Baghani, Hamid Reza; Lohrabian, Vahid; Aghamiri, Mahmoud Reza; Robatjazi, Mostafa
2016-03-01
(125)I is one of the important sources frequently used in brachytherapy. Up to now, several different commercial models of this source type have been introduced to the clinical radiation oncology applications. Recently, a new source model, IrSeed-125, has been added to this list. The aim of the present study is to determine the dosimetric parameters of this new source model based on the recommendations of TG-43 (U1) protocol using Monte Carlo simulation. The dosimetric characteristics of Ir-125 including dose rate constant, radial dose function, 2D anisotropy function and 1D anisotropy function were determined inside liquid water using MCNPX code and compared to those of other commercially available iodine sources. The dose rate constant of this new source was found to be 0.983+0.015 cGyh-1U-1 that was in good agreement with the TLD measured data (0.965 cGyh-1U-1). The 1D anisotropy function at 3, 5, and 7 cm radial distances were obtained as 0.954, 0.953 and 0.959, respectively. The results of this study showed that the dosimetric characteristics of this new brachytherapy source are comparable with those of other commercially available sources. Furthermore, the simulated parameters were in accordance with the previously measured ones. Therefore, the Monte Carlo calculated dosimetric parameters could be employed to obtain the dose distribution around this new brachytherapy source based on TG-43 (U1) protocol.
Revision of the dosimetric parameters of the CSM11 LDR Cs-137 source.
Otal, Antonio; Martínez-Fernández, Juan Manuel; Granero, Domingo
2011-03-01
The clinical use of brachytherapy sources requires the existence of dosimetric data with enough of quality for the proper application of treatments in clinical practice. It has been found that the published data for the low dose rate CSM11 Cs-137 source lacks of smoothness in some regions because the data are too noisy. The purpose of this study was to calculate the dosimetric data for this source in order to provide quality dosimetric improvement of the existing dosimetric data of Ballester et al . [1]. In order to obtain the dose rate distributions Monte Carlo simulations were done using the GEANT4 code. A spherical phantom 40 cm in radius with the Cs-137 source located at the centre of the phantom was used. The results from Monte Carlo simulations were applied to derive AAPM Task Group 43 dosimetric parameters: anisotropy function, radial dose function, air kerma strength and dose rate constant. The dose rate constant obtained was 1.094 ± 0.002 cGy h -1 U -1 . The new calculated data agrees within experimental uncertainties with the existing data of Ballester et al . but without the statistical noise of that study. The obtained data presently fulfills all the requirements of the TG-43U1 update and thus it can be used in clinical practice.
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.
Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam
2016-06-01
The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources
Ghorbani, Mahdi; Davenport, David
2016-01-01
Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558
Thanh, Minh‐Tri Ho; Munro, John J.
2015-01-01
The Source Production & Equipment Co. (SPEC) model M−15 is a new Iridium−192 brachytherapy source model intended for use as a temporary high‐dose‐rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M‐15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M−15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium−192 photons were uniformly generated inside the iridium core of the model M−15 with photon and secondary electron transport replicated using photoatomic cross‐sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4×109 sources photon history for each simulation and the in‐air photon spectrum filtered to remove low‐energy photons below δ=10%keV. Dosimetric data, including D(r,θ),gL(r),F(r,θ),Φan(r), and φ¯an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M−15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M−15 Iridium−192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D˙(r0,θ0)≡D˙(1cm,π/2), is found to be 4.038±0.064 cGy mCi−1 h−1. The air kerma strength, SK, is reported to be 3.632±0.086 cGy cm2 mCi−1 g−1, and the dose rate constant, Λ, is calculated to be 1.112±0.029 cGy h−1 U−1. The normalized dose rate, radial dose function, and anisotropy function with their uncertainties were computed and are represented in both tabular and graphical format in the report. A dosimetric study was performed of the new M−15 Iridium−192 HDR brachytherapy source using the MCNP6 radiation transport code. Dosimetric parameters, including the dose‐rate constant, radial dose function, and anisotropy function, were calculated in accordance with the updated AAPM and ESTRO dosimetric parameters for brachytherapy sources of average energy greater than 50 keV. These data therefore may be applied toward the development of a treatment planning program and for clinical use of the source. PACS numbers: 87.56.bg, 87.53.Jw PMID:26103489
Dosimetric study of GZP6 60 Co high dose rate brachytherapy source.
Lei, Qin; Xu, Anjian; Gou, Chengjun; Wen, Yumei; He, Donglin; Wu, Junxiang; Hou, Qing; Wu, Zhangwen
2018-05-28
The purpose of this study was to obtain dosimetric parameters of GZP6 60 Co brachytherapy source number 3. The Geant4 MC code has been used to obtain the dose rate distribution following the American Association of Physicists in Medicine (AAPM) TG-43U1 dosimetric formalism. In the simulation, the source was centered in a 50 cm radius water phantom. The cylindrical ring voxels were 0.1 mm thick for r ≤ 1 cm, 0.5 mm for 1 cm < r ≤ 5 cm, and 1 mm for r > 5 cm. The kerma-dose approximation was performed for r > 0.75 cm to increase the simulation efficiency. Based on the numerical results, the dosimetric datasets were obtained. These results were compared with the available data of the similar 60 Co high dose rate sources and the detailed dosimetric characterization was discussed. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S
2016-03-08
Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, Mahdi; Taghdiri, Fatemeh; Hamed Hosseini, S.
Purpose: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for {beta} sources. Radioactive biocompatible and biodegradable {sup 153}Sm glass seed without encapsulation is a {beta}{sup -} emitter radionuclide with a short half-life and delivers a high dose rate to the tumor in the millimeter range. This study presents the results of Monte Carlo calculations of the dosimetric parameters for the {sup 153}Sm brachytherapy source. Methods: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate two-dimensional dose distributions around the source. The dosimetric parameters ofmore » AAPM TG-60 recommendations including the reference dose rate, the radial dose function, the anisotropy function, and the one-dimensional anisotropy function were obtained. Results: The dose rate value at the reference point was estimated to be 9.21{+-}0.6 cGy h{sup -1} {mu}Ci{sup -1}. Due to the low energy beta emitted from {sup 153}Sm sources, the dose fall-off profile is sharper than the other beta emitter sources. The calculated dosimetric parameters in this study are compared to several beta and photon emitting seeds. Conclusions: The results show the advantage of the {sup 153}Sm source in comparison with the other sources because of the rapid dose fall-off of beta ray and high dose rate at the short distances of the seed. The results would be helpful in the development of the radioactive implants using {sup 153}Sm seeds for the brachytherapy treatment.« less
Dosimetric parameters of three new solid core I‐125 brachytherapy sources
Solberg, Timothy D.; DeMarco, John J.; Hugo, Geoffrey; Wallace, Robert E.
2002-01-01
Monte Carlo calculations and TLD measurements have been performed for the purpose of characterizing dosimetric properties of new commercially available brachytherapy sources. All sources tested consisted of a solid core, upon which a thin layer of I125 has been adsorbed, encased within a titanium housing. The PharmaSeed BT‐125 source manufactured by Syncor is available in silver or palladium core configurations while the ADVANTAGE source from IsoAid has silver only. Dosimetric properties, including the dose rate constant, radial dose function, and anisotropy characteristics were determined according to the TG‐43 protocol. Additionally, the geometry function was calculated exactly using Monte Carlo and compared with both the point and line source approximations. The 1999 NIST standard was followed in determining air kerma strength. Dose rate constants were calculated to be 0.955±0.005,0.967±0.005, and 0.962±0.005 cGyh−1U−1 for the PharmaSeed BT‐125‐1, BT‐125‐2, and ADVANTAGE sources, respectively. TLD measurements were in excellent agreement with Monte Carlo calculations. Radial dose function, g(r), calculated to a distance of 10 cm, and anisotropy function F(r, θ), calculated for radii from 0.5 to 7.0 cm, were similar among all source configurations. Anisotropy constants, ϕ¯an, were calculated to be 0.941, 0.944, and 0.960 for the three sources, respectively. All dosimetric parameters were found to be in close agreement with previously published data for similar source configurations. The MCNP Monte Carlo code appears to be ideally suited to low energy dosimetry applications. PACS number(s): 87.53.–j PMID:11958652
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani
2012-01-01
Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455
Zaker, Neda; Sina, Sedigheh; Koontz, Craig; Meigooni1, Ali S.
2016-01-01
Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross‐sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross‐sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code — MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low‐energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes. PACS number(s): 87.56.bg PMID:27074460
CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife
NASA Astrophysics Data System (ADS)
Kearney, Vasant; Cheung, Joey P.; McGuinness, Christopher; Solberg, Timothy D.
2017-07-01
The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.
CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife.
Kearney, Vasant; Cheung, Joey P; McGuinness, Christopher; Solberg, Timothy D
2017-06-26
The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.
SU-E-T-467: Monte Carlo Dosimetric Study of the New Flexisource Co-60 High Dose Rate Source.
Vijande, J; Granero, D; Perez-Calatayud, J; Ballester, F
2012-06-01
Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V.). This study aims to obtain quality dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Penelope2008 and GEANT4 Monte Carlo codes were used to dosimetrically characterize this source. Water composition and mass density was that recommended by AAPM. Due to the high energy of the 60Co, dose for small distances cannot be approximated by collisional kerma. Therefore, we have considered absorbed dose to water for r<0.75 cm and collisional kerma from 0.75
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saminathan, S; Godson, H; Ponmalar, R
2016-06-15
Purpose: To evaluate the dosimetric characteristics of newly developed well type ionization chamber and to validate the results with the commercially available calibrated well chambers that are being used for the calibration of brachytherapy sources. Methods: The newly developed well type ionization chamber (BDS 1000) has been designed for the convenient use in brachytherapy which is open to atmospheric condition. The chamber has a volume of 240 cm3 and weight of 2.5 Kg. The calibration of the radioactive source with activities from 0.01 mCi to 20 Ci can be carried out using this chamber. The dosimetric parameters such as leakagemore » current, stability, scattering effect, ion collection efficiency, reference air kerma rate and nominal response with energy were carried out with the BDS 1000 well type ion chamber. The evaluated dosimetric characteristics of BDS1000 well chamber were validated with two other commercially available well chambers (HDR 1000 plus and BTC/3007). Results: The measured leakage current observed was negligible for the newly developed BDS 1000 well type ion chamber. The ion collection efficiency was close to 1 and the response of the chamber was found to be very stable. The determined sweet spot was at 42 mm from bottom of the chamber insert. The reference air kerma rate was found to be 4.634 × 105 Gym2hr-1A-1 for the BDS 1000 well chamber. The overall dosimetric characteristics of BDS 1000 well chamber was in good agreement with the dosimetric properties of other two well chambers. Conclusion: The dosimetric study shows that the newly developed BDS 1000 well type ionization chamber is high sensitive and reliable chamber for reference air kerma strength calibration. The results obtained confirm that this chamber can be used for the calibration of HDR and LDR brachytherapy sources.« less
NASA Astrophysics Data System (ADS)
Kurudirek, Murat
2014-09-01
Effective atomic numbers, Zeff, and electron densities, neff, are convenient parameters used to characterise the radiation response of a multi-element material in many technical and medical applications. Accurate values of these physical parameters provide essential data in medical physics. In the present study, the effective atomic numbers and electron densities have been calculated for some human tissues and dosimetric materials such as Adipose Tissue (ICRU-44), Bone Cortical (ICRU-44), Brain Grey/White Matter (ICRU-44), Breast Tissue (ICRU-44), Lung Tissue (ICRU-44), Soft Tissue (ICRU-44), LiF TLD-100H, TLD-100, Water, Borosilicate Glass, PAG (Gel Dosimeter), Fricke (Gel Dosimeter) and OSL (Aluminium Oxide) using mean photon energies, Em, of various radiation sources. The used radiation sources are Pd-103, Tc-99, Ra-226, I-131, Ir-192, Co-60, 30 kVp, 40 kVp, 50 kVp (Intrabeam, Carl Zeiss Meditec) and 6 MV (Mohan-6 MV) sources. The Em values were then used to calculate Zeff and neff of the tissues and dosimetric materials for various radiation sources. Different calculation methods for Zeff such as the direct method, the interpolation method and Auto-Zeff computer program were used and agreements and disagreements between the used methods have been presented and discussed. It has been observed that at higher Em values agreement is quite satisfactory (Dif.<5%) between the adopted methods.
2D dose distribution images of a hybrid low field MRI-γ detector
NASA Astrophysics Data System (ADS)
Abril, A.; Agulles-Pedrós, L.
2016-07-01
The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.
2011-02-15
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinicmore » for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.« less
DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.
2011-01-01
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments. PMID:21452716
DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M
2011-02-01
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.
Sina, Sedigheh; Faghihi, Reza; Meigooni, Ali S; Mehdizadeh, Simin; Mosleh Shirazi, M Amin; Zehtabian, Mehdi
2011-05-19
In this study, dose rate distribution around a spherical 137Cs pellet source, from a low-dose-rate (LDR) Selectron remote afterloading system used in gynecological brachytherapy, has been determined using experimental and Monte Carlo simulation techniques. Monte Carlo simulations were performed using MCNP4C code, for a single pellet source in water medium and Plexiglas, and measurements were performed in Plexiglas phantom material using LiF TLD chips. Absolute dose rate distribution and the dosimetric parameters, such as dose rate constant, radial dose functions, and anisotropy functions, were obtained for a single pellet source. In order to investigate the effect of the applicator and surrounding pellets on dosimetric parameters of the source, the simulations were repeated for six different arrangements with a single active source and five non-active pellets inside central metallic tubing of a vaginal cylindrical applicator. In commercial treatment planning systems (TPS), the attenuation effects of the applicator and inactive spacers on total dose are neglected. The results indicate that this effect could lead to overestimation of the calculated F(r,θ), by up to 7% along the longitudinal axis of the applicator, especially beyond the applicator tip. According to the results obtained in this study, in a real situation in treatment of patients using cylindrical vaginal applicator and using several active pellets, there will be a large discrepancy between the result of superposition and Monte Carlo simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simiele, S; Micka, J; Culberson, W
2014-06-01
Purpose: A full TG-43 dosimetric characterization has not been performed for the Xoft Axxent ® electronic brachytherapy source (Xoft, a subsidiary of iCAD, San Jose, CA) within the Xoft 30 mm diameter vaginal applicator. Currently, dose calculations are performed using the bare-source TG-43 parameters and do not account for the presence of the applicator. This work focuses on determining the difference between the bare-source and sourcein- applicator TG-43 parameters. Both the radial dose function (RDF) and polar anisotropy function (PAF) were computationally determined for the source-in-applicator and bare-source models to determine the impact of using the bare-source dosimetry data. Methods:more » MCNP5 was used to model the source and the Xoft 30 mm diameter vaginal applicator. All simulations were performed using 0.84p and 0.03e cross section libraries. All models were developed based on specifications provided by Xoft. The applicator is made of a proprietary polymer material and simulations were performed using the most conservative chemical composition. An F6 collision-kerma tally was used to determine the RDF and PAF values in water at various dwell positions. The RDF values were normalized to 2.0 cm from the source to accommodate the applicator radius. Source-in-applicator results were compared with bare-source results from this work as well as published baresource results. Results: For a 0 mm source pullback distance, the updated bare-source model and source-in-applicator RDF values differ by 2% at 3 cm and 4% at 5 cm. The largest PAF disagreements were observed at the distal end of the source and applicator with up to 17% disagreement at 2 cm and 8% at 8 cm. The bare-source model had RDF values within 2.6% of the published TG-43 data and PAF results within 7.2% at 2 cm. Conclusion: Results indicate that notable differences exist between the bare-source and source-in-applicator TG-43 simulated parameters. Xoft Inc. provided partial funding for this work.« less
NASA Astrophysics Data System (ADS)
Kang, Sang-Won; Suh, Tae-Suk; Chung, Jin-Beom; Eom, Keun-Yong; Song, Changhoon; Kim, In-Ah; Kim, Jae-Sung; Lee, Jeong-Woo; Cho, Woong
2017-02-01
The purpose of this study was to evaluate the impact of dosimetric and radiobiological parameters on treatment plans by using different dose-calculation algorithms and delivery-beam modes for prostate stereotactic body radiation therapy using an endorectal balloon. For 20 patients with prostate cancer, stereotactic body radiation therapy (SBRT) plans were generated by using a 10-MV photon beam with flattening filter (FF) and flattening-filter-free (FFF) modes. The total treatment dose prescribed was 42.7 Gy in 7 fractions to cover at least 95% of the planning target volume (PTV) with 95% of the prescribed dose. The dose computation was initially performed using an anisotropic analytical algorithm (AAA) in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) and was then re-calculated using Acuros XB (AXB V. 11.0.34) with the same monitor units and multileaf collimator files. The dosimetric and the radiobiological parameters for the PTV and organs at risk (OARs) were analyzed from the dose-volume histogram. An obvious difference in dosimetric parameters between the AAA and the AXB plans was observed in the PTV and rectum. Doses to the PTV, excluding the maximum dose, were always higher in the AAA plans than in the AXB plans. However, doses to the other OARs were similar in both algorithm plans. In addition, no difference was observed in the dosimetric parameters for different delivery-beam modes when using the same algorithm to generate plans. As a result of the dosimetric parameters, the radiobiological parameters for the two algorithm plans presented an apparent difference in the PTV and the rectum. The average tumor control probability of the AAA plans was higher than that of the AXB plans. The average normal tissue complication probability (NTCP) to rectum was lower in the AXB plans than in the AAA plans. The AAA and the AXB plans yielded very similar NTCPs for the other OARs. In plans using the same algorithms, the NTCPs for delivery-beam modes showed no differences. This study demonstrated that the dosimetric and the radiobiological parameters for the PTV and the rectum affected the dose-calculation algorithms for prostate SBRT using an endorectal balloon. However, the dosimetric and the radiobiological parameters in the AAA and the AXB plans for other OARs were similar. Furthermore, difference between the dosimetric and the radiobiological parameters for different delivery-beam modes were not found when the same algorithm was used to generate the treatment plan.
Almansa, Julio F; Guerrero, Rafael; Torres, Javier; Lallena, Antonio M
60 Co sources have been commercialized as an alternative to 192 Ir sources for high-dose-rate (HDR) brachytherapy. One of them is the Flexisource Co-60 HDR source manufactured by Elekta. The only available dosimetric characterization of this source is that of Vijande et al. [J Contemp Brachytherapy 2012; 4:34-44], whose results were not included in the AAPM/ESTRO consensus document. In that work, the dosimetric quantities were calculated as averages of the results obtained with the Geant4 and PENELOPE Monte Carlo (MC) codes, though for other sources, significant differences have been quoted between the values obtained with these two codes. The aim of this work is to perform the dosimetric characterization of the Flexisource Co-60 HDR source using PENELOPE. The MC simulation code PENELOPE (v. 2014) has been used. Following the recommendations of the AAPM/ESTRO report, the radial dose function, the anisotropy function, the air-kerma strength, the dose rate constant, and the absorbed dose rate in water have been calculated. The results we have obtained exceed those of Vijande et al. In particular, the absorbed dose rate constant is ∼0.85% larger. A similar difference is also found in the other dosimetric quantities. The effect of the electrons emitted in the decay of 60 Co, usually neglected in this kind of simulations, is significant up to the distances of 0.25 cm from the source. The systematic and significant differences we have found between PENELOPE results and the average values found by Vijande et al. point out that the dosimetric characterizations carried out with the various MC codes should be provided independently. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Effect of blood activity on dosimetric calculations for radiopharmaceuticals
NASA Astrophysics Data System (ADS)
Zvereva, Alexandra; Petoussi-Henss, Nina; Li, Wei Bo; Schlattl, Helmut; Oeh, Uwe; Zankl, Maria; Graner, Frank Philipp; Hoeschen, Christoph; Nekolla, Stephan G.; Parodi, Katia; Schwaiger, Markus
2016-11-01
The objective of this work was to investigate the influence of the definition of blood as a distinct source on organ doses, associated with the administration of a novel radiopharmaceutical for positron emission tomography-computed tomography (PET/CT) imaging—(S)-4-(3-18F-fluoropropyl)-L-glutamic acid (18F-FSPG). Personalised pharmacokinetic models were constructed based on clinical PET/CT images from five healthy volunteers and blood samples from four of them. Following an identifiability analysis of the developed compartmental models, person-specific model parameters were estimated using the commercial program SAAM II. Organ doses were calculated in accordance to the formalism promulgated by the Committee on Medical Internal Radiation Dose (MIRD) and the International Commission on Radiological Protection (ICRP) using specific absorbed fractions for photons and electrons previously derived for the ICRP reference adult computational voxel phantoms. Organ doses for two concepts were compared: source organ activities in organs parenchyma with blood as a separate source (concept-1); aggregate activities in perfused source organs without blood as a distinct source (concept-2). Aggregate activities comprise the activities of organs parenchyma and the activity in the regional blood volumes (RBV). Concept-1 resulted in notably higher absorbed doses for most organs, especially non-source organs with substantial blood contents, e.g. lungs (92% maximum difference). Consequently, effective doses increased in concept-1 compared to concept-2 by 3-10%. Not considering the blood as a distinct source region leads to an underestimation of the organ absorbed doses and effective doses. The pronounced influence of the blood even for a radiopharmaceutical with a rapid clearance from the blood, such as 18F-FSPG, suggests that blood should be introduced as a separate compartment in most compartmental pharmacokinetic models and blood should be considered as a distinct source in dosimetric calculations. Hence, blood samples should be included in all pharmacokinetic and dosimetric studies for new tracers if possible.
NASA Astrophysics Data System (ADS)
Chiavassa, S.; Aubineau-Lanièce, I.; Bitar, A.; Lisbona, A.; Barbet, J.; Franck, D.; Jourdain, J. R.; Bardiès, M.
2006-02-01
Dosimetric studies are necessary for all patients treated with targeted radiotherapy. In order to attain the precision required, we have developed Oedipe, a dosimetric tool based on the MCNPX Monte Carlo code. The anatomy of each patient is considered in the form of a voxel-based geometry created using computed tomography (CT) images or magnetic resonance imaging (MRI). Oedipe enables dosimetry studies to be carried out at the voxel scale. Validation of the results obtained by comparison with existing methods is complex because there are multiple sources of variation: calculation methods (different Monte Carlo codes, point kernel), patient representations (model or specific) and geometry definitions (mathematical or voxel-based). In this paper, we validate Oedipe by taking each of these parameters into account independently. Monte Carlo methodology requires long calculation times, particularly in the case of voxel-based geometries, and this is one of the limits of personalized dosimetric methods. However, our results show that the use of voxel-based geometry as opposed to a mathematically defined geometry decreases the calculation time two-fold, due to an optimization of the MCNPX2.5e code. It is therefore possible to envisage the use of Oedipe for personalized dosimetry in the clinical context of targeted radiotherapy.
Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F
2009-01-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ronald C.; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
2012-07-15
Purpose: Research on patient-reported outcomes (PROs) in rectal cancer is limited. We examined whether dose-volume parameters of the small bowel and large bowel were associated with patient-reported gastrointestinal (GI) symptoms during 5-fluorouracil (5-FU)-based chemoradiation treatment for rectal cancer. Methods and Materials: 66 patients treated at the Brigham and Women's Hospital or Massachusetts General Hospital between 2006 and 2008 were included. Weekly during treatment, patients completed a questionnaire assessing severity of diarrhea, urgency, pain, cramping, mucus, and tenesmus. The association between dosimetric parameters and changes in overall GI symptoms from baseline through treatment was examined by using Spearman's correlation. Potential associationsmore » between these parameters and individual GI symptoms were also explored. Results: The amount of small bowel receiving at least 15 Gy (V15) was significantly associated with acute symptoms (p = 0.01), and other dosimetric parameters ranging from V5 to V45 also trended toward association. For the large bowel, correlations between dosimetric parameters and overall GI symptoms at the higher dose levels from V25 to V45 did not reach statistical significance (p = 0.1), and a significant association was seen with rectal pain from V15 to V45 (p < 0.01). Other individual symptoms did not correlate with small bowel or large bowel dosimetric parameters. Conclusions: The results of this study using PROs are consistent with prior studies with physician-assessed acute toxicity, and they identify small bowel V15 as an important predictor of acute GI symptoms during 5-FU-based chemoradiation treatment. A better understanding of the relationship between radiation dosimetric parameters and PROs may allow physicians to improve radiation planning to optimize patient outcomes.« less
Gamma dosimetric parameters in some skeletal muscle relaxants
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2017-09-01
We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.
Dosimetric characterization of two radium sources for retrospective dosimetry studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candela-Juan, C., E-mail: ccanjuan@gmail.com; Karlsson, M.; Lundell, M.
2015-05-15
Purpose: During the first part of the 20th century, {sup 226}Ra was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two {sup 226}Ra sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose–effect studies. Methods: An 8 mg {sup 226}Ra tube and a 10 mg {sup 226}Ra needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiationmore » transport codes: GEANT4 and MCNP5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a {sup 226}Ra point-like-source placed in the center of 1 m radius water sphere was calculated with GEANT4. Results: TG-43 parameters [including g{sub L}(r), F(r, θ), Λ, and s{sub K}] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that the uncertainty associated to the absorbed dose within the treatment volume is 10%–15%, whereas uncertainty of absorbed dose to distant organs is roughly 20%–25%. Conclusions: The results provided here facilitate retrospective dosimetry studies of {sup 226}Ra using modern treatment planning systems, which may be used to improve knowledge on long term radiation effects. It is surely important for the epidemiologic studies to be aware of the estimated uncertainty provided here before extracting their conclusions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehtabian, M; Zaker, N; Sina, S
2015-06-15
Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 whichmore » is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.« less
Photon Interaction Parameters for Some Borate Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Nisha; Kaur, Updesh; Singh, Tejbir
2010-11-06
Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraga-Gutierrez, J. M.; Ballesteros-Zebadua, P.; Garcia-Garduno, O. A.
2008-08-11
Radiation transmission, leakage and beam penumbra are essential dosimetric parameters related to the commissioning of a multileaf collimation system. This work shows a comparative analysis of commonly used film detectors: X-OMAT V2 and EDR2 radiographic films, and GafChromic EBT registered radiochromic film. The results show that X-OMAT over-estimates radiation leakage and 80-20% beam penumbra. However, according to the reference values reported by the manufacturer for these dosimetric parameters, all three films are adequate for MLC dosimetric characterization, but special care must be taken when X-OMAT V2 film is used due to its low energy photon dependence.
Dosimetric and clinical predictors for radiation-induced esophageal injury.
Ahn, Sung-Ja; Kahn, Daniel; Zhou, Sumin; Yu, Xiaoli; Hollis, Donna; Shafman, Timothy D; Marks, Lawrence B
2005-02-01
To evaluate the clinical and three-dimensional dosimetric parameters associated with esophageal injury after radiotherapy (RT) for non-small-cell lung cancer. The records of 254 patients treated for non-small-cell lung cancer between 1992 and 2001 were reviewed. A variety of metrics describing the esophageal dose were extracted. The Radiation Therapy Oncology Group toxicity criteria for grading of esophageal injury were used. The median follow-up time for all patients was 43 months (range, 0.5-120 months). Logistic regression analysis, contingency table analyses, and Fisher's exact tests were used for statistical analysis. Acute toxicity occurred in 199 (78%) of 254 patients. For acute toxicity of Grade 2 or worse, twice-daily RT, age, nodal stage of N2 or worse, and most dosimetric parameters were predictive. Late toxicity occurred in 17 (7%) of 238 patients. The median and maximal time to the onset of late toxicity was 5 and 40 months after RT, respectively. Late toxicity occurred in 2%, 3%, 17%, 26%, and 100% of patients with acute Grade 0, 1, 2, 3, and 4 toxicity, respectively. For late toxicity, the severity of acute toxicity was most predictive. A variety of dosimetric parameters are predictive of acute and late esophageal injury. A strong correlation between the dosimetric parameters prevented a comparison between the predictive abilities of these metrics. The presence of acute injury was the most predictive factor for the development of late injury. Additional studies to define better the predictors of RT-induced esophageal injury are needed.
Bucciolini, M; Russo, S; Banci Buonamici, F; Pini, S; Silli, P
2002-07-01
A 6 MV photon beam from Linac SL75-5 has been collimated with a new micromultileaf device that is able to shape the field in the two orthogonal directions with four banks of leaves. This is the first clinical installation of the collimator and in this paper the dosimetric characterization of the system is reported. The dosimetric parameters required by the treatment planning system used for the dose calculation in the patient are: tissue maximum ratios, output factors, transmission and leakage of the leaves, penumbra values. Ionization chambers, silicon diode, radiographic films, and LiF thermoluminescent dosimeters have been employed for measurements of absolute dose and beam dosimetric data. Measurements with different dosimeters supply results in reasonable agreement among them and consistent with data available in literature for other models of micromultileaf collimator; that permits the use of the measured parameters for clinical applications. The discrepancies between results obtained with the different detectors (around 2%) for the analyzed parameters can be considered an indication of the accuracy that can be reached by current stereotactic dosimetry.
Catarinucci, L; Tarricone, L
2009-12-01
With the next transposition of the 2004/40/EC Directive, employers will become responsible for the electromagnetic field level at the workplace. To make this task easier, the scientific community is compiling practical guidelines to be followed. This work aims at enriching such guidelines, especially for the dosimetric issues. More specifically, some critical aspects related to the application of numerical dosimetric techniques for the verification of the safety limit compliance have been highlighted. In particular, three different aspects have been considered: the dosimetric parameter dependence on the shape and the inner characterisation of the exposed subject as well as on the numerical algorithm used, and the correlation between reference limits and basic restriction. Results and discussions demonstrate how, even by using sophisticated numerical techniques, in some cases a complex interpretation of the result is mandatory.
FLUKA simulation studies on in-phantom dosimetric parameters of a LINAC-based BNCT
NASA Astrophysics Data System (ADS)
Ghal-Eh, N.; Goudarzi, H.; Rahmani, F.
2017-12-01
The Monte Carlo simulation code, FLUKA version 2011.2c.5, has been used to estimate the in-phantom dosimetric parameters for use in BNCT studies. The in-phantom parameters of a typical Snyder head, which are necessary information prior to any clinical treatment, have been calculated with both FLUKA and MCNPX codes, which exhibit a promising agreement. The results confirm that FLUKA can be regarded as a good alternative for the MCNPX in BNCT dosimetry simulations.
Thrapsanioti, Zoi; Karanasiou, Irene; Platoni, Kalliopi; Efstathopoulos, Efstathios P.; Matsopoulos, George; Dilvoi, Maria; Patatoukas, George; Chaldeopoulos, Demetrios; Kelekis, Nikolaos; Kouloulias, Vassilis
2013-01-01
Purpose. The purpose of this study was to transform DVHs from physical to radiobiological ones as well as to evaluate their reliability by correlations of dosimetric and clinical parameters for 50 patients with prostate cancer and 50 patients with breast cancer, who were submitted to Hypofractionated Radiotherapy. Methods and Materials. To achieve this transformation, we used both the linear-quadratic model (LQ model) and the Niemierko model. The outcome of radiobiological DVHs was correlated with acute toxicity score according to EORTC/RTOG criteria. Results. Concerning the prostate radiotherapy, there was a significant correlation between RTOG acute rectal toxicity and D 50 (P < 0.001) and V 60 (P = 0.001) dosimetric parameters, calculated for α/β = 10 Gy. Moreover, concerning the breast radiotherapy there was a significant correlation between RTOG skin toxicity and V ≥60 dosimetric parameter, calculated for both α/β = 2.3 Gy (P < 0.001) and α/β = 10 Gy (P < 0.001). The new tool seems reliable and user-friendly. Conclusions. Our proposed model seems user-friendly. Its reliability in terms of agreement with the presented acute radiation induced toxicity was satisfactory. However, more patients are needed to extract safe conclusions. PMID:24348743
Sung, KiHoon; Choi, Young Eun; Lee, Kyu Chan
2017-06-01
This is a dosimetric study to identify a simple geometric indicator to discriminate patients who meet the selection criterion for heart-sparing radiotherapy (RT). The authors proposed a cardiac risk index (CRI), directly measurable from the CT images at the time of scanning. Treatment plans were regenerated using the CT data of 312 consecutive patients with left-sided breast cancer. Dosimetric analysis was performed to estimate the risk of cardiac mortality using cardiac dosimetric parameters, such as the relative heart volumes receiving ≥25 Gy (heart V 25 ). For each CT data set, in-field heart depth (HD) and in-field heart width (HW) were measured to generate the geometric parameters, including maximum HW (HW max ) and maximum HD (HD max ). Seven geometric parameters were evaluated as candidates for CRI. Receiver operating characteristic (ROC) curve analyses were used to examine the overall discriminatory power of the geometric parameters to select high-risk patients (heart V 25 ≥ 10%). Seventy-one high-risk (22.8%) and 241 low-risk patients (77.2%) were identified by dosimetric analysis. The geometric and dosimetric parameters were significantly higher in the high-risk group. Heart V 25 showed the strong positive correlations with all geometric parameters examined (r > 0.8, p < 0.001). The product of HD max and HW max (CRI) revealed the largest area under the curve (AUC) value (0.969) and maintained 100% sensitivity and 88% specificity at the optimal cut-off value of 14.58 cm 2 . Cardiac risk index proposed as a simple geometric indicator to select high-risk patients provides useful guidance for clinicians considering optimal implementation of heart-sparing RT. © 2016 The Royal Australian and New Zealand College of Radiologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenski, M; Stoyanova, R; Abramowitz, M
2015-06-15
Purpose: Previous research has demonstrated that following radiation therapy for prostate cancer, there is a relative increase in positive biopsies in the apex versus the rest of the prostate. The increase could be due to: 1) Inter-fraction apex motion or deformation, 2) Intra-fraction apex motion or deformation, 3) Suboptimal dose coverage in the apex, 4) Tissue composition in the apex and/or 5) Prostate size. In this initial study, the potential for suboptimal dose coverage in the apex was assessed by splitting the prostate planning target volume into the apex (inferior third) and remainder. Methods: 69 patients were selected from 303more » patients treated on a clinical radiotherapy trial for prostate cancer. These patients were selected as they had both a localized (sextant template) 2-year post-treatment biopsy and 3D dose information. Of these patients, 10 had positive biopsies in the apex, 8 in the remainder and 11 in both locations. For all patients, the following dosimetric data was acquired from the apex dose volume histogram: Dmean, Dmax, Dmin, D95% and V100%. Unpaired, one-tailed t-tests were used to test for statistical significance (p < 0.05) between all dosimetric parameters for patients with positive versus negative apical biopsies. Additionally, D95% for the apex was plotted against D95% of the remainder. Results: There was no statistical difference for the selected apical dosimetric parameters for patients with positive versus negative biopsies (p-values > 0.05). No correlation was found between D95% (normalized to the prescription dose) for the apex and remainder (R{sup 2} = 0.0116). Conclusion: No correlation was found between positive apical biopsy and suboptimal dosimetric coverage. Current research is looking into inter-fraction apex motion and deformation as a potential source of the increased apical failure using daily CBCT images.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, James R.; Followill, David S.; Imaging and Radiation Oncology Core-Houston, The University of Texas Health Science Center-Houston, Houston, Texas
Purpose: To compare radiation machine measurement data collected by the Imaging and Radiation Oncology Core at Houston (IROC-H) with institutional treatment planning system (TPS) values, to identify parameters with large differences in agreement; the findings will help institutions focus their efforts to improve the accuracy of their TPS models. Methods and Materials: Between 2000 and 2014, IROC-H visited more than 250 institutions and conducted independent measurements of machine dosimetric data points, including percentage depth dose, output factors, off-axis factors, multileaf collimator small fields, and wedge data. We compared these data with the institutional TPS values for the same points bymore » energy, class, and parameter to identify differences and similarities using criteria involving both the medians and standard deviations for Varian linear accelerators. Distributions of differences between machine measurements and institutional TPS values were generated for basic dosimetric parameters. Results: On average, intensity modulated radiation therapy–style and stereotactic body radiation therapy–style output factors and upper physical wedge output factors were the most problematic. Percentage depth dose, jaw output factors, and enhanced dynamic wedge output factors agreed best between the IROC-H measurements and the TPS values. Although small differences were shown between 2 common TPS systems, neither was superior to the other. Parameter agreement was constant over time from 2000 to 2014. Conclusions: Differences in basic dosimetric parameters between machine measurements and TPS values vary widely depending on the parameter, although agreement does not seem to vary by TPS and has not changed over time. Intensity modulated radiation therapy–style output factors, stereotactic body radiation therapy–style output factors, and upper physical wedge output factors had the largest disagreement and should be carefully modeled to ensure accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, K; Alopoor, H
Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parametersmore » of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less
Hirano, Yasuhiro; Onozawa, Masakatsu; Hojo, Hidehiro; Motegi, Atsushi; Zenda, Sadatomo; Hotta, Kenji; Moriya, Shunsuke; Tachibana, Hidenobu; Nakamura, Naoki; Kojima, Takashi; Akimoto, Tetsuo
2018-02-09
The purpose of this study was to perform a dosimetric comparison between proton beam therapy (PBT) and photon radiation therapy in patients with locally advanced esophageal squamous cell carcinoma (ESCC) who were treated with PBT in our institution. In addition, we evaluated the correlation between toxicities and dosimetric parameters, especially the doses to normal lung or heart tissue, to clarify the clinical advantage of PBT over photon radiation therapy. A total of 37 consecutive patients with Stage III thoracic ESCC who had received PBT with or without concurrent chemotherapy between October 2012 and December 2015 were evaluated in this study. The dose distributions of PBT were compared with those of dummy 3-dimensional conformal radiation therapy (3DCRT) and Intensity Modulated Radiation Therapy (IMRT), focusing especially on the doses to organs at risk, such as normal lung and heart tissue. Of the 37 patients, the data from 27 patients were analyzed. Among these 27 patients, four patients (15%) developed grade 2 pericardial effusion as a late toxicity. None of the patients developed grade 3 or worse acute or late pulmonary and cardiac toxicities. When the dosimetric parameters between PBT and planned 3DCRT were compared, all the PBT domestic variables for the lung dose except for lung V10 GyE and V15 GyE were significantly lower than those for the dummy 3DCRT plans, and the PBT domestic variables for the heart dose were also significantly lower than those for the dummy 3DCRT plans. When the PBT and IMRT plans were compared, all the PBT domestic variables for the doses to the lung and heart were significantly lower than those for the dummy IMRT plans. Regarding the correlation between the grades of toxicities and the dosimetric parameters, no significant correlation was seen between the occurrence of grade 2 pericardial effusion and the dose to the heart. When the dosimetric parameters of the dose distributions for the treatment of patients with locally advanced stage III ESCC were compared between PBT and 3DCRT or IMRT, PBT enabled a significant reduction in the dose to the lung and heart, compared with 3DCRT or IMRT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl
Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Signmore » intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver uniform doses to targets with good conformity. The spatial accuracy of the device to locate the radiation isocenter is determined to be less than 1 mm. Single shot profiles with 2.5 cm collimator are measured with radiochromic film and found to be in good agreement with respect to the Monte Carlo based calculations (congruence of FWHM less than 1 mm). Dosimetric verifications corresponding to all hypothetical treatment plans corresponding to three target scenarios for each of the seven patients demonstrated good agreement with gamma index pass rates of better than 97% (99.0%{+-} 0.7%). Conclusions: Dosimetric evaluation of the first GammaPod Trade-Mark-Sign stereotactic breast radiotherapy unit was performed and the dosimetric and spatial accuracy of this novel technology is found to be feasible with respect to clinical radiotherapy standards. The observed level of agreement between the treatment planning system calculations and dosimetric measurements has confirmed that the system can deliver highly complex treatment plans with remarkable geometric and dosimetric accuracy.« less
Xiao, Lin-Lin; Yang, Guoren; Chen, Jinhu; Wang, Xiaohui; Wu, Qingwei; Huo, Zongwei; Yu, Qingxi; Yu, Jinming; Yuan, Shuanghu
2017-03-15
This study aimed to find a better dosimetric parameter in predicting of radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) individually: ventilation(V), perfusion (Q) or computerized tomography (CT) based. V/Q single-photon emission computerized tomography (SPECT) was performed within 1 week prior to radiotherapy (RT). All V/Q imaging data was integrated into RT planning system, generating functional parameters based on V/Q SPECT. Fifty-seven NSCLC patients were enrolled in this prospective study. Fifteen (26.3%) patients underwent grade ≥2 RILT, the remaining forty-two (73.7%) patients didn't. Q-MLD, Q-V20, V-MLD, V-V20 of functional parameters correlated more significantly with the occurrence of RILT compared to V20, MLD of anatomical parameters (r = 0.630; r = 0.644; r = 0.617; r = 0.651 vs. r = 0.424; r = 0.520 p < 0.05, respectively). In patients with chronic obstructive pulmonary diseases (COPD), V functional parameters reflected significant advantage in predicting RILT; while in patients without COPD, Q functional parameters reflected significant advantage. Analogous results were existed in fractimal analysis of global pulmonary function test (PFT). In patients with central-type NSCLC, V parameters were better than Q parameters; while in patients with peripheral-type NSCLC, the results were inverse. Therefore, this study demonstrated that choosing a suitable dosimetric parameter individually can help us predict RILT accurately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rachana; Al-Hallaq, Hania; Pelizzari, Charles A.
2003-12-31
The purpose of this study was to compare conventional low-dose-rate prostate brachytherapy dosimetric quality parameters with their biological effective dose (BED) counterparts. To validate a model for transformation from conventional dose to BED, the postimplant plans of 31 prostate brachytherapy patients were evaluated using conventional dose-volume histogram (DVH) quality endpoints and analogous BED-DVH endpoints. Based on CT scans obtained 4 weeks after implantation, DVHs were computed and standard dosimetric endpoints V100 (volume receiving 100% of the prescribed dose), V150, V200, HI (1-[V150/V100]), and D90 (dose that 90% of the target volume received) were obtained for quality analysis. Using known andmore » reported transformations, dose grids were transformed to BED-early ({alpha}/{beta} = 10 Gy) and BED-late ({alpha}/{beta} = 3 Gy) grids, and the same dosimetric endpoints were analyzed. For conventional, BED-early and BED-late DVHs, no differences in V100 were seen (0.896, 0.893, and 0.894, respectively). However, V150 and V200 were significantly higher for both BED-early (0.582 and 0.316) and BED-late (0.595 and 0.337), compared with the conventional (0.539 and 0.255) DVHs. D90 was significantly lower for the BED-early (103.1 Gy) and BED-late transformations (106.9 Gy) as compared with the conventional (119.5 Gy) DVHs. The conventional prescription parameter V100 is the same for the corresponding BED-early and BED-late transformed DVHs. The toxicity parameters V150 and V200 are slightly higher using the BED transformations, suggesting that the BED doses are somewhat higher than predicted using conventional DVHs. The prescription/quality parameter D90 is slightly lower, implying that target coverage is lower than predicted using conventional DVHs. This methodology can be applied to analyze BED dosimetric endpoints to improve clinical outcome and reduce complications of prostate brachytherapy.« less
Dosimetric comparison between model 9011 and 6711 sources in prostate implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hualin, E-mail: zhang248@iupui.edu; Arizona Oncology Services, Phoenix, AZ; Beyer, David
2013-07-01
The purpose of this work is to evaluate the model 9011 iodine-125 ({sup 125}I) in prostate implants by comparing dosimetric coverage provided by the 6711 vs 9011 source implants. Postimplant dosimetry was performed in 18 consecutively implanted patients with prostate cancer. Two were implanted with the 9011 source and 16 with the 6711 source. For purposes of comparison, each implant was then recalculated assuming use of the other source. The same commercially available planning system was used and the specific source data for both 6711 and 9011 products were entered. The results of these calculations are compared side by sidemore » in the terms of the isodose values covering 100% (D100) and 90% (D90) of prostate volume, and the percentages of volumes of prostate, bladder, rectum, and urethra covered by 200% (V200), 150% (V150), 100% (V100), 50% (V50), and 20% (V20) of the prescribed dose as well. The 6711 source data overestimate coverage by 6.4% (ranging from 4.9% to 6.9%; median 6.6%) at D100 and by 6.6% (ranging from 6.2% to 6.8%; median 6.6%) at D90 compared with actual 9011 data. Greater discrepancies of up to 67% are seen at higher dose levels: average reduction for V100 is 2.7% (ranging from 0.6% to 7.7%; median 2.3%), for V150 is 14.6% (ranging from 6.1% to 20.5%; median 15.3%), for V200 is 14.9% (ranging from 4.8% to 19.1%; median 16%); similarly seen in bladder, rectal, and urethral coverage. This work demonstrates a clear difference in dosimetric behavior between the 9011 and 6711 sources. Using the 6711 source data for 9011 source implants would create a pronounced error in dose calculation. This study provides evidence that the 9011 source can provide the same dosimetric quality as the 6711 source, if properly used; however, the 6711 source data should not be considered as a surrogate for the 9011 source implants.« less
Oller, Adriana R; Oberdörster, Günter
2016-09-01
Dosimetric models are essential tools to refine inhalation risk assessments based on local respiratory effects. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rodents, workers, and the general public can be applied to experimentally- and epidemiologically-determined points of departure (PODs) to calculate size-selected (e.g., PM 10 , inhalable aerosol fraction, respirable aerosol fraction) equivalent concentrations (e.g., HEC or Human Equivalent Concentration; REC or Rodent Equivalent Concentration). A modified POD (e.g., HEC) can then feed into existing frameworks for the derivation of occupational or ambient air concentration limits or reference concentrations. HECs that are expressed in terms of aerosol particle sizes experienced by humans but are derived from animal studies allow proper comparison of exposure levels and associated health effects in animals and humans. This can inform differences in responsiveness between animals and humans, based on the same deposited or retained doses and can also allow the use of both data sources in an integrated weight of evidence approach for hazard and risk assessment purposes. Whenever possible, default values should be replaced by substance-specific and target population-specific parameters. Assumptions and sources of uncertainty need to be clearly reported.
Oberdörster, Günter
2016-01-01
Dosimetric models are essential tools to refine inhalation risk assessments based on local respiratory effects. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rodents, workers, and the general public can be applied to experimentally- and epidemiologically-determined points of departure (PODs) to calculate size-selected (e.g., PM10, inhalable aerosol fraction, respirable aerosol fraction) equivalent concentrations (e.g., HEC or Human Equivalent Concentration; REC or Rodent Equivalent Concentration). A modified POD (e.g., HEC) can then feed into existing frameworks for the derivation of occupational or ambient air concentration limits or reference concentrations. HECs that are expressed in terms of aerosol particle sizes experienced by humans but are derived from animal studies allow proper comparison of exposure levels and associated health effects in animals and humans. This can inform differences in responsiveness between animals and humans, based on the same deposited or retained doses and can also allow the use of both data sources in an integrated weight of evidence approach for hazard and risk assessment purposes. Whenever possible, default values should be replaced by substance-specific and target population-specific parameters. Assumptions and sources of uncertainty need to be clearly reported. PMID:27721518
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwaningsih, Anik
Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result ofmore » calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.« less
Dosimetric audit in brachytherapy
Bradley, D A; Nisbet, A
2014-01-01
Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068
A reticle retrofit and dosimetric consideration for a linear accelerator.
Krithivas, V
1996-01-01
An imperfect reticle system in an accelerator causes uncertainties in source-skin distance (SSD), off-axis distance (OAD), isocenter, and so forth. A reticle was designed and fabricated, and its implications on x-ray and electron beam dosimetry were investigated. A new reticle frame was dimensioned to fit snugly in the accelerator. The frame was fabricated to carry a pair of adjustable cross wires and to allow the machine operation in the photon and electron modes. The impact of the cross wires on 6 MV photon and 5-10 MeV electron beam parameters such as dose rate (Gy/monitor unit), beam uniformity, surface dose, and so forth, were studied using suitable ion chambers and phantoms. The retrofitted system offered long-term mechanical stability leading to precise SSD, OAD, and isocenter measurements. Changes introduced by the cross wires on the 6 MV photon and 5-10 MeV electron beams are presented. Long-term stability of a reticle in an accelerator is important for an accurate patient setup and for making reliable dosimetric measurements. Beam characteristrics have to be studied whenever modifications on a reticle system are made.
NASA Astrophysics Data System (ADS)
Zhirkin, A. V.; Alekseev, P. N.; Batyaev, V. F.; Gurevich, M. I.; Dudnikov, A. A.; Kuteev, B. V.; Pavlov, K. V.; Titarenko, Yu. E.; Titarenko, A. Yu.
2017-06-01
In this report the calculation accuracy requirements of the main parameters of the fusion neutron source, and the thermonuclear blankets with a DT fusion power of more than 10 MW, are formulated. To conduct the benchmark experiments the technical documentation and calculation models were developed for two blanket micro-models: the molten salt and the heavy water solid-state blankets. The calculations of the neutron spectra, and 37 dosimetric reaction rates that are widely used for the registration of thermal, resonance and threshold (0.25-13.45 MeV) neutrons, were performed for each blanket micro-model. The MCNP code and the neutron data library ENDF/B-VII were used for the calculations. All the calculations were performed for two kinds of neutron source: source I is the fusion source, source II is the source of neutrons generated by the 7Li target irradiated by protons with energy 24.6 MeV. The spectral indexes ratios were calculated to describe the spectrum variations from different neutron sources. The obtained results demonstrate the advantage of using the fusion neutron source in future experiments.
Dosimetric variations due to interfraction organ deformation in cervical cancer brachytherapy.
Kobayashi, Kazuma; Murakami, Naoya; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun
2015-12-01
We quantitatively estimated dosimetric variations due to interfraction organ deformation in multi-fractionated high-dose-rate brachytherapy (HDRBT) for cervical cancer using a novel surface-based non-rigid deformable registration. As the number of consecutive HDRBT fractions increased, simple addition of dose-volume histogram parameters significantly overestimated the dose, compared with distribution-based dose addition. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Radiation-induced complications in prostate cancer patients treated with radiotherapy
NASA Astrophysics Data System (ADS)
Azuddin, A. Yusof; Rahman, I. Abdul; Siah, N. J.; Mohamed, F.; Saadc, M.; Ismail, F.
2014-09-01
The purpose of the study is to determine the relationship between radiation-induced complications with dosimetric and radiobiological parameters for prostate cancer patients that underwent the conformal radiotherapy treatment. 17 prostate cancer patients that have been treated with conformal radiotherapy were retrospectively analysed. The dosimetric data was retrieved in the form of dose-volume histogram (DVH) from Radiotherapy Treatment Planning System. The DVH was utilised to derived Normal Tissue Complication Probability (NTCP) in radiobiological data. Follow-up data from medical records were used to grade the occurrence of acute gastrointestinal (GI) and genitourinary (GU) complications using Radiation Therapy Oncology Group (RTOG) scoring system. The chi-square test was used to determine the relationship between radiation-induced complication with dosimetric and radiobiological parameters. 8 (47%) and 7 (41%) patients were having acute GI and GU complications respectively. The acute GI complication can be associated with V60rectum, rectal mean dose and NTCPrectum with p-value of 0.016, 0.038 and 0.049 respectively. There are no significant relationships of acute GU complication with dosimetric and radiobiological variables. Further study can be done by increase the sample size and follow up duration for deeper understanding of the factors that effecting the GU and GI complication in prostate cancer radiotherapy.
THE MAYAK WORKER DOSIMETRY SYSTEM (MWDS-2013) FOR INTERNALLY DEPOSITED PLUTONIUM: AN OVERVIEW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birchall, A.; Vostrotin, V.; Puncher, M.
The Mayak Worker Dosimetry System (MWDS-2013) is a system for interpreting measurement data from Mayak workers from both internal and external sources. This paper is concerned with the calculation of annual organ doses for Mayak workers exposed to plutonium aerosols, where the measurement data consists mainly of activity of plutonium in urine samples. The system utilises the latest biokinetic and dosimetric models, and unlike its predecessors, takes explicit account of uncertainties in both the measurement data and model parameters. The aim of this paper is to describe the complete MWDS-2013 system (including model parameter values and their uncertainties) and themore » methodology used (including all the relevant equations) and the assumptions made. Where necessary, supplementary papers which justify specific assumptions are cited.« less
NASA Astrophysics Data System (ADS)
Fareed, Muhammad M.; Eldib, Ahmed; Weiss, Stephanie E.; Hayes, Shelly B.; Li, Jinsheng; C-M Ma, Charlie
2018-02-01
To compare the dosimetric parameters of a novel rotating gamma ray system (RGS) with well-established CyberKnife system (CK) for treating malignant brain lesions. RGS has a treatment head of 16 cobalt-60 sources focused to the isocenter, which can rotate 360° on the ring gantry and swing 35° in the superior direction. We compared several dosimetric parameters in 10 patients undergoing brain stereotactic radiosurgery including plan normalization, number of beams and nodes for CK and shots for RGS, collimators used, estimated treatment time, D 2 cm and conformity index (CI) among two modalities. The median plan normalization for RGS was 56.7% versus 68.5% (p = 0.002) for CK plans. The median number of shots from RGS was 7.5 whereas the median number of beams and nodes for CK was 79.5 and 46. The median collimator’s diameter used was 3.5 mm for RGS as compared to 5 mm for CK (p = 0.26). Mean D 2 cm was 5.57 Gy for CyberKnife whereas it was 3.11 Gy for RGS (p = 0.99). For RGS plans, the median CI was 1.4 compared to 1.3 for the CK treatment plans (p = 0.98). The average minimum and maximum doses to optic chiasm were 21 and 93 cGy for RGS as compared to 32 and 209 cGy for CK whereas these were 0.5 and 364 cGy by RGS and 18 and 399 cGy by CK to brainstem. The mean V12 Gy for brain predicting for radionecrosis with RGS was 3.75 cm3 as compared to 4.09 cm3 with the CK (p = 0.41). The dosimetric parameters of a novel RGS with a ring type gantry are comparable with CyberKnife, allowing its use for intracranial lesions and is worth exploring in a clinical setting.
Dosimetric and clinical predictors of radiation-induced lung toxicity in esophageal carcinoma.
Zhu, Shu-Chai; Shen, Wen-Bin; Liu, Zhi-Kun; Li, Juan; Su, Jing-Wei; Wang, Yu-Xiang
2011-01-01
Radiation-induced lung toxicity occurs frequently in patients with esophageal carcinoma. This study aims to evaluate the clinical and three-dimensional dosimetric parameters associated with lung toxicity after radiotherapy for esophageal carcinoma. The records of 56 patients treated for esophageal carcinoma were reviewed. The Radiation Therapy Oncology Group criteria for grading of lung toxicity were followed. Spearman's correlation test, the chi-square test and logistic regression analyses were used for statistical analysis. Ten of the 56 patients developed acute toxicity. The toxicity grades were grade 2 in 7 patients and grade 3 in 3 patients; none of the patients developed grade 4 or worse toxicity. One case of toxicity occurred during radiotherapy and 9 occurred 2 weeks to 3 months after radiotherapy. The median time was 2.0 months after radiotherapy. Fourteen patients developed late irradiated lung injury, 3 after 3.5 months, 7 after 9 months, and 4 after 14 months. Radiographic imaging demonstrated patchy consolidation (n = 5), atelectasis with parenchymal distortion (n = 6), and solid consolidation (n = 3). For acute toxicity, the irradiated esophageal volume, number of fields, and most dosimetric parameters were predictive. For late toxicity, chemotherapy combined with radiotherapy and other dosimetric parameters were predictive. No obvious association between the occurrence of acute and late injury was observed. The percent of lung tissue receiving at least 25 Gy (V25), the number of fields, and the irradiated length of the esophagus can be used as predictors of the risk of acute toxicity. Lungs V30, as well as chemotherapy combined with radiotherapy, are predictive of late lung injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Chibani, O; Jin, L
2016-06-15
Purpose: Stereotactic intra and extra-cranial body radiation therapy has evolved with advances in treatment accuracy, effective radiation dose, and parameters necessary to maximize machine capabilities. Novel gamma systems with a ring type gantry were developed having the ability to perform oblique arcs. The aim of this study is to explore the dosimetric advantages of this new system. Methods: The rotating Gamma system is named CybeRay (Cyber Medical Corp., Xian, China). It has a treatment head of 16 cobalt-60 sources focused to the isocenter, which can rotate 360° on the ring gantry and swing 35° in the superior direction. Treatment plansmore » were generated utilizing our in-house Monte Carlo treatment planning system. A cylindrical phantom was modeled with 2mm voxel size. Dose inside the cylindrical phantom was calculated for coplanar and non-coplanar arcs. Dosimetric differences between CybeRay cobalt beams and CyberKnife 6MV beams were compared in a lung phantom and for previously treated SBRT patients. Results: The full width at half maxima of cross profiles in the S-I direction for the coplanar setup matched the cone sizes, while for the non-coplanar setup, FWHM was larger by 2mm for a 10mm cone and about 5mm for larger cones. In the coronal and sagittal view, coplanar beams showed elliptical shaped isodose lines, while non-coplanar beams showed circular isodose lines. Thus proper selection of the oblique angle and cone size can aid optimal dose matching to the target volume. Comparing a single 5mm cone from CybeRay to that from CyberKnife showed similar penumbra in a lung phantom but CybeRay had significant lower doses beyond lung tissues. Comparable treatment plans were obtained with CybeRay as that from CyberKnife.ConclusionThe noncoplanar multiple source arrangement of CybeRay will be of great clinical benefits for stereotactic intra and extra-cranial radiation therapy.« less
Lee, Jung Ae; Kim, Chul Yong; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Lee, Suk; Kim, Young Bum
2014-01-01
To investigate the effectiveness of respiratory guidance system in 4-dimensional computed tomography (4 DCT) based respiratory-gated radiation therapy (RGRT) by comparing respiratory signals and dosimetric analysis of treatment plans. The respiratory amplitude and period of the free, the audio device-guided, and the complex system-guided breathing were evaluated in eleven patients with lung or liver cancers. The dosimetric parameters were assessed by comparing free breathing CT plan and 4 DCT-based 30-70% maximal intensity projection (MIP) plan. The use of complex system-guided breathing showed significantly less variation in respiratory amplitude and period compared to the free or audio-guided breathing regarding the root mean square errors (RMSE) of full inspiration (P = 0.031), full expiration (P = 0.007), and period (P = 0.007). The dosimetric parameters including V(5 Gy), V(10 Gy), V(20 Gy), V(30 Gy), V(40 Gy), and V(50 Gy) of normal liver or lung in 4 DCT MIP plan were superior over free breathing CT plan. The reproducibility and regularity of respiratory amplitude and period were significantly improved with the complex system-guided breathing compared to the free or the audio-guided breathing. In addition, the treatment plan based on the 4D CT-based MIP images acquired with the complex system guided breathing showed better normal tissue sparing than that on the free breathing CT.
Bradley, David; Nisbet, Andrew
2012-01-01
This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649
Palmer, Antony; Bradley, David; Nisbet, Andrew
2012-06-01
This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas; Nissim, Ouzi; Delbrouck, Carine
2006-04-01
Purpose: To analyze the relationship between hearing preservation after gamma knife radiosurgery (GKR) for vestibular schwannoma (VS) and some volumetric and dosimetric parameters of the intracanalicular components of VS. Methods and Materials: This study included 82 patients with a VS treated by GKR; all patients had no NF2 disease, a Gardner-Robertson hearing class 1-4 before treatment, a marginal dose of 12 Gy, and a radiologic and audiologic follow-up {>=}1 year post-GKR. The volume of both the entire tumor and the intracanalicular part of the tumor and the mean and integrated dose of these two volumes were correlated to the auditorymore » outcomes of patients. Results: At last hearing follow-up, 52 patients had no hearing worsening, and 30 patients had an increase of {>=}1 class on Gardner-Robertson classification. We found that hearing preservation after GKR is significantly correlated with the intracanalicular tumor volume, as well as with the integrated dose delivered to the intracanalicular tumor volume. Conclusions: Some volumetric and dosimetric parameters of the intracanalicular part of the tumor influence hearing preservation after GKR of VS. Consequently, we advise the direct treatment of patients with preserved functional hearing and a VS including a small intracanalicular volume.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartier, Lysian; Auberdiac, Pierre; Khodri, Mustapha
The purpose of this study was to analyze and revisit toxicity related to chest chemoradiotherapy and to correlate these side effects with dosimetric parameters obtained using analytical anisotropic algorithm (AAA) in locally unresectable advanced lung cancer. We retrospectively analyzed data from 47 lung cancer patients between 2005 and 2008. All received conformal 3D radiotherapy using high-energy linear accelerator plus concomitant chemotherapy. All treatment planning data were transferred into Eclipse 8.05 (Varian Medical Systems, Palo Alto, CA) and dosimetric calculations were performed using AAA. Thirty-three patients (70.2%) developed acute pneumopathy after radiotherapy (grades 1 and 2). One patient (2.1%) presented withmore » grade 3 pneumopathy. Thirty-one (66%) presented with grades 1-2 lung fibrosis, and 1 patient presented with grade 3 lung fibrosis. Thirty-four patients (72.3%) developed grade 1-2 acute oesophagic toxicity. Four patients (8.5%) presented with grades 3 and 4 dysphagia, necessitating prolonged parenteral nutrition. Median prescribed dose was 64 Gy (range 50-74) with conventional fractionation (2 Gy per fraction). Dose-volume constraints were respected with a median V20 of 23.5% (maximum 34%) and a median V30 of 17% (maximum 25%). The median dose delivered to healthy contralateral lung was 13.1 Gy (maximum 18.1 Gy). At univariate analysis, larger planning target volume and V20 were significantly associated with the probability of grade {>=}2 radiation-induced pneumopathy (p = 0.022 and p = 0.017, respectively). No relation between oesophagic toxicity and clinical/dosimetric parameters could be established. Using AAA, the present results confirm the predictive value of the V20 for lung toxicity as already demonstrated with the conventional pencil beam convolution approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryal, Prakash; Molloy, Janelle A.; Rivard, Mark J., E-mail: mark.j.rivard@gmail.com
2014-02-15
Purpose: To investigate potential causes for differences in TG-43 brachytherapy dosimetry parameters in the existent literature for the model IAI-125A{sup 125}I seed and to propose new standard dosimetry parameters. Methods: The MCNP5 code was used for Monte Carlo (MC) simulations. Sensitivity of dose distributions, and subsequently TG-43 dosimetry parameters, was explored to reproduce historical methods upon which American Association of Physicists in Medicine (AAPM) consensus data are based. Twelve simulation conditions varying{sup 125}I coating thickness, coating mass density, photon interaction cross-section library, and photon emission spectrum were examined. Results: Varying{sup 125}I coating thickness, coating mass density, photon cross-section library, andmore » photon emission spectrum for the model IAI-125A seed changed the dose-rate constant by up to 0.9%, about 1%, about 3%, and 3%, respectively, in comparison to the proposed standard value of 0.922 cGy h{sup −1} U{sup −1}. The dose-rate constant values by Solberg et al. [“Dosimetric parameters of three new solid core {sup 125}I brachytherapy sources,” J. Appl. Clin. Med. Phys. 3, 119–134 (2002)], Meigooni et al. [“Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGE™ {sup 125}I brachytherapy source,” Med. Phys. 29, 2152–2158 (2002)], and Taylor and Rogers [“An EGSnrc Monte Carlo-calculated database of TG-43 parameters,” Med. Phys. 35, 4228–4241 (2008)] for the model IAI-125A seed and Kennedy et al. [“Experimental and Monte Carlo determination of the TG-43 dosimetric parameters for the model 9011 THINSeed™ brachytherapy source,” Med. Phys. 37, 1681–1688 (2010)] for the model 6711 seed were +4.3% (0.962 cGy h{sup −1} U{sup −1}), +6.2% (0.98 cGy h{sup −1} U{sup −1}), +0.3% (0.925 cGy h{sup −1} U{sup −1}), and −0.2% (0.921 cGy h{sup −1} U{sup −1}), respectively, in comparison to the proposed standard value. Differences in the radial dose functions between the current study and both Solberg et al. and Meigooni et al. were <10% for r ≤ 5 cm, and increased for r > 5 cm with a maximum difference of 29% at r = 9 cm. In comparison to Taylor and Rogers, these differences were lower (maximum of 2% at r = 9 cm). For the similarly designed model 6711 {sup 125}I seed, differences did not exceed 0.5% for 0.5 ≤ r ≤ 10 cm. Radial dose function values varied by 1% as coating thickness and coating density were changed. Varying the cross-section library and source spectrum altered the radial dose function by 25% and 12%, respectively, but these differences occurred at r = 10 cm where the dose rates were very low. The 2D anisotropy function results were most similar to those of Solberg et al. and most different to those of Meigooni et al. The observed order of simulation condition variables from most to least important for influencing the 2D anisotropy function was spectrum, coating thickness, coating density, and cross-section library. Conclusions: Several MC radiation transport codes are available for calculation of the TG-43 dosimetry parameters for brachytherapy seeds. The physics models in these codes and their related cross-section libraries have been updated and improved since publication of the 2007 AAPM TG-43U1S1 report. Results using modern data indicated statistically significant differences in these dosimetry parameters in comparison to data recommended in the TG-43U1S1 report. Therefore, it seems that professional societies such as the AAPM should consider reevaluating the consensus data for this and others seeds and establishing a process of regular evaluations in which consensus data are based upon methods that remain state-of-the-art.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Molecular Imaging Program at Stanford, Stanford, CA; Bio-X Program, Stanford, CA
2015-06-15
Purpose: To evaluate radiation responses of the medulloblastoma cell line Daoy in intensity-modulated radiation therapy (IMRT), quantitative variations to variable radiation dosimetic parameters were tracked by bioluminescent images (BLIs). Methods: The luciferase and green fluorescent protein positive Daoy cells were cultured on dishes. The medulloblastoma cells irradiated to different dose rate, interval of fractionated doses, field margin and misalignment, and dose uniformity in IMRT were monitored using bioluminescent images. The cultured cells were placed into a dedicated acrylic phantom to deliver intensity-modulated fluences and calculate accurate predicted dose distribution. The radiation with dose rate from 0.5 Gy/min to 15 Gy/minmore » was irradiated by adjusting monitor unit per minute and source-to-surface distances. The intervals of fractionated dose delivery were changed considering the repair time of double strand breaks (DSB) revealed by straining of gamma-H2AX.The effect of non-uniform doses on the cells were visualized by registering dose distributions and BLIs. The viability according to dosimetric parameters was correlated with bioluminescent intensities for cross-check of radiation responses. Results: The DSB and cell responses due to the first fractionated dose delivery significantly affected final tumor control rather than other parameters. The missing tumor volumes due to the smaller field margin than the tumor periphery or field misalignment caused relapse of cell responses on BLIs. The dose rate and gradient had effect on initial responses but could not bring out the distinguishable killing effect on cancer cells. Conclusion: Visualized and quantified bioluminescent images were useful to correlate the dose distributions with spatial radiation effects on cells. This would derive the effective combination of dose delivery parameters and fractionation. Radiation responses in particular IMRT configuration could be reflected to image based-dose re-optimization.« less
Dosimetry applications in GATE Monte Carlo toolkit.
Papadimitroulas, Panagiotis
2017-09-01
Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Analysis of regional radiotherapy dosimetry audit data and recommendations for future audits
Palmer, A; Mzenda, B; Kearton, J; Wills, R
2011-01-01
Objectives Regional interdepartmental dosimetry audits within the UK provide basic assurances of the dosimetric accuracy of radiotherapy treatments. Methods This work reviews several years of audit results from the South East Central audit group including megavoltage (MV) and kilovoltage (kV) photons, electrons and iodine-125 seeds. Results Apart from some minor systematic errors that were resolved, the results of all audits have been within protocol tolerances, confirming the long-term stability and agreement of basic radiation dosimetric parameters between centres in the audit region. There is some evidence of improvement in radiation dosimetry with the adoption of newer codes of practice. Conclusion The value of current audit methods and the limitations of peer-to-peer auditing is discussed, particularly the influence of the audit schedule on the results obtained, where no “gold standard” exists. Recommendations are made for future audits, including an essential requirement to maintain the monitoring of basic fundamental dosimetry, such as MV photon and electron output, but audits must also be developed to include new treatment technologies such as image-guided radiotherapy and address the most common sources of error in radiotherapy. PMID:21159805
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynoso, F; Washington University School of Medicine, St. Louis, MO; Munro, J
2016-06-15
Purpose: To determine the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source designed to maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Methods: An existing Monte Carlo (MC) model of the titanium-encapsulated Yb-169 source, which was described in the current investigators’ published MC optimization study, was modified based on the source manufacturer’s detailed specifications, resulting in an accurate model of the titanium-encapsulated Yb-169 source that was actually manufactured. MC calculations were then performed using the MCNP5 code system and the modified source model, in order to obtain a complete set of the AAPM TG-43 parametersmore » for the new Yb-169 source. Results: The MC-calculated dose rate constant for the new titanium-encapsulated Yb-169 source was 1.05 ± 0.03 cGy per hr U, indicating about 10% decrease from the values reported for the conventional stainless steel-encapsulated Yb-169 sources. The source anisotropy and radial dose function for the new source were found similar to those reported for the conventional Yb-169 sources. Conclusion: In this study, the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source were determined by MC calculations. The current results suggested that the use of titanium, instead of stainless steel, to encapsulate the Yb-169 core would not lead to any major change in the dosimetric characteristics of the Yb-169 source, while it would allow more low energy photons being transmitted through the source filter thereby leading to an increased dose enhancement during GNRT. Supported by DOD/PCRP grant W81XWH-12-1-0198 This investigation was supported by DOD/PCRP grant W81XWH-12-1- 0198.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazan, Jose G.; Luxton, Gary; Kozak, Margaret M.
