Sample records for source iteration si

  1. Multilevel acceleration of scattering-source iterations with application to electron transport

    DOE PAGES

    Drumm, Clif; Fan, Wesley

    2017-08-18

    Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates (S N) or spherical-harmonics (P N) solve to accelerate convergence of a high-order S N source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergencemore » of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.« less

  2. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy.

    PubMed

    Zelyak, O; Fallone, B G; St-Aubin, J

    2017-12-14

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.

  3. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-01-01

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.

  4. Corrigendum to "Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy".

    PubMed

    Zelyak, Oleksandr; Fallone, B Gino; St-Aubin, Joel

    2018-03-12

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation. © 2018 Institute of Physics and Engineering in Medicine.

  5. Solution of the within-group multidimensional discrete ordinates transport equations on massively parallel architectures

    NASA Astrophysics Data System (ADS)

    Zerr, Robert Joseph

    2011-12-01

    The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of thousands of processors. The PGS method does outperform SI DSA for the periodic heterogeneous layers (PHL) configuration problems. Although this demonstrates a relative strength/weakness between the two methods, the practicality of these problems is much less, further limiting instances where it would be beneficial to select ITMM over SI DSA. The results strongly indicate a need for a robust, stable, and efficient acceleration method (or preconditioner for PGMRES). The spatial multigrid (SMG) method is currently incomplete in that it does not work for all cases considered and does not effectively improve the convergence rate for all values of scattering ratio c or cell dimension h. Nevertheless, it does display the desired trend for highly scattering, optically thin problems. That is, it tends to lower the rate of growth of number of iterations with increasing number of processes, P, while not increasing the number of additional operations per iteration to the extent that the total execution time of the rapidly converging accelerated iterations exceeds that of the slower unaccelerated iterations. A predictive parallel performance model has been developed for the PBJ method. Timing tests were performed such that trend lines could be fitted to the data for the different components and used to estimate the execution times. Applied to the weak scaling results, the model notably underestimates construction time, but combined with a slight overestimation in iterative solution time, the model predicts total execution time very well for large P. It also does a decent job with the strong scaling results, closely predicting the construction time and time per iteration, especially as P increases. Although not shown to be competitive up to 1,024 processing elements with the current state of the art, the parallelized ITMM exhibits promising scaling trends. Ultimately, compared to the KBA method, the parallelized ITMM may be found to be a very attractive option for transport calculations spatially decomposed over several tens of thousands of processes. Acceleration/preconditioning of the parallelized ITMM once developed will improve the convergence rate and improve its competitiveness. (Abstract shortened by UMI.)

  6. Current Trends of Blanket Research and Deveopment in Japan 4.Blanket Technology Development Using ITER for Demonstration and Commercial Fusion Power Plant

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Jitsukawa, Shiroh; Muroga, Takeo

    This paper describes the status of blanket technology and material development for fusion power demonstration plants and commercial fusion plants. In particular, the ITER Test Blanket Module, IFMIF, JAERI/DOE HFIR and JUPITER-II projects are highlighted, which have the important role to develop these technology. The ITER Test Blanket Module project has been conducted to demonstrate tritium breeding and power generation using test blanket modules, which will be installed into the ITER facility. For structural material development, the present research status is overviewed on reduced activation ferritic steel, vanadium alloys, and SiC/SiC composites.

  7. Algorithm for Wavefront Sensing Using an Extended Scene

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Green, Joseph; Ohara, Catherine

    2008-01-01

    A recently conceived algorithm for processing image data acquired by a Shack-Hartmann (SH) wavefront sensor is not subject to the restriction, previously applicable in SH wavefront sensing, that the image be formed from a distant star or other equivalent of a point light source. That is to say, the image could be of an extended scene. (One still has the option of using a point source.) The algorithm can be implemented in commercially available software on ordinary computers. The steps of the algorithm are the following: 1. Suppose that the image comprises M sub-images. Determine the x,y Cartesian coordinates of the centers of these sub-images and store them in a 2xM matrix. 2. Within each sub-image, choose an NxN-pixel cell centered at the coordinates determined in step 1. For the ith sub-image, let this cell be denoted as si(x,y). Let the cell of another subimage (preferably near the center of the whole extended-scene image) be designated a reference cell, denoted r(x,y). 3. Calculate the fast Fourier transforms of the sub-sub-images in the central NxN portions (where N < N and both are preferably powers of 2) of r(x,y) and si(x,y). 4. Multiply the two transforms to obtain a cross-correlation function Ci(u,v), in the Fourier domain. Then let the phase of Ci(u, v) constitute a phase function, phi(u,v). 5. Fit u and v slopes to phi (u,v) over a small u,v subdomain. 6. Compute the fast Fourier transform, Si(u,v) of the full NxN cell si(x,y). Multiply this transform by the u and phase slopes obtained in step 4. Then compute the inverse fast Fourier transform of the product. 7. Repeat steps 4 through 6 in an iteration loop, cumulating the u and slopes, until a maximum iteration number is reached or the change in image shift becomes smaller than a predetermined tolerance. 8. Repeat steps 4 through 7 for the cells of all other sub-images.

  8. Beamforming Based Full-Duplex for Millimeter-Wave Communication

    PubMed Central

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256

  9. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

    PubMed

    Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2008-12-01

    How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

  10. Spectral CT of the extremities with a silicon strip photon counting detector

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was <16% for (50 mg/mL) bone and <8% for (5 mg/mL) iodine with strong regularization. For smaller inserts, errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.

  11. Metaheuristics-Assisted Combinatorial Screening of Eu2+-Doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N Compositional Space in Search of a Narrow-Band Green Emitting Phosphor and Density Functional Theory Calculations.

    PubMed

    Lee, Jin-Woong; Singh, Satendra Pal; Kim, Minseuk; Hong, Sung Un; Park, Woon Bae; Sohn, Kee-Sun

    2017-08-21

    A metaheuristics-based design would be of great help in relieving the enormous experimental burdens faced during the combinatorial screening of a huge, multidimensional search space, while providing the same effect as total enumeration. In order to tackle the high-throughput powder processing complications and to secure practical phosphors, metaheuristics, an elitism-reinforced nondominated sorting genetic algorithm (NSGA-II), was employed in this study. The NSGA-II iteration targeted two objective functions. The first was to search for a higher emission efficacy. The second was to search for narrow-band green color emissions. The NSGA-II iteration finally converged on BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphors in the Eu 2+ -doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N compositional search space. The BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphor, which was synthesized with no human intervention via the assistance of NSGA-II, was a clear single phase and gave an acceptable luminescence. The BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphor as well as all other phosphors that appeared during the NSGA-II iterations were examined in detail by employing powder X-ray diffraction-based Rietveld refinement, X-ray absorption near edge structure, density functional theory calculation, and time-resolved photoluminescence. The thermodynamic stability and the band structure plausibility were confirmed, and more importantly a novel approach to the energy transfer analysis was also introduced for BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphors.

  12. LDPC-based iterative joint source-channel decoding for JPEG2000.

    PubMed

    Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane

    2007-02-01

    A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.

  13. Source apportionment for fine particulate matter in a Chinese city using an improved gas-constrained method and comparison with multiple receptor models.

    PubMed

    Shi, Guoliang; Liu, Jiayuan; Wang, Haiting; Tian, Yingze; Wen, Jie; Shi, Xurong; Feng, Yinchang; Ivey, Cesunica E; Russell, Armistead G

    2018-02-01

    PM 2.5 is one of the most studied atmospheric pollutants due to its adverse impacts on human health and welfare and the environment. An improved model (the chemical mass balance gas constraint-Iteration: CMBGC-Iteration) is proposed and applied to identify source categories and estimate source contributions of PM 2.5. The CMBGC-Iteration model uses the ratio of gases to PM as constraints and considers the uncertainties of source profiles and receptor datasets, which is crucial information for source apportionment. To apply this model, samples of PM 2.5 were collected at Tianjin, a megacity in northern China. The ambient PM 2.5 dataset, source information, and gas-to-particle ratios (such as SO 2 /PM 2.5 , CO/PM 2.5 , and NOx/PM 2.5 ratios) were introduced into the CMBGC-Iteration to identify the potential sources and their contributions. Six source categories were identified by this model and the order based on their contributions to PM 2.5 was as follows: secondary sources (30%), crustal dust (25%), vehicle exhaust (16%), coal combustion (13%), SOC (7.6%), and cement dust (0.40%). In addition, the same dataset was also calculated by other receptor models (CMB, CMB-Iteration, CMB-GC, PMF, WALSPMF, and NCAPCA), and the results obtained were compared. Ensemble-average source impacts were calculated based on the seven source apportionment results: contributions of secondary sources (28%), crustal dust (20%), coal combustion (18%), vehicle exhaust (17%), SOC (11%), and cement dust (1.3%). The similar results of CMBGC-Iteration and ensemble method indicated that CMBGC-Iteration can produce relatively appropriate results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An iterative method for the localization of a neutron source in a large box (container)

    NASA Astrophysics Data System (ADS)

    Dubinski, S.; Presler, O.; Alfassi, Z. B.

    2007-12-01

    The localization of an unknown neutron source in a bulky box was studied. This can be used for the inspection of cargo, to prevent the smuggling of neutron and α emitters. It is important to localize the source from the outside for safety reasons. Source localization is necessary in order to determine its activity. A previous study showed that, by using six detectors, three on each parallel face of the box (460×420×200 mm 3), the location of the source can be found with an average distance of 4.73 cm between the real source position and the calculated one and a maximal distance of about 9 cm. Accuracy was improved in this work by applying an iteration method based on four fixed detectors and the successive iteration of positioning of an external calibrating source. The initial positioning of the calibrating source is the plane of detectors 1 and 2. This method finds the unknown source location with an average distance of 0.78 cm between the real source position and the calculated one and a maximum distance of 3.66 cm for the same box. For larger boxes, localization without iterations requires an increase in the number of detectors, while localization with iterations requires only an increase in the number of iteration steps. In addition to source localization, two methods for determining the activity of the unknown source were also studied.

  15. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 4.Technology and Material Research in Fusion Power Plant Development

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi

    Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.

  16. Functional materials for breeding blankets—status and developments

    NASA Astrophysics Data System (ADS)

    Konishi, S.; Enoeda, M.; Nakamichi, M.; Hoshino, T.; Ying, A.; Sharafat, S.; Smolentsev, S.

    2017-09-01

    The development of tritium breeder, neutron multiplier and flow channel insert materials for the breeding blanket of the DEMO reactor is reviewed. Present emphasis is on the ITER test blanket module (TBM); lithium metatitanate (Li2TiO3) and lithium orthosilicate (Li4SiO4) pebbles have been developed by leading TBM parties. Beryllium pebbles have been selected as the neutron multiplier. Good progress has been made in their fabrication; however, verification of the design by experiments is in the planning stage. Irradiation data are also limited, but the decrease in thermal conductivity of beryllium due to irradiation followed by swelling is a concern. Tests at ITER are regarded as a major milestone. For the DEMO reactor, improvement of the breeder has been attempted to obtain a higher lithium content, and Be12Ti and other beryllide intermetallic compounds that have superior chemical stability have been studied. LiPb eutectic has been considered as a DEMO blanket in the liquid breeder option and is used as a coolant to achieve a higher outlet temperature; a SiC flow channel insert is used to prevent magnetohydrodynamic pressure drop and corrosion. A significant technical gap between ITER TBM and DEMO is recognized, and the world fusion community is working on ITER TBM and DEMO blanket development in parallel.

  17. Improved event positioning in a gamma ray detector using an iterative position-weighted centre-of-gravity algorithm.

    PubMed

    Liu, Chen-Yi; Goertzen, Andrew L

    2013-07-21

    An iterative position-weighted centre-of-gravity algorithm was developed and tested for positioning events in a silicon photomultiplier (SiPM)-based scintillation detector for positron emission tomography. The algorithm used a Gaussian-based weighting function centred at the current estimate of the event location. The algorithm was applied to the signals from a 4 × 4 array of SiPM detectors that used individual channel readout and a LYSO:Ce scintillator array. Three scintillator array configurations were tested: single layer with 3.17 mm crystal pitch, matched to the SiPM size; single layer with 1.5 mm crystal pitch; and dual layer with 1.67 mm crystal pitch and a ½ crystal offset in the X and Y directions between the two layers. The flood histograms generated by this algorithm were shown to be superior to those generated by the standard centre of gravity. The width of the Gaussian weighting function of the algorithm was optimized for different scintillator array setups. The optimal width of the Gaussian curve was found to depend on the amount of light spread. The algorithm required less than 20 iterations to calculate the position of an event. The rapid convergence of this algorithm will readily allow for implementation on a front-end detector processing field programmable gate array for use in improved real-time event positioning and identification.

  18. Characterization of the ITER model negative ion source during long pulse operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemsworth, R.S.; Boilson, D.; Crowley, B.

    2006-03-15

    It is foreseen to operate the neutral beam system of the International Thermonuclear Experimental Reactor (ITER) for pulse lengths extending up to 1 h. The performance of the KAMABOKO III negative ion source, which is a model of the source designed for ITER, is being studied on the MANTIS test bed at Cadarache. This article reports the latest results from the characterization of the ion source, in particular electron energy distribution measurements and the comparison between positive ion and negative ion extraction from the source.

  19. Status of the 1 MeV Accelerator Design for ITER NBI

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.

    2011-09-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  20. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    NASA Astrophysics Data System (ADS)

    Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.

    2009-03-01

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D- and capable of delivering 16.5 MW of D0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option [1]. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H- to 100 keV will inject ≈15 A equivalent of H0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D- and H- current densities as well as long-pulse operation [2, 3]. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R&D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start-up imposed specific requirements for operating the HNB's at full beam power. It has been decided to address the shinethrough issue by installing wall armour protection, which increases the operational space in all scenarios. Other NB related issues identified by the Design Review process will be discussed and the possible changes to the ITER baseline indicated.

  1. On the assessment of spatial resolution of PET systems with iterative image reconstruction

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Cherry, Simon R.; Qi, Jinyi

    2016-03-01

    Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.

  2. Coarse mesh and one-cell block inversion based diffusion synthetic acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Kang-Seog

    DSA (Diffusion Synthetic Acceleration) has been developed to accelerate the SN transport iteration. We have developed solution techniques for the diffusion equations of FLBLD (Fully Lumped Bilinear Discontinuous), SCB (Simple Comer Balance) and UCB (Upstream Corner Balance) modified 4-step DSA in x-y geometry. Our first multi-level method includes a block Gauss-Seidel iteration for the discontinuous diffusion equation, uses the continuous diffusion equation derived from the asymptotic analysis, and avoids void cell calculation. We implemented this multi-level procedure and performed model problem calculations. The results showed that the FLBLD, SCB and UCB modified 4-step DSA schemes with this multi-level technique are unconditionally stable and rapidly convergent. We suggested a simplified multi-level technique for FLBLD, SCB and UCB modified 4-step DSA. This new procedure does not include iterations on the diffusion calculation or the residual calculation. Fourier analysis results showed that this new procedure was as rapidly convergent as conventional modified 4-step DSA. We developed new DSA procedures coupled with 1-CI (Cell Block Inversion) transport which can be easily parallelized. We showed that 1-CI based DSA schemes preceded by SI (Source Iteration) are efficient and rapidly convergent for LD (Linear Discontinuous) and LLD (Lumped Linear Discontinuous) in slab geometry and for BLD (Bilinear Discontinuous) and FLBLD in x-y geometry. For 1-CI based DSA without SI in slab geometry, the results showed that this procedure is very efficient and effective for all cases. We also showed that 1-CI based DSA in x-y geometry was not effective for thin mesh spacings, but is effective and rapidly convergent for intermediate and thick mesh spacings. We demonstrated that the diffusion equation discretized on a coarse mesh could be employed to accelerate the transport equation. Our results showed that coarse mesh DSA is unconditionally stable and is as rapidly convergent as fine mesh DSA in slab geometry. For x-y geometry our coarse mesh DSA is very effective for thin and intermediate mesh spacings independent of the scattering ratio, but is not effective for purely scattering problems and high aspect ratio zoning. However, if the scattering ratio is less than about 0.95, this procedure is very effective for all mesh spacing.

  3. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunke, B.; Bora, D.; Hemsworth, R.

    2009-03-12

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D{sup -} and capable of delivering 16.5 MW of D{sup 0} to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H{sup -} to 100 keV will inject {approx_equal}15 A equivalent of H{sup 0} for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion sourcemore » as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D{sup -} and H{sup -} current densities as well as long-pulse operation. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R and D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start-up imposed specific requirements for operating the HNB's at full beam power. It has been decided to address the shinethrough issue by installing wall armour protection, which increases the operational space in all scenarios. Other NB related issues identified by the Design Review process will be discussed and the possible changes to the ITER baseline indicated.« less

  4. The ITER Neutral Beam Test Facility towards SPIDER operation

    NASA Astrophysics Data System (ADS)

    Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.

    2017-08-01

    SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.

  5. Cryogenic Properties of Inorganic Insulation Materials for ITER Magnets: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, N.J.

    1994-12-01

    Results of a literature search on the cryogenic properties of candidate inorganic insulators for the ITER TF magnets are reported. The materials investigated include: Al{sub 2}O{sub 3}, AlN, MgO, porcelain, SiO{sub 2}, MgAl{sub 2}O{sub 4}, ZrO{sub 2}, and mica. A graphical presentation is given of mechanical, elastic, electrical, and thermal properties between 4 and 300 K. A companion report reviews the low temperature irradiation resistance of these materials.

  6. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.

    2011-07-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  7. Software Estimates Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Smith, C. L.

