and cell-based therapies in human disorders. NSCs are defined as cells that can self-renew yet maintain the ability to generate the three principal cell types of the central nervous system such as neurons, astrocytes, and oligodendrocytes. NSCs therefore have therapeutic possibilities in multiple neurodevelopmental and neurodegenerative diseases. Despite their promise, cell-based therapies are limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms can provide much greater control over cell microenvironments and optimize proliferation and differentiation conditions of cells exposed to combinatorial mixtures of growth factors. Human NSCs were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor mixture. NSCs proliferated and differentiated in a graded and proportional fashion that varied directly with growth factor concentration. In parallel to the study of growth and differentiation of NSCs, we are interested in proliferation and apoptosis of mouse NSCs exposed to morphogen gradients. Morphogen gradients are fundamental to animal brain development. Nonetheless, much controversy remains about the mechanisms by which morphogen gradients act on the developing brain. To overcome limitations of in-vitro models of gradients, we have developed a hybrid microfluidic platform that can mimic morphogen gradient profiles. Bone morphogenetic protein (BMP) activity in the developing cortex is graded and cortical NSC responses to BMPs are highly dependent on concentration and gradient slope of BMPs. To make novel microfluidic devices integrated with multiple functions, we have also developed a microfluidic multi-injector (MMI) that can generate temporal and spatial concentration gradients. MMI consists of fluidic channels and control channels with pneumatically actuated on-chip barrier valves. Repetitive actuations of on-chip valves control pulsatile release of solution that establishes microscopic chemical gradients. The development of novel gradient-generating microfluidic platforms will help in advancing our understanding of brain development and provide a versatile tool with basic and applied studies in stem cell biology.
NASA Astrophysics Data System (ADS)
Asher, Elizabeth; Dacey, John W.; Ianson, Debby; Peña, Angelica; Tortell, Philippe D.
2017-04-01
Concentrations of dimethylsulfide (DMS), measured in the Subarctic Pacific during summer 2010 and 2011, ranged from ˜1 to 40 nM, while dissolved dimethylsulfoxide (DMSO) concentrations (range 13-23 nM) exceeded those of dissolved dimethyl sulfoniopropionate (DMSP) (range 1.3-8.8 nM). Particulate DMSP dominated the reduced sulfur pool, reaching maximum concentrations of 100 nM. Coastal and off shore waters exhibited similar overall DMS concentration ranges, but sea-air DMS fluxes were lower in the oceanic waters due to lower wind speeds. Surface DMS concentrations showed statistically significant correlations with various hydrographic variables including the upwelling intensity (r2 = 0.52, p < 0.001) and the Chlorophyll a/mixed layer depth ratio (r2 = 0.52, p < 0.001), but these relationships provided little predictive power at small scales. Stable isotope tracer experiments indicated that the DMSP cleavage pathway always exceeded the DMSO reduction pathway as a DMS source, leading to at least 85% more DMS production in each experiment. Gross DMS production rates were positively correlated with the upwelling intensity, while net rates of DMS production were significantly correlated to surface water DMS concentrations. This latter result suggests that our measurements captured dominant processes driving surface DMS accumulation across a coastal-oceanic gradient.
NASA Astrophysics Data System (ADS)
Namura, Kyoko; Nakajima, Kaoru; Suzuki, Motofumi
2018-02-01
We experimentally investigated Marangoni flows around a microbubble in diluted 1-butanol/water, 2-propanol/water, and ethanol/water mixtures using the thermoplasmonic effect of gold nanoisland film. A laser spot on the gold nanoisland film acted as a highly localized heat source that was utilized to generate stable air microbubbles with diameters of 32-48 μm in the fluid and to induce a steep temperature gradient on the bubble surface. The locally heated bubble has a flow along the bubble surface, with the flow direction showing a clear transition depending on the alcohol concentrations. The fluid is driven from the hot to cold regions when the alcohol concentration is lower than the transition concentration, whereas it is driven from the cold to hot regions when the concentration is higher than the transition concentration. In addition, the transition concentration increases as the carbon number of the alcohol decreases. The observed flow direction transition is explained by the balance of the thermal- and solutal-Marangoni forces that are cancelled out for the transition concentration. The selective evaporation of the alcohol at the locally heated surface allows us to generate stable and rapid thermoplasmonic solutal-Marangoni flows in the alcohol/water mixtures.
NASA Astrophysics Data System (ADS)
Perez, Pedro; Miranda, Regina
2013-04-01
The traffic-related atmospheric emissions, composition and transport of greenhouse gases (GHGs) and air toxic pollutants (ATPs), are an important environmental problem that affect climate change and air pollution in Madrid, Spain. Carbon dioxide (CO2) affects the regional weather and particularly fine particle matter (PM) translocate to the people resulting in local health problems. As the main source of emissions comes from road transport, and subsequent combustion of fossil fuels, air quality deterioration may be elevated during weekdays and peak hours. We postulate that traffic-related air quality (CO2, methane CH4, PM, volatile organic compounds VOCs, nitrogen oxides NOx and carbon monoxide CO contents) impairs epidemiology in part via effects on health and disease development, likely increasing the external costs of transport in terms of climate change and air pollution. First, the paper intends to estimate the local air quality related to the road transport emissions of weeks over a domain covering Madrid (used as a case study). The local air quality model (LAQM) is based on gridded and shaped emission fields. The European Environmental Agency (EEA) COPERT modeling system will provide GHGs and ATPs gridded and shaped emission data and mobile source parameters, available for Madrid from preliminary emission inventory records of the Municipality of Madrid and from disaggregated traffic counts of the Traffic Engineering Company and the Metropolitan Company of Metro (METRO-Madrid). The paper intends to obtain estimates of GHGs and ATPs concentrations commensurate with available ground measurements, 24-hour average values, from the Municipality of Madrid. The comparison between estimated concentrations and measurements must show small errors (e.g. fractional error, fractional bias and coefficient of determination). The paper's expected results must determine spatial and temporal patterns in Madrid. The estimates will be used to cross check the primary local emission inventory, together with the mobile source's parameters and the disaggregated transport activity data. The paper will also identify emission and concentration differences and gradients of certain magnitude/factor (e.g. comparison between estimated ATPs hourly concentrations in Madrid City Center and in the peripheries). Furthermore, because of the higher contribution of road mobile sources to GHGs and ATPs emissions in Madrid, small gradients between urban highways and residential areas will be expected. Second, the paper objectives are to develop valid methods and approaches to measure air quality and to develop valid road transport emission inventories to assess correlations between external costs, epidemiology and emissions in order to reveal how traffic pollution affects people exposure to key contaminants and disease development, and identify susceptible emission scenarios and health impacts. We have conducted general emission inventory studies providing preliminary evidence of regional road transport air pollution impacts on external cost growth and disease development. Third, we also aim to demonstrate short and long-term impacts of road transport emissions on external costs development using innovative multi-methodological methods interfaced with environmental chemistry and meteorology following meteorological and chemical fields with contrasting high/low traffic emissions in several linked components involving: air pollutant assessment using local measurements, height of the boundary layer, meteorological environment interactions on external costs and epidemiology, mapping of Madrid (identifying gradients of emissions), integrative causal modeling using statistical models, and trend and scenario analyses on external costs and impacts on human health. Meteorological and chemical fields will be obtained from local records collected by surface meteorological and air quality stations. These two sets of fields define the horizontal and vertical profiles of GHGs and ATPs of Madrid based on air quality ground (initial conditions) and vertical (boundary conditions) measurements and modulate air concentration estimates
Carbon cycling in the mantled karst of the Ozark Plateaus, central United States
Knierim, Katherine J.; Pollock, Erik D.; Covington, Matthew D.; Hays, Phillip D.; Brye, Kristofor R.
2017-01-01
The nature of carbon (C) cycling in the unsaturated zone where groundwater is in contact with abundant gas-filled voids is poorly understood. The objective of this study was to trace inorganic-C cycling in a karst landscape using stable-C isotopes, with emphasis on a shallow groundwater flow path through the soil, to an underlying cave, and to the spring outlet of a cave stream in the Ozark Plateaus of northwestern Arkansas. Carbon dioxide (CO2) concentration and isotopic composition (δ13C-CO2) in gas and dissolved inorganic carbon (DIC) concentration and isotopic composition (δ13C-DIC) in water were measured in samples collected from two suction-cup soil samplers above the cave, three sites in the cave, and at the spring outlet of the cave stream. Soil-gas CO2 concentration (median 2,578 ppm) and δ13C-CO2 (median − 21.5‰) were seasonally variable, reflecting the effects of surface temperature changes on soil-CO2 production via respiration and organic-matter decomposition. Cave-air CO2 (median 1,026 ppm) was sourced from the soil zone and the surface atmosphere, with seasonally changing proportions of each source controlled by surface temperature-driven air density gradients. Soil-DIC concentration (median 1.7 mg L− 1) was lower and soil-δ13C-DIC (median − 19.5‰) was lighter compared to the cave (median 23.3 mg L− 1 and − 14.3‰, respectively) because carbonate-bedrock dissolution provided an inorganic source of C to the cave. Carbon species in the soil had a unique, light stable-C isotopic signature compared to the cave. Discrimination of soil-C sources to karst groundwater was achieved, which is critical for developing hydrologic budgets using environmental tracers such as C.
Seasonal variation and sources of dissolved trace metals in Maó Harbour, Minorca Island.
Martínez-Soto, Marly C; Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Rodellas, Valentí; Garcia-Orellana, Jordi; Basterretxea, Gotzon
2016-09-15
The environmental conditions of semi-enclosed coastal water-bodies are directly related to the catchment, human activities, and oceanographic setting in which they are located. As a result of low tidal forcing, and generally weak currents, waters in Mediterranean harbours are poorly renewed, leading to quality deterioration. Here, we characterise the seasonal variation of trace metals (i.e. Co, Cd, Cu, Fe, Mo, Ni, Pb, and Zn) in surface waters, and trace metal content in sediments from Maó Harbour, a semi-enclosed coastal ecosystem in the NW Mediterranean Sea. Our results show that most of the dissolved trace metals in the waters of Maó Harbour exhibit a marked inner-outer concentration gradient, suggesting a permanent input into the inner part of the harbour. In general, metal concentrations in the waters of Maó Harbour are higher than those in offshore waters. Concentration of Cu (21±8nM), Fe (9.2±3.2nM) and Pb (1.3±0.4nM) are particularly high when compared with other coastal areas of the Mediterranean Sea. The concentration of some metals such as Cu and Zn increases during summertime, when the human population and boat traffic increase during the tourism season, and when resuspension from the metal enriched sediments is higher. The evaluation of the metal sources in the harbour reveals that, compared with other putative sources such as runoff, aerosol deposition and fresh groundwater discharges, contaminated sediments are the main source of the metals found in the water column, most likely through vessel-driven resuspension events. This study contributes to the understanding of the processes that control the occurrence and distribution of trace metals in Maó Harbour, thus aiding in the effective management of the harbour, and enhancing the overall quality of the seawater ecosystem. Copyright © 2016 Elsevier B.V. All rights reserved.
Calculation and Analysis of magnetic gradient tensor components of global magnetic models
NASA Astrophysics Data System (ADS)
Schiffler, Markus; Queitsch, Matthias; Schneider, Michael; Stolz, Ronny; Krech, Wolfram; Meyer, Hans-Georg; Kukowski, Nina
2014-05-01
Magnetic mapping missions like SWARM and its predecessors, e.g. the CHAMP and MAGSAT programs, offer high resolution Earth's magnetic field data. These datasets are usually combined with magnetic observatory and survey data, and subject to harmonic analysis. The derived spherical harmonic coefficients enable magnetic field modelling using a potential series expansion. Recently, new instruments like the JeSSY STAR Full Tensor Magnetic Gradiometry system equipped with very high sensitive sensors can directly measure the magnetic field gradient tensor components. The full understanding of the quality of the measured data requires the extension of magnetic field models to gradient tensor components. In this study, we focus on the extension of the derivation of the magnetic field out of the potential series magnetic field gradient tensor components and apply the new theoretical framework to the International Geomagnetic Reference Field (IGRF) and the High Definition Magnetic Model (HDGM). The gradient tensor component maps for entire Earth's surface produced for the IGRF show low values and smooth variations reflecting the core and mantle contributions whereas those for the HDGM gives a novel tool to unravel crustal structure and deep-situated ore bodies. For example, the Thor Suture and the Sorgenfrei-Thornquist Zone in Europe are delineated by a strong northward gradient. Derived from Eigenvalue decomposition of the magnetic gradient tensor, the scaled magnetic moment, normalized source strength (NSS) and the bearing of the lithospheric sources are presented. The NSS serves as a tool for estimating the lithosphere-asthenosphere boundary as well as the depth of plutons and ore bodies. Furthermore changes in magnetization direction parallel to the mid-ocean ridges can be obtained from the scaled magnetic moment and the normalized source strength discriminates the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.
NASA Astrophysics Data System (ADS)
Chateauvert, C. Adam; Lesack, Lance F. W.; Bothwell, Max L.
2012-12-01
The Mackenzie River Delta is a lake-rich arctic floodplain that receives high inputs of dissolved organic matter (DOM) and suspended particulates from allochthonous and autochthonous sources, and may transfer carbon from dissolved to particulate phase via in situ formation of transparent exopolymer particles (TEP). TEP provides food for grazers, surfaces for bacteria, and increased potential for aggregation and sedimentation of organic matter. During open water 2006, we tracked TEP abundances in three Delta lakes representing gradients that include declining river-to-lake connection times, increasing levels of dissolved organic carbon (DOC), and declining chromophoric-DOM (CDOM). Unexpectedly, TEP abundances were highest immediately after the flood, when autochthonous autotrophic production was at a seasonal low and CDOM a seasonal high. Moreover, the lake with the strongest riverine influence and lowest levels of autochthonous autotrophic production had the highest mean TEP-carbon (TEP-C) concentrations among the lakes. The mean proportion of particulate organic carbon (POC) represented by TEP-C increased with increasing river connection time, and appears to represent a substantial proportion of POC in Mackenzie Delta Lakes. Unexpectedly, the TEP gradient was most strongly related to CDOM (river water source) rather than overall DOC. Variations in CDOM accounted for 53% of TEP-C variation among the lakes, indicating allochthonous matter was the most important source of TEP. DOC release from in situ macrophytes during periods of high photosynthesis may contribute to TEP formation in the lake with lowest riverine influence, but pH levels >9.5 driven by the high photosynthetic rates complicate the interpretation of results from this lake.
D-Optimal Experimental Design for Contaminant Source Identification
NASA Astrophysics Data System (ADS)
Sai Baba, A. K.; Alexanderian, A.