Purpose: To determine how chemotherapy agents affect radiation dose parameters that correlate with acute hematologic toxicity (HT) in patients treated with pelvic intensity modulated radiation therapy (P-IMRT) and concurrent chemotherapy. Methods and Materials: We assessed HT in 141 patients who received P-IMRT for anal, gynecologic, rectal, or prostate cancers, 95 of whom received concurrent chemotherapy. Patients were separated into 4 groups: mitomycin (MMC) + 5-fluorouracil (5FU, 37 of 141), platinum ± 5FU (Cis, 32 of 141), 5FU (26 of 141), and P-IMRT alone (46 of 141). The pelvic bone was contoured as a surrogate for pelvic bone marrow (PBM) andmore » divided into subsites: ilium, lower pelvis, and lumbosacral spine (LSS). The volumes of each region receiving 5-40 Gy were calculated. The endpoint for HT was grade ≥3 (HT3+) leukopenia, neutropenia or thrombocytopenia. Normal tissue complication probability was calculated using the Lyman-Kutcher-Burman model. Logistic regression was used to analyze association between HT3+ and dosimetric parameters. Results: Twenty-six patients experienced HT3+: 10 of 37 (27%) MMC, 14 of 32 (44%) Cis, 2 of 26 (8%) 5FU, and 0 of 46 P-IMRT. PBM dosimetric parameters were correlated with HT3+ in the MMC group but not in the Cis group. LSS dosimetric parameters were well correlated with HT3+ in both the MMC and Cis groups. Constrained optimization (0« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Masao, E-mail: naka2008@med.kobe-u.ac.jp; Yoshida, Kenji; Nishimura, Hideki
2014-04-01
The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose,more » and dose that covers 95% of the PTV between the first and second plans were 1.10 Gy (1.8%), 1.35 Gy (2.2%), 1.10 Gy (1.9%), and 0.56 Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30 Gy (lung V{sub 5}, V{sub 10}, V{sub 20}, and V{sub 30}) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V{sub 5} and V{sub 10}) than on the dosimetric parameters related to the PTV and other OARs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, K; Altman, M; Garcia-Ramirez, J
Purpose: Treatment planning guidelines for accelerated partial breast irradiation (ABPI) using the strut-adjusted volume implant (SAVI) are inconsistent between the manufacturer and NSABP B-39/RTOG 0413 protocol. Furthermore neither set of guidelines accounts for different applicator sizes. The purpose of this work is to establish guidelines specific to the SAVI that are based on clinically achievable dose distributions. Methods: Sixty-two consecutive patients were implanted with a SAVI and prescribed to receive 34 Gy in 10 fractions twice daily using high dose-rate (HDR) Ir-192 brachytherapy. The target (PTV-EVAL) was defined per NSABP. The treatments were planned and evaluated using a combination ofmore » dosimetric planning goals provided by the NSABP, the manufacturer, and our prior clinical experience. Parameters evaluated included maximum doses to skin and ribs, and volumes of PTV-EVAL receiving 90%, 95%, 100%, 150%, and 200% of the prescription (V90, etc). All target parameters were evaluated for correlation with device size using the Pearson correlation coefficient. Revised dosimetric guidelines for target coverage and heterogeneity were determined from this population. Results: Revised guidelines for minimum target coverage (ideal in parentheses): V90≥95%(97%), V95≥90%(95%), V100≥88%(91%). The only dosimetric parameters that were significantly correlated (p<0.05) with device size were V150 and V200. Heterogeneity criteria were revised for the 6–1 Mini/6-1 applicators to V150≤30cc and V200≤15cc, and unchanged for the other sizes. Re-evaluation of patient plans showed 90% (56/62) met the revised minimum guidelines and 76% (47/62) met the ideal guidelines. All and 56/62 patients met our institutional guidelines for maximum skin and rib dose, respectively. Conclusions: We have optimized dosimetric guidelines for the SAVI applicators, and found that implementation of these revised guidelines for SAVI treatment planning yielded target coverage exceeding that required by existing guidelines while preserving heterogeneity constraints and minimizing dose to organs at risk.« less
Ghandour, Sarah; Matzinger, Oscar
2015-01-01
The purpose of this work is to evaluate the volumetric‐modulated arc therapy (VMAT) multicriteria optimization (MCO) algorithm clinically available in the RayStation treatment planning system (TPS) and its ability to reduce treatment planning time while providing high dosimetric plan quality. Nine patients with localized prostate cancer who were previously treated with 78 Gy in 39 fractions using VMAT plans and rayArc system based on the direct machine parameter optimization (DMPO) algorithm were selected and replanned using the VMAT‐MCO system. First, the dosimetric quality of the plans was evaluated using multiple conformity metrics that account for target coverage and sparing of healthy tissue, used in our departmental clinical protocols. The conformity and homogeneity index, number of monitor units, and treatment planning time for both modalities were assessed. Next, the effects of the technical plan parameters, such as constraint leaf motion CLM (cm/°) and maximum arc delivery time T (s), on the accuracy of delivered dose were evaluated using quality assurance passing rates (QAs) measured using the Delta4 phantom from ScandiDos. For the dosimetric plan's quality analysis, the results show that the VMAT‐MCO system provides plans comparable to the rayArc system with no statistical difference for V95% (p<0.01), D1% (p<0.01), CI (p<0.01), and HI (p<0.01) of the PTV, bladder (p<0.01), and rectum (p<0.01) constraints, except for the femoral heads and healthy tissues, for which a dose reduction was observed using MCO compared with rayArc (p<0.01). The technical parameter study showed that a combination of CLM equal to 0.5 cm/degree and a maximum delivery time of 72 s allowed the accurate delivery of the VMAT‐MCO plan on the Elekta Versa HD linear accelerator. Planning evaluation and dosimetric measurements showed that VMAT‐MCO can be used clinically with the advantage of enhanced planning process efficiency by reducing the treatment planning time without impairing dosimetric quality. PACS numbers: 87.55.D, 87.55.de, 87.55.Qr PMID:26103500
A dosimetric comparison of {sup 169}Yb versus {sup 192}Ir for HDR prostate brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.
2005-12-15
For the purpose of evaluating the use of {sup 169}Yb for prostate High Dose Rate brachytherapy (HDR), a hypothetical {sup 169}Yb source is assumed with the exact same design of the new microSelectron source replacing the {sup 192}Ir active core by pure {sup 169}Yb metal. Monte Carlo simulation is employed for the full dosimetric characterization of both sources and results are compared following the AAPM TG-43 dosimetric formalism. Monte Carlo calculated dosimetry results are incorporated in a commercially available treatment planning system (SWIFT{sup TM}), which features an inverse treatment planning option based on a multiobjective dose optimization engine. The qualitymore » of prostate HDR brachytherapy using the real {sup 192}Ir and hypothetical {sup 169}Yb source is compared in a comprehensive analysis of different prostate implants in terms of the multiobjective dose optimization solutions as well as treatment quality indices such as Dose Volume Histograms (DVH) and the Conformal Index (COIN). Given that scattering overcompensates for absorption in intermediate photon energies and distances in the range of interest to prostate HDR brachytherapy, {sup 169}Yb proves at least equivalent to {sup 192}Ir irrespective of prostate volume. This has to be evaluated in view of the shielding requirements for the {sup 169}Yb energies that are minimal relative to that for {sup 192}Ir.« less
Hiatt, Jessica R; Davis, Stephen D; Rivard, Mark J
2015-06-01
The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10(10) histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an (125)I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current and the 2006 model had a minimum of 0.980 at 0.4 cm, close to the source sheath and for large distances approached 1.014. 2D anisotropy function ratios were close to unity for 50° ≤ θ ≤ 110°, but exceeded 5% for θ < 40° at close distances to the sheath and exceeded 15% for θ > 140°, even at large distances. Photon energy fluence of the updated model as compared to the 2006 model showed a decrease in output with increasing distance; this effect was pronounced at the lowest energies. A decrease in photon fluence with increase in polar angle was also observed and was attributed to the silver epoxy component. Changes in source design influenced the overall dose rate and distribution by more than 2% in several regions. This discrepancy is greater than the dose calculation acceptance criteria as recommended in the AAPM TG-56 report. The effect of the design change on the TG-43 parameters would likely not result in dose differences outside of patient applicators. Adoption of this new dataset is suggested for accurate depiction of model S700 source dose distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiatt, Jessica R.; Davis, Stephen D.; Rivard, Mark J., E-mail: mark.j.rivard@gmail.com
2015-06-15
Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Montemore » Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current and the 2006 model had a minimum of 0.980 at 0.4 cm, close to the source sheath and for large distances approached 1.014. 2D anisotropy function ratios were close to unity for 50° ≤ θ ≤ 110°, but exceeded 5% for θ < 40° at close distances to the sheath and exceeded 15% for θ > 140°, even at large distances. Photon energy fluence of the updated model as compared to the 2006 model showed a decrease in output with increasing distance; this effect was pronounced at the lowest energies. A decrease in photon fluence with increase in polar angle was also observed and was attributed to the silver epoxy component. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% in several regions. This discrepancy is greater than the dose calculation acceptance criteria as recommended in the AAPM TG-56 report. The effect of the design change on the TG-43 parameters would likely not result in dose differences outside of patient applicators. Adoption of this new dataset is suggested for accurate depiction of model S700 source dose distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostou, T; Papadimitroulas, P; Kagadis, GC
2014-06-15
Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PETmore » studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known that there is a large variety in the anatomy of the organs.« less
Guerrero, Rafael; Almansa, Julio F; Torres, Javier; Lallena, Antonio M
2014-12-01
(60)Co sources are being used as an alternative to (192)Ir sources in high dose rate brachytherapy treatments. In a recent document from AAPM and ESTRO, a consensus dataset for the (60)Co BEBIG (model Co0.A86) high dose rate source was prepared by using results taken from different publications due to discrepancies observed among them. The aim of the present work is to provide a new calculation of the dosimetric characteristics of that (60)Co source according to the recommendations of the AAPM and ESTRO report. Radial dose function, anisotropy function, air-kerma strength, dose rate constant and absorbed dose rate in water have been calculated and compared to the results of previous works. Simulations using the two different geometries considered by other authors have been carried out and the effect of the cable density and length has been studied. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Kielar, Kayla N; Mok, Ed; Hsu, Annie; Wang, Lei; Luxton, Gary
2012-10-01
The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical leaf gap dimensions is more pronounced in the more recent versions of Eclipse for both the HDMLC and the Millennium MLC. Once properly commissioned and tested using a methodology based on treatment plan verification, Eclipse is able to accurately model radiation dose delivered for SBRT treatments using the TrueBeam STx.
TU-CD-BRB-01: Normal Lung CT Texture Features Improve Predictive Models for Radiation Pneumonitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krafft, S; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Briere, T
2015-06-15
Purpose: Existing normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) traditionally rely on dosimetric and clinical data but are limited in terms of performance and generalizability. Extraction of pre-treatment image features provides a potential new category of data that can improve NTCP models for RP. We consider quantitative measures of total lung CT intensity and texture in a framework for prediction of RP. Methods: Available clinical and dosimetric data was collected for 198 NSCLC patients treated with definitive radiotherapy. Intensity- and texture-based image features were extracted from the T50 phase of the 4D-CT acquired for treatment planning. Amore » total of 3888 features (15 clinical, 175 dosimetric, and 3698 image features) were gathered and considered candidate predictors for modeling of RP grade≥3. A baseline logistic regression model with mean lung dose (MLD) was first considered. Additionally, a least absolute shrinkage and selection operator (LASSO) logistic regression was applied to the set of clinical and dosimetric features, and subsequently to the full set of clinical, dosimetric, and image features. Model performance was assessed by comparing area under the curve (AUC). Results: A simple logistic fit of MLD was an inadequate model of the data (AUC∼0.5). Including clinical and dosimetric parameters within the framework of the LASSO resulted in improved performance (AUC=0.648). Analysis of the full cohort of clinical, dosimetric, and image features provided further and significant improvement in model performance (AUC=0.727). Conclusions: To achieve significant gains in predictive modeling of RP, new categories of data should be considered in addition to clinical and dosimetric features. We have successfully incorporated CT image features into a framework for modeling RP and have demonstrated improved predictive performance. Validation and further investigation of CT image features in the context of RP NTCP modeling is warranted. This work was supported by the Rosalie B. Hite Fellowship in Cancer research awarded to SPK.« less
Prevention of Radiochemotherapy-Induced Esophagitis With Glutamine: Results of a Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algara, Manuel; Universitat Pompeu Fabra, Barcelona; Rodriguez, Nuria
2007-10-01
Purpose: To assess the usefulness of oral glutamine to prevent radiochemotherapy-induced esophagitis in patients with lung cancer, and to determine the dosimetric parameter predictive of esophagitis. Methods and Materials: Seventy-five patients were enrolled; 34.7% received sequential radiochemotherapy, and 65.3% received concomitant radiochemotherapy. Every patient received prophylactic glutamine powder in doses of 10 g/8 h. Prescribed radiation doses were 45-50 Gy to planning target volume (PTV)1 (gross tumor volume plus wide margins) and 65-70 Gy to PTV2 (reduced margins). The primary endpoint was the incidence of Grade 2 or greater acute esophagitis. Results: No patient experienced glutamine intolerance or glutamine-related toxicity.more » Seventy-three percent of patients who received sequential chemotherapy and 49% of those who received concomitant chemotherapy did not present any form of esophagitis. V50 was the dosimetric parameter with better correlation between esophagitis and its duration. A V50 of {<=}30% had a 22% risk of esophagitis Grade {>=}2, which increased to 71% with a V50 of >30% (p = 0.0009). Conclusions: The use of oral glutamine may have an important role in the prevention of esophageal complications of concomitant radiochemotherapy in lung cancer patients. However, randomized trials are needed to corroborate that effect. V50 is the dosimetric parameter with better correlation with esophagitis grade and duration.« less
MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
MO-A-BRC-02: TG167 Report - Detailed Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, M.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
MO-A-BRC-01: TG167 Report - Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, R.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
Nakayama, Masao; Yoshida, Kenji; Nishimura, Hideki; Miyawaki, Daisuke; Uehara, Kazuyuki; Okamoto, Yoshiaki; Okayama, Takanobu; Sasaki, Ryohei
2014-01-01
The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose, and dose that covers 95% of the PTV between the first and second plans were 1.10Gy (1.8%), 1.35Gy (2.2%), 1.10Gy (1.9%), and 0.56Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30Gy (lung V5, V10, V20, and V30) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V5 and V10) than on the dosimetric parameters related to the PTV and other OARs. © 2013 Published by American Association of Medical Dosimetrists on behalf of American Association of Medical Dosimetrists.
A continuous arc delivery optimization algorithm for CyberKnife m6.
Kearney, Vasant; Descovich, Martina; Sudhyadhom, Atchar; Cheung, Joey P; McGuinness, Christopher; Solberg, Timothy D
2018-06-01
This study aims to reduce the delivery time of CyberKnife m6 treatments by allowing for noncoplanar continuous arc delivery. To achieve this, a novel noncoplanar continuous arc delivery optimization algorithm was developed for the CyberKnife m6 treatment system (CyberArc-m6). CyberArc-m6 uses a five-step overarching strategy, in which an initial set of beam geometries is determined, the robotic delivery path is calculated, direct aperture optimization is conducted, intermediate MLC configurations are extracted, and the final beam weights are computed for the continuous arc radiation source model. This algorithm was implemented on five prostate and three brain patients, previously planned using a conventional step-and-shoot CyberKnife m6 delivery technique. The dosimetric quality of the CyberArc-m6 plans was assessed using locally confined mutual information (LCMI), conformity index (CI), heterogeneity index (HI), and a variety of common clinical dosimetric objectives. Using conservative optimization tuning parameters, CyberArc-m6 plans were able to achieve an average CI difference of 0.036 ± 0.025, an average HI difference of 0.046 ± 0.038, and an average LCMI of 0.920 ± 0.030 compared with the original CyberKnife m6 plans. Including a 5 s per minute image alignment time and a 5-min setup time, conservative CyberArc-m6 plans achieved an average treatment delivery speed up of 1.545x ± 0.305x compared with step-and-shoot plans. The CyberArc-m6 algorithm was able to achieve dosimetrically similar plans compared to their step-and-shoot CyberKnife m6 counterparts, while simultaneously reducing treatment delivery times. © 2018 American Association of Physicists in Medicine.
A novel curvilinear approach for prostate seed implantation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podder, Tarun K.; Dicker, Adam P.; Hutapea, Parsaoran
Purpose: A new technique called ''curvilinear approach'' for prostate seed implantation has been proposed. The purpose of this study is to evaluate the dosimetric benefit of curvilinear distribution of seeds for low-dose-rate (LDR) prostate brachytherapy. Methods: Twenty LDR prostate brachytherapy cases planned intraoperatively with VariSeed planning system and I-125 seeds were randomly selected as reference rectilinear cases. All the cases were replanned by using curved-needle approach keeping the same individual source strength and the volume receiving 100% of prescribed dose 145 Gy (V{sub 100}). Parameters such as number of needles, seeds, and the dose coverage of the prostate (D{sub 90},more » V{sub 150}, V{sub 200}), urethra (D{sub 30}, D{sub 10}) and rectum (D{sub 5}, V{sub 100}) were compared for the rectilinear and the curvilinear methods. Statistical significance was assessed using two-tailed student's t-test. Results: Reduction of the required number of needles and seeds in curvilinear method were 30.5% (p < 0.001) and 11.8% (p < 0.49), respectively. Dose to the urethra was reduced significantly; D{sub 30} reduced by 10.1% (p < 0.01) and D{sub 10} reduced by 9.9% (p < 0.02). Reduction in rectum dose D{sub 5} was 18.5% (p < 0.03) and V{sub 100} was also reduced from 0.93 cc in rectilinear to 0.21 cc in curvilinear (p < 0.001). Also the V{sub 150} and V{sub 200} coverage of prostate reduced by 18.8% (p < 0.01) and 33.9% (p < 0.001), respectively. Conclusions: Significant improvement in the relevant dosimetric parameters was observed in curvilinear needle approach. Prostate dose homogeneity (V{sub 150}, V{sub 200}) improved while urethral dose was reduced, which might potentially result in better treatment outcome. Reduction in rectal dose could potentially reduce rectal toxicity and complications. Reduction in number of needles would minimize edema and thereby could improve postimplant urinary incontinence. This study indicates that the curvilinear implantation approach is dosimetrically superior to conventional rectilinear implantation technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Doi, Yoshiko; Nakashima, Takeo
2015-11-15
Purpose: The purpose of this study was to prospectively investigate clinical correlations between dosimetric parameters associated with radiation pneumonitis (RP) and functional lung imaging. Methods and Materials: Functional lung imaging was performed using four-dimensional computed tomography (4D-CT) for ventilation imaging, single-photon emission computed tomography (SPECT) for perfusion imaging, or both (V/Q-matched region). Using 4D-CT, ventilation imaging was derived from a low attenuation area according to CT numbers below different thresholds (vent-860 and -910). Perfusion imaging at the 10th, 30th, 50th, and 70th percentile perfusion levels (F10-F70) were defined as the top 10%, 30%, 50%, and 70% hyperperfused normal lung, respectively.more » All imaging data were incorporated into a 3D planning system to evaluate correlations between RP dosimetric parameters (where fV20 is the percentage of functional lung volume irradiated with >20 Gy, or fMLD, the mean dose administered to functional lung) and the percentage of functional lung volume. Radiation pneumonitis was evaluated using Common Terminology Criteria for Adverse Events version 4.0. Statistical significance was defined as a P value of <.05. Results: Sixty patients who underwent curative radiation therapy were enrolled (48 patients for non-small cell lung cancer, and 12 patients for small cell lung cancer). Grades 1, 2, and ≥3 RP were observed in 16, 44, and 6 patients, respectively. Significant correlations were observed between the percentage of functional lung volume and fV20 (r=0.4475 in vent-860 and 0.3508 in F30) or fMLD (r=0.4701 in vent-860 and 0.3128 in F30) in patients with grade ≥2 RP. F30∩vent-860 results exhibited stronger correlations with fV20 and fMLD in patients with grade ≥2 (r=0.5509 in fV20 and 0.5320 in fMLD) and grade ≥3 RP (r=0.8770 in fV20 and 0.8518 in fMLD). Conclusions: RP dosimetric parameters correlated significantly with functional lung imaging.« less
Yahya, Noorazrul; Chua, Xin-Jane; Manan, Hanani A; Ismail, Fuad
2018-05-17
This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies. Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates. A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity. A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, A
Purpose: Novel linac machines, TrueBeam (TB) and Elekta Versa have updated head designing and software control system, include flattening-filter-free (FFF) photon and electron beams. Later on FFF beams were also introduced on C-Series machines. In this work FFF beams for same energy 6MV but from different machine versions were studied with reference to beam data parameters. Methods: The 6MV-FFF percent depth doses, profile symmetry and flatness, dose rate tables, and multi-leaf collimator (MLC) transmission factors were measured during commissioning process of both C-series and Truebeam machines. The scanning and dosimetric data for 6MV-FFF beam from Truebeam and C-Series linacs wasmore » compared. A correlation of 6MV-FFF beam from Elekta Versa with that of Varian linacs was also found. Results: The scanning files were plotted for both qualitative and quantitative analysis. The dosimetric leaf gap (DLG) for C-Series 6MV-FFF beam is 1.1 mm. Published values for Truebeam dosimetric leaf gap is 1.16 mm. 6MV MLC transmission factor varies between 1.3 % and 1.4 % in two separate measurements and measured DLG values vary between 1.32 mm and 1.33 mm on C-Series machine. MLC transmission factor from C-Series machine varies between 1.5 % and 1.6 %. Some of the measured data values from C-Series FFF beam are compared with Truebeam representative data. 6MV-FFF beam parameter values like dmax, OP factors, beam symmetry and flatness and additional parameters for C-Series and Truebeam liancs will be presented and compared in graphical form and tabular data form if selected. Conclusion: The 6MV flattening filter (FF) beam data from C-Series & Truebeam and 6MV-FFF beam data from Truebeam has already presented. This particular analysis to compare 6MV-FFF beam from C-Series and Truebeam provides opportunity to better elaborate FFF mode on novel machines. It was found that C-Series and Truebeam 6MV-FFF dosimetric and beam data was quite similar.« less
The impact of emphysema on dosimetric parameters for stereotactic body radiotherapy of the lung
Ochiai, Satoru; Nomoto, Yoshihito; Yamashita, Yasufumi; Inoue, Tomoki; Murashima, Shuuichi; Hasegawa, Daisuke; Kurita, Yoshie; Watanabe, Yui; Toyomasu, Yutaka; Kawamura, Tomoko; Takada, Akinori; Noriko; Kobayashi, Shigeki; Sakuma, Hajime
2016-01-01
The purpose of this study was to evaluate the impact of emphysematous changes in lung on dosimetric parameters in stereotactic body radiation therapy (SBRT) for lung tumor. A total of 72 treatment plans were reviewed, and dosimetric factors [including homogeneity index (HI) and conformity index (CI)] were evaluated. Emphysematous changes in lung were observed in 43 patients (60%). Patients were divided into three groups according to the severity of emphysema: no emphysema (n = 29), mild emphysema (n = 22) and moderate to severe emphysema groups (n = 21). The HI (P < 0.001) and the CI (P = 0.029) were significantly different in accordance with the severity of emphysema in one-way analysis of variance (ANOVA). The HI value was significantly higher in the moderate to severe emphysema group compared with in the no emphysema (Tukey, P < 0.001) and mild emphysema groups (P = 0.002). The CI value was significantly higher in the moderate to severe emphysema group compared with in the no emphysema group (P = 0.044). In multiple linear regression analysis, the severity of emphysema (P < 0.001) and the mean material density of the lung within the PTV (P < 0.001) were significant factors for HI, and the mean density of the lung within the PTV (P = 0.005) was the only significant factor for CI. The mean density of the lung within the PTV was significantly different in accordance with the severity of emphysema (one-way ANOVA, P = 0.008) and the severity of emphysema (P < 0.001) was one of the significant factors for the density of the lung within the PTV in multiple linear regression analysis. Our results suggest that emphysematous changes in the lung significantly impact on several dosimetric parameters in SBRT, and they should be carefully evaluated before treatment planning. PMID:27380802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mell, Loren K.; Kochanski, Joel D.; Department of Radiation and Cellular Oncology, University of Illinois at Chicago, Chicago, IL
Purpose: To identify dosimetric parameters associated with acute hematologic toxicity (HT) and chemotherapy delivery in cervical cancer patients undergoing concurrent chemotherapy and intensity-modulated pelvic radiotherapy. Methods and Materials: We analyzed 37 cervical cancer patients receiving concurrent cisplatin (40 mg/m{sup 2}/wk) and intensity-modulated pelvic radiotherapy. Pelvic bone marrow (BM) was contoured for each patient and divided into three subsites: lumbosacral spine, ilium, and lower pelvis. The volume of each region receiving 10, 20, 30, and {>=}40 Gy (V{sub 1}, V{sub 2}, V{sub 3}, and V{sub 4}, respectively) was calculated. HT was graded according to Radiation Therapy Oncology Group system. Multivariate regressionmore » models were used to test associations between dosimetric parameters and HT and chemotherapy delivery. Results: Increased pelvic BM V{sub 1} (BM-V{sub 1}) was associated with an increased Grade 2 or worse leukopenia and neutropenia (odds ratio [OR], 2.09; 95% confidence interval [CI], 1.24-3.53; p = 0.006; and OR, 1.41; 95% CI, 1.02-1.94; p = 0.037, respectively). Patients with BM-V{sub 1} {>=}90% had higher rates of Grade 2 or worse leukopenia and neutropenia than did patients with BM-V{sub 1} <90% (11.1% vs. 73.7%, p < 0.01; and 5.6% vs. 31.6%, p = 0.09) and were more likely to have chemotherapy held on univariate (16.7% vs. 47.4%, p = 0.08) and multivariate (OR, 32.2; 95% CI, 1.67-622; p = 0.02) analysis. No associations between HT and V{sub 3} and V{sub 4} were observed. Dosimetric parameters involving the lumbosacral spine and lower pelvis had stronger associations with HT than did those involving the ilium. Conclusion: The volume of pelvic BM receiving low-dose radiation is associated with HT and chemotherapy delivery in cervical cancer patients undergoing concurrent chemoradiotherapy.« less
Effective atomic numbers and electron density of dosimetric material
Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.
2009-01-01
A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder
Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis wasmore » measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd sources. Conclusions: An independent {Lambda} determination has been performed for the Advantage Pd-103 source. The {sub PST}{Lambda} obtained in this work provides additional information needed for establishing a more accurate consensus {Lambda} value for the Advantage Pd-103 source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Eldib, A; Chibani, O
2015-06-15
Purpose: Co-60 beams have unique dosimetric properties for cranial treatments and thoracic cancers. The conventional concern about the high surface dose is overcome by modern system designs with rotational treatment techniques. This work investigates a novel rotational Gamma ray system for image-guided, external beam radiotherapy. Methods: The CybeRT system (Cyber Medical Corp., China) consists of a ring gantry with either one or two treatment heads containing a Gamma source and a multileaf collimator (MLC). The MLC has 60 paired leaves, and the maximum field size is either 40cmx40cm (40 pairs of 0.5cm central leaves, 20 pairs of 1cm outer leaves),more » or 22cmx40cm (32 pairs of 0.25cm central leaves, 28 pairs of 0.5cm outer leaves). The treatment head(s) can swing 35° superiorly and 8° inferiorly, allowing a total of 43° non-coplanar beam incident. The treatment couch provides 6-degrees-of-freedom motion compensation and the kV cone-beam CT system has a spatial resolution of 0.4mm. Monte Carlo simulations were used to compute dose distributions and compare with measurements. A retrospective study of 98 previously treated patients was performed to compare CybeRT with existing RT systems. Results: Monte Carlo results confirmed the CybeRT design parameters including output factors and 3D dose distributions. Its beam penumbra/dose gradient was similar to or better than that of 6MV photon beams and its isocenter accuracy is 0.3mm. Co-60 beams produce lower-energy secondary electrons that exhibit better dose properties in low-density lung tissues. Because of their rapid depth dose falloff, Co-60 beams are favorable for peripheral lung tumors with half-arc arrangements to spare the opposite lung and critical structures. Superior dose distributions were obtained for head and neck, breast, spine and lung tumors. Conclusion: Because of its accurate dose delivery and unique dosimetric properties of C-60 sources, CybeRT is ideally suited for advanced SBRT as well as conventional RT. This work was partially supported by Cyber Medical Corp.« less
NASA Astrophysics Data System (ADS)
Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel
2017-03-01
The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.
SU-E-T-459: Impact of Source Position and Traveling Time On HDR Skin Surface Applicator Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, J; Barker, C; Zaider, M
Purpose: Observed dosimetric discrepancy between measured and treatment planning system (TPS) predicted values, during applicator commissioning, were traced to source position uncertainty in the applicator. We quantify the dosimetric impact of this geometric uncertainty, and of the source traveling time inside the applicator, and propose corrections for clinical use. Methods: We measured the dose profiles from the Varian Leipzig-style (horizontal) HDR skin applicator, using EBT3 film, photon diode, and optically stimulated luminescence dosimeter (OSLD) and three different GammaMed HDR afterloders. The dose profiles and depth dose of each aperture were measured at several depths (up to about 10 mm, dependingmore » on the dosimeter). The measured dose profiles were compared with Acuros calculated profiles in BrachyVision TPS. For the impact of the source position, EBT3 film measurements were performed with applicator, facing-down and facing-up orientations. The dose with and without source traveling was measured with diode detector using HDR timer and electrometer timer, respectively. Results: Depth doses measured using the three dosimeters were in good agreement, but were consistently higher than the Acuros dose calculations. Measurements with the applicator facing-up were significantly lower than those in the facing-down position with maximum difference of about 18% at the surface, due to source sag inside the applicator. Based on the inverse-square law, the effective source sag was evaluated to be about 0.5 mm from the planned position. The additional dose from the source traveling was about 2.8% for 30 seconds with 10 Ci source, decreasing with increased dwelling time and decreased source activity. Conclusion: Due to the short source-to-surface distance of the applicator, the small source sag inside the applicator has significant dosimetric impact, which should be considered before the clinical use of the applicator. Investigation of the effect for other applicators that have relatively large source lumen inner diameter may be warranted. Christopher Barker and Gil’ad Cohen are receiving research support for a study of skin surface brachytherapy from Elekta.« less
Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui
2017-01-01
The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle 3 , Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smeenk, Robert Jan, E-mail: r.smeenk@rther.umcn.nl; Hopman, Wim P.M.; Hoffmann, Aswin L.
2012-01-01
Purpose: To explore the influence of functional changes and dosimetric parameters on specific incontinence-related anorectal complaints after prostate external beam radiotherapy and to estimate dose-effect relations for the anal wall and rectal wall. Methods and Materials: Sixty patients, irradiated for localized prostate cancer, underwent anorectal manometry and barostat measurements to evaluate anal pressures, rectal capacity, and rectal sensory functions. In addition, 30 untreated men were analyzed as a control group. In 36 irradiated patients, the anal wall and rectal wall were retrospectively delineated on planning computed tomography scans, and dosimetric parameters were retrieved from the treatment plans. Functional and dosimetricmore » parameters were compared between patients with and without complaints, focusing on urgency, incontinence, and frequency. Results: After external beam radiotherapy, reduced anal pressures and tolerated rectal volumes were observed, irrespective of complaints. Patients with urgency and/or incontinence showed significantly lower anal resting pressures (mean 38 and 39 vs. 49 and 50 mm Hg) and lower tolerated rectal pressures (mean 28 and 28 vs. 33 and 34 mm Hg), compared to patients without these complaints. In patients with frequency, almost all rectal parameters were reduced. Several dosimetric parameters to the anal wall and rectal wall were predictive for urgency (e.g., anal D{sub mean}>38Gy), whereas some anal wall parameters correlated to incontinence and no dose-effect relation for frequency was found. Conclusions: Anorectal function deteriorates after external beam radiotherapy. Different incontinence-related complaints show specific anorectal dysfunctions, suggesting different anatomic and pathophysiologic substrates: urgency and incontinence seem to originate from both anal wall and rectal wall, whereas frequency seems associated with rectal wall dysfunction. Also, dose-effect relations differed between these complaints. This implies that anal wall and rectal wall should be considered separate organs in radiotherapy planning.« less
Robatjazi, Mostafa; Baghani, Hamid Reza; Mahdavic, Seied Rabi; Felici, Giuseppe
2018-05-01
A shielding disk is used for IOERT procedures to absorb radiation behind the target and protect underlying healthy tissues. Setup variation of shielding disk can affect the corresponding in-vivo dose distribution. In this study, the changes of dosimetric parameters due to the disk setup variations is evaluated using EGSnrc Monte Carlo (MC) code. The results can help treatment team to decide about the level of accuracy in the setup procedure and delivered dose to the target volume during IOERT. Copyright © 2018 Elsevier Ltd. All rights reserved.
Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan
2013-01-01
Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aima, M; Culberson, W; Hammer, C
Purpose: The aim of this work is to determine the TG-43 dose-rate constant analog for a new directional low-dose rate brachytherapy source based on experimental methods and comparison to Monte Carlo simulations. The CivaSheet™ is a new commercially available planar source array comprised of a variable number of discrete directional source elements called “CivaDots”. Given the directional nature and non-conventional design of the source, modifications to the AAPM TG-43 protocol for dosimetry are required. As a result, various parameters of the TG-43 dosimetric formalism have to be adapted to accommodate this source. This work focuses on the dose-rate constant analogmore » determination for a CivaDot. Methods: Dose to water measurements of the CivaDot were performed in a polymethyl methacrylate phantom (20×20×12 cm{sup 3}) using thermoluminescent dosimeters (TLDs) and Gafchromic EBT3 film. The source was placed in the center of the phantom, and nine TLD micro-cubes were irradiated along its central axis at a distance of 1 cm. For the film measurements, the TLDs were substituted by a (3×3) cm{sup 2} EBT3 film. Primary air-kerma strength measurements of the source were performed using a variable-aperture free-air chamber. Finally, the source was modeled using the Monte Carlo N-Particle Transport Code 6. Results: Dose-rate constant analog observed for a total of eight CivaDots using TLDs and five CivaDots using EBT3 film was within ±7.0% and ±2.9% of the Monte Carlo predicted value respectively. The average difference observed was −4.8% and −0.1% with a standard deviation of 1.7% and 2.1% for the TLD and the film measurements respectively, which are both within the comparison uncertainty. Conclusion: A preliminary investigation to determine the doserate constant analog for a CivaDot was conducted successfully with good agreement between experimental and Monte Carlo based methods. This work will aid in the eventual realization of a clinically-viable dosimetric framework for the CivaSheet. This work was partially supported by NCI contract (HHSN261201200052C) through CivaTech Oncology Inc.« less
Abboud, F; Scalliet, P; Vynckier, S
2008-12-01
Permanent implantation of 125I (iodine) or 103Pd (palladium) sources is a popular treatment option in the management of early stage prostate cancer. New sources are being developed, some of which are being marketed for different clinical applications. A new technique of adjuvant stereotactic permanent seed breast implant, similar to that used in the treatment of prostate cancer, has been proposed by [N. Jansen et al., Int. J. Radiat. Oncol. Biol. Phys. 67, 1052-1058 (2007)] with encouraging results. The presence of artifacts from the metallic seeds, however, can disturb follow-up imaging. The development of plastic seeds has reduced these artifacts. This paper presents a feasibility study of the advantages of palladium-103 seeds, encapsulated with a biocompatible polymer, for future clinical applications, and on the effect of the gold marker on the dosimetric characteristics of such seeds. Experimental palladium seeds, OptiSeedexp, were manufactured by International Brachytherapy (IBt), Seneffe, Belgium, from a biocompatible polymer, including the marker. Apart from the absence of a gold marker, the studied seed has an identical design to the OptiSeed103 [Phys. Med. Biol. 50, 1493-1504 (2005)]; [Appl. Radiat. Isot. 63, 311-321 (2005)]. Polymer encapsulation was preferred by IBt in order to reduce the quantity of radioactive material needed for a given dose rate and to reduce the anisotropy of the radiation field around the seed. In addition, this design is intended to decrease the interseed effects that can occur as a result of the marker and the encapsulation. Dosimetric measurements were performed using LiF thermoluminescent dosimeters (1 mm3) in solid water phantoms (WT1). Measured data were compared to Monte Carlo simulated data in solid water using the MCNP code, version 4C. Updated cross sections [Med. Phys. 30, 701-711 (2003)] were used. As the measured and calculated data were in agreement, Monte Carlo calculations were then performed in liquid water to obtain relevant dosimetric data as required by TG-43U1 recommendations. Comparison of the results with previous studies of OptiSeed103 [Phys. Med. Biol. 50, 1493-1504 (2005)]; [Appl. Radiat. Isot. 63, 311-321 (2005)], and of InterSource103 [Appl. Radiat. Isot. 57, 805-811 (2002)] showed very good agreement for the dose rate constant and for the radial dose function. With respect to the anisotropy function, the relative dose (anisotropy value relative to 90 degrees) from the polymer seed at a distance of 3 cm was close to unity (105%) at 0 degrees, whereas the relative values for the OptiSeed103 with a gold marker and the titanium-encapsulated InterSource103 seed decreased to 70% and 40%, respectively. The interseed effect from one seed was negligible and in the order of calculation uncertainty, making calculation of the dose rate distribution of the studied seeds, according to TG43U1 recommendations, more accurate and closer to reality. This feasibility study shows that due to the low energy of palladium-103, the negligible interseed effect and the reduced artifacts in postimplant medical imaging, this experimental plastic seed would be a good source for breast brachytherapy. This feasibility study was carried out in collaboration with IBt and will be continued with a study of its visibility in different tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abboud, F.; Scalliet, P.; Vynckier, S.
Permanent implantation of {sup 125}I (iodine) or {sup 103}Pd (palladium) sources is a popular treatment option in the management of early stage prostate cancer. New sources are being developed, some of which are being marketed for different clinical applications. A new technique of adjuvant stereotactic permanent seed breast implant, similar to that used in the treatment of prostate cancer, has been proposed by [N. Jansen et al., Int. J. Radiat. Oncol. Biol. Phys. 67, 1052-1058 (2007)] with encouraging results. The presence of artifacts from the metallic seeds, however, can disturb follow-up imaging. The development of plastic seeds has reduced thesemore » artifacts. This paper presents a feasibility study of the advantages of palladium-103 seeds, encapsulated with a biocompatible polymer, for future clinical applications, and on the effect of the gold marker on the dosimetric characteristics of such seeds. Experimental palladium seeds, OptiSeed{sup exp}, were manufactured by International Brachytherapy (IBt), Seneffe, Belgium, from a biocompatible polymer, including the marker. Apart from the absence of a gold marker, the studied seed has an identical design to the OptiSeed{sup 103}[Phys. Med. Biol. 50, 1493-1504 (2005)]; [Appl. Radiat. Isot. 63, 311-321 (2005)]. Polymer encapsulation was preferred by IBt in order to reduce the quantity of radioactive material needed for a given dose rate and to reduce the anisotropy of the radiation field around the seed. In addition, this design is intended to decrease the interseed effects that can occur as a result of the marker and the encapsulation. Dosimetric measurements were performed using LiF thermoluminescent dosimeters (1 mm{sup 3}) in solid water phantoms (WT1). Measured data were compared to Monte Carlo simulated data in solid water using the MCNP code, version 4C. Updated cross sections [Med. Phys. 30, 701-711 (2003)] were used. As the measured and calculated data were in agreement, Monte Carlo calculations were then performed in liquid water to obtain relevant dosimetric data as required by TG-43U1 recommendations. Comparison of the results with previous studies of OptiSeed{sup 103}[Phys. Med. Biol. 50, 1493-1504 (2005)]; [Appl. Radiat. Isot. 63, 311-321 (2005)], and of InterSource{sup 103}[Appl. Radiat. Isot. 57, 805-811 (2002)] showed very good agreement for the dose rate constant and for the radial dose function. With respect to the anisotropy function, the relative dose (anisotropy value relative to 90 degree sign ) from the polymer seed at a distance of 3 cm was close to unity (105%) at 0 degree sign , whereas the relative values for the OptiSeed{sup 103} with a gold marker and the titanium-encapsulated InterSource{sup 103} seed decreased to 70% and 40%, respectively. The interseed effect from one seed was negligible and in the order of calculation uncertainty, making calculation of the dose rate distribution of the studied seeds, according to TG43U1 recommendations, more accurate and closer to reality. This feasibility study shows that due to the low energy of palladium-103, the negligible interseed effect and the reduced artifacts in postimplant medical imaging, this experimental plastic seed would be a good source for breast brachytherapy. This feasibility study was carried out in collaboration with IBt and will be continued with a study of its visibility in different tissues.« less
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy.
Wang, Jiazhou; Jin, Xiance; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Studenski, Matthew; Hu, Weigang
2015-02-01
To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient's anatomic and dosimetric parameters for esophageal cancer patients. Eighty esophagus patients in the authors' institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman's rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. It is feasible to use patients' anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Zhao, K; Peng, J
2014-06-15
Purpose: The purpose of this study is to study the feasibility of the dosimetric pareto front (PF) prediction based on patient anatomic and dosimetric parameters for esophagus cancer patients. Methods: Sixty esophagus patients in our institution were enrolled in this study. A total 2920 IMRT plans were created to generated PF for each patient. On average, each patient had 48 plans. The anatomic and dosimetric features were extracted from those plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose and PTV homogeneous index (PTVHI) were recorded for each plan. The principal component analysis (PCA) wasmore » used to extract overlap volume histogram (OVH) features between PTV and other critical organs. The full dataset was separated into two parts include the training dataset and the validation dataset. The prediction outcomes were the MHD and MLD for the current study. The spearman rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The PF was fit by the the stepwise multiple regression method. The cross-validation method was used to evaluation the model. Results: The mean prediction error of the MHD was 465 cGy with 100 repetitions. The most correlated factors were the first principal components of the OVH between heart and PTV, and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 195 cGy. The most correlated factors were the first principal components of the OVH between lung and PTV, and the overlap between lung and PTV in Z-axis. Conclusion: It is feasible to use patients anatomic and dosimetric features to generate a predicted PF. Additional samples and further studies were required to get a better prediction model.« less
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan
2015-02-15
Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlapmore » volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.« less
Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application
Khorshidi, Abdollah; Ahmadinejad, Marjan; Hamed Hosseini, S.
2015-01-01
Abstract This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue. PMID:26181543
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiatt, JR; Rivard, MJ
2014-06-01
Purpose: The model S700 Axxent electronic brachytherapy source by Xoft was characterized in 2006 by Rivard et al. The source design was modified in 2006 to include a plastic centering insert at the source tip to more accurately position the anode. The objectives of the current study were to establish an accurate Monte Carlo source model for simulation purposes, to dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and to determine dose differences between the source with and without the centering insert. Methods: Design information from dissected sources and vendor-supplied CAD drawings were used to devisemore » the source model for radiation transport simulations of dose distributions in a water phantom. Collision kerma was estimated as a function of radial distance, r, and polar angle, θ, for determination of reference TG-43 dosimetry parameters. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.03% at r=1 cm and 0.08% at r=10 cm. Results: The dose rate distribution the transverse plane did not change beyond 2% between the 2006 model and the current study. While differences exceeding 15% were observed near the source distal tip, these diminished to within 2% for r>1.5 cm. Differences exceeding a factor of two were observed near θ=150° and in contact with the source, but diminished to within 20% at r=10 cm. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% over a third of the available solid angle external from the source. For clinical applications using balloons or applicators with tissue located within 5 cm from the source, dose differences exceeding 2% were observed only for θ>110°. This study carefully examined the current source geometry and presents a modern reference TG-43 dosimetry dataset for the model S700 source.« less
Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion
2015-09-01
Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm(3) and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications.
Winkler, Peter; Zurl, Brigitte; Guss, Helmuth; Kindl, Peter; Stuecklschweiger, Georg
2005-02-21
A system for dosimetric verification of intensity-modulated radiotherapy (IMRT) treatment plans using absolute calibrated radiographic films is presented. At our institution this verification procedure is performed for all IMRT treatment plans prior to patient irradiation. Therefore clinical treatment plans are transferred to a phantom and recalculated. Composite treatment plans are irradiated to a single film. Film density to absolute dose conversion is performed automatically based on a single calibration film. A software application encompassing film calibration, 2D registration of measurement and calculated distributions, image fusion, and a number of visual and quantitative evaluation utilities was developed. The main topic of this paper is a performance analysis for this quality assurance procedure, with regard to the specification of tolerance levels for quantitative evaluations. Spatial and dosimetric precision and accuracy were determined for the entire procedure, comprising all possible sources of error. The overall dosimetric and spatial measurement uncertainties obtained thereby were 1.9% and 0.8 mm respectively. Based on these results, we specified 5% dose difference and 3 mm distance-to-agreement as our tolerance levels for patient-specific quality assurance for IMRT treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xin; Ou, Xiaomin; Xu, Tingting
Purpose: To determine dosimetric risk factors for the occurrence of temporal lobe necrosis (TLN) among nasopharyngeal carcinoma (NPC) patients treated with intensity modulated radiation therapy (IMRT) and to investigate the impact of dose-volume histogram (DVH) parameters on the volume of TLN lesions (V-N). Methods and Materials: Forty-three NPC patients who had developed TLN following IMRT and 43 control subjects free of TLN were retrospectively assessed. DVH parameters included maximum dose (Dmax), minimum dose (Dmin), mean dose (Dmean), absolute volumes receiving specific dose (Vds) from 20 to 76 Gy (V20-V76), and doses covering certain volumes (Dvs) from 0.25 to 6.0 cm{sup 3} (D0.25-D6.0).more » V-Ns were quantified with axial magnetic resonance images. Results: DVH parameters were ubiquitously higher in temporal lobes with necrosis than in healthy temporal lobes. Increased Vds and Dvs were significantly associated with higher risk of TLN occurrence (P<.05). In particular, Vds at a dose of ≥70 Gy were found with the highest odds ratios. A common increasing trend was detected between V-N and DVH parameters through trend tests (P for trend of <.05). Linear regression analysis showed that V45 had the strongest predictive power for V-N (adjusted R{sup 2} = 0.305, P<.0001). V45 of <15.1 cm{sup 3} was relatively safe as the dose constraint for preventing large TLN lesions with V-N of >5 cm{sup 3}. Conclusions: Dosimetric parameters are significantly associated with TLN occurrence and the extent of temporal lobe injury. To better manage TLN, it would be important to avoid both focal high dose and moderate dose delivered to a large area in TLs.« less
NASA Astrophysics Data System (ADS)
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-07
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Flampouri, S.; Yeung, D.
2014-09-15
Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations tomore » the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of RM-step thickness is required for accurate parameterization of the effective SAD. The GBD energy spread is given by a linear function of the exponential of the beam energy. Except for a few outliers, the measured parameters match the GBD within the specified tolerances in all of the four rooms investigated. For a SOBP field with a range of 15 g/cm{sup 2} and an air gap of 25 cm, the maximum difference in the 80%–20% lateral penumbra between the GBD-commissioned treatment-planning system and measurements in any of the four rooms is 0.5 mm. Conclusions: The beam model parameters of the double-scattering system can be parameterized with a limited set of equations and parameters. This GBD closely matches the measured dosimetric properties in four different rooms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Akira; Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp; Matsuo, Yukinori
2012-10-01
Purpose: To identify the dosimetric parameters associated with gastrointestinal (GI) toxicity in patients with locally advanced pancreatic cancer (LAPC) treated with gemcitabine-based chemoradiotherapy. Methods and Materials: The data from 40 patients were analyzed retrospectively. Chemoradiotherapy consisted of conventional fractionated three-dimensional radiotherapy and weekly gemcitabine. Treatment-related acute GI toxicity and upper GI bleeding (UGB) were graded according to the Common Toxicity Criteria Adverse Events, version 4.0. The dosimetric parameters (mean dose, maximal absolute dose which covers 2 cm{sup 3} of the organ, and absolute volume receiving 10-50 Gy [V{sub 10-50}]) of the stomach, duodenum, small intestine, and a composite structure ofmore » the stomach and duodenum (StoDuo) were obtained. The planning target volume was also obtained. Univariate analyses were performed to identify the predictive factors for the risk of grade 2 or greater acute GI toxicity and grade 3 or greater UGB, respectively. Results: The median follow-up period was 15.7 months (range, 4-37). The actual incidence of acute GI toxicity was 33%. The estimated incidence of UGB at 1 year was 20%. Regarding acute GI toxicity, a V{sub 50} of {>=}16 cm{sup 3} of the stomach was the best predictor, and the actual incidence in patients with V{sub 50} <16 cm{sup 3} of the stomach vs. those with V{sub 50} of {>=}16 cm{sup 3} was 9% vs. 61%, respectively (p = 0.001). Regarding UGB, V{sub 50} of {>=}33 cm{sup 3} of the StoDuo was the best predictor, and the estimated incidence at 1 year in patients with V{sub 50} <33 cm{sup 3} of the StoDuo vs. those with V{sub 50} {>=}33 cm{sup 3} was 0% vs. 44%, respectively (p = 0.002). The dosimetric parameters correlated highly with one another. Conclusion: The irradiated absolute volume of the stomach and duodenum are important for the risk of acute GI toxicity and UGB. These results could be helpful in escalating the radiation doses using novel techniques, such as intensity-modulated radiotherapy, for the treatment of pancreatic cancer.« less
Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.
Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno
2015-04-07
We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.
Barry, Aisling; Rock, Kathy; Sole, Claudio; Rahman, Mohammad; Pintilie, Melania; Lee, Grace; Fyles, Anthony; Koch, C Anne
The purpose of this study was to evaluate the impact of the active breathing control (ABC) technique on IMN coverage and organs at risk in patients planned for postmastectomy radiation therapy (PMRT), with the inclusion of the internal mammary lymph nodes (IMNs). The effect of body mass index (BMI) on recorded dosimetric parameters was examined in the same patient cohort. Fifty left-sided postmastectomy patients with breast cancer who underwent free-breathing (FB) and ABC-Elekta CT simulation scans were selected at random from an institutional breast cancer database between 2008 and 2014. The ABC plans were directly compared with FB plans from the same patient. The IMN planning target volume coverage met dosimetric criteria for coverage of receiving more than 90% of the prescribed dose (V90) >90%, although it decreased with ABC compared with FB (94.5% vs 98%, P < .001). Overall, ABC significantly reduced doses to all measured heart and left anterior descending coronary artery parameters, ipsilateral lung V20, and mean lung dose compared with FB (P < .001). There was no difference seen between the ABC and FB plans with respect to the dose to contralateral lung or contralateral breast. There was no correlation identified between BMI and any of the dosimetric parameters recorded from the ABC and FB plans. Our results suggest that ABC reduces IMN coverage in left-sided breast cancer patients planned for PMRT; however, dosimetric criteria for IMN coverage were still met, suggesting that this is not likely to be clinically significant. ABC led to significant sparing of organs at risk compared with FB conditions and was not affected by BMI. Collectively, the results support the use of ABC for breast cancer patients undergoing left-sided PMRT requiring regional nodal irradiation that includes the IMNs. Further prospective clinical studies are required to determine the impact of these results on late normal tissue effects. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung
2013-01-15
Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared withmore » those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.« less
Chen, Ting; Kim, Leonard H.; Nelson, Carl; Gabel, Molly; Narra, Venkat; Haffty, Bruce; Yue, Ning J.
2013-01-01
Purpose To investigate the dosimetric difference due to the different point A definitions in cervical cancer low-dose-rate (LDR) intracavitary brachytherapy. Material and methods Twenty CT-based LDR brachytherapy plans of 11 cervical patients were retrospectively reviewed. Two plans with point As following the modified Manchester system which defines point A being 2 cm superior to the cervical os along the tandem and 2 cm lateral (Aos), and the American Brachytherapy Society (ABS) guideline definition in which the point A is 2 cm superior to the vaginal fornices instead of os (Aovoid) were generated. Using the same source strength, two plans prescribed the same dose to Aos and Aovoid. Dosimetric differences between plans including point A dose rate, treatment volume encompassed by the prescription isodose line (TV), and dose rate of 2 cc of the rectum and bladder to the prescription dose were measured. Results On average Aovoid was 8.9 mm superior to Aos along the tandem direction with a standard deviation of 5.4 mm. With the same source strength and arrangement, Aos dose rate was 19% higher than Aovoid dose rate. The average TV(Aovoid) was 118.0 cc, which was 30% more than the average TV(Aos) of 93.0 cc. D2cc/D(Aprescribe) increased from 51% to 60% for rectum, and increased from 89% and 106% for bladder, if the prescription point changed from Aos to Aovoid. Conclusions Different point A definitions lead to significant dose differences. Careful consideration should be given when changing practice from one point A definition to another, to ensure dosimetric and clinical equivalency from the previous clinical experiences. PMID:24474971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zhe; Bongiorni, Paul; Nath, Ravinder
2010-07-15
Purpose: Since its introduction in 2004, the model CS-1 Rev.1 {sup 131}Cs source has been used in many radiation therapy clinics for prostate brachytherapy. In 2006, this source model underwent a Rev.2 production revision. The aim of this work was to investigate the dosimetric influences of the Rev.2 production revision using high-resolution photon spectrometry. Methods: Three CS-1 Rev.1 and three CS-1 Rev.2 {sup 131}Cs sources were used in this study. The relative photon energy spectrum emitted by each source in the transverse bisector of the source was measured using a high-resolution germanium detector designed for low-energy photon spectrometry. Based onmore » the measured photon energy spectrum and the radioactivity distribution in the source, the dose-rate constant ({Lambda}) of each source was determined. The effects of the Rev.2 production revision were quantified by comparing the emitted photon energy spectra and the {Lambda} values determined for the sources manufactured before and after the production revision. Results: The relative photon energy spectrum originating from the principal emissions of {sup 131}Cs was found to be nearly identical before and after the Rev.2 revision. However, the portion of the spectrum originating from the production of fluorescent x rays in niobium, a trace element present in the source construction materials, was found to differ significantly between the Rev.1 and Rev.2 sources. The peak intensity of the Nb K{sub {alpha}} and Nb K{sub {beta}} fluorescent x rays from the Rev.2 source was approximately 35% of that from the Rev.1 source. Consequently, the nominal {Lambda} value of the Rev.2 source was found to be greater than that determined for the Rev.1 source by approximately 0.7%{+-}0.5%. Conclusions: A significant reduction (65%) in relative niobium fluorescent x-ray yield was observed in the Rev.2 {sup 131}Cs sources. The impact of this reduction on the dose-rate constant was found to be small, with a relative difference of less than 1%. This study demonstrates that photon spectrometry can be used as a sensitive and convenient tool for monitoring and for quantifying the dosimetric effects of brachytherapy source-production revisions. Because production revision can change both the geometry and the atomic composition of brachytherapy sources, its dosimetric impact should be carefully monitored and evaluated for each production revision.« less
Zhang, Lian; Wang, Zhi; Shi, Chengyu; Long, Tengfei; Xu, X George
2018-05-30
Deformable image registration (DIR) is the key process for contour propagation and dose accumulation in adaptive radiation therapy (ART). However, currently, ART suffers from a lack of understanding of "robustness" of the process involving the image contour based on DIR and subsequent dose variations caused by algorithm itself and the presetting parameters. The purpose of this research is to evaluate the DIR caused variations for contour propagation and dose accumulation during ART using the RayStation treatment planning system. Ten head and neck cancer patients were selected for retrospective studies. Contours were performed by a single radiation oncologist and new treatment plans were generated on the weekly CT scans for all patients. For each DIR process, four deformation vector fields (DVFs) were generated to propagate contours and accumulate weekly dose by the following algorithms: (a) ANACONDA with simple presetting parameters, (b) ANACONDA with detailed presetting parameters, (c) MORFEUS with simple presetting parameters, and (d) MORFEUS with detailed presetting parameters. The geometric evaluation considered DICE coefficient and Hausdorff distance. The dosimetric evaluation included D 95 , D max , D mean , D min , and Homogeneity Index. For geometric evaluation, the DICE coefficient variations of the GTV were found to be 0.78 ± 0.11, 0.96 ± 0.02, 0.64 ± 0.15, and 0.91 ± 0.03 for simple ANACONDA, detailed ANACONDA, simple MORFEUS, and detailed MORFEUS, respectively. For dosimetric evaluation, the corresponding Homogeneity Index variations were found to be 0.137 ± 0.115, 0.006 ± 0.032, 0.197 ± 0.096, and 0.006 ± 0.033, respectively. The coherent geometric and dosimetric variations also consisted in large organs and small organs. Overall, the results demonstrated that the contour propagation and dose accumulation in clinical ART were influenced by the DIR algorithm, and to a greater extent by the presetting parameters. A quality assurance procedure should be established for the proper use of a commercial DIR for adaptive radiation therapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Akhtari, Mani; Pino, Ramiro; Scarboro, Sarah B; Bass, Barbara L; Miltenburg, Darlene M; Butler, E Brian; Teh, Bin S
2015-12-01
Accelerated partial breast irradiation (APBI) is an accepted treatment option in breast-conserving therapy for early stage breast cancer. However, data regarding outcomes of patients treated with multi-lumen catheter systems who have existing breast implants is limited. The purpose of this study was to report treatment parameters, outcomes, and possible dosimetric correlation with cosmetic outcome for this population of patients at our institution. We report the treatment and outcome of seven consecutive patients with existing breast implants and early stage breast cancer who were treated between 2009 and 2013 using APBI following lumpectomy. All patients were treated twice per day for five days to a total dose of 34 Gy using a high-dose-rate (192)Ir source. Cosmetic outcomes were evaluated using the Harvard breast cosmesis scale, and late toxicities were reported using the Radiation Therapy Oncology Group (RTOG) late radiation morbidity schema. After a mean follow-up of 32 months, all patients have remained cancer free. Six out of seven patients had an excellent or good cosmetic outcome. There were no grade 3 or 4 late toxicities. The average total breast implant volume was 279.3 cc, received an average mean dose of 12.1 Gy, and a maximum dose of 234.1 Gy. The average percentage of breast implant volume receiving 50%, 75%, 100%, 150%, and 200% of the prescribed dose was 15.6%, 7.03%, 4.6%, 1.58%, and 0.46%, respectively. Absolute volume of breast implants receiving more than 50% of prescribed dose correlated with worse cosmetic outcomes. Accelerated partial breast irradiation using a multi-lumen applicator in patients with existing breast implants can safely be performed with promising early clinical results. The presence of the implant did not compromise the ability to achieve dosimetric criteria; however, dose to the implant and the irradiated implant volume may be related with worse cosmetic outcomes.
Akhtari, Mani; Pino, Ramiro; Scarboro, Sarah B.; Bass, Barbara L.; Miltenburg, Darlene M.; Butler, E. Brian
2015-01-01
Purpose Accelerated partial breast irradiation (APBI) is an accepted treatment option in breast-conserving therapy for early stage breast cancer. However, data regarding outcomes of patients treated with multi-lumen catheter systems who have existing breast implants is limited. The purpose of this study was to report treatment parameters, outcomes, and possible dosimetric correlation with cosmetic outcome for this population of patients at our institution. Material and methods We report the treatment and outcome of seven consecutive patients with existing breast implants and early stage breast cancer who were treated between 2009 and 2013 using APBI following lumpectomy. All patients were treated twice per day for five days to a total dose of 34 Gy using a high-dose-rate 192Ir source. Cosmetic outcomes were evaluated using the Harvard breast cosmesis scale, and late toxicities were reported using the Radiation Therapy Oncology Group (RTOG) late radiation morbidity schema. Results After a mean follow-up of 32 months, all patients have remained cancer free. Six out of seven patients had an excellent or good cosmetic outcome. There were no grade 3 or 4 late toxicities. The average total breast implant volume was 279.3 cc, received an average mean dose of 12.1 Gy, and a maximum dose of 234.1 Gy. The average percentage of breast implant volume receiving 50%, 75%, 100%, 150%, and 200% of the prescribed dose was 15.6%, 7.03%, 4.6%, 1.58%, and 0.46%, respectively. Absolute volume of breast implants receiving more than 50% of prescribed dose correlated with worse cosmetic outcomes. Conclusions Accelerated partial breast irradiation using a multi-lumen applicator in patients with existing breast implants can safely be performed with promising early clinical results. The presence of the implant did not compromise the ability to achieve dosimetric criteria; however, dose to the implant and the irradiated implant volume may be related with worse cosmetic outcomes. PMID:26816499
Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion
2015-01-01
Background Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm3 and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Purpose, Materials and Methods Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. Results For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Conclusion Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications. PMID:27171681
Jamema, S V; Upreti, R R; Sharma, S; Deshpande, D D
2008-09-01
The purpose of this work is to report the results of commissioning and to establish a quality assurance (QA) program for commercial 3D treatment planning system (TPS) based on IAEA Technical Report Series 430. Eclipse v 7.3.10, (Varian Medical Systems, Palo Alto, CA, U.S.A.) TPS was commissioned for a Clinac 6EX (Varian Medical Systems, Palo Alto, CA, USA) linear accelerator. CT images of a phantom with various known in-homogeneities were acquired. The images were transferred to TPS and tested for various parameters related to patient data acquisition, anatomical modeling, plan evaluation and dose calculation. Dosimetric parameters including open, asymmetric and wedged shaped fields, oblique incidence, buildup region behavior and SSD dependence were evaluated. Representative clinical cases were tested for MU calculation and point doses. The maximum variation between the measured and the known CT numbers was 20 +/- 11.7 HU (1 SD). The results of all non-dosimetric tests were found within tolerance, however expansion at the sharp corners was found distorted. The accuracy of the DVH calculations depends on the grid size. TPS calculations of all the dosimetric parameters were in good agreement with the measured values, however for asymmetric open and wedged fields, few points were found out of tolerance. Smaller grid size calculation showed better agreement of dose calculation in the build-up region. Independent tests for MU calculation showed a variation within +/-2% (relative to planning system), meanwhile variation of 3.0% was observed when the central axis was blocked. The test results were in agreement with the tolerance specified by IAEA TRS 430. A subset of the commissioning tests has been identified as a baseline data for an ongoing QA program.
Sachdev, Sean; Refaat, Tamer; Bacchus, Ian D; Sathiaseelan, Vythialinga; Mittal, Bharat B
2017-08-01
Radiation-induced hypothyroidism affects a significant number of patients with head-and-neck squamous cell cancer (HNSCC). We examined detailed dosimetric and clinical parameters to better determine the risk of hypothyroidism in euthyroid HNSCC patients treated with intensity-modulated radiation therapy (IMRT). From 2006 to 2010, 75 clinically euthyroid patients with HNSCC were treated with sequential IMRT. The cohort included 59 men and 16 females with a median age of 55 years (range, 30 to 89 y) who were treated to a median dose of 70 Gy (range, 60 to 75 Gy) with concurrent chemotherapy in nearly all (95%) cases. Detailed thyroid dosimetric parameters including maximum dose, mean dose, and other parameters (eg, V50-percent volume receiving at least 50 Gy) were obtained. Freedom from hypothyroidism was evaluated using the Kaplan-Meier method. Univariate and multivariate analyses were conducted using Cox regression. After a median follow-up period of 50 months, 25 patients (33%) became hypothyroid. On univariate analysis, thyroid V50 was highly correlated with developing hypothyroidism (P=0.035). Other dosimetric paramaters including mean thyroid dose (P=0.11) and maximum thyroid dose (P=0.39) did not reach statistical significance. On multivariate analysis incorporating patient, tumor, and treatment variables, V50 remained highly statistically significant (P=0.037). Regardless of other factors, for V50>60%, the odds ratio of developing hypothyroidism was 6.76 (P=0.002). In HNSCC patients treated with IMRT, thyroid V50 highly predicts the risk of developing hypothyroidism. V50>60% puts patients at a significantly higher risk of becoming hypothyroid. This can be a useful dose constraint to consider during treatment planning.
Sjölin, Maria; Edmund, Jens Morgenthaler
2016-07-01
Dynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect. 16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated. The change in PTV and organs at risk DVH parameters were 0.4-4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3mm (per beam and composite plan) and 3%G/2mm (composite plan) for the diode array phantom and 2%G/2mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6. A DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3mm per beam gamma setting. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yock, A; Manger, R; Einck, J
2015-06-15
Purpose: Increasingly, brass mesh bolus is used to insure dosimetric coverage of the skin for patients treated post-mastectomy for breast cancer. Contribution of photoelectrons from interactions between the bolus and the primary beam increases dose superficially without affecting dose at greater depths. We present our experience using brass mesh bolus – including patients for whom the bolus was dosimetrically inadequate – along with analysis of relevant patient-specific parameters. Methods: Optically-stimulated luminescent dosimeters (OSLDs) were used to determine the effect of the bolus for 15 patients. They were positioned beneath the bolus within the tangent fields at three positions: 1.5–3cm insidemore » the medial and lateral field edges, and midway between the two. All OSLDs were midfield in the cranial-caudal direction. The measurements were compared with patient-specific parameters including separation, chest wall/breast tissue thickness, beam angle incidence, and planned surface dose. Results: The average OSLD measurement at the medial field edge, midfield, and lateral field edge position was 86.8%, 101.8%, and 92.8% of the prescription dose, respectively. A measurement for one patient was low enough (77.0%) to warrant a switch to an alternative type of bolus. Anatomic parameters were analyzed to investigate the low dose in this case, not observed in the planning system. The patient was observed to have a thin chest wall and very oblique beam angles. A second patient was also switched to an alternative type of bolus due to her being high risk and treated with an electron patch that extended onto the breast. Conclusion: Brass mesh bolus increases dose superficially while leaving dose at greater depths unaffected. However, our results suggest that this effect may be insufficient in patients with a thin chest wall or very oblique beam angles. More data and analysis is necessary to proactively identify patients for whom brass mesh bolus is effective.« less
NASA Astrophysics Data System (ADS)
Wang, Ken Kang-Hsin; Busch, Theresa M.; Finlay, Jarod C.; Zhu, Timothy C.
2009-02-01
Singlet oxygen (1O2) is generally believed to be the major cytotoxic agent during photodynamic therapy (PDT), and the reaction between 1O2 and tumor cells define the treatment efficacy. From a complete set of the macroscopic kinetic equations which describe the photochemical processes of PDT, we can express the reacted 1O2 concentration, [1O2]rx, in a form related to time integration of the product of 1O2 quantum yield and the PDT dose rate. The production of [1O2]rx involves physiological and photophysical parameters which need to be determined explicitly for the photosensitizer of interest. Once these parameters are determined, we expect the computed [1O2]rx to be an explicit dosimetric indicator for clinical PDT. Incorporating the diffusion equation governing the light transport in turbid medium, the spatially and temporally-resolved [1O2]rx described by the macroscopic kinetic equations can be numerically calculated. A sudden drop of the calculated [1O2]rx along with the distance following the decrease of light fluence rate is observed. This suggests that a possible correlation between [1O2]rx and necrosis boundary may occur in the tumor subject to PDT irradiation. In this study, we have theoretically examined the sensitivity of the physiological parameter from two clinical related conditions: (1) collimated light source on semi-infinite turbid medium and (2) linear light source in turbid medium. In order to accurately determine the parameter in a clinical relevant environment, the results of the computed [1O2]rx are expected to be used to fit the experimentally-measured necrosis data obtained from an in vivo animal model.
NASA Astrophysics Data System (ADS)
Raffi, Julie A.
Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to illustrate the limitations of TG-43 dosimetry for intracavitary APBI. TG-43 dose calculations overestimate the dose for regions approaching the lung and breast surface and underestimate the dose for regions in and beyond less-attenuating media such as lung tissue, and for lower energies, breast tissue as well.
NASA Astrophysics Data System (ADS)
Oh, Dongryul; Hong, Chae-Seon; Ju, Sang Gyu; Kim, Minkyu; Koo, Bum Yong; Choi, Sungback; Park, Hee Chul; Choi, Doo Ho; Pyo, Hongryull
2017-01-01
A new technique for manufacturing a patient-specific dosimetric phantom using three-dimensional printing (PSDP_3DP) was developed, and its geometrical and dosimetric accuracy was analyzed. External body contours and structures of the spine and metallic fixation screws (MFS) were delineated from CT images of a patient with MFS who underwent stereotactic body radiation therapy for spine metastasis. Contours were converted into a STereoLithography file format using in-house program. A hollow, four-section PSDP was designed and manufactured using three types of 3DP to allow filling with a muscle-equivalent liquid and insertion of dosimeters. To evaluate the geometrical accuracy of PSDP_3DP, CT images were obtained and compared with patient CT data for volume, mean density, and Dice similarity coefficient for contours. The dose distribution in the PSDP_3DP was calculated by applying the same beam parameters as for the patient, and the dosimetric characteristics of the PSDP_3DP were compared with the patient plan. The registered CT of the PSDP_3DP was well matched with that of the real patient CT in the axial, coronal, and sagittal planes. The physical accuracy and dosimetric characteristics of PSDP_3DP were comparable to those of a real patient. The ability to manufacture a PSDP representing an extreme patient condition was demonstrated.
A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA
NASA Astrophysics Data System (ADS)
Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia
2018-06-01
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA procedure for plan-specific pre-treatment dosimetric verification.
Automation of a Linear Accelerator Dosimetric Quality Assurance Program
NASA Astrophysics Data System (ADS)
Lebron Gonzalez, Sharon H.
According to the American Society of Radiation Oncology, two-thirds of all cancer patients will receive radiation therapy during their illness with the majority of the treatments been delivered by a linear accelerator (linac). Therefore, quality assurance (QA) procedures must be enforced in order to deliver treatments with a machine in proper conditions. The overall goal of this project is to automate the linac's dosimetric QA procedures by analyzing and accomplishing various tasks. First, the photon beam dosimetry (i.e. total scatter correction factor, infinite percentage depth dose (PDD) and profiles) were parameterized. Parameterization consists of defining the parameters necessary for the specification of a dosimetric quantity model creating a data set that is portable and easy to implement for different applications including: beam modeling data input into a treatment planning system (TPS), comparing measured and TPS modelled data, the QA of a linac's beam characteristics, and the establishment of a standard data set for comparison with other data, etcetera. Second, this parameterization model was used to develop a universal method to determine the radiation field size of flattened (FF), flattening-filter-free (FFF) and wedge beams which we termed the parameterized gradient method (PGM). Third, the parameterized model was also used to develop a profile-based method for assessing the beam quality of photon FF and FFF beams using an ionization chamber array. The PDD and PDD change was also predicted from the measured profile. Lastly, methods were created to automate the multileaf collimator (MLC) calibration and QA procedures as well as the acquisition of the parameters included in monthly and annual photon dosimetric QA. A two field technique was used for the calculation of the MLC leaf relative offsets using an electronic portal imaging device (EPID). A step-and-shoot technique was used to accurately acquire the radiation field size, flatness, symmetry, output and beam quality specifiers in a single delivery to an ionization chamber array for FF and FFF beams.
The use of megavoltage CT (MVCT) images for dose recomputations
NASA Astrophysics Data System (ADS)
Langen, K. M.; Meeks, S. L.; Poole, D. O.; Wagner, T. H.; Willoughby, T. R.; Kupelian, P. A.; Ruchala, K. J.; Haimerl, J.; Olivera, G. H.
2005-09-01
Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation.
Dosimetric considerations in dental applications
NASA Technical Reports Server (NTRS)
Goble, J. C.
1978-01-01
The integration of the Lixiscope into dental procedures was studied and compared with conventional dental radiographic techniques. It was found that through the use of intraoral sealed sources in conjunction with microchannel plate technology, the Lixiscope gives increased diagnostic information with decreased radiation dosage.
Biology Division Habrobracon Experiment P-1079
NASA Technical Reports Server (NTRS)
1968-01-01
Dosimetric analyses accumulated during the five-year period of the biosatellite program are summarized. These data are from a unique source placed in a unique optical bench, the biosatellite. Thus the multitudinous array of dosimeters was mandatory to give confidence in the experiment.
Photon small-field measurements with a CMOS active pixel sensor.
Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G
2015-06-07
In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520 × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5 × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Xiong; Liu, H. Helen; Tucker, Susan L.