    2003-01-01

    Simulation-Based Cost Model (SiCM), a discrete event simulation developed in Extend , simulates pertinent aspects of the testing of rocket propulsion test articles for the purpose of estimating the costs of such testing during time intervals specified by its users. A user enters input data for control of simulations; information on the nature of, and activity in, a given testing project; and information on resources. Simulation objects are created on the basis of this input. Costs of the engineering-design, construction, and testing phases of a given project are estimated from numbers and labor rates of engineers and technicians employed in each phase, the duration of each phase; costs of materials used in each phase; and, for the testing phase, the rate of maintenance of the testing facility. The three main outputs of SiCM are (1) a curve, updated at each iteration of the simulation, that shows overall expenditures vs. time during the interval specified by the user; (2) a histogram of the total costs from all iterations of the simulation; and (3) table displaying means and variances of cumulative costs for each phase from all iterations. Other outputs include spending curves for each phase.

  8. Uptake of Silicon by Sugarcane from Applied Sources May Not Reflect Plant-Available Soil Silicon and Total Silicon Content of Sources.

    PubMed

    Keeping, Malcolm G

    2017-01-01

    Soils of the tropics and sub-tropics are typically acid and depleted of soluble sources of silicon (Si) due to weathering and leaching associated with high rainfall and temperatures. Together with intensive cropping, this leads to marginal or deficient plant Si levels in Si-accumulating crops such as rice and sugarcane. Although such deficiencies can be corrected with exogenous application of Si sources, there is controversy over the effectiveness of sources in relation to their total Si content, and their capacity to raise soil and plant Si concentrations. This study tested the hypothesis that the total Si content and provision of plant-available Si from six sources directly affects subsequent plant Si uptake as reflected in leaf Si concentration. Two trials with potted cane plants were established with the following Si sources as treatments: calcium silicate slag, fused magnesium (thermo) phosphate, volcanic rock dust, magnesium silicate, and granular potassium silicate. Silicon sources were applied at rates intended to achieve equivalent elemental soil Si concentrations; controls were untreated or lime-treated. Analyses were conducted to determine soil and leaf elemental concentrations. Among the sources, calcium silicate produced the highest leaf Si concentrations, yet lower plant-available soil Si concentrations than the thermophosphate. The latter, with slightly higher total Si than the slag, produced substantially greater increases in soil Si than all other products, yet did not significantly raise leaf Si above the controls. All other sources did not significantly increase soil or leaf Si concentrations, despite their high Si content. Hence, the total Si content of sources does not necessarily concur with a product's provision of soluble soil Si and subsequent plant uptake. Furthermore, even where soil pH was raised, plant uptake from thermophosphate was well below expectation, possibly due to its limited liming capacity. The ability of the calcium silicate to provide Si while simultaneously and significantly increasing soil pH, and thereby reducing reaction of Si with exchangeable Al 3+ , is proposed as a potential explanation for the greater Si uptake into the shoot from this source.

  9. Uptake of Silicon by Sugarcane from Applied Sources May Not Reflect Plant-Available Soil Silicon and Total Silicon Content of Sources

    PubMed Central

    Keeping, Malcolm G.

    2017-01-01

    Soils of the tropics and sub-tropics are typically acid and depleted of soluble sources of silicon (Si) due to weathering and leaching associated with high rainfall and temperatures. Together with intensive cropping, this leads to marginal or deficient plant Si levels in Si-accumulating crops such as rice and sugarcane. Although such deficiencies can be corrected with exogenous application of Si sources, there is controversy over the effectiveness of sources in relation to their total Si content, and their capacity to raise soil and plant Si concentrations. This study tested the hypothesis that the total Si content and provision of plant-available Si from six sources directly affects subsequent plant Si uptake as reflected in leaf Si concentration. Two trials with potted cane plants were established with the following Si sources as treatments: calcium silicate slag, fused magnesium (thermo) phosphate, volcanic rock dust, magnesium silicate, and granular potassium silicate. Silicon sources were applied at rates intended to achieve equivalent elemental soil Si concentrations; controls were untreated or lime-treated. Analyses were conducted to determine soil and leaf elemental concentrations. Among the sources, calcium silicate produced the highest leaf Si concentrations, yet lower plant-available soil Si concentrations than the thermophosphate. The latter, with slightly higher total Si than the slag, produced substantially greater increases in soil Si than all other products, yet did not significantly raise leaf Si above the controls. All other sources did not significantly increase soil or leaf Si concentrations, despite their high Si content. Hence, the total Si content of sources does not necessarily concur with a product's provision of soluble soil Si and subsequent plant uptake. Furthermore, even where soil pH was raised, plant uptake from thermophosphate was well below expectation, possibly due to its limited liming capacity. The ability of the calcium silicate to provide Si while simultaneously and significantly increasing soil pH, and thereby reducing reaction of Si with exchangeable Al3+, is proposed as a potential explanation for the greater Si uptake into the shoot from this source. PMID:28555144

  10. Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane.

    PubMed

    Meister, H; Eich, T; Endstrasser, N; Giannone, L; Kannamüller, M; Kling, A; Koll, J; Trautmann, T; Detemple, P; Schmitt, S

    2010-10-01

    Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 μm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.

  11. Optimization of a bolometer detector for ITER based on Pt absorber on SiN membranea)

    NASA Astrophysics Data System (ADS)

    Meister, H.; Eich, T.; Endstrasser, N.; Giannone, L.; Kannamüller, M.; Kling, A.; Koll, J.; Trautmann, T.; ASDEX Upgrade Team; Detemple, P.; Schmitt, S.

    2010-10-01

    Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 μm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.

  12. Experimental melting of phlogopite-bearing mantle at 1 GPa: Implications for potassic magmatism

    NASA Astrophysics Data System (ADS)

    Condamine, Pierre; Médard, Etienne

    2014-07-01

    We have experimentally investigated the fluid-absent melting of a phlogopite peridotite at 1.0 GPa (1000-1300 °C) to understand the source of K2O- and SiO2-rich magmas that occur in continental, post-collisional and island arc settings. Using a new extraction technique specially developed for hydrous conditions combined with iterative sandwich experiments, we have determined the composition of low- to high-degree melts (Φ=1.4 to 24.2 wt.%) of metasomatized lherzolite and harzburgite sources. Due to small amounts of adsorbed water in the starting material, amphibole crystallized at the lowest investigated temperatures. Amphibole breaks down at 1050-1075 °C, while phlogopite-breakdown occurs at 1150-1200 °C. This last temperature is higher than the previously determined in a mantle assemblage, due to the presence of stabilizing F and Ti. Phlogopite-lherzolite melts incongruently according to the continuous reaction: 0.49 phlogopite + 0.56 orthopyroxene + 0.47 clinopyroxene + 0.05 spinel = 0.58 olivine + 1.00 melt. In the phlogopite-harzburgite, the reaction is: 0.70 phlogopite + 1.24 orthopyroxene + 0.05 spinel = 0.99 olivine + 1.00 melt. The K2O content of water-undersaturated melts in equilibrium with residual phlogopite is buffered, depending on the source fertility: from ∼3.9 wt.% in lherzolite to ∼6.7 wt.% in harzburgite. Primary melts are silica-saturated and evolve from trachyte to basaltic andesite (63.5-52.1 wt.% SiO2) with increasing temperature. Calculations indicate that such silica-rich melts can readily be extracted from their mantle source, due to their low viscosity. Our results confirm that potassic, silica-rich magmas described worldwide in post-collisional settings are generated by melting of a metasomatized phlogopite-bearing mantle in the spinel stability field.

  13. Evaluation of power transfer efficiency for a high power inductively coupled radio-frequency hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.

    2018-04-01

    Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).

  14. Through-Flow Calculations in Axial Turbomachinery

    DTIC Science & Technology

    1976-10-01

    coilditions should be next on the agenda. Authors’ response: I think the process is essentially iterative between SI and S2 solutions. If SI surfaces...secondary flows in high Mach number situations. Concerning Gelder’s approach, i think that your remark is rather optimistic. We use a method based on...my remarks on Gelder’s work were based on calculations made by Gelder himself. One or two other people have managed to get the calculation through

  15. Diffusive molecular dynamics simulations of lithiation of silicon nanopillars

    NASA Astrophysics Data System (ADS)

    Mendez, J. P.; Ponga, M.; Ortiz, M.

    2018-06-01

    We report diffusive molecular dynamics simulations concerned with the lithiation of Si nano-pillars, i.e., nano-sized Si rods held at both ends by rigid supports. The duration of the lithiation process is of the order of milliseconds, well outside the range of molecular dynamics but readily accessible to diffusive molecular dynamics. The simulations predict an alloy Li15Si4 at the fully lithiated phase, exceedingly large and transient volume increments up to 300% due to the weakening of Sisbnd Si iterations, a crystalline-to-amorphous-to-lithiation phase transition governed by interface kinetics, high misfit strains and residual stresses resulting in surface cracks and severe structural degradation in the form of extensive porosity, among other effects.

  16. Iterative algorithm for joint zero diagonalization with application in blind source separation.

    PubMed

    Zhang, Wei-Tao; Lou, Shun-Tian

    2011-07-01

    A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.

  17. Conceptual design of data acquisition and control system for two Rf driver based negative ion source for fusion R&D

    NASA Astrophysics Data System (ADS)

    Soni, Jigensh; Yadav, R. K.; Patel, A.; Gahlaut, A.; Mistry, H.; Parmar, K. G.; Mahesh, V.; Parmar, D.; Prajapati, B.; Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Pandya, K.; Chakraborty, A.

    2013-02-01

    Twin Source - An Inductively coupled two RF driver based 180 kW, 1 MHz negative ion source experimental setup is initiated at IPR, Gandhinagar, under Indian program, with the objective of understanding the physics and technology of multi-driver coupling. Twin Source [1] (TS) also provides an intermediate platform between operational ROBIN [2] [5] and eight RF drivers based Indian test facility -INTF [3]. A twin source experiment requires a central system to provide control, data acquisition and communication interface, referred as TS-CODAC, for which a software architecture similar to ITER CODAC core system has been decided for implementation. The Core System is a software suite for ITER plant system manufacturers to use as a template for the development of their interface with CODAC. The ITER approach, in terms of technology, has been adopted for the TS-CODAC so as to develop necessary expertise for developing and operating a control system based on the ITER guidelines as similar configuration needs to be implemented for the INTF. This cost effective approach will provide an opportunity to evaluate and learn ITER CODAC technology, documentation, information technology and control system processes, on an operational machine. Conceptual design of the TS-CODAC system has been completed. For complete control of the system, approximately 200 Nos. control signals and 152 acquisition signals are needed. In TS-CODAC, control loop time required is within the range of 5ms - 10 ms, therefore for the control system, PLC (Siemens S-7 400) has been chosen as suggested in the ITER slow controller catalog. For the data acquisition, the maximum sampling interval required is 100 micro second, and therefore National Instruments (NI) PXIe system and NI 6259 digitizer cards have been selected as suggested in the ITER fast controller catalog. This paper will present conceptual design of TS -CODAC system based on ITER CODAC Core software and applicable plant system integration processes.

  18. Low pressure and high power rf sources for negative hydrogen ions for fusion applications (ITER neutral beam injection).

    PubMed

    Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D

    2008-02-01

    The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.

  19. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection.

    PubMed

    Gutser, R; Wimmer, C; Fantz, U

    2011-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.

  20. Computation of nonlinear ultrasound fields using a linearized contrast source method.

    PubMed

    Verweij, Martin D; Demi, Libertario; van Dongen, Koen W A

    2013-08-01

    Nonlinear ultrasound is important in medical diagnostics because imaging of the higher harmonics improves resolution and reduces scattering artifacts. Second harmonic imaging is currently standard, and higher harmonic imaging is under investigation. The efficient development of novel imaging modalities and equipment requires accurate simulations of nonlinear wave fields in large volumes of realistic (lossy, inhomogeneous) media. The Iterative Nonlinear Contrast Source (INCS) method has been developed to deal with spatiotemporal domains measuring hundreds of wavelengths and periods. This full wave method considers the nonlinear term of the Westervelt equation as a nonlinear contrast source, and solves the equivalent integral equation via the Neumann iterative solution. Recently, the method has been extended with a contrast source that accounts for spatially varying attenuation. The current paper addresses the problem that the Neumann iterative solution converges badly for strong contrast sources. The remedy is linearization of the nonlinear contrast source, combined with application of more advanced methods for solving the resulting integral equation. Numerical results show that linearization in combination with a Bi-Conjugate Gradient Stabilized method allows the INCS method to deal with fairly strong, inhomogeneous attenuation, while the error due to the linearization can be eliminated by restarting the iterative scheme.

  1. First results of the ITER-relevant negative ion beam test facility ELISE (invited).

    PubMed

    Fantz, U; Franzen, P; Heinemann, B; Wünderlich, D

    2014-02-01

    An important step in the European R&D roadmap towards the neutral beam heating systems of ITER is the new test facility ELISE (Extraction from a Large Ion Source Experiment) for large-scale extraction from a half-size ITER RF source. The test facility was constructed in the last years at Max-Planck-Institut für Plasmaphysik Garching and is now operational. ELISE is gaining early experience of the performance and operation of large RF-driven negative hydrogen ion sources with plasma illumination of a source area of 1 × 0.9 m(2) and an extraction area of 0.1 m(2) using 640 apertures. First results in volume operation, i.e., without caesium seeding, are presented.

  2. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    PubMed

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  3. Pressure-induced silica quartz amorphization studied by iterative stochastic surface walking reaction sampling.

    PubMed

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-02-08

    The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.

  4. Comparative study of elastic electron collisions on the isoelectronic SiN{sub 2}, SiCO, and CSiO radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, M. M.; Michelin, S. E.; Mazon, K. T.

    2007-07-15

    We report a theoretical study of elastic electron collisions on three isoelectronic free radicals, namely, SiNN, SiCO, and CSiO. More specifically, differential, integral, and momentum-transfer cross sections are calculated and reported in the (1-100) eV energy range. Calculations are performed at the static-exchange-polarization-absorption level of approximation. A combination of the iterative Schwinger variational method and the distorted-wave approximation is used to solve the scattering equations. Our study reveals that the calculated cross sections for the e{sup -}-SiNN and e{sup -}-SiCO collisions are very similar even at incident energies as low as 3 eV. Strong isomeric effects are also observed inmore » the calculated cross sections for e{sup -}-CSiO and e{sup -}-SiCO collisions, particularly at incident energies below 20 eV. It is believed that the position of the silicon atom being at the center or extremity of the molecules may exert important influence on the calculated cross sections.« less

  5. A Newton-Raphson Method Approach to Adjusting Multi-Source Solar Simulators

    NASA Technical Reports Server (NTRS)

    Snyder, David B.; Wolford, David S.

    2012-01-01

    NASA Glenn Research Center has been using an in house designed X25 based multi-source solar simulator since 2003. The simulator is set up for triple junction solar cells prior to measurements b y adjusting the three sources to produce the correct short circuit current, lsc, in each of three AM0 calibrated sub-cells. The past practice has been to adjust one source on one sub-cell at a time, iterating until all the sub-cells have the calibrated Isc. The new approach is to create a matrix of measured lsc for small source changes on each sub-cell. A matrix, A, is produced. This is normalized to unit changes in the sources so that Ax(delta)s = (delta)isc. This matrix can now be inverted and used with the known Isc differences from the AM0 calibrated values to indicate changes in the source settings, (delta)s = A ·'x.(delta)isc This approach is still an iterative one, but all sources are changed during each iteration step. It typically takes four to six steps to converge on the calibrated lsc values. Even though the source lamps may degrade over time, the initial matrix evaluation i s not performed each time, since measurement matrix needs to be only approximate. Because an iterative approach is used the method will still continue to be valid. This method may become more important as state-of-the-art solar cell junction responses overlap the sources of the simulator. Also, as the number of cell junctions and sources increase, this method should remain applicable.

  6. Towards the Experimental Assessment of the DQE in SPECT Scanners

    NASA Astrophysics Data System (ADS)

    Fountos, G. P.; Michail, C. M.

    2017-11-01

    The purpose of this work was to introduce the Detective Quantum Efficiency (DQE) in single photon emission computed tomography (SPECT) systems using a flood source. A Tc-99m-based flood source (Eγ = 140 keV) consisting of a radiopharmaceutical solution of dithiothreitol (DTT, 10-3 M)/Tc-99m(III)-DMSA, 40 mCi/40 ml bound to the grains of an Agfa MammoRay HDR Medical X-ray film) was prepared in laboratory. The source was placed between two PMMA blocks and images were obtained by using the brain tomographic acquisition protocol (DatScan-brain). The Modulation Transfer Function (MTF) was evaluated using the Iterative 2D algorithm. All imaging experiments were performed in a Siemens e-Cam gamma camera. The Normalized Noise Power spectra (NNPS) were obtained from the sagittal views of the source. The higher MTF values were obtained for the Flash Iterative 2D with 24 iterations and 20 subsets. The noise levels of the SPECT reconstructed images, in terms of the NNPS, were found to increase as the number of iterations increase. The behavior of the DQE was influenced by both MTF and NNPS. As the number of iterations was increased, higher MTF values were obtained, however with a parallel, increase of magnitude in image noise, as depicted from the NNPS results. DQE values, which were influenced by both MTF and NNPS, were found higher when the number of iterations results in resolution saturation. The method presented here is novel and easy to implement, requiring materials commonly found in clinical practice and can be useful in the quality control of SPECT scanners.

  7. A non-LTE study of silicon line formation in early-type main-sequence atmospheres.

    NASA Technical Reports Server (NTRS)

    Kamp, L. W.

    1973-01-01

    We have computed populations of 16 levels of Si III-V and radiation fields in all connecting transitions; in particular the first six Si III triplet levels, including the 4553 line, and the first six Si IV levels including 4089. The computations were done for four non-LTE H-He model atmospheres, provided by Auer and Mihalas. Estimates of corresponding MK types are B1.5 V, B0.5 V, O9 V, and O6. Solutions were obtained by iterating the linearized equations of radiative transfer and statistical equilibrium, except that for less important lines an approximate equivalent two-level atom treatment was used. Continuous opacities of C, N, O, and Ne were included. All abundances were solar values.