2016-12-01
Contaminant source identification seeks to estimate the release history of a conservative solute given point concentration measurements at some time after the release. This can be mathematically expressed as an inverse problem, with a linear observation operator or a parameter-to-observation map, which we tackle using a Bayesian approach. Acquisition of experimental data can be laborious and expensive. The goal is to control the experimental parameters - in our case, the sparsity of the sensors, to maximize the information gain subject to some physical or budget constraints. This is known as optimal experimental design (OED). D-optimal experimental design seeks to maximize the expected information gain, and has long been considered the gold standard in the statistics community. Our goal is to develop scalable methods for D-optimal experimental designs involving large-scale PDE constrained problems with high-dimensional parameter fields. A major challenge for the OED, is that a nonlinear optimization algorithm for the D-optimality criterion requires repeated evaluation of objective function and gradient involving the determinant of large and dense matrices - this cost can be prohibitively expensive for applications of interest. We propose novel randomized matrix techniques that bring down the computational costs of the objective function and gradient evaluations by several orders of magnitude compared to the naive approach. The effect of randomized estimators on the accuracy and the convergence of the optimization solver will be discussed. The features and benefits of our new approach will be demonstrated on a challenging model problem from contaminant source identification involving the inference of the initial condition from spatio-temporal observations in a time-dependent advection-diffusion problem.
Lee, J.-S.; Lee, B.-G.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.; Brown, C.L.
2000-01-01
The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing four levels of AVS (0.5, 7.5, 15, 35 ??mol/g). The results were compared to sediments spiked with four levels of Cd-Ni-Zn mixtures at one AVS concentration (7.5 ??mol/g). A vertical redox gradient was generated in each treatment by an 18-d incubation with an oxidized water column. [AVS] in the surface sediments decreased by 65-95% due to oxidation during incubation; initial [AVS] was maintained at 0.5-7.5 cm depth. PW metal concentrations were correlated with [SEM - AVS] among all data. But PW metal concentrations were variable, causing the distribution coefficient, Kd(pw) (the ratio of [SEM] to PW metal concentrations) to vary by 2-3 orders of magnitude at a given [SEM - AVS]. One reason for the variability was that vertical profiles in PW metal concentrations appeared to be influenced by diffusion as well as [SEM - AVS]. The presence of animals appeared to enhance the diffusion of at least Zn. The generalization that PW metal concentrations are controlled by [SEM - AVS] is subject to some important qualifications if vertical gradients are complicated, metal concentrations vary, or equilibration times differ.The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing four levels of AVS (0.5, 7.5, 15, 35 ??mol/g). The results were compared to sediments spiked with four levels of Cd-Ni-Zn mixtures at one AVS concentration (7.5 ??mol/g). A vertical redox gradient was generated in each treatment by an 18-d incubation with an oxidized water column. [AVS] in the surface sediments decreased by 65-95% due to oxidation during incubation; initial [AVS] was maintained at 0.5-7.5 cm depth. PW metal concentrations were correlated with [SEM - AVS] among all data. But PW metal concentrations were variable, causing the distribution coefficient, Kdpw (the ratio of [SEM] to PW metal concentrations) to vary by 2-3 orders of magnitude at a given [SEM - AVS]. One reason for the variability was that vertical profiles in PW metal concentrations appeared to be influenced by diffusion as well as [SEM - AVS]. The presence of animals appeared to enhance the diffusion of at least Zn. The generalization that PW metal concentrations are controlled by [SEM - AVS] is subject to some important qualifications if vertical gradients are complicated, metal concentrations vary, or equilibration times differ.
Effects of the nuisance algae, Cladophora, on Escherichia coli at recreational beaches in Wisconsin.
Englebert, Erik T; McDermott, Colleen; Kleinheinz, Gregory T
2008-10-01
Recreational beaches constitute a large part of the 12 billion dollar per year tourism industry in Wisconsin. Beach closures due to microbial contamination are costly in terms of lost tourism revenue and adverse publicity for an area. Escherichia coli (E. coli), is used as an indicator of microbial contamination, as high concentrations of this organism should indicate a recent fecal contamination event that may contain other, more pathogenic, bacteria. An additional problem at many beaches in the state is the nuisance algae, Cladophora. It has been hypothesized that mats of Cladophora may harbor high concentrations of E. coli. Three beaches in Door County, WI were selected for study, based on tourist activity and amounts of algae present. Concentrations of E. coli were higher within Cladophora mats than in surrounding water. Beaches displayed an E. coli concentration gradient in water extending away from the Cladophora mats, although this was not statistically significant. Likewise, the amount of Cladophora observed on a beach did not correlate with E. coli concentrations found in routine beach monitoring samples. More work is needed to determine the impact of mats of Cladophora on beach water quality, as well as likely sources of E. coli found within the mats.
An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements
NASA Astrophysics Data System (ADS)
Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Rémy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.
2014-04-01
Atmospheric concentration measurements are used to adjust the daily to monthly budget of CO2 emissions from the AirParif inventory of the Paris agglomeration. We use 5 atmospheric monitoring sites including one at the top of the Eiffel tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion tool adjusts the CO2 fluxes (anthropogenic and biogenic) with a temporal resolution of 6 h, assuming temporal correlation of emissions uncertainties within the daily cycle and from day to day, while keeping the a priori spatial distribution from the emission inventory. The inversion significantly improves the agreement between measured and modelled concentrations. However, the amplitude of the atmospheric transport errors is often large compared to the CO2 gradients between the sites that are used to estimate the fluxes, in particular for the Eiffel tower station. In addition, we sometime observe large model-measurement differences upwind from the Paris agglomeration, which confirms the large and poorly constrained contribution from distant sources and sinks included in the prescribed CO2 boundary conditions These results suggest that (i) the Eiffel measurements at 300 m above ground cannot be used with the current system and (ii) the inversion shall rely on the measured upwind-downwind gradients rather than the raw mole fraction measurements. With such setup, realistic emissions are retrieved for two 30 day periods. Similar inversions over longer periods are necessary for a proper evaluation of the results.
Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; ...
2016-02-08
Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds,more » while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. In conclusion, together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.« less
Hu, Shih-Cheng; Shiue, Angus; Tu, Jin-Xin; Liu, Han-Yang; Chiu, Rong-Ben
2015-12-01
For class II, type A2 biological safety cabinets (BSC), NSF/ANSI Standard 49 should be conformed in cabinet airflow velocity derivation, particle contamination, and aerodynamic flow properties. However, there exists a potential problem. It has been built that the cabinet air flow stabilize is influenced by the quantity of downflow of air and the height above the cabinet exhaust opening. Three air downflow quantities were compared as an operating apparatus was placed from 20 to 40 cm above the bench of the cabinet. The results show that the BSC air downflow velocity is a function of increased sampling height, displaying that containment is improvingly permitted over product protection as the sampling height decreases. This study investigated the concentration gradient of particles at various heights and downflow air quantity from the bench of the BSC. Experiment results indicate that performance near the bench was better than in the rest of the BSC. In terms of height, the best cleanliness was measured at a height of 10 cm over the bench; it reduced actually with add in height. The empirical curves accommodate, founded on the concentration gradient of particle created was elaborated for evaluating the particle concentration at different heights and downflow air quantity from the source of the bench of the BSC. The particle image velocimetry system applied for BSC airflow research to fix amount of airflow patterns and air distribution measurement and results of measurements show how obstructions can greatly influence the airflow and contaminant transportation in a BSC.
Physiological response of the Caribbean Coral O. annularis to Pollution Gradients
NASA Astrophysics Data System (ADS)
Murphy, E. L.; Sivaguru, M.; Fouke, B. W.
2014-12-01
Orbicella annularis is an abundant ecological cornerstone framework-building Scleractinian coral throughout the Caribbean Sea. The O. annularis holobiont (biotic and abiotic components of the coral) is negatively impacted by increased exposure to anthropogenic pollution. This is consistently evidenced by altered tissue cellular composition, and skeletal structure. The O. annularis' holobiont is weakened by increased exposure to sewage and ship bilge pollution. Pollution exposure is characterized by decreased skeletal growth, as well as decreased zooxanthellae and chromatophore tissue cell densities. Healthy colonies studied at five sites on the leeward coast of Curacao, along a systematically decreasing pollution concentration, were sampled from the back-reef depositional facies of a protected fringing reef tract. A unidirectional oceanographic current flows to the NW past the city of Willemstad, a large point source of human sewage and ship bilge. This setting creates an ideal natural laboratory for in situ experimentation that quantitatively tracks the impact to coral physiology along a gradient from unimpacted to polluted seawater. Our lab has established laser scanning microscopy for three-dimensional (3D) quantification of zooxanthellae, and chromatophore cellular tissue density. X-ray computed tomography (BioCT) was used for analysis of skeletal density. Zooxanthellae density decreased as pollution concentration increased. Chromatophore density showed no significant relationship with pollution concentration but varied dramatically within each site. This suggests zooxanthellae density is highly impacted by environmental stress while variation in chromatophore density is driven by genetic variation. These results will be used to create a new model for environmental impacts on coral physiology and skeletal growth.
Nagel, Frank-Jan; Van As, Henk; Tramper, Johannes; Rinzema, Arjen
2002-09-20
Gradients inside substrate particles cannot be prevented in solid-state fermentation. These gradients can have a strong effect on the physiology of the microorganisms but have hitherto received little attention in experimental studies. We report gradients in moisture and glucose content during cultivation of Aspergillus oryzae on membrane-covered wheat-dough slices that were calculated from (1)H-NMR images. We found that moisture gradients in the solid substrate remain small when evaporation is minimized. This is corroborated by predictions of a diffusion model. In contrast, strong glucose gradients developed. Glucose concentrations just below the fungal mat remained low due to high glucose uptake rates, but deeper in the matrix glucose accumulated to very high levels. Integration of the glucose profile gave an average concentration close to the measured average content. On the basis of published data, we expect that the glucose levels in the matrix cause a strong decrease in water activity. The results demonstrate that NMR can play an important role in quantitative analysis of water and glucose gradients at the particle level during solid-state fermentation, which is needed to improve our understanding of the response of fungi to this nonconventional fermentation environment. Copyright 2002 Wiley Periodicals, Inc.
Stable Isotope Identification of Nitrogen Sources for United States (U.S.) Pacific Coast Estuaries
NASA Astrophysics Data System (ADS)
Brown, C. A.; Kaldy, J. E.; Fong, P.; Fong, C.; Mochon Collura, T.; Clinton, P.
2016-02-01
Nutrients are the leading cause of water quality impairments in the United States, and as a result tools are needed to identify the sources of nutrients. We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected macroalgae and analyzed these samples for natural abundance of stable isotopes (δ15N) and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In Oregon estuaries, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources with heavier sites located near the estuary mouth. In California estuaries, the gradient was reversed with heavier sites located upriver. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAGASSE,ROBERT R.; THOMPSON,KYLE R.
The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diametermore » of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.« less
NASA Astrophysics Data System (ADS)
Schäfer, K.; Grant, R. H.; Emeis, S.; Raabe, A.; von der Heide, C.; Schmid, H. P.
2012-07-01
Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2) are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s-1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST) flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.
Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis
Zhou, Ying; Levy, Jonathan I
2007-01-01
Background There has been growing interest among exposure assessors, epidemiologists, and policymakers in the concept of "hot spots", or more broadly, the "spatial extent" of impacts from traffic-related air pollutants. This review attempts to quantitatively synthesize findings about the spatial extent under various circumstances. Methods We include both the peer-reviewed literature and government reports, and focus on four significant air pollutants: carbon monoxide, benzene, nitrogen oxides, and particulate matter (including both ultrafine particle counts and fine particle mass). From the identified studies, we extracted information about significant factors that would be hypothesized to influence the spatial extent within the study, such as the study type (e.g., monitoring, air dispersion modeling, GIS-based epidemiological studies), focus on concentrations or health risks, pollutant under study, background concentration, emission rate, and meteorological factors, as well as the study's implicit or explicit definition of spatial extent. We supplement this meta-analysis with results from some illustrative atmospheric dispersion modeling. Results We found that pollutant characteristics and background concentrations best explained variability in previously published spatial extent estimates, with a modifying influence of local meteorology, once some extreme values based on health risk estimates were removed from the analysis. As hypothesized, inert pollutants with high background concentrations had the largest spatial extent (often demonstrating no significant gradient), and pollutants formed in near-source chemical reactions (e.g., nitrogen dioxide) had a larger spatial extent than pollutants depleted in near-source chemical reactions or removed through coagulation processes (e.g., nitrogen oxide and ultrafine particles). Our illustrative dispersion model illustrated the complex interplay of spatial extent definitions, emission rates, background concentrations, and meteorological conditions on spatial extent estimates even for non-reactive pollutants. Our findings indicate that, provided that a health risk threshold is not imposed, the spatial extent of impact for mobile sources reviewed in this study is on the order of 100–400 m for elemental carbon or particulate matter mass concentration (excluding background concentration), 200–500 m for nitrogen dioxide and 100–300 m for ultrafine particle counts. Conclusion First, to allow for meaningful comparisons across studies, it is important to state the definition of spatial extent explicitly, including the comparison method, threshold values, and whether background concentration is included. Second, the observation that the spatial extent is generally within a few hundred meters for highway or city roads demonstrates the need for high resolution modeling near the source. Finally, our findings emphasize that policymakers should be able to develop reasonable estimates of the "zone of influence" of mobile sources, provided that they can clarify the pollutant of concern, the general site characteristics, and the underlying definition of spatial extent that they wish to utilize. PMID:17519039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprenger, Lisa, E-mail: Lisa.Sprenger@tu-dresden.de; Lange, Adrian; Odenbach, Stefan
2013-12-15
Ferrofluids are colloidal suspensions consisting of magnetic nanoparticles dispersed in a carrier liquid. Their thermodiffusive behaviour is rather strong compared to molecular binary mixtures, leading to a Soret coefficient (S{sub T}) of 0.16 K{sup −1}. Former experiments with dilute magnetic fluids have been done with thermogravitational columns or horizontal thermodiffusion cells by different research groups. Considering the horizontal thermodiffusion cell, a former analytical approach has been used to solve the phenomenological diffusion equation in one dimension assuming a constant concentration gradient over the cell's height. The current experimental work is based on the horizontal separation cell and emphasises the comparison ofmore » the concentration development in different concentrated magnetic fluids and at different temperature gradients. The ferrofluid investigated is the kerosene-based EMG905 (Ferrotec) to be compared with the APG513A (Ferrotec), both containing magnetite nanoparticles. The experiments prove that the separation process linearly depends on the temperature gradient and that a constant concentration gradient develops in the setup due to the separation. Analytical one dimensional and numerical three dimensional approaches to solve the diffusion equation are derived to be compared with the solution used so far for dilute fluids to see if formerly made assumptions also hold for higher concentrated fluids. Both, the analytical and numerical solutions, either in a phenomenological or a thermodynamic description, are able to reproduce the separation signal gained from the experiments. The Soret coefficient can then be determined to 0.184 K{sup −1} in the analytical case and 0.29 K{sup −1} in the numerical case. Former theoretical approaches for dilute magnetic fluids underestimate the strength of the separation in the case of a concentrated ferrofluid.« less
Mercury speciation and mobilization in a wastewater-contaminated groundwater plume
Lamborg, Carl H.; Kent, Doug B.; Swarr, Gretchen J.; Munson, Kathleen M.; Kading, Tristan; O'Connor, Alison E.; Fairchild, Gillian M.; LeBlanc, Denis R.; Wiatrowski, Heather A.