Purpose: To identify clinical and dosimetric factors influencing the risk of pericardial effusion (PCE) in patients with inoperable esophageal cancer treated with definitive concurrent chemotherapy and radiation therapy (RT). Methods and Materials: Data for 101 patients with inoperable esophageal cancer treated with concurrent chemotherapy and RT from 2000 to 2003 at our institution were analyzed. The PCE was confirmed from follow-up chest computed tomography scans and radiologic reports, with freedom from PCE computed from the end of RT. Log-rank tests were used to identify clinical and dosimetric factors influencing freedom from PCE. Dosimetric factors were calculated from the dose-volume histogrammore » for the whole heart and pericardium. Results: The crude rate of PCE was 27.7% (28 of 101). Median time to onset of PCE was 5.3 months (range, 1.0-16.7 months) after RT. None of the clinical factors investigated was found to significantly influence the risk of PCE. In univariate analysis, a wide range of dose-volume histogram parameters of the pericardium and heart were associated with risk of PCE, including mean dose to the pericardium, volume of pericardium receiving a dose greater than 3 Gy (V3) to greater than 50 Gy (V50), and heart volume treated to greater than 32-38 Gy. Multivariate analysis selected V30 as the only parameter significantly associated with risk of PCE. Conclusions: High-dose radiation to the pericardium may strongly increase the risk of PCE. Such a risk may be reduced by minimizing the dose-volume of the irradiated pericardium and heart.« less
Zhao, Yaqin; Chen, Lu; Zhang, Shu; Wu, Qiang; Jiang, Xiaoqin; Zhu, Hong; Wang, Jin; Li, Zhiping; Xu, Yong; Zhang, Ying Jie; Bai, Sen; Xu, Feng
2015-01-01
Radiation pneumonitis (RP) is a common side reaction in radiotherapy for esophageal cancer. There are few reports about RP in esophageal cancer patients receiving postoperative intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). This study aims to analyze clinical or dosimetric factors associated with RP, and provides data for radiotherapy planning. We reviewed 68 postoperative esophageal cancer patients who were treated with radiotherapy at the West China Hospital from October 2010 to November 2012 to identify any correlation between the clinical or dosimetric parameters and acute radiation pneumonitis (ARP) or severe acute radiation pneumonitis (SARP) by t-test, chi-square test, and logistic regression analysis. Of the 68 patients, 33 patients (48.5%) developed ARP, 13 of which (19.1%) developed SARP. Of these 33 patients, 8 (11.8%), 12 (17.6%), 11 (16.2%), and 2 (2.9%) patients were grade 1, 2, 3, and 4 ARP, respectively. Univariate analysis showed that lung infection during radiotherapy, use of VMAT, mean lung dose (MLD), and dosimetric parameters (e.g. V20, V30) are significantly correlated with RP. Multivariate analysis found that lung infection during radiotherapy, MLD ≥ 12 Gy, and V30 ≥ 13% are significantly correlated with an increased risk of RP. Lung infection during radiotherapy and low radiation dose volume distribution were predictive factors associated with RP and should be accounted for during radiation planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, D; Kaprealian, T; Low, D
Purpose: To report cranio-spinal irradiation (CSI) planning experience, compare dosimetric quality and delivery efficiency with Tomotherapy from different institutions, and to investigate effect of planning parameters on plan quality and treatment time. Methods: Clinical helical tomotherapy IMRT plans for thirty-nine CSI cases from three academic institutions were retrospectively evaluated. The planning parameters: field width (FW), pitch, modulation factor (MF), and achieved dosimetric endpoints were cross-compared. A fraction-dose-delivery-timing index (FDTI), defined as treatment time per fraction dose per PTV length, was utilized to evaluate plan delivery efficiency. A lower FDTI indicates higher delivery efficiency. We studied the correlation between planning quality,more » treatment time and planning parameters by grouping the plans under specific planning parameters. Additionally, we created new plans using 5cm jaw for a subset of plans that used 2.5cm jaw to exam if treatment efficiency can be improved without sacrificing plan quality. Results: There were significant dosimetric differences for organ at risks (OARs) among different institutions (A,B,C). Using the lowest average MF (1.9±0.4) and 5cm field width, C had the highest lung, heart, kidney, liver mean doses and maximum doses for lens. Using the same field width of 5cm, but higher MF (2.6±0.6), B had lower doses to the OARs in the thorax and abdomen area. Most of A’s plans were planned with 2.5cm jaw, the plans yielded better PTV coverage, higher OAR doses and slightly shorter FDTI compared to institution B. The replanned 5cm jaw plans achieved comparable PTV coverage and OARs sparing, while saving up to 44.7% treatment time. Conclusion: Plan quality and delivery efficiency could vary significantly in CSI planning on Tomotheapy due to choice of different planning parameters. CSI plans using a 5cm jaw, with proper selection of pitch and MF, can achieve comparable/ better plan quality with shorter delivery time compared to 2.5cm jaw plans.« less
Likhtarov, I A; Kovgan, L M; Masiuk, S V; Ivanova, O M; Chepurny, M I; Boyko, Z N; Gerasymenko, V B
2015-12-01
The purpose of the review is to demonstrate the results of dosimetric passportization (performed in 1991-2014) for the settlements of Ukraine which suffered from radioactive contamination caused by the Chornobyl accident. The dosimetric passportization played a key role in the National program on the liquidation of aftermath of the Chornobyl accident directed on recovery through all stages of the current radiation situation control and decision support touching upon various types of interventions and social benefits to the population of radioactively contaminated areas. The works being performed under dosimetric passportization did not have analogues among the researches which took place after other large-scale industrial and municipal accidents as well their scales as the duration of both radio-ecological and dosimetric monitoring.The new methodological approaches to the assessment of so-called passport doses of a settlement as well as to the definition of the concept of annual dose being the dose used to make decisions for providing both direct and indirect emergency countermeasures for the settlements of Ukraine became pioneering ones. During all the post-accident period there were issued sixteen collections of general dosimetric passportization data which accumulate the results of hundreds of thousands spectrometric, radiochemical and radiation levels measurements and WBC measurements carried out in 1991-2014.The annual passport doses calculated on the basis of these measurements (including their components) are unique information that quantifies the level and time dynamics of the radiation situation for each of the 2161 settlements of 74 raions in 12 oblasts during all the post-accident period. Thanks to the works of dosimetric passportization of the settlements of Ukraine there were created databases to be unique in their structure and content with quantitative characteristics of the territorial and temporal distribution, the dynamics of changes of a number of important radiological parameters, namely over 500 thousands of measurements of concentration of 137Cs and 90Sr in the local foodstuff (milk and potatoes); there are more than 1.3 million of measurements of the cesium content in the body of residents of the settlements of Ukraine; there are 100 thousands of dose estimates (both internal and external ones were measured separately) of inhabitants living on the radioactively contaminated areas. The results of the dosimetric passportization served as one of the main exposure criteria for generalized aftermath of the Chornobyl accident represented in the National reports for the first 15, 20 and 25 years after the accident. I. A. Likhtarov, L. M. Kovgan, S. V. Masiuk, O. M. Ivanova, M. I. Chepurny.
Dosimetric characterization of a new directional low-dose rate brachytherapy source.
Aima, Manik; DeWerd, Larry A; Mitch, Michael G; Hammer, Clifford G; Culberson, Wesley S
2018-05-24
CivaTech Oncology Inc. (Durham, NC) has developed a novel low-dose rate (LDR) brachytherapy source called the CivaSheet. TM The source is a planar array of discrete elements ("CivaDots") which are directional in nature. The CivaDot geometry and design are considerably different than conventional LDR cylindrically symmetric sources. Thus, a thorough investigation is required to ascertain the dosimetric characteristics of the source. This work investigates the repeatability and reproducibility of a primary source strength standard for the CivaDot and characterizes the CivaDot dose distribution by performing in-phantom measurements and Monte Carlo (MC) simulations. Existing dosimetric formalisms were adapted to accommodate a directional source, and other distinguishing characteristics including the presence of gold shield x-ray fluorescence were addressed in this investigation. Primary air-kerma strength (S K ) measurements of the CivaDots were performed using two free-air chambers namely, the Variable-Aperture Free-Air Chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center (UWMRRC) and the National Institute of Standards and Technology (NIST) Wide-Angle Free-Air Chamber (WAFAC). An intercomparison of the two free-air chamber measurements was performed along with a comparison of the different assumed CivaDot energy spectra and associated correction factors. Dose distribution measurements of the source were performed in a custom polymethylmethacrylate (PMMA) phantom using Gafchromic TM EBT3 film and thermoluminescent dosimeter (TLD) microcubes. Monte Carlo simulations of the source and the measurement setup were performed using MCNP6 radiation transport code. The CivaDot S K was determined using the two free-air chambers for eight sources with an agreement of better than 1.1% for all sources. The NIST measured CivaDot energy spectrum intensity peaks were within 1.8% of the MC-predicted spectrum intensity peaks. The difference in the net source-specific correction factor determined for the CivaDot free-air chamber measurements for the NIST WAFAC and UW VAFAC was 0.7%. The dose-rate constant analog was determined to be 0.555 cGy h -1 U -1 . The average difference observed in the estimated CivaDot dose-rate constant analog using measurements and MCNP6-predicted value (0.558 cGy h -1 U -1 ) was 0.6% ± 2.3% for eight CivaDot sources using EBT3 film, and -2.6% ± 1.7% using TLD microcube measurements. The CivaDot two-dimensional dose-to-water distribution measured in phantom was compared to the corresponding MC predictions at six depths. The observed difference using a pixel-by-pixel subtraction map of the measured and the predicted dose-to-water distribution was generally within 2-3%, with maximum differences up to 5% of the dose prescribed at the depth of 1 cm. Primary S K measurements of the CivaDot demonstrated good repeatability and reproducibility of the free-air chamber measurements. Measurements of the CivaDot dose distribution using the EBT3 film stack phantom and its subsequent comparison to Monte Carlo-predicted dose distributions were encouraging, given the overall uncertainties. This work will aid in the eventual realization of a clinically viable dosimetric framework for the CivaSheet based on the CivaDot dose distribution. © 2018 American Association of Physicists in Medicine.
Land, Charles E; Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian; Drozdovitch, Vladimir; Bouville, André; Beck, Harold; Luckyanov, Nicholas; Weinstock, Robert M; Simon, Steven L
2015-02-01
Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semipalatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point "best estimates". In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response.
Anagnostopoulos, Georgios; Andrássy, Michael; Baltas, Dimos
To determine the relative dose rate distribution in water for the Bebig 20 mm and 30 mm skin applicators and report results in a form suitable for potential clinical use. Results for both skin applicators are also provided in the form of a hybrid Task Group 43 (TG-43) dosimetry technique. Furthermore, the radiation leakage around both skin applicators from the radiation protection point of view and the impact of the geometrical source position uncertainties are studied and reported. Monte Carlo simulations were performed using the MCNP 6.1 general purpose code, which was benchmarked against published dosimetry data for the Bebig Ir2.A85-2 high-dose-rate iridium-192 source, as well as the dosimetry data for the two Elekta skin applicators. Both Bebig skin applicators were modeled, and the dose rate distributions in a water phantom were calculated. The dosimetric quantities derived according to a hybrid TG-43 dosimetry technique are provided with their corresponding uncertainty values. The air kerma rate in air was simulated in the vicinity of each skin applicator to assess the radiation leakage. Results from the Monte Carlo simulations of both skin applicators are presented in the form of figures and relative dose rate tables, and additionally with the aid of the quantities defined in the hybrid TG-43 dosimetry technique and their corresponding uncertainty values. Their output factors, flatness, and penumbra values were found comparable to the Elekta skin applicators. The radiation shielding was evaluated to be adequate. The effect of potential uncertainties in source positioning on dosimetry should be investigated as part of applicator commissioning. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpool, K; De La Fuente Herman, T; Ahmad, S
Purpose: To evaluate the performance of a two-dimensional (2D) array-diode- detector for geometric and dosimetric quality assurance (QA) tests of high-dose-rate (HDR) brachytherapy with an Ir-192-source. Methods: A phantom setup was designed that encapsulated a two-dimensional (2D) array-diode-detector (MapCheck2) and a catheter for the HDR brachytherapy Ir-192 source. This setup was used to perform both geometric and dosimetric quality assurance for the HDR-Ir192 source. The geometric tests included: (a) measurement of the position of the source and (b) spacing between different dwell positions. The dosimteric tests include: (a) linearity of output with time, (b) end effect and (c) relative dosemore » verification. The 2D-dose distribution measured with MapCheck2 was used to perform the previous tests. The results of MapCheck2 were compared with the corresponding quality assurance testes performed with Gafchromic-film and well-ionization-chamber. Results: The position of the source and the spacing between different dwell-positions were reproducible within 1 mm accuracy by measuring the position of maximal dose using MapCheck2 in contrast to the film which showed a blurred image of the dwell positions due to limited film sensitivity to irradiation. The linearity of the dose with dwell times measured from MapCheck2 was superior to the linearity measured with ionization chamber due to higher signal-to-noise ratio of the diode readings. MapCheck2 provided more accurate measurement of the end effect with uncertainty < 1.5% in comparison with the ionization chamber uncertainty of 3%. Although MapCheck2 did not provide absolute calibration dosimeter for the activity of the source, it provided accurate tool for relative dose verification in HDR-brachytherapy. Conclusion: The 2D-array-diode-detector provides a practical, compact and accurate tool to perform quality assurance for HDR-brachytherapy with an Ir-192 source. The diodes in MapCheck2 have high radiation sensitivity and linearity that is superior to Gafchromic-films and ionization chamber used for geometric and dosimetric QA in HDR-brachytherapy, respectively.« less
Errors in radiation oncology: A study in pathways and dosimetric impact
Drzymala, Robert E.; Purdy, James A.; Michalski, Jeff
2005-01-01
As complexity for treating patients increases, so does the risk of error. Some publications have suggested that record and verify (R&V) systems may contribute in propagating errors. Direct data transfer has the potential to eliminate most, but not all, errors. And although the dosimetric consequences may be obvious in some cases, a detailed study does not exist. In this effort, we examined potential errors in terms of scenarios, pathways of occurrence, and dosimetry. Our goal was to prioritize error prevention according to likelihood of event and dosimetric impact. For conventional photon treatments, we investigated errors of incorrect source‐to‐surface distance (SSD), energy, omitted wedge (physical, dynamic, or universal) or compensating filter, incorrect wedge or compensating filter orientation, improper rotational rate for arc therapy, and geometrical misses due to incorrect gantry, collimator or table angle, reversed field settings, and setup errors. For electron beam therapy, errors investigated included incorrect energy, incorrect SSD, along with geometric misses. For special procedures we examined errors for total body irradiation (TBI, incorrect field size, dose rate, treatment distance) and LINAC radiosurgery (incorrect collimation setting, incorrect rotational parameters). Likelihood of error was determined and subsequently rated according to our history of detecting such errors. Dosimetric evaluation was conducted by using dosimetric data, treatment plans, or measurements. We found geometric misses to have the highest error probability. They most often occurred due to improper setup via coordinate shift errors or incorrect field shaping. The dosimetric impact is unique for each case and depends on the proportion of fields in error and volume mistreated. These errors were short‐lived due to rapid detection via port films. The most significant dosimetric error was related to a reversed wedge direction. This may occur due to incorrect collimator angle or wedge orientation. For parallel‐opposed 60° wedge fields, this error could be as high as 80% to a point off‐axis. Other examples of dosimetric impact included the following: SSD, ~2%/cm for photons or electrons; photon energy (6 MV vs. 18 MV), on average 16% depending on depth, electron energy, ~0.5cm of depth coverage per MeV (mega‐electron volt). Of these examples, incorrect distances were most likely but rapidly detected by in vivo dosimetry. Errors were categorized by occurrence rate, methods and timing of detection, longevity, and dosimetric impact. Solutions were devised according to these criteria. To date, no one has studied the dosimetric impact of global errors in radiation oncology. Although there is heightened awareness that with increased use of ancillary devices and automation, there must be a parallel increase in quality check systems and processes, errors do and will continue to occur. This study has helped us identify and prioritize potential errors in our clinic according to frequency and dosimetric impact. For example, to reduce the use of an incorrect wedge direction, our clinic employs off‐axis in vivo dosimetry. To avoid a treatment distance setup error, we use both vertical table settings and optical distance indicator (ODI) values to properly set up fields. As R&V systems become more automated, more accurate and efficient data transfer will occur. This will require further analysis. Finally, we have begun examining potential intensity‐modulated radiation therapy (IMRT) errors according to the same criteria. PACS numbers: 87.53.Xd, 87.53.St PMID:16143793
Zecha, Judith A. E. M.; Raber-Durlacher, Judith E.; Nair, Raj G.; Epstein, Joel B.; Elad, Sharon; Hamblin, Michael R.; Barasch, Andrei; Migliorati, Cesar A.; Milstein, Dan M. J.; Genot, Marie-Thérèse; Lansaat, Liset; van der Brink, Ron; Arnabat-Dominguez, Josep; van der Molen, Lisette; Jacobi, Irene; van Diessen, Judi; de Lange, Jan; Smeele, Ludi E.; Schubert, Mark M.
2016-01-01
Purpose There is a large body of evidence supporting the efficacy of low-level laser therapy (LLLT), more recently termed photobiomodulation (PBM) for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved and dosimetric parameters may lead to the management of a broader range of complications associated with HNC treatment. This could enhance patient adherence to cancer therapy, and improve quality of life and treatment outcomes. The mechanisms of action, dosimetric, and safety considerations for PBM have been reviewed in part 1. Part 2 discusses the head and neck treatment side effects for which PBM may prove to be effective. In addition, PBM parameters for each of these complications are suggested and future research directions are discussed. Methods Narrative review and presentation of PBM parameters are based on current evidence and expert opinion. Results PBM may have potential applications in the management of a broad range of side effects of (chemo)radiation therapy (CRT) in patients being treated for HNC. For OM management, optimal PBM parameters identified were as follows: wavelength, typically between 633 and 685 nm or 780–830 nm; energy density, laser or light-emitting diode (LED) output between 10 and 150 mW; dose, 2–3 J (J/cm2), and no more than 6 J/cm2 on the tissue surface treated; treatment schedule, two to three times a week up to daily; emission type, pulsed (<100 Hz); and route of delivery, intraorally and/or transcutaneously. To facilitate further studies, we propose potentially effective PBM parameters for prophylactic and therapeutic use in supportive care for dermatitis, dysphagia, dry mouth, dysgeusia, trismus, necrosis, lymphedema, and voice/speech alterations. Conclusion PBM may have a role in supportive care for a broad range of complications associated with the treatment of HNC with CRT. The suggested PBM irradiation and dosimetric parameters, which are potentially effective for these complications, are intended to provide guidance for well-designed future studies. It is imperative that such studies include elucidating the effects of PBM on oncology treatment outcomes. PMID:26984249
Zecha, Judith A E M; Raber-Durlacher, Judith E; Nair, Raj G; Epstein, Joel B; Elad, Sharon; Hamblin, Michael R; Barasch, Andrei; Migliorati, Cesar A; Milstein, Dan M J; Genot, Marie-Thérèse; Lansaat, Liset; van der Brink, Ron; Arnabat-Dominguez, Josep; van der Molen, Lisette; Jacobi, Irene; van Diessen, Judi; de Lange, Jan; Smeele, Ludi E; Schubert, Mark M; Bensadoun, René-Jean
2016-06-01
There is a large body of evidence supporting the efficacy of low-level laser therapy (LLLT), more recently termed photobiomodulation (PBM) for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved and dosimetric parameters may lead to the management of a broader range of complications associated with HNC treatment. This could enhance patient adherence to cancer therapy, and improve quality of life and treatment outcomes. The mechanisms of action, dosimetric, and safety considerations for PBM have been reviewed in part 1. Part 2 discusses the head and neck treatment side effects for which PBM may prove to be effective. In addition, PBM parameters for each of these complications are suggested and future research directions are discussed. Narrative review and presentation of PBM parameters are based on current evidence and expert opinion. PBM may have potential applications in the management of a broad range of side effects of (chemo)radiation therapy (CRT) in patients being treated for HNC. For OM management, optimal PBM parameters identified were as follows: wavelength, typically between 633 and 685 nm or 780-830 nm; energy density, laser or light-emitting diode (LED) output between 10 and 150 mW; dose, 2-3 J (J/cm(2)), and no more than 6 J/cm(2) on the tissue surface treated; treatment schedule, two to three times a week up to daily; emission type, pulsed (<100 Hz); and route of delivery, intraorally and/or transcutaneously. To facilitate further studies, we propose potentially effective PBM parameters for prophylactic and therapeutic use in supportive care for dermatitis, dysphagia, dry mouth, dysgeusia, trismus, necrosis, lymphedema, and voice/speech alterations. PBM may have a role in supportive care for a broad range of complications associated with the treatment of HNC with CRT. The suggested PBM irradiation and dosimetric parameters, which are potentially effective for these complications, are intended to provide guidance for well-designed future studies. It is imperative that such studies include elucidating the effects of PBM on oncology treatment outcomes.
Dosimetric calculations for uranium miners for epidemiological studies.
Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L
2012-05-01
Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Sen; Li, Guangjun; Wang, Maojie
The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less
Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart
2016-09-01
For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, Y; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N
Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less
NASA Astrophysics Data System (ADS)
Masoudi, S. Farhad; Rasouli, Fatemeh S.
2015-08-01
Recent studies in BNCT have focused on investigating appropriate neutron sources as alternatives for nuclear reactors. As the most prominent facilities, the electron linac based photoneutron sources benefit from two consecutive reactions, (e, γ) and (γ, n). The photoneutron sources designed so far are composed of bipartite targets which involve practical problems and are far from the objective of achieving an optimized neutron source. This simulation study deals with designing a compact, optimized, and geometrically simple target for a photoneutron source based on an electron linac. Based on a set of MCNPX simulations, tungsten is found to have the potential of utilizing as both photon converter and photoneutron target. Besides, it is shown that an optimized dimension for such a target slows-down the produced neutrons toward the desired energy range while keeping them economy, which makes achieving the recommended criteria for BNCT of deep-tumors more available. This multi-purpose target does not involve complicated designing, and can be considered as a significant step toward finding application of photoneutron sources for in-hospital treatments. In order to shape the neutron beam emitted from such a target, the beam is planned to pass through an optimized arrangement of materials composed of moderators, filters, reflector, and collimator. By assessment with the recommended in-air parameters, it is shown that the designed beam provides high intensity of desired neutrons, as well as low background contamination. The last section of this study is devoted to investigate the performance of the resultant beam in deep tissue. A typical simulated liver tumor, located within a phantom of human body, was subjected to the irradiation of the designed spectrum. The dosimetric results, including evaluated depth-dose curves and carried out in-phantom parameters show that the proposed configuration establishes acceptable agreement between the appropriate neutron intensity, and penetrating deep in tissue in a reasonable treatment time.
Penjweini, Rozhin; Liu, Baochang; Kim, Michele M; Zhu, Timothy C
2015-01-01
Type II photodynamic therapy (PDT) is based on the photochemical reactions mediated through an interaction between a photosensitizer, ground-state oxygen ([(3)O2]), and light excitation at an appropriate wavelength, which results in production of reactive singlet oxygen ([(1)O2]rx). We use an empirical macroscopic model based on four photochemical parameters for the calculation of [(1)O2]rx threshold concentration ([(1)O2]rx,sh) causing tissue necrosis in tumors after PDT. For this reason, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-mediated PDT was performed interstitially on mice with radiation-induced fibrosarcoma (RIF) tumors. A linear light source at 665 nm with total energy released per unit length of 12 to 100 J/cm and source power per unit length (LS) of 12 to 150 mW/cm was used to induce different radii of necrosis. Then the amount of [(1)O2]rx calculated by the macroscopic model incorporating explicit PDT dosimetry of light fluence distribution, tissue optical properties, and HPPH concentration was correlated to the necrotic radius to obtain the model parameters and [(1)O2]rx,sh. We provide evidence that [(1)O2]rx is a better dosimetric quantity for predicting the treatment outcome than PDT dose, which is proportional to the time integral of the products of the photosensitizer concentration and light fluence rate.
Penjweini, Rozhin; Liu, Baochang; Kim, Michele M.; Zhu, Timothy C.
2015-01-01
Abstract. Type II photodynamic therapy (PDT) is based on the photochemical reactions mediated through an interaction between a photosensitizer, ground-state oxygen ([O32]), and light excitation at an appropriate wavelength, which results in production of reactive singlet oxygen ([O12]rx). We use an empirical macroscopic model based on four photochemical parameters for the calculation of [O12]rx threshold concentration ([O12]rx,sh) causing tissue necrosis in tumors after PDT. For this reason, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-mediated PDT was performed interstitially on mice with radiation-induced fibrosarcoma (RIF) tumors. A linear light source at 665 nm with total energy released per unit length of 12 to 100 J/cm and source power per unit length (LS) of 12 to 150 mW/cm was used to induce different radii of necrosis. Then the amount of [O12]rx calculated by the macroscopic model incorporating explicit PDT dosimetry of light fluence distribution, tissue optical properties, and HPPH concentration was correlated to the necrotic radius to obtain the model parameters and [O12]rx,sh. We provide evidence that [O12]rx is a better dosimetric quantity for predicting the treatment outcome than PDT dose, which is proportional to the time integral of the products of the photosensitizer concentration and light fluence rate. PMID:26720883
NASA Astrophysics Data System (ADS)
Penjweini, Rozhin; Liu, Baochang; Kim, Michele M.; Zhu, Timothy C.
2015-12-01
Type II photodynamic therapy (PDT) is based on the photochemical reactions mediated through an interaction between a photosensitizer, ground-state oxygen ([O]), and light excitation at an appropriate wavelength, which results in production of reactive singlet oxygen ([]rx). We use an empirical macroscopic model based on four photochemical parameters for the calculation of []rx threshold concentration ([]rx,sh) causing tissue necrosis in tumors after PDT. For this reason, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-mediated PDT was performed interstitially on mice with radiation-induced fibrosarcoma (RIF) tumors. A linear light source at 665 nm with total energy released per unit length of 12 to 100 J/cm and source power per unit length (LS) of 12 to 150 mW/cm was used to induce different radii of necrosis. Then the amount of []rx calculated by the macroscopic model incorporating explicit PDT dosimetry of light fluence distribution, tissue optical properties, and HPPH concentration was correlated to the necrotic radius to obtain the model parameters and []rx,sh. We provide evidence that []rx is a better dosimetric quantity for predicting the treatment outcome than PDT dose, which is proportional to the time integral of the products of the photosensitizer concentration and light fluence rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Hali, E-mail: hamorris@ualberta.ca; Meno
Purpose: To estimate the total dosimetric uncertainty at the tumor apex for ocular brachytherapy treatments delivered using 16 mm Collaborative Ocular Melanoma Study (COMS) and Super9 plaques loaded with {sup 125}I seeds in order to determine the size of the apex margin that would be required to ensure adequate dosimetric coverage of the tumor. Methods: The total dosimetric uncertainty was assessed for three reference tumor heights: 3, 5, and 10 mm, using the Guide to the expression of Uncertainty in Measurement/National Institute of Standards and Technology approach. Uncertainties pertaining to seed construction, source strength, plaque assembly, treatment planning calculations, tumormore » height measurement, plaque placement, and plaque tilt for a simple dome-shaped tumor were investigated and quantified to estimate the total dosimetric uncertainty at the tumor apex. Uncertainties in seed construction were determined using EBT3 Gafchromic film measurements around single seeds, plaque assembly uncertainties were determined using high resolution microCT scanning of loaded plaques to measure seed positions in the plaques, and all other uncertainties were determined from the previously published studies and recommended values. All dose calculations were performed using PLAQUESIMULATOR v5.7.6 ophthalmic treatment planning system with the inclusion of plaque heterogeneity corrections. Results: The total dosimetric uncertainties at 3, 5, and 10 mm tumor heights for the 16 mm COMS plaque were 17.3%, 16.1%, and 14.2%, respectively, and for the Super9 plaque were 18.2%, 14.4%, and 13.1%, respectively (all values with coverage factor k = 2). The apex margins at 3, 5, and 10 mm tumor heights required to adequately account for these uncertainties were 1.3, 1.3, and 1.4 mm, respectively, for the 16 mm COMS plaque, and 1.8, 1.4, and 1.2 mm, respectively, for the Super9 plaque. These uncertainties and associated margins are dependent on the dose gradient at the given prescription depth, thus resulting in the changing uncertainties and margins with depth. Conclusions: The margins determined in this work can be used as a guide for determining an appropriate apex margin for a given treatment, which can be chosen based on the tumor height. The required margin may need to be increased for more complex scenarios (mushroom shaped tumors, tumors close to the optic nerve, oblique muscle related tilt, etc.) than the simple dome-shaped tumor examined and should be chosen on a case-by-case basis. The sources of uncertainty contributing most significantly to the total dosimetric uncertainty are seed placement within the plaques, treatment planning calculations, tumor height measurement, and plaque tilt. This work presents an uncertainty-based, rational approach to estimating an appropriate apex margin.« less
Pantelis, Evaggelos; Papagiannis, Panagiotis; Anagnostopoulos, Giorgos; Baltas, Dimos
2013-12-01
To determine the relative dose rate distribution around the new (125)I brachytherapy source IsoSeed I25.S17plus and report results in a form suitable for clinical use. Results for the new source are also compared to corresponding results for other commercially available (125)I sources of similar design. Monte Carlo simulations were performed using the MCNP5 v.1.6 general purpose code. The model of the new source was prepared from information provided by the manufacturer and verified by imaging a sample of ten non-radioactive sources. Corresponding simulations were also performed for the 6711 (125)I brachytherapy source, using updated geometric information presented recently in the literature. The uncertainty of the dose distribution around the new source, as well as the dosimetric quantities derived from it according to the Task Group 43 formalism, were determined from the standard error of the mean of simulations for a sample of fifty source models. These source models were prepared by randomly selecting values of geometric parameters from uniform distributions defined by manufacturer stated tolerances. Results are presented in the form of the quantities defined in the update of the Task Group 43 report, as well as a relative dose rate table in Cartesian coordinates. The dose rate distribution of the new source is comparable to that of sources of similar design (IsoSeed I25.S17, Oncoseed 6711, SelectSeed 130.002, Advantage IAI-125A, I-Seed AgX100, Thinseed 9011). Noticeable differences were observed only for the IsoSeed I25.S06 and Best 2301 sources.
De Felice, Francesca; Thomas, Christopher; Patel, Vinod; Connor, Steve; Michaelidou, Andriana; Sproat, Chris; Kwok, Jerry; Burke, Mary; Reilly, Damien; McGurk, Mark; Simo, Ricard; Lyons, Andrew; Oakley, Richard; Jeannon, Jean-Pierre; Lei, Mary; Urbano, Teresa Guerrero
2016-07-01
To analyze clinical features, dosimetric parameters, and outcomes of osteoradionecrosis (ORN). Thirty-six patients with ORN who had been previously treated with radiotherapy (RT) were retrospectively identified between January 2009 and April 2014. ORN volumes were contoured on planning computed tomography (CT) scans. Near maximum dose (D2%), minimum dose (Dmin), mean dose (Dmean), and percentage of bone volume receiving 50 Gy (V50) were examined. Clinical and dosimetric variables were considered to compare ORN resolution versus ORN persistence. Median interval time from end of RT to development of ORN was 6 months. Of the ORN cases, 61% were located in the mandible. Dmean to affected bone was 57.6 Gy, and 44% had a D2% 65 Gy or greater. Smoking was associated with ORN persistence on univariate analysis, but no factors were found to impact ORN resolution or progression on logistic regression. Prevention strategies for ORN development should be prioritized. Dose-volume parameters could have a role in preventing ORN. Copyright © 2016 Elsevier Inc. All rights reserved.
Potential benefits of dosimetric VMAT tracking verified with 3D film measurements.
Crijns, Wouter; Defraene, Gilles; Van Herck, Hans; Depuydt, Tom; Haustermans, Karin; Maes, Frederik; Van den Heuvel, Frank
2016-05-01
To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution's position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.
Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide
2013-01-01
Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345
Kerns, James R; Followill, David S; Lowenstein, Jessica; Molineu, Andrea; Alvarez, Paola; Taylor, Paige A; Stingo, Francesco C; Kry, Stephen F
2016-05-01
Accurate data regarding linear accelerator (Linac) radiation characteristics are important for treatment planning system modeling as well as regular quality assurance of the machine. The Imaging and Radiation Oncology Core-Houston (IROC-H) has measured the dosimetric characteristics of numerous machines through their on-site dosimetry review protocols. Photon data are presented and can be used as a secondary check of acquired values, as a means to verify commissioning a new machine, or in preparation for an IROC-H site visit. Photon data from IROC-H on-site reviews from 2000 to 2014 were compiled and analyzed. Specifically, data from approximately 500 Varian machines were analyzed. Each dataset consisted of point measurements of several dosimetric parameters at various locations in a water phantom to assess the percentage depth dose, jaw output factors, multileaf collimator small field output factors, off-axis factors, and wedge factors. The data were analyzed by energy and parameter, with similarly performing machine models being assimilated into classes. Common statistical metrics are presented for each machine class. Measurement data were compared against other reference data where applicable. Distributions of the parameter data were shown to be robust and derive from a student's t distribution. Based on statistical and clinical criteria, all machine models were able to be classified into two or three classes for each energy, except for 6 MV for which there were eight classes. Quantitative analysis of the measurements for 6, 10, 15, and 18 MV photon beams is presented for each parameter; supplementary material has also been made available which contains further statistical information. IROC-H has collected numerous data on Varian Linacs and the results of photon measurements from the past 15 years are presented. The data can be used as a comparison check of a physicist's acquired values. Acquired values that are well outside the expected distribution should be verified by the physicist to identify whether the measurements are valid. Comparison of values to this reference data provides a redundant check to help prevent gross dosimetric treatment errors.
Method of predicting the mean lung dose based on a patient's anatomy and dose-volume histograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawadzka, Anna, E-mail: a.zawadzka@zfm.coi.pl; Nesteruk, Marta; Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich
The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in the treatment planning system (TPS) was calculated. Based on these dose matrices, the MLD for each patient was predicted by the homemade DosePredictor software in which the solution of linear equations was implemented. The software prediction results were validated based on 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans previously prepared formore » 16 patients with stage III non–small-cell lung cancer (NSCLC). For each patient, dosimetric parameters derived from plans and the results calculated by DosePredictor were compared. The MLD, the maximum dose to the spinal cord (D{sub max} {sub cord}) and the mean esophageal dose (MED) were analyzed. There was a strong correlation between the MLD calculated by the DosePredictor and those obtained in treatment plans regardless of the technique used. The correlation coefficient was 0.96 for both 3D-CRT and VMAT techniques. In a similar manner, MED correlations of 0.98 and 0.96 were obtained for 3D-CRT and VMAT plans, respectively. The maximum dose to the spinal cord was not predicted very well. The correlation coefficient was 0.30 and 0.61 for 3D-CRT and VMAT, respectively. The presented method allows us to predict the minimum MLD and corresponding dosimetric parameters to OARs without the necessity of plan preparation. The method can serve as a guide during the treatment planning process, for example, as initial constraints in VMAT optimization. It allows the probability of lung pneumonitis to be predicted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Shao-Lun; Hsu, Feng-Ming; Tsai, Chiao-Ling
Purpose: Our aim was to investigate the association of clinical factors, dosimetric parameters, and biomarkers with postoperative pulmonary complications (PPCs) in patients with locally advanced esophageal squamous cell carcinoma (ESCC) treated by neoadjuvant concurrent chemoradiation therapy (CCRT) under strict pulmonary dose constraints and esophagectomy. Methods and Materials: We prospectively enrolled 112 patients undergoing trimodality treatment (including radiation therapy [40 Gy], concurrent taxane-/5-fluorouracil-based regimens, and radical esophagectomy) for ESCC. A PPC was defined as pneumonia or acute respiratory distress syndrome within 30 days after surgery. Serum samples were collected before and within 1 month after CCRT. The association of serum biomarkers with PPCs wasmore » detected by proximity ligation assay (PLA) and verified by enzyme-linked immunosorbent assay. Associations of clinical factors, lung dosimetric parameters, and biomarkers with PPC were tested statistically. Results: Thirty-three patients (29.5%) had PPCs. None of the dosimetric parameters was associated with PPCs. Preoperative functional vital capacity (FVC) was significantly associated with PPCs (P=.004). Of the 15 PLA-screened biomarkers, posttreatment transforming growth factor-β1 (TGF-β1) was borderline significantly associated with PPCs (P=.087). Patients with PPCs had significantly larger pre-CCRT to post-CCRT decrease in serum TGF-β1 concentration (−11,310 vs −5332 pg/mL, P=.005) and higher pre-CCRT to post-CCRT percent decline in serum TGF-β1 concentration (−37.4% vs −25.0%, P=.009) than patients without PPCs. On multivariate analysis, preoperative FVC (P=.003) and decrease in TGF-β1 >7040 pg/mL (P=.014) were independent factors associated with PPCs. Conclusions: Preoperative FVC and decrease in serum TGF-β1 level after dose-limited CCRT to the lung are associated with the development of PPCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Huijun; Gordon, J. James; Siebers, Jeffrey V.
2011-02-15
Purpose: A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D{sub v} exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structuresmore » meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Methods: Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals {omega} (e.g., {omega}=1 deg., 2 deg., 5 deg., 10 deg., 20 deg.). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment {omega}{sub eff}. In each direction, the DM was calculated by moving the structure in radial steps of size {delta}(=0.1,0.2,0.5,1 mm) until the specified isodose was crossed. Coverage estimation accuracy {Delta}Q was quantified as a function of the sampling parameters {omega} or {omega}{sub eff} and {delta}. Results: The accuracy of coverage estimates depends on angular and radial DMD sampling parameters {omega} or {omega}{sub eff} and {delta}, as well as the employed sampling technique. Target |{Delta}Q|<1% and OAR |{Delta}Q|<3% can be achieved with sampling parameters {omega} or {omega}{sub eff}=20 deg., {delta}=1 mm. Better accuracy (target |{Delta}Q|<0.5% and OAR |{Delta}Q|<{approx}1%) can be achieved with {omega} or {omega}{sub eff}=10 deg., {delta}=0.5 mm. As the number of sampling points decreases, the isotropic sampling method maintains better accuracy than fixed angular sampling. Conclusions: Coverage estimates for post-planning evaluation are essential since coverage values of targets and OARs often differ from the values implied by the static margin-based plans. Finer sampling of the DMD enables more accurate assessment of the effect of geometric uncertainties on coverage estimates prior to treatment. DMD sampling with {omega} or {omega}{sub eff}=10 deg. and {delta}=0.5 mm should be adequate for planning purposes.« less
Xu, Huijun; Gordon, J James; Siebers, Jeffrey V
2011-02-01
A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D, exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structures meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals w (e.g., w = 1 degree, 2 degrees, 5 degrees, 10 degrees, 20 degrees). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment omega eff. In each direction, the DM was calculated by moving the structure in radial steps of size delta (=0.1, 0.2, 0.5, 1 mm) until the specified isodose was crossed. Coverage estimation accuracy deltaQ was quantified as a function of the sampling parameters omega or omega eff and delta. The accuracy of coverage estimates depends on angular and radial DMD sampling parameters omega or omega eff and delta, as well as the employed sampling technique. Target deltaQ/ < l% and OAR /deltaQ/ < 3% can be achieved with sampling parameters omega or omega eef = 20 degrees, delta =1 mm. Better accuracy (target /deltaQ < 0.5% and OAR /deltaQ < approximately 1%) can be achieved with omega or omega eff = 10 degrees, delta = 0.5 mm. As the number of sampling points decreases, the isotropic sampling method maintains better accuracy than fixed angular sampling. Coverage estimates for post-planning evaluation are essential since coverage values of targets and OARs often differ from the values implied by the static margin-based plans. Finer sampling of the DMD enables more accurate assessment of the effect of geometric uncertainties on coverage estimates prior to treatment. DMD sampling with omega or omega eff = 10 degrees and delta = 0.5 mm should be adequate for planning purposes.
The use of new GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water phantom.
Chiu-Tsao, Sou-Tung; Medich, David; Munro, John
2008-08-01
Radiochromic film dosimetry has been extensively used for intravascular brachytherapy applications for near field within 1 cm from the sources. With the recent introduction of new model of radiochromic films, GAFCHROMIC EBT, with higher sensitivity than earlier models, it is promising to extend the distances out to 5 cm for low dose rate (LDR) source dosimetry. In this study, the use of new model GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water was evaluated for radial distances from 0.06 cm out to 5 cm. A multiple film technique was employed for four 125I seeds (Implant Sciences model 3500) with NIST traceable air kerma strengths. Each experimental film was positioned in contact with a 125I seed in a Solid Water phantom. The products of the air kerma strength and exposure time ranged from 8 to 3158 U-h, with the initial air kerma strength of 6 U in a series of 25 experiments. A set of 25 calibration films each was sequentially exposed to one 125I seed at about 0.58 cm distance for doses from 0.1 to 33 Gy. A CCD camera based microdensitometer, with interchangeable green (520 nm) and red (665 nm) light boxes, was used to scan all the films with 0.2 mm pixel resolution. The dose to each 125I calibration film center was calculated using the air kerma strength of the seed (incorporating decay), exposure time, distance from seed center to film center, and TG43U1S1 recommended dosimetric parameters. Based on the established calibration curve, dose conversion from net optical density was achieved for each light source. The dose rate constant was determined as 0.991 cGy U(-1)h(-1) (+/-6.9%) and 1.014 cGy U(-1)h(-1) (+/-6.8%) from films scanned using green and red light sources, respectively. The difference between these two values was within the uncertainty of the measurement. Radial dose function and 2D anisotropy function were also determined. The results obtained using the two light sources corroborated each other. We found good agreement with the TG43U1S1 recommended values of radial dose function and 2D anisotropy function, to within the uncertainty of the measurement. We also verified the dosimetric parameters in the near field calculated by Rivard using Monte Carlo method. The radial dose function values in Solid Water were lower than those in water recommended by TG43U1S1, by about 2%, 3%, 7%, and 14% at 2, 3, 4, and 5 cm, respectively, partially due to the difference in the phantom material composition. Radiochromic film dosimetry using GAFCHROMIC EBT model is feasible in determining 2D dose distributions around low dose rate 125I seed. It is a viable alternative to TLD dosimetry for 125I seed dose characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Ryan; Han Gang; Sarangkasiri, Siriporn
2013-01-01
Purpose: To report clinical and dosimetric factors predictive of radiation pneumonitis (RP) in patients receiving lung stereotactic body radiation therapy (SBRT) from a series of 240 patients. Methods and Materials: Of the 297 isocenters treating 263 patients, 240 patients (n=263 isocenters) had evaluable information regarding RP. Age, gender, current smoking status and pack-years, O{sub 2} use, Charlson Comorbidity Index, prior lung radiation therapy (yes/no), dose/fractionation, V{sub 5}, V{sub 13}, V{sub 20}, V{sub prescription}, mean lung dose, planning target volume (PTV), total lung volume, and PTV/lung volume ratio were recorded. Results: Twenty-nine patients (11.0%) developed symptomatic pneumonitis (26 grade 2, 3more » grade 3). The mean V{sub 20} was 6.5% (range, 0.4%-20.2%), and the average mean lung dose was 5.03 Gy (0.547-12.2 Gy). In univariable analysis female gender (P=.0257) and Charlson Comorbidity index (P=.0366) were significantly predictive of RP. Among dosimetric parameters, V{sub 5} (P=.0186), V{sub 13} (P=.0438), and V{sub prescription} (where dose = 60 Gy) (P=.0128) were significant. There was only a trend toward significance for V{sub 20} (P=.0610). Planning target volume/normal lung volume ratio was highly significant (P=.0024). In multivariable analysis the clinical factors of female gender, pack-years smoking, and larger gross internal tumor volume and PTV were predictive (P=.0094, .0312, .0364, and .052, respectively), but no dosimetric factors were significant. Conclusions: Rate of symptomatic RP was 11%. Our mean lung dose was <600 cGy in most cases and V20 <10%. In univariable analysis, dosimetric factors were predictive, while tumor size (or tumor/lung volume ratio) played a role in multivariable and univariable and analysis, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Dong, P; Xing, L
Purpose: Traditional radiotherapy inverse planning relies on the weighting factors to phenomenologically balance the conflicting criteria for different structures. The resulting manual trial-and-error determination of the weights has long been recognized as the most time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the inter-structural dosimetric tradeoff among with physically more meaningful quantities to simplify the search for a clinically sensible plan. Methods: A permissible dosimetric uncertainty is introduced for each of the structures to balance their conflicting dosimetric requirements. The inverse planning is then formulated as a convex feasibilitymore » problem, which aims to generate plans with acceptable dosimetric uncertainties. A sequential procedure (SP) is derived to decompose the model into three submodels to constrain the uncertainty in the planning target volume (PTV), the critical structures, and all other structures to spare, sequentially. The proposed technique is applied to plan a liver case and a head-and-neck case and compared with a conventional approach. Results: Our results show that the strategy is able to generate clinically sensible plans with little trial-and-error. In the case of liver IMRT, the fractional volumes to liver and heart above 20Gy are found to be 22% and 10%, respectively, which are 15.1% and 33.3% lower than that of the counterpart conventional plan while maintaining the same PTV coverage. The planning of the head and neck IMRT show the same level of success, with the DVHs for all organs at risk and PTV very competitive to a counterpart plan. Conclusion: A new inverse planning framework has been established. With physically more meaningful modeling of the inter-structural tradeoff, the technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters and opens new opportunities of incorporating prior knowledge to facilitate the treatment planning process.« less
Dickey, Mike; Roa, Wilson; Drodge, Suzanne; Ghosh, Sunita; Murray, Brad; Scrimger, Rufus; Gabos, Zsolt
2015-01-01
The primary objective of this study was to compare dosimetric variables as well as treatment times of multiple static fields (MSFs), conformal arcs (CAs), and volumetric modulated arc therapy (VMAT) techniques for the treatment of early stage lung cancer using stereotactic body radiotherapy (SBRT). Treatments of 23 patients previously treated with MSF of 48Gy to 95% of the planning target volume (PTV) in 4 fractions were replanned using CA and VMAT techniques. Dosimetric parameters of the Radiation Therapy Oncology Group (RTOG) 0915 trial were evaluated, along with the van׳t Riet conformation number (CN), monitor units (MUs), and actual and calculated treatment times. Paired t-tests for noninferiority were used to compare the 3 techniques. CA had significant dosimetric improvements over MSF for the ratio of the prescription isodose volume to PTV (R100%, p < 0.0001), the maximum dose 2cm away from the PTV (D2cm, p = 0.005), and van׳t Riet CN (p < 0.0001). CA was not statistically inferior to MSF for the 50% prescription isodose volume to PTV (R50%, p = 0.05). VMAT was significantly better than CA for R100% (p < 0.0001), R50% (p < 0.0001), D2cm (p = 0.006), and CN (p < 0.0001). CA plans had significantly shorter treatment times than those of VMAT (p < 0.0001). Both CA and VMAT planning showed significant dosimetric improvements and shorter treatment times over those of MSF. VMAT showed the most favorable dosimetry of all 3 techniques; however, the dosimetric effect of tumor motion was not evaluated. CA plans were significantly faster to treat, and minimize the interplay of tumor motion and dynamic multileaf collimator (MLC) motion effects. Given these results, CA has become the treatment technique of choice at our facility. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Lee, P; Jiang, S
2015-06-15
Purpose: To compare dosimetric data of patients treated for early-stage larynx cancer on Cyberknife and Linac IMRT. Methods: Nine patients were treated with Cyberknife to a dose of 45 Gy in 10 fractions of the involved hemilarynx. The prescription dose provided at least 95% of PTV coverage. After Cyberknife treatment, the CT images and contours were sent to Pinnacle treatment planning system for IMRT planning on a regular SBRT linac with same dose prescription and constrains. Dose to target and normal tissue, including the arytenoids, cord, carotid arteries, thyroid, and skin, were analyzed using dose volume histograms. Results: For Cyberknifemore » plan, the conformity indices are within 1.11–1.33. The average dose to the contralateral arytenoids for Cyberknife plans was 28.9±6.5Gy), which is lower than the same mean dose for IMRT plans (34.0±5.2 Gy). The average maximum dose to the ipsilateral and contralateral carotid artery were 20.6 ±9.1 Gy and 10.2±6.0 Gy respectively for Cybeknife comparing with 22.1±8.0 Gy and 12.0±5.1 Gy for IMRT. The mean dose to the thyroid was 3.6±2.2 Gy for Cyberknife and 3.4±2.4 Gy for IMRT. As shown in DVH, the Cyberknife can deliver less dose to the normal tissue which is close to target area comparing with IMRT Plans. However, IMRT plan’s can give more sparing for the critical organs which is far away from the target area. Conclusion: We have compared the dosimetric parameters of Cyberknife and linac IMRT plans for patients with early-stage larynx cancer. Both Cyberknife and IMRT plans can achieve conformal dose distribution to the target area. Cyberknife was able to reduce normal tissue dose in high doses region while IMRT plans can reduce the dose of the normal tissue at the low dose region. These dosimetric parameters can be used to guide future prospective protocols using SBRT for larynx cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinnix, Chelsea C., E-mail: ccpinnix@mdanderson.org; Smith, Grace L.; Milgrom, Sarah
Purpose: Few studies to date have evaluated factors associated with the development of radiation pneumonitis (RP) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially in patients treated with contemporary radiation techniques. These patients represent a unique group owing to the often large radiation target volumes within the mediastinum and to the potential to receive several lines of chemotherapy that add to pulmonary toxicity for relapsed or refractory disease. Our objective was to determine the incidence and clinical and dosimetric risk factors associated with RP in lymphoma patients treated with intensity modulated radiation therapy (IMRT) at a singlemore » institution. Methods and Materials: We retrospectively reviewed clinical charts and radiation records of 150 consecutive patients who received mediastinal IMRT for HL and NHL from 2009 through 2013. Clinical and dosimetric predictors associated with RP according to Radiation Therapy Oncology Group (RTOG) acute toxicity criteria were identified in univariate analysis using the Pearson χ{sup 2} test and logistic multivariate regression. Results: Mediastinal radiation was administered as consolidation therapy in 110 patients with newly diagnosed HL or NHL and in 40 patients with relapsed or refractory disease. The overall incidence of RP (RTOG grades 1-3) was 14% in the entire cohort. Risk of RP was increased for patients who received radiation for relapsed or refractory disease (25%) versus those who received consolidation therapy (10%, P=.019). Several dosimetric parameters predicted RP, including mean lung dose of >13.5 Gy, V{sub 20} of >30%, V{sub 15} of >35%, V{sub 10} of >40%, and V{sub 5} of >55%. The likelihood ratio χ{sup 2} value was highest for V{sub 5} >55% (χ{sup 2} = 19.37). Conclusions: In using IMRT to treat mediastinal lymphoma, all dosimetric parameters predicted RP, although small doses to large volumes of lung had the greatest influence. Patients with relapsed or refractory lymphoma who received salvage chemotherapy and hematopoietic stem cell transplantation were at higher risk for symptomatic RP.« less
Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney
2014-01-01
Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623
Kim, Eun Seok; Yeo, Seung-Gu
2014-06-01
Previous studies on advanced radiotherapy (RT) techniques for early stage glottic cancer have focused on sparing the carotid artery. However, the aim of the present study was to evaluate the dosimetric advantages of volumetric modulated arc therapy (VMAT) in terms of sparing the thyroid gland in early-stage glottic cancer patients. In total, 15 cT1N0M0 glottic cancer patients treated with definitive RT using VMAT were selected, and for dosimetric comparison, a conventional RT plan comprising opposed-lateral wedged fields was generated for each patient. The carotid artery, thyroid gland and spinal cord were considered organs at risk. The prescription dose was 63 Gy at 2.25 Gy per fraction. For the thyroid gland and carotid artery, all compared parameters were significantly lower with VMAT compared with conventional RT. For the thyroid gland, the median reduction rates of the mean dose (D mean ), the volume receiving ≥30% of the prescription dose (V 30 ) and the V 50 were 32.6, 40.9 and 46.0%, respectively. The D mean was 14.7±2.6 Gy when using VMAT compared with 22.2±3.9 Gy when using conventional RT. The differences between the techniques in terms of planning target volume coverage and dose homogeneity were not significant. When considering a recent normal tissue complication probability model, which indicated the mean thyroid gland dose as the most significant predictor of radiation-induced hypothyroidism, the dosimetric advantage shown in this study may be valuable in reducing hypothyroidism following RT for early stage glottic cancer patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Tian, Z; Gu, X
Purpose: To investigate the dosimetric benefit of adaptive re-planning for lung stereotactic body radiotherapy(SBRT). Methods: Five lung cancer patients with SBRT treatment were retrospectively investigated. Our in-house supercomputing online re-planning environment (SCORE) was used to realize the re-planning process. First a deformable image registration was carried out to transfer contours from treatment planning CT to each treatment CBCT. Then an automatic re-planning using original plan DVH guided fluence-map optimization is performed to get a new plan for the up-to-date patient geometry. We compared the re-optimized plan to the original plan projected on the up-to-date patient geometry in critical dosimetric parameters,more » such as PTV coverage, spinal cord maximum and volumetric constraint dose, esophagus maximum and volumetric constraint dose. Results: The average volume of PTV covered by prescription dose for all patients was improved by 7.56% after the adaptive re-planning. The volume of the spinal cord receiving 14.5Gy and 23Gy (V14.5, V23) decreased by 1.48% and 0.68%, respectively. For the esophagus, the volume receiving 19.5Gy (V19.5) reduced by 1.37%. Meanwhile, the maximum dose dropped off by 2.87% for spinal cord and 4.80% for esophagus. Conclusion: Our experimental results demonstrate that adaptive re-planning for lung SBRT has the potential to minimize the dosimetric effect of inter-fraction deformation and thus improve target coverage while reducing the risk of toxicity to nearby normal tissues.« less
Radiation dose-volume effects in the esophagus.
Werner-Wasik, Maria; Yorke, Ellen; Deasy, Joseph; Nam, Jiho; Marks, Lawrence B
2010-03-01
Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose-volume measures derived from three-dimensional conformal radiotherapy for non-small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented. Copyright 2010 Elsevier Inc. All rights reserved.
Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM☆
Kirisits, Christian; Rivard, Mark J.; Baltas, Dimos; Ballester, Facundo; De Brabandere, Marisol; van der Laarse, Rob; Niatsetski, Yury; Papagiannis, Panagiotis; Hellebust, Taran Paulsen; Perez-Calatayud, Jose; Tanderup, Kari; Venselaar, Jack L.M.; Siebert, Frank-André
2014-01-01
Background and purpose A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified. Methods A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty. Results Very few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence of medium is of minor importance for high-energy sources in the pelvic region. The level of uncertainties due to target, organ, applicator, and/or source movement in relation to the geometry assumed for treatment planning is highly dependent on fractionation and the level of image guided adaptive treatment. Most studies to date report the results in a manner that allows no direct reproduction and further comparison with other studies. Often, no distinction is made between variations, uncertainties, and errors or mistakes. The literature review facilitated the drafting of recommendations for uniform uncertainty reporting in clinical BT, which are also provided. The recommended comprehensive uncertainty investigations are key to obtain a general impression of uncertainties, and may help to identify elements of the brachytherapy treatment process that need improvement in terms of diminishing their dosimetric uncertainties. It is recommended to present data on the analyzed parameters (distance shifts, volume changes, source or applicator position, etc.), and also their influence on absorbed dose for clinically-relevant dose parameters (e.g., target parameters such as D90 or OAR doses). Publications on brachytherapy should include a statement of total dose uncertainty for the entire treatment course, taking into account the fractionation schedule and level of image guidance for adaptation. Conclusions This report on brachytherapy clinical uncertainties represents a working project developed by the Brachytherapy Physics Quality Assurances System (BRAPHYQS) subcommittee to the Physics Committee within GEC-ESTRO. Further, this report has been reviewed and approved by the American Association of Physicists in Medicine. PMID:24299968
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakariaee, R; Brown, C J; Hamarneh, G
2014-08-15
Dosimetric parameters based on dose-volume histograms (DVH) of contoured structures are routinely used to evaluate dose delivered to target structures and organs at risk. However, the DVH provides no information on the spatial distribution of the dose in situations of repeated fractions with changes in organ shape or size. The aim of this research was to develop methods to more accurately determine geometrically localized, cumulative dose to the bladder wall in intracavitary brachytherapy for cervical cancer. The CT scans and treatment plans of 20 cervical cancer patients were used. Each patient was treated with five high-dose-rate (HDR) brachytherapy fractions ofmore » 600cGy prescribed dose. The bladder inner and outer surfaces were delineated using MIM Maestro software (MIM Software Inc.) and were imported into MATLAB (MathWorks) as 3-dimensional point clouds constituting the “bladder wall”. A point-set registration toolbox for MATLAB, Coherent Point Drift (CPD), was used to non-rigidly transform the bladder-wall points from four of the fractions to the coordinate system of the remaining (reference) fraction, which was chosen to be the emptiest bladder for each patient. The doses were accumulated on the reference fraction and new cumulative dosimetric parameters were calculated. The LENT-SOMA toxicity scores of these patients were studied against the cumulative dose parameters. Based on this study, there was no significant correlation between the toxicity scores and the determined cumulative dose parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.
Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less
Hoffman, F. Owen; Moroz, Brian; Drozdovitch, Vladimir; Bouville, André; Beck, Harold; Luckyanov, Nicholas; Weinstock, Robert M.; Simon, Steven L.
2015-01-01
Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semi-palatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point “best estimates”. In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response. PMID:25574587
Chiavassa, S; Lemosquet, A; Aubineau-Lanièce, I; de Carlan, L; Clairand, I; Ferrer, L; Bardiès, M; Franck, D; Zankl, M
2005-01-01
This paper aims at comparing dosimetric assessments performed with three Monte Carlo codes: EGS4, MCNP4c2 and MCNPX2.5e, using a realistic voxel phantom, namely the Zubal phantom, in two configurations of exposure. The first one deals with an external irradiation corresponding to the example of a radiological accident. The results are obtained using the EGS4 and the MCNP4c2 codes and expressed in terms of the mean absorbed dose (in Gy per source particle) for brain, lungs, liver and spleen. The second one deals with an internal exposure corresponding to the treatment of a medullary thyroid cancer by 131I-labelled radiopharmaceutical. The results are obtained by EGS4 and MCNPX2.5e and compared in terms of S-values (expressed in mGy per kBq and per hour) for liver, kidney, whole body and thyroid. The results of these two studies are presented and differences between the codes are analysed and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiyama, Hiromichi, E-mail: hishiyam@kitasato-u.ac.jp; Satoh, Takefumi; Kawakami, Shogo
Purpose: To compare dosimetric parameters, seed migration rates, operation times, and acute toxicities of intraoperatively built custom-linked (IBCL) seeds with those of loose seeds for prostate brachytherapy. Methods and Materials: Participants were 140 patients with low or intermediate prostate cancer prospectively allocated to an IBCL seed group (n=74) or a loose seed group (n=66), using quasirandomization (allocated by week of the month). All patients underwent prostate brachytherapy using an interactive plan technique. Computed tomography and plain radiography were performed the next day and 1 month after brachytherapy. The primary endpoint was detection of a 5% difference in dose to 90% ofmore » prostate volume on postimplant computed tomography 1 month after treatment. Seed migration was defined as a seed position >1 cm from the cluster of other seeds on radiography. A seed dropped into the seminal vesicle was also defined as a migrated seed. Results: Dosimetric parameters including the primary endpoint did not differ significantly between groups, but seed migration rate was significantly lower in the IBCL seed group (0%) than in the loose seed group (55%; P<.001). Mean operation time was slightly but significantly longer in the IBCL seed group (57 min) than in the loose seed group (50 min; P<.001). No significant differences in acute toxicities were seen between groups (median follow-up, 9 months). Conclusions: This prospective quasirandomized control trial showed no dosimetric differences between IBCL seed and loose seed groups. However, a strong trend toward decreased postimplant seed migration was shown in the IBCL seed group.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Depauw, N; Patel, S; MacDonald, S
Purpose: Deep inspiration breath-hold techniques (DIBH) have been shown to carry significant dosimetric advantages in conventional radiotherapy of left-sided breast cancer. The purpose of this study is to evaluate the use of DIBH techniques for post-mastectomy radiation therapy (PMRT) using proton pencil beam scanning (PBS). Method: Ten PMRT patients, with or without breast implant, underwent two helical CT scans: one with free breathing and the other with deep inspiration breath-hold. A prescription of 50.4 Gy(RBE) to the whole chest wall and lymphatics (axillary, supraclavicular, and intramammary nodes) was considered. PBS plans were generated for each patient’s CT scan using Astroid,more » an in-house treatment planning system, with the institution conventional clinical PMRT parameters; that is, using a single en-face field with a spot size varying from 8 mm to 14 mm as a function of energy. Similar optimization parameters were used in both plans in order to ensure appropriate comparison. Results: Regardless of the technique (free breathing or DIBH), the generated plans were well within clinical acceptability. DIBH allowed for higher target coverage with better sparing of the cardiac structures. The lung doses were also slightly improved. While the use of DIBH techniques might be of interest, it is technically challenging as it would require a fast PBS delivery, as well as the synchronization of the beam delivery with a gating system, both of which are not currently available at the institution. Conclusion: DIBH techniques display some dosimetric advantages over free breathing treatment for PBS PMRT patients, which warrants further investigation. Plans will also be generated with smaller spot sizes (2.5 mm to 5.5 mm and 5 mm to 9 mm), corresponding to new generation machines, in order to further quantify the dosimetric advantages of DIBH as a function of spot size.« less
Ponmalar, Retna; Manickam, Ravikumar; Ganesh, K M; Saminathan, Sathiyan; Raman, Arun; Godson, Henry Finlay
2017-01-01
The modern radiotherapy techniques impose new challenges for dosimetry systems with high precision and accuracy in in vivo and in phantom dosimetric measurements. The knowledge of the basic characterization of a dosimetric system before patient dose verification is crucial. This incites the investigation of the potential use of nanoDot optically stimulated luminescence dosimeter (OSLD) for application in radiotherapy with therapeutic photon beams. Measurements were carried out with nanoDot OSLDs to evaluate the dosimetric characteristics such as dose linearity, dependency on field size, dose rate, energy and source-to-surface distance (SSD), reproducibility, fading effect, reader stability, and signal depletion per read out with cobalt-60 (60 Co) beam, 6 and 18 MV therapeutic photon beams. The data acquired with OSLDs were validated with ionization chamber data where applicable. Good dose linearity was observed for doses up to 300 cGy and above which supralinear behavior. The standard uncertainty with field size observed was 1.10% ± 0.4%, 1.09% ± 0.34%, and 1.2% ± 0.26% for 6 MV, 18 MV, and 60 Co beam, respectively. The maximum difference with dose rate was 1.3% ± 0.4% for 6 MV and 1.4% ± 0.4% for 18 MV photon beams. The largest variation in SSD was 1.5% ± 1.2% for 60 Co, 1.5% ± 0.9% for 6 MV, and 1.5% ± 1.3% for 18 MV photon beams. The energy dependence of OSL response at 18 MV and 60 Co with 6 MV beam was 1.5% ± 0.7% and 1.7% ± 0.6%, respectively. In addition, good reproducibility, stability after the decay of transient signal, and predictable fading were observed. The results obtained in this study indicate the efficacy and suitability of nanoDot OSLD for dosimetric measurements in clinical radiotherapy.
NASA Astrophysics Data System (ADS)
Liu, Hongcheng; Dong, Peng; Xing, Lei
2017-08-01
Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the ‘importance’ of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution—the fractional volumes receiving a dose above 20 Gy for the spinal cord are reduced by more than 40% when compared to the alternative schemes, while maintaining the same PTV coverage. With physically more meaningful modeling of the inter-structural tradeoff, the reported technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters. The new formalism also opens new opportunities for incorporating prior knowledge to facilitate the treatment planning process.
NASA Astrophysics Data System (ADS)
Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.
2013-07-01
The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally located targets with an acceptable dose fall-off and lower relative skin dose than the brachytherapy techniques considered in this study.
Brodecki, Marcin; Domienik, Joanna U; Zmyślony, Marek
2012-01-01
The current system of dosimetric quantities has been defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU). Complexity of the system implies the physical nature of ionizing radiation, resulting from the presence of different types of radiation of different ionization capabilities, as well as the individual radiation sensitivity of biological material exposed. According to the latest recommendations, there are three types of dosimeter quantities relevant to radiation protection and radiological assessment of occupational exposure. These are the basic quantities, safety quantities and operational quantities. Dose limits for occupational exposure relate directly to the protection quantities, i.e. the equivalent dose and effective dose, while these quantities are practically unmeasurable in real measurement conditions. For this reason, in the system of dosimetric quantities directly measurable operating volumes were defined. They represent equivalents of the protection quantities that allow for a reliable assessment of equivalent and effective dose by conducting routine monitoring of occupational exposure. This paper presents the characteristics of these quantities, their relationships and importance in assessing individual effects of radiation. Also the methods for their implementation in personal and environmental dosimetry were showcased. The material contained in the article is a compendium of essential information about dosimetric quantities with reference to the contemporary requirements of the law, including the changed annual occupational exposure limit for the lens of the eye. The material is especially addressed to those responsible for dosimetry monitoring in the workplace, radiation protection inspectors and occupational health physicians.
Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques
NASA Astrophysics Data System (ADS)
Amoush, Ahmad
The American Association of Physicists in Medicine Task Group Report43 (AAPM-TG43) and its updated version TG-43U1 rely on the LiF TLD detector to determine the experimental absolute dose rate for brachytherapy. The recommended uncertainty estimates associated with TLD experimental dosimetry include 5% for statistical errors (Type A) and 7% for systematic errors (Type B). TG-43U1 protocol does not include recommendation for other experimental dosimetric techniques to calculate the absolute dose for brachytherapy. This research used two independent experimental methods and Monte Carlo simulations to investigate and analyze uncertainties and errors associated with absolute dosimetry of HDR brachytherapy for a Tandem applicator. An A16 MicroChamber* and one dose MOSFET detectors† were selected to meet the TG-43U1 recommendations for experimental dosimetry. Statistical and systematic uncertainty analyses associated with each experimental technique were analyzed quantitatively using MCNPX 2.6‡ to evaluate source positional error, Tandem positional error, the source spectrum, phantom size effect, reproducibility, temperature and pressure effects, volume averaging, stem and wall effects, and Tandem effect. Absolute dose calculations for clinical use are based on Treatment Planning System (TPS) with no corrections for the above uncertainties. Absolute dose and uncertainties along the transverse plane were predicted for the A16 microchamber. The generated overall uncertainties are 22%, 17%, 15%, 15%, 16%, 17%, and 19% at 1cm, 2cm, 3cm, 4cm, and 5cm, respectively. Predicting the dose beyond 5cm is complicated due to low signal-to-noise ratio, cable effect, and stem effect for the A16 microchamber. Since dose beyond 5cm adds no clinical information, it has been ignored in this study. The absolute dose was predicted for the MOSFET detector from 1cm to 7cm along the transverse plane. The generated overall uncertainties are 23%, 11%, 8%, 7%, 7%, 9%, and 8% at 1cm, 2cm, 3cm, and 4cm, 5cm, 6cm, and 7cm, respectively. The Nucletron Freiburg flap applicator is used with the Nucletron remote afterloader HDR machine to deliver dose to surface cancers. Dosimetric data for the Nucletron 192Ir source were generated using Monte Carlo simulation and compared with the published data. Two dimensional dosimetric data were calculated at two source positions; at the center of the sphere of the applicator and between two adjacent spheres. Unlike the TPS dose algorithm, The Monte Carlo code developed for this research accounts for the applicator material, secondary electrons and delta particles, and the air gap between the skin and the applicator. *Standard Imaging, Inc., Middleton, Wisconsin USA † OneDose MOSFET, Sicel Technologies, Morrisville NC ‡ Los Alamos National Laboratory, NM USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirix, Piet; Abbeel, Sarah; Vanstraelen, Bianca
2009-10-01
Purpose: To evaluate late dysphagia after chemoradiotherapy for locally advanced head-and-neck squamous cell carcinoma, and to examine its correlation with clinical and dosimetric parameters. Methods and Materials: Consecutive patients, treated with radiotherapy (70-72 Gy) and concomitant chemotherapy (cisplatinum 100 mg/m{sup 2} every 3 weeks) between 2004 and 2007, were examined. Swallowing was evaluated by four quality-of-life questionnaires: EORTC C30 and H and N35, the Performance Status Scale of List, and the MD Anderson Dysphagia Inventory. Clinical and dosimetric parameters were correlated with late dysphagia. Results: A total of 53 disease-free patients were evaluated; mean follow-up was 20.4 months (range, 6-45more » months). The volume of the middle pharyngeal constrictor muscle receiving {>=}50 Gy (p = 0.04), the mean dose to this structure (p = 0.02) and to the supraglottic larynx (p = 0.04) were significantly associated with late swallowing problems at univariate analysis, along with tumor localization (p = 0.008), T-classification (p = 0.02), and pretreatment swallowing problems (p = 0.01). Only this last factor significantly correlated with late dysphagia at multivariate analysis. Conclusion: These findings motivate further efforts to reduce the dose to the swallowing structures, especially to the pharyngeal constrictor muscles and the larynx. However, clinical parameters are also important and should be included in future prospective trials.« less
NASA Astrophysics Data System (ADS)
Talamonti, C.; Bucciolini, M.; Marrazzo, L.; Menichelli, D.; Bruzzi, M.; Cirrone, G. A. P.; Cuttone, G.; LoJacono, P.
2008-10-01
Due to the features of the modern radiotherapy techniques, namely intensity modulated radiation therapy and proton therapy, where high spatial dose gradients are often present, detectors to be employed for 2D dose verifications have to satisfy very narrow requirements. In particular they have to show high spatial resolution. In the framework of the European Integrated Project—Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology (MAESTRO, no. LSHC-CT-2004-503564), a dosimetric detector adequate for 2D pre-treatment dose verifications was developed. It is a modular detector, based on a monolithic silicon-segmented sensor, with an n-type implantation on an epitaxial p-type layer. Each pixel element is 2×2 mm 2 and the distance center-to-center is 3 mm. The sensor is composed of 21×21 pixels. In this paper, we report the dosimetric characterization of the system with a proton beam. The sensor was irradiated with 62 MeV protons for clinical treatments at INFN-Laboratori Nazionali del Sud (LNS) Catania. The studied parameters were repeatability of a same pixel, response linearity versus absorbed dose, and dose rate and dependence on field size. The obtained results are promising since the performances are within the project specifications.
Stereotactic multibeam radiation therapy system in a PACS environment
NASA Astrophysics Data System (ADS)
Fresne, Francoise; Le Gall, G.; Barillot, Christian; Gibaud, Bernard; Manens, Jean-Pierre; Toumoulin, Christine; Lemoine, Didier; Chenal, C.; Scarabin, Jean-Marie
1991-05-01
A Multibeam radiation therapy treatment is a non-invasive technique devoted to treat a lesion within the cerebral medium by focusing photon-beams on the same target from a high number of entrance points. We present here a computer assisted dosimetric planning procedure which includes: (1) an analysis module to define the target volume by using 2D and 3D displays, (2) a planing module to issue a treatment strategy including the dosimetric simulations and (3) a treatment module setting up the parameters to order the robotized treatment system (i.e. chair- framework, radiation unit machine). Another important feature of this system is its connection to the PACS system SIRENE settled in the University hospital of Rennes which makes possible the archiving and the communication of the multimodal images (CT, MRI, Angiography) used by this application. The corporate use of stereotactic methods and the multimodality imagery ensures spatial coherence and makes the target definition and the cognition of the structures environment more accurate. The dosimetric planning suited to the spatial reference (i.e. the stereotactic frame) guarantees an optimal distribution of the dose computed by an original 3D volumetric algorithm. The robotic approach of the treatment stage has consisted to design a computer driven chair-framework cluster to position the target volume at the radiation unit isocenter.
Trnková, Petra; Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian
2010-12-01
The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning.
Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian
2011-01-01
Purpose The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. Material and methods For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. Results HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. Conclusions HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning. PMID:27853479
Cook, Taylor
2014-01-01
Purpose. To evaluate our community-based institutional experience with plaque brachytherapy for uveal melanomas with a focus on local control rates, factors impacting disease progression, and dosimetric parameters impacting treatment toxicity. Methods and Materials. Our institution was retrospectively reviewed from 1996 to 2011; all patients who underwent plaque brachytherapy for uveal melanoma were included. Follow-up data were collected regarding local control, distant metastases, and side effects from treatment. Analysis was performed on factors impacting treatment outcomes and treatment toxicity. Results. A total of 107 patients underwent plaque brachytherapy, of which 88 had follow-up data available. Local control at 10 years was 94%. Freedom from progression (FFP) and overall survival at 10 years were 83% and 79%, respectively. On univariate analysis, there were no tumor or dosimetric treatment characteristics that were found to have a prognostic impact on FFP. Brachytherapy treatment was well tolerated, with clinically useful vision (>20/200) maintained in 64% of patients. Statistically significant dosimetric relationships were established with cataract, glaucoma, and retinopathy development (greatest P = 0.05). Conclusions. Treatment with plaque brachytherapy demonstrates excellent outcomes in a community-based setting. It is well tolerated and should remain a standard of care for COMS medium sized tumors. PMID:24734198
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, C; Baikadi, M; Peters, C
2015-06-15
Purpose: Using systems engineering to design HDR skin treatment operation for small lesions using shielded applicators to enhance patient safety. Methods: Systems engineering is an interdisciplinary field that offers formal methodologies to study, design, implement, and manage complex engineering systems as a whole over their life-cycles. The methodologies deal with human work-processes, coordination of different team, optimization, and risk management. The V-model of systems engineering emphasize two streams, the specification and the testing streams. The specification stream consists of user requirements, functional requirements, and design specifications while the testing on installation, operational, and performance specifications. In implementing system engineering tomore » this project, the user and functional requirements are (a) HDR unit parameters be downloaded from the treatment planning system, (b) dwell times and positions be generated by treatment planning system, (c) source decay be computer calculated, (d) a double-check system of treatment parameters to comply with the NRC regulation. These requirements are intended to reduce human intervention to improve patient safety. Results: A formal investigation indicated that the user requirements can be satisfied. The treatment operation consists of using the treatment planning system to generate a pseudo plan that is adjusted for different shielded applicators to compute the dwell times. The dwell positions, channel numbers, and the dwell times are verified by the medical physicist and downloaded into the HDR unit. The decayed source strength is transferred to a spreadsheet that computes the dwell times based on the type of applicators and prescribed dose used. Prior to treatment, the source strength, dwell times, dwell positions, and channel numbers are double-checked by the radiation oncologist. No dosimetric parameters are manually calculated. Conclusion: Systems engineering provides methodologies to effectively design the HDR treatment operation that minimize human intervention and improve patient safety.« less
NASA Astrophysics Data System (ADS)
Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.
2017-08-01
The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.
Comparison of the hypothetical 57Co brachytherapy source with the 192Ir source
Toossi, Mohammad Taghi Bahreyni; Rostami, Atefeh; Khosroabadi, Mohsen; Khademi, Sara; Knaup, Courtney
2016-01-01
Aim of the study The 57Co radioisotope has recently been proposed as a hypothetical brachytherapy source due to its high specific activity, appropriate half-life (272 days) and medium energy photons (114.17 keV on average). In this study, Task Group No. 43 dosimetric parameters were calculated and reported for a hypothetical 57Co source. Material and methods A hypothetical 57Co source was simulated in MCNPX, consisting of an active cylinder with 3.5 mm length and 0.6 mm radius encapsulated in a stainless steel capsule. Three photon energies were utilized (136 keV [10.68%], 122 keV [85.60%], 14 keV [9.16%]) for the 57Co source. Air kerma strength, dose rate constant, radial dose function, anisotropy function, and isodose curves for the source were calculated and compared to the corresponding data for a 192Ir source. Results The results are presented as tables and figures. Air kerma strength per 1 mCi activity for the 57Co source was 0.46 cGyh–1 cm 2 mCi–1. The dose rate constant for the 57Co source was determined to be 1.215 cGyh–1U–1. The radial dose function for the 57Co source has an increasing trend due to multiple scattering of low energy photons. The anisotropy function for the 57Co source at various distances from the source is more isotropic than the 192Ir source. Conclusions The 57Co source has advantages over 192Ir due to its lower energy photons, longer half-life, higher dose rate constant and more isotropic anisotropic function. However, the 192Ir source has a higher initial air kerma strength and more uniform radial dose function. These properties make 57Co a suitable source for use in brachytherapy applications. PMID:27688731
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Depuydt, Tom; Haustermans, Karin
Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3more » films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. Conclusions: The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Jonathan; Sulman, Erik P.; Jhingran, Anuja
Purpose: To determine the incidence of duodenal toxicity in patients receiving intensity modulated radiation therapy (IMRT) for treatment of para-aortic nodes and to identify dosimetric parameters predictive of late duodenal toxicity. Methods and Materials: We identified 105 eligible patients with gynecologic malignancies who were treated with IMRT for gross metastatic disease in the para-aortic nodes from January 1, 2005, through December 31, 2009. Patients were treated to a nodal clinical target volume to 45 to 50.4 Gy with a boost to 60 to 66 Gy. The duodenum was contoured, and dosimetric data were exported for analysis. Duodenal toxicity was scoredmore » according to Radiation Therapy Oncology Group criteria. Univariate Cox proportional hazards analysis and recursive partitioning analysis were used to determine associations between dosimetric variables and time to toxicity and to identify the optimal threshold that separated patients according to risk of toxicity. Results: Nine of the 105 patients experienced grade 2 to grade 5 duodenal toxicity, confirmed by endoscopy in all cases. The 3-year actuarial rate of any duodenal toxicity was 11.7%. A larger volume of the duodenum receiving 55 Gy (V55) was associated with higher rates of duodenal toxicity. The 3-year actuarial rates of duodenal toxicity with V55 above and below 15 cm{sup 3} were 48.6% and 7.4%, respectively (P<.01). In Cox univariate analysis of dosimetric variables, V55 was associated with duodenal toxicity (P=.029). In recursive partitioning analysis, V55 less than 13.94% segregated all patients with duodenal toxicity. Conclusions: Dose-escalated IMRT can safely and effectively treat para-aortic nodal disease in gynecologic malignancies, provided that care is taken to limit the dose to the duodenum to reduce the risk of late duodenal toxicity. Limiting V55 to below 15 cm{sup 3} may reduce the risk of duodenal complications. In cases where the treatment cannot be delivered within these constraints, consideration should be given to other treatment approaches such as resection or initial chemotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S
2015-06-15
Purpose: To quantify the dosimetric variations of misaligned beams for a linear accelerator by using Monte Carlo (MC) simulations. Method and Materials: Misaligned beams of a Varian 21EX Clinac were simulated to estimate the dosimetric effects. All the linac head components for a 6 MV photon beam were implemented in BEAMnrc/EGSnrc system. For incident electron beam parameters, 6 MeV with 0.1 cm full-width-half-max Gaussian beam was used. A phase space file was obtained below the jaw per each misalignment condition of the incident electron beam: (1) The incident electron beams were tilted by 0.5, 1.0 and 1.5 degrees on themore » x-axis from the central axis. (2) The center of the incident electron beam was off-axially moved toward +x-axis by 0.1, 0.2, and 0.3 cm away from the central axis. Lateral profiles for each misaligned beam condition were acquired at dmax = 1.5 cm and 10 cm depth in a rectangular water phantom. Beam flatness and symmetry were calculated by using the lateral profile data. Results: The lateral profiles were found to be skewed opposite to the angle of the incident beam for the tilted beams. For the displaced beams, similar skewed lateral profiles were obtained with small shifts of penumbra on the +x-axis. The variations of beam flatness were 3.89–11.18% and 4.12–42.57% for the tilted beam and the translated beam, respectively. The beam symmetry was separately found to be 2.95 −9.93% and 2.55–38.06% separately. It was found that the percent increase of the flatness and the symmetry values are approximated 2 to 3% per 0.5 degree tilt or per 1 mm displacement. Conclusion: This study quantified the dosimetric effects of misaligned beams using MC simulations. The results would be useful to understand the magnitude of the dosimetric deviations for the misaligned beams.« less
NASA Astrophysics Data System (ADS)
Kim, Yong Ho; Park, Dahl; Park, Ha Ryung; Kim, Won Taek; Kim, Dong Hyun; Bae, Jin Suk; Jeon, Gye Rok; Ro, Jung Hoon; Ki, Yongkan
2017-03-01
In volumetric modulated arc therapy (VMAT) planning, usually the collimator is rotated to minimize interleaf leakage and the tongue-and-groove effect. The objective of this study was to evaluate the effect of collimator angle on the dosimetric results of VMAT plans for patients with a locally-advanced nasopharyngeal carcinoma (LA-NPC). VMAT treatment planning sets were generated using the same planning parameters, but with different collimator angles for 11 LA-NPC patients. Each set was composed of 10 plans with collimator angles at 0, 5, 10, 15, 20, 25, 35, 40, and 45 degrees. Dosimetric parameters, such as target coverage, organs at risk (OAR), and dose conformity, were analyzed at various collimator angles. With increasing collimator angles, the absorbed doses to the optic apparatus were increased by up to 35% comparing to that at a collimator angle of 0°. The best value of the conformity index (CI) was 0.971 ± 0.023 at collimator angles of 20° and 30°. The worst value of CI was 0.917 ± 0.051 at a collimator angle of 0°. The homogeneity index (HI)95 and HI98 had the best values of 0.106 ± 0.040 and 0.079 ± 0.031, respectively, at a collimator angle of 25°. The worst values of HI95 and HI98 were 0.136 ± 0.039 and 0.105 ± 0.032, respectively, at a collimator angle of of 0°. The maximum doses for some OARs (body, ear, parotid gland, mandible, and brainstem) and the HI did not show any statistically significant differences. However, the mean doses had positive correlations ( r = 0.449 0.773, p<0.001) with the irradiated volume. The CI had a weak positive correlation ( r = 0.316, p<0.001) with the irradiated volume. Other comparison parameters were evaluated as functions of the collimator angle. These findings will give useful information for choosing the collimator angle in VMAT plans for patients with a LA-NPC.
Comparison of PDR brachytherapy and external beam radiation therapy in the case of breast cancer
NASA Astrophysics Data System (ADS)
Teymournia, L.; Berger, D.; Kauer-Dorner, D.; Poljanc, K.; Seitz, W.; Aiginger, H.; Kirisits, C.
2009-04-01
Pulsed dose rate brachytherapy (PDR) was compared to external beam radiation therapy (EBRT) in the case of breast cancer. The benefits were figured out by evaluation of dosimetric parameters and calculating the normal tissue complication probability (NTCP). PDR plans were set up for five randomly chosen left-sided breast cancer patients delivering a total dose of 50.4 Gy to the target (dose rate 0.8 Gy h-1). For EBRT five left-sided breast cancer patients were planned using 3D-conformal tangential photon beams with a prescribed total dose of 50 Gy (2 Gy/fraction) to the total breast volume. For plan ranking and NTCP calculation the physical dose was first converted into the biologically effective dose (BED) and then into the normalized total dose (NTD) using the linear quadratic model with an α/β ratio of 3 Gy. In PDR the relative effectiveness (RE) was calculated for each dose bin of the differential dose volume histogram to get the BED. NTCPs were calculated for the ipsilateral lung and the heart as contoured on CT slices based on the Lyman model and the Kutcher reduction scheme. Dosimetric parameters as Vth (percentage of the total volume exceeding a threshold dose) and Jackson's fdam (fraction of the organ damaged) were also used to figure out the benefits. The comparison of calculated NTCPs in PDR and EBRT showed no difference between these two modalities. All values were below 0.01%. fdam derived from EBRT was always higher (mean value 8.95% versus 1.21% for the lung). The mean V10 and V20 of the lung related to BED were 6.32% and 1.72% for PDR versus 11.72% and 9.59% for EBRT. When using dosimetric parameters as Vth and fdam, PDR was mostly superior to EBRT in respect of sparing normal tissues. NTCP calculation as a single method of modality ranking showed a lack of information, especially when normal tissue was exposed to low radiation doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onozato, Yusuke; Kadoya, Noriyuki, E-mail: kadoya.n@rad.med.tohoku.ac.jp; Fujita, Yukio
2014-06-01
Purpose: The purpose of this study was to estimate the accuracy of the dose calculation of On-Board Imager (Varian, Palo Alto, CA) cone beam computed tomography (CBCT) with deformable image registration (DIR), using the multilevel-threshold (MLT) algorithm and histogram matching (HM) algorithm in pelvic radiation therapy. Methods and Materials: One pelvis phantom and 10 patients with prostate cancer treated with intensity modulated radiation therapy were studied. To minimize the effect of organ deformation and different Hounsfield unit values between planning CT (PCT) and CBCT, we modified CBCT (mCBCT) with DIR by using the MLT (mCBCT{sub MLT}) and HM (mCBCT{sub HM})more » algorithms. To evaluate the accuracy of the dose calculation, we compared dose differences in dosimetric parameters (mean dose [D{sub mean}], minimum dose [D{sub min}], and maximum dose [D{sub max}]) for planning target volume, rectum, and bladder between PCT (reference) and CBCTs or mCBCTs. Furthermore, we investigated the effect of organ deformation compared with DIR and rigid registration (RR). We determined whether dose differences between PCT and mCBCTs were significantly lower than in CBCT by using Student t test. Results: For patients, the average dose differences in all dosimetric parameters of CBCT with DIR were smaller than those of CBCT with RR (eg, rectum; 0.54% for DIR vs 1.24% for RR). For the mCBCTs with DIR, the average dose differences in all dosimetric parameters were less than 1.0%. Conclusions: We evaluated the accuracy of the dose calculation in CBCT, mCBCT{sub MLT}, and mCBCT{sub HM} with DIR for 10 patients. The results showed that dose differences in D{sub mean}, D{sub min}, and D{sub max} in mCBCTs were within 1%, which were significantly better than those in CBCT, especially for the rectum (P<.05). Our results indicate that the mCBCT{sub MLT} and mCBCT{sub HM} can be useful for improving the dose calculation for adaptive radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algan, Ozer, E-mail: oalgan@ouhsc.edu; Giem, Jared; Young, Julie
To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiation therapy using a single isocenter (SI)–based or multiple isocenter (MI)–based treatment planning in patients with less than 4 brain metastases. In total, 10 patients with magnetic resonance imaging (MRI) demonstrating 2-3 brain metastases were included in this retrospective study, and 2 sets of stereotactic intensity-modulated radiation therapy (IMRT) treatment plans (SI vs MI) were generated. The hippocampus was contoured on SPGR sequences, and doses received by the hippocampus and the brain were calculated and compared between the 2 treatment techniques. A totalmore » of 23 lesions in 10 patients were evaluated. The median tumor volume, the right hippocampus volume, and the left hippocampus volume were 3.15, 3.24, and 2.63 mL, respectively. In comparing the 2 treatment plans, there was no difference in the planning target volume (PTV) coverage except in the tail for the dose-volume histogram (DVH) curve. The only statistically significant dosimetric parameter was the V{sub 100}. All of the other measured dosimetric parameters including the V{sub 95}, V{sub 99}, and D{sub 100} were not significantly different between the 2 treatment planning techniques. None of the dosimetric parameters evaluated for the hippocampus revealed any statistically significant difference between the MI and SI plans. The total brain doses were slightly higher in the SI plans, especially in the lower dose region, although this difference was not statistically different. The use of SI-based treatment plan resulted in a 35% reduction in beam-on time. The use of SI treatments for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain when compared with MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Victor H.F., E-mail: vhflee@hku.hk; Ng, Sherry C.Y.; Leung, T.W.
Purpose: We wanted to investigate dosimetric parameters that would predict radiation-induced acute nausea and vomiting in intensity-modulated radiation therapy (IMRT) for undifferentiated carcinoma of the nasopharynx (NPC). Methods and Materials: Forty-nine consecutive patients with newly diagnosed NPC were treated with IMRT alone in this prospective study. Patients receiving any form of chemotherapy were excluded. The dorsal vagal complex (DVC) as well as the left and right vestibules (VB-L and VB-R, respectively) were contoured on planning computed tomography images. A structure combining both the VB-L and the VB-R, named VB-T, was also generated. All structures were labeled organs at risk (OAR).more » A 3-mm three-dimensional margin was added to these structures and labeled DVC+3 mm, VB-L+3 mm, VB-R+3 mm, and VB-T+3 mm to account for physiological body motion and setup error. No weightings were given to these structures during optimization in treatment planning. Dosimetric parameters were recorded from dose-volume histograms. Statistical analysis of parameters' association with nausea and vomiting was performed using univariate and multivariate logistic regression. Results: Six patients (12.2%) reported Grade 1 nausea, and 8 patients (16.3%) reported Grade 2 nausea. Also, 4 patients (8.2%) complained of Grade 1 vomiting, and 4 patients (8.2%) experienced Grade 2 vomiting. No patients developed protracted nausea and vomiting after completion of IMRT. For radiation-induced acute nausea, V40 (percentage volume receiving at least 40Gy) to the VB-T and V40>=80% to the VB-T were predictors, using univariate analysis. On multivariate analysis, V40>=80% to the VB-T was the only predictor. There were no predictors of radiation-induced acute vomiting, as the number of events was too small for analysis. Conclusions: This is the first study demonstrating that a V40 to the VB-T is predictive of radiation-induced acute nausea. The vestibules should be labeled as sensitive OARs, and weightings should be considered for dose sparing during optimization in the treatment planning of IMRT.« less
Algan, Ozer; Giem, Jared; Young, Julie; Ali, Imad; Ahmad, Salahuddin; Hossain, Sabbir
2015-01-01
To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiation therapy using a single isocenter (SI)-based or multiple isocenter (MI)-based treatment planning in patients with less than 4 brain metastases. In total, 10 patients with magnetic resonance imaging (MRI) demonstrating 2-3 brain metastases were included in this retrospective study, and 2 sets of stereotactic intensity-modulated radiation therapy (IMRT) treatment plans (SI vs MI) were generated. The hippocampus was contoured on SPGR sequences, and doses received by the hippocampus and the brain were calculated and compared between the 2 treatment techniques. A total of 23 lesions in 10 patients were evaluated. The median tumor volume, the right hippocampus volume, and the left hippocampus volume were 3.15, 3.24, and 2.63mL, respectively. In comparing the 2 treatment plans, there was no difference in the planning target volume (PTV) coverage except in the tail for the dose-volume histogram (DVH) curve. The only statistically significant dosimetric parameter was the V100. All of the other measured dosimetric parameters including the V95, V99, and D100 were not significantly different between the 2 treatment planning techniques. None of the dosimetric parameters evaluated for the hippocampus revealed any statistically significant difference between the MI and SI plans. The total brain doses were slightly higher in the SI plans, especially in the lower dose region, although this difference was not statistically different. The use of SI-based treatment plan resulted in a 35% reduction in beam-on time. The use of SI treatments for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain when compared with MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Speirs, Christina K; DeWees, Todd A; Rehman, Sana; Molotievschi, Alerson; Velez, Maria A; Mullen, Daniel; Fergus, Sandra; Trovo, Marco; Bradley, Jeffrey D; Robinson, Cliff G
2017-02-01
In the randomized trial of standard- versus high-dose chemoradiotherapy for locally advanced (LA) NSCLC (Radiation Therapy Oncology Group 0617), overall survival (OS) was worse in the high-dose arm. Although heart dose was suggested as a contributing factor, actionable parameters have not been established. We present an analysis of clinical and dosimetric parameters affecting OS in this patient population, focusing on heart dose. Clinical data were collected on 416 patients with LA NSCLC treated at a single institution, with a subset of 333 available treatment plans recontoured using Radiation Therapy Oncology Group 0617 normal tissue guidelines. Toxicity and dosimetry data were analyzed for 322 patients; multivariate analysis was performed on 251 patients. Dosimetric parameters of radiation to tumor and organs at risk were analyzed with clinical data pertaining to OS, disease-free survival, and toxicity. Patients were treated with radiation therapy to prescribed doses of 50.0 to 84.9 Gy (median 66.0 Gy). Median follow-up was 14.5 months. Median OS was 16.8 months. The 1- and 2-year OS rates were 61.4% and 38.8%, respectively. On multivariate analysis, factors independently associated with worse OS were increasing heart V 50 (volume receiving ≥50 Gy), heart volume, lung V 5 (proportion of the lung structure [excluding the target volume]) receiving at least 5 Gy), bilateral mediastinal lymph node involvement, and lack of concurrent chemotherapy. When stratified by heart V 50 less than 25% versus 25% or greater, the 1-year OS rates were 70.2% versus 46.8% and the 2-year OS rates were 45.9% versus 26.7% (p < 0.0001). Median heart V 50 was significantly higher (20.8% versus 13.9%, p < 0.0001) for patients with cardiac toxicity with a Common Terminology Criteria for Adverse Events grade of 1 or higher. Heart dose is associated with OS and cardiac toxicity for patients with LA NSCLC treated with chemoradiotherapy. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Cosmic radiation dose measurements from the RaD-X flight campaign
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing
2016-10-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric;
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Dosimetry in small-animal CT using Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Lee, C.-L.; Park, S.-J.; Jeon, P.-H.; Jo, B.-D.; Kim, H.-J.
2016-01-01
Small-animal computed tomography (micro-CT) imaging devices are increasingly being used in biological research. While investigators are mainly interested in high-contrast, low-noise, and high-resolution anatomical images, relatively large radiation doses are required, and there is also growing concern over the radiological risk from preclinical experiments. This study was conducted to determine the radiation dose in a mouse model for dosimetric estimates using the GEANT4 application for tomographic emission simulations (GATE) and to extend its techniques to various small-animal CT applications. Radiation dose simulations were performed with the same parameters as those for the measured micro-CT data, using the MOBY phantom, a pencil ion chamber and an electrometer with a CT detector. For physical validation of radiation dose, absorbed dose of brain and liver in mouse were evaluated to compare simulated results with physically measured data using thermoluminescent dosimeters (TLDs). The mean difference between simulated and measured data was less than 2.9% at 50 kVp X-ray source. The absorbed doses of 37 brain tissues and major organs of the mouse were evaluated according to kVp changes. The absorbed dose over all of the measurements in the brain (37 types of tissues) consistently increased and ranged from 42.4 to 104.0 mGy. Among the brain tissues, the absorbed dose of the hypothalamus (157.8-414.30 mGy) was the highest for the beams at 50-80 kVp, and that of the corpus callosum (11.2-26.6 mGy) was the lowest. These results can be used as a dosimetric database to control mouse doses and preclinical targeted radiotherapy experiments. In addition, to accurately calculate the mouse-absorbed dose, the X-ray spectrum, detector alignment, and uncertainty in the elemental composition of the simulated materials must be accurately modeled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Li, X; Ding, X
Purpose: We investigate the spot characteristic and dose profiles properties from a compact gantry proton therapy system. This compact design features a dedicated pencil beam scanning nozzle with the scanning magnet located upstream of the final 60 degree bending magnet. Due to the unique beam line design, uncertainty has been raised in the virtual source-to-axis distance (SAD). We investigate its potential clinical impact through measurements and simulation. Methods: A scintillator camera based detector was used to measure spot characteristics and position accuracy. An ion chamber array device was used to measure planar dose profile. Dose profile in-air simulation was performedmore » using in-house built MATLAB program based on additional spot parameters directly from measurements. Spot characteristics such as position and in-air sigma values were used to general simulated 2D elliptical Gaussian spots. The virtual SAD distance changes in the longitudinal direction were also simulated. Planar dose profiles were generated by summation of simulated spots at the isocenter, 15 cm above the isocenter, and 15 cm below the isocenter for evaluation of potential clinical dosimetric impact. Results: We found that the virtual SAD varies depending on the spot location on the longitudinal axis. Measurements have shown that the variable SAD changes from 7 to 12 meters from one end to the other end of the treatment field in the longitudinal direction. The simulation shows that the planer dose profiles differences between the fixed SAD and variable SAD are within 3% from the isocenter profile and the lateral penumbras are within 1 mm difference. Conclusion: Our measurements and simulations show that there are minimum effects on the spot characteristics and dose profiles for this up-stream scanning compact system proton system. Further treatment planning study is needed with the variable virtual SAD accounted for in the planning system to show minimum dosimetric impact.« less
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764
Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C
2015-01-01
Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. © 2014 Wiley Periodicals, Inc.
CURRENT STATUS OF INDIVIDUAL DOSIMETRIC MONITORING IN UKRAINE.
Chumak, V; Deniachenko, N; Makarovska, O; Mihailescu, L-C; Prykhodko, A; Voloskyi, V; Vanhavere, F
2016-09-01
About 50 000 workers are being occupationally exposed to radiation in Ukraine. Individual dosimetric monitoring (IDM) is provided by 77 dosimetry services and laboratories of very different scale with a number of monitored workers ranging from several persons to ∼9000. In the present work, the current status of personal dosimetry in Ukraine was studied. The First National Intercomparison (FNI) of the IDM labs was accompanied by a survey of the laboratory operation in terms of coverage, types of dosimetry provided, instrumentation and methodologies used, metrological support, data recording, etc. Totally, 34 laboratories responded to the FNI call, and 18 services with 19 different personal dosimetry systems took part in the intercomparison exercise providing 24 dosimeters each for blind irradiation to photons of 6 different qualities (ISO N-series X-rays, S-Cs and S-Co sources) in a dose range of 5-60 mSv. Performance of the dosimetry labs was evaluated according to ISO 14146 criteria of matching trumpet curves with H0 = 0.2 mSv. The test revealed that 8 of the 19 systems meet ISO 14146 criteria in full, 5 other labs show marginal performance and 6 laboratories demonstrated catastrophic quality of dosimetric results. Altogether, 18 participating labs provide dosimetric monitoring to 37 477 workers (about three-fourths of all occupationally exposed workers), usually on monthly (nuclear industry) or quarterly (rest of applications) basis. Of this number, 20 664 persons (55 %) receive completely adequate individual monitoring, and the number of personnel receiving IDM of inadequate quality counts 3054 persons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer
Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun
2016-01-01
The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5–8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3–5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3–5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. PMID:27605630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, MJ; Rothley, DJ
2016-06-15
Purpose: The VariSeed 9.0 brachytherapy TPS is recently available and has new features such as ability to rotate a brachytherapy source away from normal to the imaging plane. Consequently, a dosimetric analysis was performed for a directional brachytherapy source (CivaSheet) with tests of this functionality and experiences from clinical treatment planning were documented. These observations contribute to safe, practical, and accurate use of such new software features. Methods: Several tests were established to evaluate the new rotational feature, specific to the CivaSheet for the first patients treated using this new brachytherapy device. These included suitability of imaging slice-thickness and in-planemore » resolution, window/level adjustments for brachytherapy source visualization, commissioning the source physical length for performing rotations, and using different planar and 3D window views to identify source orientation. Additional CivaSheet-specific tests were performed to determine the dosimetric influence on target coverage: changing the source tilt angle, source positioning in the treatment plan based on the CivaSheet rectangular array of CivaDots, and influence of prescription depth on the necessary treatment margin for adequate target coverage. Results: Higher imaging-resolution produced better accuracy for source orientation and positioning, with sub-millimeter CT slice-thickness and in-plane resolution preferred. Source rotation was possible only in sagittal or coronal views. The process for validating source orientation required iteratively altering rotations then checking them in the 3D view, which was cumbersome given the absence of quantitative plan documentation to indicate orientation. Given the small Pd-103 source size, influence of source tilt within 30° was negligible for <1.0 cm. Influence of source position was important when the source was positioned in/out of the adjacent source plane, causing changes of 15%, 7%, and 3% at depths of 0.5, 0.7, and 1.0 cm. Conclusion: The new TPS rotational feature worked well, but several issues were identified to improve the treatment planning process. Research supported in part by CivaTech Oncology, Inc. for Dr. Rivard.« less
Modification and characterization of a high-energy photon irradiation facility using nitrogen-16
NASA Astrophysics Data System (ADS)
Roy, Tapash Kumar
This work involves fabrication and characterization of a reactor source of high energy (˜7 MeV) nitrogen-16 photons for application in evaluation of dosimetric responses of personnel devices and portable instruments. The N-16 source has been established by continuously flowing coolant water from the core of a 1 MW research reactor through a cylindrical thin walled aluminium chamber. Dose measurements have been made at selected distances of interest along the depth axis both for with and without a near-air equilibrium wall of polymethyl methacrylate (PMMA) in place. Photon dose and exposure measurements were done using condenser-R ionization chambers with sufficiently thick walls to yield an approximate transient charged particle equilibrium (TCPE) condition. Field areal uniformity was defined using large area Kodak Readypack RP films along with lead foil radiators. Dosimetric quantities of interest include skin dose, eye (lens) dose, and 1 cm deep dose. Measurements were made at selected depths of 7, 300, and 1000 mg cm-2 for specific evaluation of these respective quantities. Photon spectral analysis was performed with a NaI(Tl) scintillation spectrometry system. Additionally, beta radiation measurements, and evaluation of neutron dose contributions to the radiation field were completed.
Manikandan, A.; Biplab, Sarkar; David, Perianayagam A.; Holla, R.; Vivek, T. R.; Sujatha, N.
2011-01-01
For high dose rate (HDR) brachytherapy, independent treatment verification is needed to ensure that the treatment is performed as per prescription. This study demonstrates dosimetric quality assurance of the HDR brachytherapy using a commercially available two-dimensional ion chamber array called IMatriXX, which has a detector separation of 0.7619 cm. The reference isodose length, step size, and source dwell positional accuracy were verified. A total of 24 dwell positions, which were verified for positional accuracy gave a total error (systematic and random) of –0.45 mm, with a standard deviation of 1.01 mm and maximum error of 1.8 mm. Using a step size of 5 mm, reference isodose length (the length of 100% isodose line) was verified for single and multiple catheters of same and different source loadings. An error ≤1 mm was measured in 57% of tests analyzed. Step size verification for 2, 3, 4, and 5 cm was performed and 70% of the step size errors were below 1 mm, with maximum of 1.2 mm. The step size ≤1 cm could not be verified by the IMatriXX as it could not resolve the peaks in dose profile. PMID:21897562
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dise, J; Liang, X; Lin, L
Purpose: To evaluate an automatic interstitial catheter digitization algorithm that reduces treatment planning time and provide means for adaptive re-planning in HDR Brachytherapy of Gynecologic Cancers. Methods: The semi-automatic catheter digitization tool utilizes a region growing algorithm in conjunction with a spline model of the catheters. The CT images were first pre-processed to enhance the contrast between the catheters and soft tissue. Several seed locations were selected in each catheter for the region growing algorithm. The spline model of the catheters assisted in the region growing by preventing inter-catheter cross-over caused by air or metal artifacts. Source dwell positions frommore » day one CT scans were applied to subsequent CTs and forward calculated using the automatically digitized catheter positions. This method was applied to 10 patients who had received HDR interstitial brachytherapy on an IRB approved image-guided radiation therapy protocol. The prescribed dose was 18.75 or 20 Gy delivered in 5 fractions, twice daily, over 3 consecutive days. Dosimetric comparisons were made between automatic and manual digitization on day two CTs. Results: The region growing algorithm, assisted by the spline model of the catheters, was able to digitize all catheters. The difference between automatic and manually digitized positions was 0.8±0.3 mm. The digitization time ranged from 34 minutes to 43 minutes with a mean digitization time of 37 minutes. The bulk of the time was spent on manual selection of initial seed positions and spline parameter adjustments. There was no significance difference in dosimetric parameters between the automatic and manually digitized plans. D90% to the CTV was 91.5±4.4% for the manual digitization versus 91.4±4.4% for the automatic digitization (p=0.56). Conclusion: A region growing algorithm was developed to semi-automatically digitize interstitial catheters in HDR brachytherapy using the Syed-Neblett template. This automatic digitization tool was shown to be accurate compared to manual digitization.« less
Space charge dosimeters for extremely low power measurements of radiation in shipping containers
Britton, Jr., Charles L.; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN
2011-05-03
Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Space charge dosimeters for extremely low power measurements of radiation in shipping containers
Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN
2011-04-26
Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Modeling of a multileaf collimator
NASA Astrophysics Data System (ADS)
Kim, Siyong
A comprehensive physics model of a multileaf collimator (MLC) field for treatment planning was developed. Specifically, an MLC user interface module that includes a geometric optimization tool and a general method of in- air output factor calculation were developed. An automatic tool for optimization of MLC conformation is needed to realize the potential benefits of MLC. It is also necessary that a radiation therapy treatment planning (RTTP) system is capable of modeling MLC completely. An MLC geometric optimization and user interface module was developed. The planning time has been reduced significantly by incorporating the MLC module into the main RTTP system, Radiation Oncology Computer System (ROCS). The dosimetric parameter that has the most profound effect on the accuracy of the dose delivered with an MLC is the change in the in-air output factor that occurs with field shaping. It has been reported that the conventional method of calculating an in-air output factor cannot be used for MLC shaped fields accurately. Therefore, it is necessary to develop algorithms that allow accurate calculation of the in-air output factor. A generalized solution for an in-air output factor calculation was developed. Three major contributors of scatter to the in-air output-flattening filter, wedge, and tertiary collimator-were considered separately. By virtue of a field mapping method, in which a source plane field determined by detector's eye view is mapped into a detector plane field, no additional dosimetric data acquisition other than the standard data set for a range of square fields is required for the calculation of head scatter. Comparisons of in-air output factors between calculated and measured values show a good agreement for both open and wedge fields. For rectangular fields, a simple equivalent square formula was derived based on the configuration of a linear accelerator treatment head. This method predicts in-air output to within 1% accuracy. A two-effective-source algorithm was developed to account for the effect of source to detector distance on in-air output for wedge fields. Two effective sources, one for head scatter and the other for wedge scatter, were dealt with independently. Calculations provided less than 1% difference of in-air output factors from measurements. This approach offers the best comprehensive accuracy in radiation delivery with field shapes defined using MLC. This generalized model works equally well with fields shaped by any type of tertiary collimator and have the necessary framework to extend its application to intensity modulated radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, MJ
2016-06-15
Purpose: The CivaSheet is a new LDR Pd-103 brachytherapy device offering directional-radiation for preferentially irradiating malignancies with healthy-tissue sparing. Observations are presented on dosimetric characterization, TPS commissioning, and evaluation of the dosesuperposition- principle for summing individual elements comprising a planar CivaSheet Methods: The CivaSheet comprises individual sources (CivaDots, 0.05cm thick and 0.25cm diam.) inside a flexible bioabsorbable substrate with a 0.8cm center-to-center rectangular array. All non-radioactive components were measured to ensure accuracy of manufacturer-provided dimensional information. The Pd spatial distribution was gleaned from radioactive and inert samples, then modeled with the MCNP6 radiation-transport-code. A 6×6 array CivaSheet was modeled tomore » evaluate the dose superposition principle for treatment planning. Air-kerma-strength was estimated using the NIST WAFAC geometry. Absorbed dose was estimated in water with polar sampling covering 0.05≤r≤15cm in 0.05cm increments and 0°≤θ≤180° in 1° increments. These data were entered into VariSeed9.0 and tested for the dose-superposition-principle. Results: The dose-rate-constant was 0.579 cGy/h/U with g(r) determined along the rotational-axis of symmetry (0°) instead of 90°. gP(r) values at 0.1, 0.5, 2, 5, and 10cm were 1.884, 1.344, 0.558, 0.088, and 0.0046. F(r,θ) decreased between 0° and 180° by factors of 270, 23, and 5.1 at 0.1, 1, and 10cm. The highest dose-gradient was at 92°, changing by a factor of 3 within 1° due to Au-foil shielding. TPS commissioning from 0.1≤r≤11cm and 0°≤θ≤180° demonstrated 2% reproducibility of input data except at the high-dose-gradient where interpolations caused 3% differences. Dose superposition of CivaDots replicated a multi-source CivaSheet array within 2% except where another CivaDot was present. Following implantation, the device is not perfectly planar. TPS accuracy utilizing the dose-superposition-principle through geometric repositioning of CivaDots supersedes TPS limitations of intersource shielding effects Conclusion: Dosimetric characterization, source commissioning, and evaluation of the dose-superposition-principle with VariSeed9.0 permits treatment planning for the CivaSheet brachytherapy device. Research supported in part by CivaTech Oncology, Inc.« less
Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza
2017-12-01
Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.
NASA Astrophysics Data System (ADS)
Pantelis, E.; Karlis, A. K.; Kozicki, M.; Papagiannis, P.; Sakelliou, L.; Rosiak, J. M.
2004-08-01
The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.
Pantelis, E; Karlis, A K; Kozicki, M; Papagiannis, P; Sakelliou, L; Rosiak, J M
2004-08-07
The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widesott, Lamberto, E-mail: widesott@yahoo.it; Pierelli, Alessio; Fiorino, Claudio
2011-08-01
Purpose: To compare intensity-modulated proton therapy (IMPT) and helical tomotherapy (HT) treatment plans for high-risk prostate cancer (HRPCa) patients. Methods and Materials: The plans of 8 patients with HRPCa treated with HT were compared with IMPT plans with two quasilateral fields set up (-100{sup o}; 100{sup o}) and optimized with the Hyperion treatment planning system. Both techniques were optimized to simultaneously deliver 74.2 Gy/Gy relative biologic effectiveness (RBE) in 28 fractions on planning target volumes (PTVs)3-4 (P + proximal seminal vesicles), 65.5 Gy/Gy(RBE) on PTV2 (distal seminal vesicles and rectum/prostate overlapping), and 51.8 Gy/Gy(RBE) to PTV1 (pelvic lymph nodes). Normalmore » tissue calculation probability (NTCP) calculations were performed for the rectum, and generalized equivalent uniform dose (gEUD) was estimated for the bowel cavity, penile bulb and bladder. Results: A slightly better PTV coverage and homogeneity of target dose distribution with IMPT was found: the percentage of PTV volume receiving {>=}95% of the prescribed dose (V{sub 95%}) was on average >97% in HT and >99% in IMPT. The conformity indexes were significantly lower for protons than for photons, and there was a statistically significant reduction of the IMPT dosimetric parameters, up to 50 Gy/Gy(RBE) for the rectum and bowel and 60 Gy/Gy(RBE) for the bladder. The NTCP values for the rectum were higher in HT for all the sets of parameters, but the gain was small and in only a few cases statistically significant. Conclusions: Comparable PTV coverage was observed. Based on NTCP calculation, IMPT is expected to allow a small reduction in rectal toxicity, and a significant dosimetric gain with IMPT, both in medium-dose and in low-dose range in all OARs, was observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatramani, Rajkumar, E-mail: rvenkatramani@chla.usc.edu; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; Kamath, Sunil
Purpose: To identify the incidence and the risk factors for pulmonary toxicity in children treated for cancer with contemporary lung irradiation. Methods and Materials: We analyzed clinical features, radiographic findings, pulmonary function tests, and dosimetric parameters of children receiving irradiation to the lung fields over a 10-year period. Results: We identified 109 patients (75 male patients). The median age at irradiation was 13.8 years (range, 0.04-20.9 years). The median follow-up period was 3.4 years. The median prescribed radiation dose was 21 Gy (range, 0.4-64.8 Gy). Pulmonary toxic chemotherapy included bleomycin in 58.7% of patients and cyclophosphamide in 83.5%. The followingmore » pulmonary outcomes were identified and the 5-year cumulative incidence after irradiation was determined: pneumonitis, 6%; chronic cough, 10%; pneumonia, 35%; dyspnea, 11%; supplemental oxygen requirement, 2%; radiographic interstitial lung disease, 40%; and chest wall deformity, 12%. One patient died of progressive respiratory failure. Post-irradiation pulmonary function tests available from 44 patients showed evidence of obstructive lung disease (25%), restrictive disease (11%), hyperinflation (32%), and abnormal diffusion capacity (12%). Thoracic surgery, bleomycin, age, mean lung irradiation dose (MLD), maximum lung dose, prescribed dose, and dosimetric parameters between V{sub 22} (volume of lung exposed to a radiation dose ≥22 Gy) and V{sub 30} (volume of lung exposed to a radiation dose ≥30 Gy) were significant for the development of adverse pulmonary outcomes on univariate analysis. MLD, maximum lung dose, and V{sub dose} (percentage of volume of lung receiving the threshold dose or greater) were highly correlated. On multivariate analysis, MLD was the sole significant predictor of adverse pulmonary outcome (P=.01). Conclusions: Significant pulmonary dysfunction occurs in children receiving lung irradiation by contemporary techniques. MLD rather than prescribed dose should be used to perform risk stratification of patients receiving lung irradiation.« less
Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.
2013-01-01
Purpose To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. Methods We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposure and biological effect. Results We find that: a) The energy absorbed by living matter during exposure to environmentally accounted EMFs is normally well below the thermal level. b) All existing methods for SAR estimation, especially those based upon tissue conductivity and internal electric field, have serious deficiencies. c) The only method to estimate SAR without large error is by measuring temperature increases within biological tissue, which normally are negligible for environmental EMF intensities, and thus cannot be measured. Conclusions SAR actually refers to thermal effects, while the vast majority of the recorded biological effects from man-made non-ionizing environmental radiation are non-thermal. Even if SAR could be accurately estimated for a whole tissue, organ, or body, the biological/health effect is determined by tiny amounts of energy/power absorbed by specific biomolecules, which cannot be calculated. Moreover, it depends upon field parameters not taken into account in SAR calculation. Thus, SAR should not be used as the primary dosimetric quantity, but used only as a complementary measure, always reporting the estimating method and the corresponding error. Radiation/field intensity along with additional physical parameters (such as frequency, modulation etc) which can be directly and in any case more accurately measured on the surface of biological tissues, should constitute the primary measure for EMF exposures, in spite of similar uncertainty to predict the biological effect due to non-linearity. PMID:23750202
DOE Office of Scientific and Technical Information (OSTI.GOV)
Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl; Valli, Lorella; Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna
Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was alsomore » varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V{sub 100%}) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3-mm margin but resulted in lower doses to rectum and bladder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Li, Guangjun; Zhang, Yingjie
2013-01-01
To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less
Validation of the Monte Carlo simulator GATE for indium-111 imaging.
Assié, K; Gardin, I; Véra, P; Buvat, I
2005-07-07
Monte Carlo simulations are useful for optimizing and assessing single photon emission computed tomography (SPECT) protocols, especially when aiming at measuring quantitative parameters from SPECT images. Before Monte Carlo simulated data can be trusted, the simulation model must be validated. The purpose of this work was to validate the use of GATE, a new Monte Carlo simulation platform based on GEANT4, for modelling indium-111 SPECT data, the quantification of which is of foremost importance for dosimetric studies. To that end, acquisitions of (111)In line sources in air and in water and of a cylindrical phantom were performed, together with the corresponding simulations. The simulation model included Monte Carlo modelling of the camera collimator and of a back-compartment accounting for photomultiplier tubes and associated electronics. Energy spectra, spatial resolution, sensitivity values, images and count profiles obtained for experimental and simulated data were compared. An excellent agreement was found between experimental and simulated energy spectra. For source-to-collimator distances varying from 0 to 20 cm, simulated and experimental spatial resolution differed by less than 2% in air, while the simulated sensitivity values were within 4% of the experimental values. The simulation of the cylindrical phantom closely reproduced the experimental data. These results suggest that GATE enables accurate simulation of (111)In SPECT acquisitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Nieto, Beatriz, E-mail: bsanchez@fis.puc.cl; Goset, Karen C.; Caviedes, Ivan
Purpose: To propose multivariate predictive models for changes in pulmonary function tests ({Delta}PFTs) with respect to preradiotherapy (pre-RT) values in patients undergoing RT for breast cancer and lymphoma. Methods and Materials: A prospective study was designed to measure {Delta}PFTs of patients undergoing RT. Sixty-six patients were included. Spirometry, lung capacity (measured by helium dilution), and diffusing capacity of carbon monoxide tests were used to measure lung function. Two lung definitions were considered: paired lung vs. irradiated lung (IL). Correlation analysis of dosimetric parameters (mean lung dose and the percentage of lung volume receiving more than a threshold dose) and {Delta}PFTsmore » was carried out to find the best dosimetric predictor. Chemotherapy, age, smoking, and the selected dose-volume parameter were considered as single and interaction terms in a multivariate analysis. Stability of results was checked by bootstrapping. Results: Both lung definitions proved to be similar. Modeling was carried out for IL. Acute and late damage showed the highest correlations with volumes irradiated above {approx}20 Gy (maximum R{sup 2} = 0.28) and {approx}40 Gy (maximum R{sup 2} = 0.21), respectively. RT alone induced a minor and transitory restrictive defect (p = 0.013). Doxorubicin-cyclophosphamide-paclitaxel (Taxol), when administered pre-RT, induced a late, large restrictive effect, independent of RT (p = 0.031). Bootstrap values confirmed the results. Conclusions: None of the dose-volume parameters was a perfect predictor of outcome. Thus, different predictor models for {Delta}PFTs were derived for the IL, which incorporated other nondosimetric parameters mainly through interaction terms. Late {Delta}PFTs seem to behave more serially than early ones. Large restrictive defects were demonstrated in patients pretreated with doxorubicin-cyclophosphamide-paclitaxel.« less
Dosimetric Analysis of Radiation-induced Gastric Bleeding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Mary, E-mail: maryfeng@umich.edu; Normolle, Daniel; Pan, Charlie C.
2012-09-01
Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at amore » median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.« less
NASA Technical Reports Server (NTRS)
1977-01-01
Provisional standards for radiation affecting passenger aircraft are considered. Agencies responsible for seeing that the regulations are enforced are designated while radiation sources and types of radiation are defined. Standard levels of permissible radiation are given and conditions for radiation safety are discussed. Dosimetric equipment on board aircraft is delineated and regulation effective dates are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, P. E., E-mail: Patricia.Lindsay@rmp.uhn.on.ca; Granton, P. V.; Hoof, S. van
Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization ofmore » the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm{sup 2} field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm{sup 2}, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the dosimetric and geometric properties of the three systems. This underscores the need for careful commissioning of each individual system for use in radiobiological experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, S; Mossahebi, S; Yi, B
Purpose: A dedicated stereotactic breast radiotherapy device, GammaPod, was developed to treat early stage breast cancer. The first clinical unit was installed and commissioned at University of Maryland. We report our methodology of absolute dosimetry in multiple calibration conditions and dosimetric verifications of treatment plans produced by the system. Methods: GammaPod unit is comprised of a rotating hemi-spherical source carrier containing 36 Co-60 sources and a concentric tungsten collimator providing beams of 15 and 25 mm. Absolute dose calibration formalism was developed with modifications to AAPM protocols for unique geometry and different calibration medium (acrylic, polyethylene or liquid water). Breastmore » cup-size specific and collimator output factors were measured and verified with respect to Monte-Carlo simulations for single isocenter plans. Multiple isocenter plans were generated for various target size, location and cup-sizes in phantoms and 20 breast cancer patients images. Stereotactic mini-farmer chamber, OSL and TLD detectors as well as radio-chromic films were used for dosimetric measurements. Results: At the time of calibration (1/14/2016), absolute dose rate of the GammaPod was established to be 2.10 Gy/min in acrylic for 25 mm for sources installed in March 2011. Output factor for 15 mm collimator was measured to be 0.950. Absolute dose calibration was independently verified by IROC-Houston with a TLD/Institution ratio of 0.99. Cup size specific output measurements in liquid water for single isocenter were found to be within 3.0% of MC simulations. Point-dose measurements of multiple isocenter treatment plans were found to be within −1.0 ± 1.2 % of treatment planning system while 2-dimensional gamma analysis yielded a pass rate of 97.9 ± 2.2 % using gamma criteria of 3% and 2mm. Conclusion: The first GammaPod treatment unit for breast stereotactic radiotherapy was successfully installed, calibrated and commissioned for patient treatments. An absolute dosimetry and dosimetric verification protocols were successfully created.« less
Design and dosimetry of small animal radiation facilities
NASA Astrophysics Data System (ADS)
Rodriguez, Manuel R.
The aim of this work was to develop an irradiation system for radiobiology studies. We designed a novel image-guided micro-irradiator capable of partial-body zebrafish embryo irradiation. The radiation source is a 50 kV photon beam from a miniature x-ray source (Xoft Inc., CA). The source is inserted in a cylindrical brass collimator, 3 cm in diameter and 3 cm in length. The collimator has a 1 mm-diameter pinhole along the longitudinal axis, which provides a well-focused beam with a sharp penumbra. A photodiode is installed at one exit of the pinhole collimator to monitor the photon dose rate. The source with the collimator is attached under a movable table. A video camera, connected to the computer, is placed above the movable table to record position of the specimens in relation to the pinhole collimator. The captured images are analyzed, and the relative distances between the specimens and the pinhole are calculated. The coordinates are sent to the computer-controlled movable table to accurately position the specimens in the beam. Monte Carlo simulations were performed to characterize dosimetric properties of the system, to determine dosimetric sensitivity, and to help in the design. The image-guidance and high precision of the movable table enable very accurate specimen position. The beam monitoring system provides accurate, fast and easy dose determination. Portability and self-shielding make this system suitable for any radiobiology laboratory. This novel micro-irradiator is appropriate for partial irradiation of zebrafish embryos; however its potential use is much wider like irradiation of cell cultures or other small specimens.
Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry
NASA Astrophysics Data System (ADS)
Guzmán Calcina, Carmen S.; de Almeida, Adelaide; Oliveira Rocha, José R.; Abrego, Felipe Chen; Baffa, Oswaldo
2005-03-01
Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181 8, Nath et al 1995 Med. Phys. 22 209 34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695 702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434 48, Ballester et al 1997 Med. Phys. 24 1221 8, Ballester et al 2001 Phys. Med. Biol. 46 N79 90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032 40).
Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry.
Calcina, Carmen S Guzmán; de Almeida, Adelaide; Rocha, José R Oliveira; Abrego, Felipe Chen; Baffa, Oswaldo
2005-03-21
Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40).
Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Cuttino, Laurie W; Mukhopadhyay, Nitai D
2013-06-01
Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥ 95% of the prescribed dose (PD) covering ≥ 95% of the target volume (TV); maximum skin dose ≤ 125% of the PD; maximum rib dose ≤ 145% of the PD; and V150 ≤50 cc and V200 ≤ 10 cc. Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P ≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Douglas W., E-mail: darthur@mcvh-vcu.edu; Vicini, Frank A.; Todor, Dorin A.
2013-06-01
Purpose: Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Methods and Materials: Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥95% of the prescribed dose (PD) covering ≥95% of the target volume (TV); maximum skin dose ≤125%more » of the PD; maximum rib dose ≤145% of the PD; and V150 ≤50 cc and V200 ≤10 cc. Results: Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Conclusions: Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W; Johnson, D; Ahmad, S
Purpose: To quantitatively evaluate the dosimetric impact of differing breast tissue compositions for electronic brachytherapy source for high dose rate accelerated partial breast irradiation. Methods: A series of Monte Carlo Simulation were created using the GEANT4 toolkit (version 10.0). The breast phantom was modeled as a semi-circle with a radius of 5.0 cm. A water balloon with a radius of 1.5 cm was located in the phantom with the Xoft AxxentTM EBT source placed at center as a point source. A mixed of two tissue types (adipose and glandular tissue) was assigned as the materials for the breast phantom withmore » different weight ratios. The proportionality of glandular and adipose tissue was simulated in four different fashions, 80/20, 70/30, 50/50 and 30/70 respectively. The custom energy spectrum for the 50 kVp XOFT source was provided via the manufacturer and used to generate incident photons. The dose distributions were recorded using a parallel three dimensional mesh with a size of 30 × 30 × 30 cm3 with 1 × 1 × 1 mm3 voxels. The simulated doses absorbed along the transverse axis were normalized at the distance of 1 cm and then compared with the calculations using standard TG-43 formalism. Results: All simulations showed underestimation of dose beyond balloon surface compared to standard TG-43 calculations. The maximum percentage differences within 2 cm distance from balloon surface were found to be 18%, 11%, 10% and 8% for the fat breast (30/70), standard breast (50/50), dense breast (70/30 and 80/20), respectively. Conclusion: The accuracy of dose calculations for low energy EBT source was limited when considering tissue heterogeneous composition. The impact of atomic number on photo-electric effect for lower energy Brachytherapy source is not accounted for and resulting in significant errors in dose calculation.« less
The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac
NASA Astrophysics Data System (ADS)
Bilal Ahmad, Syed; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M.
2017-08-01
Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml-1 were used to represent the gadolinium uptake in the patient’s GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml-1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml-1. This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml-1. If the gadolinium concentration is lower than 23 mg ml-1, then a correction for the presence of gadolinium may not be necessary in the TPS.
The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac.
Ahmad, Syed Bilal; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M
2017-08-01
Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml -1 were used to represent the gadolinium uptake in the patient's GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml -1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml -1 . This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml -1 . If the gadolinium concentration is lower than 23 mg ml -1 , then a correction for the presence of gadolinium may not be necessary in the TPS.
Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Mark; Tuen Mun Hospital, Hong Kong; Grehn, Melanie
Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with themore » original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germain, Francois; Beaulieu, Luc; Fortin, Andre
2008-04-01
In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generatemore » individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.« less
Melchert, Corinna; Kovács, György
2016-01-01
Purpose This study aims to compare the dosimetric data of local tumor's bed dose escalation (boost) with photon beams (external beam radiation therapy – EBRT) versus high-dose-rate interstitial brachytherapy (HDR-BT) after breast-conserving treatment in women with early-stage breast cancer. Material and methods We analyzed the treatment planning data of 136 irradiated patients, treated between 2006 and 2013, who underwent breast-conserving surgery and adjuvant whole breast irradiation (WBI; 50.4 Gy) and boost (HDR-BT: 10 Gy in one fraction [n = 36]; EBRT: 10 Gy in five fractions [n = 100]). Organs at risk (OAR; heart, ipsilateral lung, skin, most exposed rib segment) were delineated. Dosimetric parameters were calculated with the aid of dose-volume histograms (DVH). A non-parametric test was performed to compare the two different boost forms. Results There was no difference for left-sided cancers regarding the maximum dose to the heart (HDR-BT 29.8% vs. EBRT 29.95%, p = 0.34). The maximum doses to the other OAR were significantly lower for HDR-BT (Dmax lung 47.12% vs. 87.7%, p < 0.01; rib 61.17% vs. 98.5%, p < 0.01; skin 57.1% vs. 94.75%, p < 0.01; in the case of right-sided breast irradiation, dose of the heart 6.00% vs. 16.75%, p < 0.01). Conclusions Compared to EBRT, local dose escalation with HDR-BT presented a significant dose reduction to the investigated OAR. Only left-sided irradiation showed no difference regarding the maximum dose to the heart. Reducing irradiation exposure to OAR could result in a reduction of long-term side effects. Therefore, from a dosimetric point of view, an interstitial boost complementary to WBI via EBRT seems to be more advantageous in the adjuvant radiotherapy of breast cancer. PMID:27648082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, C; Janssens, G; Ainsley, C
Purpose: Proton dose distribution is sensitive to tumor regression and tissue and normal anatomy changes. Replanning is sometimes necessary during treatment to ensure continue tumor coverage or avoid overtreatment of organs at risk (OARs). We investigated action thresholds for replanning and identified both dosimetric and non-dosimetric metrics that would predict a need for replan. Methods: All consecutive lung cancer patients (n = 188) who received definitive proton radiotherapy and had more than two evaluation CT scans at the Roberts Proton Therapy Center (Philadelphia, USA) from 2011 to 2015 were included in this study. The cohort included a variety of tumormore » sizes, locations, histology, beam angles, as well as radiation-induced tumor and lung change. Dosimetric changes during therapy were characterized by changes in the dose volume distribution of PTV, ITV, and OARs (heart, cord, esophagus, brachial plexus and lungs). Tumor and lung change were characterized by changes in sizes, and in the distribution of Hounsfield numbers and water equivalent thickness (WET) along the beam path. We applied machine learning tools to identify both dosimetric and non-dosimetric metrics that predicted a replan. Results: Preliminary data showed that clinical indicators (n = 54) were highly correlated; thus, a simple indicator may be derived to guide the action threshold for replanning. Additionally, tumor regression alone could not predict dosimetric changes in OARs; it required further information about beam angles and tumor locations. Conclusion: Both dosimetric and non-dosimetric factors are predictive of the need for replanning during proton treatment.« less
Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G
2013-12-01
To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roeske, J.C.; Stinchcomb, T.G.; Schieve, L.
1999-01-01
In the 1920s, painters in the radium watch dial industry frequently tipped their brushes with their tongues resulting in the ingestion of radium-226 and/or radium-228. Earlier dosimetric studies (1950--1990) attempted to correlate the magnitude of biological effects (e.g., increased cancer incidence) with variations in radium uptake. Recently, there is a renewed interest on the part of epidemiologists studying additional possible effects (e.g., low birthrate and sex ratio). The goal of this work is to review and update the determination of dose to the ovaries from both external and internal radiation hazards in an attempt to correlate ovarian dose with thesemore » additional possible effects. The dose to the ovaries can be attributed to four major sources: (1) external gamma irradiation from the containers of radium paint; (2) alpha and (3) beta particle emissions due to sources which decay within the ovaries; and (4) internal gamma irradiation released throughout the body. Data obtained in earlier dosimetric studies on the quantity of Ra-226 and/or Ra-228 ingested were used in this study. Dose is estimated on a macroscopic scale by calculating the average dose deposited within the entire ovary. In addition, a microdosimetric analysis is performed which considers the statistical variation of energy deposited within individual oocyte nuclei. Sources of uncertainty, and the use of these data in new epidemiological studies are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, N; Young, L; Parvathaneni, U
Purpose: The presence of high density dental amalgam in patient CT image data sets causes dose calculation errors for head and neck (HN) treatment planning. This study assesses and compares dosimetric variations in IMRT and VMAT treatment plans due to dental artifacts. Methods: Sixteen HN patients with similar treatment sites (oropharynx), tumor volume and extensive dental artifacts were divided into two groups: IMRT (n=8, 6 to 9 beams) and VMAT (n=8, 2 arcs with 352° rotation). All cases were planned with the Pinnacle 9.2 treatment planning software using the collapsed cone convolution superposition algorithm and a range of prescription dosemore » from 60 to 72Gy. Two different treatment plans were produced, each based on one of two image sets: (a)uncorrected; (b)dental artifacts density overridden (set to 1.0g/cm{sup 3}). Differences between the two treatment plans for each of the IMRT and VMAT techniques were quantified by the following dosimetric parameters: maximum point dose, maximum spinal cord and brainstem dose, mean left and right parotid dose, and PTV coverage (V95%Rx). Average differences generated for these dosimetric parameters were compared between IMRT and VMAT plans. Results: The average absolute dose differences (plan a minus plan b) for the VMAT and IMRT techniques, respectively, caused by dental artifacts were: 2.2±3.3cGy vs. 37.6±57.5cGy (maximum point dose, P=0.15); 1.2±0.9cGy vs. 7.9±6.7cGy (maximum spinal cord dose, P=0.026); 2.2±2.4cGy vs. 12.1±13.0cGy (maximum brainstem dose, P=0.077); 0.9±1.1cGy vs. 4.1±3.5cGy (mean left parotid dose, P=0.038); 0.9±0.8cGy vs. 7.8±11.9cGy (mean right parotid dose, P=0.136); 0.021%±0.014% vs. 0.803%±1.44% (PTV coverage, P=0.17). Conclusion: For the HN plans studied, dental artifacts demonstrated a greater dose calculation error for IMRT plans compared to VMAT plans. Rotational arcs appear on the average to compensate dose calculation errors induced by dental artifacts. Thus, compared to VMAT, density overrides for dental artifacts are more important when planning IMRT of HN.« less
On- and off-line monitoring of ion beam treatment
NASA Astrophysics Data System (ADS)
Parodi, Katia
2016-02-01
Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.
NASA Astrophysics Data System (ADS)
Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo
2014-06-01
The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.
WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, L; Wong, J; Li, R
2014-06-15
Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gatedmore » VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.« less
Jaberi, Ramin; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza
2017-01-01
Purpose Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool. PMID:29441094
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yong-Gang; Qi, Shu-Nan; Wang, Shu-Lian
Purpose: To assess the dosimetric benefit, prognosis, and toxicity of intensity modulated radiation therapy (IMRT) for early-stage, diffuse large B-cell lymphoma of Waldeyer ring (WR-DLBCL). Methods and Materials: Sixty-one patients with early-stage WR-DLBCL who received chemotherapy followed by IMRT were retrospectively reviewed. Dosimetric parameters for the target volume and critical normal structures were evaluated, and survival was calculated. Linear regression analysis was used to assess the effect of the mean dose (D{sub mean}) to the parotid glands on xerostomia. Results: The median conformity index and homogeneity index of the planning target volume (PTV) were 0.83 and 0.90, respectively, demonstrating verymore » good coverage of the target volume. The mean dose to the parotid glands was 24.9 Gy. The 5-year overall survival (OS), progression-free survival (PFS), and locoregional control (LRC) were 94.7%, 93.1%, and 98.3%, respectively. Early and late toxicities were mild, and no patient experienced late grade ≥3 toxicities. The D{sub mean} to the parotid glands had a linear correlation with late grade ≥2 xerostomia. Conclusions: IMRT after chemotherapy can provide excellent dose conformity and achieve favorable survival and LRC with mild toxicities in patients with early-stage WR-DLBCL. Dose constraints for the parotid glands should be limited to <24 Gy for early-stage WR-DLBCL.« less
Pasler, Marlies; Kaas, Jochem; Perik, Thijs; Geuze, Job; Dreindl, Ralf; Künzler, Thomas; Wittkamper, Frits; Georg, Dietmar
2015-12-01
To systematically evaluate machine specific quality assurance (QA) for volumetric modulated arc therapy (VMAT) based on log files by applying a dynamic benchmark plan. A VMAT benchmark plan was created and tested on 18 Elekta linacs (13 MLCi or MLCi2, 5 Agility) at 4 different institutions. Linac log files were analyzed and a delivery robustness index was introduced. For dosimetric measurements an ionization chamber array was used. Relative dose deviations were assessed by mean gamma for each control point and compared to the log file evaluation. Fourteen linacs delivered the VMAT benchmark plan, while 4 linacs failed by consistently terminating the delivery. The mean leaf error (±1SD) was 0.3±0.2 mm for all linacs. Large MLC maximum errors up to 6.5 mm were observed at reversal positions. Delivery robustness index accounting for MLC position correction (0.8-1.0) correlated with delivery time (80-128 s) and depended on dose rate performance. Dosimetric evaluation indicated in general accurate plan reproducibility with γ(mean)(±1 SD)=0.4±0.2 for 1 mm/1%. However single control point analysis revealed larger deviations and attributed well to log file analysis. The designed benchmark plan helped identify linac related malfunctions in dynamic mode for VMAT. Log files serve as an important additional QA measure to understand and visualize dynamic linac parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response
NASA Technical Reports Server (NTRS)
Scheick, Leif; Novak, Frank
2003-01-01
The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.
Gholami, Somayeh; Nedaie, Hassan Ali; Longo, Francesco; Ay, Mohammad Reza; Dini, Sharifeh A.; Meigooni, Ali S.
2017-01-01
Purpose: The clinical efficacy of Grid therapy has been examined by several investigators. In this project, the hole diameter and hole spacing in Grid blocks were examined to determine the optimum parameters that give a therapeutic advantage. Methods: The evaluations were performed using Monte Carlo (MC) simulation and commonly used radiobiological models. The Geant4 MC code was used to simulate the dose distributions for 25 different Grid blocks with different hole diameters and center-to-center spacing. The therapeutic parameters of these blocks, namely, the therapeutic ratio (TR) and geometrical sparing factor (GSF) were calculated using two different radiobiological models, including the linear quadratic and Hug–Kellerer models. In addition, the ratio of the open to blocked area (ROTBA) is also used as a geometrical parameter for each block design. Comparisons of the TR, GSF, and ROTBA for all of the blocks were used to derive the parameters for an optimum Grid block with the maximum TR, minimum GSF, and optimal ROTBA. A sample of the optimum Grid block was fabricated at our institution. Dosimetric characteristics of this Grid block were measured using an ionization chamber in water phantom, Gafchromic film, and thermoluminescent dosimeters in Solid Water™ phantom materials. Results: The results of these investigations indicated that Grid blocks with hole diameters between 1.00 and 1.25 cm and spacing of 1.7 or 1.8 cm have optimal therapeutic parameters (TR > 1.3 and GSF~0.90). The measured dosimetric characteristics of the optimum Grid blocks including dose profiles, percentage depth dose, dose output factor (cGy/MU), and valley-to-peak ratio were in good agreement (±5%) with the simulated data. Conclusion: In summary, using MC-based dosimetry, two radiobiological models, and previously published clinical data, we have introduced a method to design a Grid block with optimum therapeutic response. The simulated data were reproduced by experimental data. PMID:29296035
SU-E-T-660: Quantitative Fault Testing for Commissioning of Proton Therapy Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, M; Rankine, L; Grantham, K
2015-06-15
Purpose: To ensure proper fault testing for the first single room proton therapy machine by establishing a common set of acceptance testing and commissioning parameters with the manufacturer. The following work details the parameters tested and associated results. Methods: Dose rates in service mode were varied to ensure that when the threshold for maximum or minimum MU/min was met, the beam promptly shut off. The flatness parameter was tested by purposely assigning an incorrect secondary scatter, to ensure the beam shut off when detecting a heterogeneous profile. The beam symmetry parameter was tested by altering the steering coil up tomore » 3.0A, thereby forcing the beam to be asymmetric and shut off. Lastly, the quench system was tested by ramping down the magnet to 5% capacity, whereby the quench button was engaged to bring down the magnet current to a safe level. Results: A dose rate increase or decrease in excess of 10% shut the beam off within 5 seconds as observed by the current on a Matrixx ionization chamber array (IBA Dosimetry, Bartlett, TN) A 3.0A change in the beam steering coil introduced a 2% change in the flatness and symmetry profiles with respect to baseline measurements resulting in the beam shutting off within 5 seconds. An incorrect 2nd scatterer introduced a flatness of 4.1% and symmetry of 6.4% which immediately triggered a beam shut off. Finally, the quench system worked as expected during the ramp down procedure. Conclusion: A fault testing plan to check dosimetric faults and the quench system was performed for the first single room proton therapy system. All dosimetric parameters and machine conditions were met to our satisfaction. We propose that the same type of fault testing should be applied to any proton system during commissioning, including scanning beam systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jassal, K; Sarkar, B; Ganesh, T
Purpose: The study investigates the effect of fluence smoothing parameter on VMAT plans for ten head-neck cancer patients using Monaco5.00.04. Methods: VMAT plans were created using Monaco5.00.04 planning system for 10 head-neck patients. Four plans were generated for each patient using available smoothing parameters i.e. high, medium, low and off. The number of monitor units required to deliver 1 cGy was defined as a modulation degree; and was taken as a measure of plan complexity. Routinely used plan quality parameters Conformity index (CI) and Homogeneity index (HI) were used in the study. As a protocol our center, practices “medium” smoothingmore » for clinical implementation. Plans with medium smoothing were opted as reference plans due to the clinical acceptance and dosimetric verifications made on these plans. Plans were generated by varying the smoothing parameter and re-optimization was done. The PTV was evaluated for D98%, D95%, D50%, D1% and prescription isodose volume (PIV). For critical organs; spine and parotids the parameters recorded were D1cc and Dmean respectively. Results: The cohort had the median prescription as 6000 cGy in the range of 6600 cGy - 4500 cGy. The modulation degree was observed to increase up to 6% from reference to the most complex plan. High smoothing had about 11% increase in segments which marginally (0.5 to 1%) increased the homogeneity index while conformity index remains constant. For spine the maximum D1cc was observed in medium smoothing as 4639.8 cGy, this plan was clinically accepted and dosimetrically verified. Similarly for parotids, the Dmean was 2011.9 cGy and 1817.05 cGy. Conclusion: The sensitivity of plan quality in terms of smoothing options (high, medium, low and off) available in Monaco 5.00.04 was resulted in minimal difference in terms of target coverage, conformity index and homogeneity index. Similarly changing smoothing did not result in any enhanced advantage in sparing of critical organs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matysiak, W; Yeung, D; Hsi, W
2014-06-01
Purpose: We present a study of dosimetric consequences on doses in water in modeling in-air proton fluence independently along principle axes for rotated elliptical spots. Methods: Phase-space parameters for modeling in-air fluence are the position sigma for the spatial distribution, the angle sigma for the angular distribution, and the correlation between position and angle distributions. Proton spots of the McLaren proton therapy system were measured at five locations near the isocenter for the energies of 180 MeV and 250 MeV. An elongated elliptical spot rotated with respect to the principle axes was observed for the 180 MeV, while a circular-likemore » spot was observed for the 250 MeV. In the first approach, the phase-space parameters were derived in the principle axes without rotation. In the second approach, the phase space parameters were derived in the reference frame with axes rotated to coincide with the major axes of the elliptical spot. Monte-Carlo simulations with derived phase-space parameters using both approaches to tally doses in water were performed and analyzed. Results: For the rotated elliptical 180 MeV spots, the position sigmas were 3.6 mm and 3.2 mm in principle axes, but were 4.3 mm and 2.0 mm when the reference frame was rotated. Measured spots fitted poorly the uncorrelated 2D Gaussian, but the quality of fit was significantly improved after the reference frame was rotated. As a Result, phase space parameters in the rotated frame were more appropriate for modeling in-air proton fluence of 180 MeV protons. Considerable differences were observed in Monte Carlo simulated dose distributions in water with phase-space parameters obtained with the two approaches. Conclusion: For rotated elliptical proton spots, phase-space parameters obtained in the rotated reference frame are better for modeling in-air proton fluence, and can be introduced into treatment planning systems.« less
Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang
The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff = 7.56) versus water (Z eff = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravi, Ananth; Keller, Brian M.; Pignol, Jean-Philippe
2011-11-15
Purpose: Permanent breast seed implantation (PBSI) is an accelerated partial breast irradiation technique performed using stranded {sup 103}Pd radioactive seeds (average energy of 21 keV, 16.97 day half-life). Since 2004, {sup 131}Cs brachytherapy sources have become clinically available. The {sup 131}Cs radionuclide has a higher energy (average energy of 30 keV) and a shorter half-life (9.7 days) than {sup 103}Pd. The purpose of this study was to determine whether or not there are dosimetric benefits to using {sup 131}Cs brachytherapy seeds for PBSI. Methods: The prescribed dose for PBSI using {sup 103}Pd is 90 Gy, which was adjusted for {supmore » 131}Cs implants to account for the shorter half-life. A retrospective cohort of 30 patients, who have already undergone a {sup 103}Pd implant, was used for this study. The treatments were planned using the Variseed treatment planning system. The air kerma strength of the {sup 131}Cs seeds was adjusted in all preimplantation treatment plans so that the V{sub 100} (the volume within the target that receives 100% or more of the prescribed dose) were equivalent at time of implantation. Two month follow-up CT scans were available for all 30 patients and each patient was reevaluated using {sup 131}Cs seeds. The postimplant dosimetric parameters were compared using a two tailed t-test. Results: The prescribed dose for {sup 131}Cs was calculated to be 77 Gy; this dose would have the same biological effect as a PBSI implant with {sup 103}Pd of 90 Gy. The activities of the {sup 131}Cs sources were adjusted to an average of 2.2 {+-} 0.8 U for {sup 131}Cs compared to 2.5 {+-} 1.1 U for {sup 103}Pd in order to get an equivalent V{sub 100} as the {sup 103}Pd preimplants. While the use of {sup 131}Cs significantly reduces the preimplant V{sub 200} (the volume within the target that receives 200% or more of the prescribed dose) compared to {sup 103}Pd by 13.5 {+-} 9.0%, the reduction observed on the 2 month postimplant plan was 12.4 {+-} 5.1% which accounted for seed motion, implantation inaccuracies and tissue changes. This translates into an absolute reduction of 4.1 cm{sup 3} of tissue receiving 200% of the dose. Conclusions: This analysis of 30 early stage breast cancer patients who underwent the PBSI procedure shows that there is a theoretical dosimetric advantage to using {sup 131}Cs. However, in a realistic implant that will have seed misplacements and tissue changes, the use of {sup 131}Cs may not result in any clinically significant benefit.« less
Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruszyna, Marta
This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.
Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer.
Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun
2016-11-01
The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192 Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5-8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3-5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3-5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
WE-G-BRA-04: Common Errors and Deficiencies in Radiation Oncology Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kry, S; Dromgoole, L; Alvarez, P
Purpose: Dosimetric errors in radiotherapy dose delivery lead to suboptimal treatments and outcomes. This work reviews the frequency and severity of dosimetric and programmatic errors identified by on-site audits performed by the IROC Houston QA center. Methods: IROC Houston on-site audits evaluate absolute beam calibration, relative dosimetry data compared to the treatment planning system data, and processes such as machine QA. Audits conducted from 2000-present were abstracted for recommendations, including type of recommendation and magnitude of error when applicable. Dosimetric recommendations corresponded to absolute dose errors >3% and relative dosimetry errors >2%. On-site audits of 1020 accelerators at 409 institutionsmore » were reviewed. Results: A total of 1280 recommendations were made (average 3.1/institution). The most common recommendation was for inadequate QA procedures per TG-40 and/or TG-142 (82% of institutions) with the most commonly noted deficiency being x-ray and electron off-axis constancy versus gantry angle. Dosimetrically, the most common errors in relative dosimetry were in small-field output factors (59% of institutions), wedge factors (33% of institutions), off-axis factors (21% of institutions), and photon PDD (18% of institutions). Errors in calibration were also problematic: 20% of institutions had an error in electron beam calibration, 8% had an error in photon beam calibration, and 7% had an error in brachytherapy source calibration. Almost all types of data reviewed included errors up to 7% although 20 institutions had errors in excess of 10%, and 5 had errors in excess of 20%. The frequency of electron calibration errors decreased significantly with time, but all other errors show non-significant changes. Conclusion: There are many common and often serious errors made during the establishment and maintenance of a radiotherapy program that can be identified through independent peer review. Physicists should be cautious, particularly in areas highlighted herein that show a tendency for errors.« less
A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP).
Bitar, A; Lisbona, A; Thedrez, P; Sai Maurel, C; Le Forestier, D; Barbet, J; Bardies, M
2007-02-21
Murine models are useful for targeted radiotherapy pre-clinical experiments. These models can help to assess the potential interest of new radiopharmaceuticals. In this study, we developed a voxel-based mouse for dosimetric estimates. A female nude mouse (30 g) was frozen and cut into slices. High-resolution digital photographs were taken directly on the frozen block after each section. Images were segmented manually. Monoenergetic photon or electron sources were simulated using the MCNP4c2 Monte Carlo code for each source organ, in order to give tables of S-factors (in Gy Bq-1 s-1) for all target organs. Results obtained from monoenergetic particles were then used to generate S-factors for several radionuclides of potential interest in targeted radiotherapy. Thirteen source and 25 target regions were considered in this study. For each source region, 16 photon and 16 electron energies were simulated. Absorbed fractions, specific absorbed fractions and S-factors were calculated for 16 radionuclides of interest for targeted radiotherapy. The results obtained generally agree well with data published previously. For electron energies ranging from 0.1 to 2.5 MeV, the self-absorbed fraction varies from 0.98 to 0.376 for the liver, and from 0.89 to 0.04 for the thyroid. Electrons cannot be considered as 'non-penetrating' radiation for energies above 0.5 MeV for mouse organs. This observation can be generalized to radionuclides: for example, the beta self-absorbed fraction for the thyroid was 0.616 for I-131; absorbed fractions for Y-90 for left kidney-to-left kidney and for left kidney-to-spleen were 0.486 and 0.058, respectively. Our voxel-based mouse allowed us to generate a dosimetric database for use in preclinical targeted radiotherapy experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Douglas W., E-mail: darthur@mcvh-vcu.ed; Vicini, Frank A.; Todor, Dorin A.
2011-01-01
Purpose: Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Methods and Materials: Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) {>=}95% of the prescribed dose (PD) covering {>=}90% of the target volume, (2) a maximum skin dose {<=}125% of the PD, (3) maximum rib dose {<=}145% of the PD, and (4) the V150 {<=}50 cc and V200 {<=}10 cc. The ability to concurrently achieve these dosimetric goals usingmore » the Contura MLB was analyzed. Results: 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was {>=}5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. Conclusion: The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered.« less
Practical simplifications for radioimmunotherapy dosimetric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, S.; DeNardo, G.L.; O`Donnell, R.T.
1999-01-01
Radiation dosimetry is potentially useful for assessment and prediction of efficacy and toxicity for radionuclide therapy. The usefulness of these dose estimates relies on the establishment of a dose-response model using accurate pharmacokinetic data and a radiation dosimetric model. Due to the complexity in radiation dose estimation, many practical simplifications have been introduced in the dosimetric modeling for clinical trials of radioimmunotherapy. Although research efforts are generally needed to improve the simplifications used at each stage of model development, practical simplifications are often possible for specific applications without significant consequences to the dose-response model. In the development of dosimetric methodsmore » for radioimmunotherapy, practical simplifications in the dosimetric models were introduced. This study evaluated the magnitude of uncertainty associated with practical simplifications for: (1) organ mass of the MIRD phantom; (2) radiation contribution from target alone; (3) interpolation of S value; (4) macroscopic tumor uniformity; and (5) fit of tumor pharmacokinetic data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baly, L.; Otazo, M. R.; Molina, D.
2006-09-08
A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.
NASA Astrophysics Data System (ADS)
Pérez-Calatayud, J.; Lliso, F.; Ballester, F.; Serrano, M. A.; Lluch, J. L.; Limami, Y.; Puchades, V.; Casal, E.
2001-07-01
The CSM3 137Cs type stainless-steel encapsulated source is widely used in manually afterloaded low dose rate brachytherapy. A specially asymmetric source, CSM3-a, has been designed by CIS Bio International (France) substituting the eyelet side seed with an inactive material in the CSM3 source. This modification has been done in order to allow a uniform dose level over the upper vaginal surface when this `linear' source is inserted at the top of the dome vaginal applicators. In this study the Monte Carlo GEANT3 simulation code, incorporating the source geometry in detail, was used to investigate the dosimetric characteristics of this special CSM3-a 137Cs brachytherapy source. The absolute dose rate distribution in water around this source was calculated and is presented in the form of an along-away table. Comparison of Sievert integral type calculations with Monte Carlo results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, Ravinder; Rivard, Mark J., E-mail: mark.j.rivard@gmail.com; DeWerd, Larry A.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used in the evaluation of innovative devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining the equivalence of the innovative treatment modality to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of innovative radiotherapy devices or applications is a critical part in which physicists should be actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative brachytherapy devices and applications andmore » includes evaluation of (1) dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, (2) risks and benefits from a regulatory and safety perspective, and (3) resource assessment and preparedness. Further, it is suggested that any developed calibration methods be traceable to a primary standards dosimetry laboratory (PSDL) such as the National Institute of Standards and Technology in the U.S. or to other PSDLs located elsewhere such as in Europe. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the Accredited Dosimetry Calibration Laboratories in the U.S. is encouraged before a source is introduced into widespread routine clinical use. The American Association of Physicists in Medicine and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) have developed guidelines for the safe and consistent application of brachytherapy using innovative devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. Nuclear Regulatory Commission, U.S. Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, U.S. Food and Drug Administration, European Commission for CE Marking (Conformité Européenne), and institutional review boards and radiation safety committees.« less
Novel low-kVp beamlet system for choroidal melanoma
Esquivel, Carlos; Fuller, Clifton D; Waggener, Robert G; Wong, Adrian; Meltz, Martin; Blough, Melissa; Eng, Tony Y; Thomas, Charles R
2006-01-01
Background Treatment of choroidal melanoma with radiation often involves placement of customized brachytherapy eye-plaques. However, the dosimetric properties inherent in source-based radiotherapy preclude facile dose optimization to critical ocular structures. Consequently, we have constructed a novel system for utilizing small beam low-energy radiation delivery, the Beamlet Low-kVp X-ray, or "BLOKX" system. This technique relies on an isocentric rotational approach to deliver dose to target volumes within the eye, while potentially sparing normal structures. Methods Monte Carlo N-Particle (MCNP) transport code version 5.0(14) was used to simulate photon interaction with normal and tumor tissues within modeled right eye phantoms. Five modeled dome-shaped tumors with a diameter and apical height of 8 mm and 6 mm, respectively, were simulated distinct positions with respect to the macula iteratively. A single fixed 9 × 9 mm2 beamlet, and a comparison COMS protocol plaque containing eight I-125 seeds (apparent activity of 8 mCi) placed on the scleral surface of the eye adjacent to the tumor, were utilized to determine dosimetric parameters at tumor and adjacent tissues. After MCNP simulation, comparison of dose distribution at each of the 5 tumor positions for each modality (BLOKX vs. eye-plaque) was performed. Results Tumor-base doses ranged from 87.1–102.8 Gy for the BLOKX procedure, and from 335.3–338.6 Gy for the eye-plaque procedure. A reduction of dose of at least 69% to tumor base was noted when using the BLOKX. The BLOKX technique showed a significant reduction of dose, 89.8%, to the macula compared to the episcleral plaque. A minimum 71.0 % decrease in dose to the optic nerve occurred when the BLOKX was used. Conclusion The BLOKX technique allows more favorable dose distribution in comparison to standard COMS brachytherapy, as simulated using a Monte Carlo iterative mathematical modeling. Future series to determine clinical utility of such an approach are warranted. PMID:16965624
SU-F-T-22: Clinical Implications When Using TG-186 (ACE) Heterogeneity Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Likhacheva, A; Grade, E; Sadeghi, A
Purpose: The purpose of this study is to compare dosimetric calculations using traditional TG-43 formalism and Oncentra Brachy Advanced Collapsed cone Engine (ACE) TG-186 calculation algorithm in clinical setting. Methods: We analyzed dosimetry of four patients treated with accelerated partial breast irradiation using a multi-channel intracavitary device (SAVI). All patients were treated to 34 Gy in 10 fractions using a high-dose-rate (192) Ir source. The plans were designed and treated using the TG-43 model. ACE was used to assess the effect heterogeneity correction on various dosimetric parameters. Mass density was estimated using Hounsfield units. Results: Compared to TG-43 formalism, ACEmore » estimated lower doses to targets and organs at risk. The mean difference was 19.8% (range 15.3–24.1%) for PTV-eval V200, 12.0% (range 9.7–17.7%) for PTV-eval V150, 4.3% (range 3.3–6.5%) for PTV-eval D95, 3.3% (range 1.4–5.4%) for PTV-eval D90, 5.4% (range 2.9–9.9%) for maximum rib dose, and 5.7% (2.4–7.4%) for maximum skin dose. There was no correlation between the magnitude of the difference and the PTV-eval volume, air volume, or tissue-applicator conformance. Conclusion: Based on our preliminary study, the TG-43 algorithm appears to overestimate the dose to targets and organs at risk when compared to the ACE TG-186 software. We hypothesize that air adjacent to the SAVI struts contributes to lack of scatter thereby contributing a significant difference in dose calculation when using ACE. We believe that ACE calculation provides a more realistic isodose distribution than TG-43. We plan to further investigate the impact of heterogeneity correction on brachytherapy planning for a wide variety of clinical scenarios, include skin, cervix/uterus, prostate, and lung.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Susan L.; Liu, H. Helen; Wang, Shulian
Purpose: The aim of this study was to investigate the effect of radiation dose distribution in the lung on the risk of postoperative pulmonary complications among esophageal cancer patients. Methods and Materials: We analyzed data from 110 patients with esophageal cancer treated with concurrent chemoradiotherapy followed by surgery at our institution from 1998 to 2003. The endpoint for analysis was postsurgical pneumonia or acute respiratory distress syndrome. Dose-volume histograms (DVHs) and dose-mass histograms (DMHs) for the whole lung were used to fit normal-tissue complication probability (NTCP) models, and the quality of fits were compared using bootstrap analysis. Results: Normal-tissue complicationmore » probability modeling identified that the risk of postoperative pulmonary complications was most significantly associated with small absolute volumes of lung spared from doses {>=}5 Gy (VS5), that is, exposed to doses <5 Gy. However, bootstrap analysis found no significant difference between the quality of this model and fits based on other dosimetric parameters, including mean lung dose, effective dose, and relative volume of lung receiving {>=}5 Gy, probably because of correlations among these factors. The choice of DVH vs. DMH or the use of fractionation correction did not significantly affect the results of the NTCP modeling. The parameter values estimated for the Lyman NTCP model were as follows (with 95% confidence intervals in parentheses): n = 1.85 (0.04, {infinity}), m = 0.55 (0.22, 1.02), and D {sub 5} = 17.5 Gy (9.4 Gy, 102 Gy). Conclusions: In this cohort of esophageal cancer patients, several dosimetric parameters including mean lung dose, effective dose, and absolute volume of lung receiving <5 Gy provided similar descriptions of the risk of postoperative pulmonary complications as a function of Radiation dose distribution in the lung.« less
Carrara, Mauro; Cusumano, Davide; Giandini, Tommaso; Tenconi, Chiara; Mazzarella, Ester; Grisotto, Simone; Massari, Eleonora; Mazzeo, Davide; Cerrotta, Annamaria; Pappalardi, Brigida; Fallai, Carlo; Pignoli, Emanuele
2017-12-01
A direct planning approach with multi-channel vaginal cylinders (MVCs) used for HDR brachytherapy of vaginal cancers is particularly challenging. Purpose of this study was to compare the dosimetric performances of different forward and inverse methods used for the optimization of MVC-based vaginal treatments for endometrial cancer, with a particular attention to the definition of strategies useful to limit the high doses to the vaginal mucosa. Twelve postoperative vaginal HDR brachytherapy treatments performed with MVCs were considered. Plans were retrospectively optimized with three different methods: Dose Point Optimization followed by Graphical Optimization (DPO + GrO), Inverse Planning Simulated Annealing with two different class solutions as starting conditions (surflPSA and homogIPSA) and Hybrid Inverse Planning Optimization (HIPO). Several dosimetric parameters related to target coverage, hot spot extensions and sparing of organs at risk were analyzed to evaluate the quality of the achieved treatment plans. Dose homogeneity index (DHI), conformal index (COIN) and a further parameter quantifying the proportion of the central catheter loading with respect to the overall loading (i.e., the central catheter loading index: CCLI) were also quantified. The achieved PTV coverage parameters were highly correlated with each other but uncorrelated with the hot spot quantifiers. HomogIPSA and HIPO achieved higher DHIs and CCLIs and lower volumes of high doses than DPO + GrO and surflPSA. Within the investigated optimization methods, HIPO and homoglPSA showed the highest dose homogeneity to the target. In particular, homogIPSA resulted also the most effective in reducing hot spots to the vaginal mucosa. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wuzhe; Lin, Zhixiong; Yang, Zhining
2015-06-15
Flattening filter-free (FFF) radiation beams have recently become clinically available on modern linear accelerators in radiation therapy. This study aimed to evaluate the dosimetric impact of using FFF beams in intensity-modulated radiotherapy (IMRT) for early-stage upper thoracic oesophageal cancer. Eleven patients with primary stage upper thoracic oesophageal cancer were recruited. For each patient, two IMRT plans were computed using conventional beams (Con-P) and FFF beams (FFF-P), respectively. Both plans employed a five-beam arrangement and were prescribed with 64 Gy to (planning target volume) PTV1 and 54 Gy to PTV2 in 32 fractions using 6 MV photons. The dose parameters ofmore » the target volumes and organs at risks (OARs), and treatment parameters including the monitor units (MU) and treatment time (TT) for Con-P and FFF-P were recorded and compared. The mean D{sub 5} of PTV1 and PTV2 were higher in FFF-P than Con-P by 0.4 Gy and 0.3 Gy, respectively. For the OARs, all the dose parameters did not show significant difference between the two plans except the mean V{sub 5} and V{sub 10} of the lung in which the FFF-P was lower (46.7% vs. 47.3% and 39.1% vs. 39.6%, respectively). FFF-P required 54% more MU but 18.4% less irradiation time when compared to Con-P. The target volume and OARs dose distributions between the two plans were comparable. However, FFF-P was more effective in sparing the lung from low dose and reduced the mean TT compared with Con-P. Long-term clinical studies are suggested to evaluate the radiobiological effects of FFF beams.« less
Feasibility of 3D printed air slab diode caps for small field dosimetry.
Perrett, Benjamin; Charles, Paul; Markwell, Tim; Kairn, Tanya; Crowe, Scott
2017-09-01
Commercial diode detectors used for small field dosimetry introduce a field-size-dependent over-response relative to an ideal, water-equivalent dosimeter due to high density components in the body of the detector. An air gap above the detector introduces a field-size-dependent under-response, and can be used to offset the field-size-dependent detector over-response. Other groups have reported experimental validation of caps containing air gaps for use with several types of diodes in small fields. This paper examines two designs for 3D printed diode air caps for the stereotactic field diode (SFD)-a cap containing a sealed air cavity, and a cap with an air cavity at the face of the SFD. Monte Carlo simulations of both designs were performed to determine dimensions for an air cavity to introduce the desired dosimetric correction. Various parameter changes were also simulated to estimate the dosimetric uncertainties introduced by 3D printing. Cap layer dimensions, cap density changes due to 3D printing, and unwanted air gaps were considered. For the sealed design the optimal air gap size for water-equivalent cap material was 0.6 mm, which increased to 1.0 mm when acrylonitrile butadiene styrene in the cap was simulated. The unsealed design had less variation, a 0.4 mm air gap is optimal in both situations. Unwanted air pockets in the bore of the cap and density changes introduced by the 3D printing process can potentially introduce significant dosimetric effects. These effects may be limited by using fine print resolutions and minimising the volume of cap material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudell, Jimmy J.; Schaner, Philip E.; Desmond, Renee A.
2010-02-01
Purpose: Intensification of radiotherapy and chemotherapy for head-and-neck cancer may lead to increased rates of dysphagia. Dosimetric predictors of objective findings of long-term dysphagia were sought. Methods and Materials: From an institutional database, 83 patients were identified who underwent definitive intensity-modulated radiotherapy for squamous cell carcinoma of the head and neck, after exclusion of those who were treated for a second or recurrent head-and-neck primary lesion, had locoregional recurrence at any time, had less than 12 months of follow-up, or had postoperative radiotherapy. Dosimetric parameters were analyzed relative to three objective endpoints as a surrogate for severe long-term dysphagia: percutaneousmore » endoscopic gastrostomy (PEG) tube dependence at 12 months, aspiration on modified barium swallow, or pharyngoesophageal stricture requiring dilation. Results: Mean dose greater than 41 Gy and volume receiving 60 Gy (V{sub 60}) greater than 24% to the larynx were significantly associated with PEG tube dependence and aspiration. V{sub 60} greater than 12% to the inferior pharyngeal constrictor was also significantly associated with increased PEG tube dependence and aspiration. V{sub 65} greater than 33% to the superior pharyngeal constrictor or greater than 75% to the middle pharyngeal constrictor was associated with pharyngoesophageal stricture requiring dilation. Conclusions: Doses to the larynx and pharyngeal constrictors predicted long-term swallowing complications, even when controlled for other clinical factors. The addition of these structures to intensity-modulated radiotherapy optimization may reduce the incidence of dysphagia, although cautious clinical validation is necessary.« less
Dosimetric predictors of radiation-induced pericardial effusion in esophageal cancer.
Ogino, Ichiro; Watanabe, Shigenobu; Sakamaki, Kentaro; Ogino, Yuka; Kunisaki, Chikara; Kimura, Kazuo
2017-07-01
To evaluate the dose-volume parameters of the pericardium and heart in order to reduce the risk of radiation-induced pericardial effusion (PE) and symptomatic PE (SPE) in esophageal cancer patients treated with concurrent chemoradiotherapy. In 86 of 303 esophageal cancer patients, follow-up CT was obtained at least 24 months after concurrent chemoradiotherapy. Correlations between clinical factors, including risk factors for cardiac disease, dosimetric factors, and the incidence of PE and SPE after radiotherapy were analyzed using Cox proportional hazard regression analysis. Significant dosimetric factors with the highest hazard ratios were investigated using zones separated according to their distance from esophagus. PE developed in 49 patients. Univariate analysis showed the mean heart dose, heart V 5 -V 55 , mean pericardium dose, and pericardium V 5 -V 50 to all significantly affect the incidence of PE. Additionally, body surface area was correlated with the incidence of PE in multivariate analysis. Grade 3 and 4 SPE developed in 5 patients. The pericardium V 50 and pericardium D 10 significantly affected the incidence of SPE. The pericardium V 50 in patients with SPE ranged from 17.1 to 21.7%. Factors affecting the incidence of SPE were the V 50 of the pericardium zones within 3 cm and 4 cm of the esophagus. A wide range of radiation doses to the heart and pericardium were related to the incidence of PE. A pericardium V 50 ≤ 17% is important to avoid symptomatic PE in esophageal cancer patients treated with concurrent chemoradiotherapy.
Monte Carlo modelling the dosimetric effects of electrode material on diamond detectors.
Baluti, Florentina; Deloar, Hossain M; Lansley, Stuart P; Meyer, Juergen
2015-03-01
Diamond detectors for radiation dosimetry were modelled using the EGSnrc Monte Carlo code to investigate the influence of electrode material and detector orientation on the absorbed dose. The small dimensions of the electrode/diamond/electrode detector structure required very thin voxels and the use of non-standard DOSXYZnrc Monte Carlo model parameters. The interface phenomena was investigated by simulating a 6 MV beam and detectors with different electrode materials, namely Al, Ag, Cu and Au, with thickens of 0.1 µm for the electrodes and 0.1 mm for the diamond, in both perpendicular and parallel detector orientation with regards to the incident beam. The smallest perturbations were observed for the parallel detector orientation and Al electrodes (Z = 13). In summary, EGSnrc Monte Carlo code is well suited for modelling small detector geometries. The Monte Carlo model developed is a useful tool to investigate the dosimetric effects caused by different electrode materials. To minimise perturbations cause by the detector electrodes, it is recommended that the electrodes should be made from a low-atomic number material and placed parallel to the beam direction.
NASA Astrophysics Data System (ADS)
Abdel-Fattah, A. A.; Soliman, Y. S.
2017-12-01
A radiation sensitive material, 10,12-pentacosa-diynoic acid (PCDA), was incorporated into polyvinyl butyral (PVB) films to develop indicators/dosimeters for blood and food irradiation. The present study aims to improve the dosimetric performance of these previously prepared dosimeters and to extend their shelf life by the combination of a radical scavenger, propyl gallate (PG), and a UV absorber, tinuvin-p (TP). The X-ray diffraction (XRD) patterns of the dosimeters were analysed and their dosimetric characteristics were investigated by specular reflectance in the visible spectrum range of 400-700 nm. Upon irradiation, the films turn blue exhibiting two main bands around 670 and 620 nm. Their dose-response functions were fitted by a double exponential growth, 5 parameters, equation. Irradiation temperature influences the dosimeter response at 670 nm without causing thermochromic transition up to 50 °C in poly-PCDA. The useful dose range is 5-4000 Gy depending on the wavelengths of analysis and PCDA content in the films. The overall uncertainty of dose measurement is less than 6% at 2σ.
Buus, Simon; Lizondo, Maria; Hokland, Steffen; Rylander, Susanne; Pedersen, Erik M; Tanderup, Kari; Bentzen, Lise
To quantify needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer and propose a threshold for needle migration. Twenty-four high-risk prostate cancer patients treated with an HDR boost of 2 × 8.5 Gy were included. Patients received an MRI for planning (MRI1), before (MRI2), and after treatment (MRI3). Time from needle insertion to MRI3 was ∼3 hours. Needle migration was evaluated from coregistered images: MRI1-MRI2 and MRI1-MRI3. Dose volume histogram parameters from the treatment plan based on MRI1 were related to parameters based on needle positions in MRI2 or MRI3. Regression was used to model the average needle migration per implant and change in D90 clinical target volume, CTV prostate+3mm . The model fit was used for estimating the dosimetric impact in equivalent dose in 2 Gy fractions for dose levels of 6, 8.5, 10, 15, and 19 Gy. Needle migration was on average 2.2 ± 1.8 mm SD from MRI1-MRI2 and 5.0 ± 3.0 mm SD from MRI1-MRI3. D90 CTV prostate+3mm was robust toward average needle migration ≤3 mm, whereas for migration >3 mm D90 decreased by 4.5% per mm. A 3 mm of needle migration resulted in a decrease of 0.9, 1.7, 2.3, 4.8, and 7.6 equivalent dose in 2 Gy fractions for dose levels of 6, 8.5, 10, 15, and 19 Gy, respectively. Substantial needle migration in high-dose-rate brachytherapy occurs frequently in 1-3 hours following needle insertion. A 3-mm threshold of needle migration is proposed, but 2 mm may be considered for dose levels ≥15 Gy. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Cullen M.; Murphy, James D.; Eclov, Neville
2013-03-15
Purpose: To determine how the respiratory phase impacts dose to normal organs during stereotactic body radiation therapy (SBRT) for pancreatic cancer. Methods and Materials: Eighteen consecutive patients with locally advanced, unresectable pancreatic adenocarcinoma treated with SBRT were included in this study. On the treatment planning 4-dimensional computed tomography (CT) scan, the planning target volume (PTV), defined as the gross tumor volume plus 3-mm margin, the duodenum, and the stomach were contoured on the end-expiration (CT{sub exp}) and end-inspiration (CT{sub insp}) phases for each patient. A separate treatment plan was constructed for both phases with the dose prescription of 33 Gymore » in 5 fractions with 95% coverage of the PTV by the 100% isodose line. The dose-volume histogram (DVH) endpoints, volume of duodenum that received 20 Gy (V{sub 20}), V{sub 25}, and V{sub 30} and maximum dose to 5 cc of contoured organ (D{sub 5cc}), D{sub 1cc}, and D{sub 0.1cc}, were evaluated. Results: Dosimetric parameters for the duodenum, including V{sub 25}, V{sub 30}, D{sub 1cc}, and D{sub 0.1cc} improved by planning on the CT{sub exp} compared to those on the CT{sub insp}. There was a statistically significant overlap of the PTV with the duodenum but not the stomach during the CT{sub insp} compared to the CT{sub exp} (0.38 ± 0.17 cc vs 0.01 ± 0.01 cc, P=.048). A larger expansion of the PTV, in accordance with a Danish phase 2 trial, showed even more overlapping volume of duodenum on the CT{sub insp} compared to that on the CT{sub exp} (5.5 ± 0.9 cc vs 3.0 ± 0.8 cc, P=.0003) but no statistical difference for any stomach dosimetric DVH parameter. Conclusions: Dose to the duodenum was higher when treating on the inspiratory than on the expiratory phase. These data suggest that expiratory gating may be preferable to inspiratory breath-hold and free breathing strategies for minimizing risk of toxicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, T; Zhou, L; Li, Y
2015-06-15
Purpose: To develop a patient-specific rectal toxicity predictor guided plan quality control tool for prostate SBRT plans. Methods: For prostate SBRT cases, four segments of rectal walls including peri-prostatic anterior rectal wall, peri-prostatic lateral rectal walls, peri-prostatic posterior rectal wall and rectum superior to prostate are identified as organs at risk and the circumference of rectal wall receiving more than 39 Gy (CRW39) and 24 Gy (CRW24) are rectal toxicity predictors. In this new geometry-dosimetry model, a patient geometry descriptor, differential circumference of rectal wall (dCRW) is used as model input geometry parameters and plan dosimetric endpoints CRW39 and CRW24more » are output dosimetric parameters. Linear models are built to correlate dCRW to both CRW39 and CRW24 and established with both a linear regression method and a modified bagging ensemble machine learning method. 27 SBRT prostate cases are retrospectively studied from a dose-escalated clinical trial research. 20 prescribed 50 Gy SBRT cases are recruited to train the model and the other rescaled 7 cases are used to evaluated model feasibility and accuracy. Results: Each solved linear coefficient sequence related to CRW39 or CRW24 is a one-dimensional decreasing function of the distance from the PTV boundary, indicating that the different locations of each rectal circumference have different contributions to each particular dosimetric endpoint. The fitting errors for those trained 20 prostate SBRT cases are small with mean values of 2.39%, 2.45% relative to the endpoint values for SBRT rectal toxicity predictor CRW39 and CRW24 respectively. 1 out of 7 evaluation plans is identified as poor quality plan. After re-planning, the CRW39 and CRW24 can be reduced by 3.34% and 3%, without sacrificing PTV coverage. Conclusion: The proposed patient geometry-plan toxicity predictor model for SBRT plans can be successfully applied to plan quality control for prostate SBRT cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalet, Alan M., E-mail: amkalet@uw.edu; Seattle Cancer Care Alliance, Seattle, Washington; Richardson, Hannah L.
The purpose of this study was to evaluate the dosimetric and practical effects of the Monaco treatment planning system “max arcs-per-beam” optimization parameter in pelvic radiotherapy treatments. We selected for this study a total of 17 previously treated patients with a range of pelvic disease sites including prostate (9), bladder (1), uterus (3), rectum (3), and cervix (1). For each patient, 2 plans were generated, one using an arc-per-beam setting of “1” and another with an arc-per-beam setting of “2” using the volumes and constraints established from the initial clinical treatments. All constraints and dose coverage objects were kept themore » same between plans, and all plans were normalized to 99.7% to ensure 100% of the planning target volume (PTV) received 95% of the prescription dose. Plans were evaluated for PTV conformity, homogeneity, number of monitor units, number of control points, and overall plan acceptability. Treatment delivery time, patient-specific quality assurance procedures, and the impact on clinical workflow were also assessed. We found that for complex-shaped target volumes (small central volumes with extending arms to cover nodal regions), the use of 2 arc-per-beam (2APB) parameter setting achieved significantly lower average dose-volume histogram values for the rectum V{sub 20} (p = 0.0012) and bladder V{sub 30} (p = 0.0036) while meeting the high dose target constraints. For simple PTV shapes, we found reduced monitor units (13.47%, p = 0.0009) and control points (8.77%, p = 0.0004) using 2APB planning. In addition, we found a beam delivery time reduction of approximately 25%. In summary, the dosimetric benefit, although moderate, was improved over a 1APB setting for complex PTV, and equivalent in other cases. The overall reduced delivery time suggests that the use of mulitple arcs per beam could lead to reduced patient-on-table time, increased clinical throughput, and reduced medical physics quality assurance effort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cella, Laura; Department of Diagnostic Imaging and Radiation Oncology, Federico II University School of Medicine, Naples; Conson, Manuel
Purpose: Hypothyroidism (HT) is a frequent late side effect of Hodgkin's lymphoma (HL) therapy. The purpose of this study is to determine dose-volume constraints that correlate with functional impairment of the thyroid gland in HL patients treated with three-dimensional radiotherapy. Methods and Materials: A total of 61 consecutive patients undergoing antiblastic chemotherapy and involved field radiation treatment (median dose, 32 Gy; range, 30-36 Gy) for HL were retrospectively considered. Their median age was 28 years (range, 14-70 years). Blood levels of thyroid-stimulating hormone (TSH), free triiodo-thyronine (FT3), free thyroxine (FT4), and thyroglobulin antibody (ATG) were recorded basally and at differentmore » times after the end of therapy. For the thyroid gland, normal tissue complication probability (NTCP), dosimetric parameters, and the percentage of thyroid volume exceeding 10, 20, and 30 Gy (V10, V20, and V30) were calculated in all patients. To evaluate clinical and dosimetric factors possibly associated with HT, univariate and multivariate logistic regression analyses were performed. Results: Eight of 61 (13.1%) patients had HT before treatment and were excluded from further evaluation. At a median follow-up of 32 months (range, 6-99 months), 41.5% (22/53) of patients developed HT after treatment. Univariate analyses showed that all dosimetric factors were associated with HT (p < 0.05). On multivariate analysis, the thyroid V30 value was the single independent predictor associated with HT (p = 0.001). This parameter divided the patients into low- vs. high-risk groups: if V30 was {<=} 62.5%, the risk of developing HT was 11.5%, and if V30 was >62.5%, the risk was 70.8% (p < 0.0001). A Cox regression curve stratified by two levels of V30 value was created (odds ratio, 12.6). Conclusions: The thyroid V30 predicts the risk of developing HT after sequential chemo-radiotherapy and defines a useful constraint to consider for more accurate HL treatment planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Quon, H; McNutt, T
2016-06-15
Purpose: To determine if the accumulated parotid dosimetry using planning CT to daily CBCT deformation and dose re-calculation can predict for radiation-induced xerostomia. Methods: To track and dosimetrically account for the effects of anatomical changes on the parotid glands, we propagated physicians’ contours from planning CT to daily CBCT using a deformable registration with iterative CBCT intensity correction. A surface mesh for each OAR was created with the deformation applied to the mesh to obtain the deformed parotid volumes. Daily dose was computed on the deformed CT and accumulated to the last fraction. For both the accumulated and the plannedmore » parotid dosimetry, we tested the prediction power of different dosimetric parameters including D90, D50, D10, mean, standard deviation, min/max dose to the combined parotids and patient age to severe xerostomia (NCI-CTCAE grade≥2 at 6 mo follow-up). We also tested the dosimetry to parotid sub-volumes. Three classification algorithms, random tree, support vector machine, and logistic regression were tested to predict severe xerostomia using a leave-one-out validation approach. Results: We tested our prediction model on 35 HN IMRT cases. Parameters from the accumulated dosimetry model demonstrated an 89% accuracy for predicting severe xerostomia. Compared to the planning dosimetry, the accumulated dose consistently demonstrated higher prediction power with all three classification algorithms, including 11%, 5% and 30% higher accuracy, sensitivity and specificity, respectively. Geometric division of the combined parotid glands into superior-inferior regions demonstrated ∼5% increased accuracy than the whole volume. The most influential ranked features include age, mean accumulated dose of the submandibular glands and the accumulated D90 of the superior parotid glands. Conclusion: We demonstrated that the accumulated parotid dosimetry using CT-CBCT registration and dose re-calculation more accurately predicts for severe xerostomia and that the superior portion of the parotid glands may be particularly important in predicting for severe xerostomia. This work was supported in part by NIH/NCI under grant R42CA137886 and in part by Toshiba big data research project funds.« less
Wu, Chen-Ta; Motegi, Atsushi; Motegi, Kana; Hotta, Kenji; Kohno, Ryosuke; Tachibana, Hidenobu; Kumagai, Motoki; Nakamura, Naoki; Hojo, Hidehiro; Niho, Seiji; Goto, Koichi; Akimoto, Tetsuo
2016-08-10
To assess the feasibility of proton beam therapy for the patients with locally advanced non-small lung cancer. The dosimetry was analyzed retrospectively to calculate the doses to organs at risk, such as the lung, heart, esophagus and spinal cord. A dosimetric comparison between proton beam therapy and dummy photon radiotherapy (three-dimensional conformal radiotherapy) plans was performed. Dummy intensity-modulated radiotherapy plans were also generated for the patients for whom curative three-dimensional conformal radiotherapy plans could not be generated. Overall, 33 patients with stage III non-small cell lung cancer were treated with proton beam therapy between December 2011 and August 2014. The median age of the eligible patients was 67 years (range: 44-87 years). All the patients were treated with chemotherapy consisting of cisplatin/vinorelbine or carboplatin. The median prescribed dose was 60 GyE (range: 60-66 GyE). The mean normal lung V20 GyE was 23.6% (range: 14.9-32%), and the mean normal lung dose was 11.9 GyE (range: 6.0-19 GyE). The mean esophageal V50 GyE was 25.5% (range: 0.01-63.6%), the mean heart V40 GyE was 13.4% (range: 1.4-29.3%) and the mean maximum spinal cord dose was 40.7 GyE (range: 22.9-48 GyE). Based on dummy three-dimensional conformal radiotherapy planning, 12 patients were regarded as not being suitable for radical thoracic three-dimensional conformal radiotherapy. All the dose parameters of proton beam therapy, except for the esophageal dose, were lower than those for the dummy three-dimensional conformal radiotherapy plans. In comparison to the intensity-modulated radiotherapy plan, proton beam therapy also achieved dose reduction in the normal lung. None of the patients experienced grade 4 or worse non-hematological toxicities. Proton beam therapy for patients with stage III non-small cell lung cancer was feasible and was superior to three-dimensional conformal radiotherapy for several dosimetric parameters. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dosimetric evaluation of nanotargeted (188)Re-liposome with the MIRDOSE3 and OLINDA/EXM programs.
Chang, Chih-Hsien; Chang, Ya-Jen; Lee, Te-Wei; Ting, Gann; Chang, Kwo-Ping
2012-06-01
The OLINDA/EXM computer code was created as a replacement for the widely used MIRDOSE3 code for radiation dosimetry in nuclear medicine. A dosimetric analysis with these codes was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) in colon carcinoma-bearing mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine ((188)Re-BMEDA) and (188)Re-liposome were obtained for estimation of absorbed doses in normal organs. Radiation dose estimates for normal tissues were calculated using the MIRDOSE3 and OLINDA/EXM programs for a colon carcinoma solid tumor mouse model. Mean absorbed doses derived from(188)Re-BMEDA and (188)Re-liposome in normal tissues were generally similar as calculated by MIRDOSE3 and OLINDA/EXM programs. One notable exception to this was red marrow, wherein MIRDOSE3 resulted in higher absorbed doses than OLINDA/EXM (1.53- and 1.60-fold for (188)Re-BMEDA and (188)Re-liposome, respectively). MIRDOSE3 and OLINDA have very similar residence times and organ doses. Bone marrow doses were estimated by designating cortical bone rather than bone marrow as a source organ. The bone marrow doses calculated by MIRDOSE3 are higher than those by OLINDA. If the bone marrow is designated as a source organ, the doses estimated by MIRDOSE3 and OLINDA programs will be very similar.
Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights
NASA Astrophysics Data System (ADS)
Drozdov, A.; Grigoriev, A.; Malyshkin, Y.
2013-02-01
High-energy radiation emitted from thunderclouds supposes generation of neutrons in photonuclear reactions of the gamma photons with air. This observation is supported by registration of neutrons during thunderstorm activity in a number of experiments, most of which established correlation with lightning. In this work we perform a modeling of the neutron generation and propagation processes at low atmospheric altitudes using current knowledge of the TGF source properties. On this basis we obtain dosimetric maps of thunderstorm neutron radiation and investigate possible radiation threat for aircraft flights. We estimate the maximal effective neutron dose that potentially can be received on board an aircraft in close proximity to the gamma source, to be of the order of 0.54 mSv over a time less than 0.1 s. This dose is considerably less than estimations obtained earlier for the associated electron and gamma radiation; nevertheless, this value is quite large by itself and under some circumstances the neutron component seems to be the most important for the dosimetric effect. Due to wide distribution in space, the thunderstorm neutrons are thought to also provide a convenient means for experimental investigation of gamma emissions from thunderclouds. To register neutrons from powerful gamma flashes that occur at the tops of thunderclouds, however, in the most favorable case one has to take a location above the 2 km level that is appropriate to mountains or aircraft facilities.
Paixão, Lucas; Santos, Ana Maria M.; dos Santos, Adriano Márcio; Grynberg, Suely Epsztein
2012-01-01
In prostate cancer treatment, there is an increasing interest in the permanent radioactive seeds implant technique. Currently, in Brazil, the seeds are imported with high prices, which prohibit their use in public hospitals. A ceramic matrix that can be used as a radioisotope carrier and radiographic marker was developed at our institution. The ceramic matrix is distinguished by the characteristic of maintaining the radioactive material uniformly distributed in its surface. In this work, Monte Carlo simulations were performed in order to assess the dose distributions generated by this prototype seed model, with the ceramic matrix encapsulated in titanium, in the same way as the commercial 6711 seed. The obtained data was assessed, as described in the TG‐43U1 report by the American Association of Physicists in Medicine, for two seed models: (1) the most used model 6711 source — for validation and comparison, and (2) for the prototype model with the ceramic matrix. The dosimetric parameters dose rate constant, Λ, radial dose function, gL(r), and anisotropy function, F(r,θ), were derived from simulations by the Monte Carlo method using the MCNP5 code. A Λ 0.992 (±2.33%) cGyh−1U−1 was found for the prototype model. In comparison with the 6711 model, a lower dose fall‐off on transverse axis was found, as well as a lower dose anisotropy for the radius r= 0.25 cm. In general, for all distances, the prototype seed model presents a slightly larger anisotropy between 0° ≤ Θ < 50° and anisotropy similar to the 6711 model for Θ ≥ 50°. The dosimetric characteristics of the prototype model presented in this study suggest that its use is feasible. Because of the model's characteristics, seeds of lower specific activity iodine might be necessary which, on the other hand, would help to reduce costs. However, it has to be emphasized that the proposed source is a prototype, and the required (AAPM prerequisites) experimental study and tolerance manufacturer values are pending for future studies. PACS numbers: 87.53.Jw, 87.55.K PMID:22584172
Predicting pneumonitis risk: a dosimetric alternative to mean lung dose.
Tucker, Susan L; Mohan, Radhe; Liengsawangwong, Raweewan; Martel, Mary K; Liao, Zhongxing
2013-02-01
To determine whether the association between mean lung dose (MLD) and risk of severe (grade ≥3) radiation pneumonitis (RP) depends on the dose distribution pattern to normal lung among patients receiving 3-dimensional conformal radiation therapy for non-small-cell lung cancer. Three cohorts treated with different beam arrangements were identified. One cohort (2-field boost [2FB]) received 2 parallel-opposed (anteroposterior-posteroanterior) fields per fraction initially, followed by a sequential boost delivered using 2 oblique beams. The other 2 cohorts received 3 or 4 straight fields (3FS and 4FS, respectively), ie, all fields were irradiated every day. The incidence of severe RP was plotted against MLD in each cohort, and data were analyzed using the Lyman-Kutcher-Burman (LKB) model. The incidence of grade ≥3 RP rose more steeply as a function of MLD in the 2FB cohort (N=120) than in the 4FS cohort (N=138), with an intermediate slope for the 3FS group (N=99). The estimated volume parameter from the LKB model was n=0.41 (95% confidence interval, 0.15-1.0) and led to a significant improvement in fit (P=.05) compared to a fit with volume parameter fixed at n=1 (the MLD model). Unlike the MLD model, the LKB model with n=0.41 provided a consistent description of the risk of severe RP in all three cohorts (2FB, 3FS, 4FS) simultaneously. When predicting risk of grade ≥3 RP, the mean lung dose does not adequately take into account the effects of high doses. Instead, the effective dose, computed from the LKB model using volume parameter n=0.41, may provide a better dosimetric parameter for predicting RP risk. If confirmed, these findings support the conclusion that for the same MLD, high doses to small lung volumes ("a lot to a little") are worse than low doses to large volumes ("a little to a lot"). Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazan, Jose G.; Luxton, Gary; Mok, Edward C.
2012-11-01
Purpose: To identify dosimetric parameters that correlate with acute hematologic toxicity (HT) in patients with squamous cell carcinoma of the anal canal treated with definitive chemoradiotherapy (CRT). Methods and Materials: We analyzed 33 patients receiving CRT. Pelvic bone (PBM) was contoured for each patient and divided into subsites: ilium, lower pelvis (LP), and lumbosacral spine (LSS). The volume of each region receiving at least 5, 10, 15, 20, 30, and 40 Gy was calculated. Endpoints included grade {>=}3 HT (HT3+) and hematologic event (HE), defined as any grade {>=}2 HT with a modification in chemotherapy dose. Normal tissue complication probabilitymore » (NTCP) was evaluated with the Lyman-Kutcher-Burman (LKB) model. Logistic regression was used to test associations between HT and dosimetric/clinical parameters. Results: Nine patients experienced HT3+ and 15 patients experienced HE. Constrained optimization of the LKB model for HT3+ yielded the parameters m = 0.175, n = 1, and TD{sub 50} = 32 Gy. With this model, mean PBM doses of 25 Gy, 27.5 Gy, and 31 Gy result in a 10%, 20%, and 40% risk of HT3+, respectively. Compared with patients with mean PBM dose of <30 Gy, patients with mean PBM dose {>=}30 Gy had a 14-fold increase in the odds of developing HT3+ (p = 0.005). Several low-dose radiation parameters (i.e., PBM-V10) were associated with the development of HT3+ and HE. No association was found with the ilium, LP, or clinical factors. Conclusions: LKB modeling confirms the expectation that PBM acts like a parallel organ, implying that the mean dose to the organ is a useful predictor for toxicity. Low-dose radiation to the PBM was also associated with clinically significant HT. Keeping the mean PBM dose <22.5 Gy and <25 Gy is associated with a 5% and 10% risk of HT, respectively.« less
A NTCP approach for estimating the outcome in radioiodine treatment of hyperthyroidism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strigari, L.; Sciuto, R.; Benassi, M.
2008-09-15
Radioiodine has been in use for over 60 years as a treatment for hyperthyroidism. Major changes in clinical practice have led to accurate dosimetry capable of avoiding the risks of adverse effects and the optimization of the treatment. The aim of this study was to test the capability of a radiobiological model, based on normal tissue complication probability (NTCP), to predict the outcome after oral therapeutic {sup 131}I administration. Following dosimetric study, 79 patients underwent treatment for hyperthyroidism using radioiodine and then 67 had at least a one-year follow up. The delivered dose was calculated using the MIRD formula, takingmore » into account the measured maximum uptake of administered iodine transferred to the thyroid, U0, and the effective clearance rate, T{sub eff} and target mass. The dose was converted to normalized total dose delivered at 2 Gy per fraction (NTD{sub 2}). Furthermore, the method to take into account the reduction of the mass of the gland during radioiodine therapy was also applied. The clinical outcome and dosimetric parameters were analyzed in order to study the dose-response relationship for hypothyroidism. The TD{sub 50} and m parameters of the NTCP model approach were then estimated using the likelihood method. The TD{sub 50}, expressed as NTD{sub 2}, resulted in 60 Gy (95% C.I.: 45-75 Gy) and 96 Gy (95% C.I.: 86-109 Gy) for patients affected by Graves or autonomous/multinodular disease, respectively. This supports the clinical evidence that Graves' disease should be characterized by more radiosensitive cells compared to autonomous nodules. The m parameter for all patients was 0.27 (95% C.I.: 0.22-0.36). These parameters were compared with those reported in the literature for hypothyroidism induced after external beam radiotherapy. The NTCP model correctly predicted the clinical outcome after the therapeutic administration of radioiodine in our series.« less
Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc
2013-11-15
Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then bemore » generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the computation time decrease with the number of points and that no effects were observed on the dosimetric indices when varying the number of sampling points and the number of iterations, they were respectively fixed to 2500 and to 100. The computation time to obtain ten complete treatments plans ranging from 9 to 18 catheters, with the corresponding dosimetric indices, was 90 s. However, 93% of the computation time is used by a research version of IPSA. For the breast, on average, the Radiation Therapy Oncology Group recommendations would be satisfied down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of V100, dose homogeneity index, and D90.Conclusions: The authors have devised a simple, fast and efficient method to optimize the number and position of catheters in interstitial HDR brachytherapy. The method was shown to be robust for both prostate and breast HDR brachytherapy. More importantly, the computation time of the algorithm is acceptable for clinical use. Ultimately, this catheter optimization algorithm could be coupled with a 3D ultrasound system to allow real-time guidance and planning in HDR brachytherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafata, K; Ren, L; Wu, Q
Purpose: To develop a data-mining methodology based on quantum clustering and machine learning to predict expected dosimetric endpoints for lung SBRT applications based on patient-specific anatomic features. Methods: Ninety-three patients who received lung SBRT at our clinic from 2011–2013 were retrospectively identified. Planning information was acquired for each patient, from which various features were extracted using in-house semi-automatic software. Anatomic features included tumor-to-OAR distances, tumor location, total-lung-volume, GTV and ITV. Dosimetric endpoints were adopted from RTOG-0195 recommendations, and consisted of various OAR-specific partial-volume doses and maximum point-doses. First, PCA analysis and unsupervised quantum-clustering was used to explore the feature-space tomore » identify potentially strong classifiers. Secondly, a multi-class logistic regression algorithm was developed and trained to predict dose-volume endpoints based on patient-specific anatomic features. Classes were defined by discretizing the dose-volume data, and the feature-space was zero-mean normalized. Fitting parameters were determined by minimizing a regularized cost function, and optimization was performed via gradient descent. As a pilot study, the model was tested on two esophageal dosimetric planning endpoints (maximum point-dose, dose-to-5cc), and its generalizability was evaluated with leave-one-out cross-validation. Results: Quantum-Clustering demonstrated a strong separation of feature-space at 15Gy across the first-and-second Principle Components of the data when the dosimetric endpoints were retrospectively identified. Maximum point dose prediction to the esophagus demonstrated a cross-validation accuracy of 87%, and the maximum dose to 5cc demonstrated a respective value of 79%. The largest optimized weighting factor was placed on GTV-to-esophagus distance (a factor of 10 greater than the second largest weighting factor), indicating an intuitively strong correlation between this feature and both endpoints. Conclusion: This pilot study shows that it is feasible to predict dose-volume endpoints based on patient-specific anatomic features. The developed methodology can potentially help to identify patients at risk for higher OAR doses, thus improving the efficiency of treatment planning. R01-184173.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S; Kim, D; Kim, T
2015-06-15
Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation wasmore » calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning (MSIP) of Korea.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Ellis, R; Traughber, B
Purpose: Treating gynecological cancers with interstitial high-dose-rate (HDR) brachytherapy requires precise reconstruction of catheter positions to obtain accurate dosimetric plans. In this study, we investigated the degree of reproducibility of dosimetric plans for Syed HDR brachytherapy. Methods: We randomly selected five patients having cervix-vaginal cancer who were recently treated in our clinic with interstitial HDR brachytherapy with a prescription dose of 25–30 Gy in five fractions. Interstitial needles/catheters were placed under fluoroscopic guidance and intra-operative 3T MRI scan was performed to confirm the desired catheter placement for adequate target volume coverage. A CT scan was performed and fused with themore » MRI for delineating high-risk CTV (HR-CTV), intermediate-risk CTV (IR-CTV) and OARs. HDR treatment plans were generated using Oncentra planning software. A single plan was used for all five fractions of treatment for each patient. For this study, we took the original clinical plan and removed all the reconstructed catheters from the plan keeping the original contours unchanged. Then, we manually reconstructed all the catheters and entered the same dwell time from the first original clinical plan. The dosimetric parameters studied were: D90 for HR-CTV and IR-CV, and D2cc for bladder, rectum, sigmoid and bowel. Results: The mean of absolute differences in dosimetric coverage (D90) were (range): 1.3% (1.0–2.0%) and 2.0% (0.9–3.6%) for HR-CTV and IR-CTV, respectively. In case of OARs, the mean of absolute variations in D2cc were (range): 4.7% (0.7–8.9%) for bladder, 1.60% (0.3–3.2%) for rectum, 1.6% (0–3.9%) for sigmoid, and 1.8% (0–5.1%) for bowel. Conclusion: Overall, the reproducibility of interstitial HDR plans was within clinically acceptable limit. Observed maximum variation in D2cc for bladder. If number of catchers and dwell points were relatively low or any one catheter was heavily loaded, then reproducibility of the plan was more sensitive to the accuracy of catheter reconstruction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, T; Yan, Y; Ramirez, E
2015-06-15
Purpose: Accelerated partial breast irradiation (APBI) is an effective treatment for early stage breast-cancer. Irradiation in a prone position can mitigate breast motion and spare heart and lung. In this study, a comprehensive study is performed to evaluate various treatment techniques for prone APBI treatment including: 3D-CRT, IMRT, co-planar and non-coplanar partial arcs treatment. Methods: In this treatment planning study, a left breast patient treated in prone position in our clinic was imported into Varian Eclipse TPS. Six beams tangential to chest wall were used in both 3D-CRT and IMRT plans. These six beams were coplanar in a transactional planemore » achieved by both gantry and couch rotation. A 60-beam IMRT plan was also created to explore the maximum benefit of co-planar IMRT. Within deliverable couch rotation range (±30°), partial arc treatment plans with one and up to ten couch positions were generated for comparison. For each plan, 30Gy in 6 fractions was prescribed to 95% PTV volume. Critical dosimetric parameters, such as conformity index, mean, maximum, and volume dose of organ at risk, are evaluated. Results: The conformity indexes (CI) are 3.53, 3.17, 2.21 and 1.08 respectively to 3D-CRT, 6-beam IMRT, 60-beam IMRT, and two-partial-arcs coplanar plans. However, arc plans increase heart dose. CI for non-coplanar arc plans decreases from 1.19 to 1.10 when increases couch positions. Maximum dose in ipsilateral lung (1.98 to 1.13 Gy), and heart (0.62 to 0.43 Gy) are steadily decreased with the increased number of non-coplanar arcs. Conclusions: The dosimetric evaluation results show that partial arc plans have improved CIs compared to conventional 3D-CRT and IMRT plans. Increasing number of partial arcs decreases lung and heart dose. The dosimetric benefit obtained from non-coplanar arcs should be considered with treatment delivery time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallardo, N; Maneru, F; Fuentemilla, N
2015-06-15
Purpose: dosimetric comparison of 3DCRT and IMRT in 9 esophageal cancer. The aim of this paper is to know which of these two techniques is dosimetrically more favorable dosimetrically at both the CTV coverage and dose obtained in the relevant organs at risk, in this case, lungs and heart, as the spinal cord received in all cases below 45 Gy. Methods: we chose 9 patients from our center (CHN) with the same type of esophageal cancer and in which the prescribed dose was the same, 54 Gy. For these treatments we have used the same fields and the same anglesmore » (AP (0 °), OPD (225°–240°) and OPI (125°–135°)).All plans have been implemented using Eclipse (version 11.0) with AAA( Analytical Anisotropic Algorithm )(Version 11.0.31). Results: To analyze the coverage of the CTV, we have evaluated the D99% and found that the average dose received by 99% of CTV with IMRT is 53.8 ± 0.4 Gy (99.6% of the prescribed dose) and the mean value obtained with 3DCRT is 52.3 ± 0.6 Gy (96.8% of the prescribed dose).The last data analyzed was the D2% of PTV, a fact that gives us information on the maximum dose received by our PTV. D2% of the PTV for IMRT planning is 55.4 ± 0.4 Gy (102.6% of the prescribed dose) and with 3DCRT is 56.8 ± 0.7 Gy (105.2% of the prescribed dose).All parameters analyzed at risk organs (V30, V40, V45 and V50 for the case of heart and V5, V10, V15 and V20 for the case of the lungs) provide us irradiated volume percentages lower in IMRT than 3DCRT. Conclusion: IMRT provides a considerable improvement in the coverage of the CTV and the doses to organs at risk.« less
Shi, Shiming; Zeng, Zhaochong; Ye, Luxi; Huang, Yan; He, Jian
2017-06-01
Radiation pneumonitis is the most frequent acute pulmonary toxicity following stereotactic body radiation therapy for lung cancer. Here, we investigate clinical and dosimetric factors associated with symptomatic radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. A total of 67 patients with stage I non-small cell lung cancer who received stereotactic body radiation therapy at our institution were enrolled, and their clinicopathological parameters and dosimetric parameters were recorded and analyzed. The median follow-up period was 26.4 months (range: 7-48 months). In univariate analysis, tumor size ( P = .041), mean lung dose ( P = .028), V2.5 ( P = .024), V5 ( P = .014), V10 ( P = .004), V20 ( P = .024), V30 ( P = .020), V40 ( P = .040), and V50 ( P = 0.040) were associated with symptomatic radiation pneumonitis. In multivariable logistic regression analysis, V10 ( P = .049) was significantly associated with symptomatic radiation pneumonitis. In conclusion, this study found that tumor size, mean lung dose, and V2.5 to V50 were risk factors markedly associated with symptomatic radiation pneumonitis. Our data suggested that lung V10 was the most significant factor, and optimizing lung V10 may reduce the risk of symptomatic radiation pneumonitis. For both central and peripheral stage I lung cancer, rate of radiation pneumonitis ≥grade 2 was low after stereotactic body radiation therapy with appropriate fraction dose.
Bae, Sun Hyun; Kim, Mi-Sook; Jang, Won Il; Cho, Chul Koo; Yoo, Hyung Jun; Kim, Kum Bae; Han, Chul Ju; Park, Su Cheol; Lee, Dong Han
2015-08-01
This study evaluated the incidence of hepatic toxicity after stereotactic ablative radiotherapy (SABR) using 3 fractions to the liver, and identified the predictors for hepatic toxicity. We retrospectively reviewed 78 patients with primary and metastatic liver cancers, who underwent SABR using 3 fractions between 2003 and 2011. To examine the incidence of hepatic toxicity, we defined newly developed hepatic toxicity≥grade 2 according to the National Cancer Institute Common Terminology Criteria for Adverse Events v4.0 within 3 months after the end of SABR as a significant adverse event. To identify the predictors for hepatic toxicity, we analyzed several clinical and dosimetric parameters (rV5Gy-rV35Gy: normal liver volume receiving
Dependence of thresholds for pulmonary capillary hemorrhage on diagnostic ultrasound frequency.
Miller, Douglas L; Dou, Chunyan; Raghavendran, Krishnan
2015-06-01
Pulmonary ultrasound examination has become routine for diagnosis in many clinical and point-of-care medical settings. However, the phenomenon of pulmonary capillary hemorrhage (PCH) induction during diagnostic ultrasound imaging presents a poorly understood risk factor. PCH was observed in anesthetized rats exposed to 1.5-, 4.5- and 12.0-MHz diagnostic ultrasound to investigate the frequency dependence of PCH thresholds. PCH was detected in the ultrasound images as growing comet tail artifacts and was assessed using photographs of the surface of excised lungs. Previous photographs acquired after exposure to 7.6-MHz diagnostic ultrasound were included for analysis. In addition, at each frequency we measured dosimetric parameters, including peak rarefactional pressure amplitude and spatial peak, pulse average intensity attenuated by rat chest wall samples. Peak rarefactional pressure amplitude thresholds determined at each frequency, based on the proportion of PCH in groups of five rats, were 1.03 ± 0.02, 1.28 ± 0.14, 1.18 ± 0.12 and 1.36 ± 0.15 MPa at 1.5, 4.5, 7.6 and 12.0 MHz, respectively. Although the PCH lesions decreased in size with increasing ultrasonic frequency, owing to the smaller beam widths and scan lengths, the peak rarefactional pressure amplitude thresholds remained approximately constant. This dependence was different from that of the mechanical index, which indicates a need for a specific dosimetric parameter for safety guidance in pulmonary ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source
NASA Astrophysics Data System (ADS)
Heredia, Athena Yvonne
Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental palladium, Pd(0), will be discussed in detail. Directional HDR has the potential to improve upon current treatments, providing better dose conformality to the target volume, while maintaining the benefits of HDR applications.
Spectroscopic characterization of low dose rate brachytherapy sources
NASA Astrophysics Data System (ADS)
Beach, Stephen M.
The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these analogs. Several dosimetrically-relevant water-equivalent plastics were also investigated for their transmission properties within a liquid water environment, as well as in air. The framework for the accurate spectrometry of LDR sources is established as a result of this dissertation work. In addition to the measurement and analysis methods, this work presents the basic measured spectroscopic characteristics of each LDR seed currently in use in the clinic today.
Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R
2011-01-01
Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) ≥95% of the prescribed dose (PD) covering ≥90% of the target volume, (2) a maximum skin dose ≤125% of the PD, (3) maximum rib dose ≤145% of the PD, and (4) the V150 ≤50 cc and V200 ≤10 cc. The ability to concurrently achieve these dosimetric goals using the Contura MLB was analyzed. 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was ≥5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered. Copyright © 2011 Elsevier Inc. All rights reserved.
Dosimetric investigation of LDR brachytherapy ¹⁹²Ir wires by Monte Carlo and TPS calculations.
Bozkurt, Ahmet; Acun, Hediye; Kemikler, Gonul
2013-01-01
The aim of this study was to investigate the dose rate distribution around (192)Ir wires used as radioactive sources in low-dose-rate brachytherapy applications. Monte Carlo modeling of a 0.3-mm diameter source and its surrounding water medium was performed for five different wire lengths (1-5 cm) using the MCNP software package. The computed dose rates per unit of air kerma at distances from 0.1 up to 10 cm away from the source were first verified with literature data sets. Then, the simulation results were compared with the calculations from the XiO CMS commercial treatment planning system. The study results were found to be in concordance with the treatment planning system calculations except for the shorter wires at close distances.
Aghamiri, Seyyed Mahmoud Reza; Najarian, Siamak; Jaberi, Ramin
2010-01-01
High dose rate (HDR) brachytherapy is one of the accepted treatment modalities in gastro‐intestinal tract and bladder carcinomas. Considering the shortcoming of contact brachytherapy routinely used in gastrointestinal tract in treatment of big tumors or invasive method of bladder treatment, an intraluminal applicator with the capability of insertion into the tumor depth seems to be useful. This study presents some dosimetric evaluations to introduce this applicator to the clinical use. The radiation attenuation characteristics of the applicator were evaluated by means of two dosimetric methods including well‐type chamber and radiochromic film. The proposed 110 cm long applicator has a flexible structure made of stainless steel for easy passage through lumens and a needle tip to drill into big tumors. The 2 mm diameter of the applicator is thick enough for source transition, while easy passage through any narrow lumen such as endoscope or cystoscope working channel is ensured. Well‐chamber results showed an acceptably low attenuation of this steel springy applicator. Performing absolute dosimetry resulted in a correlation coefficient of R=0.9916(p‐value≈10−7) between standard interstitial applicator and the one proposed in this article. This study not only introduces a novel applicator with acceptable attenuation but also proves the response independency of the GAFCHROMIC EBT films to energy. By applying the dose response of the applicator in the treatment planning software, it can be used as a new intraluminal / interstitial applicator. PACS number: 87.53.Bn, 87.53.Jw, 29.40.Cs
Dosimetric assessment of the PRESAGE dosimeter for a proton pencil beam
NASA Astrophysics Data System (ADS)
Wuu, C.-S.; Xu, Y.; Qian, X.; Adamovics, J.; Cascio, E.; Lu, H.-M.
2013-06-01
The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUSTM was used to implement dose distributions for proton pencil beams since it provides most accurate readout. Percentage depth dose curves and beam profiles for two proton energy, 110 MeV, and 93 MeV, were used to evaluate the dosimetric performance of two PRESAGE phantom formulas. The findings from this study show that the dosimetric properties of the phantom materials match with basic physics of proton beams.
SU-E-P-05: Electronic Brachytherapy: A Physics Perspective On Field Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pai, S; Ayyalasomayajula, S; Lee, S
2015-06-15
Purpose: We want to summarize our experience implementing a successful program of electronic brachytherapy at several dermatology clinics with the help of a cloud based software to help us define the key program parameters and capture physics QA aspects. Optimally developed software helps the physicist in peer review and qualify the physical parameters. Methods: Using the XOFT™ Axxent™ electronic brachytherapy system in conjunction with a cloud-based software, a process was setup to capture and record treatments. It was implemented initially at about 10 sites in California. For dosimetric purposes, the software facilitated storage of the physics parameters of surface applicatorsmore » used in treatment and other source calibration parameters. In addition, the patient prescription, pathology and other setup considerations were input by radiation oncologist and the therapist. This facilitated physics planning of the treatment parameters and also independent check of the dwell time. From 2013–2014, nearly1500 such calculation were completed by a group of physicists. A total of 800 patients with multiple lesions have been treated successfully during this period. The treatment log files have been uploaded and documented in the software which facilitated physics peer review of treatments per the standards in place by AAPM and ACR. Results: The program model was implemented successfully at multiple sites. The cloud based software allowed for proper peer review and compliance of the program at 10 clinical sites. Dosimtery was done on 800 patients and executed in a timely fashion to suit the clinical needs. Accumulated physics data in the software from the clinics allows for robust analysis and future development. Conclusion: Electronic brachytherapy implementation experience from a quality assurance perspective was greatly enhanced by using a cloud based software. The comprehensive database will pave the way for future developments to yield superior physics outcomes.« less
Source position verification and dosimetry in HDR brachytherapy using an EPID.
Smith, R L; Taylor, M L; McDermott, L N; Haworth, A; Millar, J L; Franich, R D
2013-11-01
Accurate treatment delivery in high dose rate (HDR) brachytherapy requires correct source dwell positions and dwell times to be administered relative to each other and to the surrounding anatomy. Treatment delivery inaccuracies predominantly occur for two reasons: (i) anatomical movement or (ii) as a result of human errors that are usually related to incorrect implementation of the planned treatment. Electronic portal imaging devices (EPIDs) were originally developed for patient position verification in external beam radiotherapy and their application has been extended to provide dosimetric information. The authors have characterized the response of an EPID for use with an (192)Ir brachytherapy source to demonstrate its use as a verification device, providing both source position and dosimetric information. Characterization of the EPID response using an (192)Ir brachytherapy source included investigations of reproducibility, linearity with dose rate, photon energy dependence, and charge build-up effects associated with exposure time and image acquisition time. Source position resolution in three dimensions was determined. To illustrate treatment verification, a simple treatment plan was delivered to a phantom and the measured EPID dose distribution compared with the planned dose. The mean absolute source position error in the plane parallel to the EPID, for dwells measured at 50, 100, and 150 mm source to detector distances (SDD), was determined to be 0.26 mm. The resolution of the z coordinate (perpendicular distance from detector plane) is SDD dependent with 95% confidence intervals of ± 0.1, ± 0.5, and ± 2.0 mm at SDDs of 50, 100, and 150 mm, respectively. The response of the EPID is highly linear to dose rate. The EPID exhibits an over-response to low energy incident photons and this nonlinearity is incorporated into the dose calibration procedure. A distance (spectral) dependent dose rate calibration procedure has been developed. The difference between measured and planned dose is less than 2% for 98.0% of pixels in a two-dimensional plane at an SDD of 100 mm. Our application of EPID dosimetry to HDR brachytherapy provides a quality assurance measure of the geometrical distribution of the delivered dose as well as the source positions, which is not possible with any current HDR brachytherapy verification system.
Construction of the TH-GEM detector components for metrology of low energy ionizing radiation
NASA Astrophysics Data System (ADS)
Silva, N. F.; Silva, T. F.; Castro, M. C.; Natal da Luz, H.; Caldas, L. V. E.
2018-03-01
The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high-energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype.
Field size dependent mapping of medical linear accelerator radiation leakage
NASA Astrophysics Data System (ADS)
Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima
2015-03-01
The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.
Huang, Qijie; Jabbour, Salma K; Xiao, Zhiyan; Yue, Ning; Wang, Xiao; Cao, Hongbin; Kuang, Yu; Zhang, Yin; Nie, Ke
2018-04-25
The principle aim of this study is to incorporate 4DCT ventilation imaging into functional treatment planning that preserves high-functioning lung with both double scattering and scanning beam techniques in proton therapy. Eight patients with locally advanced non-small-cell lung cancer were included in this study. Deformable image registration was performed for each patient on their planning 4DCTs and the resultant displacement vector field with Jacobian analysis was used to identify the high-, medium- and low-functional lung regions. Five plans were designed for each patient: a regular photon IMRT vs. anatomic proton plans without consideration of functional ventilation information using double scattering proton therapy (DSPT) and intensity modulated proton therapy (IMPT) vs. functional proton plans with avoidance of high-functional lung using both DSPT and IMPT. Dosimetric parameters were compared in terms of tumor coverage, plan heterogeneity, and avoidance of normal tissues. Our results showed that both DSPT and IMPT plans gave superior dose advantage to photon IMRTs in sparing low dose regions of the total lung in terms of V5 (volume receiving 5Gy). The functional DSPT only showed marginal benefit in sparing high-functioning lung in terms of V5 or V20 (volume receiving 20Gy) compared to anatomical plans. Yet, the functional planning in IMPT delivery, can further reduce the low dose in high-functioning lung without degrading the PTV dosimetric coverages, compared to anatomical proton planning. Although the doses to some critical organs might increase during functional planning, the necessary constraints were all met. Incorporating 4DCT ventilation imaging into functional proton therapy is feasible. The functional proton plans, in intensity modulated proton delivery, are effective to further preserve high-functioning lung regions without degrading the PTV coverage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Li, X; Liu, G
Purpose: We compare and investigate the dosimetric impacts on pencil beam scanning (PBS) proton treatment plans generated with CT calibration curves from four different CT scanners and one averaged ‘global’ CT calibration curve. Methods: The four CT scanners are located at three different hospital locations within the same health system. CT density calibration curves were collected from these scanners using the same CT calibration phantom and acquisition parameters. Mass density to HU value tables were then commissioned in a commercial treatment planning system. Five disease sites were chosen for dosimetric comparisons at brain, lung, head and neck, adrenal, and prostate.more » Three types of PBS plans were generated at each treatment site using SFUD, IMPT, and robustness optimized IMPT techniques. 3D dose differences were investigated using 3D Gamma analysis. Results: The CT calibration curves for all four scanners display very similar shapes. Large HU differences were observed at both the high HU and low HU regions of the curves. Large dose differences were generally observed at the distal edges of the beams and they are beam angle dependent. Out of the five treatment sites, lung plans exhibits the most overall range uncertainties and prostate plans have the greatest dose discrepancy. There are no significant differences between the SFUD, IMPT, and the RO-IMPT methods. 3D gamma analysis with 3%, 3 mm criteria showed all plans with greater than 95% passing rate. Two of the scanners with close HU values have negligible dose difference except for lung. Conclusion: Our study shows that there are more than 5% dosimetric differences between different CT calibration curves. PBS treatment plans generated with SFUD, IMPT, and the robustness optimized IMPT has similar sensitivity to the CT density uncertainty. More patient data and tighter gamma criteria based on structure location and size will be used for further investigation.« less
SU-E-T-314: Dosimetric Effect of Smooth Drilling On Proton Compensators in Prostate Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyhan, M; Yue, N; Zou, J
2015-06-15
Purpose: To evaluate the dosimetric effect of smooth drilling of proton compensators in proton prostate plans when compared to typical plunge drilling settings. Methods: Twelve prostate patients were planned in Eclipse treatment planning system using three different drill settings Smooth, Plunge drill A, and Plunge drill B. The differences between A and B were: spacing X[cm]: 0.4(A), 0.1(B), spacing Y[cm]: 0.35(A), 0.1(B), row offset [cm]: 0.2(A), 0(B). Planning parameters were kept consistent between the different plans, which utilized two opposed lateral beams arrangement. Mean differences absolute dosimetry in OAR constraints are presented. Results: The smooth drilled compensator based plans yieldedmore » equivalent target coverage to the plans generated with drill settings A and B. Overall, the smooth compensators reduced dose to the majority of organs at risk compared to settings A and B. Constraints were reduced for the following OAR: Rectal V75 by 2.12 and 2.48%, V70 by 2.45 and 2.91%, V65 by 2.85 and 3.37%, V50 by 2.3 and 5.1%, Bladder V65 by 4.49 and 3.67%, Penial Bulb mean by 3.7 and 4.2Gy, and the maximum plan dose 5.3 and 7.4Gy for option A vs smooth and option B vs smooth respectively. The femoral head constraint (V50<5%) was met by all plans, but it was not consistently lower for the smooth drilling plan. Conclusion: Smooth drilled compensators provide equivalent target coverage and overall slightly cooler plans to the majority of organs at risk; it also minimizes the potential dosimetric impacts caused by patient positioning uncertainty.« less
Verges, Ramona; Giraldo, Alexandra; Seoane, Alejandro; Toral, Elisabet; Ruiz, M Carmen; Pons, Ariadna; Giralt, Jordi
2018-01-01
To find out whether the internal target volume (ITV) vaginal procedure ensures dosimetric coverage during intensity-modulated radiation therapy (IMRT) of post-operative gynaecological tumours without instructions on rectal filling. The ITV vaginal procedure does not necessarily include all movements of the bladder, and does not include changes in the rectal volume. We should know if the vaginal ITV is a useful tool in maintaining CTV coverage during treatment. A retrospective analysis of 24 patients treated between July 2012 and July 2014 with adjuvant IMRT for gynaecological cancer. All patients underwent empty and full bladder CT on simulation (CT-planning) and three weeks later (CT-control). ITV displacement was measured and the 3D vector was calculated. ITV coverage was then evaluated by comparing the volume covered by the prescription isodose on both CT's. Patients were asked to have full bladder but they did not follow recommendations for the rectum. The mean 3D vector was 0.64 ± 0.32 cm (0.09-1.30). The mean ITV coverage loss was 5.8 ± 5.7% (0-20.2). We found a significant positive correlation between the 3D vector and the loss of coverage (Pearson correlation, r = 0.493, 95% CI: 0.111-0.748, p = 0.0144). We did not find any significant correlation between the bladder and rectal parameters with the 3D vector and loss of dosimetric coverage. We found a trend between the maximum rectal diameter in CT-planning and 3D vector ( r = 0.400, 95% CI: -0.004 to 0.692, p = 0.0529). ITV vaginal procedure contributed to ensuring a good dose coverage without instructions on rectal filling.