  8. An electrostatic Si e-gun and a high temperature elemental B source for Si heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Scarinci, F.; Casella, A.; Lagomarsino, S.; Fiordelisi, M.; Strappaveccia, P.; Gambacorti, N.; Grimaldi, M. G.; Xue, LiYing

    1996-08-01

    In this paper we present two kind of sources used in Si MBE growth: a Si source where an electron beam is electrostatically deflected onto a Si rod and a high temperature B source to be used for p-doping. Both sources have been designed and constructed at IESS. The Si source is constituted of a Si rod mounted on a 3/4″ flange with high-voltage connector. A W filament held at high voltage (up to 2000 V) is heated by direct current. Electrons from the filament are electrostatically focused onto the Si rod which is grounded. This mounting allows a minimum heating dispersion and no contamination, because the only hot objects are the Si rod and the W filament which is mounted in such a way that it cannot see the substrate. Growth rates of 10 Å/min on a substrate at 20 cm from the source have been measured. Auger and LEED have shown no contamination. The B source is constituted of a graphite block heated by direct current. A pyrolitic graphite crucible put in the graphite heater contains the elemental B. The cell is water cooled and contains Ta screens to avoid heat dispersion. It has been tested up to a temperature of 1700°C. P-doped Si 1- xGe x layers have been grown and B concentration has been measured by SIMS. A good control and reproducibility has been attained.

  9. Effect of hydrogen radical on decomposition of chlorosilane source gases

    NASA Astrophysics Data System (ADS)

    Sumiya, Masatomo; Akizuki, Tomohiro; Itaka, Kenji; Kubota, Makoto; Tsubouchi, Kenta; Ishigaki, Takamasa; Koinuma, Hideomi

    2013-06-01

    The effect of hydrogen radical on production of Si from chlorosilane sources has been studied. We used hydrogen radical generated from pulsed thermal plasma to decompose SiHCl3 and SiCl4. Hydrogen radical was effective for lowering the temperature to produce Si from SiHCl3. SiCl4 source, which was chemically stable and by-product in Siemens process, was decomposed effectively by hydrogen radical. The decomposition of SiCl4 was consistent with the thermo-dynamical calculation predicting that the use of hydrogen radical could drastically enhance the yield of Si production rather than case of H2 gas.

  10. Diagnostics of the ITER neutral beam test facility.

    PubMed

    Pasqualotto, R; Serianni, G; Sonato, P; Agostini, M; Brombin, M; Croci, G; Dalla Palma, M; De Muri, M; Gazza, E; Gorini, G; Pomaro, N; Rizzolo, A; Spolaore, M; Zaniol, B

    2012-02-01

    The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H(-)∕D(-) production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.

  11. Image transmission system using adaptive joint source and channel decoding

    NASA Astrophysics Data System (ADS)

    Liu, Weiliang; Daut, David G.

    2005-03-01

    In this paper, an adaptive joint source and channel decoding method is designed to accelerate the convergence of the iterative log-dimain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec, which makes it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. Due to the error resilience modes, some bits are known to be either correct or in error. The positions of these bits are then fed back to the channel decoder. The log-likelihood ratios (LLR) of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. That is, for lower channel SNR, a larger factor is assigned, and vice versa. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the non-source controlled decoding method up to 5dB in terms of PSNR for various reconstructed images.

  12. A method for reducing the largest relative errors in Monte Carlo iterated-fission-source calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, J. L.; Sutton, T. M.

    2013-07-01

    In Monte Carlo iterated-fission-source calculations relative uncertainties on local tallies tend to be larger in lower-power regions and smaller in higher-power regions. Reducing the largest uncertainties to an acceptable level simply by running a larger number of neutron histories is often prohibitively expensive. The uniform fission site method has been developed to yield a more spatially-uniform distribution of relative uncertainties. This is accomplished by biasing the density of fission neutron source sites while not biasing the solution. The method is integrated into the source iteration process, and does not require any auxiliary forward or adjoint calculations. For a given amountmore » of computational effort, the use of the method results in a reduction of the largest uncertainties relative to the standard algorithm. Two variants of the method have been implemented and tested. Both have been shown to be effective. (authors)« less

  13. An iterative method for obtaining the optimum lightning location on a spherical surface

    NASA Technical Reports Server (NTRS)

    Chao, Gao; Qiming, MA

    1991-01-01

    A brief introduction to the basic principles of an eigen method used to obtain the optimum source location of lightning is presented. The location of the optimum source is obtained by using multiple direction finders (DF's) on a spherical surface. An improvement of this method, which takes the distance of source-DF's as a constant, is presented. It is pointed out that using a weight factor of signal strength is not the most ideal method because of the inexact inverse signal strength-distance relation and the inaccurate signal amplitude. An iterative calculation method is presented using the distance from the source to the DF as a weight factor. This improved method has higher accuracy and needs only a little more calculation time. Some computer simulations for a 4DF system are presented to show the improvement of location through use of the iterative method.

  14. Scalable Production of Si Nanoparticles Directly from Low Grade Sources for Lithium-Ion Battery Anode.

    PubMed

    Zhu, Bin; Jin, Yan; Tan, Yingling; Zong, Linqi; Hu, Yue; Chen, Lei; Chen, Yanbin; Zhang, Qiao; Zhu, Jia

    2015-09-09

    Silicon, one of the most promising candidates as lithium-ion battery anode, has attracted much attention due to its high theoretical capacity, abundant existence, and mature infrastructure. Recently, Si nanostructures-based lithium-ion battery anode, with sophisticated structure designs and process development, has made significant progress. However, low cost and scalable processes to produce these Si nanostructures remained as a challenge, which limits the widespread applications. Herein, we demonstrate that Si nanoparticles with controlled size can be massively produced directly from low grade Si sources through a scalable high energy mechanical milling process. In addition, we systematically studied Si nanoparticles produced from two major low grade Si sources, metallurgical silicon (∼99 wt % Si, $1/kg) and ferrosilicon (∼83 wt % Si, $0.6/kg). It is found that nanoparticles produced from ferrosilicon sources contain FeSi2, which can serve as a buffer layer to alleviate the mechanical fractures of volume expansion, whereas nanoparticles from metallurgical Si sources have higher capacity and better kinetic properties because of higher purity and better electronic transport properties. Ferrosilicon nanoparticles and metallurgical Si nanoparticles demonstrate over 100 stable deep cycling after carbon coating with the reversible capacities of 1360 mAh g(-1) and 1205 mAh g(-1), respectively. Therefore, our approach provides a new strategy for cost-effective, energy-efficient, large scale synthesis of functional Si electrode materials.

  15. In-situ Testing of the EHT High Gain and Frequency Ultra-Stable Integrators

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Lotz, Dan

    2014-10-01

    Eagle Harbor Technologies (EHT) has developed a long-pulse integrator that exceeds the ITER specification for integration error and pulse duration. During the Phase I program, EHT improved the RPPL short-pulse integrators, added a fast digital reset, and demonstrated that the new integrators exceed the ITER integration error and pulse duration requirements. In Phase II, EHT developed Field Programmable Gate Array (FPGA) software that allows for integrator control and real-time signal digitization and processing. In the second year of Phase II, the EHT integrator will be tested at a validation platform experiment (HIT-SI) and tokamak (DIII-D). In the Phase IIB program, EHT will continue development of the EHT integrator to reduce overall cost per channel. EHT will test lower cost components, move to surface mount components, and add an onboard Field Programmable Gate Array and data acquisition to produce a stand-alone system with lower cost per channel and increased the channel density. EHT will test the Phase IIB integrator at a validation platform experiment (HIT-SI) and tokamak (DIII-D). Work supported by the DOE under Contract Number (DE-SC0006281).

  16. Effect of source frequency and pulsing on the SiO2 etching characteristics of dual-frequency capacitive coupled plasma

    NASA Astrophysics Data System (ADS)

    Kim, Hoe Jun; Jeon, Min Hwan; Mishra, Anurag Kumar; Kim, In Jun; Sin, Tae Ho; Yeom, Geun Young

    2015-01-01

    A SiO2 layer masked with an amorphous carbon layer (ACL) has been etched in an Ar/C4F8 gas mixture with dual frequency capacitively coupled plasmas under variable frequency (13.56-60 MHz)/pulsed rf source power and 2 MHz continuous wave (CW) rf bias power, the effects of the frequency and pulsing of the source rf power on the SiO2 etch characteristics were investigated. By pulsing the rf power, an increased SiO2 etch selectivity was observed with decreasing SiO2 etch rate. However, when the rf power frequency was increased, not only a higher SiO2 etch rate but also higher SiO2 etch selectivity was observed for both CW and pulse modes. A higher CF2/F ratio and lower electron temperature were observed for both a higher source frequency mode and a pulsed plasma mode. Therefore, when the C 1s binding states of the etched SiO2 surfaces were investigated using X-ray photoelectron spectroscopy (XPS), the increase of C-Fx bonding on the SiO2 surface was observed for a higher source frequency operation similar to a pulsed plasma condition indicating the increase of SiO2 etch selectivity over the ACL. The increase of the SiO2 etch rate with increasing etch selectivity for the higher source frequency operation appears to be related to the increase of the total plasma density with increasing CF2/F ratio in the plasma. The SiO2 etch profile was also improved not only by using the pulsed plasma but also by increasing the source frequency.

  17. Ab initio computational study on the lattice thermal conductivity of Zintl clathrates [Si19P4] Cl4 and Na4[Al4Si19

    NASA Astrophysics Data System (ADS)

    Härkönen, Ville J.; Karttunen, Antti J.

    2016-08-01

    The lattice thermal conductivity of silicon clathrate framework Si23 and two Zintl clathrates, [Si19P4] Cl4 and Na4[Al4Si19] , is investigated by using an iterative solution of the linearized Boltzmann transport equation in conjunction with ab initio lattice dynamical techniques. At 300 K, the lattice thermal conductivities for Si23, [Si19P4] Cl4 , and Na4[Al4Si19] were found to be 43 W/(m K), 25 W/(m K), and 2 W/(m K), respectively. In the case of Na4[Al4Si19] , the order-of-magnitude reduction in the lattice thermal conductivity was found to be mostly due to relaxation times and group velocities differing from Si23 and [Si19P4] Cl4 . The difference in the relaxation times and group velocities arises primarily due to the phonon spectrum at low frequencies, resulting eventually from the differences in the second-order interatomic force constants (IFCs). The obtained third-order IFCs were rather similar for all materials considered here. The present findings are similar to those obtained earlier for some skutterudites. The predicted lattice thermal conductivity of Na4[Al4Si19] is in line with the experimentally measured thermal conductivity of recently synthesized type-I Zintl clathrate Na8[Al8Si38] (polycrystalline samples).

  18. Survey on the Performance of Source Localization Algorithms.

    PubMed

    Fresno, José Manuel; Robles, Guillermo; Martínez-Tarifa, Juan Manuel; Stewart, Brian G

    2017-11-18

    The localization of emitters using an array of sensors or antennas is a prevalent issue approached in several applications. There exist different techniques for source localization, which can be classified into multilateration, received signal strength (RSS) and proximity methods. The performance of multilateration techniques relies on measured time variables: the time of flight (ToF) of the emission from the emitter to the sensor, the time differences of arrival (TDoA) of the emission between sensors and the pseudo-time of flight (pToF) of the emission to the sensors. The multilateration algorithms presented and compared in this paper can be classified as iterative and non-iterative methods. Both standard least squares (SLS) and hyperbolic least squares (HLS) are iterative and based on the Newton-Raphson technique to solve the non-linear equation system. The metaheuristic technique particle swarm optimization (PSO) used for source localisation is also studied. This optimization technique estimates the source position as the optimum of an objective function based on HLS and is also iterative in nature. Three non-iterative algorithms, namely the hyperbolic positioning algorithms (HPA), the maximum likelihood estimator (MLE) and Bancroft algorithm, are also presented. A non-iterative combined algorithm, MLE-HLS, based on MLE and HLS, is further proposed in this paper. The performance of all algorithms is analysed and compared in terms of accuracy in the localization of the position of the emitter and in terms of computational time. The analysis is also undertaken with three different sensor layouts since the positions of the sensors affect the localization; several source positions are also evaluated to make the comparison more robust. The analysis is carried out using theoretical time differences, as well as including errors due to the effect of digital sampling of the time variables. It is shown that the most balanced algorithm, yielding better results than the other algorithms in terms of accuracy and short computational time, is the combined MLE-HLS algorithm.

  19. Survey on the Performance of Source Localization Algorithms

    PubMed Central

    2017-01-01

    The localization of emitters using an array of sensors or antennas is a prevalent issue approached in several applications. There exist different techniques for source localization, which can be classified into multilateration, received signal strength (RSS) and proximity methods. The performance of multilateration techniques relies on measured time variables: the time of flight (ToF) of the emission from the emitter to the sensor, the time differences of arrival (TDoA) of the emission between sensors and the pseudo-time of flight (pToF) of the emission to the sensors. The multilateration algorithms presented and compared in this paper can be classified as iterative and non-iterative methods. Both standard least squares (SLS) and hyperbolic least squares (HLS) are iterative and based on the Newton–Raphson technique to solve the non-linear equation system. The metaheuristic technique particle swarm optimization (PSO) used for source localisation is also studied. This optimization technique estimates the source position as the optimum of an objective function based on HLS and is also iterative in nature. Three non-iterative algorithms, namely the hyperbolic positioning algorithms (HPA), the maximum likelihood estimator (MLE) and Bancroft algorithm, are also presented. A non-iterative combined algorithm, MLE-HLS, based on MLE and HLS, is further proposed in this paper. The performance of all algorithms is analysed and compared in terms of accuracy in the localization of the position of the emitter and in terms of computational time. The analysis is also undertaken with three different sensor layouts since the positions of the sensors affect the localization; several source positions are also evaluated to make the comparison more robust. The analysis is carried out using theoretical time differences, as well as including errors due to the effect of digital sampling of the time variables. It is shown that the most balanced algorithm, yielding better results than the other algorithms in terms of accuracy and short computational time, is the combined MLE-HLS algorithm. PMID:29156565

  20. RF Negative Ion Source Development at IPP Garching

    NASA Astrophysics Data System (ADS)

    Kraus, W.; McNeely, P.; Berger, M.; Christ-Koch, S.; Falter, H. D.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Leyer, S.; Riedl, R.; Speth, E.; Wünderlich, D.

    2007-08-01

    IPP Garching is heavily involved in the development of an ion source for Neutral Beam Heating of the ITER Tokamak. RF driven ion sources have been successfully developed and are in operation on the ASDEX-Upgrade Tokamak for positive ion based NBH by the NB Heating group at IPP Garching. Building on this experience a RF driven H- ion source has been under development at IPP Garching as an alternative to the ITER reference design ion source. The number of test beds devoted to source development for ITER has increased from one (BATMAN) by the addition of two test beds (MANITU, RADI). This paper contains descriptions of the three test beds. Results on diagnostic development using laser photodetachment and cavity ringdown spectroscopy are given for BATMAN. The latest results for long pulse development on MANITU are presented including the to date longest pulse (600 s). As well, details of source modifications necessitated for pulses in excess of 100 s are given. The newest test bed RADI is still being commissioned and only technical details of the test bed are included in this paper. The final topic of the paper is an investigation into the effects of biasing the plasma grid.

  1. Computed inverse resonance imaging for magnetic susceptibility map reconstruction.

    PubMed

    Chen, Zikuan; Calhoun, Vince

    2012-01-01

    This article reports a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a 2-step computational approach. The forward T2*-weighted MRI (T2*MRI) process is broken down into 2 steps: (1) from magnetic susceptibility source to field map establishment via magnetization in the main field and (2) from field map to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes 2 inverse steps to reverse the T2*MRI procedure: field map calculation from MR-phase image and susceptibility source calculation from the field map. The inverse step from field map to susceptibility map is a 3-dimensional ill-posed deconvolution problem, which can be solved with 3 kinds of approaches: the Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from an MR-phase image with high fidelity (spatial correlation ≈ 0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by 2 computational steps: calculating the field map from the phase image and reconstructing the susceptibility map from the field map. The crux of CIMRI lies in an ill-posed 3-dimensional deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm.

  2. Computed inverse MRI for magnetic susceptibility map reconstruction

    PubMed Central

    Chen, Zikuan; Calhoun, Vince

    2015-01-01

    Objective This paper reports on a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a two-step computational approach. Methods The forward T2*-weighted MRI (T2*MRI) process is decomposed into two steps: 1) from magnetic susceptibility source to fieldmap establishment via magnetization in a main field, and 2) from fieldmap to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes two inverse steps to reverse the T2*MRI procedure: fieldmap calculation from MR phase image and susceptibility source calculation from the fieldmap. The inverse step from fieldmap to susceptibility map is a 3D ill-posed deconvolution problem, which can be solved by three kinds of approaches: Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Results Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from a MR phase image with high fidelity (spatial correlation≈0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. Conclusions The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by two computational steps: calculating the fieldmap from the phase image and reconstructing the susceptibility map from the fieldmap. The crux of CIMRI lies in an ill-posed 3D deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm. PMID:22446372

  3. Strategy for the absolute neutron emission measurement on ITER.

    PubMed

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  4. Size scaling of negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-01

    The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  5. CVD of SiC and AlN using cyclic organometallic precursors

    NASA Technical Reports Server (NTRS)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  6. Correction of phase velocity bias caused by strong directional noise sources in high-frequency ambient noise tomography: a case study in Karamay, China

    NASA Astrophysics Data System (ADS)

    Wang, K.; Luo, Y.; Yang, Y.