2013-01-01
We measured the concentration and speciation of mercury (Hg) in groundwater down-gradient from the site of wastewater infiltration beds operated by the Massachusetts Military Reservation, western Cape Cod, Massachusetts. Total mercury concentrations in oxic, mildly acidic, uncontaminated groundwater are 0.5–1 pM, and aquifer sediments have 0.5–1 ppb mercury. The plume of impacted groundwater created by the wastewater disposal is still evident, although inputs ceased in 1995, as indicated by anoxia extending at least 3 km down-gradient from the disposal site. Solutes indicative of a progression of anaerobic metabolisms are observed vertically and horizontally within the plume, with elevated nitrate concentrations and nitrate reduction surrounding a region with elevated iron concentrations indicating iron reduction. Mercury concentrations up to 800 pM were observed in shallow groundwater directly under the former infiltration beds, but concentrations decreased with depth and with distance down-gradient. Mercury speciation showed significant connections to the redox and metabolic state of the groundwater, with relatively little methylated Hg within the iron reducing sector of the plume, and dominance of this form within the higher nitrate/ammonium zone. Furthermore, substantial reduction of Hg(II) to Hg0 within the core of the anoxic zone was observed when iron reduction was evident. These trends not only provide insight into the biogeochemical factors controlling the interplay of Hg species in natural waters, but also support hypotheses that anoxia and eutrophication in groundwater facilitate the mobilization of natural and anthropogenic Hg from watersheds/aquifers, which can be transported down-gradient to freshwaters and the coastal zone.
Pre-eruption recharge of the Bishop magma system
Wark, D.A.; Hildreth, W.; Spear, F.S.; Cherniak, D.J.; Watson, E.B.
2007-01-01
The 650 km3 rhyolitic Bishop Tuff (eastern California, USA), which is stratigraphically zoned with respect to temperatures of mineral equilibration, reflects a corresponding thermal gradient in the source magma chamber. Consistent with previous work, application of the new TitaniQ (Ti-in-quartz) thermometer to quartz phenocryst rims documents an ???100 ??C temperature increase with chamber depth at the time of eruption. Application of TitaniQ to quartz phenocryst cores, however, reveals lower temperatures and an earlier gradient that was less steep, with temperature increasing with depth by only ???30 ??C. In many late-erupted crystals, sharp boundaries that separate low-temperature cores from high-temperature rims cut internal cathodoluminescent growth zoning, indicating partial phenocryst dissolution prior to crystallization of the high-temperature rims. Rimward jumps in Ti concentration across these boundaries are too abrupt (e.g., 40 ppm across a distance of <10 ??m) to have survived magmatic temperatures for more than ???100 yr. We interpret these observations to indicate heating-induced partial dissolution of quartz, followed by growth of high-temperature rims (made possible by lowering of water activity due to addition of CO2) within 100 yr of the climactic 760 ka eruption. Hot mafic melts injected into deeper parts of the magma system were the likely source of heat and CO2, raising the possibility that eruption and caldera collapse owe their origin to a recharge event. ?? 2007 Geological Society of America.
Luider, C.D.; Crusius, John; Playle, R.C.; Curtis, P.J.
2004-01-01
Rainbow trout (Oncorhynchus mykiss, 2 g) were exposed to 0−5 μM total copper in ion-poor water for 3 h in the presence or absence of 10 mg C/L of qualitatively different natural organic matter (NOM) derived from water spanning a large gradient in hydrologic residence time. Accumulation of Cu by trout gills was compared to Cu speciation determined by ion selective electrode (ISE) and by diffusive gradients in thin films (DGT) gel sampler technology. The presence of NOM decreased Cu uptake by trout gills as well as Cu concentrations determined by ISE and DGT. Furthermore, the source of NOM influenced Cu binding by trout gills with high-color, allochthonous NOM decreasing Cu accumulation by the gills more than low-color autochthonous NOM. The pattern of Cu binding to the NOM measured by Cu ISE and by Cu accumulation by DGT samplers was similar to the fish gill results. A simple Cu−gill binding model required an NOM Cu-binding factor (F) that depended on NOM quality to account for observed Cu accumulation by trout gills; values of F varied by a factor of 2. Thus, NOM metal-binding quality, as well as NOM quantity, are both important when assessing the bioavailability of metals such as Cu to aquatic organisms.
Deycard, Victoria N; Schäfer, Jörg; Petit, Jérôme C J; Coynel, Alexandra; Lanceleur, Laurent; Dutruch, Lionel; Bossy, Cécile; Ventura, Alexandre; Blanc, Gérard
2017-01-01
Although silver (Ag) has been listed as a priority pollutant for the aquatic environment by the European Union (Directive 2006/11/EC), the use of Ag-based products with antimicrobial effects is increasing in Europe, as well as North America and Asia. This study investigates personal care products (PCP) as a potential source of Ag in wastewater, as well as the dynamics and fate of Ag in the influent and effluent of a major urban wastewater treatment plant (WWTP) located on the fluvial part of the Gironde Estuary. Typical household PCPs marked as using Ag contained concentrations of up to 0.4 mg kg -1 making them likely contributors to urban Ag released into the aquatic environment. Silver concentrations in influent wastewater generally occurred during mid-week working hours and decreased during the night and on weekends clearly indicating the dominance of urban sources. Up to 90% of the total Ag in wastewater was bound to particles and efficiently (>80%) removed by the treatment process, whereas 20% of Ag was released into the fluvial estuary. Silver concentrations in wastewater effluents clearly exceeded estuarine concentrations and may strongly amplify the local Ag concentrations and fluxes, especially during summer rainstorms in low river discharge conditions. Further work should focus on environmental effects and fate of urban Ag release due to immediate localized outfall and/or the adsorption on estuarine particles and subsequent release as dissolved Ag chloro-complexes within the estuarine salinity gradient. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neotropical peatland methane emissions along a vegetation and biogeochemical gradient
Flanagan, Neal; Richardson, Curtis J.
2017-01-01
Tropical wetlands are thought to be the most important source of interannual variability in atmospheric methane (CH4) concentrations, yet sparse data prevents them from being incorporated into Earth system models. This problem is particularly pronounced in the neotropics where bottom-up models based on water table depth are incongruent with top-down inversion models suggesting unaccounted sinks or sources of CH4. The newly documented vast areas of peatlands in the Amazon basin may account for an important unrecognized CH4 source, but the hydrologic and biogeochemical controls of CH4 dynamics from these systems remain poorly understood. We studied three zones of a peatland in Madre de Dios, Peru, to test whether CH4 emissions and pore water concentrations varied with vegetation community, soil chemistry and proximity to groundwater sources. We found that the open-canopy herbaceous zone emitted roughly one-third as much CH4 as the Mauritia flexuosa palm-dominated areas (4.7 ± 0.9 and 14.0 ± 2.4 mg CH4 m-2 h-1, respectively). Emissions decreased with distance from groundwater discharge across the three sampling sites, and tracked changes in soil carbon chemistry, especially increased soil phenolics. Based on all available data, we calculate that neotropical peatlands contribute emissions of 43 ± 11.9 Tg CH4 y-1, however this estimate is subject to geographic bias and will need revision once additional studies are published. PMID:29053738
Evdokimova, Galina A; Mozgova, Natalya P
2015-01-01
The work provides a comparative analysis of changes in soil properties in the last 10-13 years along the pollution gradient of air emissions from Kandalaksha aluminium plant in connection with the reduction of their volume. The content of the priority pollutant fluorine (F) in atmospheric precipitation and in the organic horizon of soil in the plant impact zone significantly decreased in 2011-2013 compared to 2001. The aluminium concentrations reduced only in immediate proximity to the plant (2 km). The fluorine, calcium (Ca) and magnesium (Mg) concentrations are higher in liquid phase compared to solid phase thus these elements can migrated to greater distances from the pollution source (up to 15-20 km). Silicon (Si), aluminium (Al), iron (Fe) and phosphorus (P) can be found only in solid phases and in fall-out within the 5 km. The acidity of soil litter reduced by 2 pH units in the proximity to the plot within the 2 km. The zone of maximum soil contamination decreased from 2.5 km to 1.5 km from the emission source, the zones of heavy and moderate pollution reduced by 5 km in connection with the reduction of pollutant emissions in the plant. A high correlation between the fluorine concentrations in vegetables and litter was found. Higher fluorine concentrations in the soil result in its accumulation in plants. Mosses accumulate fluorine most intensively.
Alkali metal thermal to electric conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, R.K.; Ivanenok, J.F. III; Hunt, T.K.
1995-10-01
With potential efficiencies of up to 40%, AMTEC technology offers reliability and fuel flexibility for aerospace and ground power applications. Alkali Metal Thermal to Electric Conversion (AMTEC), a direct power-conversion technology, is emerging from the laboratory for use in a number of applications that require lightweight, long-running, efficient power systems. AMTEC is compatible with many heat and fuel sources, and it offers the reliability of direct (that is, no moving parts) thermal to electric conversion. These features make it an attractive technology for small spacecraft used in deep-space missions and for ground power applications, such as self-powered furnaces and themore » generators used in recreational vehicles. Researchers at Ford Scientific Laboratories, in Dearborn, Michigan, first conceived AMTEC technology in 1968 when they identified and patented a converter known as the sodium heat engine. This heat engine was based on the unique properties of {beta}-alumina solid electrolyte (BASE), a ceramic material that is an excellent sodium ion conductor but a poor electronic conductor. BASE was used to form a structural barrier across which a sodium concentration gradient could be produced from thermal energy. The engine provided a way to isothermally expand sodium through the BASE concentration gradient without moving mechanical components. Measured power density and calculated peak efficiencies were impressive, which led to funding from the Department of Energy for important material technology development.« less
NASA Technical Reports Server (NTRS)
Singh, H. B.; O'Hara, D.; Herlth, D.; Bradshaw, J. D.; Sandholm, S. T.; Gregory, G. L.; Sachse, G. W.; Blake, D. R.; Crutzen, P. J.; Kanakidou, M. A.
1992-01-01
Measurements of PAN and other reactive nitrogen species during the NASA Arctic Boundary Layer Expedition (ABLE 3A) are described, their north-south and east-west gradients in the free troposphere are characterized, and the sources and sinks of PAN and NO(y) are assessed. Large concentrations of PAN and NO(y) are present in the Arctic/sub-Arctic troposphere of the Northern Hemisphere during the summer. Mixing ratios of PAN and a variety of other molecules are more abundant in the free troposphere compared to the boundary layer. Coincident PAN and O3 atmospheric structures suggest that phenomena that define PAN also define the corresponding O3 behavior. Model calculations, correlations between NO(y) and anthropogenic tracers, and the compositions of NO(y) itself suggest that the Arctic/sub-Arctic reactive nitrogen measured during ABLE 3A is predominantly of anthropogenic origin with a minor component from the stratosphere.
Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza
2015-12-01
To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.
NASA Technical Reports Server (NTRS)
Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid
2010-01-01
We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinity gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. The concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.
NASA Technical Reports Server (NTRS)
Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid; Martis, Mary
2010-01-01
We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinit7 gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. Thy concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.
NASA Astrophysics Data System (ADS)
Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza
2015-12-01
To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.
Benomar, Lahcen; Lamhamedi, Mohammed S.; Rainville, André; Beaulieu, Jean; Bousquet, Jean; Margolis, Hank A.
2016-01-01
Assisted population migration (APM) is the intentional movement of populations within a species range to sites where future environmental conditions are projected to be more conducive to growth. APM has been proposed as a proactive adaptation strategy to maintain forest productivity and to reduce the vulnerability of forest ecosystems to projected climate change. The validity of such a strategy will depend on the adaptation capacity of populations, which can partially be evaluated by the ecophysiological response of different genetic sources along a climatic gradient. This adaptation capacity results from the compromise between (i) the degree of genetic adaptation of seed sources to their environment of origin and (ii) the phenotypic plasticity of functional trait which can make it possible for transferred seed sources to positively respond to new growing conditions. We examined phenotypic variation in morphophysiological traits of six seed sources of white spruce (Picea glauca [Moench] Voss) along a regional climatic gradient in Québec, Canada. Seedlings from the seed sources were planted at three forest sites representing a mean annual temperature (MAT) gradient of 2.2°C. During the second growing season, we measured height growth (H2014) and traits related to resources use efficiency and photosynthetic rate (Amax). All functional traits showed an adaptive response to the climatic gradient. Traits such as H2014, Amax, stomatal conductance (gs), the ratio of mesophyll to stomatal conductance, water use efficiency, and photosynthetic nitrogen-use efficiency showed significant variation in both physiological plasticity due to the planting site and seed source variation related to local genetic adaptation. However, the amplitude of seed source variation was much less than that related to plantation sites in the area investigated. The six seed sources showed a similar level of physiological plasticity. H2014, Amax and gs, but not carboxylation capacity (Vcmax), were correlated and decreased with a reduction of the average temperature of the growing season at seed origin. The clinal variation in H2014 and Amax appeared to be driven by CO2 conductance. The presence of locally adapted functional traits suggests that the use of APM may have advantages for optimizing seed source productivity in future local climates. PMID:26870067
Stable Isotope Identification of Nitrogen Sources for United ...
We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected δ15N of macroalgae data and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In addition, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources. There was also a strong gradient in δ15N of macroalgae with heavier sites located near the estuary mouth. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient. Nutrients are the leading cause of water quality impairments in the United States, and as a result too
Single fiber lignin distributions based on the density gradient column method
Brian Boyer; Alan W. Rudie
2007-01-01
The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...
Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems.
Bern, Carleton R; Chadwick, Oliver A; Kendall, Carol; Pribil, Michael J
2015-05-01
Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ(34)S VCDT) of -0.8‰. Bulk deposition on the island of Maui had a δ(34)S VCDT that varied temporally, spanned a range from +8.2 to +19.7‰, and reflected isotopic mixing from three sources: sea-salt (+21.1‰), marine biogenic emissions (+15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to +2.7‰) to relatively high (+17.8 to +19.3‰) soil δ(34)S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from +8.1 to +20.3‰ and generally decreased with increasing elevation (0-2000 m), distance from the coast (0-12 km), and annual rainfall (180-5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over ecosystem sulfur biogeochemistry across relatively small spatial scales. Published by Elsevier B.V.