Shaikh, Talha; Churilla, Thomas M; Monpara, Pooja; Scott, Walter J; Cohen, Steven J; Meyer, Joshua E
There are limited data regarding clinical and treatment factors associated with radiation pneumonitis (RP) in patients receiving taxane-based trimodality therapy for esophageal cancer. The purpose of this study was to identify predictors of RP in patients undergoing trimodality therapy. We retrospectively reviewed patients undergoing chemoradiation followed by esophagectomy between 2006 and 2011. The association between clinical and dosimetric factors with RP was assessed using χ 2 test and Mann-Whitney U test. Multivariable regression was used to assess the relationship between grade 2+ RP and clinical/dosimetric factors. Receiver operator curves were generated to identify threshold doses for RP. A total of 139 patients were included; 19 (13.7%) patients experienced grade 2+ RP. Patients with upper/middle thoracic tumors (P = .038) and receiving higher radiation doses (P = .038) were more likely to develop grade 2+ RP. There was no association between taxane-based therapy and grade 2+ RP (P = .728). The percent volume of lung receiving 5 Gy (V5; P < .001), 10 Gy (P < .001), 20 Gy (V20; P < .001), and 30 Gy (P < .001) was associated with an increased risk of grade 2+ RP. On multivariable regression, the lung V5 (odds ratio, 1.101; 95% confidence interval, 1.1014-1.195) and V20 (odds ratio, 1.149; 95% confidence interval, 1.1015-1.301) remained associated with grade 2+ RP. A V5 ≤65% and V20 ≤25% were identified as optimal thresholds for increased grade 2+ RP. Dosimetric parameters are strong predictors of symptomatic RP in patients undergoing trimodality therapy for esophageal cancer. Mitigating the risk of RP in these patients should be an important consideration during treatment planning. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Qiao, Wen-Bo; Zhao, Yan-Hui; Zhao, Yan-Bin; Wang, Rui-Zhi
2005-05-07
To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during three-dimensional conformal radiotherapy (3D-CRT). We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria. Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus > or =60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, no grade 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P = 0.0001<0.01). Concurrent chemotherapy and the maximal esophageal point dose > or =60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT.
Bi, Xi-Wen; Li, Ye-Xiong; Fang, Hui; Jin, Jing; Wang, Wei-Hu; Wang, Shu-Lian; Liu, Yue-Ping; Song, Yong-Wen; Ren, Hua; Dai, Jian-Rong
2013-12-01
To assess the dosimetric benefit, treatment outcome, and toxicity of high-dose and extended-field intensity modulated radiation therapy (IMRT) in patients with early-stage NK/T-cell lymphoma of Waldeyer's ring (WR-NKTCL). Thirty patients with early-stage WR-NKTCL who received extended-field IMRT were retrospectively reviewed. The prescribed dose was 50 Gy to the primary involved regions and positive cervical lymph nodes (planning target volume requiring radical irradiation [PTV50]) and 40 Gy to the negative cervical nodes (PTV40). Dosimetric parameters for the target volume and critical normal structures were evaluated. Locoregional control (LRC), overall survival (OS), and progression-free survival (PFS) were calculated using the Kaplan-Meier method. The median mean doses to the PTV50 and PTV40 were 53.2 Gy and 43.0 Gy, respectively. Only 1.4% of the PTV50 and 0.9% of the PTV40 received less than 95% of the prescribed dose, indicating excellent target coverage. The average mean doses to the left and right parotid glands were 27.7 and 28.4 Gy, respectively. The 2-year OS, PFS, and LRC rates were 71.2%, 57.4%, and 87.8%. Most acute toxicities were grade 1 to 2, except for grade ≥3 dysphagia and mucositis. The most common late toxicity was grade 1-2 xerostomia, and no patient developed any ≥grade 3 late toxicities. A correlation between the mean dose to the parotid glands and the degree of late xerostomia was observed. IMRT achieves excellent target coverage and dose conformity, as well as favorable survival and locoregional control rates with acceptable toxicities in patients with WR-NKTCL. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Sun K., E-mail: sun.yi@ucdmc.ucdavis.edu; Mak, Walter; Yang, Claus C.
Purpose: To generate a reproducible step-wise guideline for the delineation of the lumbosacral plexus (LSP) on axial computed tomography (CT) planning images and to provide a preliminary dosimetric analysis on 15 representative patients with rectal or anal cancers treated with an intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: A standardized method for contouring the LSP on axial CT images was devised. The LSP was referenced to identifiable anatomic structures from the L4-5 interspace to the level of the sciatic nerve. It was then contoured retrospectively on 15 patients treated with IMRT for rectal or anal cancer. No dose limitations weremore » placed on this organ at risk during initial treatment planning. Dosimetric parameters were evaluated. The incidence of radiation-induced lumbosacral plexopathy (RILSP) was calculated. Results: Total prescribed dose to 95% of the planned target volume ranged from 50.4 to 59.4 Gy (median 54 Gy). The mean ({+-}standard deviation [SD]) LSP volume for the 15 patients was 100 {+-} 22 cm{sup 3} (range, 71-138 cm{sup 3}). The mean maximal dose to the LSP was 52.6 {+-} 3.9 Gy (range, 44.5-58.6 Gy). The mean irradiated volumes of the LSP were V40Gy = 58% {+-} 19%, V50Gy = 22% {+-} 23%, and V55Gy = 0.5% {+-} 0.9%. One patient (7%) was found to have developed RILSP at 13 months after treatment. Conclusions: The true incidence of RILSP in the literature is likely underreported and is not a toxicity commonly assessed by radiation oncologists. In our analysis the LSP commonly received doses approaching the prescribed target dose, and 1 patient developed RILSP. Identification of the LSP during IMRT planning may reduce RILSP. We have provided a reproducible method for delineation of the LSP on CT images and a preliminary dosimetric analysis for potential future dose constraints.« less
NASA Astrophysics Data System (ADS)
Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B.
2017-05-01
Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.
Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B
2017-05-07
Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Y; Ge, Y; Yuan, L
Purpose: To investigate the impact of outliers on knowledge modeling in radiation therapy, and develop a systematic workflow for identifying and analyzing geometric and dosimetric outliers using pelvic cases. Methods: Four groups (G1-G4) of pelvic plans were included: G1 (37 prostate cases), G2 (37 prostate plus lymph node cases), and G3 (37 prostate bed cases) are all clinical IMRT cases. G4 are 10 plans outside G1 re-planned with dynamic-arc to simulate dosimetric outliers. The workflow involves 2 steps: 1. identify geometric outliers, assess impact and clean up; 2. identify dosimetric outliers, assess impact and clean up.1. A baseline model wasmore » trained with all G1 cases. G2/G3 cases were then individually added to the baseline model as geometric outliers. The impact on the model was assessed by comparing leverage statistic of inliers (G1) and outliers (G2/G3). Receiver-operating-characteristics (ROC) analysis was performed to determine optimal threshold. 2. A separate baseline model was trained with 32 G1 cases. Each G4 case (dosimetric outliers) was then progressively added to perturb this model. DVH predictions were performed using these perturbed models for remaining 5 G1 cases. Normal tissue complication probability (NTCP) calculated from predicted DVH were used to evaluate dosimetric outliers’ impact. Results: The leverage of inliers and outliers was significantly different. The Area-Under-Curve (AUC) for differentiating G2 from G1 was 0.94 (threshold: 0.22) for bladder; and 0.80 (threshold: 0.10) for rectum. For differentiating G3 from G1, the AUC (threshold) was 0.68 (0.09) for bladder, 0.76 (0.08) for rectum. Significant increase in NTCP started from models with 4 dosimetric outliers for bladder (p<0.05), and with only 1 dosimetric outlier for rectum (p<0.05). Conclusion: We established a systematic workflow for identifying and analyzing geometric and dosimetric outliers, and investigated statistical metrics for detecting. Results validated the necessity for outlier detection and clean-up to enhance model quality in clinical practice. Research Grant: Varian master research grant.« less
Pujades-Claumarchirant, Ma Carmen; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo; Melhus, Christopher; Rivard, Mark
2010-03-01
The aim of this work was to determine dose distributions for high-energy brachytherapy sources at spatial locations not included in the radial dose function g L ( r ) and 2D anisotropy function F ( r , θ ) table entries for radial distance r and polar angle θ . The objectives of this study are as follows: 1) to evaluate interpolation methods in order to accurately derive g L ( r ) and F ( r , θ ) from the reported data; 2) to determine the minimum number of entries in g L ( r ) and F ( r , θ ) that allow reproduction of dose distributions with sufficient accuracy. Four high-energy photon-emitting brachytherapy sources were studied: 60 Co model Co0.A86, 137 Cs model CSM-3, 192 Ir model Ir2.A85-2, and 169 Yb hypothetical model. The mesh used for r was: 0.25, 0.5, 0.75, 1, 1.5, 2-8 (integer steps) and 10 cm. Four different angular steps were evaluated for F ( r , θ ): 1°, 2°, 5° and 10°. Linear-linear and logarithmic-linear interpolation was evaluated for g L ( r ). Linear-linear interpolation was used to obtain F ( r , θ ) with resolution of 0.05 cm and 1°. Results were compared with values obtained from the Monte Carlo (MC) calculations for the four sources with the same grid. Linear interpolation of g L ( r ) provided differences ≤ 0.5% compared to MC for all four sources. Bilinear interpolation of F ( r , θ ) using 1° and 2° angular steps resulted in agreement ≤ 0.5% with MC for 60 Co, 192 Ir, and 169 Yb, while 137 Cs agreement was ≤ 1.5% for θ < 15°. The radial mesh studied was adequate for interpolating g L ( r ) for high-energy brachytherapy sources, and was similar to commonly found examples in the published literature. For F ( r , θ ) close to the source longitudinal-axis, polar angle step sizes of 1°-2° were sufficient to provide 2% accuracy for all sources.
Moradi, F; Ung, N M; Khandaker, M U; Mahdiraji, G A; Saad, M; Abdul Malik, R; Bustam, A Z; Zaili, Z; Bradley, D A
2017-07-28
The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin safety.
Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers.
Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; de Haas-Kock, Danielle; Visser, Peter; van Gils, Francis; Verhaegen, Frank
2012-03-01
The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D(90) was reported based on the post implant CT prostate contour. Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (
Cellular uptake of {sup 212}BiOCl by Ehrlich ascites cells: A dosimetric analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roeske, J.C.; Whitlock, J.L.; Harper, P.V.
1999-01-01
Bi-212 is an alpha-emitting radionuclide being investigated as a therapeutic agent in the intraperitoneal treatment of micrometastatic ovarian carcinoma. In evaluating a new therapeutic modality, cell-survival studies are often used as a means of quantifying the biological effects of radiation. In this analysis, Ehrlich ascites cells were irradiated under conditions similar to therapy in various concentrations of Bi-212. Immediately following irradiation, a cell survival assay was performed in which cells were plated and colonies were counted after 10--14 days. Both a macrodosimetric and a microdosimetric approach were used in analyzing these data. These models used as input the fraction ofmore » activity within the cell and in solution, the distribution of cell sizes, and the variation of LET along individual alpha-particle tracks. The results indicate that the energy deposited within the nucleus varies significantly among individual cells. There is a small fraction of cell nuclei which receive no hits, while the remaining cells receive energy depositions which can differ significantly from the mean value. These dosimetric parameters are correlated with measured cell survival and will be a useful predictor of outcome for therapeutic doses.« less
NASA Astrophysics Data System (ADS)
Rodríguez-Cortés, J.; de Murphy, C. Arteaga; Ferro-Flores, Ge; Pedraza-López, M.; Murphy-Stack, E.
Malignant pancreatic tumours induced in athymic mice are a good model for peptide receptor targeted radiotherapy. The objective of this research was to determine biokinetic parameters in mice, in order to estimate the induced pancreatic tumour absorbed doses and to evaluate an `in house' 177Lu-DOTA-TATE radiopharmaceutical as part of preclinical studies for targeted therapy in humans. AR42J murine pancreas cancer cells expressing somatostatin receptors, were implanted in athymic mice (nD22) to obtain biokinetic and dosimetric data of 177Lu-DOTA-TATE. The mean tumour uptake 2 h post injection was 14.76±1.9% I.A./g; kidney and pancreas uptake, at the same time, were 7.27±1.1% I.A./g (1.71±0.90%/organ) and 4.20±0.98% I.A./g (0.42±0.03%/organ), respectively. The mean absorbed dose to tumour, kidney and pancreas was 0.58±0.02 Gy/MBq; 0.23±0.01 Gy/MBq and 0.14±0.01 Gy/MBq, respectively. These studies justify further dosimetric estimations to ensure that 177Lu-DOTA-TATE will act as expected in humans.
Thermoluminescent properties of rare earth doped lithium strontium borate phosphors
NASA Astrophysics Data System (ADS)
Jakathamani, S.; Annalakshmi, O.; Jose, M. T.
2018-04-01
Thermoluminescence (TL) of borates is remarkable in the field of radiation dosimetry because they can detect both neutron and gamma radiations. Usually, the TL efficiency of pure borates is low and hence dopants have to be added to increase their TL output. Their sensitivity and thermal stability vary widely and depend strongly on the preparation method. In this study polycrystalline powders of different rare earth doped thermoluminescent phosphors of Lithium Strontium borate (LSB) were synthesized by solid state sintering technique. Among the different rare earth dopants, the phosphor doped with cerium was found to have a simple glow curve structure with a dosimetric peak at around 265°C for a heating rate of 5°C/s. In order to study the effect of dopant on the TL characteristics, LSB phosphor with different concentrations of Ce dopant was synthesized and the TL intensity was found to be maximum for a dopant concentration of 0.7 mol%. All other important dosimetric characteristics like dose response and fading were carried out for the LSB:Ce (0.7 mol%) phosphor. Kinetic parameters like trap depth and frequency factor were determined using Peak shape method from Chen's equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benassi, Michaela; Di Murro, Luana; Tolu, Barbara, E-mail: barbara.tolu@gmail.com
This study aims at optimizing treatment planning in young patients affected by lymphoma (Stage II to III) by using an inclined board (IB) that allows reducing doses to the organs at risk. We evaluated 19 young patients affected by stage I to III lymphomas, referred to our Department for consolidation radiotherapy (RT) treatment on the mediastinum. Patients underwent 2 planning computed tomography (CT) scans performed in different positions: flat standard position and inclined position. A direct comparison between the different treatment plans was carried out analyzing dosimetric parameters obtained from dose-volume histograms generated for each plan. Comparison was performed tomore » evaluate the sparing obtained on breast and heart. Dosimetric evaluation was performed for the following organs at risk (OARs): mammary glands, lungs, and heart. A statistically significant advantage was reported for V{sub 5}, V{sub 20}, and V{sub 30} for the breast when using the inclined board. A similar result was obtained for V{sub 5} and V{sub 10} on the heart. No advantage was observed in lung doses. The use of a simple device, such as an inclined board, allows the optimization of treatment plan, especially in young female patients, by ensuring a significant reduction of the dose delivered to breast and heart.« less
DeWerd, Larry A; Huq, M Saiful; Das, Indra J; Ibbott, Geoffrey S; Hanson, William F; Slowey, Thomas W; Williamson, Jeffrey F; Coursey, Bert M
2004-03-01
Low dose rate brachytherapy is being used extensively for the treatment of prostate cancer. As of September 2003, there are a total of thirteen 125I and seven 103Pd sources that have calibrations from the National Institute of Standards and Technology (NIST) and the Accredited Dosimetry Calibration Laboratories (ADCLs) of the American Association of Physicists in Medicine (AAPM). The dosimetry standards for these sources are traceable to the NIST wide-angle free-air chamber. Procedures have been developed by the AAPM Calibration Laboratory Accreditation Subcommittee to standardize quality assurance and calibration, and to maintain the dosimetric traceability of these sources to ensure accurate clinical dosimetry. A description of these procedures is provided to the clinical users for traceability purposes as well as to provide guidance to the manufacturers of brachytherapy sources and ADCLs with regard to these procedures.
Dosimetric effects of patient rotational setup errors on prostate IMRT treatments
NASA Astrophysics Data System (ADS)
Fu, Weihua; Yang, Yong; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.; Yue, Ning J.
2006-10-01
The purpose of this work is to determine dose delivery errors that could result from systematic rotational setup errors (ΔΦ) for prostate cancer patients treated with three-phase sequential boost IMRT. In order to implement this, different rotational setup errors around three Cartesian axes were simulated for five prostate patients and dosimetric indices, such as dose-volume histogram (DVH), tumour control probability (TCP), normal tissue complication probability (NTCP) and equivalent uniform dose (EUD), were employed to evaluate the corresponding dosimetric influences. Rotational setup errors were simulated by adjusting the gantry, collimator and horizontal couch angles of treatment beams and the dosimetric effects were evaluated by recomputing the dose distributions in the treatment planning system. Our results indicated that, for prostate cancer treatment with the three-phase sequential boost IMRT technique, the rotational setup errors do not have significant dosimetric impacts on the cumulative plan. Even in the worst-case scenario with ΔΦ = 3°, the prostate EUD varied within 1.5% and TCP decreased about 1%. For seminal vesicle, slightly larger influences were observed. However, EUD and TCP changes were still within 2%. The influence on sensitive structures, such as rectum and bladder, is also negligible. This study demonstrates that the rotational setup error degrades the dosimetric coverage of target volume in prostate cancer treatment to a certain degree. However, the degradation was not significant for the three-phase sequential boost prostate IMRT technique and for the margin sizes used in our institution.
NASA Astrophysics Data System (ADS)
Li, X. Allen; Wang, Jian Z.; Stewart, Robert D.; Di Biase, Steven J.
2003-09-01
No prospective dose escalation study for prostate brachytherapy (PB) with permanent implants has been reported. In this work, we have performed a dosimetric and biological analysis to explore the implications of dose escalation in PB using 125I and 103Pd implants. The concept of equivalent uniform dose (EUD), proposed originally for external-beam radiotherapy (EBRT), is applied to low dose rate brachytherapy. For a given 125I or 103Pd PB, the EUD for tumour that corresponds to a dose distribution delivered by EBRT is calculated based on the linear quadratic model. The EUD calculation is based on the dose volume histogram (DVH) obtained retrospectively from representative actual patient data. Tumour control probabilities (TCPs) are also determined in order to compare the relative effectiveness of different dose levels. The EUD for normal tissue is computed using the Lyman model. A commercial inverse treatment planning algorithm is used to investigate the feasibility of escalating the dose to prostate with acceptable dose increases in the rectum and urethra. The dosimetric calculation is performed for five representative patients with different prostate sizes. A series of PB dose levels are considered for each patient using 125I and 103Pd seeds. It is found that the PB prescribed doses (minimum peripheral dose) that give an equivalent EBRT dose of 64.8, 70.2, 75.6 and 81 Gy with a fraction size of 1.8 Gy are 129, 139, 150 and 161 Gy for 125I and 103, 112, 122 and 132 Gy for 103Pd implants, respectively. Estimates of the EUD and TCP for a series of possible prescribed dose levels (e.g., 145, 160, 170 and 180 Gy for 125I and 125, 135, 145 and 155 for 103Pd implants) are tabulated. The EUD calculation was found to depend strongly on DVHs and radiobiological parameters. The dosimetric calculations suggest that the dose to prostate can be escalated without a substantial increase in both rectal and urethral dose. For example, increasing the PB prescribed dose from 145 to 180 Gy increases EUD for the rectum by only 3%. Our studies indicate that the dose to urethra can be kept within 100-120% of the prescription dose for all the dose levels studied. In conclusion, dose escalation in permanent implant for localized prostate cancer may be advantageous. It is dosimetrically possible to increase dose to prostate without a substantial increase in the dose to the rectum and urethra. Based on the results of our studies, a prospective dose escalation trial for prostate permanent implants has been initiated at our institution.
NASA Astrophysics Data System (ADS)
Mubarok, S.; Lubis, L. E.; Pawiro, S. A.
2016-03-01
Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.
Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen
2012-01-01
To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.
2013-10-01
Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacingmore » between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at risk, whereas for IMRT it is compromised target coverage. These findings suggest clinical situations where each technique may be most useful if DS constraints are to be employed.« less
SU-E-P-32: Adapting An MMLC to a Conventional Linac to Perform Stereotactic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emam, I; Hosini, M
2015-06-15
Purpose: Micro-MLCs minimizes beam scalloping effects caused by conventional-MLCs and facilitates conformal dynamic treatment delivery. But their effect on dosimetric parameters require careful investigations. Physical and dosimetric parameters and Linac mechanical stability with mMLC (net weight 30 Kg) attached to the gantry are to be investigated. Moreover, output study along with recommended jaws offsets are studied. Adaptation of an mMLC to our 16-years old conventional Linac is investigated in this work Methods: BrainLab mMLC (m3) mounted in a detachable chassis to the Philips SL-15 Linac (30kg). Gantry and collimator spoke shots measurements are made using a calibrated film in amore » solid phantom and compared with pin-point measurements. Leaf penumbra, transmission, leakage between the leaves, percentage depth dose (PDD) are measured using IBA pin-point ion chamber at 6 and 10 MV. For output measurements (using brass build-up cap), jaws are modified continuously regarding to m3-fields while output factor are compared with fixed jaws situation, while the mMLC leaf configuration is modified for different m3-fields Results: Mean transmission through leaves is 1.9±0.1% and mean leakage between leaves is 2.8±0.15%. Between opposing leaves abutting along the central beam-axis mean transmission is 15±3%, but it is reduced to 4.5±0.6% by moving the abutment position 4.5cm off-axis. The penumbra was sharper for m3 -fields than jaws-fields (maximum difference is 1.51±0.2%). m3-fields PDD show ∼3% variation from those of jaws-fields. m3-fields output factors show large variations (<4%) from Jaws defined fields. Output for m3-rectangular fields show slight variation in case of leaf-end&leaf-side as well as X-jaw&Y-jaw exchange. Circular m3-fields output factors shows close agreement with their corresponding square jaws-defined fields using 2mm Jaws offsets, If jaws are retracted to m3 limits, differences become <5%. Conclusion: BrainLab m3 is successfully adapted to our 16 old Philips-SL-15 Linac. Dosimetric properties should be taken into account for treatment planning considerations.« less
Merna, Catherine; Rwigema, Jean-Claude M; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A; Kupelian, Patrick; Steinberg, Michael L; Lee, Percy
2016-01-01
We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non-small cell lung cancer with a tri-cobalt-60 (tri-(60)Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)-based SBRT. In all, 20 patients with large central early-stage non-small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-(60)Co system for a prescription dose of 50Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R100 values were calculated as the total tissue volume receiving 100% of the dose (V100) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-(60)Co SBRT plans were performed using Student׳s t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3cc (range: 12.1 to 139.4cc). Of the tri-(60)Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R100 values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-(60)Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-(60)Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further investigation in a prospective feasibility clinical trial. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
SU-F-BRD-10: Lung IMRT Planning Using Standardized Beam Bouquet Templates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, L; Wu, Q J.; Yin, F
2014-06-15
Purpose: We investigate the feasibility of choosing from a small set of standardized templates of beam bouquets (i.e., entire beam configuration settings) for lung IMRT planning to improve planning efficiency and quality consistency, and also to facilitate automated planning. Methods: A set of beam bouquet templates is determined by learning from the beam angle settings in 60 clinical lung IMRT plans. A k-medoids cluster analysis method is used to classify the beam angle configuration into clusters. The value of the average silhouette width is used to determine the ideal number of clusters. The beam arrangements in each medoid of themore » resulting clusters are taken as the standardized beam bouquet for the cluster, with the corresponding case taken as the reference case. The resulting set of beam bouquet templates was used to re-plan 20 cases randomly selected from the database and the dosimetric quality of the plans was evaluated against the corresponding clinical plans by a paired t-test. The template for each test case was manually selected by a planner based on the match between the test and reference cases. Results: The dosimetric parameters (mean±S.D. in percentage of prescription dose) of the plans using 6 beam bouquet templates and those of the clinical plans, respectively, and the p-values (in parenthesis) are: lung Dmean: 18.8±7.0, 19.2±7.0 (0.28), esophagus Dmean: 32.0±16.3, 34.4±17.9 (0.01), heart Dmean: 19.2±16.5, 19.4±16.6 (0.74), spinal cord D2%: 47.7±18.8, 52.0±20.3 (0.01), PTV dose homogeneity (D2%-D99%): 17.1±15.4, 20.7±12.2 (0.03).The esophagus Dmean, cord D02 and PTV dose homogeneity are statistically better in the plans using the standardized templates, but the improvements (<5%) may not be clinically significant. The other dosimetric parameters are not statistically different. Conclusion: It's feasible to use a small number of standardized beam bouquet templates (e.g. 6) to generate plans with quality comparable to that of clinical plans. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merna, Catherine; Rwigema, Jean-Claude M.; Cao, Minsong
We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non−small cell lung cancer with a tri-cobalt-60 (tri-{sup 60}Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)–based SBRT. In all, 20 patients with large central early-stage non−small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-{sup 60}Co system for a prescription dose of 50 Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R{sub 100} values were calculatedmore » as the total tissue volume receiving 100% of the dose (V{sub 100}) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-{sup 60}Co SBRT plans were performed using Student's t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3 cc (range: 12.1 to 139.4 cc). Of the tri-{sup 60}Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R{sub 100} values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-{sup 60}Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-{sup 60}Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further investigation in a prospective feasibility clinical trial.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayyas, E; Vance, S; Brown, S
Purpose: To determine in a prospective study, the correlation between radiation dose/volume, clinical toxicities and patient-reported, quality of life (QOL) resulting from lung SBRT. Methods: For 106 non-small cell lung cancer (NSCLC) patients receiving SBRT (12 Gy × 4), symptoms including cough, dyspnea, fatigue and pneumonitis were measured at baseline (before treatment), after treatment and 3, 6, and 12 months post-treatment. Toxicity was graded from zero to five. Dosimetric parameters such as the MLD, D10%, D20%, and lung subvolumes (V10 and V20) were obtained from the treatment plan. Dosimetric parameters and number of patients demonstrating toxicity ≥ grade 2 weremore » tabulated. Linear regression analysis was used to calculate correlations between MLD and D10, D20, V10 and V20. Results: The percentages of patients with > grade 2 pneumonitis, fatigue, cough, and dyspnea over 3 to 12 months increased from 0.0% to 3.5%, 3.2% to 10.5%, 4.3% to 8.3%, and 10.8% to 18.8%, respectively. Computed dose indices D10%, D20% were 7.9±4.8 Gy and 3.0±2.3 Gy, respectively. MLD ranged from 0.34 Gy up to 9.9 Gy with overall average 3.0±1.7 Gy. The averages of the subvolumes V10 and V20 were respectively 8.9±5.3% and 3.0±2.4%. The linear regression analysis showed that V10 and D10 demonstrated the strongest correlation to MLD; R2= 0.92 and 0.87, respectively. V20, and D20 were also strongly correlated with MLD; R2 = 0.81 and 0.84 respectively. A correlation was also found to exist between MLD > 2 Gy and ≥ grade 2 cough and dyspnea. Subvolume values for 2Gy MLD were 5.3% for V10 and 2% for V20. Conclusion: Dosimetric indices: MLD ≥ 2Gy, D10 ≥ 5Gy and V10 ≥ 5% of the total lung volume were predictive of > grade 2 cough and dyspnea QOL data. The QOL results are a novel component of this work. acknowledgement of the Varian grant support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.
2014-04-01
To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {submore » cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gökçe, M., E-mail: mgokce@adu.edu.tr; Uslu, D. Koçyiğit; Ertunç, C.
The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3more » percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.« less
OSL response bleaching of BeO samples, using fluorescent light and blue LEDs
NASA Astrophysics Data System (ADS)
Groppo, D. P.; Caldas, L. V. E.
2016-07-01
The optically stimulated luminescence (OSL) is widely used as a dosimetric technique for many applications. In this work, the OSL response bleaching of BeO samples was studied. The samples were irradiated using a beta radiation source (90Sr+90Y); the bleaching treatments (fluorescent light and blue LEDs) were performed, and the results were compared. Various optical treatment time intervals were tested until reaching the complete bleaching of the OSL response. The best combination of the time interval and bleaching type was analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, David A; Schwahn, Scott O
2011-01-01
While inhalation dose coefficients are provided for about 800 radionuclides in International Commission on Radiological Protection (ICRP) Publication 68, many radionuclides of practical dosimetric interest for facilities such as high-energy proton accelerators are not specifically addressed, nor are organ-specific dose coefficients tabulated. The ICRP Publication 68 methodology is used, along with updated radiological decay data and metabolic data, to identify committed equivalent dose coefficients [hT(50)] and committed effective dose coefficients [e(50)] for radionuclides produced at the Oak Ridge National Laboratory s Spallation Neutron Source.
SU-C-17A-02: Sirius MRI Markers for Prostate Post-Implant Assessment: MR Protocol Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, T; Wang, J; Kudchadker, R
Purpose: Currently, CT is used to visualize prostate brachytherapy sources, at the expense of accurate structure contouring. MRI is superior to CT for anatomical delineation, but the sources appear as voids on MRI images. Previously we have developed Sirius MRI markers (C4 Imaging) to replace spacers to assist source localization on MRI images. Here we develop an MRI pulse sequence protocol that enhances the signal of these markers to enable MRI-only post-implant prostate dosimetric analysis. Methods: To simulate a clinical scenario, a CIRS multi-modality prostate phantom was implanted with 66 markers and 86 sources. The implanted phantom was imaged onmore » both 1.5T and 3.0T GE scanners under various conditions, different pulse sequences (2D fast spin echo [FSE], 3D balanced steadystate free precession [bSSFP] and 3D fast spoiled gradient echo [FSPGR]), as well as varying amount of padding to simulate various patient sizes and associated signal fall-off from the surface coil elements. Standard FSE sequences from the current clinical protocols were also evaluated. Marker visibility, marker size, intra-marker distance, total scan time and artifacts were evaluated for various combinations of echo time, repetition time, flip angle, number of excitations, bandwidth, slice thickness and spacing, fieldof- view, frequency/phase encoding steps and frequency direction. Results: We have developed a 3D FSPGR pulse sequence that enhances marker signal and ensures the integrity of the marker shape while maintaining reasonable scan time. For patients contraindicated for 3.0T, we have also developed a similar sequence for 1.5T scanners. Signal fall-off with distance from prostate to coil can be compensated mainly by decreasing bandwidth. The markers are not visible using standard FSE sequences. FSPGR sequences are more robust for consistent marker visualization as compared to bSSFP sequences. Conclusion: The developed MRI pulse sequence protocol for Sirius MRI markers assists source localization to enable MRIonly post-implant prostate dosimetric analysis. S.J. Frank is a co-founder of C4 Imaging (manufactures the MRI markers)« less
NASA Astrophysics Data System (ADS)
Besemer, Abigail E.
Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre-clinical and clinical patients and large dosimetric differences resulted when using conventional organ-level methods and the patient-specific voxelized methods described in this work. The dosimetric impact of various steps in the 3D voxelized dosimetry process were evaluated including quantitative imaging acquisition, image coregistration, voxel resampling, ROI contouring, CT-based material segmentation, and pharmacokinetic fitting. Finally, a multi-objective treatment planning optimization framework was developed for multi-radiopharmaceutical combination therapies.
NASA Astrophysics Data System (ADS)
Houweling, Antonetta C.; Crama, Koen; Visser, Jorrit; Fukata, Kyohei; Rasch, Coen R. N.; Ohno, Tatsuya; Bel, Arjan; van der Horst, Astrid
2017-04-01
Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ({{D}98 % } ) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Hien, E-mail: hien.le@health.sa.gov.au; Rojas, Ana; Alonzi, Roberto
2013-10-01
Objective: To determine whether late genitourinary toxicity, biochemical control of prostate cancer, and dosimetric parameters in patients with large prostate glands is different from those variables in men with smaller glands after treatment with high-dose-rate brachytherapy alone (HDR-BT). Methods: From November 2003 to July 2009, 164 patients with locally advanced prostate carcinoma were sequentially enrolled and treated with 34 or 36 Gy in 4 fractions and 31.5 Gy in 3 fractions of {sup 192}Ir HDR-BT alone. The median follow-up time was 71 months. Gland size was not considered in the selection criteria for this study. Estimates of freedom from biochemicalmore » relapse (FFbR) and late morbidity, stratified by median clinical target volume (CTV), were obtained, and differences were compared. Results: The median CTV volume was 60 cc (range, 15-208 cc). Dose–volume parameters D90 and V100 (ie, minimum dose to 90% of the prostate volume and volume receiving 100% of the prescribed isodose) achieved in patients with glands ≥60 cc were not significantly different from those with glands <60 cc (P≥.2). Nonetheless, biochemical control in patients with larger CTV was significantly higher (91% vs 78% at 6 years; P=.004). In univariate and multivariate analysis, CTV was a significant predictor for risk of biochemical relapse. This was not at the expense of an increase in either moderate (P=.6) or severe (P=.3) late genitourinary toxicity. The use of hormonal therapy was 17% lower in the large gland group (P=.01). Conclusions: Prostate gland size does not affect dosimetric parameters in HDR-BT assessed by D90 and V100. In patients with larger glands, a significantly higher biochemical control of disease was observed, with no difference in late toxicity. This improvement cannot be attributed to differences in dosimetry. Gland size should not be considered in the selection of patients for HDR-BT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Peter, E-mail: peter.jenkins@glos.nhs.uk; Watts, Joanne
2011-07-15
Purpose: Single dose-volume metrics are of limited value for the prediction of radiation pneumonitis (RP) in day-to-day clinical practice. We investigated whether multiparametric models that incorporate clinical and physiologic factors might have improved accuracy. Methods and Materials: The records of 160 patients who received radiation therapy for non-small-cell lung cancer were reviewed. All patients were treated to the same dose and with an identical technique. Dosimetric, pulmonary function, and clinical parameters were analyzed to determine their ability to predict for the subsequent development of RP. Results: Twenty-seven patients (17%) developed RP. On univariate analysis, the following factors were significantly correlatedmore » with the risk of pneumonitis: fractional volume of lung receiving >5-20 Gy, absolute volume of lung spared from receiving >5-15 Gy, mean lung dose, craniocaudal position of the isocenter, transfer coefficient for carbon monoxide (KCOc), total lung capacity, coadministration of angiotensin converting enzyme inhibitors, and coadministration of angiotensin receptor antagonists. By combining the absolute volume of lung spared from receiving >5 Gy with the KCOc, we defined a new parameter termed Transfer Factor Spared from receiving >5 Gy (TFS{sub 5}). The area under the receiver operator characteristic curve for TFS{sub 5} was 0.778, increasing to 0.846 if patients receiving modulators of the renin-angiotensin system were excluded from the analysis. Patients with a TFS{sub 5} <2.17 mmol/min/kPa had a risk of RP of 30% compared with 5% for the group with a TFS{sub 5} {>=}2.17. Conclusions: TFS{sub 5} represents a simple parameter that can be used in routine clinical practice to more accurately segregate patients into high- and low-risk groups for developing RP.« less
Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment
Rana, Suresh; Cheng, ChihYao
2013-01-01
The volumetric modulated arc therapy (VMAT) technique, in the form of RapidArc, is widely used to treat prostate cancer. The full-single arc (f-SA) technique in RapidArc planning for prostate cancer treatment provides efficient treatment, but it also delivers a higher radiation dose to the rectum. This study aimed to compare the dosimetric results from the new partial-single arc (p-SA) technique with those from the f-SA technique in RapidArc planning for prostate cancer treatment. In this study, 10 patients with low-risk prostate cancer were selected. For each patient, two sets of RapidArc plans (f-SA and p-SA) were created in the Eclipse treatment planning system. The f-SA plan was created using one full arc, and the p-SA plan was created using planning parameters identical to those of the f-SA plan but with anterior and posterior avoidance sectors. Various dosimetric parameters of the f-SA and p-SA plans were evaluated and compared for the same target coverage and identical plan optimization parameters. The f-SA and p-SA plans showed an average difference of ±1% for the doses to the planning target volume (PTV), and there were no clear differences in dose homogeneity or plan conformity. In comparison to the f-SA technique, the p-SA technique reduced the doses to the rectum by approximately 6.1% to 21.2%, to the bladder by approximately 10.3% to 29.5%, and to the penile bulb by approximately 2.2%. In contrast, the dose to the femoral heads, the integral dose, and the number of monitor units were higher in the p-SA plans by approximately 34.4%, 7.7%, and 9.2%, respectively. In conclusion, it is feasible to use the p-SA technique for RapidArc planning for prostate cancer treatment. For the same PTV coverage and identical plan optimization parameters, the p-SA technique is better in sparing the rectum and bladder without compromising plan conformity or target homogeneity when compared to the f-SA technique. PMID:23845140
Brandão, S F; Campos, T P R
2015-07-01
This article proposes a combination of californium-252 ((252)Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Dosimetric evaluations were performed on three protocol set-ups: (252)Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0-5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the (252)Cf source, sparing the normal brain tissue. Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis.
Dosimetry characteristics of HDPE-SWCNT nanocomposite for real time application
NASA Astrophysics Data System (ADS)
Malekie, Shahryar; Ziaie, Farhood; Feizi, Shahzad; Esmaeli, Abdolreza
2016-10-01
In this experimental work, different dosimetric characteristics of high density polyethylene-single wall carbon nanotube nanocomposite were investigated. The nanocomposite samples were prepared with different nanotube contents of 0.22, 0.25, and 0.39 weight percentages which were before, exactly in, and after percolation region of the nanocomposite, respectively. The samples were exposed to 60Co gamma radiation source over the dose rate of 65-214 mGy/min, while the applied bias was 100 V. A linear response achieved for the sample contained 0.25 nanotube wt% verified that the percolation threshold is the optimum point for dosimetric purposes. The current-voltage characteristics curve measured for 0.25 CNT wt% nanocomposite showed that the behavior of this sample was bias polarity independent. Also, the results showed that the response of this nanocomposite was energy-independent. The maximum discrepancy of photocurrent due to angular variation within 0-90° with respect to beam incidence and the reproducibility of the response were measured as 5.4% and 0.8%, respectively. The stability study showed that this material may be suitable for protection dose level control. Therefore, this kind of nanocomposite requiring calibration can be used as a real-time dosimeter.
Dose conversion factors for radon: recent developments.
Marsh, James W; Harrison, John D; Laurier, Dominique; Blanchardon, Eric; Paquet, François; Tirmarche, Margot
2010-10-01
Epidemiological studies of the occupational exposure of miners and domestic exposures of the public have provided strong and complementary evidence of the risks of lung cancer following inhalation of radon progeny. Recent miner epidemiological studies, which include low levels of exposure, long duration of follow-up, and good quality of individual exposure data, suggest higher risks of lung cancer per unit exposure than assumed previously by the International Commission on Radiological Protection (ICRP). Although risks can be managed by controlling exposures, dose estimates are required for the control of occupational exposures and are also useful for comparing sources of public exposure. Currently, ICRP calculates doses from radon and its progeny using dose conversion factors from exposure (WLM) to dose (mSv) based on miner epidemiological studies, referred to as the epidemiological approach. Revision of these dose conversion factors using risk estimates based on the most recent epidemiological data gives values that are in good agreement with the results of calculations using ICRP biokinetic and dosimetric models, the dosimetric approach. ICRP now proposes to treat radon progeny in the same way as other radionuclides and to publish dose coefficients calculated using models, for use within the ICRP system of protection.
Cell irradiation setup and dosimetry for radiobiological studies at ELBE
NASA Astrophysics Data System (ADS)
Zeil, K.; Beyreuther, E.; Lessmann, E.; Wagner, W.; Pawelke, J.
2009-07-01
The radiation source ELBE delivers different types of secondary radiation, which is used for cell irradiation studies in radiobiological research. Thereby an important issue is the determination of the biological effectiveness of photon radiation as a function of photon energy by using low-energetic, monochromatic channeling radiation (10-100 keV) and high-energetic bremsstrahlung (up to 40 MV). Radiobiological studies at the research facility ELBE demand special technical and dosimetric prerequisites. Therefore, a cell irradiation system (CIS) has been designed, constructed and installed at the beam line. The CIS allows automatic irradiation of a larger cell sample number and the compensation of spatial inhomogeneity of the dose distribution within the beam spot. The recently introduced GafChromic ® EBT radiochromic film model has been used to verify the cell irradiation dose deposition achieving a dose uncertainty of <5%. Both, the installed cell irradiation system and the developed dosimetric procedure based on the use of the EBT film have been experimentally tested at ELBE. The biological effectiveness of 34 MV bremsstrahlung with respect to 200 kV X-rays from a conventional X-ray tube has been determined. An RBE value of 0.75 has been measured in good agreement with literature.
Effects of high voltage transmission lines on honeybees: a feasibility study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, B.
1977-07-01
Methodology is described for the investigation of the effects of electric fields generated by high-tension power lines on honeybees (Apis mellifera L.). The parameters to be measured include colony population, honey stores, amount of acoustical noise generated by the bees, in-hive temperature, incidence of queen cell production, and tendency to swarm. Accompanying dosimetric support includes in-hive electric field measurements, development of shielding to eliminate the electric field from selected colonies, analysis of the acoustical data, and periodic checks on the ambient electric field present under the line and at the control site.
Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.
2014-01-01
Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care. PMID:24506635
Miller, J; Fuller, M; Vinod, S; Suchowerska, N; Holloway, L
2009-06-01
A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at 10Gy (V10) and 20Gy (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedam, S.; Docef, A.; Fix, M.
2005-06-15
The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effectsmore » of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K; Leung, R; Law, G
Background: Commercial treatment planning system Pinnacle3 (Philips, Fitchburg, WI, USA) employs a convolution-superposition algorithm for volumetric-modulated arc radiotherapy (VMAT) optimization and dose calculation. Study of Monte Carlo (MC) dose recalculation of VMAT plans for advanced-stage nasopharyngeal cancers (NPC) is currently limited. Methods: Twenty-nine VMAT prescribed 70Gy, 60Gy, and 54Gy to the planning target volumes (PTVs) were included. These clinical plans achieved with a CS dose engine on Pinnacle3 v9.0 were recalculated by the Monaco TPS v5.0 (Elekta, Maryland Heights, MO, USA) with a XVMC-based MC dose engine. The MC virtual source model was built using the same measurement beam datasetmore » as for the Pinnacle beam model. All MC recalculation were based on absorbed dose to medium in medium (Dm,m). Differences in dose constraint parameters per our institution protocol (Supplementary Table 1) were analyzed. Results: Only differences in maximum dose to left brachial plexus, left temporal lobe and PTV54Gy were found to be statistically insignificant (p> 0.05). Dosimetric differences of other tumor targets and normal organs are found in supplementary Table 1. Generally, doses outside the PTV in the normal organs are lower with MC than with CS. This is also true in the PTV54-70Gy doses but higher dose in the nasal cavity near the bone interfaces is consistently predicted by MC, possibly due to the increased backscattering of short-range scattered photons and the secondary electrons that is not properly modeled by the CS. The straight shoulders of the PTV dose volume histograms (DVH) initially resulted from the CS optimization are merely preserved after MC recalculation. Conclusion: Significant dosimetric differences in VMAT NPC plans were observed between CS and MC calculations. Adjustments of the planning dose constraints to incorporate the physics differences from conventional CS algorithm should be made when VMAT optimization is carried out directly with MC dose engine.« less
Wang, Shu-lian; Liao, Zhongxing; Vaporciyan, Ara A; Tucker, Susan L; Liu, Helen; Wei, Xiong; Swisher, Stephen; Ajani, Jaffer A; Cox, James D; Komaki, Ritsuko
2006-03-01
To assess the association of clinical and especially dosimetric factors with the incidence of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiation therapy followed by surgery. Data from 110 esophageal cancer patients treated between January 1998 and December 2003 were analyzed retrospectively. All patients received concurrent chemoradiotherapy followed by surgery; 72 patients also received irinotecan-based induction chemotherapy. Concurrent chemotherapy was 5-fluorouracil-based and in 97 cases included taxanes. Radiotherapy was delivered to a total dose of 41.4-50.4 Gy at 1.8-2.0 Gy per fraction with a three-dimensional conformal technique. Surgery (three-field, Ivor-Lewis, or transhiatal esophagectomy) was performed 27-123 days (median, 45 days) after completion of radiotherapy. The following dosimetric parameters were generated from the dose-volume histogram (DVH) for total lung: lung volume, mean dose to lung, relative and absolute volumes of lung receiving more than a threshold dose (relative V(dose) and absolute V(dose)), and absolute volume of lung receiving less than a threshold dose (volume spared, or VS(dose)). Occurrence of postoperative pulmonary complications, defined as pneumonia or acute respiratory distress syndrome (ARDS) within 30 days after surgery, was the endpoint for all analyses. Fisher's exact test was used to investigate the relationship between categorical factors and incidence of postoperative pulmonary complications. Logistic analysis was used to analyze the relationship between continuous factors (e.g., V(dose) or VS(dose)) and complication rate. Logistic regression with forward stepwise inclusion of factors was used to perform multivariate analysis of those factors having univariate significance (p < 0.05). The Mann-Whitney test was used to compare length of hospital stay in patients with and without lung complications and to compare lung volumes, VS5 values, and absolute and relative V5 values in male vs. female patients. Pearson correlation analysis was used to determine correlations between dosimetric factors. Eighteen (16.4%) of the 110 patients developed postoperative pulmonary complications. Two of these died of progressive pneumonia. Hospitalizations were significantly longer for patients with postoperative pulmonary complications than for those without (median, 15 days vs. 11 days, p = 0.003). On univariate analysis, female gender (p = 0.017), higher mean lung dose (p = 0.036), higher relative volume of lung receiving > or = 5 Gy (V5) (p = 0.023), and smaller volumes of lung spared from doses > or = 5-35 Gy (VS5-VS35) (p < 0.05) were all significantly associated with an increased incidence of postoperative pulmonary complications. No other clinical factors were significantly associated with the incidence of postoperative pulmonary complications in this cohort. On multivariate analysis, the volume of lung spared from doses > or = 5 Gy (VS5) was the only significant independent factor associated with postoperative pulmonary complications (p = 0.005). Dosimetric factors but not clinical factors were found to be strongly associated with the incidence of postoperative pulmonary complications in this cohort of esophageal cancer patients treated with concurrent chemoradiation plus surgery. The volume of the lung spared from doses of > or = 5 Gy was the only independent dosimetric factor in multivariate analysis. This suggests that ensuring an adequate volume of lung unexposed to radiation might reduce the incidence of postoperative pulmonary complications.
NASA Astrophysics Data System (ADS)
Wang, Tianyuan; Ishihara, Takeaki; Kono, Atsushi; Yoshida, Naoki; Akasaka, Hiroaki; Mukumoto, Naritoshi; Yada, Ryuichi; Ejima, Yasuo; Yoshida, Kenji; Miyawaki, Daisuke; Kakutani, Kenichiro; Nishida, Kotaro; Negi, Noriyuki; Minami, Toshiaki; Aoyama, Yuuichi; Takahashi, Satoru; Sasaki, Ryohei
2017-08-01
The objective of the present study was the determination of the potential dosimetric benefits of using metal-artefact-suppressed dual-energy computed tomography (DECT) images for cases involving pedicle screw implants in spinal sites. A heterogeneous spinal phantom was designed for the investigation of the dosimetric effect of the pedicle-screw-related artefacts. The dosimetric comparisons were first performed using a conventional two-directional opposed (AP-PA) plan, and then a volumetric modulated arc therapy (VMAT) plan, which are both used for the treatment of spinal metastases in our institution. The results of Acuros® XB dose-to-medium (Dm) and dose-to-water (Dw) calculations using different imaging options were compared with experimental measurements including the chamber and film dosimetries in the spinal phantom. A dual-energy composition image with a weight factor of -0.2 and a dual-energy monochromatic image (DEMI) with an energy level of 180 keV were found to have superior abilities for artefact suppression. The Dm calculations revealed greater dosimetric effects of the pedicle screw-related artefacts compared to the Dw calculations. The results of conventional single-energy computed tomography showed that, although the pedicle screws were made from low-Z titanium alloy, the metal artefacts still have dosimetric effects, namely, an average (maximum) Dm error of 4.4% (5.6%) inside the spinal cord for a complex VMAT treatment plan. Our findings indicate that metal-artefact suppression using the proposed DECT (DEMI) approach is promising for improving the dosimetric accuracy near the implants and inside the spinal cord (average (maximum) Dm error of 1.1% (2.0%)).
Dosimetric evaluation of Plastic Water Diagnostic-Therapy.
Ramaseshan, Ramani; Kohli, Kirpal; Cao, Fred; Heaton, Robert K
2008-04-29
High-precision radiotherapy planning and quality assurance require accurate dosimetric and geometric phantom measurements. Phantom design requires materials with mechanical strength and resilience, and dosimetric properties close to those of water over diagnostic and therapeutic ranges. Plastic Water Diagnostic Therapy (PWDT: CIRS, Norfolk, VA) is a phantom material designed for water equivalence in photon beams from 0.04 MeV to 100 MeV; the material has also good mechanical properties. The present article reports the results of computed tomography (CT) imaging and dosimetric studies of PWDT to evaluate the suitability of the material in CT and therapy energy ranges. We characterized the water equivalence of PWDT in a series of experiments in which the basic dosimetric properties of the material were determined for photon energies of 80 kVp, 100 kVp, 250 kVp, 4 MV, 6 MV, 10 MV, and 18 MV. Measured properties included the buildup and percentage depth dose curves for several field sizes, and relative dose factors as a function of field size. In addition, the PWDT phantom underwent CT imaging at beam qualities ranging from 80 kVp to 140 kVp to determine the water equivalence of the phantom in the diagnostic energy range. The dosimetric quantities measured with PWDT agreed within 1.5% of those determined in water and Solid Water (Gammex rmi, Middleton, WI). Computed tomography imaging of the phantom was found to generate Hounsfield numbers within 0.8% of those generated using water. The results suggest that PWDT material is suitable both for regular radiotherapy quality assurance measurements and for intensity-modulated radiation therapy (IMRT) verification work. Sample IMRT verification results are presented.
NASA Astrophysics Data System (ADS)
Kim, Jae-Sung; Chung, Jin-Beom; Kim, In-Ah; Eom, Keun-Yong
2013-10-01
We used an endorectal balloon (ERB) for prostate immobilization during intensity-modulated radiotherapy (IMRT) for prostate cancer treatment. To investigate the dosimetric effects of ERB-filling materials, we changed the ERB Hounsfield unit (HU) from 0 to 1000 HU in 200-HU intervals to simulate the various ERB fillings; 0 HU simulated a water-filled ERB, and 1000 HU simulated the densest material-filled ERB. Dosimetric data (coverage, homogeneity, conformity, maximal dose, and typical volume dose) for the tumor and the organs at risk (OARs) were evaluated in prostate IMRT treatment plans with 6-MV and 15-MV beams. The tumor coverage appeared to differ by approximately 1%, except for the clinical target volume (CTV) V100% and the planning target volume (PTV) V100%. The largest difference for the various ERB fillings was observed in the PTV V100%. In spite of increasing HU, the prostate IMRT plans at both energies had relatively low dosimetric effects on the PTV and the CTV. However, the maximal and the typical volume doses (D25%, D30%, and D50%) to the rectal wall and the bladder increased with increasing HU. For an air-filled ERB, the maximal doses to the rectal wall and the monitor units were lower than the corresponding values for the water-filled and the densest material-filled ERBs. An air-filled ERB spared the rectal wall because of its dosimetric effect. Thus, we conclude that the use of an air-filled ERB provides a dosimetric benefit to the rectal wall without a loss of target coverage and is an effective option for prostate IMRT treatment.
Effect of heating rate on kinetic parameters of β-irradiated Li2B4O7:Cu,Ag,P in TSL measurements
NASA Astrophysics Data System (ADS)
Türkler Ege, A.; Ekdal, E.; Karali, T.; Can, N.; Prokic, M.
2007-03-01
The effect of heating rate on the thermally stimulated luminescence (TSL) emission due to the temperature lag (TLA) between the TSL material and the heating element has been investigated using Li2B4O7:Cu,Ag,P dosimetric materials. The TLA becomes significant when the material is heated at high heating rates. TSL glow curves of Li2B4O7:Cu,Ag,P material showed two main peaks after β-irradiation. The kinetic parameters, namely activation energy (E) and frequency factor (s) associated with the high temperature main peak of Li2B4O7:Cu,Ag,P were determined using the method of various heating rates (VHR), in which heating rates from 1 to 40 K s-1 were used. It is assumed that non-ideal heat transfer between the heater and the material may cause significant inconsistency of kinetic parameter values obtained with different methods. The effect of TLA on kinetic parameters of the dosimeter was examined.
SU-E-T-613: Dosimetric Consequences of Systematic MLC Leaf Positioning Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathuria, K; Siebers, J
2014-06-01
Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and aremore » as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated (albeit not additive in the final error) and one can easily incorporate error resulting from machine delivery in an error model based purely on tumor motion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Daniel R., E-mail: dgomez@mdanderson.org; Estilo, Cherry L.; Wolden, Suzanne L.
Purpose: Osteoradionecrosis (ORN) is a known complication of radiation therapy to the head and neck. However, the incidence of this complication with intensity-modulated radiation therapy (IMRT) and dental sequelae with this technique have not been fully elucidated. Methods and Materials: From December 2000 to July 2007, 168 patients from our institution have been previously reported for IMRT of the oral cavity, nasopharynx, larynx/hypopharynx, sinus, and oropharynx. All patients underwent pretreatment dental evaluation, including panoramic radiographs, an aggressive fluoride regimen, and a mouthguard when indicated. The median maximum mandibular dose was 6,798 cGy, and the median mean mandibular dose was 3,845more » cGy. Patient visits were retrospectively reviewed for the incidence of ORN, and dental records were reviewed for the development of dental events. Univariate analysis was then used to assess the effect of mandibular and parotid gland dosimetric parameters on dental endpoints. Results: With a median clinic follow-up of 37.4 months (range, 0.8-89.6 months), 2 patients, both with oral cavity primaries, experienced ORN. Neither patient had preradiation dental extractions. The maximum mandibular dose and mean mandibular dose of the 2 patients were 7,183 and 6,828 cGy and 5812 and 5335 cGy, respectively. In all, 17% of the patients (n = 29) experienced a dental event. A mean parotid dose of >26 Gy was predictive of a subsequent dental caries, whereas a maximum mandibular dose >70 Gy and a mean mandibular dose >40 Gy were correlated with dental extractions after IMRT. Conclusions: ORN is rare after head-and-neck IMRT, but is more common with oral cavity primaries. Our results suggest different mechanisms for radiation-induced caries versus extractions.« less
Pimpinella, Maria; Caporali, Claudio; Guerra, Antonio Stefano; Silvi, Luca; De Coste, Vanessa; Petrucci, Assunta; Delaunay, Frank; Dufreneix, Stéphane; Gouriou, Jean; Ostrowsky, Aimé; Rapp, Benjamin; Bordy, Jean-Marc; Daures, Josiane; Le Roy, Maïwenn; Sommier, Line; Vermesse, Didier
2018-01-01
To investigate the feasibility of using the ratio of dose-area product at 20 cm and 10 cm water depths (DAPR 20,10 ) as a beam quality specifier for radiotherapy photon beams with field diameter below 2 cm. Dose-area product was determined as the integral of absorbed dose to water (D w ) over a surface larger than the beam size. 6 MV and 10 MV photon beams with field diameters from 0.75 cm to 2 cm were considered. Monte Carlo (MC) simulations were performed to calculate energy-dependent dosimetric parameters and to study the DAPR 20,10 properties. Aspects relevant to DAPR 20,10 measurement were explored using large-area plane-parallel ionization chambers with different diameters. DAPR 20,10 was nearly independent of field size in line with the small differences among the corresponding mean beam energies. Both MC and experimental results showed a dependence of DAPR 20,10 on the measurement setup and the surface over which D w is integrated. For a given setup, DAPR 20,10 values obtained using ionization chambers with different air-cavity diameters agreed with one another within 0.4%, after the application of MC correction factors accounting for effects due to the chamber size. DAPR 20,10 differences among the small field sizes were within 1% and sensitivity to the beam energy resulted similar to that of established beam quality specifiers based on the point measurement of D w . For a specific measurement setup and integration area, DAPR 20,10 proved suitable to specify the beam quality of small photon beams for the selection of energy-dependent dosimetric parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Evaluation of the clinical usefulness of modulated arc treatment
NASA Astrophysics Data System (ADS)
Lee, Young Kyu; Jang, Hong Seok; Kim, Yeon Sil; Choi, Byung Ock; Kang, Young-Nam; Nam, Sang Hee; Park, Hyeong Wook; Kim, Shin Wook; Shin, Hun Joo; Lee, Jae Choon; Kim, Ji Na; Park, Sung Kwang; Kim, Jin Young
2015-07-01
The purpose of this study is to evaluate the clinical usefulness of modulated arc (mARC) treatment techniques. The mARC treatment plans for non-small-cell lung cancer (NSCLC) patients were made in order to verify the clinical usefulness of mARC. A pre-study was conducted to find the best plan condition for mARC treatment, and the usefulness of the mARC treatment plan was evaluated by comparing it with other Arc treatment plans such as tomotherapy and RapidArc plans. In the case of mARC, the optimal condition for the mARC plan was determined by comparing the dosimetric performance of the mARC plans developed by using various parameters, which included the photon energy (6 MV, 10 MV), the optimization point angle (6°- 10°intervals), and the total number of segments (36 - 59 segments). The best dosimetric performance of mARC was observed at a 10 MV photon energy, a point angle 6 degrees, and 59 segments. The treatment plans for the three different techniques were compared by using the following parameters: the conformity index (CI), homogeneity index (HI), the target coverage, the dose to the OARs, the number of monitor units (MU), the beam on time, and the normal tissue complication probability (NTCP). As a result, the three different treatment techniques showed similar target coverages. The mARC plan had the lowest V20 (volume of lung receiving > 20 Gy) and MU per fraction compared with both the RapidArc and the tomotherapy plans. The mARC plan reduced the beam on time as well. Therefore, the results of this study provide satisfactory evidence that the mARC technique can be considered as a useful clinical technique for radiation treatment.
Gomez, Daniel R; Estilo, Cherry L; Wolden, Suzanne L; Zelefsky, Michael J; Kraus, Dennis H; Wong, Richard J; Shaha, Ashok R; Shah, Jatin P; Mechalakos, James G; Lee, Nancy Y
2011-11-15
Osteoradionecrosis (ORN) is a known complication of radiation therapy to the head and neck. However, the incidence of this complication with intensity-modulated radiation therapy (IMRT) and dental sequelae with this technique have not been fully elucidated. From December 2000 to July 2007, 168 patients from our institution have been previously reported for IMRT of the oral cavity, nasopharynx, larynx/hypopharynx, sinus, and oropharynx. All patients underwent pretreatment dental evaluation, including panoramic radiographs, an aggressive fluoride regimen, and a mouthguard when indicated. The median maximum mandibular dose was 6,798 cGy, and the median mean mandibular dose was 3,845 cGy. Patient visits were retrospectively reviewed for the incidence of ORN, and dental records were reviewed for the development of dental events. Univariate analysis was then used to assess the effect of mandibular and parotid gland dosimetric parameters on dental endpoints. With a median clinic follow-up of 37.4 months (range, 0.8-89.6 months), 2 patients, both with oral cavity primaries, experienced ORN. Neither patient had preradiation dental extractions. The maximum mandibular dose and mean mandibular dose of the 2 patients were 7,183 and 6,828 cGy and 5812 and 5335 cGy, respectively. In all, 17% of the patients (n = 29) experienced a dental event. A mean parotid dose of >26 Gy was predictive of a subsequent dental caries, whereas a maximum mandibular dose >70 Gy and a mean mandibular dose >40 Gy were correlated with dental extractions after IMRT. ORN is rare after head-and-neck IMRT, but is more common with oral cavity primaries. Our results suggest different mechanisms for radiation-induced caries versus extractions. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, J; Gueorguiev, G; Prichard, H
Purpose: To demonstrate the commissioning of constant dose rate volumetric modulated arc therapy (VMAT) in the Raystation treatment planning system for a Varian Clinac iX with Exact couch. Methods: Constant dose rate (CDR) VMAT is an option in the Raystation treatment planning system, enabling VMAT delivery on Varian linacs without a RapidArc upgrade. Raystation 4.7 was used to commission CDR-VMAT for a Varian Clinac iX. Raystation arc model parameters were selected to match machine deliverability characteristics. A Varian Exact couch model was added to Raystation 4.7 and commissioned for use in VMAT optimization. CDR-VMAT commissioning checks were performed on themore » linac, including patient-specific QA measurements for 10 test patients using both the ArcCHECK from Sun Nuclear Corporation and COMPASS from IBA Dosimetry. Multi-criteria optimization (MCO) in Raystation was used for CDR-VMAT planning. Results: Raystation 4.7 generated clinically acceptable and deliverable CDR-VMAT plans for the Varian Clinac. VMAT plans were optimized including a model of the Exact couch with both rails in the out positions. CDR-VMAT plans generated with MCO in Raystation were dosimetrically comparable to Raystation MCO-generated IMRT plans. Patient-specific QA measurements with the ArcCHECK on the couch showed good agreement with the treatment planning system prediction. Patient-specific, structure-specific, multi-statistical parameter 3D QA measurements with gantry-mounted COMPASS also showed good agreement. Conclusion: Constant dose rate VMAT was successfully modeled in Raystation 4.7 for a Varian Clinac iX, and Raystation’s multicriteria optimization generated constant dose rate VMAT plans which were deliverable and dosimetrically comparable to IMRT plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Langhe, Sofie, E-mail: Sofie.DeLanghe@UGent.be; De Ruyck, Kim; Ost, Piet
2013-02-01
Purpose: After radiation therapy for prostate cancer, approximately 50% of the patients experience acute genitourinary symptoms, mostly nocturia. This may be highly bothersome with a major impact on the patient's quality of life. In the past, nocturia is seldom reported as a single, physiologically distinct endpoint, and little is known about its etiology. It is assumed that in addition to dose-volume parameters and patient- and therapy-related factors, a genetic component contributes to the development of radiation-induced damage. In this study, we investigated the association among dosimetric, clinical, and TGF{beta}1 polymorphisms and the development of acute radiation-induced nocturia in prostate cancermore » patients. Methods and Materials: Data were available for 322 prostate cancer patients treated with primary or postoperative intensity modulated radiation therapy (IMRT). Five genetic markers in the TGF{beta}1 gene (-800 G>A, -509 C>T, codon 10 T>C, codon 25 G>C, g.10780 T>G), and a high number of clinical and dosimetric parameters were considered. Toxicity was scored using an symptom scale developed in-house. Results: Radical prostatectomy (P<.001) and the presence of pretreatment nocturia (P<.001) are significantly associated with the occurrence of radiation-induced acute toxicity. The -509 CT/TT (P=.010) and codon 10 TC/CC (P=.005) genotypes are significantly associated with an increased risk for radiation-induced acute nocturia. Conclusions: Radical prostatectomy, the presence of pretreatment nocturia symptoms, and the variant alleles of TGF{beta}1 -509 C>T and codon 10 T>C are identified as factors involved in the development of acute radiation-induced nocturia. These findings may contribute to the research on prediction of late nocturia after IMRT for prostate cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas, E-mail: nmassage@ulb.ac.be; Neurosurgery-Department, Hospital Erasme, Brussels; Lonneville, Sarah
2011-11-15
Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradientmore » index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.« less
Peppa, V; Pappas, E P; Karaiskos, P; Major, T; Polgár, C; Papagiannis, P
2016-10-01
To investigate the clinical significance of introducing model based dose calculation algorithms (MBDCAs) as an alternative to TG-43 in 192 Ir interstitial breast brachytherapy. A 57 patient cohort was used in a retrospective comparison between TG-43 based dosimetry data exported from a treatment planning system and Monte Carlo (MC) dosimetry performed using MCNP v. 6.1 with plan and anatomy information in DICOM-RT format. Comparison was performed for the target, ipsilateral lung, heart, skin, breast and ribs, using dose distributions, dose-volume histograms (DVH) and plan quality indices clinically used for plan evaluation, as well as radiobiological parameters. TG-43 overestimation of target DVH parameters is statistically significant but small (less than 2% for the target coverage indices and 4% for homogeneity indices, on average). Significant dose differences (>5%) were observed close to the skin and at relatively large distances from the implant leading to a TG-43 dose overestimation for the organs at risk. These differences correspond to low dose regions (<50% of the prescribed dose), being less than 2% of the prescribed dose. Detected dosimetric differences did not induce clinically significant differences in calculated tumor control probabilities (mean absolute difference <0.2%) and normal tissue complication probabilities. While TG-43 shows a statistically significant overestimation of most indices used for plan evaluation, differences are small and therefore not clinically significant. Improved MBDCA dosimetry could be important for re-irradiation, technique inter-comparison and/or the assessment of secondary cancer induction risk, where accurate dosimetry in the whole patient anatomy is of the essence. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
SU-G-TeP3-11: Radiobiological-Cum-Dosimetric Quality Assurance of Complex Radiotherapy Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, N; Narayanasamy, G; Zhang, X
2016-06-15
Purpose: Dosimetric gamma-analysis used for QA of complex radiotherapy plans tests the dosimetric equivalence of a delivered plan with the treatment planning system (TPS) optimized plan. It does not examine whether a dosimetric difference results in any radiobiological difference. This study introduces a method to test the radiobiological and dosimetric equivalence between a delivered and the TPS optimized plan. Methods: Six head and neck and seven lung cancer VMAT or IMRT plans optimized for patient treatment were calculated and delivered to an ArcCheck phantom. ArcCheck measured dose distributions were compared with the TPS calculated dose distributions using a 2-D gamma-analysis.more » Dose volume histograms (DVHs) for various patient structures were obtained by using measured data in 3DVH software and compared against the TPS calculated DVHs using 3-D gamma analysis. DVH data were used in the Poisson model to calculate tumor control probability (TCP) for the treatment targets and in the sigmoid dose response model to calculate normal tissue complication probability (NTCP) for the normal structures. Results: Two-D and three-D gamma passing rates among six H&N patient plans differed by 0 to 2.7% and among seven lung plans by 0.1 to 4.5%. Average ± SD TCPs based on measurement and TPS were 0.665±0.018 and 0.674±0.044 for H&N, and 0.791±0.027 and 0.733±0.031 for lung plans, respectively. Differences in NTCPs were usually negligible. The differences in dosimetric results, TCPs and NTCPs were insignificant. Conclusion: The 2-D and 3-D gamma-analysis based agreement between measured and planned dose distributions may indicate their dosimetric equivalence. Small and insignificant differences in TCPs and NTCPs based on measured and planned dose distributions indicate the radiobiological equivalence between the measured and optimized plans. However, patient plans showing larger differences between 2-D and 3-D gamma-analysis can help us make a more definite conclusion through our ongoing research with a larger number of patients.« less
SU-F-T-460: Dosimetric Matching Between Trilogy Tx and TrueBeam STx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Y; Kwak, J; Jeong, C
Purpose: To compare the commissioned beam data for one flattening filter photon mode (6 MV) and two flattening filter-free (FFF) photon modes (6 and 10 MV-FFF) between Trilogy Tx and TrueBeam STx and evaluate the possibility of dosimetric matching Methods: Dosimetric characteristics of the new Trilogy Tx including percent depth doses (PDDs), profiles, and output factors were measured for commissioning. Linear diode array detector and ion chambers were used to measure dosimetric data. The depth of dose maximum (dmax) and PDD at 10 cm (PDD10) were evaluated: 3×3 cm{sup 2}, 10×10 cm{sup 2}, and 40×40 cm{sup 2}. The beam profilesmore » were compared and then penumbras were evaluated. As a further test of the dosimetric matching, the same VMAT plans were delivered, measured with film, and compared with TPS calculation. Results: All the measured PDDs matched well across the two units. PDD10 showed less than 0.5% variation and dmax were within 1.5 mm at the field sizes evaluated. Within the central 80% of transverse axis, profile data were almost identical. TrueBeam data resulted in a slightly greater penumbra width (up to 1.9 mm). The greatest differences of output factors were found at 40 × 40 cm{sup 2}: 2.40%, 2.03%, and 2.22% for 6 MV, 6 MV-FFF, and 10 MV-FFF, respectively. For smaller field sizes, less than 1% differences were observed. The film measurements demonstrated over 97.3% pixels passing-gamma analysis (2%/2mm). The results showed excellent agreement between measurements of two machines. Conclusion: The differences between Trilogy Tx and TrueBeam STx found could possibly affect small field and also very large field sizes in dosimetric matching considerations. These differences encountered are mostly related with the changes in the head design of the TrueBeam. Although it cannot guarantee full interchangeability of two machines, dosimetric matching by field size of 25 × 25 cm{sup 2} might be clinically acceptable.« less
Photodynamic Nanomedicine in the Treatment of Solid Tumors: Perspectives and Challenges
Master, Alyssa; Livingston, Megan; Gupta, Anirban Sen
2013-01-01
Photodynamic therapy (PDT) is a promising treatment strategy where activation of photosensitizer drugs with specific wavelengths of light results in energy transfer cascades that ultimately yield cytotoxic reactive oxygen species which can render apoptotic and necrotic cell death. Without light the photosensitizer drugs are minimally toxic and the photoactivating light itself is non-ionizing. Therefore, harnessing this mechanism in tumors provides a safe and novel way to selectively eradicate tumor with reduced systemic toxicity and side effects on healthy tissues. For successful PDT of solid tumors, it is necessary to ensure tumor-selective delivery of the photosensitizers, as well as, the photoactivating light and to establish dosimetric correlation of light and drug parameters to PDT-induced tumor response. To this end, the nanomedicine approach provides a promising way towards enhanced control of photosensitizer biodistribution and tumor-selective delivery. In addition, refinement of nanoparticle designs can also allow incorporation of imaging agents, light delivery components and dosimetric components. This review aims at describing the current state-of-the-art regarding nanomedicine strategies in PDT, with a comprehensive narrative of the research that has been carried out in vitro and in vivo, with a discussion of the nanoformulation design aspects and a perspective on the promise and challenges of PDT regarding successful translation into clinical application. PMID:23474028
Odell, Kelly R
2009-01-01
Historically, treatment for choroidal melanomas was surgical enucleation. Currently, treatment methods such as stereotactic radiosurgery and brachytherapy are being used to spare the eye. The poster "Dosimetric Comparison of Gamma Knife Radiosurgery vs. I-125 Plaque Brachytherapy in a Cohort of Choroidal Melanomas" presented at ASTRO 2007 by Anderson et al. provides a comparison of these methods. The dose to disk, fovea and lens in 29 patients from a simulated I-125 treatment and a delivered Gamma Knife radiosurgery was compared. Thirty Gy was prescribed to the 50% Isodose line in the radiosurgery and 85 Gy was prescribed to the apex of the tumor in the I-125 simulation. It was found that the Gamma Knife spares the disk better in 59% of the tumors, including those >or=6.5 mm in height; spares the fovea better in 69% of the tumors, including those >or=5.5 mm; and spares lens better in only 30% of the tumors, with no distinction in size. Tumor location was not taken into account for this study, which could explain the variations in smaller tumors. For larger tumors, gamma knife will protect most organs at risk more effectively. This study shows how a tumor's parameters can be used in selecting treatment modality.