    2016-12-01

    We collect two months of ambient noise data recorded by 35 broadband seismic stations in a 9×11 km area near Karamay, China, and do cross-correlation of noise data between all station pairs. Array beamforming analysis of the ambient noise data shows that ambient noise sources are unevenly distributed and the most energetic ambient noise mainly comes from azimuths of 40o-70o. As a consequence of the strong directional noise sources, surface wave waveforms of the cross-correlations at 1-5 Hz show clearly azimuthal dependence, and direct dispersion measurements from cross-correlations are strongly biased by the dominant noise energy. This bias renders that the dispersion measurements from cross-correlations do not accurately reflect the interstation velocities of surface waves propagating directly from one station to the other, that is, the cross-correlation functions do not retrieve Empirical Green's Functions accurately. To correct the bias caused by unevenly distributed noise sources, we adopt an iterative inversion procedure. The iterative inversion procedure, based on plane-wave modeling, includes three steps: (1) surface wave tomography, (2) estimation of ambient noise energy and (3) phase velocities correction. First, we use synthesized data to test efficiency and stability of the iterative procedure for both homogeneous and heterogeneous media. The testing results show that: (1) the amplitudes of phase velocity bias caused by directional noise sources are significant, reaching 2% and 10% for homogeneous and heterogeneous media, respectively; (2) phase velocity bias can be corrected by the iterative inversion procedure and the convergences of inversion depend on the starting phase velocity map and the complexity of the media. By applying the iterative approach to the real data in Karamay, we further show that phase velocity maps converge after ten iterations and the phase velocity map based on corrected interstation dispersion measurements are more consistent with results from geology surveys than those based on uncorrected ones. As ambient noise in high frequency band (>1Hz) is mostly related to human activities or climate events, both of which have strong directivity, the iterative approach demonstrated here helps improve the accuracy and resolution of ANT in imaging shallow earth structures.

  7. Cognitive testing with female nutrition and education assistance program participants informs validity of the Satter eating competence inventory.

    PubMed

    Krall, Jodi Stotts; Lohse, Barbara

    2010-01-01

    Examine the validity of a self-report measure of eating competence with low-income women. Twenty-five females (18-49 years old) recruited from low-income venues in Pennsylvania completed cognitive testing through an iterative interview process. Respondents' oral responses were compared to researchers' intended meaning of ecSatter Inventory (ecSI) items; responses were mapped to evaluate the similarity between respondents' internally generated answers and their ecSI choices for survey items; and scored responses were compared among participants. Interview findings provided a rationale for modifying the ecSI prior to use with low-income women. Four items were misinterpreted for various reasons, including problems with clarity and wording. The modified ecSI, termed the ecSatter Inventory for Low-Income (ecSI/LI), was comprehended as intended by researchers. Congruence of cognitive responses and ecS/LI scores further supported the instrument's validity. Cognitive testing resulted in the development of an instrument to measure eating competence in low-income adults. The ecSI/LI requires validation with a large, heterogeneous low-income sample. Copyright 2010 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.

  8. Accelerating NLTE radiative transfer by means of the Forth-and-Back Implicit Lambda Iteration: A two-level atom line formation in 2D Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Milić, Ivan; Atanacković, Olga

    2014-10-01

    State-of-the-art methods in multidimensional NLTE radiative transfer are based on the use of local approximate lambda operator within either Jacobi or Gauss-Seidel iterative schemes. Here we propose another approach to the solution of 2D NLTE RT problems, Forth-and-Back Implicit Lambda Iteration (FBILI), developed earlier for 1D geometry. In order to present the method and examine its convergence properties we use the well-known instance of the two-level atom line formation with complete frequency redistribution. In the formal solution of the RT equation we employ short characteristics with two-point algorithm. Using an implicit representation of the source function in the computation of the specific intensities, we compute and store the coefficients of the linear relations J=a+bS between the mean intensity J and the corresponding source function S. The use of iteration factors in the ‘local’ coefficients of these implicit relations in two ‘inward’ sweeps of 2D grid, along with the update of the source function in other two ‘outward’ sweeps leads to four times faster solution than the Jacobi’s one. Moreover, the update made in all four consecutive sweeps of the grid leads to an acceleration by a factor of 6-7 compared to the Jacobi iterative scheme.

  9. Fast in-memory elastic full-waveform inversion using consumer-grade GPUs

    NASA Astrophysics Data System (ADS)

    Sivertsen Bergslid, Tore; Birger Raknes, Espen; Arntsen, Børge

    2017-04-01

    Full-waveform inversion (FWI) is a technique to estimate subsurface properties by using the recorded waveform produced by a seismic source and applying inverse theory. This is done through an iterative optimization procedure, where each iteration requires solving the wave equation many times, then trying to minimize the difference between the modeled and the measured seismic data. Having to model many of these seismic sources per iteration means that this is a highly computationally demanding procedure, which usually involves writing a lot of data to disk. We have written code that does forward modeling and inversion entirely in memory. A typical HPC cluster has many more CPUs than GPUs. Since FWI involves modeling many seismic sources per iteration, the obvious approach is to parallelize the code on a source-by-source basis, where each core of the CPU performs one modeling, and do all modelings simultaneously. With this approach, the GPU is already at a major disadvantage in pure numbers. Fortunately, GPUs can more than make up for this hardware disadvantage by performing each modeling much faster than a CPU. Another benefit of parallelizing each individual modeling is that it lets each modeling use a lot more RAM. If one node has 128 GB of RAM and 20 CPU cores, each modeling can use only 6.4 GB RAM if one is running the node at full capacity with source-by-source parallelization on the CPU. A parallelized per-source code using GPUs can use 64 GB RAM per modeling. Whenever a modeling uses more RAM than is available and has to start using regular disk space the runtime increases dramatically, due to slow file I/O. The extremely high computational speed of the GPUs combined with the large amount of RAM available for each modeling lets us do high frequency FWI for fairly large models very quickly. For a single modeling, our GPU code outperforms the single-threaded CPU-code by a factor of about 75. Successful inversions have been run on data with frequencies up to 40 Hz for a model of 2001 by 600 grid points with 5 m grid spacing and 5000 time steps, in less than 2.5 minutes per source. In practice, using 15 nodes (30 GPUs) to model 101 sources, each iteration took approximately 9 minutes. For reference, the same inversion run with our CPU code uses two hours per iteration. This was done using only a very simple wavefield interpolation technique, saving every second timestep. Using a more sophisticated checkpointing or wavefield reconstruction method would allow us to increase this model size significantly. Our results show that ordinary gaming GPUs are a viable alternative to the expensive professional GPUs often used today, when performing large scale modeling and inversion in geophysics.

  10. TH-AB-BRA-09: Stability Analysis of a Novel Dose Calculation Algorithm for MRI Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelyak, O; Fallone, B; Cross Cancer Institute, Edmonton, AB

    2016-06-15

    Purpose: To determine the iterative deterministic solution stability of the Linear Boltzmann Transport Equation (LBTE) in the presence of magnetic fields. Methods: The LBTE with magnetic fields under investigation is derived using a discrete ordinates approach. The stability analysis is performed using analytical and numerical methods. Analytically, the spectral Fourier analysis is used to obtain the convergence rate of the source iteration procedures based on finding the largest eigenvalue of the iterative operator. This eigenvalue is a function of relevant physical parameters, such as magnetic field strength and material properties, and provides essential information about the domain of applicability requiredmore » for clinically optimal parameter selection and maximum speed of convergence. The analytical results are reinforced by numerical simulations performed using the same discrete ordinates method in angle, and a discontinuous finite element spatial approach. Results: The spectral radius for the source iteration technique of the time independent transport equation with isotropic and anisotropic scattering centers inside infinite 3D medium is equal to the ratio of differential and total cross sections. The result is confirmed numerically by solving LBTE and is in full agreement with previously published results. The addition of magnetic field reveals that the convergence becomes dependent on the strength of magnetic field, the energy group discretization, and the order of anisotropic expansion. Conclusion: The source iteration technique for solving the LBTE with magnetic fields with the discrete ordinates method leads to divergent solutions in the limiting cases of small energy discretizations and high magnetic field strengths. Future investigations into non-stationary Krylov subspace techniques as an iterative solver will be performed as this has been shown to produce greater stability than source iteration. Furthermore, a stability analysis of a discontinuous finite element space-angle approach (which has been shown to provide the greatest stability) will also be investigated. Dr. B Gino Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)« less

  11. A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles

    NASA Astrophysics Data System (ADS)

    Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng

    2018-03-01

    As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.

  12. Investigation of plasma parameters at BATMAN for variation of the Cs evaporation asymmetry and comparing two driver geometries

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Fantz, U.; Aza, E.; Jovović, J.; Kraus, W.; Mimo, A.; Schiesko, L.

    2017-08-01

    The Neutral Beam Injection (NBI) system for fusion devices like ITER and, beyond ITER, DEMO requires large scale sources for negative hydrogen ions. BATMAN (Bavarian Test Machine for Negative ions) is a test facility attached with the prototype source for the ITER NBI (1/8 source size of the ITER source), dedicated to physical investigations due to its flexible access for diagnostics and exchange of source components. The required amount of negative ions is produced by surface conversion of hydrogen atoms or ions on caesiated surfaces. Several diagnostic tools (Optical Emission Spectroscopy, Cavity Ring-Down Spectroscopy for H-, Langmuir probes, Tunable Diode Laser Absorption Spectroscopy for Cs) allow the determination of plasma parameters in the ion source. Plasma parameters for two modifications of the standard prototype source have been investigated: Firstly, a second Cs oven has been installed in the bottom part of the back plate in addition to the regularly used oven in the top part of the back plate. Evaporation from the top oven only can lead to a vertically asymmetric Cs distribution in front of the plasma grid. Using both ovens, a symmetric Cs distribution can be reached - however, in most cases no significant change of the extracted ion current has been determined for varying Cs symmetry if the source is well-conditioned. Secondly, BATMAN has been equipped with a much larger, racetrack-shaped RF driver (area of 32×58 cm2) instead of the cylindrical RF driver (diameter of 24.5 cm). The main idea is that one racetrack driver could substitute two cylindrical drivers in larger sources with increased reliability and power efficiency. For the same applied RF power, the electron density is lower in the racetrack driver due to its five times higher volume. The fraction of hydrogen atoms to molecules, however, is at a similar level or even slightly higher, which is a promising result for application in larger sources.

  13. Enabling Incremental Iterative Development at Scale: Quality Attribute Refinement and Allocation in Practice

    DTIC Science & Technology

    2015-06-01

    abstract constraints along six dimen- sions for expansion: user, actions, data , business rules, interfaces, and quality attributes [Gottesdiener 2010...relevant open source systems. For example, the CONNECT and HADOOP Distributed File System (HDFS) projects have many user stories that deal with...Iteration Zero involves architecture planning before writing any code. An overly long Iteration Zero is equivalent to the dysfunctional “ Big Up-Front

  14. An iterative method for near-field Fresnel region polychromatic phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.

    2017-07-01

    We present an iterative method for polychromatic phase contrast imaging that is suitable for broadband illumination and which allows for the quantitative determination of the thickness of an object given the refractive index of the sample material. Experimental and simulation results suggest the iterative method provides comparable image quality and quantitative object thickness determination when compared to the analytical polychromatic transport of intensity and contrast transfer function methods. The ability of the iterative method to work over a wider range of experimental conditions means the iterative method is a suitable candidate for use with polychromatic illumination and may deliver more utility for laboratory-based x-ray sources, which typically have a broad spectrum.

  15. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab

    NASA Astrophysics Data System (ADS)

    Li, Hong-Yan; Xu, Yi-Gang; Ryan, Jeffrey G.; Huang, Xiao-Long; Ren, Zhong-Yuan; Guo, Hua; Ning, Zhen-Guo

    2016-04-01

    Contributions from fluid and melt inputs from the subducting Pacific slab to the chemical makeup of intraplate basalts erupted on the eastern Eurasian continent have long been suggested but have not thus far been geochemically constrained. To attempt to address this question, we have investigated Cenozoic basaltic rocks from the western Shandong and Bohai Bay Basin, eastern North China Craton (NCC), which preserve coherent relationships among the chemistries of their melt inclusions, their hosting olivines and their bulk rock compositions. Three groups of samples are distinguished: (1) high-Si and (2) moderate-Si basalts (tholeiites, alkali basalts and basanites) which were erupted at ∼23-20 Ma, and (3) low-Si basalts (nephelinites) which were erupted at <9 Ma. The high-Si basalts have lower alkalies, CaO and FeOT contents, lower trace element concentrations, lower La/Yb, Sm/Yb and Ce/Pb but higher Ba/Th ratios, and lower εNd and εHf values than the low-Si basalts. The olivines in the high-Si basalts have higher Ni and lower Mn and Ca at a given Fo value than those crystallizing from peridotite melts, and their corresponding melt inclusions have lower CaO contents than peridotite melts, suggesting a garnet pyroxenitic source. The magmatic olivines from low-Si basalts have lower Ni but higher Mn at a given Fo value than that of the high-Si basalts, suggesting more olivine in its source. The olivine-hosted melt inclusions of the low-Si basalts have major elemental signatures different from melts of normal peridotitic or garnet pyroxenitic mantle sources, pointing to their derivation from a carbonated mantle source consisting of peridotite and garnet pyroxenite. We propose a model involving the differential melting of a subduction-modified mantle source to account for the generation of these three suites of basalts. Asthenospheric mantle beneath the eastern NCC, which entrains garnet pyroxenite with an EM1 isotopic signature, was metasomatized by carbonatitic melts from carbonated eclogite derived from subducted Pacific slab materials present in the deeper mantle. High degree melting of garnet pyroxenites from a shallower mantle source produced the early (∼23-20 Ma) higher-Si basalts. Mixing of these materials with deeper-sourced melts of carbonated mantle source produced the moderate-Si basalts. A thicker lithosphere after 9 Ma precluded melting of shallower garnet pyroxenites, so melts of the deeper carbonated mantle source are responsible for the low-Si basalts.

  16. Naturally occurring 32Si and low-background silicon dark matter detectors

    DOE PAGES

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; ...

    2018-02-10

    Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  17. Naturally occurring 32Si and low-background silicon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  18. Naturally occurring 32Si and low-background silicon dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary

    Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  19. Naturally occurring 32 Si and low-background silicon dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary

    The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that productionmore » of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  20. A new least-squares transport equation compatible with voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J. B.; Morel, J. E.

    2013-07-01

    We define a new least-squares transport equation that is applicable in voids, can be solved using source iteration with diffusion-synthetic acceleration, and requires only the solution of an independent set of second-order self-adjoint equations for each direction during each source iteration. We derive the equation, discretize it using the S{sub n} method in conjunction with a linear-continuous finite-element method in space, and computationally demonstrate various of its properties. (authors)

  1. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  2. Development and irradiation test of lost alpha detection system for ITER.

    PubMed

    Nishiura, M; Nagasaka, T; Fujioka, K; Fujimoto, Y; Tanaka, T; Ido, T; Yamamoto, S; Kashiwa, S; Sasao, M

    2010-10-01

    We developed a lost alpha detection system to use in burning plasma experiments. The scintillators of Ag:ZnS and polycrystalline Ce:YAG were designed for a high-temperature environment, and the optical transmission line was designed to transmit from the scintillator to the port plug. The required optical components of lenses and mirrors were irradiated using the fission reactor with the initial result that there was no clear change after the irradiation with a neutron flux of 9.6×10(17) nm(-2)  s(-1) for 48 h. We propose a diagnostic of alpha particle loss, so-called alpha particle induced gamma ray spectroscopy. The initial laboratory test has been carried out by the use of the Ce doped Lu(2)SiO(5) scintillator detector and an Am-Be source to detect the 4.44 MeV high energy gamma ray due to the (9)Be(α,nγ)(12)C reaction.

  3. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2017-12-09

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the “burning plasma” regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  4. Infall and outflow motions towards a sample of massive star-forming regions from the RMS survey

    NASA Astrophysics Data System (ADS)

    Cunningham, N.; Lumsden, S. L.; Moore, T. J. T.; Maud, L. T.; Mendigutía, I.

    2018-06-01

    We present the results of an outflow and infall survey towards a distance-limited sample of 31 massive star-forming regions drawn from the Red MSX source (RMS) survey. The presence of young, active outflows is identified from SiO (8-7) emission and the infall dynamics are explored using HCO+/H13CO+ (4-3) emission. We investigate if the infall and outflow parameters vary with source properties, exploring whether regions hosting potentially young active outflows show similarities or differences with regions harbouring more evolved, possibly momentum-driven, `fossil' outflows. SiO emission is detected towards approximately 46 per cent of the sources. When considering sources with and without an SiO detection (i.e. potentially active and fossil outflows, respectively), only the 12CO outflow velocity shows a significant difference between samples, indicating SiO is more prevalent towards sources with higher outflow velocities. Furthermore, we find the SiO luminosity increases as a function of the Herschel 70 μm to WISE 22 μm flux ratio, suggesting the production of SiO is prevalent in younger, more embedded regions. Similarly, we find tentative evidence that sources with an SiO detection have a smaller bolometric luminosity-to-mass ratio, indicating SiO (8-7) emission is associated with potentially younger regions. We do not find a prevalence towards sources displaying signatures of infall in our sample. However, the higher energy HCO+ transitions may not be the best suited tracer of infall at this spatial resolution in these regions.

  5. A suite of diagnostics to validate and optimize the prototype ITER neutral beam injector

    NASA Astrophysics Data System (ADS)

    Pasqualotto, R.; Agostini, M.; Barbisan, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Dalla Palma, M.; Delogu, R. S.; De Muri, M.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rebai, M.; Rizzolo, A.; Sartori, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.

    2017-10-01

    The ITER project requires additional heating provided by two neutral beam injectors using 40 A negative deuterium ions accelerated at 1 MV. As the beam requirements have never been experimentally met, a test facility is under construction at Consorzio RFX, which hosts two experiments: SPIDER, full-size 100 kV ion source prototype, and MITICA, 1 MeV full-size ITER injector prototype. Since diagnostics in ITER injectors will be mainly limited to thermocouples, due to neutron and gamma radiation and to limited access, it is crucial to thoroughly investigate and characterize in more accessible experiments the key parameters of source plasma and beam, using several complementary diagnostics assisted by modelling. In SPIDER and MITICA the ion source parameters will be measured by optical emission spectroscopy, electrostatic probes, cavity ring down spectroscopy for H^- density and laser absorption spectroscopy for cesium density. Measurements over multiple lines-of-sight will provide the spatial distribution of the parameters over the source extension. The beam profile uniformity and its divergence are studied with beam emission spectroscopy, complemented by visible tomography and neutron imaging, which are novel techniques, while an instrumented calorimeter based on custom unidirectional carbon fiber composite tiles observed by infrared cameras will measure the beam footprint on short pulses with the highest spatial resolution. All heated components will be monitored with thermocouples: as these will likely be the only measurements available in ITER injectors, their capabilities will be investigated by comparison with other techniques. SPIDER and MITICA diagnostics are described in the present paper with a focus on their rationale, key solutions and most original and effective implementations.