Applications of seismic spatial wavefield gradient and rotation data in exploration seismology
NASA Astrophysics Data System (ADS)
Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.
2017-12-01
Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C recordings, a total of 49 components of the seismic wavefield can be excited and recorded. Such data potentially allow to further improve wavefield separation and may find application in directional imaging and coherent noise suppression.
Isotopic Clues on Factors Controlling Geochemical Fluxes From Large Watersheds in Eastern Canada
NASA Astrophysics Data System (ADS)
Rosa, E.; Helie, J.; Ghaleb, B.; Hillaire-Marcel, C.; Gaillardet, J.
2008-12-01
A monitoring and monthly sampling program of the Nelson, Ottawa, St. Lawrence, La Grande and Great Whale rivers was started in September 2007. It provides information on the seasonality and sources of geochemical fluxes into the Hudson Bay and the North Atlantic from watersheds covering more than 2.6 106 km2 of the eastern Canadian boreal domain. Measurements of pH and alkalinity, analyses of major ions, strontium and dissolved silica, 2H and 18O of water, concentrations and isotopic properties of dissolved organic and inorganic carbon (13C) and uranium (234U/238U) were performed. Lithology more than latitudinal climatic gradients controls the river geochemistry. Rivers draining silicate terrains show lower dissolved U concentrations but greater 234U/238U disequilibria than rivers draining carbonates (average of 1.38 vs. 1.23). Groundwater supplies might exert some control on these U- isotope signatures. No clear seasonality is observed in 234U/238U ratios, but U concentrations are correlated to dissolved organic carbon (DOC) concentrations in most rivers. Rivers draining carbonates present higher total dissolved carbon concentrations and higher 13C-contents in dissolved inorganic carbon (DIC), in response to the dissolution of soil carbonates. DOC/DIC ratios above 2.4 are observed in rivers draining silicates; their lower 13C-DIC content directly reflects the organic matter oxidation in soils. Total dissolved solids are one order of magnitude or more greater in rivers draining carbonates, showing the strong difference in chemical weathering rates according to the geological setting. The stability in chemical fluxes and water isotopic compositions in the La Grande River, which hosts hydroelectric reservoirs covering more than 12 000 km2, indicates that it is the most buffered hydrological system among the investigated watersheds. Seasonal fluctuations are observed elsewhere, with maximum geochemical fluxes during the spring snowmelt. 2H-18O content of river water appears to be the only parameter presenting a strong latitudinal and climatic gradient (independent of lithology).
Lares, M L; Marinone, S G; Rivera-Duarte, I; Beck, A; Sañudo-Wilhelmy, S
2009-05-01
Dissolved and particulate metals (Ag, Cd, Co, Cu, Ni, and Zn) and nutrients (PO(4), NO(3), and H(4)SiO(4)) were measured in Todos Santos Bay (TSB) in August 2005. Two sources producing local gradients were identified: one from a dredge discharge area (DDA) and another south of the port and a creek. The average concentrations of dissolved Cd and Zn (1.3 and 15.6 nM, respectively) were higher by one order of magnitude than the surrounding Pacific waters, even during upwelling, and it is attributed to the presence of a widespread and long-lasting red tide coupled with some degree of local pollution. A clear spatial gradient (10 to 6 pM), from coast to offshore, of dissolved Ag was evident, indicating the influence of anthropogenic inputs. The particulate fraction of all metals, except Cu, showed a factor of ~3 decrease in concentrations from the DDA to the interior of the bay. The metal distributions were related to the bay's circulation by means of a numerical model that shows a basically surface-wind-driven offshore current with subsurface compensation currents toward the coast. Additionally, the model shows strong vertical currents over the DDA. Principal component analysis revealed three possible processes that could be influencing the metal concentrations within TSB: anthropogenic inputs (Cd, Ag, and Co), biological proceses (NO(3), Zn, and Cu), and upwelling and mixing (PO(4), H(4)SiO(4), Cd, and Ni). The most striking finding of this study was the extremely high Cd concentrations, which have been only reported in highly contaminated areas. As there was a strong red tide, it is hypothesized that the dinoflagellates are assimilating the Cd, which is rapidly remineralized and being concentrated on the stratified surface layers.
NASA Astrophysics Data System (ADS)
Heikoop, J. M.; Arendt, C. A.; Newman, B. D.; Charsley-Groffman, L.; Perkins, G.; Wilson, C. J.; Wullschleger, S.
2017-12-01
Under the auspices of the Next Generation Ecosystem Experiment - Arctic, we have been studying hydrogeochemical signals in Alaskan tundra ecosystems underlain by continuous permafrost (Barrow Environmental Observatory (BEO)) and discontinuous permafrost (Seward Peninsula). The Barrow site comprises largely saturated tundra associated with the low gradient Arctic Coastal Plain. Polygonal microtopography, however, can result in slightly raised areas that are unsaturated. In these areas we have previously demonstrated production and accumulation of nitrate, which, based on nitrate isotopic analysis, derives from microbial degradation. Our Seward Peninsula site is located in a much steeper and generally well-drained watershed. In lower-gradient areas at the top and bottom of the watershed, however, the tundra is generally saturated, likely because of the presence of underlying discontinuous permafrost inhibiting infiltration. These settings also contain microtopographic features, though in the form of degraded peat plateaus surrounded by wet graminoid sag ponds. Despite being very different microtopographic features in a very different setting with distinct vegetation, qualitatively similar nitrate accumulation patterns as seen in polygonal terrain were observed. The highest nitrate pore water concentration observed in an unsaturated peat plateau was approximately 5 mg/L, whereas subsurface pore water concentrations in surrounding sag ponds were generally below the limit of detection. Nitrate isotopes indicate this nitrate results from microbial mineralization and nitrification based on comparison to the nitrate isotopic composition of reduced nitrogen sources in the environment and the oxygen isotope composition of site pore water. Nitrate concentrations were most similar to those found in low-center polygon rims and flat-centered polygon centers at the BEO, but were significantly lower than the maximum concentrations seen in the highest and driest polygonal features, the centers of high-centered polygons. Combined, these results suggest that moisture content is a significant control on nitrate production and accumulation in tundra ecosystems and that unsaturated microtopography represents hot spots for microbial decomposition.
NASA Astrophysics Data System (ADS)
Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.
2017-10-01
At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.
NASA Astrophysics Data System (ADS)
Khaska, Mahmoud; Le Gal La Salle, Corinne; Sassine, Lara; Cary, Lise; Bruguier, Olivier; Verdoux, Patrick
2018-03-01
One decade after closure of the Salsigne mine (SW France), As contamination persisted in surface water, groundwater and soil near and down-gradient from the reclaimed ore processing site (OPS). We assess the fate of As and other associated chalcophilic MTEs, and their transport in the surface-water/groundwater/soil continuum down-gradient from the reclaimed OPS, using Sr-isotopic fingerprinting. The Sr-isotope ratio was used as a tracer of transfer processes in this hydro-geosystem and was combined to sequential extraction of soil samples to evaluate the impact of contaminated soil on the underlying phreatic groundwater. The contrast in Sr isotope compositions of the different soil fractions reflects several Sr sources in the soil. In the complex hydro-geosystem around the OPS, the transport of As and MTEs is affected by a succession of factors, such as (1) Existence of a reducing zone in the aquifer below the reclaimed OPS, where groundwater shows relatively high As and MTEs contents, (2) Groundwater discharge into the stream near the reclaimed OPS causing an increase in As and MTE concentrations in surface water; (3) Partial co-precipitation of As with Fe-oxyhydroxides, contributing to some attenuation of As contents in surface water; (4) Infiltration of contaminated stream water into the unconfined aquifer down-gradient from the reclaimed OPS; (5) Accumulation of As and MTEs in soil irrigated with contaminated stream- and groundwater; (6) Release of As and MTEs from labile soil fractions to underlying the groundwater.
Stable isotope ratios as indicators of trophic status: Uncertainties imposed by geographic effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schell, D.M.
1995-12-31
Isotope ratios of carbon and nitrogen are often suggested as indicators to determine trophic status and carbon sources of marine organisms in explaining relative concentrations of pollutants. Whereas this technique is effective with organisms resident in ecosystems having homogeneous primary productivity regimes and uniform isotope ratios in the productivity base, it often is confounded by migratory movements by larger organisms across isotopic gradients. Tissues containing a temporal record such as baleen plates or whiskers show these effects clearly. Bowhead whales in Alaskan waters seasonally move across carbon isotope gradients of 5{per_thousand} in zooplankton and reflect these differences in the keratinmore » of baleen plates and in overall body composition. However, no significant differences in {delta}{sup 15}N are evident regionally in northern Alaskan zooplankton. In contrast, the Southern Ocean is characterized by extreme latitudinal gradients in both {delta}{sup 13}C and {delta}{sup 15}N with the most pronounced effects occurring at the subtropical convergence. Prey taken by marine mammals south of this zone are depleted in both {sup 15}N and {sup 13}C by up to 8{per_thousand}. Data on southern right whales (Eubalaena glacialis), Bryde`s whale (Balaenoptera edenl), pygmy right whales (Caperea marginate) and antarctic fur seal (Arctocephalos gazella) show the effects of migratory movements across the gradient in both carbon and nitrogen isotope ratios. Similar patterns in marine mammal tissues from Australia, South Africa and South America indicate that the observed patterns are circumpolar. Within a given region, trophic effects shift {delta}{sup 15}N values consistent with observed feeding habits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Qingtao; Li, Liyu; Nie, Zimin
We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplifiedmore » mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.« less
Growth Structure and Properties of Gradient Nanocrystalline Coatings of the Ti-Al-Si-Cu-N System
NASA Astrophysics Data System (ADS)
Ovchinnikov, S. V.; Pinzhin, Yu. P.
2016-10-01
Methods of electron microprobe analysis, X-ray structure analysis and electron microscopy were used to study the element composition and features of the structure-phase, elastic stress state of nanocrystalline coatings of the Ti- Al- Si- Cu- N system with gradient of copper concentration across their thickness. The authors established the effects of element composition modification, non-monotonous behavior of the lattice constant of alloyed nitride and rise in the bending-torsion value of the crystalline lattice in individual nanocrystals to values of around 400 degrees/μm with increase in copper concentration, whereas the sizes of alloyed nitride crystals remained practically unchanged. Mechanical (hardness), adhesion and tribological properties of coatings were examined. Comparative analysis demonstrates higher values of adhesion characteristics in the case of gradient coatings of the Ti- Al- Si- Cu- N system than in the case of single-layer (with constant element concentration) analogues.
Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo
2017-12-13
Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.
Solute-mediated interactions between active droplets
NASA Astrophysics Data System (ADS)
Moerman, Pepijn G.; Moyses, Henrique W.; van der Wee, Ernest B.; Grier, David G.; van Blaaderen, Alfons; Kegel, Willem K.; Groenewold, Jan; Brujic, Jasna
2017-09-01
Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F ˜1 /r2 . Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l =16 ±3 nm , which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Shiri, Jalal
2012-06-01
Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.
Qu, Zhechao; Werhahn, Olav; Ebert, Volker
2018-06-01
The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.
Concentration gradients and growth/decay characteristics of the seasonal sea ice cover
NASA Technical Reports Server (NTRS)
Comiso, J. C.; Zwally, H. J.
1984-01-01
The characteristics of sea ice cover in both hemispheres are analyzed and compared. The areal sea ice cover in the entire polar regions and in various geographical sectors is quantified for various concentration intervals and is analyzed in a consistent manner. Radial profiles of brightness temperatures from the poles across the marginal zone are also evaluated at different transects along regular longitudinal intervals during different times of the year. These radial profiles provide statistical information about the ice concentration gradients and the rates at which the ice edge advances or retreats during a complete annual cycle.
Visser, S.; Slowik, Jay G.; Furger, M.; ...
2015-10-12
Here, trace element measurements in PM 10–2.5, PM 2.5–1.0 and PM 1.0–0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model, conducted on data sets comprising all three sites but segregated by size. Combining the sites enabled separation of sources with high temporal covariance but significant spatial variability. Separation of sizes improved source resolution by preventing sources occurring in only a single size fraction from having too smallmore » a contribution for the model to resolve. Anchor profiles were retrieved internally by analysing data subsets, and these profiles were used in the analyses of the complete data sets of all sites for enhanced source apportionment. A total of nine different factors were resolved (notable elements in brackets): in PM 10–2.5, brake wear (Cu, Zr, Sb, Ba), other traffic-related (Fe), resuspended dust (Si, Ca), sea/road salt (Cl), aged sea salt (Na, Mg) and industrial (Cr, Ni); in PM 2.5–1.0, brake wear, other traffic-related, resuspended dust, sea/road salt, aged sea salt and S-rich (S); and in PM 1.0–0.3, traffic-related (Fe, Cu, Zr, Sb, Ba), resuspended dust, sea/road salt, aged sea salt, reacted Cl (Cl), S-rich and solid fuel (K, Pb). Human activities enhance the kerb-to-rural concentration gradients of coarse aged sea salt, typically considered to have a natural source, by 1.7–2.2. These site-dependent concentration differences reflect the effect of local resuspension processes in London. The anthropogenically influenced factors traffic (brake wear and other traffic-related processes), dust and sea/road salt provide further kerb-to-rural concentration enhancements by direct source emissions by a factor of 3.5–12.7. The traffic and dust factors are mainly emitted in PM 10–2.5 and show strong diurnal variations with concentrations up to 4 times higher during rush hour than during night-time. Regionally influenced S-rich and solid fuel factors, occurring primarily in PM 1.0–0.3, have negligible resuspension influences, and concentrations are similar throughout the day and across the regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visser, S.; Slowik, Jay G.; Furger, M.
Here, trace element measurements in PM 10–2.5, PM 2.5–1.0 and PM 1.0–0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model, conducted on data sets comprising all three sites but segregated by size. Combining the sites enabled separation of sources with high temporal covariance but significant spatial variability. Separation of sizes improved source resolution by preventing sources occurring in only a single size fraction from having too smallmore » a contribution for the model to resolve. Anchor profiles were retrieved internally by analysing data subsets, and these profiles were used in the analyses of the complete data sets of all sites for enhanced source apportionment. A total of nine different factors were resolved (notable elements in brackets): in PM 10–2.5, brake wear (Cu, Zr, Sb, Ba), other traffic-related (Fe), resuspended dust (Si, Ca), sea/road salt (Cl), aged sea salt (Na, Mg) and industrial (Cr, Ni); in PM 2.5–1.0, brake wear, other traffic-related, resuspended dust, sea/road salt, aged sea salt and S-rich (S); and in PM 1.0–0.3, traffic-related (Fe, Cu, Zr, Sb, Ba), resuspended dust, sea/road salt, aged sea salt, reacted Cl (Cl), S-rich and solid fuel (K, Pb). Human activities enhance the kerb-to-rural concentration gradients of coarse aged sea salt, typically considered to have a natural source, by 1.7–2.2. These site-dependent concentration differences reflect the effect of local resuspension processes in London. The anthropogenically influenced factors traffic (brake wear and other traffic-related processes), dust and sea/road salt provide further kerb-to-rural concentration enhancements by direct source emissions by a factor of 3.5–12.7. The traffic and dust factors are mainly emitted in PM 10–2.5 and show strong diurnal variations with concentrations up to 4 times higher during rush hour than during night-time. Regionally influenced S-rich and solid fuel factors, occurring primarily in PM 1.0–0.3, have negligible resuspension influences, and concentrations are similar throughout the day and across the regions.« less
NASA Astrophysics Data System (ADS)
Blakely, Richard J.