Validation of automatic segmentation of ribs for NTCP modeling.
Stam, Barbara; Peulen, Heike; Rossi, Maddalena M G; Belderbos, José S A; Sonke, Jan-Jakob
2016-03-01
Determination of a dose-effect relation for rib fractures in a large patient group has been limited by the time consuming manual delineation of ribs. Automatic segmentation could facilitate such an analysis. We determine the accuracy of automatic rib segmentation in the context of normal tissue complication probability modeling (NTCP). Forty-one patients with stage I/II non-small cell lung cancer treated with SBRT to 54 Gy in 3 fractions were selected. Using the 4DCT derived mid-ventilation planning CT, all ribs were manually contoured and automatically segmented. Accuracy of segmentation was assessed using volumetric, shape and dosimetric measures. Manual and automatic dosimetric parameters Dx and EUD were tested for equivalence using the Two One-Sided T-test (TOST), and assessed for agreement using Bland-Altman analysis. NTCP models based on manual and automatic segmentation were compared. Automatic segmentation was comparable with the manual delineation in radial direction, but larger near the costal cartilage and vertebrae. Manual and automatic Dx and EUD were significantly equivalent. The Bland-Altman analysis showed good agreement. The two NTCP models were very similar. Automatic rib segmentation was significantly equivalent to manual delineation and can be used for NTCP modeling in a large patient group. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atari, N.A.; Svensson, G.K.
1986-05-01
A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF/sub 2/:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +- 2 ..mu..m (1sigma) corresponding to 16 +- 1 line pair/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +- 4 ..mu..m (1sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atari, N.A.; Svensson, G.K.
1986-05-01
A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less
2013-01-01
Background This meta-analysis aims to ascertain the significance of early lung toxicity with 3-Dimensional (3D) conformal irradiation for breast carcinomas and identify the sub-groups of patients with increased risk. Methods Electronic databases, reference sections of major oncological textbooks and identified studies were searched for synonyms of breast radiotherapy and radiation pneumonitis (RP). Major studies in thoracic irradiation were reviewed to identify factors frequently associated with RP. Meta-analysis for RP incidence estimation and odds ratio calculation were carried out. Results The overall incidence of Clinical and Radiological RP is 14% and 42% respectively. Ten studies were identified. Dose-volume Histogram (DVH) related dosimetric factors (Volume of lung receiving certain dose, Vdose and Mean lung Dose, MLD), supraclavicular fossa (SCF) irradiation and age are significantly associated with RP, but not sequential chemotherapy and concomitant use of Tamoxifen. A poorly powered study in IMN group contributed to the negative finding. Smoking has a trend towards protective effect against RP. Conclusion Use of other modalities may be considered when Ipsilateral lung V20Gy > 30% or MLD > 15 Gy. Extra caution is needed in SCF and IMN irradiation as they are likely to influence these dosimetric parameters. PMID:24229418
NASA Astrophysics Data System (ADS)
Kim, Dong Wook; Bae, Sunhyun; Chung, Weon Kuu; Lee, Yoonhee
2014-04-01
Cone-beam computed tomography (CBCT) images are currently used for patient positioning and adaptive dose calculation; however, the degree of CBCT uncertainty in cases of respiratory motion remains an interesting issue. This study evaluated the uncertainty of CBCT-based dose calculations for a moving target. Using a phantom, we estimated differences in the geometries and the Hounsfield units (HU) between CT and CBCT. The calculated dose distributions based on CT and CBCT images were also compared using a radiation treatment planning system, and the comparison included cases with respiratory motion. The geometrical uncertainties of the CT and the CBCT images were less than 0.15 cm. The HU differences between CT and CBCT images for standard-dose-head, high-quality-head, normal-pelvis, and low-dose-thorax modes were 31, 36, 23, and 33 HU, respectively. The gamma (3%, 0.3 cm)-dose distribution between CT and CBCT was greater than 1 in 99% of the area. The gamma-dose distribution between CT and CBCT during respiratory motion was also greater than 1 in 99% of the area. The uncertainty of the CBCT-based dose calculation was evaluated for cases with respiratory motion. In conclusion, image distortion due to motion did not significantly influence dosimetric parameters.
Combined online and offline adaptive radiation therapy: a dosimetric feasibility study.
Yang, Chengliang; Liu, Feng; Ahunbay, Ergun; Chang, Yu-Wen; Lawton, Colleen; Schultz, Christopher; Wang, Dian; Firat, Selim; Erickson, Beth; Li, X Allen
2014-01-01
The purpose of this work is to explore a new adaptive radiation therapy (ART) strategy, combined "online and offline" ART, that can fully account for interfraction variations similar to the existing online ART but with substantially reduced online effort. The concept for the combined ART is to perform online ART only for the fractions with obvious interfraction variations and to deliver the ART plan for that online fraction as well as the subsequent fractions until the next online fraction needs to be adapted. To demonstrate the idea, the daily computed tomographic (CT) data acquired during image guided radiation therapy (IGRT) with an in-room CT (CTVision, Siemens Healthcare, Amarillo, TX) for 6 representative patients (including 2 prostate, 1 head-and-neck, and 1 pancreatic cancer, 1 adrenal carcinoma, and 1 craniopharyngioma patients) were analyzed. Three types of plans were generated based on the following selected daily CTs: (1) IGRT repositioning plan, generated by applying the repositioning shifts to the original plan (representing the current IGRT practice); (2) Re-Opt plan, generated with full-scope optimization; and (3) ART plan, either online ART plan generated with an online ART tool (RealArt, Prowess Inc, Concord, CA) or offline ART plan generated with shifts from the online ART plan. Various dose-volume parameters were compared with measure dosimetric benefits of the ART plans based on daily dose distributions and the cumulative dose maps obtained with deformable image registration. In general, for all the cases studied, the ART (with 3-5 online ART) and Re-Opt plans provide comparable plan quality and offer significantly better target coverage and normal tissue sparing when compared with the repositioning plans. This improvement is statistically significant. The combined online and offline ART is dosimetrically equivalent to the online ART but with substantially reduced online effort, and enables immediate delivery of the adaptive plan when an obvious anatomic change is observed. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xin; Fang, Hui; Tian, Yuan
Purpose: To evaluate the dosimetric superiority, efficacy, toxicity, and quality of life (QOL) data of intensity modulated radiation therapy (IMRT) in patients with primary gastric diffuse large B-cell lymphoma (PG-DLBCL). Methods and Materials: Forty-six consecutive patients with early-stage PG-DLBCL underwent IMRT after chemotherapy. The majority of patients (61.5%) were subclassified as the non-germinal center B cell–like subtype. Dosimetric parameters of the planning target volume (PTV) and organs at risk were assessed. Survival rates were depicted with the Kaplan-Meier method and compared with the log-rank test. Quality of life was evaluated using the QLQ-C30-STO22 questionnaires at the last follow-up contact. Results: Themore » median PTV mean dose was 41.6 Gy. Only 0.73% of the PTV received <95% of the prescribed dose, indicating excellent target coverage. The median kidney V20 and liver V30 were 14.1% and 16.1%, respectively. The 5-year overall survival (OS), progression-free survival, and locoregional control rates for all patients were 80.4%, 75.0%, and 93.2%, respectively. Stage, lactate dehydrogenase level, and immunophenotype were significant prognostic factors for OS, and only stage was a significant factor for locoregional control. Consolidation IMRT in patients with complete response after chemotherapy resulted in significantly better OS and progression-free survival than salvage IMRT in patients with non-complete response. Two of 8 patients who had chronic liver disease experienced grade 4 or grade 5 acute hepatic failure after 4 to 5 cycles of rituximab-based chemotherapy and IMRT (40 Gy). No other serious acute or late toxicity was observed. The long-term global and functional QOL scales were excellent, with negligible symptom scales. Conclusions: Intensity modulated radiation therapy yielded excellent target coverage and critical tissue sparing and achieved favorable outcomes with acceptable toxicity and good long-term QOL in early-stage PG-DLBCL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking liver tumor dose in four dimensional radiation therapy (4DRT) on ten phases of four dimensional computer tomagraphy(4DCT) images. Methods: Target tracking each phase with the beam aperture for ten liver cancer patients were converted to cumulative plan and compared to the 3D plan with a merged target volume based on 4DCT image in radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the plan by using the parameters V5, V10, V15, V20,V25, V30, V35 and V40 (volumes receivingmore » 5, 10, 15, 20, 25, 30, 35 and 40Gy, respectively) in the dose-volume histogram for the liver; mean dose for the following structures: liver, left kidney and right kidney; and maximum dose for the following structures: bowel, duodenum, esophagus, stomach and heart. Results: There was significant difference between 4D PTV(average 115.71cm3 )and ITV(169.86 cm3). When the planning objective is 95% volume of PTV covered by the prescription dose, the mean dose for the liver, left kidney and right kidney have an average decrease 23.13%, 49.51%, and 54.38%, respectively. The maximum dose for bowel, duodenum,esophagus, stomach and heart have an average decrease 16.77%, 28.07%, 24.28%, 4.89%, and 4.45%, respectively. Compared to 3D RT, radiation volume for the liver V5, V10, V15, V20, V25, V30, V35 and V40 by using the 4D plans have a significant decrease(P≤0.05). Conclusion: The 4D plan method creates plans that permit better sparing of the normal structures than the commonly used ITV method, which delivers the same dosimetric effects to the target.« less
SU-G-TeP4-07: Automatic EPID-Based 2D Measurement of MLC Leaf Offset as a Quality Control Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritter, T; Moran, J; Schultz, B
Purpose: The MLC dosimetric leaf gap (DLG) and transmission are measured parameters which impact the dosimetric accuracy of IMRT and VMAT plans. This investigation aims to develop an efficient and accurate routine constancy check of the physical DLG in two dimensions. Methods: The manufacturer’s recommended DLG measurement method was modified by using 5 fields instead of 11 and by utilizing the Electronic Portal Imaging Device (EPID). Validations were accomplished using an ion chamber (IC) in solid water and a 2D IC array. EPID data was collected for 6 months on multiple TrueBeam linacs using both Millennium and HD MLCs atmore » 5 different clinics in an international consortium. Matlab code was written to automatically analyze the images and calculate the 2D results. Sensitivity was investigated by introducing deliberate leaf position errors. MLC calibration and initialization history was recorded to allow quantification of their impact. Results were analyzed using statistical process control (SPC). Results: The EPID method took approximately 5 minutes. Due to detector response, the EPID measured DLG and transmission differed from the IC values but were reproducible and consistent with changes measured using the ICs. For the Millennium MLC, the EPID measured DLG and transmission were both consistently lower than IC results. The EPID method was implemented as leaf offset and transmission constancy tests (LOC and TC). Based on 6 months of measurements, the initial leaf-specific action thresholds for changes from baseline were set to 0.1 mm. Upper and lower control limits for variation were developed for each machine. Conclusion: Leaf offset and transmission constancy tests were implemented on Varian HD and Millennium MLCs using an EPID and found to be efficient and accurate. The test is effective for monitoring MLC performance using dynamic delivery and performing process control on the DLG in 2D, thus enhancing dosimetric accuracy. This work was supported by a grant from Varian Medical Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eblan, Michael J.; Corradetti, Michael N.; Lukens, J. Nicholas
2013-01-01
Purpose: Data are limited on the clinical significance of brachial plexopathy in patients with apical non-small cell lung cancers (NSCLC) treated with definitive radiation therapy. We report the rates of radiation-induced brachial plexopathy (RIBP) and tumor-related brachial plexopathy (TRBP) and associated dosimetric parameters in apical NSCLC patients. Methods and Materials: Charts of NSCLC patients with primary upper lobe or superiorly located nodal disease who received {>=}50 Gy of definitive conventionally fractionated radiation or chemoradiation were retrospectively reviewed for evidence of brachial plexopathy and categorized as RIBP, TRBP, or trauma-related. Dosimetric data were gathered on ipsilateral brachial plexuses (IBP) contoured accordingmore » to Radiation Therapy Oncology Group atlas guidelines. Results: Eighty patients were identified with a median follow-up and survival time of 17.2 and 17.7 months, respectively. The median prescribed dose was 66.6 Gy (range, 50.4-84.0), and 71% of patients received concurrent chemotherapy. RIBP occurred in 5 patients with an estimated 3-year rate of 12% when accounting for competing risk of death. Seven patients developed TRBP (estimated 3-year rate of 13%), comprising 24% of patients who developed locoregional failures. Grade 3 brachial plexopathy was more common in patients who experienced TRBP than RIBP (57% vs 20%). No patient who received {<=}78 Gy to the IBP developed RIBP. On multivariable competing risk analysis, IBP V76 receiving {>=}1 cc, and primary tumor failure had the highest hazard ratios for developing RIBP and TRBP, respectively. Conclusions: RIBP is a relatively uncommon complication in patients with apical NSCLC tumors receiving definitive doses of radiation, while patients who develop primary tumor failures are at high risk for developing morbid TRBP. These findings suggest that the importance of primary tumor control with adequate doses of radiation outweigh the risk of RIBP in this population of patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Xi-Wen; Li, Ye-Xiong, E-mail: yexiong@yahoo.com; Fang, Hui
2013-12-01
Purpose: To assess the dosimetric benefit, treatment outcome, and toxicity of high-dose and extended-field intensity modulated radiation therapy (IMRT) in patients with early-stage NK/T-cell lymphoma of Waldeyer's ring (WR-NKTCL). Methods and Materials: Thirty patients with early-stage WR-NKTCL who received extended-field IMRT were retrospectively reviewed. The prescribed dose was 50 Gy to the primary involved regions and positive cervical lymph nodes (planning target volume requiring radical irradiation [PTV{sub 50}]) and 40 Gy to the negative cervical nodes (PTV{sub 40}). Dosimetric parameters for the target volume and critical normal structures were evaluated. Locoregional control (LRC), overall survival (OS), and progression-free survival (PFS)more » were calculated using the Kaplan-Meier method. Results: The median mean doses to the PTV{sub 50} and PTV{sub 40} were 53.2 Gy and 43.0 Gy, respectively. Only 1.4% of the PTV{sub 50} and 0.9% of the PTV{sub 40} received less than 95% of the prescribed dose, indicating excellent target coverage. The average mean doses to the left and right parotid glands were 27.7 and 28.4 Gy, respectively. The 2-year OS, PFS, and LRC rates were 71.2%, 57.4%, and 87.8%. Most acute toxicities were grade 1 to 2, except for grade ≥3 dysphagia and mucositis. The most common late toxicity was grade 1-2 xerostomia, and no patient developed any ≥grade 3 late toxicities. A correlation between the mean dose to the parotid glands and the degree of late xerostomia was observed. Conclusions: IMRT achieves excellent target coverage and dose conformity, as well as favorable survival and locoregional control rates with acceptable toxicities in patients with WR-NKTCL.« less
On the half-life of luminescence signals in dosimetric applications: A unified presentation
NASA Astrophysics Data System (ADS)
Pagonis, V.; Kitis, G.; Polymeris, G. S.
2018-06-01
Luminescence signals from natural and man-made materials are widely used in dosimetric and dating applications. In general, there are two types of half-lives of luminescence signals which are of importance to experimental and modeling work in this research area. The first type of half-life is the time required for the population of the trapped charge in a single trap to decay to half its initial value. The second type of half-life is the time required for the luminescence intensity to drop to half of its initial value. While there a handful of analytical expressions available in the literature for the first type of half-life, there are no corresponding analytical expressions for the second type. In this work new analytical expressions are derived for the half-life of luminescence signals during continuous wave optical stimulation luminescence (CW-OSL) or isothermal luminescence (ITL) experiments. The analytical expressions are derived for several commonly used luminescence models which are based on delocalized transitions involving the conduction band: first and second order kinetics, empirical general order kinetics (GOK), mixed order kinetics (MOK) and the one-trap one-recombination center (OTOR) model. In addition, half-life expressions are derived for a different type of luminescence model, which is based on localized transitions in a random distribution of charges. The new half-life expressions contain two parts. The first part is inversely proportional to the thermal or optical excitation rate, and depends on the experimental conditions and on the cross section of the relevant luminescence process. The second part is characteristic of the optical and/or thermal properties of the material, as expressed by the parameters in the model. A new simple and quick method for analyzing luminescence signals is developed, and examples are given of applying the new method to a variety of dosimetric materials. The new test allows quick determination of whether a set of experimentally measured luminescence signals originate in a single trap, or in multiple traps.
SU-E-T-333: Dosimetric Impact of Rotational Error On the Target Coverage in IMPT Lung Cancer Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, S; Zheng, Y
2015-06-15
Purpose: The main purpose of this study was to investigate the impact of rotational (yaw, roll, and pitch) error on the planning target volume (PTV) coverage in lung cancer plans generated by intensity modulated proton therapy (IMPT). Methods: In this retrospective study, computed tomography (CT) dataset of previously treated lung case was used. IMPT plan were generated on the original CT dataset using left-lateral (LL) and posterior-anterior (PA) beams for a total dose of 74 Gy[RBE] with 2 Gy[RBE] per fraction. In order to investigate the dosimetric impact of rotational error, 12 new CT datasets were generated by re-sampling themore » original CT dataset for rotational (roll, yaw, and pitch) angles ranged from −5° to +5°, with an increment of 2.5°. A total of 12 new IMPT plans were generated based on the re-sampled CT datasets using beam parameters identical to the ones in the original IMPT plan. All treatment plans were generated in XiO treatment planning system. The PTV coverage (i.e., dose received by 95% of the PTV volume, D95) in new IMPT plans were then compared with the PTV coverage in the original IMPT plan. Results: Rotational errors caused the reduction in the PTV coverage in all 12 new IMPT plans when compared to the original IMPT lung plan. Specifically, the PTV coverage was reduced by 4.94% to 50.51% for yaw, by 4.04% to 23.74% for roll, and by 5.21% to 46.88% for pitch errors. Conclusion: Unacceptable dosimetric results were observed in new IMPT plans as the PTV coverage was reduced by up to 26.87% and 50.51% for rotational error of 2.5° and 5°, respectively. Further investigation is underway in evaluating the PTV coverage loss in the IMPT lung cancer plans for smaller rotational angle change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jia-Fu; Yeh, Dah-Cherng; Yeh, Hui-Ling, E-mail: hlyeh@vghtc.gov.tw
2015-10-01
To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results inmore » dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]{sub 50.4} {sub Gy} and p < 0.0001 for HI of PTV{sub 62} {sub Gy}). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V{sub 20} {sub Gy}) and 5 Gy (V{sub 5} {sub Gy}) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer.« less
Richardson, Susan; Garcia-Ramirez, Jose; Lu, Wei; Myerson, Robert J; Parikh, Parag
2012-11-01
To present design aspects and acceptance tests performed for clinical implementation of electronic brachytherapy treatment of early stage rectal adenocarcinoma. A dosimetric comparison is made between the historically used Philips RT-50 unit and the newly developed Axxent(®) Model S700 electronic brachytherapy source manufactured by Xoft (iCad, Inc.). Two proctoscope cones were manufactured by ElectroSurgical Instruments (ESI). Two custom surface applicators were manufactured by Xoft and were designed to fit and interlock with the proctoscope cones from ESI. Dose rates, half value layers (HVL), and percentage depth dose (PDD) measurements were made with the Xoft system and compared to historical RT-50 data. A description of the patient treatment approach and exposure rates during the procedure is also provided. The electronic brachytherapy system has a lower surface dose rate than the RT-50. The dose rate to water on the surface from the Xoft system is approximately 2.1 Gy∕min while the RT-50 is 10-12 Gy∕min. However, treatment times with Xoft are still reasonable. The HVLs and PDDs between the two systems were comparable resulting in similar doses to the target and to regions beyond the target. The exposure rate levels around a patient treatment were acceptable. The standard uncertainty in the dose rate to water on the surface is approximately ±5.2%. The Philips RT-50 unit is an out-of-date radiotherapy machine that is no longer manufactured with limited replacement parts. The use of a custom-designed proctoscope and Xoft surface applicators allows delivery of a well-established treatment with the ease of a modern radiotherapy device. While the dose rate is lower with the use of Xoft, the treatment times are still reasonable. Additionally, personnel may stand farther away from the Xoft radiation source, thus potentially reducing radiation exposure to the operator and other personnel.
Dosimetric characteristics of a new unit for electronic skin brachytherapy
Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose
2014-01-01
Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoro, J; Witten, M; Haas, J
Purpose: Brachytherapy has been the standard of care for cervical cancer for 100 years. The treatment can be administered using an HDR (high dose rate) remote afterloader with a {sup 192}Ir source in an outpatient setting, a PDR afterloader with a {sup 192}Ir source, or with LDR manually loaded or a remote afterloader utilizing {sup 192}Ir or {sup 137}Cs sources in an inpatient setting. The procedure involves the placement of a tandem and ovoid, tandem and ring, or tandem and cylinder applicator in an operating room setting with the patient under general anesthesia. Inaccuracies introduced into the process occurring betweenmore » placement of the applicator and actual delivery can introduce uncertainty into the actual dose delivered to the tumor and critical organs. In this study we seek to investigate the dosimetric difference between an SBRT-based radiotherapy boost and conventional Brachytherapy in treating cervical cancer. Methods: Five HDR tandem and ovoid patients were planned using the Brachyvision treatment planning system and treated in four fractions using the Varian Varisource afterloader (Varian Medical Systems). For the same cohort, the patient planning CTs were imported into Multiplan (Accuray Inc) and a dose/fractionation-equivalent CyberKnife SBRT plan was retrospectively generated. Dosimetric quantities such as target/CTV D90, V90, D2cc for rectum, bladder, and bowel were measured and compared between the two modalities. Results: The CTV D90 for the tandem and ovoid was 2540cGy (90.7%) and 3009cGy (107.5%) for the CyberKnife plan. The D2cc for the rectum, bladder, and bowel were 1576cGy, 1641cGy, and 996cGy for the tandem and ovoid and 1374cGy, 1564cGy, and 1547cGy for CyberKnife. Conclusion: The D2cc doses to critical structures are comparable in both modalities. The CTV coverage is far superior for the CyberKnife plan. The dose distribution for CyberKnife has the advantage of increased conformality and lower maximum CTV dose.« less
NASA Astrophysics Data System (ADS)
Moradi, F.; Ung, N. M.; Khandaker, M. U.; Mahdiraji, G. A.; Saad, M.; Malik, R. Abdul; Bustam, A. Z.; Zaili, Z.; Bradley, D. A.
2017-08-01
The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. Highlights: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin safety.
The analysis of thermoluminescent glow peaks of natural calcite after beta irradiation.
Yildirim, R Güler; Kafadar, V Emir; Yazici, A Necmeddin; Gün, Esen
2012-09-01
In this study, the thermoluminescence properties of natural calcite samples were examined in detail. The glow curve of the sample irradiated with beta radiation shows two main peaks, P1 (at 115 °C) and P4 (at 254 °C). The additive dose, variable heating rate, computer glow curve deconvolution, peak shape and three point methods have been used to evaluate the trapping parameters, namely the order of kinetics (b), activation energy (E) and the frequency factor (s) associated with the dosimetric thermoluminescent glow peaks (P1 and P4) of natural calcite after different dose levels with beta irradiation.
Comparison of full width at half maximum and penumbra of different Gamma Knife models.
Asgari, Sepideh; Banaee, Nooshin; Nedaie, Hassan Ali
2018-01-01
As a radiosurgical tool, Gamma Knife has the best and widespread name recognition. Gamma Knife is a noninvasive intracranial technique invented and developed by Swedish neurosurgeon Lars Leksell. The first commercial Leksell Gamma Knife entered the therapeutic armamentarium at the University of Pittsburgh in the United States on August 1987. Since that time, different generation of Gamma Knife developed. In this study, the technical points and dosimetric parameters including full width at half maximum and penumbra on different generation of Gamma Knife will be reviewed and compared. The results of this review study show that the rotating gamma system provides a better dose conformity.
Neutron spectrometry for radiation protection purposes
NASA Astrophysics Data System (ADS)
McDonald, J. C.; Siebert, B. R. L.; Alberts, W. G.
2002-01-01
Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is advantageous to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here.
Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos
2010-09-21
A low-energy electronic brachytherapy source (EBS), the model S700 Axxent x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V(100) reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95.2% in water phantoms without RBE enhancement (planned BED). About 10% increase in the source output is required to raise BED PTV V(100) to 95%. As a conclusion, the composite effect of dose reduction in the target due to heterogeneities and RBE enhancement results in a net effect of 5.3% target BED coverage loss for electronic brachytherapy. Therefore, it is suggested that about 10% increase in the source output may be necessary to achieve sufficient target coverage higher than 95%.
NASA Astrophysics Data System (ADS)
Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos
2010-09-01
A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95.2% in water phantoms without RBE enhancement (planned BED). About 10% increase in the source output is required to raise BED PTV V100 to 95%. As a conclusion, the composite effect of dose reduction in the target due to heterogeneities and RBE enhancement results in a net effect of 5.3% target BED coverage loss for electronic brachytherapy. Therefore, it is suggested that about 10% increase in the source output may be necessary to achieve sufficient target coverage higher than 95%.
Detection of sub micro Gray dose levels using OSL phosphor LiMgPO4:Tb,B
NASA Astrophysics Data System (ADS)
Rawat, N. S.; Dhabekar, Bhushan; Muthe, K. P.; Koul, D. K.; Datta, D.
2017-04-01
Detection of sub micro Gray doses finds application in personnel and environmental monitoring, and nuclear forensics. Recently developed LiMgPO4:Tb,B (LMP) is highly sensitive Optically Stimulated Luminescence (OSL) phosphor with excellent dosimetric properties. The OSL emission spectrum of LMP consists of several peaks attributed to characteristic Tb3+ emission. The OSL emission peak at 380 nm is favorable for bi-alkali PMT used in RISO reader system. It is demonstrated that significant improvement in dose detection threshold can be realized for LMP by optimization of continuous wave (CW-) OSL parameters like stimulation intensity and readout time. The minimum measurable dose (MMD) as low as 0.49 μGy in readout time of less than 1 s at stimulation intensity of 32 mW/cm2 has been achieved using this phosphor. The recommendations for choice of parameters for personnel and environmental monitoring are also discussed.
Dosimetric characteristics of Novalis Tx system with high definition multileaf collimator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Zheng; Wang Zhiheng; Wu, Q. Jackie
A new Novalis Tx system equipped with a high definition multileaf collimator (HDMLC) recently became available to perform both image-guided radiosurgery and conventional radiotherapy. It is capable of delivering a highly conformal radiation dose with three energy modes: 6 MV photon energy, 15 MV photon energy, and 6 MV photon energy in a stereotactic radiosurgery mode with 1000 MU/min dose rate. Dosimetric characteristics of the new Novalis Tx treatment unit with the HDMLC are systematically measured for commissioning. A high resolution diode detector and miniion-chamber detector are used to measure dosimetric data for a range of field sizes from 4x4more » mm to 400x400 mm. The commissioned Novalis Tx system has passed the RPC stereotactic radiosurgery head phantom irradiation test. The Novalis Tx system not only expands its capabilities with three energy modes, but also achieves better beam conformity and sharer beam penumbra with HDMLC. Since there is little beam data information available for the new Novalis Tx system, we present in this work the dosimetric data of the new modality for reference and comparison.« less
Brandão, S F
2015-01-01
Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876
Wang, H; Wang, J J; Jiang, Y L; Tian, S Q; Ji, Z; Guo, F X; Sun, H T; Fan, J H; Xu, Y P
2016-12-20
Objective: To analyze the difference of dosimetric parameters between pre-plan and post-plan of 125 I radioactive seed implantation assisted by 3D printing individual non-coplanar template (3D printing template) for locally recurrent rectal cancer (LRRC). Methods: From February 2016 to April 2016, a total of 10 patients with locally recurrent rectal cancer received 125 I seeds implantation under CT guidance assisted by 3D printing template in Department of Radiation Oncology, Peking University Third Hospital.Each patient underwent CT simulation, three-dimentional treatment planning pre-implantation, 3D printing template design, radioactive seed implantation assisted by 3D printing template and dosimetric verification post implantation. The median activity of seed was 0.63 mCi (0.58 to 0.7 mCi) (2.15- 2.59×10 7 Bq), and the median number of seeds was 80 (19 to 192). D 90 , D 100 , V 100 , V 150 , CI, EI, HI, D 5cc , D 2cc of bladder and bowel of pre-plan and post-plan were calculated, respectively.Paired t test was used to evaluate the difference of dosimetric parameters between pre-plan and post-plan. Results: The median D 90 of pre-plan and post-plan were 13 761.0 and 12 798.8 cGy, respectively.The median D 100 of pre-plan and post-plan were 5 293.6 and 5 397.9 cGy, respectively.The median V 100 of pre-plan and post-plan were 90.0% and 90.0%, respectively.The median V 150 of pre-plan and post-plan were 63.8% and 62.4%, respectively.The median CI of pre-plan and post-plan were 0.73 and 0.67.The median EI of pre-plan and post-plan were 0.22 and 0.30, respectively. The median HI of pre-plan and post-plan were 0.29 and 0.31.The median bladder D 2cc of pre-plan and post-plan were 3 088.8 and 4 240.4 cGy, respectively.The median bowel D 2cc of pre-plan and post-plan were 7 051.6 and 7 903.9 cGy, respectively. Conclusions: 3D printing template might be helpful for locally recurrent rectal cancer patients who received 125 I radioactive seed implantation assisted by 3D printing individual template.Seed implantation might have more chances to achieve prescription dose and dose limitation of organs at risk of pre-plan, which is important for precise implantation and quality control.
Optimization of rotational arc station parameter optimized radiation therapy.
Dong, P; Ungun, B; Boyd, S; Xing, L
2016-09-01
To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.
Optimization of rotational arc station parameter optimized radiation therapy
Dong, P.; Ungun, B.; Boyd, S.; Xing, L.
2016-01-01
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. Conclusions: The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future. PMID:27587028
Optimization of rotational arc station parameter optimized radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, P.; Ungun, B.
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trappedmore » in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. Conclusions: The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.« less
Dosimetric feasibility of real-time MRI-guided proton therapy
Moteabbed, M.; Schuemann, J.; Paganetti, H.
2014-01-01
Purpose: Magnetic resonance imaging (MRI) is a prime candidate for image-guided radiotherapy. This study was designed to assess the feasibility of real-time MRI-guided proton therapy by quantifying the dosimetric effects induced by the magnetic field in patients’ plans and identifying the associated clinical consequences. Methods: Monte Carlo dose calculation was performed for nine patients of various treatment sites (lung, liver, prostate, brain, skull-base, and spine) and tissue homogeneities, in the presence of 0.5 and 1.5 T magnetic fields. Dose volume histogram (DVH) parameters such as D95, D5, and V20 as well as equivalent uniform dose were compared for the target and organs at risk, before and after applying the magnetic field. The authors further assessed whether the plans affected by clinically relevant dose distortions could be corrected independent of the planning system. Results: By comparing the resulting dose distributions and analyzing the respective DVHs, it was determined that despite the observed lateral beam deflection, for magnetic fields of up to 0.5 T, neither was the target coverage jeopardized nor was the dose to the nearby organs increased in all cases except for prostate. However, for a 1.5 T magnetic field, the dose distortions were more pronounced and of clinical concern in all cases except for spine. In such circumstances, the target was severely underdosed, as indicated by a decrease in D95 of up to 41% of the prescribed dose compared to the nominal situation (no magnetic field). Sites such as liver and spine were less affected due to higher tissue homogeneity, typically smaller beam range, and the choice of beam directions. Simulations revealed that small modifications to certain plan parameters such as beam isocenter (up to 19 mm) and gantry angle (up to 10°) are sufficient to compensate for the magnetic field-induced dose disturbances. The authors’ observations indicate that the degree of required corrections strongly depends on the beam range and direction relative to the magnetic field. This method was also applicable to more heterogeneous scenarios such as skull-base tumors. Conclusions: This study confirmed the dosimetric feasibility of real-time MRI-guided proton therapy and delivering a clinically acceptable dose to patients with various tumor locations within magnetic fields of up to 1.5 T. This work could serve as a guide and encouragement for further efforts toward clinical implementation of hybrid MRI–proton gantry systems. PMID:25370627
Dosimetric feasibility of real-time MRI-guided proton therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moteabbed, M., E-mail: mmoteabbed@partners.org; Schuemann, J.; Paganetti, H.
2014-11-01
Purpose: Magnetic resonance imaging (MRI) is a prime candidate for image-guided radiotherapy. This study was designed to assess the feasibility of real-time MRI-guided proton therapy by quantifying the dosimetric effects induced by the magnetic field in patients’ plans and identifying the associated clinical consequences. Methods: Monte Carlo dose calculation was performed for nine patients of various treatment sites (lung, liver, prostate, brain, skull-base, and spine) and tissue homogeneities, in the presence of 0.5 and 1.5 T magnetic fields. Dose volume histogram (DVH) parameters such as D{sub 95}, D{sub 5}, and V{sub 20} as well as equivalent uniform dose were comparedmore » for the target and organs at risk, before and after applying the magnetic field. The authors further assessed whether the plans affected by clinically relevant dose distortions could be corrected independent of the planning system. Results: By comparing the resulting dose distributions and analyzing the respective DVHs, it was determined that despite the observed lateral beam deflection, for magnetic fields of up to 0.5 T, neither was the target coverage jeopardized nor was the dose to the nearby organs increased in all cases except for prostate. However, for a 1.5 T magnetic field, the dose distortions were more pronounced and of clinical concern in all cases except for spine. In such circumstances, the target was severely underdosed, as indicated by a decrease in D{sub 95} of up to 41% of the prescribed dose compared to the nominal situation (no magnetic field). Sites such as liver and spine were less affected due to higher tissue homogeneity, typically smaller beam range, and the choice of beam directions. Simulations revealed that small modifications to certain plan parameters such as beam isocenter (up to 19 mm) and gantry angle (up to 10°) are sufficient to compensate for the magnetic field-induced dose disturbances. The authors’ observations indicate that the degree of required corrections strongly depends on the beam range and direction relative to the magnetic field. This method was also applicable to more heterogeneous scenarios such as skull-base tumors. Conclusions: This study confirmed the dosimetric feasibility of real-time MRI-guided proton therapy and delivering a clinically acceptable dose to patients with various tumor locations within magnetic fields of up to 1.5 T. This work could serve as a guide and encouragement for further efforts toward clinical implementation of hybrid MRI–proton gantry systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Jian-Jian; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
2014-07-01
The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies includingmore » gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery time, V-MAT is significantly more efficient for APBI than for conventional 3D-CRT and static-beam IMRT.« less
NASA Astrophysics Data System (ADS)
McCurdy, B. M. C.
2013-06-01
An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Al-Azhar University Cairo; Jin, L
2014-06-01
Purpose: Modulated electron radiotherapy (MERT) has the potential to achieve better treatment outcome for shallow tumors such as those of breast and scalp. In a separate study with scalp lesions, MERT was compared to volumetric modulated arc therapy. Our results showed a reduction in the dose reaching the brain with MERT. However dose calculation accuracy and delivery efficiency challenges remain. Thus in the current study we proceed to add more cases to demonstrate MERT beneficial outcome and its delivery accuracy using an electron specific multileaf collimator (eMLC). Methods: We have used the MCBEAM code for treatment head simulation and formore » generating phase space files to be used as radiation source input for our Monte Carlo based treatment planning system (MC TPS). MCPLAN code is used for calculation of patient specific dose deposition coefficient and for final MERT plan dose calculation. An in-house developed optimization code is used for the optimization process. MERT plans were generated for real patients and head and neck phantom. Film was used for dosimetric verification. The film was cut following the contour of the curved phantom surface and then sealed with black masking tape. In the measurement, the sealed film packet was sandwiched between two adjacent slabs of the head and neck phantom. The measured 2D dose distribution was then compared with calculations. Results: The eMLC allows effective treatment of scalps with multi-lesions spreading around the patient head, which was usually difficult to plan or very time consuming with conventional applicators. MERT continues to show better reduction in the brain dose. The dosimetric measurements showed slight discrepancy, which was attributed to the film setup. Conclusion: MERT can improve treatment plan quality for patients with scalp cancers. Our in-house MC TPS is capable of performing treatment planning and accurate dose calculation for MERT using the eMLC.« less
SU-G-BRB-05: Automation of the Photon Dosimetric Quality Assurance Program of a Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebron, S; Lu, B; Yan, G
Purpose: To develop an automated method to calculate a linear accelerator (LINAC) photon radiation field size, flatness, symmetry, output and beam quality in a single delivery for flattened (FF) and flattening-filter-free (FFF) beams using an ionization chamber array. Methods: The proposed method consists of three control points that deliver 30×30, 10×10 and 5×5cm{sup 2} fields (FF or FFF) in a step-and-shoot sequence where the number of monitor units is weighted for each field size. The IC Profiler (Sun Nuclear Inc.) with 5mm detector spacing was used for this study. The corrected counts (CCs) were calculated and the locations of themore » maxima and minima values of the first-order gradient determined data of each sub field. Then, all CCs for each field size are summed in order to obtain the final profiles. For each profile, the radiation field size, symmetry, flatness, output factor and beam quality were calculated. For field size calculation, a parameterized gradient method was used. For method validation, profiles were collected in the detector array both, individually and as part of the step-and-shoot plan, with 9.9cm buildup for FF and FFF beams at 90cm source-to-surface distance. The same data were collected with the device (plus buildup) placed on a movable platform to achieve a 1mm resolution. Results: The differences between the dosimetric quantities calculated from both deliveries, individually and step-and-shoot, were within 0.31±0.20% and 0.04±0.02mm. The differences between the calculated field sizes with 5mm and 1mm resolution were ±0.1mm. Conclusion: The proposed single delivery method proved to be simple and efficient in automating the photon dosimetric monthly and annual quality assurance.« less
Araki, Fujio
2017-07-01
The dosimetric properties of the recently developed SW557 phantom have been investigated by comparison with those of the existing SW457 phantom in megavoltage photon beams. The electron fluence ratio φ pl w , and chamber ionization ratio k pl , of water to SW457 and water to SW557 for 4-15MV photons were calculated as a function of depth using Monte Carlo simulations, and compared with measured values. Values of φ pl w for SW457 were in the range of 1.004-1.014 for 4MV, and 1.014-1.018 for 15MV photons. The φ pl w for SW557 ranged from 1.005 to 1.008 for 4MV and from 1.010 to 1.015 for 15MV photons and the variation of φ pl w with depth for each beam energy was within ±0.5%. Values of k pl were obtained with a PTW 30013 Farmer-type ionization chamber. The k pl for SW457 ranged from 0.997 to 1.011 for 4-15MV photons. Values of k pl for SW557 were almost unity for 4 and 6MV photons, while in the case of 10 and 15MV photons they were less than 1.006, excepting the build-up region. The measured and calculated k pl values of water to SW557 were in the range of 0.997-1.002 and 1.000-1.006, respectively, for 4-15MV photons, at a depth of 10cm with a source-to-axis distance of 100cm. The measured and calculated k pl values were in agreement within their uncertainty ranges. As a water-equivalent phantom, SW557 can be used with a dosimetric difference within±0.6%, for 4-15MV photons, and is more water-equivalent than SW457 in megavoltage photon beams. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
A new metric for assessing IMRT modulation complexity and plan deliverability.
McNiven, Andrea L; Sharpe, Michael B; Purdie, Thomas G
2010-02-01
To evaluate the utility of a new complexity metric, the modulation complexity score (MCS), in the treatment planning and quality assurance processes and to evaluate the relationship of the metric with deliverability. A multisite (breast, rectum, prostate, prostate bed, lung, and head and neck) and site-specific (lung) dosimetric evaluation has been completed. The MCS was calculated for each beam and the overall treatment plan. A 2D diode array (MapCHECK, Sun Nuclear, Melbourne, FL) was used to acquire measurements for each beam. The measured and planned dose (PINNACLE3, Phillips, Madison, WI) was evaluated using different percent differences and distance to agreement (DTA) criteria (3%/ 3 mm and 2%/ 1 mm) and the relationship between the dosimetric results and complexity (as measured by the MCS or simple beam parameters) assessed. For the multisite analysis (243 plans total), the mean MCS scores for each treatment site were breast (0.92), rectum (0.858), prostate (0.837), prostate bed (0.652), lung (0.631), and head and neck (0.356). The MCS allowed for compilation of treatment site-specific statistics, which is useful for comparing different techniques, as well as for comparison of individual treatment plans with the typical complexity levels. For the six plans selected for dosimetry, the average diode percent pass rate was 98.7% (minimum of 96%) for 3%/3 mm evaluation criteria. The average difference in absolute dose measurement between the planned and measured dose was 1.7 cGy. The detailed lung analysis also showed excellent agreement between the measured and planned dose, as all beams had a diode percentage pass rate for 3%/3 mm criteria of greater than 95.9%, with an average pass rate of 99.0%. The average absolute maximum dose difference for the lung plans was 0.7 cGy. There was no direct correlation between the MCS and simple beam parameters which could be used as a surrogate for complexity level (i.e., number of segments or MU). An evaluation criterion of 2%/ 1 mm reliably allowed for the identification of beams that are dosimetrically robust. In this study we defined a robust beam or plan as one that maintained a diode percentage pass rate greater than 90% at 2%/ 1 mm, indicating delivery that was deemed accurate when compared to the planned dose, even under stricter evaluation criterion. MCS and MU threshold criteria were determined by defining a required specificity of 1.0. A MCS threshold of 0.8 allowed for identification of robust deliverability with a sensitivity of 0.36. In contrast, MU had a lower sensitivity of 0.23 for a threshold of 50 MU. The MCS allows for a quantitative assessment of plan complexity, on a fixed scale, that can be applied to all treatment sites and can provide more information related to dose delivery than simple beam parameters. This could prove useful throughout the entire treatment planning and QA process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labby, Zacariah E., E-mail: zelabby@humonc.wisc.edu; Chaudhary, Neeraj; Gemmete, Joseph J.
2015-04-15
Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derivedmore » from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanner’s HU calibration curve. Results: The ELAC was 0.0516 ± 0.0063 cm{sup −1} and 0.0580 ± 0.0091 cm{sup −1} for n-BCA without and with tantalum, respectively, compared to 0.0487 ± 0.0009 cm{sup −1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of −0.29% and −0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively; dosimetrically appropriate HU values were estimated to be 79 and 199 HU, respectively. Conclusions: The dosimetric properties of the embolization agents are very close to those of water for a 6 MV beam. Therefore, treating the entire intracranial space as uniform in composition will result in less than 1% dosimetric error for n-BCA emboli smaller than 3.4 cm without added tantalum and n-BCA emboli smaller than 1.1 cm with added tantalum. Furthermore, when effective embolization can be achieved by the neurointerventionalist using n-BCA without tantalum, the dosimetric impact of overriding material properties will be lessened. However, due to the high attenuation of embolization agents with and without added tantalum for diagnostic energies, artifacts may occur that necessitate additional imaging to accurately identify the spatial extent of the region to be treated.« less
DOSIMETRIC CHARACTERISTICS OF GAMMA-TRON-2 (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krongauz, A.N.; Pavlova, T.G.; Frolova, A.V.
1963-01-01
Dosimetric characteristics of the Gammatron-2 during operation in a static regimen are presented. The air dose and the distribution of doses along the central ray of the beam and on the sides were determined. The protective properties of Gammatron-2 were studied. On the basis of the measurements, charts of isodoses were elaborated. (P.C.H.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, R; Liu, T; Qi, S
Purposes: There has been growing interest in treating breast cancer using VMAT technique. Our goal is to compare the dosimetry and treatment delivery parameters for the left-sided breast cancer treatment using various VMAT platforms from commercially available planning systems. Methods: Five consecutive left-sided breast cancer patients initially treated with conventional 3D-conformal radiotherapy (3DCRT) were selected. Four VMAT plans using most popular treatment planning systems, including Eclipse (Version 11, Varian), Pinnacle (Version 9.8, Philips), Monaco (Version 2.03, Elekta) and helical Tomotherapy (V4.0, Accuray). The same structure set and same planning goals were used for all VMAT plans. The dosimetric parameters includingmore » target coverage and minimum/maximum/mean, dose-volume endpoints for the selected normal structures: the heart, ipsilateral-/contralateral lung and breast, were evaluated. Other dosimetric indices including heterogeneity index (HI) were evaluated. The treatment delivery parameters, such as monitor unit (MUs) and delivery time were also compared. Results: VMAT increases dose homogeneity to the treated volume and reduces the irradiated heart and left-lung volumes. Compared to the 3DCRT technique, all VMAT plans offer better heart and left-lung dose sparing; the mean heart doses were 4.5±1.6(Monaco), 1.2±0.4(Pinnacle), 1.3± (Eclipse) and 5.6±4.4(Tomo), the mean left-lung doses were 5.9±1.5(Monaco), 3.7±0.7(Pinnacle), 1.4± (Eclipse) and 5.2±1.6 (Tomo), while for the 3DCRT plan, the mean heart and left-Lung doses were 2.9±2.0, and 6.8±4.4 (Gy) respectively. The averaged contralateral-breast and lung mean doses were higher in VMAT plans than the 3DCRT plans but were not statistically significant. Among all the VMAT plans, the Pinnacle plans often yield the lowest right-lung/breast mean doses, and slightly better heterogeneity indices that are similar to Tomotherapy plans. Treatment delivery time of the VMAT plans (except helical Tomotherapy IMRT) is estimated to be comparable with the conventional 3DCRT. Conclusion: VMAT achieves equal or better PTV coverage and comparable OARs sparing compared to the conventional 3DCRT techniques.« less
Oechsner, Markus; Odersky, Leonhard; Berndt, Johannes; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; Duma, Marciana Nona
2015-12-01
The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Twenty SBRT patients, ten lung cases and ten liver cases, were retrospectively selected for this study. Treatment plans were optimized on average intensity projection (AIP) CTs using 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT). Afterwards, the plans were copied to the planning CTs (PCT), maximum intensity projection (MIP) and mid-ventilation (MidV) CT datasets and dose was recalculated keeping all beam parameters and monitor units unchanged. Ipsilateral lung and liver volumes and dosimetric parameters for PTV (Dmean, D2, D98, D95), ipsilateral lung and liver (Dmean, V30, V20, V10) were determined and statistically analysed using Wilcoxon test. Significant but small mean differences were found for PTV dose between the CTs (lung SBRT: ≤2.5 %; liver SBRT: ≤1.6 %). MIPs achieved the smallest lung and the largest liver volumes. OAR mean doses in MIP plans were distinctly smaller than in the other CT datasets. Furthermore, overlapping of tumors with the diaphragm results in underestimated ipsilateral lung dose in MIP plans. Best agreement was found between AIP and MidV (lung SBRT). Overall, differences in liver SBRT were smaller than in lung SBRT and VMAT plans achieved slightly smaller differences than 3D-CRT plans. Only small differences were found for PTV parameters between the four CT datasets. Larger differences occurred for the doses to organs at risk (ipsilateral lung, liver) especially for MIP plans. No relevant differences were observed between 3D-CRT or VMAT plans. MIP CTs are not appropriate for OAR dose assessment. PCT, AIP and MidV resulted in similar doses. If a 4DCT is acquired PCT can be omitted using AIP or MidV for treatment planning.
Levitchi, Mihai; Charra-Brunaud, Claire; Quetin, Philippe; Haie-Meder, Christine; Kerr, Christine; Castelain, Bernard; Delannes, Martine; Thomas, Laurence; Desandes, Emmanuel; Peiffert, Didier
2012-06-01
To assess the association between dosimetric/clinical parameters and gastrointestinal/urinary grade 2-4 side effects in cervix cancer patients treated with 3D pulse dose rate brachytherapy. Three hundred and fifty-two patients received brachytherapy associated with external-beam radiotherapy (EBRT) for 266 of them; 236 patients underwent surgery. The doses for the most exposed 2, and 0.1 cm(3) (D(2cc) and D(0.1cc)) volumes of the rectum and bladder as well as bladder ICRU point dose (D(ICRU)) were converted into isoeffective doses in 2-Gy fractions. The clinical parameters analyzed were: age, smoking habits, arteritis, diabetes, previous pelvic surgery, FIGO stage, nodal status, pathology, pelvic surgery, EBRT and chemotherapy. Side effects were prospectively assessed using the CTCAEv3.0. Cutoff dose levels were defined separately for patients treated with EBRT and brachytherapy (Group 1) and with preoperative brachytherapy (Group 2). The median follow-up was 23.4months. In Group 1 a significant predictive value of rectum D(0.1cc) and D(2cc), bladder D(0.1cc) and D(ICRU) for gastrointestinal and urinary toxicity was found using as cutoff 83, 68, 109 and 68Gy(α)(/)(β)(3). In Group 2 a significant predictive value of bladder D(0.1cc), D(2cc) and D(ICRU) for urinary toxicity was found using as cutoff 141, 91 and 67Gy(α)(/)(β)(3), but not for the rectum D(0.1cc) and D(2cc); smoking had a significant predictive value on urinary toxicity. For patients treated with brachytherapy and EBRT, rectum D(0.1cc) and D(2cc) and bladder D(0.1cc) and D(ICRU) had a predictive value for toxicity. For patients treated with preoperative brachytherapy, bladder D(0.1cc), D(2cc) and D(ICRU) and smoking had a predictive value for urinary toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams
NASA Astrophysics Data System (ADS)
Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.
2014-02-01
The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.
NASA Astrophysics Data System (ADS)
Yasmin, Sabina; Barua, Bijoy Sonker; Khandaker, Mayeen Uddin; Chowdhury, Faruque-Uz-Zaman; Rashid, Md. Abdur; Bradley, David A.; Olatunji, Michael Adekunle; Kamal, Masud
2018-06-01
Following the rapid growing economy, the Bangladeshi dwellers are replacing their traditional (mud-, bamboo-, and wood-based) houses to modern multistoried buildings, where different types of glasses are being used as decorative as well as structural materials due to their various advantageous properties. In this study, we inquire the protective and dosimetric capability of commercial glasses for ionizing radiation. Four branded glass samples (PHP-Bangladesh, Osmania-Bangladesh, Nasir-Bangladesh, and Rider-China) of same thickness and color but different elemental weight fractions were analyzed for shielding and dosimetric properties. The chemical composition of the studied material was evaluated by EDX technique. A well-shielded HPGe γ-ray spectrometer combined with associated electronics was used to evaluate the attenuation coefficients of the studied materials for 59 keV, 661 keV, 1173 keV and 1332 keV photon energies. A number of shielding parameters- half value layer (HVL), radiation protection efficiency (RPE) and effective atomic number (Zeff) were also evaluated. The data were compared with the available literature (where applicable) to understand its shielding capability relative to the standard materials such as lead. Among the studied brands, Rider (China) shows relatively better indices to be used as ionizing radiation shielding material. The obtained, Zeff of the studied glass samples showed comparable values to the TLD-200 dosimeter, thus considered suitable for environmental radiation monitoring purposes.
Dosimetric study of photobiomodulation therapy in 5-FU-induced oral mucositis in hamsters
NASA Astrophysics Data System (ADS)
Cotomacio, Claudia Carrara; Campos, Luana; Nesadal de Souza, Douglas; Arana-Chavez, Victor Elias; Simões, Alyne
2017-01-01
Oral mucositis (OM) is a debilitating consequence of cancer treatment that could be treated with photobiomodulation therapy (PBMT); however, there is no consensus about its dosimetric parameters for OM healing. The aim of this study was to compare different PBMT protocols on OM treatment, through clinical and histological analysis. Thirty hamsters were used, in an induced model of OM by 5-fluorouracil (5-FU) and superficial scratching, in seven days of follow-up. The animals were divided into five groups: control (C), which received only anesthesia and chemotherapeutic vehicle; chemotherapy (Ch), which received anesthesia, 5-FU, and scratches; laser 1 (L1), the same as Ch group, PBMT 6 J/cm2 and 0.24 J (one point); laser 2 (L2), the same as Ch group, PBMT 25 J/cm2 and 1 J (one point); and laser 3 (L3), the same as Ch group, PBMT 4 points of 0.24 J and 6 J/cm2 each. The laser used has λ=660 nm, 0.04 cm2 of spot area, and 40 mW. The best PBMT protocol to maintain lowest OM levels compared to Ch group was L1, followed by L2 and L3. Our results suggest that the application mode of PBMT and the energy delivered per area could interfere with the OM healing.
A feasibility study using TomoDirect for craniospinal irradiation
Molloy, Janelle A.; Gleason, John F.; Feddock, Jonathan M.
2013-01-01
The feasibility of delivering craniospinal irradiation (CSI) with TomoDirect is investigated. A method is proposed to generate TomoDirect plans using standard three‐dimensional (3D) beam arrangements on Tomotherapy with junctioning of these fields to minimize hot or cold spots at the cranial/spinal junction. These plans are evaluated and compared to a helical Tomotherapy and a three‐dimensional conformal therapy (3D CRT) plan delivered on a conventional linear accelerator (linac) for CSI. The comparison shows that a TomoDirect plan with an overlap between the cranial and spinal fields might be preferable over Tomotherapy plans because of decreased low dose to large volumes of normal tissues outside of the planning target volume (PTV). Although the TomoDirect plans were not dosimetrically superior to a 3D CRT linac plan, the patient can be easily treated in the supine position, which is often more comfortable and efficient from an anesthesia standpoint. TomoDirect plans also have only one setup position which obviates the need for matching of fields and feathering of junctions, two issues encountered with conventional 3D CRT plans. TomoDirect plans can be delivered with comparable treatment times to conventional 3D plans and in shorter times than a Tomotherapy plan. In this paper, a method is proposed for creating TomoDirect craniospinal plans, and the dosimetric consequences for choosing different planning parameters are discussed. PACS number: 87.55.D‐ PMID:24036863
NASA Astrophysics Data System (ADS)
Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.; Hamid, P. N. K. Abd
2018-01-01
A set of phantom with an external dimension of 30 cm x 30 cm was constructed from tannin-based Rhizophora spp. particleboards similar to the solid water phantoms. The dosimetric characteristics of the particleboard phantoms were evaluated at high energy photons and electrons by measuring the beam output at 6 MV photons and 6 MeV electrons based on the IAEA TRS 398:2000 protocol. The tissue-phantom ratio (TPR20,10) was measured at 6 and 10 MV photons. The beam output calibration of the particleboards was in good agreement to water and solid water phantoms at 6 MV photons with percentage difference of 1.7 and 6.2% respectively. The beam output calibration of the tannin-based Rhizophora spp. particleboards at 6 MeV electrons on the other hand were in excellent agreement to water with percentage difference of 0.3. The percentage depth dose of tannin-based Rhizophora spp. particleboards were in agreement to water and solid water within 4.5% when measured using ionization chamber and EBT2 film. The electron beam parameters of R50, R80 and R90 at 6 MeV electrons also were in good agreement to water and solid water phantoms. The overall results had indicated the suitability of tannin-based Rhizophora spp. particleboards as water substitute phantom materials for high energy photons and electrons.
Long, David E; Tann, Mark; Huang, Ke Colin; Bartlett, Gregory; Galle, James O; Furukawa, Yukie; Maluccio, Mary; Cox, John A; Kong, Feng-Ming Spring; Ellsworth, Susannah G
2018-05-01
Hepatobiliary iminodiacetic acid (HIDA) scans provide global and regional assessments of liver function that can serve as a road map for functional avoidance in stereotactic body radiation therapy (SBRT) planning. Functional liver image guided hepatic therapy (FLIGHT), an innovative planning technique, is described and compared with standard planning using functional dose-volume histograms. Thresholds predicting for decompensation during follow up are evaluated. We studied 17 patients who underwent HIDA scans before SBRT. All SBRT cases were replanned using FLIGHT. The following dosimetric endpoints were compared for FLIGHT versus standard SBRT planning: functional residual capacity <15 Gy (FRC 15 HIDA), mean liver dose (MLD), equivalent uniform dose (EUD), and functional EUD (FEUD). Receiver operating characteristics curves were used to evaluate whether baseline HIDA values, standard cirrhosis scoring, and/or dosimetric data predicted clinical decompensation. Compared with standard planning, FLIGHT significantly improved FRC 15 HIDA (mean improvement: 5.3%) as well as MLD, EUD, and FEUD (P < .05). Considerable interindividual variations in the extent of benefit were noted. Decompensation during follow-up was associated with baseline global HIDA <2.915%/min/m 2 , FRC 15 HIDA <2.11%/min/m 2 , and MELD ≥11 (P < .05). FLIGHT with HIDA-based parameters may complement blood chemistry-based assessments of liver function and facilitate individualized, adaptive liver SBRT planning. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overton, J.H.; Jarabek, A.M.
1989-01-01
The U.S. EPA advocates the assessment of health-effects data and calculation of inhaled reference doses as benchmark values for gauging systemic toxicity to inhaled gases. The assessment often requires an inter- or intra-species dose extrapolation from no observed adverse effect level (NOAEL) exposure concentrations in animals to human equivalent NOAEL exposure concentrations. To achieve this, a dosimetric extrapolation procedure was developed based on the form or type of equations that describe the uptake and disposition of inhaled volatile organic compounds (VOCs) in physiologically-based pharmacokinetic (PB-PK) models. The procedure assumes allometric scaling of most physiological parameters and that the value ofmore » the time-integrated human arterial-blood concentration must be limited to no more than to that of experimental animals. The scaling assumption replaces the need for most parameter values and allows the derivation of a simple formula for dose extrapolation of VOCs that gives equivalent or more-conservative exposure concentrations values than those that would be obtained using a PB-PK model in which scaling was assumed.« less
SU-F-T-165: Daily QA Analysis for Spot Scanning Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poenisch, F; Gillin, M; Sahoo, N
2016-06-15
Purpose: The dosimetric results of our daily quality assurance over the last 8 years for discrete pencil beam scanning proton therapy will be presented. Methods: To perform the dosimetric checks, a multi-ion chamber detector is used, which consists of an array of 5 single parallel plate ion chambers that are aligned as a cross separated by 10cm each. The Tracker is snapped into a jig, which is placed on the tabletop. Different amounts of Solid Water buildup are added to shift the dose distribution. The dosimetric checks consist of 3 parts: position check, range check and volume dose check. Results:more » The average deviation of all position-check data were 0.2±1.3%. For the range check, the average deviation was 0.1%±1.2%, which also corresponds to a range stability of better than 1 mm over all measurements. The volumetric dose output readings were all within ±1% with the exception of 2 occasions when the cable to the dose monitor was being repaired. Conclusion: Morning QA using the Tracker device gives very stable dosimetric readings but is also sensitive to mechanical and output changes in the proton therapy delivery system.« less
Dosimetric property of mineral extracted from calamari and exposed to gamma rays
NASA Astrophysics Data System (ADS)
Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Pérez; Furetta, C.; Chiaravalle, E.; Mangiacotti, M.; Marchesani, G.
2013-07-01
Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays (60Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 °C and 128-138 °C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adrada, A; Tello, Z; Medina, L
Purpose: The purpose of this work was to develop and validate an open source independent MU dose calculation software for 3D conformal radiotherapy with multileaf high and low resolution according to the report of AAPM TG 11 Methods: Treatment plans were done using Iplan v4.5 BrainLAB TPS. A 6MV photon beam produced by Primus and Novalis linear accelerators equipped with an Optifocus MLC and HDMLC, respectively. TPS dose calculation algorithms were pencil beam and Monte Carlo. 1082 treatments plans were selected for the study. The algorithm was written in free and open source CodeBlocks C++ platform. Treatment plans were importedmore » by the software using RTP format. Equivalent size field is obtained from the positions of the leaves; the effective depth of calculation can be introduced by TPS's dosimetry report or automatically calculated starting from SSD. The inverse square law is calculated by the 3D coordinates of the isocenter and normalization point of the treatment plan. The dosimetric parameters TPR, Sc, Sp and WF are linearly interpolated. Results: 1082 plans of both machines were analyzed. The average uncertainty between the TPS and the independent calculation was −0.43% ± 2.42% [−7.90%, 7.50%]. Specifically for the Primus the variation obtained was −0.85% ± 2.53% and for the Novalis 0.00% ± 2.23%. Data show that 94.8% of the cases the uncertainty was less than or equal to 5%, while 98.9% is less than or equal to 6%. Conclusion: The developed software is appropriate for use in calculation of UM. This software can be obtained upon request.« less
Photosensitizer fluorescence emission during photodynamic therapy applied to dermatological diseases
NASA Astrophysics Data System (ADS)
Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.
2011-09-01
Photodynamic Therapy (PDT) is an optical treatment modality that allows malignant tissue destruction. It is based on the administration of a photosensitizer and the posterior irradiation by an optical source. Photosensitizer molecules absorb the excitation light photons triggering a series of photochemical reactions in the presence of oxygen in the target tissue. During such interactions it is produced the de-excitation of the photosensitizer molecules in the singlet excited state which return to their minimum energy state by emitting fluorescence photons. These days, there are fixed clinical PDT protocols that make use of a particular optical dose and photosensitizer amount. However treatment response varies among patients and the type of pathology. In order to adjust an optimal dosimetry, the development of accurate predictive models plays an important role. The photosensitizer fluorescence can be used to estimate the degradation of the photoactive agent and as an implicit dosimetric measurement during treatment. However it is complex to know the fluorescence dependence with the depth in the tumor from observed fluorescence in the pathology surface. We present a first approach to predict the photosensitizer fluorescence dependence with depth during the PDT treatment applied to a skin disease commonly treated in the dermatological clinical practice. The obtained results permit us to know the photosensitizer temporal fluorescence evolution in different points of the tumor sample during the photochemical reactions involved in PDT with a predictive purpose related to the treatment evolution. The model presented also takes into account the distribution of a topical photosensitizer, the propagation of light in a biological media and the subsequent photochemical interactions between light and tissue. This implies that different parameters related with the photosensitizer distribution or the optical source characteristics could be adjusted to provide a specific treatment to a particular pathology.
NASA Astrophysics Data System (ADS)
Ong, Yi Hong; Padawer-Curry, Jonah; Finlay, Jarod C.; Kim, Michele M.; Dimofte, Andreea; Cengel, Keith; Zhu, Timothy C.
2018-02-01
PDT efficacy depends on the concentration of photosensitizer, oxygen, and light delivery in patient tissues. In this study, we measure the in-vivo distribution of important dosimetric parameters, namely the tissue optical properties (absorption μa (λ) and scattering μs ' (λ) coefficients), photofrin concentration (cphotofrin), blood oxygen saturation (%StO2), and total hemoglobin concentration (THC), before and after PDT. We characterize the inter- and intra-patient heterogeneity of these quantities and explore how these properties change as a result of PDT treatment. The result suggests the need for real-time dosimetry during PDT to optimize the treatment condition depending on the optical and physiological properties.
Aguirre, Erik; Iturri, Peio Lopez; Azpilicueta, Leire; de Miguel-Bilbao, Silvia; Ramos, Victoria; Gárate, Uxue; Falcone, Francisco
2015-03-01
A high number of wireless technologies can be found operating in vehicular environments with the aim of offering different services. The dosimetric evaluation of this kind of scenarios must be performed in order to assess their compatibility with current exposure limits. In this work, a dosimetric evaluation inside a conventional car is performed, with the aid of an in-house 3D Ray Launching computational code, which has been compared with measurement results of wireless sensor networks located inside the vehicle. These results can aid in an adequate assessment of human exposure to non-ionizing radiofrequency fields, taking into account the impact of the morphology and the topology of the vehicle for current as well as for future exposure limits.
Popoca, R; Ureña-Núñez, F
2009-06-01
This work reports the possibility of using lithium carbonate as a dosimetric material for gamma-radiation measurements. Carboxi-radical ions, CO(2)(-) and CO(3)(-), arise from the gamma irradiation of Li(2)CO(3), and these radical ions can be quantified by electron paramagnetic resonance (EPR) spectrometry. The EPR-signal response of gamma-irradiated lithium carbonate has been investigated to determine some dosimetric characteristics such as: peak-to-peak signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, dose rate effect and stability at different environmental conditions. Using the conventional peak-to-peak method of stable ion radicals, it is concluded that lithium carbonate could be used as a gamma dosemeter in the range of 3-100 Gy.
MCMEG: Simulations of both PDD and TPR for 6 MV LINAC photon beam using different MC codes
NASA Astrophysics Data System (ADS)
Fonseca, T. C. F.; Mendes, B. M.; Lacerda, M. A. S.; Silva, L. A. C.; Paixão, L.; Bastos, F. M.; Ramirez, J. V.; Junior, J. P. R.
2017-11-01
The Monte Carlo Modelling Expert Group (MCMEG) is an expert network specializing in Monte Carlo radiation transport and the modelling and simulation applied to the radiation protection and dosimetry research field. For the first inter-comparison task the group launched an exercise to model and simulate a 6 MV LINAC photon beam using the Monte Carlo codes available within their laboratories and validate their simulated results by comparing them with experimental measurements carried out in the National Cancer Institute (INCA) in Rio de Janeiro, Brazil. The experimental measurements were performed using an ionization chamber with calibration traceable to a Secondary Standard Dosimetry Laboratory (SSDL). The detector was immersed in a water phantom at different depths and was irradiated with a radiation field size of 10×10 cm2. This exposure setup was used to determine the dosimetric parameters Percentage Depth Dose (PDD) and Tissue Phantom Ratio (TPR). The validation process compares the MC calculated results to the experimental measured PDD20,10 and TPR20,10. Simulations were performed reproducing the experimental TPR20,10 quality index which provides a satisfactory description of both the PDD curve and the transverse profiles at the two depths measured. This paper reports in detail the modelling process using MCNPx, MCNP6, EGSnrc and Penelope Monte Carlo codes, the source and tally descriptions, the validation processes and the results.
Sanchez-Parcerisa, Daniel; Udías, Jose
2018-05-12
Open-source, MATLAB-based treatment planning systems FoCa and matRAD were used in a pilot project for training prospective medical physicists and postgraduate physics students in treatment planning and beam modeling techniques for proton therapy. In the four exercises designed, students learnt how proton pencil beams are modeled and how dose is calculated in three-dimensional voxelized geometries, how pencil beam scanning plans (PBS) are constructed, the rationale behind the choice of spot spacing in patient plans, and the dosimetric differences between photon IMRT and proton PBS plans. Sixty students of two courses participated in the pilot project, with over 90% of satisfactory rating from student surveys. The pilot experience will certainly be continued. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Hard X-ray dosimetry of a plasma focus suitable for industrial radiography
NASA Astrophysics Data System (ADS)
Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Clausse, A.; Moreno, C.
2018-04-01
Dosimetric measurements of the hard X-ray emission by a small-chamber 4.7 kJ Mather-type plasma focus device capable of producing neat radiographs of metallic objects, were carried out with a set of thermoluminescent detectors TLD 700 (LiF:Mg,Ti). Measurements of the hard X-ray dose dependence with the angular position relative to the electrodes axis, are presented. The source-detector distance was changed in the range from 50 to 100 cm, and the angular positions were explored between ± 70°, relative to the symmetry axis of the electrodes. On-axis measurements show that the X-ray intensity is uniform within a half aperture angle of 6°, in which the source delivers an average dose of (1.5 ± 0.1) mGy/sr per shot. Monte Carlo calculations suggest that the energy of the electron beam responsible for the X-ray emission ranges 100-600 keV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besemer, A; Bednarz, J B; Grudzinski, J
2015-06-15
Purpose: Dosimetry for targeted radionuclide therapy (TRT) is moving away from conventional model-based methods towards patient-specific approaches. To address this need, a Monte Carlo (MC) dosimetry platform was developed to estimate patient-specific therapeutic 3D dose distributions based on pre-treatment imaging. However, because a standard practice for patient-specific internal dosimetry has not yet been established, there are many sources of dosimetric uncertainties. The goal of this work was to quantify the sensitivity of various parameters on MC dose estimations. Methods: The ‘diapeutic’ agent, CLR1404, was used as a proof-of-principle compound in this work. CLR1404 can be radiolabeled with either {sup 124}Imore » for PET imaging or {sup 131}I for radiotherapy or SPECT imaging. PET/CT images of 5 mice were acquired out to 240 hrs post-injection of {sup 124}I-CLR1404. The therapeutic {sup 131}I-CLR1404 absorbed dose (AD) distribution was calculated using a Geant4-based MC dosimetry platform. A series of sensitivity studies were performed. The variables that were investigated included the PET/CT voxel resolution, partial volume corrections (PVC), material segmentation, inter-observer contouring variability, and the pre-treatment image acquisition frequency. Results: Resampling the PET/CT voxel size between 0.2–0.8 mm resulted in up to a 13% variation in the mean AD. Application of the PVC increased the mean AD by 0.5–11.2%. Less than 1% differences in ROI mean AD were observed between the tissue segmentation schemes using 4 and 27 different material compositions. Inter-observer contouring variability led to up to a 20% CoV (stdev/mean) in the mean AD between the users. Varying the number and frequency of pre-treatment images used resulted in changes in mean AD up to 176% compared to the case using all 12 images. Conclusion: Voxel resolution, contour segmentation, the image acquisition protocol most significantly impacted patient-specific TRT dosimetry. Further work is needed to develop a standard protocol that optimizes accuracy and efficiency for patient-specific internal dosimetry. BT and JG are affiliated with Cellectar Biosciences which owns the licensing rights to CLR1404 and related compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, W.T.; Siebers, J.V.
Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanarmore » Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing significant variations in OAR doses including mean dose reductions >5 Gy. Clinical implementation will facilitate patient-specific decision making based on achievable dosimetry as opposed to accept/reject models based on population derived objectives.« less
Preliminary study for small animal preclinical hadrontherapy facility
NASA Astrophysics Data System (ADS)
Russo, G.; Pisciotta, P.; Cirrone, G. A. P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G. I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M. C.; Cuttone, G.