  6. Dopant diffusion and segregation in semiconductor heterostructures: Part III, diffusion of Si into GaAs

    NASA Astrophysics Data System (ADS)

    Chen, C.-H.; Gösele, U. M.; Tan, T. Y.

    We have mentioned previously that in the third part of the present series of papers, a variety of n-doping associated phenomena will be treated. Instead, we have decided that this paper, in which the subject treated is diffusion of Si into GaAs, shall be the third paper of the series. This choice is arrived at because this subject is a most relevent heterostructure problem, and also because of space and timing considerations. The main n-type dopant Si in GaAs is amphoteric which may be incorporated as shallow donor species SiGa+ and as shallow acceptor species SiAs-. The solubility of SiAs- is much lower than that of SiGa+ except at very high Si concentration levels. Hence, a severe electrical self-compensation occurs at very high Si concentrations. In this study we have modeled the Si distribution process in GaAs by assuming that the diffusing species is SiGa+ which will convert into SiAs- in accordance with their solubilities and that the point defect species governing the diffusion of SiGa+ are triply-negatively-charged Ga vacancies VGa3-. The outstanding features of the Si indiffusion profiles near the Si/GaAs interface have been quantitatively explained for the first time. Deposited on the GaAs crystal surface, the Si source material is a polycrystalline Si layer which may be undoped or n+-doped using As or P. Without the use of an As vapor phase in the ambient, the As- and P-doped source materials effectively render the GaAs crystals into an As-rich composition, which leads to a much more efficient Si indiffusion process than for the case of using undoped source materials which maintains the GaAs crystals in a relatively As-poor condition. The source material and the GaAs crystal together form a heterostructure with its junction influencing the electron distribution in the region, which, in turn, affects the Si indiffusion process prominently.

  7. Deuterium results at the negative ion source test facility ELISE

    NASA Astrophysics Data System (ADS)

    Kraus, W.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Bonomo, F.; Riedl, R.

    2018-05-01

    The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D- ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D- current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D-, corresponding to 66% of the value required for ITER, have been extracted for 45 min.

  8. Influence of Iterative Reconstruction Algorithms on PET Image Resolution

    NASA Astrophysics Data System (ADS)

    Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.

  9. Can we estimate plasma density in ICP driver through electrical parameters in RF circuit?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Chakraborty, A., E-mail: arunkc@iter-india.org

    2015-04-08

    To avoid regular maintenance, invasive plasma diagnostics with probes are not included in the inductively coupled plasma (ICP) based ITER Neutral Beam (NB) source design. Even non-invasive probes like optical emission spectroscopic diagnostics are also not included in the present ITER NB design due to overall system design and interface issues. As a result, negative ion beam current through the extraction system in the ITER NB negative ion source is the only measurement which indicates plasma condition inside the ion source. However, beam current not only depends on the plasma condition near the extraction region but also on the perveancemore » condition of the ion extractor system and negative ion stripping. Nevertheless, inductively coupled plasma production region (RF driver region) is placed at distance (∼ 30cm) from the extraction region. Due to that, some uncertainties are expected to be involved if one tries to link beam current with plasma properties inside the RF driver. Plasma characterization in source RF driver region is utmost necessary to maintain the optimum condition for source operation. In this paper, a method of plasma density estimation is described, based on density dependent plasma load calculation.« less

  10. Towards plasma cleaning of ITER first mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Eren, B.; Steiner, R.; Mathys, D.; Leipold, F.; Reichle, R.; Meyer, E.

    2015-06-01

    To avoid reflectivity losses in ITER's optical diagnostic systems, on-site cleaning of metallic first mirrors via plasma sputtering is foreseen to remove deposit build-ups migrating from the main wall. In this work, the influence of aluminium and tungsten deposits on the reflectivity of molybdenum mirrors as well as the possibility to clean them with plasma exposure is investigated. Porous ITER-like deposits are grown to mimic the edge conditions expected in ITER, and a severe degradation in the specular reflectivity is observed as these deposits build up on the mirror surface. In addition, dense oxide films are produced for comparisons with porous films. The composition, morphology and crystal structure of several films were characterized by means of scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction and secondary ion mass spectrometry. The cleaning of the deposits and the restoration of the mirrors' optical properties are possible either with a Kaufman source or radio frequency directly applied to the mirror (or radio frequency plasma generated directly around the mirror surface). Accelerating ions of an external plasma source through a direct current applied onto the mirror does not remove deposits composed of oxides. A possible implementation of plasma cleaning in ITER is addressed.

  11. Vacuum ultraviolet thin films. I - Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films. II - Vacuum ultraviolet all-dielectric narrowband filters

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Spann, James F.; Torr, Marsha R.

    1990-01-01

    An iteration process matching calculated and measured reflectance and transmittance values in the 120-230 nm VUV region is presently used to ascertain the optical constants of bulk MgF2, as well as films of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 deposited on MgF2 substrates. In the second part of this work, a design concept is demonstrated for two filters, employing rapidly changing extinction coefficients, centered at 135 nm for BaF2 and 141 nm for SiO2. These filters are shown to yield excellent narrowband spectral performance in combination with narrowband reflection filters.

  12. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes.

    PubMed

    Meister, H; Willmeroth, M; Zhang, D; Gottwald, A; Krumrey, M; Scholze, F

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.

  13. Upgrade of the BATMAN test facility for H- source development

    NASA Astrophysics Data System (ADS)

    Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-01

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  14. Technical Note: FreeCT_ICD: An Open Source Implementation of a Model-Based Iterative Reconstruction Method using Coordinate Descent Optimization for CT Imaging Investigations.

    PubMed

    Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael

    2018-06-01

    To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. A signaling visualization toolkit to support rational design of combination therapies and biomarker discovery: SiViT.

    PubMed

    Bown, James L; Shovman, Mark; Robertson, Paul; Boiko, Andrei; Goltsov, Alexey; Mullen, Peter; Harrison, David J

    2017-05-02

    Targeted cancer therapy aims to disrupt aberrant cellular signalling pathways. Biomarkers are surrogates of pathway state, but there is limited success in translating candidate biomarkers to clinical practice due to the intrinsic complexity of pathway networks. Systems biology approaches afford better understanding of complex, dynamical interactions in signalling pathways targeted by anticancer drugs. However, adoption of dynamical modelling by clinicians and biologists is impeded by model inaccessibility. Drawing on computer games technology, we present a novel visualization toolkit, SiViT, that converts systems biology models of cancer cell signalling into interactive simulations that can be used without specialist computational expertise. SiViT allows clinicians and biologists to directly introduce for example loss of function mutations and specific inhibitors. SiViT animates the effects of these introductions on pathway dynamics, suggesting further experiments and assessing candidate biomarker effectiveness. In a systems biology model of Her2 signalling we experimentally validated predictions using SiViT, revealing the dynamics of biomarkers of drug resistance and highlighting the role of pathway crosstalk. No model is ever complete: the iteration of real data and simulation facilitates continued evolution of more accurate, useful models. SiViT will make accessible libraries of models to support preclinical research, combinatorial strategy design and biomarker discovery.

  16. A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Sup; Cho, Dae-Seung; Kim, Kookhyun; Jeon, Jae-Jin; Jung, Woo-Jin; Kang, Myeng-Hwan; Kim, Jae-Ho

    2015-01-01

    Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

  17. System identification using Nuclear Norm & Tabu Search optimization

    NASA Astrophysics Data System (ADS)

    Ahmed, Asif A.; Schoen, Marco P.; Bosworth, Ken W.

    2018-01-01

    In recent years, subspace System Identification (SI) algorithms have seen increased research, stemming from advanced minimization methods being applied to the Nuclear Norm (NN) approach in system identification. These minimization algorithms are based on hard computing methodologies. To the authors’ knowledge, as of now, there has been no work reported that utilizes soft computing algorithms to address the minimization problem within the nuclear norm SI framework. A linear, time-invariant, discrete time system is used in this work as the basic model for characterizing a dynamical system to be identified. The main objective is to extract a mathematical model from collected experimental input-output data. Hankel matrices are constructed from experimental data, and the extended observability matrix is employed to define an estimated output of the system. This estimated output and the actual - measured - output are utilized to construct a minimization problem. An embedded rank measure assures minimum state realization outcomes. Current NN-SI algorithms employ hard computing algorithms for minimization. In this work, we propose a simple Tabu Search (TS) algorithm for minimization. TS algorithm based SI is compared with the iterative Alternating Direction Method of Multipliers (ADMM) line search optimization based NN-SI. For comparison, several different benchmark system identification problems are solved by both approaches. Results show improved performance of the proposed SI-TS algorithm compared to the NN-SI ADMM algorithm.

  18. Radiation pattern synthesis of planar antennas using the iterative sampling method

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Coffey, E. L.

    1975-01-01

    A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.

  19. Randomly iterated search and statistical competency as powerful inversion tools for deformation source modeling: Application to volcano interferometric synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.; Walter, T. R.

    2009-10-01

    Modern geodetic techniques provide valuable and near real-time observations of volcanic activity. Characterizing the source of deformation based on these observations has become of major importance in related monitoring efforts. We investigate two random search approaches, simulated annealing (SA) and genetic algorithm (GA), and utilize them in an iterated manner. The iterated approach helps to prevent GA in general and SA in particular from getting trapped in local minima, and it also increases redundancy for exploring the search space. We apply a statistical competency test for estimating the confidence interval of the inversion source parameters, considering their internal interaction through the model, the effect of the model deficiency, and the observational error. Here, we present and test this new randomly iterated search and statistical competency (RISC) optimization method together with GA and SA for the modeling of data associated with volcanic deformations. Following synthetic and sensitivity tests, we apply the improved inversion techniques to two episodes of activity in the Campi Flegrei volcanic region in Italy, observed by the interferometric synthetic aperture radar technique. Inversion of these data allows derivation of deformation source parameters and their associated quality so that we can compare the two inversion methods. The RISC approach was found to be an efficient method in terms of computation time and search results and may be applied to other optimization problems in volcanic and tectonic environments.

  20. Synthesis and structural property of Si nanosheets connected to Si nanowires using MnCl2/Si powder source

    NASA Astrophysics Data System (ADS)

    Meng, Erchao; Ueki, Akiko; Meng, Xiang; Suzuki, Hiroaki; Itahara, Hiroshi; Tatsuoka, Hirokazu

    2016-08-01

    Si nanosheets connected to Si nanowires were synthesized using a MnCl2/Si powder source with an Au catalyst. The synthesis method has benefits in terms of avoiding conventionally used air-sensitive SiH4 or SiCl4. The existence of the Si nanosheets connected to the Si<111> nanowires, like sprouts or leaves with petioles, was observed, and the surface of the nanosheets was Si{111}. The nanosheets were grown in the growth direction of <211> perpendicular to that of the Si nanowires. It was evident from these structural features of the nanosheets that the nanosheets were formed by the twin-plane reentrant-edge mechanism. The feature of the observed lattice fringes, which do not appear for Si bulk crystals, of the Si(111) nanosheets obtained by high resolution transmission electron microscopy was clearly explained due to the extra diffraction spots that arose by the reciprocal lattice streaking effect.

  1. Growth of strained Si/relaxed SiGe heterostructures on Si(110) substrates using solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Arimoto, Keisuke; Nakazawa, Hiroki; Mitsui, Shohei; Utsuyama, Naoto; Yamanaka, Junji; Hara, Kosuke O.; Usami, Noritaka; Nakagawa, Kiyokazu

    2017-11-01

    A strained Si/relaxed SiGe heterostructure grown on Si(110) substrate is attractive as a platform for high-hole-mobility Si-based electronic devices. To improve the electrical property, a smoother surface is desirable. In this study, we investigated surface morphology and microstructural aspects of strained Si/relaxed SiGe/Si(110) heterostructures grown by solid-source (SS) molecular beam epitaxy (MBE). It was revealed that SSMBE provides a way to grow strained Si/relaxed SiGe heterostructures with smooth surfaces. In addition, it was found that the strain in the SiGe layer of the SSMBE-grown sample is highly anisotropic whereas that of the GSMBE-grown sample is almost biaxially relaxed. Along with the surface morphology, the symmetry in degree of strain relaxation has implications for the electrical property. Results of a calculation shows that anisotropic strain is preferable for device application since it confines holes solely in the strained Si layer where hole mobility is enhanced.

  2. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radnóczi, G. Z.; Battistig, G.; Pécz, B., E-mail: pecz.bela@ttk.mta.hu

    2015-02-17

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi{sub 2} phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi{sub 2} grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a secondmore » region is also observed with large grains of Ni{sub 3}Si{sub 2}. Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization.« less

  3. Outflow structure and velocity field of Orion source. I. ALMA imaging of SiO isotopologue maser and thermal emission

    NASA Astrophysics Data System (ADS)

    Niederhofer, F.; Humphreys, E. M. L.; Goddi, C.

    2012-12-01

    Using Science Verification data from the Atacama Large Millimeter/Submillimeter Array (ALMA), we have identified and imaged five rotational transitions (J = 5-4 and J = 6-5) of the three silicon monoxide isotopologues 28SiO v = 0, 1, 2 and 29SiO v = 0 and 28Si18O v = 0 in the frequency range from 214 to 246 GHz towards the Orion BN/KL region. The emission of the ground-state 28SiO, 29SiO and 28Si18O shows an extended bipolar shape in the northeast-southwest direction at the position of Radio Source I, indicating that these isotopologues trace an outflow ( 18 km s-1, PA 50°, 5000 AU in diameter) that is driven by this embedded high-mass young stellar object (YSO). Whereas on small scales (10-1000 AU) the outflow from Source I has a well-ordered spatial and velocity structure, as probed by Very Long Baseline Interferometry (VLBI) imaging of SiO masers, the large scales (500-5000 AU) probed by thermal SiO with ALMA reveal a complex structure and velocity field, most likely related to the effects of the environment of the BN/KL region on the outflow emanating from Source I. The emission of the vibrationally-excited species peaks at the position of Source I. This emission is compact and not resolved at an angular resolution of 1farcs5 ( 600 AU at a distance of 420 pc). 2D Gaussian fitting to individual velocity channels locates emission peaks within radii of 100 AU, i.e. they trace the innermost part of the outflow. A narrow spectral profile and spatial distribution of the v = 1 J = 5-4 line similar to the masing v = 1 J = 1-0 transition, provide evidence for the most highly rotationally excited (frequency > 200 GHz) SiO maser emission associated with Source I known to date. The maser emission will enable studies of the Source I disk-outflow interface with future ALMA longest baselines.

  4. Modelling of caesium dynamics in the negative ion sources at BATMAN and ELISE

    NASA Astrophysics Data System (ADS)

    Mimo, A.; Wimmer, C.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The knowledge of Cs dynamics in negative hydrogen ion sources is a primary issue to achieve the ITER requirements for the Neutral Beam Injection (NBI) systems, i.e. one hour operation with an accelerated ion current of 40 A of D- and a ratio between negative ions and co-extracted electrons below one. Production of negative ions is mostly achieved by conversion of hydrogen/deuterium atoms on a converter surface, which is caesiated in order to reduce the work function and increase the conversion efficiency. The understanding of the Cs transport and redistribution mechanism inside the source is necessary for the achievement of high performances. Cs dynamics was therefore investigated by means of numerical simulations performed with the Monte Carlo transport code CsFlow3D. Simulations of the prototype source (1/8 of the ITER NBI source size) have shown that the plasma distribution inside the source has the major effect on Cs dynamics during the pulse: asymmetry of the plasma parameters leads to asymmetry in Cs distribution in front of the plasma grid. The simulated time traces and the general simulation results are in agreement with the experimental measurements. Simulations performed for the ELISE testbed (half of the ITER NBI source size) have shown an effect of the vacuum phase time on the amount and stability of Cs during the pulse. The sputtering of Cs due to back-streaming ions was reproduced by the simulations and it is in agreement with the experimental observation: this can become a critical issue during long pulses, especially in case of continuous extraction as foreseen for ITER. These results and the acquired knowledge of Cs dynamics will be useful to have a better management of Cs and thus to reduce its consumption, in the direction of the demonstration fusion power plant DEMO.

  5. Plasma-surface interaction in the context of ITER.

    PubMed

    Kleyn, A W; Lopes Cardozo, N J; Samm, U

    2006-04-21

    The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions.

  6. Review of particle-in-cell modeling for the extraction region of large negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Wünderlich, D.; Mochalskyy, S.; Montellano, I. M.; Revel, A.

    2018-05-01

    Particle-in-cell (PIC) codes are used since the early 1960s for calculating self-consistently the motion of charged particles in plasmas, taking into account external electric and magnetic fields as well as the fields created by the particles itself. Due to the used very small time steps (in the order of the inverse plasma frequency) and mesh size, the computational requirements can be very high and they drastically increase with increasing plasma density and size of the calculation domain. Thus, usually small computational domains and/or reduced dimensionality are used. In the last years, the available central processing unit (CPU) power strongly increased. Together with a massive parallelization of the codes, it is now possible to describe in 3D the extraction of charged particles from a plasma, using calculation domains with an edge length of several centimeters, consisting of one extraction aperture, the plasma in direct vicinity of the aperture, and a part of the extraction system. Large negative hydrogen or deuterium ion sources are essential parts of the neutral beam injection (NBI) system in future fusion devices like the international fusion experiment ITER and the demonstration reactor (DEMO). For ITER NBI RF driven sources with a source area of 0.9 × 1.9 m2 and 1280 extraction apertures will be used. The extraction of negative ions is accompanied by the co-extraction of electrons which are deflected onto an electron dump. Typically, the maximum negative extracted ion current is limited by the amount and the temporal instability of the co-extracted electrons, especially for operation in deuterium. Different PIC codes are available for the extraction region of large driven negative ion sources for fusion. Additionally, some effort is ongoing in developing codes that describe in a simplified manner (coarser mesh or reduced dimensionality) the plasma of the whole ion source. The presentation first gives a brief overview of the current status of the ion source development for ITER NBI and of the PIC method. Different PIC codes for the extraction region are introduced as well as the coupling to codes describing the whole source (PIC codes or fluid codes). Presented and discussed are different physical and numerical aspects of applying PIC codes to negative hydrogen ion sources for fusion as well as selected code results. The main focus of future calculations will be the meniscus formation and identifying measures for reducing the co-extracted electrons, in particular for deuterium operation. The recent results of the 3D PIC code ONIX (calculation domain: one extraction aperture and its vicinity) for the ITER prototype source (1/8 size of the ITER NBI source) are presented.