1994-02-01
The spatial correlation between a horizontal gradient in heat flow and a horizontal gradient in residual gravity in the Western Cascades of central Oregon has been interpreted by others as evidence of the western edge of a pervasive zone of high temperatures and partial melting at midcrustal depths (5-15 km). Both gradients are steep and relatively linear over north-south distances in excess of 150 km. The Western Cascades gravity gradient is the western margin of a broad gravity depression over most of the Oregon Cascade Range, implying that the midcrustal zone of anomalous temperatures lies throughout this region. Ideal-body theory applied to the gravity gradient, however, shows that the source of the Western Cascades gravity gradient cannot be deeper than about 2.5 km and is considerably shallower in some locations. These calculations are unique determinations, assuming that density contrasts associated with partial melting and elevated temperatures in the crust do not exceed 500 kg/cu m. Consequently, the gravity gradient and the heat flow gradient in the Western Cascades cannot be caused directly by the same source if the heat flow gradient originates at midcrustal depths. This conclusion in itself does not disprove the existence of a widespread midcrustal zone of anomalously high temperatures and partial melting in this area, but it does eliminate a major argument in support of its existence. The gravity gradient is most likely caused by lithologic varitions in the shallow crust, perhaps reflecting a relict boundary between the Cascade extensional trough to the west and Tertiary oceanic crust to the west. The boundary must have formed prior to Oligocene time, the age of the oldest rocks that now conceal it.
NASA Astrophysics Data System (ADS)
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
Swietach, Pawel; Leem, Chae-Hun; Spitzer, Kenneth W; Vaughan-Jones, Richard D
2005-04-01
It is often assumed that pH(i) is spatially uniform within cells. A double-barreled microperfusion system was used to apply solutions of weak acid (acetic acid, CO(2)) or base (ammonia) to localized regions of an isolated ventricular myocyte (guinea pig). A stable, longitudinal pH(i) gradient (up to 1 pH(i) unit) was observed (using confocal imaging of SNARF-1 fluorescence). Changing the fractional exposure of the cell to weak acid/base altered the gradient, as did changing the concentration and type of weak acid/base applied. A diffusion-reaction computational model accurately simulated this behavior of pH(i). The model assumes that H(i)(+) movement occurs via diffusive shuttling on mobile buffers, with little free H(+) diffusion. The average diffusion constant for mobile buffer was estimated as 33 x 10(-7) cm(2)/s, consistent with an apparent H(i)(+) diffusion coefficient, D(H)(app), of 14.4 x 10(-7) cm(2)/s (at pH(i) 7.07), a value two orders of magnitude lower than for H(+) ions in water but similar to that estimated recently from local acid injection via a cell-attached glass micropipette. We conclude that, because H(i)(+) mobility is so low, an extracellular concentration gradient of permeant weak acid readily induces pH(i) nonuniformity. Similar concentration gradients for weak acid (e.g., CO(2)) occur across border zones during regional myocardial ischemia, raising the possibility of steep pH(i) gradients within the heart under some pathophysiological conditions.
Determining Object Orientation from a Single Image Using Multiple Information Sources.
1984-06-01
object surface. Location of the image ellipse is accomplished by exploiting knowledge about object boundaries and image intensity gradients . -. The...Using Intensity Gradient Information for Ellipse fitting ........ .51 4.3.7 Orientation From Ellipses .............................. 53 4.3.8 Application...object boundaries and image intensity gradients . The orientation information from each of these three methods is combined using a "plausibility" function
An in vitro hepatic zonation model with a continuous oxygen gradient in a microdevice.
Sato, Asako; Kadokura, Kanae; Uchida, Hideyuki; Tsukada, Kosuke
2014-10-31
In a hepatic lobule, different sets of metabolic enzymes are expressed in the periportal (PP) and pericentral (PC) regions, forming a functional zonation, and the oxygen gradient is considered a determinant of zone formation. It is desirable to reproduce lobular microenvironment in vitro, but incubation of primary hepatocytes in conventional culture dishes has been limited at fixed oxygen concentrations due to technical difficulties. We designed a cell culture microdevice with an oxygen gradient to reproduce the hepatic microenvironment in vitro. The oxygen gradient during cell culture was monitored using a laser-assisted phosphorescence quenching method, and the cellular oxygen consumption rate could be estimated from changes in the gradient. Culture medium was continuously exchanged through microchannels installed in the device to maintain the oxygen gradient for a long term without transient hyper-oxygenation. The oxygen consumption rates of hepatocytes at 70.0mmHg and 31.4mmHg of partial oxygen pressure, which correspond to PP and PC regions in the microdevice, were 3.67×10(-10) and 3.15×10(-10)mol/s/10(6) cells, respectively. Antimycin A changed the oxygen gradient profile, indicating that cellular respiration can be estimated during cell culture. RT-PCR analysis of hepatocytes cultured under the oxygen gradient showed that mRNA expression of PEPCK and GK significantly increased in culture areas corresponding to PP and PC regions, respectively. These results indicate that the developed microdevice can reproduce the hepatic lobular microenvironment. The oxygen gradient in the microdevice can be closely controlled by changing the sizes of gas channels and the ambient oxygen concentration around the device; therefore, it could be expected to mimic the oxygen gradient of various organs, and it may be applicable to other pathological models. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guillermo Nuñez Ramirez, Tonatiuh; Houweling, Sander; Marshall, Julia; Williams, Jason; Brailsford, Gordon; Schneising, Oliver; Heimann, Martin
2013-04-01
The atmospheric hydroxyl radical concentration (OH) varies due to changes in the incoming UV radiation, in the abundance of atmospheric species involved in the production, recycling and destruction of OH molecules and due to climate variability. Variability in carbon monoxide emissions from biomass burning induced by El Niño Southern Oscillation are particularly important. Although the OH sink accounts for the oxidation of approximately 90% of atmospheric CH4, the effect of the variability in the distribution and strength of the OH sink on the interannual variability of atmospheric methane (CH4) mixing ratio and stable carbon isotope composition (δ13C-CH4) has often been ignored. To show this effect we simulated the atmospheric signals of CH4 in a three-dimensional atmospheric transport model (TM3). ERA Interim reanalysis data provided the atmospheric transport and temperature variability from 1990 to 2010. We performed simulations using time dependent OH concentration estimations from an atmospheric chemistry transport model and an atmospheric chemistry climate model. The models assumed a different set of reactions and algorithms which caused a very different strength and distribution of the OH concentration. Methane emissions were based on published bottom-up estimates including inventories, upscaled estimations and modeled fluxes. The simulations also included modeled concentrations of atomic chlorine (Cl) and excited oxygen atoms (O(1D)). The isotopic signal of the sources and the fractionation factors of the sinks were based on literature values, however the isotopic signal from wetlands and enteric fermentation processes followed a linear relationship with a map of C4 plant fraction. The same set of CH4emissions and stratospheric reactants was used in all simulations. Two simulations were done per OH field: one in which the CH4 sources were allowed to vary interannually, and a second where the sources were climatological. The simulated mixing ratios and isotopic compositions at global reference stations were used to construct more robust indicators such as global and zonal means and interhemispheric differences. We also compared the model CH4 mixing ratio to satellite observations, for the period 2003 to 2004 with SCIAMACHY and from 2009 to 2010 with GOSAT. The interannual variability of the different OH fields imprinted an interannual variation of the atmospheric CH4 mixing ratio with a magnitude of ±10 ppb, which is comparable to the effect of all sources combined. Meanwhile its effect on the interannual variability of δ13C-CH4 was minor (< 10%). The interannual variability of the mixing ratio interhemispheric difference is dominated by the sources because the OH sink is concentrated in the tropics, thus its interannual variability affects both hemispheres. Meanwhile, although the OH plays an important role in the establishment of an interhemispheric gradient of δ13C-CH4, the interannual variation of this gradient is negligibly affected by the choice of OH field. Overall the study showed that the variability of the OH sink plays a significant role in the interannual variability of the atmospheric methane mixing ratio, and must be considered to improve our understanding of the recent trends in the global methane budget.
Iron as a Cofactor That Limits the Promotion of Cyanobacteria in Lakes Across a Tropic Gradient
NASA Astrophysics Data System (ADS)
Sorichetti, R. J.; Creed, I. F.; Trick, C. G.
2014-12-01
The frequency and intensity of cyanobacterial blooms (cyanoblooms) is increasing globally. While cyanoblooms in eutrophic (nutrient-rich) freshwater lakes are expected to persist and worsen with climate change projections, many of the "new" cyanobloom reports pertain to oligotrophic (nutrient-poor) freshwater lakes with no prior history of cyanobloom occurrence. Under the pressures of a changing climate, there exists a critical research need to revisit existing conceptual models and identify cyanobloom regulating factors currently unaccounted for. Iron (Fe) is required in nearly all pathways of cyanobacterial macronutrient use, though its precise role in regulating cyanobacterial biomass across the lake trophic gradient is not fully understood. The hypotheses tested were: (1) cyanobacteria will predominate in lakes when bioavailable Fe concentration is low, and (2) cyanobacteria overcome this Fe limitation in all lakes using the siderophore-based Fe acquisition strategy to scavenge Fe providing a competitive advantage over other phytoplankton. These hypotheses were tested using natural lakes across an oligo-meso-eutrophic gradient across Canada. In all lakes sampled, the relative cyanobacterial biomass was highest at low predicted Fe bioavailability (< 1.0 × 10-19 mol L-1). Within this range of low bioavailable Fe, iron-binding organic ligands were measured. Concentrations of ligands with reactive hydroxamate moieties were positively correlated to cyanobacterial biomass in both the oligotrophic (r2 = 0.77, p < 0.001) and eutrophic (r2 = 0.81, p < 0.001) lakes suggesting a possible low-Fe mediated cellular origin, siderophores. Fe-binding ligands with catecholate-type binding sites were detected in all lakes, although lack of a relationship with cyanobacterial biomass and a significant relationship with dissolved organic carbon (DOC) in oligotrophic (r2 = 0.65, p < 0.001) and eutrophic (r2 = 0.65, p < 0.001) lakes may indicate an allochthonous source that is not used by cyanobacteria. These findings suggest that Fe serves as a possible cofactor that maintains cyanobacterial levels across a lake trophic gradient and that cyanobacteria invoke a similar Fe-scavenging system to overcome Fe limitation in lakes of all trophic status.
Kozlov, Mikhail V
2005-05-01
Concentrations of nickel and copper, two principal metal pollutants of the 'Severonikel' smelter at Monchegorsk, NW Russia, were measured in unwashed leaves of mountain birch, Betula pubescens subsp. czerepanovii, collected in eight study sites along the pollution gradient during 1991-2003. In spite of significant decline in metal emissions, concentrations of foliar metals in most of the study sites did not decrease, indicating that soil contamination remains extremely high. Multiyear mean values peaked at 6.6 km S of the smelter, where they were 20-25 times higher than in the most distant study site. Concentrations of both metals demonstrated pronounced annual variation, which was explained by the meteorological conditions of early summer: higher precipitation in May increased foliar concentrations of both metals, whereas higher precipitation in June resulted in lower foliar concentrations of nickel. These data suggest that ecotoxicological situation in metal-contaminated areas can be modified by the expected climate change. In heavily polluted sites individual birch trees generally retained their ranks in terms of metal contamination during 1995-2003, demonstrating that the use of the same set of trees can significantly increase the accuracy of the monitoring data.
Klees, Marcel; Hombrecher, Katja; Gladtke, Dieter
2017-12-15
During this study the occurrence of polychlorinated biphenyls (PCBs) in the surrounding of an e-waste recycling facility in North-Rhine Westphalia was analysed. PCB levels were analysed in curly kale, spruce needles, street dusts and dusts. Conspicuously high PCB concentrations in curly kale and spruce needles were found directly northwards of the industrial premises. Furthermore a concentration gradient originating from the industrial premises to the residential areas in direction southwest to northeast was evident. Homologue patterns of highly PCB contaminated dusts and street dusts were comparable to the homologue patterns of PCB in curly kale and spruce needles. This corroborates the suspicion that the activities at the e-waste recycling facility were responsible for the elevated PCB levels in curly kale and spruce needles. The utilization of multiple linear regression of wind direction data and analysed PCB concentrations in spruce needles proved that the e-waste recycling facility caused the PCB emissions to the surrounding. Additionally, this evaluation enabled the calculation of source specific accumulation constants for certain parts of the facility. Consequently the different facility parts contribute with different impacts to the PCB levels in bioindicators. Copyright © 2017 Elsevier B.V. All rights reserved.
A hybrid probabilistic/spectral model of scalar mixing
NASA Astrophysics Data System (ADS)
Vaithianathan, T.; Collins, Lance
2002-11-01
In the probability density function (PDF) description of a turbulent reacting flow, the local temperature and species concentration are replaced by a high-dimensional joint probability that describes the distribution of states in the fluid. The PDF has the great advantage of rendering the chemical reaction source terms closed, independent of their complexity. However, molecular mixing, which involves two-point information, must be modeled. Indeed, the qualitative shape of the PDF is sensitive to this modeling, hence the reliability of the model to predict even the closed chemical source terms rests heavily on the mixing model. We will present a new closure to the mixing based on a spectral representation of the scalar field. The model is implemented as an ensemble of stochastic particles, each carrying scalar concentrations at different wavenumbers. Scalar exchanges within a given particle represent ``transfer'' while scalar exchanges between particles represent ``mixing.'' The equations governing the scalar concentrations at each wavenumber are derived from the eddy damped quasi-normal Markovian (or EDQNM) theory. The model correctly predicts the evolution of an initial double delta function PDF into a Gaussian as seen in the numerical study by Eswaran & Pope (1988). Furthermore, the model predicts the scalar gradient distribution (which is available in this representation) approaches log normal at long times. Comparisons of the model with data derived from direct numerical simulations will be shown.
The gradient of meteorological and chemical variables across the tropopause
NASA Technical Reports Server (NTRS)
Dickerson, Russell R.; Doddridge, Bruce G.; Poulida, Olga; Owens, Melody A.