2017-02-01
Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and gamma index test. This work represents the first step towards the realization of a preclinical hadrontherapy facility at INFN-LNS in Catania for the future in vivo studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chera, B; Price, A; Kostich, M
Purpose: To compare the correlations between different dosimetric indices derived from the pharyngeal constrictor muscles and proximal esophagus with patient-reported difficulty in swallowing 6 months post radiotherapy using a novel patient reported outcome version of CTCAE (PRO-CTCAE). Methods: Forty-three patients with oropharyngeal squamous cell carcinoma were treated on a prospective multi-institutional study. All patients received de-intensified 60 Gy intensity modulated radiotherapy. We investigated correlations of individual patient dosimetric data of the superior (SPC), middle (MPC), inferior (IPC) pharyngeal constrictor muscles, the superior esophagus (SES), and the inferior esophagus (IES) to their self-reported 6 month post-treatment swallowing difficulty responses. Mild (≥more » Grade 1) swallowing difficulty responses were used as the clinical endpoint indicating response. The predictive efficacy of Dmean and dose-volume (VD) points were assessed through the area under the Receiver Operating Characteristic curve (ROC) and Odds Ratio (OR). Results: The SES and SPC had more favorable area under the curves (AUC) for the Dmean (0.62 and 0.70) while the Dmean to the IPC, MPC, and IES produced suboptimal AUCs (0.42, 0.48, and 0.52). Additionally, over the range of VD, the V54 and V55 for the SES and SPC demonstrated the highest AUCs: AUC(SES) = 0.76–0.73 and AUC(SPC) = 0.72–0.69, respectively. The IES, IPC, and MPC had worse AUC results over the range of VD. An optimal OR can be found when V54 = 96% for the SPC, where OR = 3.96 (1.07–14.62). Conclusion: The V45 and V55 of the SES and SPC had the highest correlation to the clinical endpoint compared to the commonly used dosimetric index, Dmean for both the esophagus and constrictor muscles. The reported dosimetric data demonstrates that new dosimetric indices may need to be considered in the setting of dose de-escalation and self-reported outcomes.« less
Placidi, Lorenzo; Azario, Luigi; Mattiucci, Gian Carlo; Greco, Francesca; Damiani, Andrea; Mantini, Giovanna; Frascino, Vincenzo; Piermattei, Angelo; Valentini, Vincenzo; Balducci, Mario
2015-01-01
The purpose of this study was to investigate the magnitude and dosimetric relevance of translational and rotational shifts on IGRT prostate volumetric‐modulated arc therapy (VMAT) using Protura six degrees of freedom (DOF) Robotic Patient Positioning System. Patients with cT3aN0M0 prostate cancer, treated with VMAT simultaneous integrated boost (VMAT‐SIB), were enrolled. PTV2 was obtained adding 0.7 cm margin to seminal vesicles base (CTV2), while PTV1 adding to prostate (CTV1) 0.7 cm margin in all directions, except 1.2 cm, as caudal margin. A daily CBCT was acquired before dose delivery. The translational and rotational displacements were corrected through Protura Robotic Couch, collected and applied to the simulation CT to obtain a translated CT (tCT) and a rototranslated CT (rtCT) on which we recalculated the initial treatment plan (TP). We analyzed the correlation between dosimetric coverage, organs at risk (OAR) sparing, and translational or rotational displacements. The dosimetric impact of a rototranslational correction was calculated. From October 2012 to September 2013, a total of 263 CBCT scans from 12 patients were collected. Translational shifts were <5mm in 81% of patients and the rotational shifts were <2∘ in 93% of patient scans. The dosimetric analysis was performed on 172 CBCT scans and calculating 344 VMAT‐TP. Two significant linear correlations were observed between yaw and the V20 femoral heads and between pitch rotation and V50 rectum (p<0.001); rototranslational correction seems to impact more on PTV2 than on PTV1, especially when margins are reduced. Rotational errors are of dosimetric significance in sparing OAR and in target coverage. This is relevant for femoral heads and rectum because of major distance from isocenter, and for seminal vesicles because of irregular shape. No correlation was observed between translational and rotational errors. A study considering the intrafractional error and the deformable registration is ongoing. PACS number: 87.55.de PMID:26699314
Dosimetric treatment course simulation based on a statistical model of deformable organ motion
NASA Astrophysics Data System (ADS)
Söhn, M.; Sobotta, B.; Alber, M.
2012-06-01
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.
Dos Santos-Goncalvez, Ana Maria; Beun, Sébastien; Leprince, Julian G.; Leloup, Gaëtane; Gallez, Bernard
2013-01-01
In case of radiological accident, retrospective dosimetry is needed to reconstruct the absorbed dose of overexposed individuals not wearing personal dosimeters at the onset of the incident. In such a situation, emergency mass triage will be required. In this context, it has been shown that Electron Paramagnetic Resonance (EPR) spectroscopy would be a rapid and sensitive method, on the field deployable system, allowing dose evaluation of a great number of people in a short time period. This methodology uses tooth enamel as a natural dosimeter. Ionising radiations create stable free radicals in the enamel, in a dose dependent manner, which can be detected by EPR directly in the mouth with an appropriate resonator. Teeth are often subject to restorations, currently made of synthetic dimethacrylate-based photopolymerizable composites. It is known that some dental composites give an EPR signal which is likely to interfere with the dosimetric signal from the enamel. So far, no information was available about the occurrence of this signal in the various composites available on the market, the magnitude of the signal compared to the dosimetric signal, nor its evolution with time. In this study, we conducted a systematic characterization of the signal (intensity, kinetics, interference with dosimetric signal) on 19 most widely used composites for tooth restoration, and on 14 experimental resins made with the most characteristic monomers found in commercial composites. Although a strong EPR signal was observed in every material, a rapid decay of the signal was noted. Six months after the polymerization, the signal was negligible in most composites compared to a 3 Gy dosimetric signal in a tooth. In some cases, a stable atypical signal was observed, which was still interfering with the dosimetric signal. PMID:23704875
Dosimetric treatment course simulation based on a statistical model of deformable organ motion.
Söhn, M; Sobotta, B; Alber, M
2012-06-21
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.
Walston, Steve; Quick, Allison M; Kuhn, Karla; Rong, Yi
2017-02-01
To present our clinical workflow of incorporating AlignRT for left breast deep inspiration breath-hold treatments and the dosimetric considerations with the deep inspiration breath-hold protocol. Patients with stage I to III left-sided breast cancer who underwent lumpectomy or mastectomy were considered candidates for deep inspiration breath-hold technique for their external beam radiation therapy. Treatment plans were created on both free-breathing and deep inspiration breath-hold computed tomography for each patient to determine whether deep inspiration breath-hold was beneficial based on dosimetric comparison. The AlignRT system was used for patient setup and monitoring. Dosimetric measurements and their correlation with chest wall excursion and increase in left lung volume were studied for free-breathing and deep inspiration breath-hold plans. Deep inspiration breath-hold plans had significantly increased chest wall excursion when compared with free breathing. This change in geometry resulted in reduced mean and maximum heart dose but did not impact lung V 20 or mean dose. The correlation between chest wall excursion and absolute reduction in heart or lung dose was found to be nonsignificant, but correlation between left lung volume and heart dose showed a linear association. It was also identified that higher levels of chest wall excursion may paradoxically increase heart or lung dose. Reduction in heart dose can be achieved for many left-sided breast and chest wall patients using deep inspiration breath-hold. Chest wall excursion as well as left lung volume did not correlate with reduction in heart dose, and it remains to be determined what metric will provide the most optimal and reliable dosimetric advantage.
Useful optical density range in film dosimetry: limitations due to noise and saturation.
González-López, Antonio
2007-08-07
The optical density (OD) range for the scanners used in film dosimetry is limited due to saturation and noise. As the OD increases, saturation causes the rate of change of the output with respect to the input to become smaller, while at the same time noise remains fairly constant or increases. The combined effect leads to a degradation of the signal-to-noise ratio (SNR) at high optical densities. In this study, the uncertainty in the OD measurement, d(m), is expressed as a function of the optical density d. The functional relationship obtained gives the amplitude w of an interval around d in which d(m) will be found with a given probability p. The relationship w = w(d, p) is later used to determine which OD ranges fulfil a set of requirements on w and p. As an application of the procedure, the noise and saturation characteristics of a commercial film digitizer system are measured. Their contribution to the uncertainties of the dosimetric procedure is reported, and the data are used to provide an optical density range for a given uncertainty and confidence level associated with the digitizer. These data can be further combined with the data from other sources of noise such as film noise in order to estimate the final uncertainty of the dosimetric process.
Subungual squamous cell carcinoma: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neill, Cory J., E-mail: coryjneill@gmail.com
The purpose of this case study is to describe a dosimetric delivery of radiation to a superficial disease process involving the skin and bone of the distal finger. A 76-year-old male patient presented with a subungual squamous cell carcinoma (SCC) of the left distal index finger with bony involvement. The patient refused conventional surgical treatment but agreed to external beam radiation therapy (EBRT). There is a gap in the current literature describing how to successfully immobilize fingers and which EBRT modality is dosimetrically advantageous in treating them. The construction of a simple immobilization method with the patient in a reproduciblemore » position is described. The use of photons and electrons were compared ultimately showing photons to be dosimetrically advantageous. Long-term efficacy of the treatment was not evaluated because of patient noncompliance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, C.L.; Eckerman, K.F.; Schlatter, E.C.
1981-08-01
The DARTAB computer code combines radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of the predicted impact of radioactive airborne effluents. DARTAB is independent of the environmental transport code used to generate the environmental exposure data and the codes used to produce the dosimetric and health effects data. Therefore human dose and risk calculations need not be added to every environmental transport code. Options are included in DARTAB to permit the user to request tabulations by various topics (e.g., cancer site, exposure pathway, etc.) to facilitate characterization of the human health impacts of the effluents.more » The DARTAB code was written at ORNL for the US Environmental Protection Agency, Office of Radiation Programs.« less
Comparison of dose accuracy between 2D array detectors and Epid for IMRT of nasopharynx cancer
NASA Astrophysics Data System (ADS)
Altiparmak, Duygu; Coban, Yasin; Merih, Adil; Avci, Gulhan Guler; Yigitoglu, Ibrahim
2017-02-01
The aim of this study is to perform the dosimetric controls of nasopharynx cancer patient's intensity modulated radiation therapy (IMRT) treatment plans that generated by treatment planing system (TPS) with using two different equipments and also to make comparison in terms of their reliability and practicability. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINAC DHX linear accelerator which is operated in the range of 6 MV. Selected 10 nasopharynx patients planned in TPS (Eclipce V13.0) and approved for treatment by medical physicists and radiation oncologists. These plans recalculated on EPID and mapcheck which are 2D dosimetric equipments to obtain dose maps. To compare these two dosimetric equipments gamma analysis method has been preferred. Achieved data is presented and discussed.
The dosimetric effects of photon energy on the quality of prostate volumetric modulated arc therapy.
Mattes, Malcolm D; Tai, Cyril; Lee, Alvin; Ashamalla, Hani; Ikoro, N C
2014-01-01
Studies comparing the dosimetric effects of high- and low-energy photons to treat prostate cancer using 3-dimensional conformal and intensity modulated radiation therapy have yielded mixed results. With the advent of newer radiation delivery systems like volumetric modulated arc therapy (VMAT), the impact of changing photon energy is readdressed. Sixty-five patients treated for prostate cancer at our institution from 2011 to 2012 underwent CT simulation. A target volume encompassing the prostate and entire seminal vesicles was treated to 50.4 Gy, followed by a boost to the prostate and proximal seminal vesicles to a total dose of 81 Gy. The VMAT plans were generated for 6-MV and 10-MV photons under identical optimization conditions using the Eclipse system version 8.6 (Varian Medical Systems, Palo Alto, CA). The analytical anisotropic algorithm was used for all dose calculations. Plans were normalized such that 98% of the planning target volume (PTV) received 100% of the prescribed dose. Dose-volumetric data from the treatment planning system was recorded for both 6-MV and 10-MV plans, which were compared for both the entire cohort and subsets of patients stratified according to the anterior-posterior separation. Plans using 10-MV photons had statistically significantly lower relative integral dose (4.1%), gradient measure (4.1%), skin Dmax (16.9%), monitor units (13.0%), and bladder V(30) (3.1%) than plans using 6-MV photons (P < .05). There was no difference in rectal dose, high-dose-region bladder dose, PTV coverage, or conformity index. The benefit of 10-MV photons was more pronounced for thicker patients (anterior-posterior separation >21 cm) for most parameters, with statistically significant differences in bladder V(30), bladder V(65), integral dose, conformity index, and monitor units. The main dosimetric benefits of 10-MV as compared with 6-MV photons are seen in thicker patients, though for the entire cohort 10-MV plans resulted in a lower integral dose, gradient measure, skin Dmax, monitor units, and bladder V(30), possibly at the expense of higher rectum V(81). Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
SU-F-P-11: Long Term Dosimetric Stability of 6 TomoTherapy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smilowitz, J; Dunkerley, D; Geurts, M
2016-06-15
Purpose: The dosimetric stability of six TomoTherapy units was analyzed to investigate changes in performance over time and with system upgrades. Methods: Energy and output were tracked using monitor chamber signal, onboard MVCT detector signal and external ion chamber measurements. The systems (and monitoring periods) include 3 Hi-Art (67, 61 and 65 mos.), 2 HDA (29 and 25 mos.) and one research unit (7 mo.). Dose Control Stability system (DCS) was installed on 4 systems. Output stability is reported as deviation from reference monitor chamber signal for all systems, and from an external chamber for 4 systems. Energy stability wasmore » monitored using the relative (center versus off-axis) MVCT detector signal and/or the ratio of chamber measurements at 2 depths. The results from the clinical systems were used to benchmark the stability of the research unit, which has the same linear accelerator but runs at a higher dose rate. Results: The output based on monitor chamber data of all six systems is very stable. Non- DCS had a standard deviation of 1.7% and 1.8%. As expected, DCS systems had improved standard deviation: 0.003–0.05%. The energy was also very stable for all units. The standard deviation in exit detector flatness was 0.02–0.3%. Ion chamber output and 20/10 cm ratios supported these results. The stability for the research system, as monitored with a variety of metrics, is on par with the existing systems. Conclusion: The output and energy of six TomoTherapy units over a total of almost 10 years is quite stable. For each system, the results are consistent between the different measurement tools and techniques, proving not only the dosimetric stability, but that these quality parameters can be confirmed with various metrics. A research unit operating at a higher dose rate performed as well as the clinical treatment units. University of Wisconsin and Accuray Inc. (vendor of TomoTherapy systems) have a research agreement which supplies funds for research to the University. This project was partially supporting with these funds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Y; Huang, Z; Lo, S
2015-06-15
Purpose: To improve Gamma Knife SRS treatment efficiency for brain metastases and compare the differences of treatment time and radiobiological effects between two different planning methods of automatic filling and manual placement of shots with inverse planning. Methods: T1-weighted MRI images with gadolinium contrast from five patients with a single brain metastatic-lesion were used in this retrospective study. Among them, two were from primary breast cancer, two from primary melanoma cancer and one from primary prostate cancer. For each patient, two plans were generated in Leksell GammaPlan10.1.1 for radiosurgical treatment with a Leksell GammaKnife Perfexion machine: one with automatic filling,more » automatic sector configuration and inverse optimization (Method1); and the other with manual placement of shots, manual setup of collimator sizes, manual setup of sector blocking and inverse optimization (Method2). Dosimetric quality of the plans was evaluated with parameters of Coverage, Selectivity, Gradient-Index and DVH. Beam-on Time, Number-of-Shots and Tumor Control Probability(TCP) were compared for the two plans while keeping their dosimetric quality very similar. Relative reduction of Beam-on Time and Number-of-Shots were calculated as the ratios among the two plans and used for quantitative analysis. Results: With very similar dosimetric and radiobiological plan quality, plans created with Method 2 had significantly reduced treatment time. Relative reduction of Beam-on Time ranged from 20% to 51 % (median:29%,p=0.001), and reduction of Number-of-Shots ranged from 5% to 67% (median:40%,p=0.0002), respectively. Time of plan creation for Method1 and Method2 was similar, approximately 20 minutes, excluding the time for tumor delineation. TCP calculated for the tumors from differential DVHs did not show significant difference between the two plans (p=0.35). Conclusion: The method of manual setup combined with inverse optimization in LGP for treatment of brain metastatic lesions with the Perfexion can achieve significantly higher time efficiency without degrading treatment quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Bo; Yang, Yong, E-mail: yangy2@upmc.edu; Li, Xiang
In linac-based stereotactic radiosurgery (SRS) and radiotherapy (SRT), circular cone(s) or conformal arc(s) are conventionally used to treat intracranial lesions. However, when the target is in close proximity to critical structures, it is frequently quite challenging to generate a quality plan using these techniques. In this study, we investigated the dosimetric characteristics of using high–dose rate RapidArc (RA) technique for radiosurgical treatment of intracranial lesions. A total of 10 intracranial SRS/SRT cases previously planned using dynamic conformal arc (DCA) or cone-based techniques have been included in this study. For each case, 3 treatment plans were generated: (1) a DCA planmore » with multiple noncoplanar arcs, (2) a high–dose rate RA plan with arcs oriented the same as DCA (multiple-arc RA), and 3) a high–dose rate RA plan with a single coplanar arc (single-arc RA). All treatment plans were generated under the same prescription and similar critical structure dose limits. Plan quality for different plans was evaluated by comparing various dosimetric parameters such as target coverage, conformity index (CI), homogeneity index (HI), critical structures, and normal brain tissue doses as well as beam delivery time. With similar critical structure sparing, high–dose rate RA plans can achieve much better target coverage, dose conformity, and dose homogeneity than the DCA plans can. Plan quality indices CI and HI, for the DCA, multiple-arc RA, and single-arc RA techniques, were measured as 1.67 ± 0.39, 1.32 ± 0.28, and 1.38 ± 0.30 and 1.24 ± 0.11, 1.10 ± 0.04, and 1.12 ± 0.07, respectively. Normal brain tissue dose (V{sub 12} {sub Gy}) was found to be similar for DCA and multiple-arc RA plans but much larger for the single-arc RA plans. Beam delivery was similar for DCA and multiple-arc RA plans but shorter with single-arc RA plans. Multiple-arc RA SRS/SRT can provide better treatment plans than conventional DCA plans, especially for complex cases.« less
Welsh, James; Gomez, Daniel; Palmer, Matthew B; Riley, Beverly A; Mayankkumar, Amin V; Komaki, Ritsuko; Dong, Lei; Zhu, X Ronald; Likhacheva, Anna; Liao, Zhongxing; Hofstetter, Wayne L; Ajani, Jaffer A; Cox, James D
2011-12-01
We have previously found that ≤ 75% of treatment failures after chemoradiotherapy for unresectable esophageal cancer appear within the gross tumor volume and that intensity-modulated (photon) radiotherapy (IMRT) might allow dose escalation to the tumor without increasing normal tissue toxicity. Proton therapy might allow additional dose escalation, with even lower normal tissue toxicity. In the present study, we compared the dosimetric parameters for photon IMRT with that for intensity-modulated proton therapy (IMPT) for unresectable, locally advanced, distal esophageal cancer. Four plans were created for each of 10 patients. IMPT was delivered using anteroposterior (AP)/posteroanterior beams, left posterior oblique/right posterior oblique (LPO/RPO) beams, or AP/LPO/RPO beams. IMRT was delivered with a concomitant boost to the gross tumor volume. The dose was 65.8 Gy to the gross tumor volume and 50.4 Gy to the planning target volume in 28 fractions. Relative to IMRT, the IMPT (AP/posteroanterior) plan led to considerable reductions in the mean lung dose (3.18 vs. 8.27 Gy, p<.0001) and the percentage of lung volume receiving 5, 10, and 20 Gy (p≤.0006) but did not reduce the cardiac dose. The IMPT LPO/RPO plan also reduced the mean lung dose (4.9 Gy vs. 8.2 Gy, p<.001), the heart dose (mean cardiac dose and percentage of the cardiac volume receiving 10, 20, and 30 Gy, p≤.02), and the liver dose (mean hepatic dose 5 Gy vs. 14.9 Gy, p<.0001). The IMPT AP/LPO/RPO plan led to considerable reductions in the dose to the lung (p≤.005), heart (p≤.003), and liver (p≤.04). Compared with IMRT, IMPT for distal esophageal cancer lowered the dose to the heart, lung, and liver. The AP/LPO/RPO beam arrangement was optimal for sparing all three organs. The dosimetric benefits of protons will need to be tailored to each patient according to their specific cardiac and pulmonary risks. IMPT for esophageal cancer will soon be investigated further in a prospective trial at our institution. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X; Dalah, E; Prior, P
Purpose: Apparent diffusion coefficient (ADC) map may help to delineate the gross tumor volume (GTV) in prostate gland. Dose painting with external beam radiotherapy for GTV might increase the local tumor control. The purpose of this study is to explore the maximum boosting dose on GTV using VMAT without sacrificing sparing of organs at risk (OARs) in MRI based planning. Methods: VMAT plans for 5 prostate patients were generated following the commonly used dose volume (DV) criteria based on structures contoured on T2 weighted MRI with bulk electron density assignment using electron densities derived from ICRU46. GTV for each patientmore » was manually delineated based on ADC maps and fused to T2-weighted image set for planning study. A research planning system with Monte Carlo dose engine (Monaco, Elekta) was used to generate the VMAT plans with boosting dose on GTV gradually increased from 85Gy to 100Gy. DV parameters, including V(boosting-dose) (volume covered by boosting dose) for GTV, V75.6Gy for PTV, V45Gy, V70Gy, V72Gy and D1cc (Maximum dose to 1cc volume) for rectum and bladder, were used to measure plan quality. Results: All cases achieve at least 99.0% coverage of V(boosting-dose) on GTV and 95% coverage of V75.6Gy to the PTV. All the DV criteria, V45Gy≤50% and V70Gy≤15% for bladder and rectum, D1cc ≤77Gy (Rectum) and ≤80Gy (Bladder), V72Gy≤5% (rectum and bladder) were maintained when boosting GTV to 95Gy for all cases studied. Except for two patients, all the criteria were also met when the boosting dose goes to 100Gy. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. This research is partially supported by Elekta Inc.« less
Validation of Pinnacle treatment planning system for use with Novalis delivery unit.
Faygelman, Vladimir; Hunt, Dylan; Walker, Luke; Mueller, Richard; Demarco, Mary Lou; Dilling, Thomas; Stevens, Craig; Zhang, Geoffrey
2010-06-15
For an institution that already owns the licenses, it is economically advantageous and technically feasible to use Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI) with the BrainLab Novalis delivery system (BrainLAB A.G., Heimstetten, Germany). This takes advantage of the improved accuracy of the convolution algorithm in the presence of heterogeneities compared with the pencil beam calculation, which is particularly significant for lung SBRT treatments. The reference patient positioning DRRs still have to be generated by the BrainLab software from the CT images and isocenter coordinates transferred from Pinnacle. We validated this process with the end-to-end hidden target test, which showed an isocenter positioning error within one standard deviation from the previously established mean value. The Novalis treatment table attenuation is substantial (up to 6.2% for a beam directed straight up and up to 8.4% for oblique incidence) and has to be accounted for in calculations. A simple single-contour treatment table model was developed, resulting in mean differences between the measured and calculated attenuation factors of 0.0%-0.2%, depending on the field size. The maximum difference for a single incidence angle is 1.1%. The BrainLab micro-MLC (mMLC) leaf tip, although not geometrically round, can be represented in Pinnacle by an arch with satisfactory dosimetric accuracy. Subsequently, step-and-shoot (direct machine parameter optimization) IMRT dosimetric agreement is excellent. VMAT (called "SmartArc" in Pinnacle) treatments with constant gantry speed and dose rate are feasible without any modifications to the accelerator. Due to the 3 mm-wide mMLC leaves, the use of a 2 mm calculation grid is recommended. When dual arcs are used for the more complex cases, the overall dosimetric agreement for the SmartArc plans compares favorably with the previously reported results for other implementations of VMAT: gamma(3%,3mm) for absolute dose obtained with the biplanar diode array passing rates above 97% with the mean of 98.6%. However, a larger than expected dose error with the single-arc plans, confined predominantly to the isocenter region, requires further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalet, A; Cao, N; Meyer, J
Purpose: The purpose of this study was to evaluate the dosimetric and practical effects of the Monaco treatment planning system “max arcs-per-beam” optimization parameter in pelvic radiotherapy treatments. Methods: A total of 17 previously treated patients were selected for this study with a range of pelvic disease site including prostate(9), bladder(1), uterus(3), rectum(3), and cervix(1). For each patient, two plans were generated, one using a arc-per-beam setting of ‘1’ and another with setting of ‘2’. The setting allows the optimizer to add a gantry direction change, creating multiple arc passes per beam sequence. Volumes and constraints established from the initialmore » clinical treatments were used for planning. All constraints and dose coverage objects were kept the same between plans, and all plans were normalized to 99.7% to ensure 100% of the PTV received 95% of the prescription dose. We evaluated the PTV conformity index, homogeneity index, total monitor units, number of control points, and various dose volume histogram (DVH) points for statistical comparison (alpha=0.05). Results: We found for the 10 complex shaped target volumes (small central volumes with extending bilateral ‘arms’ to cover nodal regions) that the use of 2 arcs-per-beam achieved significantly lower average DVH values for the bladder V20 (p=0.036) and rectum V30 (p=0.001) while still meeting the high dose target constraints. DVH values for the simpler, more spherical PTVs were not found significantly different. Additionally, we found a beam delivery time reduction of approximately 25%. Conclusion: In summary, the dosimetric benefit, while moderate, was improved over a 1 arc-per-beam setting for complex PTVs, and equivalent in other cases. The overall reduced delivery time suggests that the use of multiple arcs-per-beam could lead to reduced patient on table time, increased clinical throughput, and reduced medical physics quality assurance effort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenski, M; Abramowitz, M; Dogan, N
Purpose: Quantify the dosimetric cost for a margin around the MRI-defined high risk GTV for simultaneous integrated intra-prostatic boosts (SIIB) treated with RapidArc. Methods: For external beam radiotherapy of the prostate, a 3-7 mm PTV margin is typically used to account for setup and intra-fraction uncertainties after adjusting for inter-fraction motion. On the other hand, our current paradigm is to treat the MRI-defined high risk GTV with no margin. In this work, 11 patients treated SIIB (7 post-prostatectomy, 4 intact prostate) with RapidArc were re-planned with 1-5 mm margins around the GTV to quantify dosimetric effects. Two 358 degree, 10more » MV RapidArcs were used to deliver 68 Gy (76.5 Gy boost) to the post-prostatectomy patients and 80 Gy (86 Gy boost) to the intact prostates. Paired, two tail t-tests were used to determine if there were any significant differences (p<0.05) in the total MUs and dosimetric parameters used to evaluate rectum, bladder, and PTV dose with and without margin. Results: The average GTV volume without margin was 8.1cc (2.8% of the PTV volume) while the average GTV volume with a 5 mm margin was 20.1cc (9.0% of the PTV volume). GTV volumes ranged from 0.2% of the PTV volume up to 33.0%. Despite these changes in volume, the only statistical difference was found for the rectal V65 Gy with a 5 mm margin (18.6% vs. 19.4%; p-value = 0.026) when all patients were considered as a single group. No difference was found when analyzed as two groups. The rectum V40Gy, bladder V40Gy and V65Gy, PTV Dmax and D95% or the total MUs did not show any significant difference for any margin. Conclusion: A 4 mm margin on the high risk GTV is possible with no statistically significant change in dosimetry or total MUs. Further work will assess the appropriate margin required for intra-prostatic boosts.« less
NASA Astrophysics Data System (ADS)
Kim, Hojin; Li, Ruijiang; Lee, Rena; Xing, Lei
2015-03-01
Conventional VMAT optimizes aperture shapes and weights at uniformly sampled stations, which is a generalization of the concept of a control point. Recently, rotational station parameter optimized radiation therapy (SPORT) has been proposed to improve the plan quality by inserting beams to the regions that demand additional intensity modulations, thus formulating non-uniform beam sampling. This work presents a new rotational SPORT planning strategy based on reweighted total-variation (TV) minimization (min.), using beam’s-eye-view dosimetrics (BEVD) guided beam selection. The convex programming based reweighted TV min. assures the simplified fluence-map, which facilitates single-aperture selection at each station for single-arc delivery. For the rotational arc treatment planning and non-uniform beam angle setting, the mathematical model needs to be modified by additional penalty term describing the fluence-map similarity and by determination of appropriate angular weighting factors. The proposed algorithm with additional penalty term is capable of achieving more efficient and deliverable plans adaptive to the conventional VMAT and SPORT planning schemes by reducing the dose delivery time about 5 to 10 s in three clinical cases (one prostate and two head-and-neck (HN) cases with a single and multiple targets). The BEVD guided beam selection provides effective and yet easy calculating methodology to select angles for denser, non-uniform angular sampling in SPORT planning. Our BEVD guided SPORT treatment schemes improve the dose sparing to femoral heads in the prostate and brainstem, parotid glands and oral cavity in the two HN cases, where the mean dose reduction of those organs ranges from 0.5 to 2.5 Gy. Also, it increases the conformation number assessing the dose conformity to the target from 0.84, 0.75 and 0.74 to 0.86, 0.79 and 0.80 in the prostate and two HN cases, while preserving the delivery efficiency, relative to conventional single-arc VMAT plans.
Zhang, Huai-Wen; Hu, Bo; Xie, Chen; Wang, Yun-Lai
2018-05-01
This study aimed to evaluate dosimetric differences of intensity-modulated radiation therapy (IMRT) in target and normal tissues after breast-conserving surgery. IMRT five-field plan I, IMRT six-field plan II, and field-in-field-direct machine parameter optimization-IMRT plan III were designed for each of the 50 patients. One-way analysis of variance was performed to compare differences, and P < 0.05 was considered statistically significant. Homogeneity index of plan III is lower than those of plans I and II. No difference was identified in conformity index of targets. Plan I exhibited difference in mean dose (D mean ) for the heart (P < 0.05). Plan I featured smaller irradiation dose volumes in V 5 , V 20 (P < 0.05) of the left lung than II. Plan I exhibited significantly higher V 5 in the right lung than plans II and III (P < 0.05). Under plan I, irradiation dose at V 5 in the right breast is higher than that in plans II and III. Patients in plan III presented less total monitor unit and total treatment time than those in plans I and II (P < 0.05). IMRT six-field plans II, and field-in-field-direct machine parameter optimization-IMRT plans III can reduce doses and volumes to the lungs and heart better while maintaining satisfying conformity index and homogeneity index of target. Nevertheless, plan II neglects target movements caused by respiration. In the same manner, plan III can substantially reduce MU and shorten patient treatment time. Therefore, plan III, which considers target movement caused by respiration, is a more practical radiation mode. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, Y; Tachibana, H
Purpose: For head and neck VMAT (HN-VMAT), variations of position and deformation of patient’s shoulders is a concern to affect inaccuracy of dose distribution. It has been reported that the setup error of the shoulders was variable from 5 mm – 1 cm. The beams of the HN-VMAT pass through the shoulders. We assessed the impact of shoulder deformation to dose distribution for HN-VMAT. Methods: One HN-VMAT plan was generated using a patient’s CT. The patient’s CT was deformed using ImSimQA (Oncology Systems Limited, Shrewsbury, Shropshire, UK) to generate several patterns of the shoulders’ deformations when the right and leftmore » humeral heads were shifted with 3, 6, and 15 mm in the superior and inferior directions (SI), 3, 5, and 15 mm in the anterior and posterior directions (AP), and 5 and 15 mm in the right or left direction (LR). DVH comparison was performed in the different deformation patterns. The dosimetric parameters of D95% for CTV70Gy, CTV60Gy and CTV54Gy and dmax for Spinal cord were also measured. Gamma index evaluation (Criteria: 3%/2mm) was performed to exhibit clinically tolerable area in the comparison. Results: DVH comparison shows similar for all structures. As the comparison for the dosimetric parameters, the variations of D95% in the LR and AP were within 1%. There were larger variations in the SI than those in the other directions, however were within 1.5%. In gamma index evaluation, the small spots with higher gamma index values were appeared when the shift was 6 mm, however the pass ratio was 99.13%. Conclusion: HN-VMAT should be robust for shoulder deformation and geometric accuracy within 6 mm from patient’s setup and image-guided radiotherapy may be clinically acceptable for target dose coverage or normal tissue dose sparing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jiayi, E-mail: jhuang@radonc.wustl.edu; DeWees, Todd A.; Badiyan, Shahed N.
Purpose: Acute severe lymphopenia (ASL) frequently develops during radiation therapy (RT) and concurrent temozolomide (TMZ) for high-grade glioma (HGG) and is associated with decreased survival. The current study was designed to identify potential predictors of ASL, with a focus on actionable RT-specific dosimetric parameters. Methods and Materials: From January 2007 to December 2012, 183 patients with HGG were treated with RT+TMZ and had available data including total lymphocyte count (TLC) and radiation dose-volume histogram parameters. ASL was defined as TLC of <500/μL within the first 3 months from the start of RT. Stepwise logistic regression analysis was used to determine themore » most important predictors of ASL. Results: Fifty-three patients (29%) developed ASL. Patients with ASL had significantly worse overall survival than those without (median: 12.5 vs 20.2 months, respectively, P<.001). Stepwise logistic regression analysis identified female sex (odds ratio [OR]: 5.30; 95% confidence interval [CI]: 2.46-11.41), older age (OR: 1.05; 95% CI: 1.02-1.09), lower baseline TLC (OR: 0.92; 95% CI: 0.87-0.98), and higher brain volume receiving 25 Gy (V{sub 25Gy}) (OR: 1.03; 95% CI: 1.003-1.05) as the most significant predictors for ASL. Brain V{sub 25Gy} <56% appeared to be the optimal threshold (OR: 2.36; 95% CI: 1.11-5.01), with an ASL rate of 38% versus 20% above and below this threshold, respectively (P=.006). Conclusions: Female sex, older age, lower baseline TLC, and higher brain V{sub 25Gy} are significant predictors of ASL during RT+TMZ therapy for HGG. Maintaining the V{sub 25Gy} of brain below 56% may reduce the risk of ASL.« less
Moré, Jayaji M; Eclov, Neville C W; Chung, Melody P; Wynne, Jacob F; Shorter, Joanne H; Nelson, David D; Hanlon, Alexandra L; Burmeister, Robert; Banos, Peter; Maxim, Peter G; Loo, Billy W; Diehn, Maximilian
2014-07-01
In this prospective pilot study, we evaluated the feasibility and potential utility of measuring multiple exhaled gases as biomarkers of radiation pneumonitis (RP) in patients receiving stereotactic ablative radiotherapy (SABR) for lung tumors. Breath analysis was performed for 26 patients receiving SABR for lung tumors. Concentrations of exhaled nitric oxide (eNO), carbon monoxide (eCO), nitrous oxide (eN2O), and carbon dioxide (eCO2) were measured before and immediately after each fraction using real-time, infrared laser spectroscopy. RP development (CTCAE grade ≥2) was correlated with baseline gas concentrations, acute changes in gas concentrations after each SABR fraction, and dosimetric parameters. Exhaled breath analysis was successfully completed in 77% of patients. Five of 20 evaluable patients developed RP at a mean of 5.4 months after SABR. Acute changes in eNO and eCO concentrations, defined as percent changes between each pre-fraction and post-fraction measurement, were significantly smaller in RP versus non-RP cases (p = 0.022 and 0.015, respectively). In an exploratory analysis, a combined predictor of baseline eNO greater than 24 parts per billion and acute decrease in eCO less than 5.5% strongly correlated with RP incidence (p =0.0099). Neither eN2O nor eCO2 concentrations were significantly associated with RP development. Although generally higher in patients destined to develop RP, dosimetric parameters were not significantly associated with RP development. The majority of SABR patients in this pilot study were able to complete exhaled breath analysis. Baseline concentrations and acute changes in concentrations of exhaled breath components were associated with RP development after SABR. If our findings are validated, exhaled breath analysis may become a useful approach for noninvasive identification of patients at highest risk for developing RP after SABR.
Intensity-Modulated Radiotherapy for Resected Mesothelioma: The Duke Experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Edward F.; Larrier, Nicole A.; Kelsey, Christopher R.
2008-07-15
Purpose: To assess the safety and efficacy of intensity-modulated radiotherapy (IMRT) after extrapleural pneumonectomy for malignant pleural mesothelioma. Methods and Materials: Thirteen patients underwent IMRT after extrapleural pneumonectomy between July 2005 and February 2007 at Duke University Medical Center. The clinical target volume was defined as the entire ipsilateral hemithorax, chest wall incisions, including drain sites, and involved nodal stations. The dose prescribed to the planning target volume was 40-55 Gy (median, 45). Toxicity was graded using the modified Common Toxicity Criteria, and the lung dosimetric parameters from the subgroups with and without pneumonitis were compared. Local control and survivalmore » were assessed. Results: The median follow-up after IMRT was 9.5 months. Of the 13 patients, 3 (23%) developed Grade 2 or greater acute pulmonary toxicity (during or within 30 days of IMRT). The median dosimetric parameters for those with and without symptomatic pneumonitis were a mean lung dose (MLD) of 7.9 vs. 7.5 Gy (p = 0.40), percentage of lung volume receiving 20 Gy (V{sub 20}) of 0.2% vs. 2.3% (p = 0.51), and percentage of lung volume receiving 5 Gy (V{sub 20}) of 92% vs. 66% (p = 0.36). One patient died of fatal pulmonary toxicity. This patient received a greater MLD (11.4 vs. 7.6 Gy) and had a greater V{sub 20} (6.9% vs. 1.9%), and V{sub 5} (92% vs. 66%) compared with the median of those without fatal pulmonary toxicity. Local and/or distant failure occurred in 6 patients (46%), and 6 patients (46%) were alive without evidence of recurrence at last follow-up. Conclusions: With limited follow-up, 45-Gy IMRT provides reasonable local control for mesothelioma after extrapleural pneumonectomy. However, treatment-related pulmonary toxicity remains a significant concern. Care should be taken to minimize the dose to the remaining lung to achieve an acceptable therapeutic ratio.« less
WE-AB-209-09: Optimization of Rotational Arc Station Parameter Optimized Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, P; Xing, L; Ungun, B
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of improving VMAT in both plan quality and delivery efficiency. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based Proximal Operator Graph Solver (POGS) within seconds. Apertures with zero or low weight were thrown out. Tomore » avoid being trapped in a local minimum, a stochastic gradient descent method was employed which also greatly increased the convergence rate of the objective function. The above procedure repeated until the plan could not be improved any further. A weighting factor associated with the total plan MU also indirectly controlled the complexities of aperture shapes. The number of apertures for VMAT and SPORT was confined to 180. The SPORT allowed the coexistence of multiple apertures in a single SP. The optimization technique was assessed by using three clinical cases (prostate, H&N and brain). Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. Prostate case: the volume of the 50% prescription dose was decreased by 22% for the rectum. H&N case: SPORT improved the mean dose for the left and right parotids by 15% each. Brain case: the doses to the eyes, chiasm and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the H&N case. Conclusion: The superior dosimetric quality and delivery efficiency presented here indicates that SPORT is an intriguing alternative treatment modality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mell, Loren K.; Schomas, David A.; Salama, Joseph K.
Purpose: To test the hypothesis that the volume of pelvic bone marrow (PBM) receiving 10 and 20 Gy or more (PBM-V{sub 10} and PBM-V{sub 20}) is associated with acute hematologic toxicity (HT) in anal cancer patients treated with concurrent chemoradiotherapy. Methods and Materials: We analyzed 48 consecutive anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiation therapy. The median radiation dose to gross tumor and regional lymph nodes was 50.4 and 45 Gy, respectively. Pelvic bone marrow was defined as the region extending from the iliac crests to the ischial tuberosities, including the os coxae, lumbosacral spine, and proximalmore » femora. Endpoints included the white blood cell count (WBC), absolute neutrophil count (ANC), hemoglobin, and platelet count nadirs. Regression models with multiple independent predictors were used to test associations between dosimetric parameters and HT. Results: Twenty patients (42%) had Stage T3-4 disease; 15 patients (31%) were node positive. Overall, 27 (56%), 24 (50%), 4 (8%), and 13 (27%) experienced acute Grade 3-4 leukopenia, neutropenia, anemia, and thrombocytopenia, respectively. On multiple regression analysis, increased PBM-V{sub 5}, V{sub 10}, V{sub 15}, and V{sub 20} were significantly associated with decreased WBC and ANC nadirs, as were female gender, decreased body mass index, and increased lumbosacral bone marrow V{sub 10}, V{sub 15}, and V{sub 20} (p < 0.05 for each association). Lymph node positivity was significantly associated with a decreased WBC nadir on multiple regression analysis (p < 0.05). Conclusion: This analysis supports the hypothesis that increased low-dose radiation to PBM is associated with acute HT during chemoradiotherapy for anal cancer. Techniques to limit bone marrow irradiation may reduce HT in anal cancer patients.« less
Dosimetric property of mineral extracted from calamari and exposed to gamma rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Perez
2013-07-03
Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays ({sup 60}Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 Degree-Sign C and 128-138more » Degree-Sign C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.« less
Dosimetric Consistency of Co-60 Teletherapy Unit- a ten years Study.
Baba, Misba H; Mohib-Ul-Haq, M; Khan, Aijaz A
2013-01-01
The goal of the Radiation standards and Dosimetry is to ensure that the output of the Teletherapy Unit is within ±2% of the stated one and the output of the treatment dose calculation methods are within ±5%. In the present paper, we studied the dosimetry of Cobalt-60 (Co-60) Teletherapy unit at Sher-I-Kashmir Institute of Medical Sciences (SKIMS) for last 10 years. Radioactivity is the phenomenon of disintegration of unstable nuclides called radionuclides. Among these radionuclides, Cobalt-60, incorporated in Telecobalt Unit, is commonly used in therapeutic treatment of cancer. Cobalt-60 being unstable decays continuously into Ni-60 with half life of 5.27 years thereby resulting in the decrease in its activity, hence dose rate (output). It is, therefore, mandatory to measure the dose rate of the Cobalt-60 source regularly so that the patient receives the same dose every time as prescribed by the radiation oncologist. The under dosage may lead to unsatisfactory treatment of cancer and over dosage may cause radiation hazards. Our study emphasizes the consistency between actual output and output obtained using decay method. The methodology involved in the present study is the calculations of actual dose rate of Co-60 Teletherapy Unit by two techniques i.e. Source to Surface Distance (SSD) and Source to Axis Distance (SAD), used for the External Beam Radiotherapy, of various cancers, using the standard methods. Thereby, a year wise comparison has been made between average actual dosimetric output (dose rate) and the average expected output values (obtained by using decay method for Co-60.). The present study shows that there is a consistency in the average output (dose rate) obtained by the actual dosimetry values and the expected output values obtained using decay method. The values obtained by actual dosimetry are within ±2% of the expected values. The results thus obtained in a year wise comparison of average output by actual dosimetry done regularly as a part of Quality Assurance of the Telecobalt Radiotherapy Unit and its deviation from the expected output data is within the permissible limits. Thus our study shows a trend towards uniformity and a better dose delivery.
A generic biokinetic model for noble gases with application to radon.
Leggett, Rich; Marsh, James; Gregoratto, Demetrio; Blanchardon, Eric
2013-06-01
To facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for (222)Rn and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shulian; Liao Zhongxing; Vaporciyan, Ara A.
Purpose: To assess the association of clinical and especially dosimetric factors with the incidence of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiation therapy followed by surgery. Method and Materials: Data from 110 esophageal cancer patients treated between January 1998 and December 2003 were analyzed retrospectively. All patients received concurrent chemoradiotherapy followed by surgery; 72 patients also received irinotecan-based induction chemotherapy. Concurrent chemotherapy was 5-fluorouracil-based and in 97 cases included taxanes. Radiotherapy was delivered to a total dose of 41.4-50.4 Gy at 1.8-2.0 Gy per fraction with a three-dimensional conformal technique. Surgery (three-field, Ivor-Lewis, or transhiatal esophagectomy)more » was performed 27-123 days (median, 45 days) after completion of radiotherapy. The following dosimetric parameters were generated from the dose-volume histogram (DVH) for total lung: lung volume, mean dose to lung, relative and absolute volumes of lung receiving more than a threshold dose (relative V{sub dose} and absolute V{sub dose}), and absolute volume of lung receiving less than a threshold dose (volume spared, or VS{sub dose}). Occurrence of postoperative pulmonary complications, defined as pneumonia or acute respiratory distress syndrome (ARDS) within 30 days after surgery, was the endpoint for all analyses. Fisher's exact test was used to investigate the relationship between categorical factors and incidence of postoperative pulmonary complications. Logistic analysis was used to analyze the relationship between continuous factors (e.g., V{sub dose} or VS{sub dose}) and complication rate. Logistic regression with forward stepwise inclusion of factors was used to perform multivariate analysis of those factors having univariate significance (p < 0.05). The Mann-Whitney test was used to compare length of hospital stay in patients with and without lung complications and to compare lung volumes, VS5 values, and absolute and relative V5 values in male vs. female patients. Pearson correlation analysis was used to determine correlations between dosimetric factors. Results: Eighteen (16.4%) of the 110 patients developed postoperative pulmonary complications. Two of these died of progressive pneumonia. Hospitalizations were significantly longer for patients with postoperative pulmonary complications than for those without (median, 15 days vs. 11 days, p = 0.003). On univariate analysis, female gender (p = 0.017), higher mean lung dose (p = 0.036), higher relative volume of lung receiving {>=}5 Gy (V5) (p = 0.023), and smaller volumes of lung spared from doses {>=}5-35 Gy (VS5-VS35) (p < 0.05) were all significantly associated with an increased incidence of postoperative pulmonary complications. No other clinical factors were significantly associated with the incidence of postoperative pulmonary complications in this cohort. On multivariate analysis, the volume of lung spared from doses {>=}5 Gy (VS5) was the only significant independent factor associated with postoperative pulmonary complications (p = 0.005). Conclusions: Dosimetric factors but not clinical factors were found to be strongly associated with the incidence of postoperative pulmonary complications in this cohort of esophageal cancer patients treated with concurrent chemoradiation plus surgery. The volume of the lung spared from doses of {>=}5 Gy was the only independent dosimetric factor in multivariate analysis. This suggests that ensuring an adequate volume of lung unexposed to radiation might reduce the incidence of postoperative pulmonary complications.« less
Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck Af Rosenschold, Per
2012-03-01
Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358° arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy × 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45° or 315°. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The dosimetric results were evaluated using gamma index evaluation with static target measurements as reference. The plan quality parameters did not depend significantly on the LPC (p ≥ 0.066), whereas the ALD depended significantly on the LPC (p < 0.001). The gamma index failure rate depended significantly on the ALD, weighted to the percentage of the beam delivered in each control point of the plan (ALD(w)) when MLC tracking was used (p < 0.001), but not for delivery without MLC tracking (p ≥ 0.342). The gamma index failure rate with the criteria of 2% and 2 mm was decreased from > 33.9% without MLC tracking to <31.4% (LPC 0) and <2.2% (LPC 1) with MLC tracking. The results indicate that the dosimetric robustness of MLC tracking delivery of an inversely optimized arc radiotherapy plan can be improved by incorporating leaf position constraints in the objective function without otherwise affecting the plan quality. The dosimetric robustness may be estimated prior to delivery by evaluating the ALD(w) of the plan.
In vitro cell irradiation systems based on 210Po alpha source: construction and characterisation
NASA Technical Reports Server (NTRS)
Szabo, J.; Feher, I.; Palfalvi, J.; Balashazy, I.; Dam, A. M.; Polonyi, I.; Bogdandi, E. N.
2002-01-01
One way of studying the risk to human health of low-level radiation exposure is to make biological experiments on living cell cultures. Two 210Po alpha-particle emitting devices, with 0.5 and 100 MBq activity, were designed and constructed to perform such experiments irradiating monolayers of cells. Estimates of dose rate at the cell surface were obtained from measurements by a PIPS alpha-particle spectrometer and from calculations by the SRIM 2000, Monte Carlo charged particle transport code. Particle fluence area distributions were measured by solid state nuclear track detectors. The design and dosimetric characterisation of the devices are discussed. c2002 Elsevier Science Ltd. All rights reserved.
Schaake, Wouter; van der Schaaf, Arjen; van Dijk, Lisanne V; Bongaerts, Alfons H H; van den Bergh, Alfons C M; Langendijk, Johannes A
2016-06-01
Curative radiotherapy for prostate cancer may lead to anorectal side effects, including rectal bleeding, fecal incontinence, increased stool frequency and rectal pain. The main objective of this study was to develop multivariable NTCP models for these side effects. The study sample was composed of 262 patients with localized or locally advanced prostate cancer (stage T1-3). Anorectal toxicity was prospectively assessed using a standardized follow-up program. Different anatomical subregions within and around the anorectum were delineated. A LASSO logistic regression analysis was used to analyze dose volume effects on toxicity. In the univariable analysis, rectal bleeding, increase in stool frequency and fecal incontinence were significantly associated with a large number of dosimetric parameters. The collinearity between these predictors was high (VIF>5). In the multivariable model, rectal bleeding was associated with the anorectum (V70) and anticoagulant use, fecal incontinence was associated with the external sphincter (V15) and the iliococcygeal muscle (V55). Finally, increase in stool frequency was associated with the iliococcygeal muscle (V45) and the levator ani (V40). No significant associations were found for rectal pain. Different anorectal side effects are associated with different anatomical substructures within and around the anorectum. The dosimetric variables associated with these side effects can be used to optimize radiotherapy treatment planning aiming at prevention of specific side effects and to estimate the benefit of new radiation technologies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Gan, Hua; Denniston, Kyle A.; Li, Sicong; Tan, Wenyong; Wang, Zhaohua
2014-01-01
Purpose The objective of this study was to evaluate the dosimetric feasibility of using hippocampus (HPC) sparing intensity-modulated radiotherapy (IMRT) in patients with locally advanced nasopharyngeal carcinoma (NPC). Materials/Methods Eight cases of either T3 or T4 NPC were selected for this study. Standard IMRT treatment plans were constructed using the volume and dose constraints for the targets and organs at risk (OAR) per Radiation Therapy Oncology Group (RTOG) 0615 protocol. Experimental plans were constructed using the same criteria, with the addition of the HPC as an OAR. The two dose-volume histograms for each case were compared for the targets and OARs. Results All plans achieved the protocol dose criteria. The homogeneity index, conformity index, and coverage index for the planning target volumes (PTVs) were not significantly compromised by the avoidance of the HPC. The doses to all OARs, excluding the HPC, were similar. Both the dose (Dmax, D2%, D40%, Dmean, Dmedian, D98% and Dmin) and volume (V5, V10, V15, V20, V30, V40 and V50) parameters for the HPC were significantly lower in the HPC sparing plans (p<0.05), except for Dmin (P = 0.06) and V5 (P = 0.12). Conclusions IMRT for patients with locally advanced NPC exposes the HPC to a significant radiation dose. HPC sparing IMRT planning significantly decreases this dose, with minimal impact on the therapeutic targets and other OARs. PMID:24587184
Dosimetry study of PHOTOFRIN-mediated photodynamic therapy in a mouse tumor model
NASA Astrophysics Data System (ADS)
Qiu, Haixia; Kim, Michele M.; Penjweini, Rozhin; Zhu, Timothy C.
2016-03-01
It is well known in photodynamic therapy (PDT) that there is a large variability between PDT light dose and therapeutic outcomes. An explicit dosimetry model using apparent reacted 1O2 concentration [1O2]rx has been developed as a PDT dosimetric quantity to improve the accuracy of the predicted ability of therapeutic efficacy. In this study, this explicit macroscopic singlet oxygen model was adopted to establish the correlation between calculated reacted [1O2]rx and the tumor growth using Photofrin-mediated PDT in a mouse tumor model. Mice with radiation-induced fibrosarcoma (RIF) tumors were injected with Photofrin at a dose of 5 mg/kg. PDT was performed 24h later with different fluence rates (50, 75 and 150 mW/cm2) and different fluences (50 and 135 J/cm2) using a collimated light applicator coupled to a 630nm laser. The tumor volume was monitored daily after PDT and correlated with the total light fluence and [1O2]rx. Photophysical parameters as well as the singlet oxygen threshold dose for this sensitizer and the RIF tumor model were determined previously. The result showed that tumor growth rate varied greatly with light fluence for different fluence rates while [1O2]rx had a good correlation with the PDT-induced tumor growth rate. This preliminary study indicated that [1O2]rx could serve as a better dosimetric predictor for predicting PDT outcome than PDT light dose.
NASA Astrophysics Data System (ADS)
Beavis, Andrew W.; Ward, James W.
2014-03-01
Purpose: In recent years there has been interest in using Computer Simulation within Medical training. The VERT (Virtual Environment for Radiotherapy Training) system is a Flight Simulator for Radiation Oncology professionals, wherein fundamental concepts, techniques and problematic scenarios can be safely investigated. Methods: The system provides detailed simulations of several Linacs and the ability to display DICOM treatment plans. Patients can be mis-positioned with 'set-up errors' which can be explored visually, dosimetrically and using IGRT. Similarly, a variety of Linac calibration and configuration parameters can be altered manually or randomly via controlled errors in the simulated 3D Linac and its component parts. The implication of these can be investigated by following through a treatment scenario or using QC devices available within a Physics software module. Results: One resultant exercise is a systematic mis-calibration of 'lateral laser height' by 2mm. The offset in patient alignment is easily identified using IGRT and once corrected by reference to the 'in-room monitor'. The dosimetric implication is demonstrated to be 0.4% by setting a dosimetry phantom by the lasers (and ignoring TSD information). Finally, the need for recalibration can be shown by the Laser Alignment Phantom or by reference to the front pointer. Conclusions: The VERT system provides a realistic environment for training and enhancing understanding of radiotherapy concepts and techniques. Linac error conditions can be explored in this context and valuable experience gained in a controlled manner in a compressed period of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorayski, Peter; Fitzgerald, Rhys; Barry, Tamara
Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneitymore » included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI.« less
X-Ray Attenuation and Absorption for Materials of Dosimetric Interest
National Institute of Standards and Technology Data Gateway
SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access) Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.
NASA Astrophysics Data System (ADS)
Yeo, U. J.; Taylor, M. L.; Kron, T.; Pham, D.; Siva, S.; Franich, R. D.
2013-06-01
Respiratory motion induces dosimetric uncertainties for thoracic and abdominal cancer radiotherapy (RT) due to deforming and moving anatomy. This study investigates the extent of dosimetric differences between conventional 3D treatment planning and path-integrated 4D treatment planning in liver stereotactic body radiotherapy (SBRT). Respiratory-correlated 4DCT image sets with 10 phases were acquired for patients with liver tumours. Path-integrated 4D dose accumulation was performed using dose-warping techniques based on deformable image registration. Dose-volume histogram analysis demonstrated that the 3D planning approach overestimated doses to targets by up to 24% and underestimated dose to normal liver by ~4.5%, compared to the 4D planning methodology. Therefore, 4D planning has the potential to quantify such issues of under- and/or over-dosage and improve treatment accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerman, K.F.
Committee 2 of the International Commission on Radiological Protection (ICRP) has had efforts underway to provide the radiation protection community with age-dependent dose coefficients, i.e.g, the dose per unit intake. The Task Group on Dose Calculations, chaired by the author, is responsible for the computation of these coefficients. The Task Group, formed in 1974 to produce ICRP Publication 30, is now international in its membership and its work load has been distributed among the institutions represented on the task group. This paper discusses: (1) recent advances in biokinetic modeling; (2) the recent changes in the dosimetric methodology; (3) the novelmore » computational problems with some of the ICRP quantities; and (4) quality assurance issues which the Task Group has encountered. Potential future developments of the dosimetric framework which might strengthen the relationships with the emerging understanding of radiation risk will also be discussed.« less
Kieselmann, Jennifer Petra; Kamerling, Cornelis Philippus; Burgos, Ninon; Menten, Martin J; Fuller, Clifton David; Nill, Simeon; Cardoso, M Jorge; Oelfke, Uwe
2018-06-08
Owing to its excellent soft-tissue contrast, magnetic resonance (MR) imaging has found an increased application in radiation therapy (RT). Harnessing these properties for treatment planning, automated segmentation methods can alleviate the manual workload burden to the clinical workflow. We investigated atlas-based segmentation methods of organs at risk (OARs) in the head and neck (H&N) region: one approach selecting the most similar atlas from a library of segmented images and two multi-atlas approaches. The latter were based on weighted majority voting and an iterative atlas-fusion approach called STEPS. We built the atlas library from pre-treatment T1-weighted MR images of 12 patients with manual contours of the parotids, spinal cord and mandible, delineated by a clinician. Following a leave-one-out cross-validation strategy, we measured geometric accuracy calculating Dice similarity coefficients (DSC), standard and 95% Hausdorff distances (HD and HD95), as well as the mean surface distance (MSD), whereby the manual contours served as the gold standard. To benchmark the algorithm, we determined the inter-expert variability (IEV) between three experts. To investigate the dosimetric effect of segmentation inaccuracies, we implemented an auto-planning strategy within the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). For each set of auto-segmented volumes of interest (VOIs), we generated a plan for a 9-beam step and shoot intensity modulated RT treatment, designed according to our institution's clinical H\\&N protocol. Superimposing the dose distributions on the gold standard VOIs, we calculated dose differences to OARs caused by contouring differences between auto-segmented and gold standard VOIs. We investigated the correlation between geometric and dosimetric differences. The mean DSC was larger than 0.8 and the mean MSD smaller than 2mm for the multi-atlas approaches, resulting in a geometric accuracy comparable to previously published results and within the range of the IEV. While dosimetric differences could be as large as 23% of the clinical goal, treatment plans fulfilled all imposed clinical goals for the gold standard OARs. Correlations between geometric and dosimetric measures were low with R<sup>2</sup><0.5. The geometric accuracy and ability to achieve clinically acceptable treatment plans indicate the suitability of using atlas-based contours for RT treatment planning purposes. The low correlations between geometric and dosimetric measures indicate that geometric measures alone are not sufficient to predict the dosimetric impact of segmentation inaccuracies on treatment planning for the data utilised in this study. Creative Commons Attribution license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, S; Kim, K; Jung, H
Purpose: The small animal irradiator has been used with small animals to optimize new radiation therapy as preclinical studies. The small animal was irradiated by whole- or partial-body exposure. In this study, the dosimetric characterizations of small animal irradiator were carried out in small field using Radiochromic films Material & Methods: The study was performed in commercial animal irradiator (XRAD-320, Precision x-ray Inc, North Brantford) with Radiochromic films (EBT2, Ashland Inc, Covington). The calibration curve was generated between delivery dose and optical density (red channel) and the films were scanned by and Epson 1000XL scanner (Epson America Inc., Long Beach,more » CA).We evaluated dosimetric characterization of irradiator using various filter supported by manufacturer in 260 kV. The various filters were F1 (2.0mm Aluminum (HVL = about 1.0mm Cu) and F2 (0.75mm Tin + 0.25mm Copper + 1.5mm Aluminum (HVL = about 3.7mm Cu). According to collimator size (3, 5, 7, 10 mm, we calculated percentage depth dose (PDD) and the surface –source distance(SSD) was 17.3 cm considering dose rate. Results: The films were irradiated in 260 kV, 10mA and we increased exposure time 5sec. intervals from 5sec. to 120sec. The calibration curve of films was fitted with cubic function. The correlation between optical density and dose was Y=0.1405 X{sup 3}−2.916 X{sup 2}+25.566 x+2.238 (R{sup 2}=0.994). Based on the calibration curve, we calculated PDD in various filters depending on collimator size. When compared PDD of specific depth (3mm) considering animal size, the difference by collimator size was 4.50% in free filter and F1 was 1.53% and F2 was within 2.17%. Conclusion: We calculated PDD curve in small animal irradiator depending on the collimator size and the kind of filter using the radiochromic films. The various PDD curve was acquired and it was possible to irradiate various dose using these curve.« less
NASA Astrophysics Data System (ADS)
McGeachy, Philip David
Over 50% of cancer patients require radiation therapy (RT). RT is an optimization problem requiring maximization of the radiation damage to the tumor while minimizing the harm to the healthy tissues. This dissertation focuses on two main RT optimization problems: 1) brachytherapy and 2) intensity modulated radiation therapy (IMRT). The brachytherapy research involved solving a non-convex optimization problem by creating an open-source genetic algorithm optimizer to determine the optimal radioactive seed distribution for a given set of patient volumes and constraints, both dosimetric- and implant-based. The optimizer was tested for a set of 45 prostate brachytherapy patients. While all solutions met the clinical standards, they also benchmarked favorably with those generated by a standard commercial solver. Compared to its compatriot, the salient features of the generated solutions were: slightly reduced prostate coverage, lower dose to the urethra and rectum, and a smaller number of needles required for an implant. Historically, IMRT requires modulation of fluence while keeping the photon beam energy fixed. The IMRT-related investigation in this thesis aimed at broadening the solution space by varying photon energy. The problem therefore involved simultaneous optimization of photon beamlet energy and fluence, denoted by XMRT. Formulating the problem as convex, linear programming was applied to obtain solutions for optimal energy-dependent fluences, while achieving all clinical objectives and constraints imposed. Dosimetric advantages of XMRT over single-energy IMRT in the improved sparing of organs at risk (OARs) was demonstrated in simplified phantom studies. The XMRT algorithm was improved to include clinical dose-volume constraints and clinical studies for prostate and head and neck cancer patients were investigated. Compared to IMRT, XMRT provided improved dosimetric benefit in the prostate case, particularly within intermediate- to low-dose regions (≤ 40 Gy) for OARs. For head and neck cases, XMRT solutions showed no significant disadvantage or advantage over IMRT. The deliverability concerns for the fluence maps generated from XMRT were addressed by incorporating smoothing constraints during the optimization and through successful generation of treatment machine files. Further research is needed to explore the full potential of the XMRT approach to RT.
Liao, Yuliang; Wang, Linjing; Xu, Xiangdong; Chen, Haibin; Chen, Jiawei; Zhang, Guoqian; Lei, Huaiyu; Wang, Ruihao; Zhang, Shuxu; Gu, Xuejun; Zhen, Xin; Zhou, Linghong
2017-06-01
To design and construct a three-dimensional (3D) anthropomorphic abdominal phantom for geometric accuracy and dose summation accuracy evaluations of deformable image registration (DIR) algorithms for adaptive radiation therapy (ART). Organ molds, including liver, kidney, spleen, stomach, vertebra, and two metastasis tumors, were 3D printed using contours from an ovarian cancer patient. The organ molds were molded with deformable gels made of different mixtures of polyvinyl chloride (PVC) and the softener dioctyl terephthalate. Gels with different densities were obtained by a polynomial fitting curve that described the relation between the Hounsfield unit (HU) and PVC-softener blending ratio. The rigid vertebras were constructed by molding of white cement and cellulose pulp. The final abdominal phantom was assembled by arranging all the fabricated organs inside a hollow dummy according to their anatomies, and sealed by deformable gel with averaged HU of muscle and fat. Fiducial landmarks were embedded inside the phantom for spatial accuracy and dose accumulation accuracy studies. Two channels were excavated to facilitate ionization chamber insertion for dosimetric measurements. Phantom properties such as deformable gel elasticity and HU stability were studied. The dosimetric measurement accuracy in the phantom was performed, and the DIR accuracies of three DIR algorithms available in the open source DIR toolkit-DIRART were also validated. The constructed deformable gel showed elastic behavior and was stable in HU values over times, proving to be a practical material for the deformable phantom. The constructed abdominal phantom consisted of realistic anatomies in terms of both anatomical shapes and densities when compared with its reference patient. The dosimetric measurements showed a good agreement with the calculated doses from the treatment planning system. Fiducial-based accuracy analysis conducted on the constructed phantom demonstrated the feasibility of applying the phantom for organ-wise DIR accuracy assessment. We have designed and constructed an anthropomorphic abdominal deformable phantom with satisfactory elastic property, realistic organ density, and anatomy. This physical phantom can be used for routine validations of DIR geometric accuracy and dose accumulation accuracy in ART. © 2017 American Association of Physicists in Medicine.
Dosimetric studies of cadmium free alloy used in compensator based intensity modulated radiotherapy
NASA Astrophysics Data System (ADS)
Kaushik, Sandeep; Punia, Rajesh; Tyagi, Atul; Singh, Mann P.
2017-10-01
Aim of this study was to investigate dosimetric properties of cadmium free alloy which is used in compensator based intensity modulated radiotherapy (cIMRT). A mixture of lead, bismuth and tin was used to prepare the alloy whose melting point is 90-95 °C. Slabs of different thicknesses ranging from 0.71 cm to 6.14 cm were prepared. Density of alloy was measured by Archimedes' principle using water. For six megavolt (6 MV) photon beam energy transmission, linear effective attenuation coefficient (μeff), tissue phantom ratio (TPR1020), beam hardening, surface dose (Ds), percentage depth dose (PDD) and effect of scatter has been measured and analyzed for different field sizes and different thickness of compensator. Effect of extended source to detector distance (SDD) on transmissions and μeff was measured. The density of alloy was found to be 9.5456 g/cm3. At SDD of 100 cm, μeff was observed 0.4253 cm-1 for a field size of 10×10 cm 2. Calculated TPR1020 was found to be within 3% of experimental TPR1020 . It was found to be increasing with increasing thickness of compensator. Ds was found to decrease with thickness of compensator and increase with wider collimator opening due to increased scattered dose. Compensator slabs of 1 cm, 1.98 cm and 4.16 cm decreased surface dose by 4.2%, 6.1% and 9.5% respectively for a field size of 10×10 cm2 at 100 cm SDD. For small field size of 3×3 cm2 and 5×5 cm2 PDDs are increased from 3.0% to 5.5% of open beam PDDs as compensator thickness increased from 1 cm to 6.14 cm at a depth of 10 cm in water while variation in PDD is insignificant in for larger field sizes 10×10 cm2 to 20×20 cm2. A high degree of intensity modulation is essential in cIMRT and it can be achieved with this compensator material. Dosimetric properties analyzed in this study establish this alloy as a reliable, reusable, optimally dense and cost effective compensator material.
Trofimov, Alexei; Unkelbach, Jan; DeLaney, Thomas F; Bortfeld, Thomas
2012-01-01
Dose-volume histograms (DVH) are the most common tool used in the appraisal of the quality of a clinical treatment plan. However, when delivery uncertainties are present, the DVH may not always accurately describe the dose distribution actually delivered to the patient. We present a method, based on DVH formalism, to visualize the variability in the expected dosimetric outcome of a treatment plan. For a case of chordoma of the cervical spine, we compared 2 intensity modulated proton therapy plans. Treatment plan A was optimized based on dosimetric objectives alone (ie, desired target coverage, normal tissue tolerance). Plan B was created employing a published probabilistic optimization method that considered the uncertainties in patient setup and proton range in tissue. Dose distributions and DVH for both plans were calculated for the nominal delivery scenario, as well as for scenarios representing deviations from the nominal setup, and a systematic error in the estimate of range in tissue. The histograms from various scenarios were combined to create DVH bands to illustrate possible deviations from the nominal plan for the expected magnitude of setup and range errors. In the nominal scenario, the DVH from plan A showed superior dose coverage, higher dose homogeneity within the target, and improved sparing of the adjacent critical structure. However, when the dose distributions and DVH from plans A and B were recalculated for different error scenarios (eg, proton range underestimation by 3 mm), the plan quality, reflected by DVH, deteriorated significantly for plan A, while plan B was only minimally affected. In the DVH-band representation, plan A produced wider bands, reflecting its higher vulnerability to delivery errors, and uncertainty in the dosimetric outcome. The results illustrate that comparison of DVH for the nominal scenario alone does not provide any information about the relative sensitivity of dosimetric outcome to delivery uncertainties. Thus, such comparison may be misleading and may result in the selection of an inferior plan for delivery to a patient. A better-informed decision can be made if additional information about possible dosimetric variability is presented; for example, in the form of DVH bands. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pelayo-Fernández, M. L.; Fanjul-Vélez, F.; Salas-García, I.; Hernández-González, A.; Arce-Diego, J. L.
2015-07-01
Endoscopic laser surgery provides an advantageous alternative to Argon Plasma Coagulation, endoscopic tweezers or electro-ablation in gastroenterology that facilitates a selective ablation of stomach tumors with an additional hemostatic effect in the surrounding tissue. This coagulation effect can also be employed for the treatment of gastric ulcers. It is mandatory to control the laser parameters regardless of the desired effect, either cancerous tissue ablation or coagulation to prevent ulcerous bleeding, in order to avoid stomach wall perforation or an insufficient therapeutic outcome. Dosimetric models constitute an attractive tool to determine the proper light dose in order to offer a customized therapy planning that optimizes the treatment results. In this work, a model for Nd:YAG laser surgery is applied to predict both the coagulation zone in gastric ulcers and the removal in adenocarcinomas under different laser setups. Results show clear differences in the effective zone of the gastric malignancy affected by both coagulation and ablation. Therefore the current model could be employed in the clinical practice to plan the optimal laser beam parameters to treat a certain type of pathologic stomach tissue with variable morphology and without risk of perforation or undertreated parts.
Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array
Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen
2015-01-01
The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552
Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.
Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun
2015-11-07
In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.
Verification of Internal Dose Calculations.
NASA Astrophysics Data System (ADS)
Aissi, Abdelmadjid
The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous phantoms, such as the MIRD phantom and its physical representation, Mr. ADAM. The results indicated that the Reciprocity Theorem is valid within an average range of uncertainty of 8%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrinivich, Thomas; Hoover, Douglas; Surry, Kathlee
Ultrasound-guided high-dose-rate prostate brachytherapy (HDR-BT) needle segmentation is performed clinically using live-2D sagittal images. Organ segmentation is then performed using axial images, introducing a source of geometric uncertainty. Sagittally-reconstructed 3D (SR3D) ultrasound enables both needle and organ segmentation, but suffers from shadow artifacts. We present a needle segmentation technique augmenting SR3D with live-2D sagittal images using mechanical probe tracking to mitigate image artifacts and compare it to the clinical standard. Seven prostate cancer patients underwent TRUS-guided HDR-BT during which the clinical and proposed segmentation techniques were completed in parallel using dual ultrasound video outputs. Calibrated needle end-length measurements were usedmore » to calculate insertion depth errors (IDEs), and the dosimetric impact of IDEs was evaluated by perturbing clinical treatment plan source positions. The proposed technique provided smaller IDEs than the clinical approach, with mean±SD of −0.3±2.2 mm and −0.5±3.7mm respectively. The proposed and clinical techniques resulted in 84% and 43% of needles with IDEs within ±3mm, and IDE ranges across all needles of [−7.7mm, 5.9mm] and [−9.3mm, 7.7mm] respectively. The proposed and clinical IDEs lead to mean±SD changes in the volume of the prostate receiving the prescription dose of −0.6±0.9% and −2.0±5.3% respectively. The proposed technique provides improved HDR-BT needle segmentation accuracy over the clinical technique leading to decreased dosimetric uncertainty by eliminating the axial-to-sagittal registration, and mitigates the effect of shadow artifacts by incorporating mechanically registered live-2D sagittal images.« less
Hofbauer, Julia; Kirisits, Christian; Resch, Alexandra; Xu, Yingjie; Sturdza, Alina; Pötter, Richard; Nesvacil, Nicole
2016-04-01
To analyze the impact of heterogeneity-corrected dose calculation on dosimetric quality parameters in gynecological and breast brachytherapy using Acuros, a grid-based Boltzmann equation solver (GBBS), and to evaluate the shielding effects of different cervix brachytherapy applicators. Calculations with TG-43 and Acuros were based on computed tomography (CT) retrospectively, for 10 cases of accelerated partial breast irradiation and 9 cervix cancer cases treated with tandem-ring applicators. Phantom CT-scans of different applicators (plastic and titanium) were acquired. For breast cases the V20Gyαβ3 to lung, the D0.1cm(3) , D1cm(3) , D2cm(3) to rib, the D0.1cm(3) , D1cm(3) , D10cm(3) to skin, and Dmax for all structures were reported. For cervix cases, the D0.1cm(3) , D2cm(3) to bladder, rectum and sigmoid, and the D50, D90, D98, V100 for the CTVHR were reported. For the phantom study, surrogates for target and organ at risk were created for a similar dose volume histogram (DVH) analysis. Absorbed dose and equivalent dose to 2 Gy fractionation (EQD2) were used for comparison. Calculations with TG-43 overestimated the dose for all dosimetric indices investigated. For breast, a decrease of ~8% was found for D10cm(3) to the skin and 5% for D2cm(3) to rib, resulting in a difference ~ -1.5 Gy EQD2 for overall treatment. Smaller effects were found for cervix cases with the plastic applicator, with up to -2% (-0.2 Gy EQD2) per fraction for organs at risk and -0.5% (-0.3 Gy EQD2) per fraction for CTVHR. The shielding effect of the titanium applicator resulted in a decrease of 2% for D2cm(3) to the organ at risk versus 0.7% for plastic. Lower doses were reported when calculating with Acuros compared to TG-43. Differences in dose parameters were larger in breast cases. A lower impact on clinical dose parameters was found for the cervix cases. Applicator material causes systematic shielding effects that can be taken into account.