  7. Scientific and technical challenges on the road towards fusion electricity

    NASA Astrophysics Data System (ADS)

    Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.

    2017-10-01

    The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.

  8. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors.

    PubMed

    Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2010-10-01

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  9. Analysis of the iteratively regularized Gauss-Newton method under a heuristic rule

    NASA Astrophysics Data System (ADS)

    Jin, Qinian; Wang, Wei

    2018-03-01

    The iteratively regularized Gauss-Newton method is one of the most prominent regularization methods for solving nonlinear ill-posed inverse problems when the data is corrupted by noise. In order to produce a useful approximate solution, this iterative method should be terminated properly. The existing a priori and a posteriori stopping rules require accurate information on the noise level, which may not be available or reliable in practical applications. In this paper we propose a heuristic selection rule for this regularization method, which requires no information on the noise level. By imposing certain conditions on the noise, we derive a posteriori error estimates on the approximate solutions under various source conditions. Furthermore, we establish a convergence result without using any source condition. Numerical results are presented to illustrate the performance of our heuristic selection rule.

  10. Reliable recovery of the optical properties of multi-layer turbid media by iteratively using a layered diffusion model at multiple source-detector separations

    PubMed Central

    Liao, Yu-Kai; Tseng, Sheng-Hao

    2014-01-01

    Accurately determining the optical properties of multi-layer turbid media using a layered diffusion model is often a difficult task and could be an ill-posed problem. In this study, an iterative algorithm was proposed for solving such problems. This algorithm employed a layered diffusion model to calculate the optical properties of a layered sample at several source-detector separations (SDSs). The optical properties determined at various SDSs were mutually referenced to complete one round of iteration and the optical properties were gradually revised in further iterations until a set of stable optical properties was obtained. We evaluated the performance of the proposed method using frequency domain Monte Carlo simulations and found that the method could robustly recover the layered sample properties with various layer thickness and optical property settings. It is expected that this algorithm can work with photon transport models in frequency and time domain for various applications, such as determination of subcutaneous fat or muscle optical properties and monitoring the hemodynamics of muscle. PMID:24688828

  11. Sound source identification and sound radiation modeling in a moving medium using the time-domain equivalent source method.

    PubMed

    Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang

    2015-05-01

    Planar near-field acoustic holography has been successfully extended to reconstruct the sound field in a moving medium, however, the reconstructed field still contains the convection effect that might lead to the wrong identification of sound sources. In order to accurately identify sound sources in a moving medium, a time-domain equivalent source method is developed. In the method, the real source is replaced by a series of time-domain equivalent sources whose strengths are solved iteratively by utilizing the measured pressure and the known convective time-domain Green's function, and time averaging is used to reduce the instability in the iterative solving process. Since these solved equivalent source strengths are independent of the convection effect, they can be used not only to identify sound sources but also to model sound radiations in both moving and static media. Numerical simulations are performed to investigate the influence of noise on the solved equivalent source strengths and the effect of time averaging on reducing the instability, and to demonstrate the advantages of the proposed method on the source identification and sound radiation modeling.

  12. Low temperature ECR-CVD of SiN X for III-V device passivation

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; MacKenzie, K.; Johnson, D.; Shul, R. J.; Pearton, S. J.; Ren, F.

    1998-06-01

    Electron Cyclotron Resonance SiH 4/N 2 and SiH 4/NH 3 discharges have been employed for deposition of SiN X over a range of temperatures (25-120°C), source powers (200-700 W), pressures (15-40 mTorr), SiH 4 percentages (20-50%) and additional Ar flow rates (0-30 sccm). Deposition rates were in the range 100-700 Å min -1, with refractive indices of 1.7-2.3. The SiH 4/N 2 chemistry allowed a wider process window for tailoring the stress in the SiN X films, with chuck temperature, ECR source power, chamber pressure, SiH 4 composition and Ar addition all producing a transition from compressive to tensile stress, or vice-versa.

  13. Testing contamination source identification methods for water distribution networks

    DOE PAGES

    Seth, Arpan; Klise, Katherine A.; Siirola, John D.; ...

    2016-04-01

    In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections,more » and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA’s Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Lastly, a set of recommendations are made for users to consider when working with different categories of SI methods.« less

  14. The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Fiorentin, A.; Gambetta, G.; Gnesotto, F.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Moresco, M.; Ocello, E.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Sartori, E.; Siragusa, M.; Sonato, P.; Sottocornola, A.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Kashiwagi, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Maejima, T.; Kojima, A.; Umeda, N.; Yamanaka, H.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Heinemann, B.; Kraus, W.; Hanke, S.; Hauer, V.; Ochoa, S.; Blatchford, P.; Chuilon, B.; Xue, Y.; De Esch, H. P. L.; Hemsworth, R.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Cavenago, M.; D'Arienzo, M.; Sandri, S.; Tonti, A.

    2017-08-01

    The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now—when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.

  15. n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation

    PubMed Central

    Palma Orozco, Rosaura

    2018-01-01

    Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal. PMID:29568310

  16. Iterative color-multiplexed, electro-optical processor.

    PubMed

    Psaltis, D; Casasent, D; Carlotto, M

    1979-11-01

    A noncoherent optical vector-matrix multiplier using a linear LED source array and a linear P-I-N photodiode detector array has been combined with a 1-D adder in a feedback loop. The resultant iterative optical processor and its use in solving simultaneous linear equations are described. Operation on complex data is provided by a novel color-multiplexing system.

  17. Rater variables associated with ITER ratings.

    PubMed

    Paget, Michael; Wu, Caren; McIlwrick, Joann; Woloschuk, Wayne; Wright, Bruce; McLaughlin, Kevin

    2013-10-01

    Advocates of holistic assessment consider the ITER a more authentic way to assess performance. But this assessment format is subjective and, therefore, susceptible to rater bias. Here our objective was to study the association between rater variables and ITER ratings. In this observational study our participants were clerks at the University of Calgary and preceptors who completed online ITERs between February 2008 and July 2009. Our outcome variable was global rating on the ITER (rated 1-5), and we used a generalized estimating equation model to identify variables associated with this rating. Students were rated "above expected level" or "outstanding" on 66.4 % of 1050 online ITERs completed during the study period. Two rater variables attenuated ITER ratings: the log transformed time taken to complete the ITER [β = -0.06, 95 % confidence interval (-0.10, -0.02), p = 0.002], and the number of ITERs that a preceptor completed over the time period of the study [β = -0.008 (-0.02, -0.001), p = 0.02]. In this study we found evidence of leniency bias that resulted in two thirds of students being rated above expected level of performance. This leniency bias appeared to be attenuated by delay in ITER completion, and was also blunted in preceptors who rated more students. As all biases threaten the internal validity of the assessment process, further research is needed to confirm these and other sources of rater bias in ITER ratings, and to explore ways of limiting their impact.

  18. Application of high-quality SiO2 grown by multipolar ECR source to Si/SiGe MISFET

    NASA Technical Reports Server (NTRS)

    Sung, K. T.; Li, W. Q.; Li, S. H.; Pang, S. W.; Bhattacharya, P. K.

    1993-01-01

    A 5 nm-thick SiO2 gate was grown on an Si(p+)/Si(0.8)Ge(0.2) modulation-doped heterostructure at 26 C with an oxygen plasma generated by a multipolar electron cyclotron resonance source. The ultrathin oxide has breakdown field above 12 MV/cm and fixed charge density about 3 x 10 exp 10/sq cm. Leakage current as low as 1/micro-A was obtained with the gate biased at 4 V. The MISFET with 0.25 x 25 sq m gate shows maximum drain current of 41.6 mA/mm and peak transconductance of 21 mS/mm.

  19. Germanium/silicon ratios as a tracer of silica sources in Hawaiian streams

    NASA Astrophysics Data System (ADS)

    Kurtz, A.; Derry, L.; Chadwick, O.

    2003-04-01

    Ge/Si ratios show great promise as a tracer of terrestrial silica cycling, weathering, and hydrologic flowpaths in catchment studies. Germanium is a trace element whose behavior mimics silicon in most environments. Silicate weathering fractionates Ge/Si though preferential incorporation of Ge in secondary clays. Dissolved Ge/Si ratios of most streams 1) are lower than those in the rocks they drain, 2) vary with discharge, and 3) fall on a two-component mixing curve when plotted against [Si]. These observations have led to the suggestion that streamwater Ge/Si ratios trace watershed-integrated weathering intensity, via mixing between a high [Si], low Ge/Si component derived from incongruent weathering of primary silicates, and a low [Si], high Ge/Si component derived from dissolution of secondary minerals. We tested this model by measuring depth profiles of soil and soil-water [Si] and Ge/Si ratios from six sites along a soil chronosequence in Hawaii. Soils range from incipiently weathered at the young (300 year-old substrate) end of the chronosequence to intensely weathered in soils older than 20,000 years. All sites have essentially identical parent material, climate (250 cm rain/year), and vegetation (Ohia and tree-ferns). Solid-phase Ge/Si in these soils increase with silica depletion from basalt-like values of 2.5 µmol/mol in young soils to values > 20 µmol/mol as Ge is preferentially retained by secondary phases in older soils. Soil-water compositions depend primarily on depth. Deep soil-waters (>20 cm) have low [Si] and high Ge/Si (1.5 to 5 µmol/mol), consistent with dissolution of Ge-enriched secondary minerals. Surface horizon soil-waters (<15cm) from all profiles have high [Si], in some cases approaching opal saturation, and low Ge/Si (0.3 to 1 µmol/mol). This component is consistent with dissolution of low Ge/Si terrestrial plant phytolith opal. We find no evidence that incongruent weathering contributes a high [Si], low Ge/Si soil-water component, even in young soils that still contain volcanic glass. Instead, Hawaiian streamwater Ge/Si ratios appear to trace mixing between phytolith-derived Si sourced in surface soils, and secondary mineral-derived Si sourced in deep soils. A compilation of published Ge/Si data from USGS-gauged Hawaiian streams indicates that all are dominated by this low Ge/Si, apparently phytolith-derived source of Si. Only watersheds draining well-developed soils ever show high Ge/Si ratios, and only during periods of high discharge. Mass balance calculations suggest that ~80% of the silica flux carried by studied Hawaiian streams is delivered to streams via the soil phytolith silica pool.

  20. Correlation of processing and sintering variables with the strength and radiography of silicon nitride

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Baaklini, G. Y.

    1986-01-01

    A sintered Si3N4-SiO2-Y2O3 composition, NASA 6Y, was developed that reached four-point flexural average strength/standard deviation values of 857/36, 544/33, and 462/59 MPa at room temperature, 1200 and 1370 C respectively. These strengths represented improvements of 56, 38, and 21 percent over baseline properties at the three test temperatures. At room temperature the standard deviation was reduced by over a factor of three. These accomplishments were realized by the iterative utilization of conventional x-radiography to characterize structural (density) uniformity as affected by systematic changes in powder processing and sintering parameters. Accompanying the improvement in mechanical properties was a change in the type of flaw causing failure from a pore to a large columnar beta- Si3N4 grain typically 40 to 80 microns long, 10 to 30 microns wide, and with an aspect ratio of 5:1.

  1. Structure and properties of the anions MF4-, MCl4- and MBr4- (M = C, Si, Ge)

    NASA Astrophysics Data System (ADS)

    Grein, Friedrich

    2015-04-01

    Density functional theory (DFT), Møller-Plesset (MP2) and coupled cluster with single and double substitutions including non-iterative triple excitations (CCSD(T)) calculations on the anions MX4-, with M = C, Si, Ge and X = F, Cl, Br, show that GeF4-, SiCl4-, GeCl4- and SiBr4- prefer a C2v conformation, but CCl4- is an elongated C3v structure. CBr4- has Td symmetry in MP2, but is slightly more stable in elongated C3v form with DFT and CCSD(T). GeBr4- has Td symmetry. CF4- and SiF4- are unstable with respect to loss of an electron. Vertical electron affinities (EAs) are negative also for CCl4 and SiCl4, and close to zero for GeF4 and SiBr4. Adiabatic EAs range from 0.47 eV for SiCl4 to 1.78 eV for GeBr4. The lowest excited states at Td symmetry are 2T2 resonances with energies of 2.1-3.5 eV, resulting from excitation of the a1 singly occupied molecular orbital to vacant t2 orbitals. Vertical excitation energies (VEEs) and vibrational frequencies are given for the most stable anionic geometries. Comparison with experimental VEEs for CCl4- is made. From dissociation energies of MX4, MX4-, MX3 and MX3-, appearance energies of X-, MX3-, X2- and MX2- were calculated. Most were found to be in reasonable agreement with experimental values. Theoretical spin densities and g-factors have been compared with experimental results available for CCl4-, SiCl4- and GeCl4-.

  2. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  3. Deblending of simultaneous-source data using iterative seislet frame thresholding based on a robust slope estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Yatong; Han, Chunying; Chi, Yue

    2018-06-01

    In a simultaneous source survey, no limitation is required for the shot scheduling of nearby sources and thus a huge acquisition efficiency can be obtained but at the same time making the recorded seismic data contaminated by strong blending interference. In this paper, we propose a multi-dip seislet frame based sparse inversion algorithm to iteratively separate simultaneous sources. We overcome two inherent drawbacks of traditional seislet transform. For the multi-dip problem, we propose to apply a multi-dip seislet frame thresholding strategy instead of the traditional seislet transform for deblending simultaneous-source data that contains multiple dips, e.g., containing multiple reflections. The multi-dip seislet frame strategy solves the conflicting dip problem that degrades the performance of the traditional seislet transform. For the noise issue, we propose to use a robust dip estimation algorithm that is based on velocity-slope transformation. Instead of calculating the local slope directly using the plane-wave destruction (PWD) based method, we first apply NMO-based velocity analysis and obtain NMO velocities for multi-dip components that correspond to multiples of different orders, then a fairly accurate slope estimation can be obtained using the velocity-slope conversion equation. An iterative deblending framework is given and validated through a comprehensive analysis over both numerical synthetic and field data examples.

  4. Application of an iterative least-squares waveform inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Mendoza, C.

    1991-01-01

    An iterative least-squares technique is used to simultaneously invert the strong-motion records and teleseismic P waveforms for the 1978 Tabas, Iran, earthquake to deduce the rupture history. The effects of using different data sets and different parametrizations of the problem (linear versus nonlinear) are considered. A consensus of all the inversion runs indicates a complex, multiple source for the Tabas earthquake, with four main source regions over a fault length of 90 km and an average rupture velocity of 2.5 km/sec. -from Authors

  5. Geochemical Evidence Against Pyroxenites in the Sources of Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Humayun, M.; Yang, S.; Clague, D. A.

    2017-12-01

    Hawaiian lavas exhibit high Fe/Mn ratios, and other elemental and isotopic characteristics, that have been argued to be evidence for chemical interactions at the core-mantle boundary. Alternatively, the enrichment in silica relative to 3 GPa melts of garnet peridotite, and the high Fe/Mn, has been argued to represent the contributions of garnet pyroxenite melts generated beneath a thick lithosphere. Here, we present a set of new elemental ratios designed to effectively discriminate partial melts of peridotite from pyroxenite in mantle sources. A set of 200 Hawaiian volcanic glasses from 7 volcanoes were analyzed by LA-ICP-MS for the abundances of 63 elements, with an emphasis on obtaining precise Ge/Si ratios. From experimental partitioning, silica-rich partial melts of MORB-like garnet pyroxenite are expected to have low Ge/Si ratios relative to their sources due to the retention of Ge in the residue by both garnet and pyroxene. In contrast, partial melts of peridotite are expected to have high Ge/Si ratios relative to mantle peridotites due to the incompatibility of Ge in olivine. We observed that Ge abundances in subaerial Hawaiian volcanoes are correlated with indicators of volcanic degassing, including S, Re and As. Subaerial and submarine lavas exhibit a correlation between Ge/Si ratio and S content that indicates that all Hawaiian lavas share the same pre-eruptive Ge/Si ratio. Submarine glasses with the least evidence of degassing exhibit a constant Ge/Si ratio over the range of SiO2 (44-52 %) observed in Hawaiian volcanics. Surprisingly, MORB glasses exhibit more variation in Ge/Si ratio than the pre-eruptive Ge/Si of Hawaiian glasses, implying the presence of 0-12% recycled crust in the MORB source. The constant Ge/Si ratio of Hawaiian glasses implies that pyroxenite melting did not enrich Hawaiian lavas in silica. Processes that could yield Si-rich melts without changing the Ge/Si ratio may involve melt-lithosphere interaction or bridgmanite/ferropericlase fractionation in the deep mantle.