1994-01-01
The downward transport of air through the tropopause can bring substantial amounts of ozone and reactive nitrogen into the upper troposphere. In this cold region of the atmosphere, O3 is particularly effective as a greenhouse gas. As part of the North Dakota Thunderstorm Project in June 1989, the NCAR Sabreliner made five flights through the tropopause. We measured ozone, nitric oxide (NO), total reactive nitrogen (NO(y)), carbon monoxide (CO), and water vapor (H2)), and took grab samples for hydrocarbon (HC) analysis. Hydrocarbons, CO, and H2O, species with sources primarily at the earth's surface, showed a strong concentration decrease with increasing altitude, while O3 and NO(y), species with a source in the stratosphere, showed a strong concentration increase with increasing altitude. Stratospheric concentrations of NO(x), NO(y), and H2O were all high relative to winter observations made during NASA's AASE. We suggest that midlatitude thunderstorms may inject wet, NO-rich air into the lower stratosphere. Calculation based on measured ratios of NO(x) and NO(y) to O3 yield a total flux of reactive nitrogen from the Northern Hemisphere stratosphere into the troposphere of 1 to 2 Tg(N) yr(exp -1) with about 8 percent in the form of NO(x). This value is higher than reported estimates of total stratospheric nitrogen fixation.
A Unified Experimental Approach for Estimation of Irrigationwater and Nitrate Leaching in Tree Crops
NASA Astrophysics Data System (ADS)
Hopmans, J. W.; Kandelous, M. M.; Moradi, A. B.
2014-12-01
Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other(semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, as well as root growth and associated nitrate and water uptake, interact with soil properties and fertilizer source(s) in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modeling studies are required to allow for unraveling of the relevant complexities that result from typical field-wide spatial variations of soil texture and layering across farmer-managed fields. We present experimental approaches across a network of tree crop orchards in the San Joaquin Valley, that provide the necessary soil data of soil moisture, water potential and nitrate concentration to evaluate and optimize irrigation water management practices. Specifically, deep tensiometers were used to monitor in-situ continuous soil water potential gradients, for the purpose to compute leaching fluxes of water and nitrate at both the individual tree and field scale.
NASA Astrophysics Data System (ADS)
Kim, Stacy; Hammerstrom, Kamille
2012-04-01
The Lau back-arc spreading center exhibits gradients in hydrothermal vent habitat characteristics from north to south. Biological zonation within a few meters of vents has been described as temperature driven. We constructed georeferenced photomosaics of the seafloor out to tens of meters beyond vents to describe peripheral zonation and explore correlations between environmental conditions and the biological community. Cluster analysis separated northern sites from southern sites, corresponding to a break in substrate from basalt in the north to andesite in the south. Northern sites were dominated by anemones, and southern by sponges. A previous suggestion that dominants may be dependent on friability of the substrate was not supported; when visually distinguishable, individual species within taxa showed different patterns. Northern sites hosted proportionally more suspension feeding species. Sulfide that can support microbial food sources is at higher concentrations at these sites, though bathymetry that may enhance bottom currents is less rugged. Northern sites had higher diversity that may result from the overall northwards flow, which would generally permit easier dispersal downcurrent, though we observed no difference in dispersal strategies at different sites.
NASA Astrophysics Data System (ADS)
Riera, P.; Richard, P.
1996-03-01
Along a trophic gradient from the head of an estuary to the open ocean, carbon isotope ratios were determined both in tissues of the Pacific oyster Crassostrea gigasand in different components of the oysters ' potential food resource. In the study area, the Marennes-Ol éron Bay (France), a gradient in δ 13C occurred in the particulate organic carbon (POC) from riverine ( -29 ·2 - -27 ·4 ‰) to open sea littoral ( -21 ·8 - -19 ·5 ‰). Isotope composition of oysters collected along this estuarine gradient followed a similar trend, indicating a predominant contribution of organic matter derived from terrestrial detritus to the diet of C. gigasinhabiting the upper estuarine reaches. A remarkable departure from this general pattern was noted in the isotope composition of oysters sampled from a reef, at the mouth of the Charente river. These oysters exhibited enriched 13C composition, suggesting that they were largely feeding upon benthic microalgae ( -16 ‰) from an adjacent wide mudflat. The reported results suggest that C. gigasis able to preferentially ingest and/or assimilate particular food sources (i.e. benthic diatoms) among diverse sources within the total organic matter pool.
NASA Astrophysics Data System (ADS)
Eem, Changkyoung; Kim, Iksu; Hong, Hyunki
2015-07-01
A method to estimate the environmental illumination distribution of a scene with gradient-based ray and candidate shadow maps is presented. In the shadow segmentation stage, we apply a Canny edge detector to the shadowed image by using a three-dimensional (3-D) augmented reality (AR) marker of a known size and shape. Then the hierarchical tree of the connected edge components representing the topological relation is constructed, and the connected components are merged, taking their hierarchical structures into consideration. A gradient-based ray that is perpendicular to the gradient of the edge pixel in the shadow image can be used to extract the shadow regions. In the light source detection stage, shadow regions with both a 3-D AR marker and the light sources are partitioned into candidate shadow maps. A simple logic operation between each candidate shadow map and the segmented shadow is used to efficiently compute the area ratio between them. The proposed method successively extracts the main light sources according to their relative contributions on the segmented shadows. The proposed method can reduce unwanted effects due to the sampling positions in the shadow region and the threshold values in the shadow edge detection.
Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes
Gehrke, Gretchen E.; Blum, Joel D.; Marvin-DePasquale, Mark
2011-01-01
Mercury (Hg) concentrations and isotopic compositions were examined in shallow-water surface sediment (0–2 cm) from San Francisco (SF) Bay to determine the extent to which historic Hg mining contributes to current Hg contamination in SF Bay, and to assess the use of Hg isotopes to trace sources of contamination in estuaries. Inter-tidal and wetland sediment had total Hg (HgT) concentrations ranging from 161 to 1529 ng/g with no simple gradients of spatial variation. In contrast, inter-tidal and wetland sediment displayed a geographic gradient of δ202Hg values, ranging from -0.30% in the southern-most part of SF Bay (draining the New Almaden Hg District) to -0.99% in the northern-most part of SF Bay near the Sacramento–San Joaquin River Delta. Similar to SF Bay inter-tidal sediment, surface sediment from the Alviso Slough channel draining into South SF Bay had a δ202Hg value of -0.29%, while surface sediment from the Cosumnes River and Sacramento–San Joaquin River Delta draining into north SF Bay had lower average δ202Hg values of -0.90% and -0.75%, respectively. This isotopic trend suggests that Hg-contaminated sediment from the New Almaden Hg District mixes with Hg-contaminated sediment from a low δ202Hg source north of SF Bay. Tailings and thermally decomposed ore (calcine) from the New Idria Hg mine in the California Coast Range had average δ202Hg values of -0.37 and +0.03%, respectively, showing that Hg calcination fractionates Hg isotopes resulting in Hg contamination from Hg(II) mine waste products with higher δ202Hg values than metallic Hg(0) produced from Hg mines. Thus, there is evidence for at least two distinct isotopic signals for Hg contamination in SF Bay: Hg associated with calcine waste materials at Hg mines in the Coast Range, such as New Almaden and New Idria; and Hg(0) produced from these mines and used in placer gold mines and/or in other industrial processes in the Sierra Nevada region and SF Bay area.
Kanehiro Kitayama; Dieter Mueller-Dombois
1995-01-01
The development of the Hawaiian montane rainforest was investigated along a 4.1-million-year soil age gradient at 1200 m elevation under two levels of precipitation, the mesic (c. 2500 mm annual rainfall) vs. wet (> 4000 mm)age gradient. Earlier analyses suggested that soil fertility and foliar nutrient concentrations of common canopy species changed unimodally on...
NASA Astrophysics Data System (ADS)
Li, Xiao-Bing; Wang, Dong-Sheng; Lu, Qing-Chang; Peng, Zhong-Ren; Wang, Zhan-Yong
2018-01-01
A lightweight unmanned aerial vehicle (UAV) was outfitted with miniaturized sensors to investigate the vertical distribution patterns and sources of fine aerosol particles (PM2.5) within the 1 000 m lower troposphere. A total of 16 UAV flights were conducted in the Yangtze River Delta (YRD) region, China, from the summer to winter in 2014. The associated ground-level measurements from two environmental monitoring stations were also used for background analysis. The results show that ground-level PM2.5 concentrations demonstrated a decreasing trend from Feb. to Jul. and an increasing trend from Aug. to Jan. (the following year). Higher PM2.5 concentrations during the day were mainly observed in the morning (Local Time, LT 05-09) in the spring and summer. However, higher PM2.5 concentrations occurred mainly in the late afternoon and evening (LT 16-20) in the autumn and winter, excluding severe haze pollution days when higher PM2.5 concentrations were also observed during the morning periods. Lower tropospheric PM2.5 concentrations exhibited similar diurnal vertical distribution patterns from the summer to winter. The PM2.5 concentrations decreased with height in the morning, with significantly large vertical gradients from the summer to winter. By contrast, the aerosol particles were well mixed with PM2.5 concentrations of lower than 35 μg ṡm-3 in the early afternoon (LT 12-16) due to sufficient expansions of the planetary boundary layer. The mean vertical PM2.5 concentrations within the 1 000 m lower troposphere in the morning were much larger in the winter (∼87.5 μg ṡm-3) than in the summer and autumn (∼20 μg ṡm-3). However, subtle differences of ∼11 μg ṡm-3 in the mean vertical PM2.5 concentrations were observed in the early afternoon from the summer to winter. The vertical distribution patterns of black carbon and its relationships with PM2.5 indicated that the lower tropospheric aerosol particles might be mainly derived from fossil-fuel combustion sources. In addition, a 48-h backward trajectory analysis of air parcels showed that the lower tropospheric aerosol particles were mainly from emissions of local sources in the YRD region in the summer and autumn. By sharp contrast, the aerosol particles of this region in the winter were mainly of long-range transport sources from the north and northwest China due to the impact of Asian winter monsoon.
Sloto, Ronald A.
2002-01-01
The U.S. Geological Survey conducted borehole geophysical logging, collected and analyzed water-level data, and sampled sections of a rock core to determine the concentration of volatile organic compounds in the aquifer matrix of the Stockton Formation. Borehole geophysical logs were run in three monitor wells. At well 05MW04I, the vertical gradient was upward at depths above 42 feet below land surface (ft bls), downward between 42 and 82 ft bls, and upward below 82 ft bls. At well 05MW05I, a downward vertical gradient was present. At well 05MW12I, the vertical gradient was downward above 112 ft bls and upward below 112 ft bls.Three water-bearing fractures in a 17-foot long rock core from 23.5 to 40.5 ft bls were identified and sampled. Three samples were analyzed from each water-bearing fracture—at the fracture face, 2 centimeters (cm) below the fracture, and 4 cm below the fracture. Fifteen compounds were detected; however, concentrations of seven compounds were less than 1 microgram per kilogram (mg/kg) when detected. Concentrations of benzene (from 0.39 to 3.3 mg/kg), 1,1-dichloroethene (1,1-DCE) (from 0.15 to 13 mg/kg), 1,1,1-trichloroethane (TCA) (from 0.17 to 22 mg/kg), and trichloroethylene (TCE) (from 0.092 to 9.6 mg/kg) were detected in all samples. The highest concentrations detected were for toluene, which was detected at a concentration of 32 and 86 mg/kg in the samples from unweathered sandstone at 2 and 4 cm below the fracture, respectively. Concentrations generally decreased with distance below the fracture in the mudstone samples. Concentrations of benzene and toluene increased with distance below the fractures in the unweathered sandstone samples. Concentrations of 1,1-DCE, TCA, and TCE were higher in the mudstone samples than in the samples from sandstone. Toluene concentrations were higher in unweathered sandstone than in weathered sandstone or mudstone.The effect of the pumping of Horsham Water and Sewer Authority public supply well 26 (HWSA-26), 0.2 mile southwest of the base boundary, on groundwater levels on the base was determined by shutting the well down for 6 days to allow water levels to recover. Water levels in 22 nearby wells were measured. The only well (02MW01I) that showed an unambiguous response to the shutdown of well HWSA-26 is 1,350 feet directly along strike from well HWSA-26. The recovery of well 05MW11I in response to the shutdown of well HWSA-26 is masked by recharge from snowmelt but probably does not exceed about 0.2 feet on the basis of the water level in well 05MW11I, which showed a response to the pumping of well HWSA-26 that ranged from 0.5 to 0.15 foot.Horizontal gradients differ with depth, and the rate and direction of ground-water flow and contaminant movement is depth dependent. The potentiometric-surface map for water levels measured in wells screened between 5 and 44 ft bls in the aquifer shows a ground-water mound that is the high point on a regional ground-water divide. From this divide, ground water flows both northwest toward Park Creek and southeast toward Pennypack Creek. The hydraulic gradient around this mound is relatively flat to the southeast and particularly flat to the northwest. The potentiometric-surface map for water levels measured in wells screened between 40 and 100 ft bls in the aquifer shows a very flat hydraulic gradient. Differences in the elevation of the potentiometric surface are less than 2 feet. The potentiometric-surface map for water levels measured in wells screened between 105 and 179 ft bls in the aquifer shows a steep hydraulic gradient between Sites 5 and 2 and a relatively flat hydraulic gradient between Sites 5 and 3. Water levels measured on October 7, 1999, showed downward vertical head gradients for all well clusters at Site 5. Vertical gradients ranged from 0.01 at well cluster 05MW10 to 0.2 at cluster 05MW11. Most gradients were between 0.01 and 0.026. Vertical head gradients vary with time. The variability is caused by a difference in the magnitude of water-level fluctuations between shallow and the deep fractures. The difference in the magnitude of water-level fluctuations is because of differences in lithology and aquifer storativity.
Phase equilibria in the UO 2-PuO 2 system under a temperature gradient
NASA Astrophysics Data System (ADS)
Kleykamp, Heiko
2001-04-01
The phase behaviour of U 0.80Pu 0.20O 1.95 was investigated under a steady-state temperature gradient between the solidus and liquidus by a short-time power-to-melt irradiation experiment. The radial U, Pu, Am and O profiles in the fuel pin after redistribution were measured by X-ray microanalysis. During irradiation, an inner fuel melt forms which is separated from the outer solid only by one concentric liquid-solid-phase boundary. The UO 2 concentration increases to 85% and the PuO 2 concentration decreases to 15% on the solid side of the interface. Opposite gradients occur on the liquid side of the interface. The concentration discontinuity is a consequence of the necessary equality of the chemical potentials of UO 2 and PuO 2 on both sides of the phase boundary which corresponds to a 2750°C isotherm. The radial oxygen profile results in an O/(U + Pu) ratio of 2.00 at the fuel surface and 1.92 at the central void of the fuel. The redistribution is caused by the thermal diffusion of oxygen vacancies in the lattice along the temperature gradient. This process is quantified by the heat of transport Q*v which ranges between -10 kJ/mol at the central void and about -230 kJ/mol near the fuel surface.
Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens
NASA Astrophysics Data System (ADS)
Zhuang, Jiang; Wei, Guopeng; Wright Carlsen, Rika; Edwards, Matthew R.; Marculescu, Radu; Bogdan, Paul; Sitti, Metin
2014-05-01
This paper presents a modeling and experimental framework to characterize the chemotaxis of Serratia marcescens (S. marcescens) relying on two-dimensional and three-dimensional tracking of individual bacteria. Previous studies mainly characterized bacterial chemotaxis based on population density analysis. Instead, this study focuses on single-cell tracking and measuring the chemotactic drift velocity VC from the biased tumble rate of individual bacteria on exposure to a concentration gradient of l-aspartate. The chemotactic response of S. marcescens is quantified over a range of concentration gradients (10-3 to 5 mM/mm) and average concentrations (0.5×10-3 to 2.5 mM). Through the analysis of a large number of bacterial swimming trajectories, the tumble rate is found to have a significant bias with respect to the swimming direction. We also verify the relative gradient sensing mechanism in the chemotaxis of S. marcescens by measuring the change of VC with the average concentration and the gradient. The applied full pathway model with fitted parameters matches the experimental data. Finally, we show that our measurements based on individual bacteria lead to the determination of the motility coefficient μ (7.25×10-6 cm2/s) of a population. The experimental characterization and simulation results for the chemotaxis of this bacterial species contribute towards using S. marcescens in chemically controlled biohybrid systems.
NASA Astrophysics Data System (ADS)
Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.
2013-12-01
Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using Cl concentrations may be due to the lack of sufficient difference between groundwater and surface water Cl concentrations. Both hydrograph separation and differential flow gauging yield far higher baseflow fluxes than 222Rn activities and Cl concentrations, probably indicating the input of other sources to the river in additional to regional groundwater, such as bank return flows.
NASA Astrophysics Data System (ADS)
McGrane, Scott J.; Hutchins, Michael G.; Miller, James D.; Bussi, Gianbattista; Kjeldsen, Thomas R.; Loewenthal, Matt
2017-02-01
This paper presents the hydrological and water quality response from a series of extreme storm events that passed across the UK during the winter of 2013/2014, in an experimental catchment with a strong rural-urban gradient across four nested sub-catchment areas. The Ray catchment in the upper Thames basin, UK, was extensively monitored using in-situ, high-resolution (15 min) flow and water quality instrumentation. Dissolved oxygen, ammonium, turbidity and specific conductivity are used to characterise the water quality dynamics. The impact of the Swindon sewage treatment works (SSTW) on water chemistry at the catchment outlet is considerable. Hydrological and water-quality response varies considerably during the events, with the rural catchments exhibiting a much slower hydrological response compared to urban areas. A simple hydrological model (TETIS) was developed to provide insight into water sources in nested subcatchments, highlighting the disparity of the hydrological dynamics across contrasting land-uses during events. The variation in stormwater runoff sources impacts water quality signals with urban sites contributing to dilution dynamics in ammonium, whereas the more rural site experiences a peak in ammonium during the same event. Dissolved oxygen concentrations vary on a rural-urban gradient and experience a notable sag at the Water Eaton outlet (4.4 mg/l) during the events, that would have resulted in significant ecological harm had they occurred during the summer in warmer temperatures. The water-quality legacy of these storms in the wider context of the hydrological year is somewhat negligible, with markedly poorer water quality signals being observed during the summer months of 2014. Although ammonium concentrations during the events are elevated (above the 'good' status threshold under the WFD), higher values are observed during spring and summer months. The high flows actually appear to flush contaminants out of the Ray and its subcatchments, though the urban sites demonstrate a resupply dynamic during interim dry periods. Data suggest winter storms following dry spells in urban catchments cause some short-lived and spatially extensive deteriorations in water quality. More chronic effects, although prolonged, are only seen downstream of SSTW. These are indicative of capacity of infrastructure being reached, and from the data do not appear to be severe enough to cause ecological harm.
Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Qin, Boqiang; Yao, Xiaolong; Zhang, Yibo
2017-12-26
Chromophoric dissolved organic matter (CDOM) is an important optically active substance in aquatic environments and plays a key role in light attenuation and in the carbon, nitrogen and phosphorus biogeochemical cycles. Although the optical properties, abundance, sources, cycles, compositions and remote sensing estimations of CDOM have been widely reported in different aquatic environments, little is known about the optical properties and composition changes in CDOM along trophic gradients. Therefore, we collected 821 samples from 22 lakes along a trophic gradient (oligotrophic to eutrophic) in China from 2004 to 2015 and determined the CDOM spectral absorption and nutrient concentrations. The total nitrogen (TN), total phosphorus (TP), and chlorophyll a (Chla) concentrations and the Secchi disk depth (SDD) ranged from 0.02 to 24.75 mg/L, 0.002-3.471 mg/L, 0.03-882.66 μg/L, and 0.05-17.30 m, respectively. The trophic state index (TSI) ranged from 1.55 to 98.91 and covered different trophic states, from oligotrophic to hyper-eutrophic. The CDOM absorption coefficient at 254 nm (a(254)) ranged from 1.68 to 92.65 m -1 . Additionally, the CDOM sources and composition parameters, including the spectral slope and relative molecular size value, exhibited a substantial variability from the oligotrophic level to other trophic levels. The natural logarithm value of the CDOM absorption, lna(254), is highly linearly correlated with the TSI (r 2 = 0.92, p < .001, n = 821). Oligotrophic lakes are distinguished by a(254)<4 m -1 , and mesotrophic and eutrophic lakes are classified as 4 ≤ a(254)≤10 and a(254)>10 m -1 , respectively. The results suggested that the CDOM absorption coefficient a(254) might be a more sensitive single indicator of the trophic state than TN, TP, Chla and SDD. Therefore, we proposed a CDOM absorption coefficient and determined the threshold for defining the trophic state of a lake. Several advantages of measuring and estimating CDOM, including rapid experimental measurements, potential in situ optical sensor measurements and large-spatial-scale remote sensing estimations, make it superior to traditional TSI techniques for the rapid monitoring and assessment of lake trophic states. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Johannesson, K. H.; Tang, J.
2003-12-01
Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally increase along groundwater flow path, however, MREE (Gd) exhibit little change and HREE (Yb) concentrations tend to decreases along the flow path. Floridan groundwaters have HREE enriched shale-normalized patterns, although (Yb/Nd)SN values decrease along groundwater flow path. Thus, REE patterns of Floridan groundwaters tend to flatten with flow down-gradient. All groundwaters show positive Eu anomalies (0.06 - 0.17) and negative Ce anomalies (-0.12 - -0.63).
An empirical basis for Mach bands
Lotto, R. Beau; Williams, S. Mark; Purves, Dale
1999-01-01
Mach bands, the illusory brightness maxima and minima perceived at the initiation and termination of luminance gradients, respectively, are generally considered a direct perceptual manifestation of lateral inhibitory interactions among retinal or other lower order visual neurons. Here we examine an alternative explanation, namely that Mach bands arise as a consequence of real-world luminance gradients. In this first of two companion papers, we analyze the natural sources of luminance gradients, demonstrating that real-world gradients arising from curved surfaces are ordinarily adorned by photometric highlights and lowlights in the position of the illusory bands. The prevalence of such gradients provides an empirical basis for the generation of this perceptual phenomenon. PMID:10220450
NASA Astrophysics Data System (ADS)
Kim, Mi Seon; Choi, Man Sik; Kim, Chan-Kook
2016-03-01
To evaluate the applicability of a diffusive gradient in thin film (DGT) probe for monitoring dissolved metals in coastal seawater, DGT-labile metal concentrations were compared with total dissolved metal concentrations using spiked and natural seawater samples in the laboratory and transplanted mussels ( Mytilus galloprovincialis). This was achieved through the simultaneous deployment of DGT probes and transplanted mussels in Ulsan Bay during winter and summer. DGT-labile metal concentrations were 45% (Cu) ~ 90% (Zn) of total dissolved concentrations, and the order of non-labile concentrations was Cu > Pb > Co ~ Ni > Cd ~ Zn in both metal-contaminated and non-contaminated seawater samples, which was similar to the order of stability of metal complexes in the Irving-Williams series. The overall variability of the DGT probe results within and between tanks was less than 10% (relative standard deviation: RSD) for all the metals tested during a 48-h deployment. The accumulation of metals, as determined by DGT probes, represented the spatial gradients better than the transplanted mussels did for all of the metals tested, and the extent of metal accumulation in mussels differed depending on the metal. The comparison of results for the DGT probe and the transplanted mussels in two seasons (winter and summer) suggested that metal accumulation in mussels was controlled by the physiological factors of mussels and partly by their diet (particulate metal loadings). The DGT probe could be used as a monitoring tool for dissolved metals in coastal seawater because its results explained only labile species. When using the DGT probe, slightly more than half of the total dissolved concentration in seawater samples for all the metals investigated displayed timeintegrated properties and distinct spatial gradients from pristine to metal-contaminated seawater.
Schumacher, John G.; Kleeschulte, Michael J.
2010-01-01
A deep (more than 2,000 feet) monitoring well was installed in an area being explored for lead and zinc deposits within the Mark Twain National Forest in southern Missouri. The area is a mature karst terrain where rocks of the Ozark aquifer, a primary source of water for private and public supplies and major springs in the nearby Eleven Point National Wild and Scenic River and the Ozark National Scenic Riverways, are exposed at the surface. The potential lead deposits lie about 2,000 feet below the surface within a deeper aquifer, called the St. Francois aquifer. The two aquifers are separated by the St. Francois confining unit. The monitoring well was installed as part of a series of investigations to examine potentiometric head relations and water-quality differences between the two aquifers. Results of borehole flowmeter measurements in the open borehole and water-level measurements from the completed monitoring well USGS-D1 indicate that a seasonal upward gradient exists between the St. Francois aquifer and the overlying Ozark aquifer from about September through February. The upward potentiometric heads across the St. Francois confining unit that separates the two aquifers averaged 13.40 feet. Large reversals in this upward gradient occurred during the late winter through summer (about February through August) when water levels in the Ozark aquifer were as much as 138.47 feet higher (average of 53.84 feet) than water levels in the St. Francois aquifer. Most of the fluctuation of potentiometric gradient is caused by precipitation and rapid recharge that cause large and rapid increases in water levels in the Ozark aquifer. Analysis of water-quality samples collected from the St. Francois aquifer interval of the monitoring well indicated a sodium-chloride type water containing dissolved-solids concentrations as large as 1,300 milligrams per liter and large concentrations of sodium, chloride, sulfate, boron, and lithium. In contrast, water in the overlying Ozark aquifer interval of the monitoring well was a calcium-magnesium-bicarbonate type water containing less than 250 milligrams per liter dissolved solids and substantially smaller concentrations of major and trace elements.
Altitude effect on leaf wax carbon isotopic composition in humid tropical forests
NASA Astrophysics Data System (ADS)
Wu, Mong Sin; Feakins, Sarah J.; Martin, Roberta E.; Shenkin, Alexander; Bentley, Lisa Patrick; Blonder, Benjamin; Salinas, Norma; Asner, Gregory P.; Malhi, Yadvinder
2017-06-01
The carbon isotopic composition of plant leaf wax biomarkers is commonly used to reconstruct paleoenvironmental conditions. Adding to the limited calibration information available for modern tropical forests, we analyzed plant leaf and leaf wax carbon isotopic compositions in forest canopy trees across a highly biodiverse, 3.3 km elevation gradient on the eastern flank of the Andes Mountains. We sampled the dominant tree species and assessed their relative abundance in each tree community. In total, 405 sunlit canopy leaves were sampled across 129 species and nine forest plots along the elevation profile for bulk leaf and leaf wax n-alkane (C27-C33) concentration and carbon isotopic analyses (δ13C); a subset (76 individuals, 29 species, five forest plots) were additionally analyzed for n-alkanoic acid (C22-C32) concentrations and δ13C. δ13C values display trends of +0.87 ± 0.16‰ km-1 (95% CI, r2 = 0.96, p < 0.01) for bulk leaves and +1.45 ± 0.33‰ km-1 (95% CI, r2 = 0.94, p < 0.01) for C29n-alkane, the dominant chain length. These carbon isotopic gradients are defined in multi-species sample sets and corroborated in a widespread genus and several families, suggesting the biochemical response to environment is robust to taxonomic turnover. We calculate fractionations and compare to adiabatic gradients, environmental variables, leaf wax n-alkane concentrations, and sun/shade position to assess factors influencing foliar chemical response. For the 4 km forested elevation range of the Andes, 4-6‰ higher δ13C values are expected for upland versus lowland C3 plant bulk leaves and their n-alkyl lipids, and we expect this pattern to be a systematic feature of very wet tropical montane environments. This elevation dependency of δ13C values should inform interpretations of sedimentary archives, as 13C-enriched values may derive from C4 grasses, petrogenic inputs or upland C3 plants. Finally, we outline the potential for leaf wax carbon isotopes to trace biomarker sourcing within catchments and for paleoaltimetry.
Environmental drivers of dissolved organic matter molecular composition in the Delaware Estuary
NASA Astrophysics Data System (ADS)
Osterholz, Helena; Kirchman, David L.; Niggemann, Jutta; Dittmar, Thorsten
2016-11-01
Estuaries as connectors of freshwater and marine aquatic systems are hotspots of biogeochemical element cycling. In one of the best studied temperate estuaries, the Delaware Estuary (USA), we investigated the variability of dissolved organic matter (DOM) over five sampling cruises along the salinity gradient in August and November of 3 consecutive years. Dissolved organic carbon (DOC) concentrations were more variable in the upper reaches of the estuary (245±49 µmol L-1) than at the mouth of the estuary (129±14 µmol L-1). Bulk DOC decreased conservatively along the transect in November but was non-conservative with increased DOC concentrations mid-estuary in August. Detailed analysis of the solid-phase extractable DOM pool via ultrahigh resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) revealed compositional differences at the molecular level that were not reflected in changes in concentration. Besides the mixing of terrestrial and marine endmember signatures, river discharge levels and biological activity were found to impact DOM molecular composition. DOM composition changed less between August and November than along the salinity gradient. Relative contributions of presumed photolabile DOM compounds did not reveal non-conservative behavior indicative of photochemical processing; suggesting that on the timescales of estuarine mixing photochemical removal of molecules plays a minor role in the turbid Delaware Bay. Overall, a large portion of molecular formulae overlapped between sampling campaigns and persisted during estuarine passage. Extending the analysis to the structural level via the fragmentation of molecular masses in the FT-ICR-MS cell, we found that the relative abundance of isomers along the salinity gradient did not change, indicating a high structural similarity of aquatic DOM independent of the origin. These results point towards a recalcitrant character of the DOM supplied by the Delaware River. We demonstrate that in addition to bulk DOC quantification, detailed information on molecular composition is essential for constraining sources of DOM and to identify the processes that impact estuarine DOM, thereby controlling amount and composition of DOM eventually discharged to the ocean through estuaries.
Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.
Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R
2017-08-21
Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.
Refined discrete and empirical horizontal gradients in VLBI analysis
NASA Astrophysics Data System (ADS)
Landskron, Daniel; Böhm, Johannes
2018-02-01
Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489-20502, 1997. https://doi.org/10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017.https://doi.org/10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these empirical a priori gradients slightly reduce (improve) the BLRs with respect to the estimation of gradients. In general, this paper addresses that a priori horizontal gradients are actually more important for VLBI analysis than previously assumed, as particularly the discrete model GRAD as well as the empirical model GPT3 are indeed able to refine and improve the results.
Megafauna and frozen soil: the drivers of atmospheric CH4 dynamics
NASA Astrophysics Data System (ADS)
Zimov, N.; Zimov, S. A.
2010-12-01
During the last deglaciation (LD) a strong increase in atmospheric methane (CH4) concentrations occurred simultaneously with a rise in Greenland temperatures indicating that in the north, during this time period, strong CH4 sources “awakened”, as additionally documented by the appearance of a strong gradient between northern (Greenland) and southern (Antarctica) hemisphere atmospheric CH4 concentrations. This rise could not be caused by wetland expansion. A reconstruction of peatland formation dynamics has indicated that wetlands on Earth were few in LD and only actively expanded 10,000 yr BP, after atmospheric CH4 concentrations began to decline. Destabilization of methane clathrates also could not be the source for atmospheric CH4 increase. Geological CH4 (including methane clathrates) has the highest deuterium content (δD) among all of the known sources of CH4 while atmospheric CH4 δD values determined for the LD were record low. To explain recorded atmospheric CH4 and its isotopic dynamics required a strong northern source, which was active only during the LD and that provided very low δD CH4 values. Such a source is permafrost thawing under anaerobic conditions (or better stated soils of mammoth steppe-tundra ecosystems). Permafrost thawing is the strongest, among known, wetland sources (usually over 100g CH4/m2yr) and has a unique isotopic signature (δD = -400 per mil (-338 to -479 per mil), δ13C = -73 per mil (-58 to -99 per mil)). The main sources of atmospheric CH4 have different isotopic signatures (δ13C, δD). The isotopic content of atmospheric CH4 is a simple function of the weight average for all of the sources. Inclusion of permafrost source into a budget model of the atmospheric methane and its isotopes allowed us to reconstruct the dynamics of methane’s main sources. Model indicated geological source to be negligible as in LGM so and in LD and Holocene. During the glaciation, the largest methane source was megafauna, whose 1.4-1.7 billion ton biomass was larger than the modern biomass of human and domestic animals combined. During the LD, the largest methane source was the thawing of steppe-tundra soils. During the Holocene the largest CH4 source was wetlands. All these estimates correspond with the scales of permafrost degradation in the LD, megafaunal extinction and increase in fire intensity derived from charcoal within stratigraphic columns.
NASA Astrophysics Data System (ADS)
Carlson, P.; Banner, J. L.; Casteel, R. C.; Breecker, D.
2013-12-01
The cave at Westcave Preserve, in central Texas, is a unique location to study karst processes due to its low, nearly atmospheric cave-air CO2 levels and seasonally variable temperature. The source of water that drips into the cave, however, has not been constrained, limiting interpretation of climate proxies in the cave. It is possible that a nearby spring and the cave drip-waters share a common source. Alternatively, the drip-waters could represent precipitation that has infiltrated the host rock. These hypotheses should be tested using Sr isotope ratios and/or other tracers. If they do share a common source, analysis of dissolved inorganic carbon (DIC) concentration , δ13CDIC, and cation concentrations of the two waters could provide insight into epikarst processes such as CO2 degassing and prior calcite precipitation (PCP) that are otherwise difficult to constrain. Westcave Preserve includes outcrops of the Hensell Sand, the Cow Creek Limestone, and the Hammett Shale, with a small cave at the contact between the Cow Creek and Hammett formations. The overlying Hensell Sand contains water that emerges at the surface as a spring near the cave. Water also drips directly into the cave, forming speleothems. Previous research has established that although δ18O values of rainfall in the area vary seasonally, between -10.5 and 1.1‰ with a weighted mean of -6.5‰ (VSMOW), the drip-water varies only between -4.7 and -4.3‰ with a weighted mean of -4.5‰ (Feng et al., in review). This suggests a large well-mixed reservoir above the cave. The soils above the cave have high CO2 of up to 17,500 ppmv, but because the cave is shallow with multiple large openings, cave CO2 levels are near-atmospheric (Casteel and Banner, in review). This creates a steep CO2 gradient between the soil and the cave air. The spring water DIC is nearly in carbon-isotope equilibrium with the soil CO2, suggesting that soil respiration, here controlled by C3 plants, is the primary source of CO2 for this reservoir. The drip water δ13CDIC is higher than the spring water (-10.3‰ versus -13.0‰). Although the spring water has higher DIC concentration than the drip water, with mean values of 128 mg/L C versus 113 mg/L C, respectively, preliminary data suggest that for some drips, the drip water DIC concentrations and δ13CDIC may vary with spring DIC values. We propose that if the spring and the drip water prove to be derived from the same source, the differences in DIC and δ13CDIC between spring and drip water are due to epikarst CO2 degassing as the water percolates down the CO2 gradient toward the cave ceiling. If the spring represents the source of the drip water, the calculated δ13 value of degassed CO2 is -33.3‰, assuming no PCP. PCP may occur, leading to a δ13C of degassed CO2 lower than calculated, but would result in a decrease or no change in δ13CDIC and therefore does not explain the observed difference between spring water and drip water.
Chemotaxis of Molecular Dyes in Polymer Gradients in Solution.
Guha, Rajarshi; Mohajerani, Farzad; Collins, Matthew; Ghosh, Subhadip; Sen, Ayusman; Velegol, Darrell
2017-11-08
Chemotaxis provides a mechanism for directing the transport of molecules along chemical gradients. Here, we show the chemotactic migration of dye molecules in response to the gradients of several different neutral polymers. The magnitude of chemotactic response depends on the structure of the monomer, polymer molecular weight and concentration, and the nature of the solvent. The mechanism involves cross-diffusion up the polymer gradient, driven by favorable dye-polymer interaction. Modeling allows us to quantitatively evaluate the strength of the interaction and the effect of the various parameters that govern chemotaxis.
Gentamicin concentration gradients in scala tympani perilymph following systemic applications
Hahn, Hartmut; Salt, Alec N.; Schumacher, Ulrike; Plontke, Stefan K.
2013-01-01
In prior studies it was shown that round window membrane (RWM) application of gentamicin produced a robust baso-apical concentration gradient in the perilymph of scala tympani (ST) with peak concentrations in the basal turn of ST. These gradients potentially contribute to the clinical efficacy and safety of intratympanic gentamicin applications for the treatment of Meniere’s disease. The present study aimed to establish the distribution of gentamicin along ST perilymph after systemic applications. Gentamicin sulfate was applied intravenously in the amounts of 100, 300 and 600 mg/kg/bw over a period of three hours or as a 300 mg/kg/bw subcutaneous bolus injection. Three and five hours after the start of the application perilymph of ST was aspirated from the cochlea apex of the right and left cochlea, respectively. Ten sequential 1 μL-perilymph samples from the apex of each cochlea were quantitatively analyzed using a fluorescence polarization immunoassay. In contrast to local RWM delivery, systemic application of gentamicin resulted in highest perilymph levels in the apex of the cochlea with decreasing concentrations towards the basal regions of ST. The absolute gentamicin concentrations increased with amount of drug applied and time before sampling. While the basal-apical gradient measured after local drug applications to the RW niche is likely the result of the direct uptake of drugs into the perilymph of the ST, distribution by diffusion and a very low perilymph flow towards the cochlear apex, computer simulations suggested that the apical-basal gradient observed with these systemic applications can be explained by higher entry rates of gentamicin in the apex compared to the basal turns of the cochlea. It is also possible that gentamicin enters perilymph indirectly from blood via the endolymph. In this case the faster kinetics in apical turns could be due to the smaller cross-sectional area of scala tympani relative to endolymph in the apical turns. PMID:24192668
Gentamicin concentration gradients in scala tympani perilymph following systemic applications.
Hahn, Hartmut; Salt, Alec N; Schumacher, Ulrike; Plontke, Stefan K
2013-01-01
It has been shown in prior studies that round window membrane (RWM) application of gentamicin produced a robust basal-apical concentration gradient in the perilymph of scala tympani (ST) with peak concentrations in the basal turn of ST. These gradients potentially contribute to the clinical efficacy and safety of intratympanic gentamicin applications for the treatment of Ménière's disease. The present study aimed to establish the distribution of gentamicin along ST perilymph after systemic applications. Gentamicin sulfate was applied intravenously in the amounts of 100, 300 and 600 mg/kg body weight (BW) over a period of 3 h or as a 300 mg/kg BW subcutaneous bolus injection. At 3 and 5 h after the start of the application perilymph of ST was aspirated from the cochlea apex of the right and left cochlea, respectively, and 10 sequential 1-µl perilymph samples from the apex of each cochlea were quantitatively analyzed using a fluorescence polarization immunoassay. In contrast to local RWM delivery, systemic application of gentamicin resulted in the highest perilymph levels in the apex of the cochlea with decreasing concentrations towards the basal regions of ST. The absolute gentamicin concentrations increased with the amount of drug applied and time before sampling. While it is likely that the basal-apical gradient measured after local drug applications to the round window niche is the result of the direct uptake of drugs into the perilymph of the ST, distribution by diffusion and a very low perilymph flow towards the cochlear apex, computer simulations suggested that the apical-basal gradient observed with these systemic applications can be explained by higher entry rates of gentamicin in the apex compared to the basal turns of the cochlea. It is also possible that gentamicin enters perilymph indirectly from the blood via the endolymph. In this case the faster kinetics in apical turns could be due to the smaller cross-sectional area of ST relative to endolymph in the apical turns. © 2013 S. Karger AG, Basel.
Migration of Point Defects in the Field of a Temperature Gradient
NASA Astrophysics Data System (ADS)
Kozlov, A. V.; Portnykh, I. A.; Pastukhov, V. I.
2018-04-01
The influence of the temperature gradient over the thickness of the cladding of a fuel element of a fast-neutron reactor on the migration of point defects formed in the cladding material due to neutron irradiation has been studied. It has been shown that, under the action of the temperature gradient, the flux of vacancies onto the inner surface of the cladding is higher than the flux of interstitial atoms, which leads to the formation of a specific concentration profile in the cladding with a vacancy-depleted zone near the inner surface. The experimental results on the spatial distribution of pores over the cladding thickness have been presented with which the data on the concentration profiles and vacancy fluxes have been compared.
NASA Astrophysics Data System (ADS)
Finger, R.; Euskirchen, E. S.; Turetsky, M.
2013-12-01
The degradation of ice-rich permafrost, which covers a large portion of Interior Alaska, typically leads to thermokarst and increases in soil saturation. As a result, conifer peat plateaus degrade and are often replaced by wet collapse scar bogs. This state change results in profound changes in regional hydrology, biogeochemical cycling, and plant community composition. Preliminary data suggest that permafrost thaw can increase surface soil inorganic nitrogen (IN) concentrations but it is still unknown whether these changes in nutrient availability are short-lived (pulse releases) and whether or not they impact collapse scar vegetation composition or productivity, particularly as collapse scars undergo succession with time-after-thaw. Therefore we are currently examining changes in plant community composition, N availability and plant N acquisition along three thermokarst gradients in Interior Alaska. Each gradient is comprised of a forested permafrost peat plateau, adjacent ecotones experiencing active permafrost degradation (including a collapsing forest canopy and a saturated moat), and a collapse scar bog where permafrost has completely degraded. We predicted that IN concentrations would be highest along the active thaw margin, and lowest in the peat plateau. We also predicted that IN concentrations would be positively related to shifts in vegetation community composition, nutrient use efficiency (NUE) and tissue 15N concentrations. Preliminary results have shown that IN concentrations increase in newer collapse scar features as well as with thaw depth. Our data also show a shift from feather moss and ericaceous shrub-dominate understories in the permafrost plateau to Sphagnum and sedge dominated thaw ecotone and bog communities. Further successional development of the collapse scar bog results in the reintroduction of small evergreen and deciduous shrubs as the peat mat develops. Over time, collapse scar succession and peat accumulation appears to lead to progressive N limitations, resulting in the dominance of plants with higher NUE. This likely has implications for plant litter quality, and could inhibit decomposition processes. We are collecting additional data to compare species-level NUE and nutrient resorption efficiency. We also will measure δ15N of aboveground plant organs, roots, soil, and pore water to explore sources of plant N, which we expect will influenced rooting depth as permafrost thaws as well as differences in mycorrhizal associations along our thaw gradient. Because thawing permafrost soils are anticipated to mobilize large amounts of N from soils, our results will improve our understanding of how permafrost thaw influences vegetation and soil N pools, soil N availability, and plant nutrition.
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-01-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159
NASA Astrophysics Data System (ADS)
Liu, Zhao-wei; Zhu, De-jun; Chen, Yong-can; Wang, Zhi-gang
2014-12-01
RIV1Q is the stand-alone water quality program of CE-QUAL-RIV1, a hydraulic and water quality model developed by U.S. Army Corps of Engineers Waterways Experiment Station. It utilizes an operator-splitting algorithm and the advection term in governing equation is treated using the explicit two-point, fourth-order accurate, Holly-Preissmann scheme, in order to preserve numerical accuracy for advection of sharp gradients in concentration. In the scheme, the spatial derivative of the transport equation, where the derivative of velocity is included, is introduced to update the first derivative of dependent variable. In the stream with larger cross-sectional variation, steep velocity gradient can be easily found and should be estimated correctly. In the original version of RIV1Q, however, the derivative of velocity is approximated by a finite difference which is first-order accurate. Its leading truncation error leads to the numerical error of concentration which is related with the velocity and concentration gradients and increases with the decreasing Courant number. The simulation may also be unstable when a sharp velocity drop occurs. In the present paper, the derivative of velocity is estimated with a modified second-order accurate scheme and the corresponding numerical error of concentration decreases. Additionally, the stability of the simulation is improved. The modified scheme is verified with a hypothetical channel case and the results demonstrate that satisfactory accuracy and stability can be achieved even when the Courant number is very low. Finally, the applicability of the modified scheme is discussed.
Performance optimization in electric field gradient focusing.
Sun, Xuefei; Farnsworth, Paul B; Tolley, H Dennis; Warnick, Karl F; Woolley, Adam T; Lee, Milton L
2009-01-02
Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris-HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm(2) for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 microg/mL).