  6. Processes controlling silicon isotopic fractionation in a forested tropical watershed: Mule Hole Critical Zone Observatory (Southern India)

    NASA Astrophysics Data System (ADS)

    Riotte, Jean; Meunier, Jean-Dominique; Zambardi, Thomas; Audry, Stéphane; Barboni, Doris; Anupama, Krishnamurthy; Prasad, Srinivasan; Chmeleff, Jérôme; Poitrasson, Franck; Sekhar, Muddu; Braun, Jean-Jacques

    2018-05-01

    Assessing the dynamics of the silica cycle in the critical zone remains challenging, particularly within the soil, where multiple processes are involved. To improve our understanding of this cycle in the Tropics, and more specifically the role played by vegetation, we combined elemental Si mass balance with the δ30Si signatures of the compartments involved in the water-plant-rock interactions of a tropical forested watershed, Mule Hole (Southern India). To accomplish this, we analysed (1) the δ30Si values of present-day litter phytoliths from tree leaves and grass, as well as soil amorphous silica (ASi); (2) the Si isotope fractionation induced by phytolith dissolution; (3) the silicon mass balance inferred from isotopes at the soil-plant scale; and (4) the consistency between water sources and the δ30Si signatures in the ephemeral stream. The δ30Si values of present-day litter phytoliths and soil ASi vary within a narrow range of 1.10-1.40‰ for all samples, but two deep vertisol samples which likely trapped phytoliths from different vegetation growing under more humid conditions, as indicated by pollen analysis. A homogeneous signature of litter is a minimum condition for using δ30Si as a proxy for the litter/phytolith source of Si. However, litter-ash dissolution experiments demonstrate that the incipient dissolution of phytoliths fractionates Si isotopes, with the preferential dissolution of 28Si over 30Si yielding δ30Si values as low as -1.41‰. Values close to the whole-sample signatures, i.e., above 1‰, were recovered in the solution after a few hours of water-ash interaction. At the soil-plant scale, the average δ30Si value of soil-infiltrating solutions is slightly lighter than the average phytolith signature, which suggests phytoliths as the source of soil dissolved Si. The isotopic budget of dissolved Si within the soil layer, which was obtained based on previous elemental fluxes, is imbalanced. Equilibrating the isotopic budget would imply that up to 4100 mol ha-1 yr-1 of silica is taken up by vegetation, which is almost twice as large as that initially estimated from the elemental budget. The additional Si flux taken up, and likely stored in woody stems, was estimated assuming that Si isotopes followed a steady-state model for the whole Si plant uptake and then followed a Rayleigh model once in the plants. The δ30Si value of the additional Si flux taken up should be close to 0‰, i.e., enriched in light Si isotopes compared to the litter. If steady-state conditions apply, the source could correspond to soil ASi dissolution or deep (saprolite) root uptake. At the outlet of the watershed, the stream exhibits low δ30Si values (0.28-0.71‰) during peak flows and high δ30Si values (1.29-1.61‰) during the recessions at the end of the rainy season. Heavy δ30Si signatures are consistent with the expected domination of seepage at the end of floods. The light δ30Si values during peak flow are slightly lower than the overland flow signature and reflect either a sampling bias of overland flow or a minor but significant contribution of another Si source within the stream, possibly the partial dissolution of phytoliths from the suspended load, with slight isotopic fractionation. This study confirms that vegetation controls the silicon cycle in this dry tropical forest. It also shows that silicon isotopes yield a better grasp of the mass balance and sources and potential mechanisms involved than the consideration of only silicon concentrations. However, this proxy still relies on working hypotheses, notably steady-state and/or Rayleigh fractionation models, which need to be confirmed in further studies.

  7. Si1-yGey or Ge1-zSnz Source/Drain Stressors on Strained Si1-xGex-Channel P-Type Field-Effect Transistors: A Technology Computer-Aided Design Study

    NASA Astrophysics Data System (ADS)

    Eneman, Geert; De Keersgieter, An; Witters, Liesbeth; Mitard, Jerome; Vincent, Benjamin; Hikavyy, Andriy; Loo, Roger; Horiguchi, Naoto; Collaert, Nadine; Thean, Aaron

    2013-04-01

    The interaction between two stress techniques, strain-relaxed buffers (SRBs) and epitaxial source/drain stressors, is studied on short, Si1-xGex- and Ge-channel planar transistors. This work focuses on the longitudinal channel stress generated by these two techniques. Unlike for unstrained silicon-channel transistors, for strained channels on top of a strain-relaxed buffer a source/drain stressor without recess generates similar longitudinal channel stress than source/drain stressors with a deep recess. The least efficient stress transfer is obtained for source/drain stressors with a small recess that removes only the strained channel, not the substrate underneath. These trends are explained by a trade-off between elastic relaxation of the strained-channel during source/drain recess and the increased stress generation of thicker source/drain stressors. For Ge-channel pFETs, GeSn source/drains and Si1-xGex strain-relaxed buffers are efficient stressors for mobility enhancement. The former is more efficient for gate-last schemes than for gate-first, while the stress generated by the SRB is found to be independent of the gate-scheme.

  8. The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie.

    PubMed

    Maavara, Taylor; Slowinski, Stephanie; Rezanezhad, Fereidoun; Van Meter, Kimberly; Van Cappellen, Philippe

    2018-05-01

    Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The optimal algorithm for Multi-source RS image fusion.

    PubMed

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  10. Investigation of Helicon discharges as RF coupling concept of negative hydrogen ion sources

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Fantz, U.

    2013-02-01

    The ITER reference source for H- and D- requires a high RF input power (up to 90 kW per driver). To reduce the demands on the RF circuit, it is highly desirable to reduce the power consumption while retaining the values of the relevant plasma parameters namely the positive ion density and the atomic hydrogen density. Helicon plasmas are a promising alternative RF coupling concept but they are typically generated in long thin discharge tubes using rare gases and an RF frequency of 13.56 MHz. Hence the applicability to the ITER reference source geometry, frequency and the utilization of hydrogen/deuterium has to be proved. In this paper the strategy of the approach for using Helicon discharges for ITER reference source parameters is introduced and the first promising measurements which were carried out at a small laboratory experiment are presented. With increasing RF power a mode transition to the Helicon regime was observed for argon and argon/hydrogen mixtures. In pure hydrogen/deuterium the mode transition could not yet be achieved as the available RF power is too low. In deuterium a special feature of Helicon discharges, the socalled low field peak, could be observed at a moderate B-field of 3 mT.

  11. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  12. Simultaneous Observatinos of H2O and SiO Masers Toward Known Extragalactic Water Maser Sources

    NASA Astrophysics Data System (ADS)

    Cho, Se-Hyung; Yoon, Dong-Hwan; Kim, Jaeheon; Byun, Do-Young; Wagner, Jan

    2015-12-01

    We observe ten known 22 GHz H_{2}O maser galaxies during February 19-22, 2011 using the 21 m Tamna telescope of the Korean VLBI Network and a new wide-band digital spectrometer. Simultaneously we searched for 43 GHz SiO v = 1, 2, J = 1-0 maser emission. We detect H_{2}O maser emission towards five sources (M 33, NGC 1052, NGC 1068, NGC 4258, M 82), with non-detections towards the remaining sources (UGC 3193, UGC 3789, Antennae H_{2}O-West, M 51, NGC 6323) likely due to sensitivity. Our 22 GHz spectra are consistent with earlier findings. Our simultaneous 43 GHz SiO maser search produced non-detections, yielding - for the first time - upper limits on the 43 GHz SiO maser emission in these sources at a 3 σ sensitivity level of 0.018 K-0.033 K (0.24 Jy-0.44 Jy) in a 1.75 km s^{-1} velocity resolution. Our findings suggest that any 43 GHz SiO masers in these sources (some having starburst-associated H_{2}O kilomasers) must be faint compared to the 22 GHz H_{2}O maser emission.

  13. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  14. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  15. A combined STM and SPA-LEED study of the “explosive” nucleation and collective diffusion in Pb/Si(111)

    DOE PAGES

    Hattab, H.; Hupalo, M.; Hershberger, M. T.; ...

    2015-08-20

    A novel type of very fast nucleation was recently found in Pb/Si(111) with 4- to 7-layer high islands becoming crystalline in an “explosive” way, when the Pb deposited amount in the wetting layer is compressed to θ c ~ 1.22 ML, well above the metallic Pb(111) density. This “explosive” nucleation is very different from classical nucleation when island growth is more gradual and islands grow in size by single adatom aggregation [8]. In order to identify the key parameters that control the nucleation we used scanning tunneling microscopy (STM) and spot profile analysis low energy electron diffraction (SPA-LEED). It wasmore » found that the number and duration of steps in iterative deposition used to approach θc and the flux rate have dramatic effects on the crystallization process. Larger depositions over shorter times induce greater spatial coverage fluctuations, so local areas can reach the critical coverage θ c easier. This can trigger the collective motion of the wetting layer from far away to build the Pb islands “explosively”. Here, the SPA-LEED experiments show that even low flux experiments in iterative deposition experiments can trigger transfer of material to the superstable 7-layer islands, as seen from the stronger satellite rings close to the (00) spot.« less

  16. Iterative deblending of simultaneous-source data using a coherency-pass shaping operator

    NASA Astrophysics Data System (ADS)

    Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Zhang, Dong; Li, Chao; Pan, Xiao; Chen, Yangkang

    2017-10-01

    Simultaneous-source acquisition helps greatly boost an economic saving, while it brings an unprecedented challenge of removing the crosstalk interference in the recorded seismic data. In this paper, we propose a novel iterative method to separate the simultaneous source data based on a coherency-pass shaping operator. The coherency-pass filter is used to constrain the model, that is, the unblended data to be estimated, in the shaping regularization framework. In the simultaneous source survey, the incoherent interference from adjacent shots greatly increases the rank of the frequency domain Hankel matrix that is formed from the blended record. Thus, the method based on rank reduction is capable of separating the blended record to some extent. However, the shortcoming is that it may cause residual noise when there is strong blending interference. We propose to cascade the rank reduction and thresholding operators to deal with this issue. In the initial iterations, we adopt a small rank to severely separate the blended interference and a large thresholding value as strong constraints to remove the residual noise in the time domain. In the later iterations, since more and more events have been recovered, we weaken the constraint by increasing the rank and shrinking the threshold to recover weak events and to guarantee the convergence. In this way, the combined rank reduction and thresholding strategy acts as a coherency-pass filter, which only passes the coherent high-amplitude component after rank reduction instead of passing both signal and noise in traditional rank reduction based approaches. Two synthetic examples are tested to demonstrate the performance of the proposed method. In addition, the application on two field data sets (common receiver gathers and stacked profiles) further validate the effectiveness of the proposed method.

  17. Development of two color laser diagnostics for the ITER poloidal polarimeter.

    PubMed

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2010-10-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  18. Single photon sources in 4H-SiC metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Umeda, T.; Okamoto, M.; Kosugi, R.; Harada, S.; Haruyama, M.; Kada, W.; Hanaizumi, O.; Onoda, S.; Ohshima, T.

    2018-01-01

    We present single photon sources (SPSs) embedded in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). They are formed in the SiC/SiO2 interface regions of wet-oxidation C-face 4H-SiC MOSFETs and were not found in other C-face and Si-face MOSFETs. Their bright room-temperature photoluminescence (PL) was observed in the range from 550 to 750 nm and revealed variable multi-peak structures as well as variable peak shifts. We characterized a wide variety of their PL spectra as the inevitable variation of local atomic structures at the interface. Their polarization dependence indicates that they are formed at the SiC side of the interface. We also demonstrate that it is possible to switch on/off the SPSs by a bias voltage of the MOSFET.

  19. Si impurity concentration in nominally undoped Al0.7Ga0.3N grown in a planetary MOVPE reactor

    NASA Astrophysics Data System (ADS)

    Jeschke, J.; Knauer, A.; Weyers, M.

    2018-02-01

    The unintentional silicon incorporation during the metalorganic vapor phase epitaxy (MOVPE) of nominally undoped Al0.7Ga0.3N in a Planetary Reactor under various growth conditions was investigated. Dependent on growth temperature, pressure and V/III ratio, Si concentrations of below 1 × 1016 up to 4 × 1017 cm-3 were measured. Potential Si sources are discussed and, by comparing samples grown in a SiC coated reactor setup and in a TaC coated setup, the SiC coatings in the reactor are identified as the most likely source for the unintentional Si doping at elevated temperatures above 1080 °C. Under identical growth conditions the background Si concentration can be reduced by up to an order of magnitude when using TaC coatings.

  20. Epitaxial regrowth of silicon for the fabrication of radial junction nanowire solar cells

    NASA Astrophysics Data System (ADS)

    Kendrick, Chito E.; Eichfeld, Sarah M.; Ke, Yue; Weng, Xiaojun; Wang, Xin; Mayer, Theresa S.; Redwing, Joan M.

    2010-08-01

    Radial p-n silicon nanowire (SiNW) solar cells are of interest as a potential pathway to increase the efficiency of crystalline silicon photovoltaics by reducing the junction length and surface reflectivity. Our studies have focused on the use of vapor-liquid-solid (VLS) growth in combination with chemical vapor deposition (CVD) processing for the fabrication of radial p-n junction SiNW array solar cells. High aspect ratio p-type SiNW arrays were initially grown on gold-coated (111) Si substrates by CVD using SiCl4 as the source gas and B2H6 as the p-type dopant source. The epitaxial re-growth of n-type Si shell layers on the Si nanowires was then investigated using SiH4 as the source gas and PH3 as the dopant. Highly conformal coatings were achieved on nanowires up to 25 μm in length. The microstructure of the Si shell layer changed from polycrystalline to single crystal as the deposition temperature was raised from 650oC to 950oC. Electrical test structures were fabricated by aligning released SiNWs onto pre-patterned substrates via fieldassisted assembly followed by selective removal of the n-type shell layer and contact deposition. Current-voltage measurements of the radial p-n SiNWs diodes fabricated with re-grown Si shell layers at 950°C demonstrate rectifying behavior with an ideality factor of 1.93. Under illumination from an AM1.5g spectrum and efficiency for this single SiNW radial p-n junction was determined to be 1.8%, total wire diameter was 985 nm.

  1. EDITORIAL: ECRH physics and technology in ITER

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2008-05-01

    It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter: EC wave physics and applications, M. Thumm: Source and transmission line development, and S. Cirant: ITER specific system designs). These summaries are included in this issue to give a more complete view of the technical meeting. Finally, it is appropriate to mention the future of this meeting series. With the ratification of the ITER agreement and the formation of the ITER International Organization, it was recognized that meetings conducted by outside agencies with an exclusive focus on ITER would be somewhat unusual. However, the participants at this meeting felt that the gathering of international experts with diverse specialities within EC wave physics and technology to focus on using EC waves in future fusion devices like ITER was extremely valuable. It was therefore recommended that this series of meetings continue, but with the broader focus on the application of EC waves to steady-state and burning plasma experiments including demonstration power plants. As the papers in this special issue show, the EC community is already taking seriously the challenges of applying EC waves to fusion devices with high neutron fluence and continuous operation at high reliability.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seth, Arpan; Klise, Katherine A.; Siirola, John D.

    In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections,more » and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA’s Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Lastly, a set of recommendations are made for users to consider when working with different categories of SI methods.« less

  3. Si substrates texturing and vapor-solid-solid Si nanowhiskers growth using pure hydrogen as source gas

    NASA Astrophysics Data System (ADS)

    Nordmark, H.; Nagayoshi, H.; Matsumoto, N.; Nishimura, S.; Terashima, K.; Marioara, C. D.; Walmsley, J. C.; Holmestad, R.; Ulyashin, A.

    2009-02-01

    Scanning and transmission electron microscopies have been used to study silicon substrate texturing and whisker growth on Si substrates using pure hydrogen source gas in a tungsten hot filament reactor. Substrate texturing, in the nanometer to micrometer range of mono- and as-cut multicrystalline silicon, was observed after deposition of WSi2 particles that acted as a mask for subsequent hydrogen radical etching. Simultaneous Si whisker growth was observed for long residence time of the source gas and low H2 flow rate with high pressure. The whiskers formed via vapor-solid-solid growth, in which the deposited WSi2 particles acted as catalysts for a subsequent metal-induced layer exchange process well below the eutectic temperature. In this process, SiHx species, formed by substrate etching by the H radicals, diffuse through the metal particles. This leads to growth of crystalline Si whiskers via metal-induced solid-phase crystallization. Transmission electron microscopy, electron diffraction, and x-ray energy dispersive spectroscopy were used to study the WSi2 particles and the structure of the Si substrates in detail. It has been established that the whiskers are partly crystalline and partly amorphous, consisting of pure Si with WSi2 particles on their tips as well as sometimes being incorporated into their structure.

  4. Modeling of Pixelated Detector in SPECT Pinhole Reconstruction.

    PubMed

    Feng, Bing; Zeng, Gengsheng L

    2014-04-10

    A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO 2 ) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts.

  5. Uninterrupted and reusable source for the controlled growth of nanowires

    PubMed Central

    Sugavaneshwar, R. P.; Nanda, Karuna Kar

    2013-01-01

    Generally, the length of the oxide nanowires grown by vapor phase transport is limited by the degradation of the source materials. Furthermore, the source material is used once for the nanowires growth. By exploiting the Si-Zn phase diagram, we have developed a simple methodology for the non-catalytic growth of ultralong ZnO nanowires in large area with controllable aspect ratio and branched structures. The insolubility of Zn in Si and the use of a Si cap on the Zn source to prevent local source oxidation of Zn (i. e. prevents the degradation of the source) are the keys to grow longer nanowires without limitations. It has been shown that the aspect ratio can be controlled by thermodynamically (temperature) and more importantly by kinetically (vapor flux). One of the interesting findings is that the same source material can be used for several depositions of oxide nanostructured materials. PMID:23412010

  6. Towards a realistic 3D simulation of the extraction region in ITER NBI relevant ion source

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Wünderlich, D.; Fantz, U.; Franzen, P.; Minea, T.

    2015-03-01

    The development of negative ion (NI) sources for ITER is strongly accompanied by modelling activities. The ONIX code addresses the physics of formation and extraction of negative hydrogen ions at caesiated sources as well as the amount of co-extracted electrons. In order to be closer to the experimental conditions the code has been improved. It includes now the bias potential applied to first grid (plasma grid) of the extraction system, and the presence of Cs+ ions in the plasma. The simulation results show that such aspects play an important role for the formation of an ion-ion plasma in the boundary region by reducing the depth of the negative potential well in vicinity to the plasma grid that limits the extraction of the NIs produced at the Cs covered plasma grid surface. The influence of the initial temperature of the surface produced NI and its emission rate on the NI density in the bulk plasma that in turn affects the beam formation region was analysed. The formation of the plasma meniscus, the boundary between the plasma and the beam, was investigated for the extraction potentials of 5 and 10 kV. At the smaller extraction potential the meniscus moves closer to the plasma grid but as in the case of 10 kV the deepest meniscus bend point is still outside of the aperture. Finally, a plasma containing the same amount of NI and electrons (nH- =ne =1017 m-3) , representing good source conditioning, was simulated. It is shown that at such conditions the extracted NI current can reach values of ˜32 mA cm-2 using ITER-relevant extraction potential of 10 kV and ˜19 mA cm-2 at 5 kV. These results are in good agreement with experimental measurements performed at the small scale ITER prototype source at the test facility BATMAN.

  7. Indian Test Facility (INTF) and its updates

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, M.; Chakraborty, A.; Rotti, C.; Joshi, J.; Patel, H.; Yadav, A.; Shah, S.; Tyagi, H.; Parmar, D.; Sudhir, Dass; Gahlaut, A.; Bansal, G.; Soni, J.; Pandya, K.; Pandey, R.; Yadav, R.; Nagaraju, M. V.; Mahesh, V.; Pillai, S.; Sharma, D.; Singh, D.; Bhuyan, M.; Mistry, H.; Parmar, K.; Patel, M.; Patel, K.; Prajapati, B.; Shishangiya, H.; Vishnudev, M.; Bhagora, J.

    2017-04-01

    To characterize ITER Diagnostic Neutral Beam (DNB) system with full specification and to support IPR’s negative ion beam based neutral beam injector (NBI) system development program, a R&D facility, named INTF is under commissioning phase. Implementation of a successful DNB at ITER requires several challenges need to be overcome. These issues are related to the negative ion production, its neutralization and corresponding neutral beam transport over the path lengths of ∼ 20.67 m to reach ITER plasma. DNB is a procurement package for INDIA, as an in-kind contribution to ITER. Since ITER is considered as a nuclear facility, minimum diagnostic systems, linked with safe operation of the machine are planned to be incorporated in it and so there is difficulty to characterize DNB after onsite commissioning. Therefore, the delivery of DNB to ITER will be benefited if DNB is operated and characterized prior to onsite commissioning. INTF has been envisaged to be operational with the large size ion source activities in the similar timeline, as with the SPIDER (RFX, Padova) facility. This paper describes some of the development updates of the facility.

  8. Operation of large RF sources for H-: Lessons learned at ELISE

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Wünderlich, D.; Heinemann, B.; Kraus, W.; Riedl, R.

    2017-08-01

    The goal of the ELISE test facility is to demonstrate that large RF-driven negative ion sources (1 × 1 m2 source area with 360 kW installed RF power) can achieve the parameters required for the ITER beam sources in terms of current densities and beam homogeneity at a filling pressure of 0.3 Pa for pulse lengths of up to one hour. With the experience in operation of the test facility, the beam source inspection and maintenance as well as with the results of the achieved source performance so far, conclusions are drawn for commissioning and operation of the ITER beam sources. Addressed are critical technical RF issues, extrapolations to the required RF power, Cs consumption and Cs ovens, the need of adjusting the magnetic filter field strength as well as the temporal dynamic and spatial asymmetry of the co-extracted electron current. It is proposed to relax the low pressure limit to 0.4 Pa and to replace the fixed electron-to-ion ratio by a power density limit for the extraction grid. This would be highly beneficial for controlling the co-extracted electrons.

  9. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates

    PubMed Central

    Agostinho, Flavia B.; Tubana, Brenda S.; Martins, Murilo S.; Datnoff, Lawrence E.

    2017-01-01

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha−1) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha−1 and one foliar Si solution applied at 20, 40 and 80 mg Si L−1) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As (P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si (P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants. PMID:28850079

  10. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates.

    PubMed

    Agostinho, Flavia B; Tubana, Brenda S; Martins, Murilo S; Datnoff, Lawrence E

    2017-08-29

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha -1 ) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha -1 and one foliar Si solution applied at 20, 40 and 80 mg Si L -1 ) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As ( P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si ( P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

  11. An overview of NSPCG: A nonsymmetric preconditioned conjugate gradient package

    NASA Astrophysics Data System (ADS)

    Oppe, Thomas C.; Joubert, Wayne D.; Kincaid, David R.

    1989-05-01

    The most recent research-oriented software package developed as part of the ITPACK Project is called "NSPCG" since it contains many nonsymmetric preconditioned conjugate gradient procedures. It is designed to solve large sparse systems of linear algebraic equations by a variety of different iterative methods. One of the main purposes for the development of the package is to provide a common modular structure for research on iterative methods for nonsymmetric matrices. Another purpose for the development of the package is to investigate the suitability of several iterative methods for vector computers. Since the vectorizability of an iterative method depends greatly on the matrix structure, NSPCG allows great flexibility in the operator representation. The coefficient matrix can be passed in one of several different matrix data storage schemes. These sparse data formats allow matrices with a wide range of structures from highly structured ones such as those with all nonzeros along a relatively small number of diagonals to completely unstructured sparse matrices. Alternatively, the package allows the user to call the accelerators directly with user-supplied routines for performing certain matrix operations. In this case, one can use the data format from an application program and not be required to copy the matrix into one of the package formats. This is particularly advantageous when memory space is limited. Some of the basic preconditioners that are available are point methods such as Jacobi, Incomplete LU Decomposition and Symmetric Successive Overrelaxation as well as block and multicolor preconditioners. The user can select from a large collection of accelerators such as Conjugate Gradient (CG), Chebyshev (SI, for semi-iterative), Generalized Minimal Residual (GMRES), Biconjugate Gradient Squared (BCGS) and many others. The package is modular so that almost any accelerator can be used with almost any preconditioner.

  12. Performance analysis of Rogowski coils and the measurement of the total toroidal current in the ITER machine

    NASA Astrophysics Data System (ADS)

    Quercia, A.; Albanese, R.; Fresa, R.; Minucci, S.; Arshad, S.; Vayakis, G.

    2017-12-01

    The paper carries out a comprehensive study of the performances of Rogowski coils. It describes methodologies that were developed in order to assess the capabilities of the Continuous External Rogowski (CER), which measures the total toroidal current in the ITER machine. Even though the paper mainly considers the CER, the contents are general and relevant to any Rogowski sensor. The CER consists of two concentric helical coils which are wound along a complex closed path. Modelling and computational activities were performed to quantify the measurement errors, taking detailed account of the ITER environment. The geometrical complexity of the sensor is accurately accounted for and the standard model which provides the classical expression to compute the flux linkage of Rogowski sensors is quantitatively validated. Then, in order to take into account the non-ideality of the winding, a generalized expression, formally analogue to the classical one, is presented. Models to determine the worst case and the statistical measurement accuracies are hence provided. The following sources of error are considered: effect of the joints, disturbances due to external sources of field (the currents flowing in the poloidal field coils and the ferromagnetic inserts of ITER), deviations from ideal geometry, toroidal field variations, calibration, noise and integration drift. The proposed methods are applied to the measurement error of the CER, in particular in its high and low operating ranges, as prescribed by the ITER system design description documents, and during transients, which highlight the large time constant related to the shielding of the vacuum vessel. The analyses presented in the paper show that the design of the CER diagnostic is capable of achieving the requisite performance as needed for the operation of the ITER machine.

  13. Viscous and Interacting Flow Field Effects.

    DTIC Science & Technology

    1980-06-01

    in the inviscid flow analysis using free vortex sheets whose shapes are determined by iteration. The outer iteration employs boundary layer...Methods, Inc. which replaces the source distribution in the separation zone by a vortex wake model . This model is described in some detail in (2), but...in the potential flow is obtained using linearly varying vortex singularities distributed on planar panels. The wake is represented by sheets of

  14. Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Tveit, Svenn

    2018-05-01

    We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.

  15. Computer Modeling of High-Intensity Cs-Sputter Ion Sources

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Roberts, M. L.; Southon, J. R.

    The grid-point mesh program NEDLab has been used to computer model the interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS), with the goal of improving negative ion output. NEDLab has several features that are important to realistic modeling of such sources. First, space-charge effects are incorporated in the calculations through an automated ion-trajectories/Poissonelectric-fields successive-iteration process. Second, space charge distributions can be averaged over successive iterations to suppress model instabilities. Third, space charge constraints on ion emission from surfaces can be incorporate under Child's Law based algorithms. Fourth, the energy of ions emitted from a surface can be randomly chosen from within a thermal energy distribution. And finally, ions can be emitted from a surface at randomized angles The results of our modeling effort indicate that significant modification of the interior geometry of the source will double Cs+ ion production from our spherical ionizer and produce a significant increase in negative ion output from the source.

  16. External heating and current drive source requirements towards steady-state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Kessel, C. E.; Bonoli, P. T.; Batchelor, D. B.; Harvey, R. W.; Snyder, P. B.

    2014-07-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H98 = 1.6 and fusion gain Q = 5.

  17. Calibration of ITER Instant Power Neutron Monitors: Recommended Scenario of Experiments at the Reactor

    NASA Astrophysics Data System (ADS)

    Borisov, A. A.; Deryabina, N. A.; Markovskij, D. V.

    2017-12-01

    Instant power is a key parameter of the ITER. Its monitoring with an accuracy of a few percent is an urgent and challenging aspect of neutron diagnostics. In a series of works published in Problems of Atomic Science and Technology, Series: Thermonuclear Fusion under a common title, the step-by-step neutronics analysis was given to substantiate a calibration technique for the DT and DD modes of the ITER. A Gauss quadrature scheme, optimal for processing "expensive" experiments, is used for numerical integration of 235U and 238U detector responses to the point sources of 14-MeV neutrons. This approach allows controlling the integration accuracy in relation to the number of coordinate mesh points and thus minimizing the number of irradiations at the given uncertainty of the full monitor response. In the previous works, responses of the divertor and blanket monitors to the isotropic point sources of DT and DD neutrons in the plasma profile and to the models of real sources were calculated within the ITER model using the MCNP code. The neutronics analyses have allowed formulating the basic principles of calibration that are optimal for having the maximum accuracy at the minimum duration of in situ experiments at the reactor. In this work, scenarios of the preliminary and basic experimental ITER runs are suggested on the basis of those principles. It is proposed to calibrate the monitors only with DT neutrons and use correction factors to the DT mode calibration for the DD mode. It is reasonable to perform full calibration only with 235U chambers and calibrate 238U chambers by responses of the 235U chambers during reactor operation (cross-calibration). The divertor monitor can be calibrated using both direct measurement of responses at the Gauss positions of a point source and simplified techniques based on the concepts of equivalent ring sources and inverse response distributions, which will considerably reduce the amount of measurements. It is shown that the monitor based on the average responses of the horizontal and vertical neutron chambers remains spatially stable as the source moves and can be used in addition to the staff monitor at neutron fluxes in the detectors four orders of magnitude lower than on the first wall, where staff detectors are located. Owing to low background, detectors of neutron chambers do not need calibration in the reactor because it is actually determination of the absolute detector efficiency for 14-MeV neutrons, which is a routine out-of-reactor procedure.

  18. Valence and charge-transfer optical properties for some SinCm (m, n ≤ 12) clusters: Comparing TD-DFT, complete-basis-limit EOMCC, and benchmarks from spectroscopy.

    PubMed

    Lutz, Jesse J; Duan, Xiaofeng F; Ranasinghe, Duminda S; Jin, Yifan; Margraf, Johannes T; Perera, Ajith; Burggraf, Larry W; Bartlett, Rodney J

    2018-05-07

    Accurate optical characterization of the closo-Si 12 C 12 molecule is important to guide experimental efforts toward the synthesis of nano-wires, cyclic nano-arrays, and related array structures, which are anticipated to be robust and efficient exciton materials for opto-electronic devices. Working toward calibrated methods for the description of closo-Si 12 C 12 oligomers, various electronic structure approaches are evaluated for their ability to reproduce measured optical transitions of the SiC 2 , Si 2 C n (n = 1-3), and Si 3 C n (n = 1, 2) clusters reported earlier by Steglich and Maier [Astrophys. J. 801, 119 (2015)]. Complete-basis-limit equation-of-motion coupled-cluster (EOMCC) results are presented and a comparison is made between perturbative and renormalized non-iterative triples corrections. The effect of adding a renormalized correction for quadruples is also tested. Benchmark test sets derived from both measurement and high-level EOMCC calculations are then used to evaluate the performance of a variety of density functionals within the time-dependent density functional theory (TD-DFT) framework. The best-performing functionals are subsequently applied to predict valence TD-DFT excitation energies for the lowest-energy isomers of Si n C and Si n-1 C 7-n (n = 4-6). TD-DFT approaches are then applied to the Si n C n (n = 4-12) clusters and unique spectroscopic signatures of closo-Si 12 C 12 are discussed. Finally, various long-range corrected density functionals, including those from the CAM-QTP family, are applied to a charge-transfer excitation in a cyclic (Si 4 C 4 ) 4 oligomer. Approaches for gauging the extent of charge-transfer character are also tested and EOMCC results are used to benchmark functionals and make recommendations.

  19. Ordering of Glass Rods in Nematic and Cholesteric Liquid Crystals

    DTIC Science & Technology

    2011-12-01

    3), 483–508 (2007). 2. M. D. Lynch and D. L. Patrick, “Controlling the orientation of micron-sized rod-shaped SiC particles with nematic liquid...Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science 303(5658), 652–655 (2004). 17. R. Eelkema, M. M. Pollard, J...Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994). 1. Introduction Incorporating rod-like particles into liquid crystal (LC) media can lead

  20. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    DTIC Science & Technology

    2016-05-16

    have investigated the surface plasmon enhancement of the GeSn p-i-n photodiode using gold metal nanostructures. We have conducted numerical...simulation of the plasmonic structure of 2D nano-hole array to tune the surface plasmon resonance into the absorption range of the GeSn active layer. Such a...diode can indeed be enhanced with the plasmonic structure on top. Within the time span of this project, we have completed one iteration of the process

  1. Mission of ITER and Challenges for the Young

    NASA Astrophysics Data System (ADS)

    Ikeda, Kaname

    2009-02-01

    It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time. The partners in the Project—the ITER Parties—are the European Union, Japan, the People's Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER. Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER. The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.

  2. Mission of ITER and Challenges for the Young

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Kaname

    2009-02-19

    It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time.The partners in the Project--the ITER Parties--are the European Union, Japan, the People'smore » Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER.Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER.The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.« less

  3. Use of sediment source fingerprinting to assess the role of subsurface erosion in the supply of fine sediment in a degraded catchment in the Eastern Cape, South Africa.

    PubMed

    Manjoro, Munyaradzi; Rowntree, Kate; Kakembo, Vincent; Foster, Ian; Collins, Adrian L

    2017-06-01

    Sediment source fingerprinting has been successfully deployed to provide information on the surface and subsurface sources of sediment in many catchments around the world. However, there is still scope to re-examine some of the major assumptions of the technique with reference to the number of fingerprint properties used in the model, the number of model iterations and the potential uncertainties of using more than one sediment core collected from the same floodplain sink. We investigated the role of subsurface erosion in the supply of fine sediment to two sediment cores collected from a floodplain in a small degraded catchment in the Eastern Cape, South Africa. The results showed that increasing the number of individual fingerprint properties in the composite signature did not improve the model goodness-of-fit. This is still a much debated issue in sediment source fingerprinting. To test the goodness-of-fit further, the number of model repeat iterations was increased from 5000 to 30,000. However, this did not reduce uncertainty ranges in modelled source proportions nor improve the model goodness-of-fit. The estimated sediment source contributions were not consistent with the available published data on erosion processes in the study catchment. The temporal pattern of sediment source contributions predicted for the two sediment cores was very different despite the cores being collected in close proximity from the same floodplain. This highlights some of the potential limitations associated with using floodplain cores to reconstruct catchment erosion processes and associated sediment source contributions. For the source tracing approach in general, the findings here suggest the need for further investigations into uncertainties related to the number of fingerprint properties included in un-mixing models. The findings support the current widespread use of ≤5000 model repeat iterations for estimating the key sources of sediment samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions 1b... Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of... 15 percent O2 and using NSCR; a. maintain your catalyst so that the pressure drop across the catalyst...

  5. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions 1b... Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of... 15 percent O2 and using NSCR; a. maintain your catalyst so that the pressure drop across the catalyst...

  6. The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction.

    PubMed

    Strohmeier, Daniel; Bekhti, Yousra; Haueisen, Jens; Gramfort, Alexandre

    2016-10-01

    Source imaging based on magnetoencephalography (MEG) and electroencephalography (EEG) allows for the non-invasive analysis of brain activity with high temporal and good spatial resolution. As the bioelectromagnetic inverse problem is ill-posed, constraints are required. For the analysis of evoked brain activity, spatial sparsity of the neuronal activation is a common assumption. It is often taken into account using convex constraints based on the l 1 -norm. The resulting source estimates are however biased in amplitude and often suboptimal in terms of source selection due to high correlations in the forward model. In this work, we demonstrate that an inverse solver based on a block-separable penalty with a Frobenius norm per block and a l 0.5 -quasinorm over blocks addresses both of these issues. For solving the resulting non-convex optimization problem, we propose the iterative reweighted Mixed Norm Estimate (irMxNE), an optimization scheme based on iterative reweighted convex surrogate optimization problems, which are solved efficiently using a block coordinate descent scheme and an active set strategy. We compare the proposed sparse imaging method to the dSPM and the RAP-MUSIC approach based on two MEG data sets. We provide empirical evidence based on simulations and analysis of MEG data that the proposed method improves on the standard Mixed Norm Estimate (MxNE) in terms of amplitude bias, support recovery, and stability.

  7. Neutron-gamma discrimination via PSD plastic scintillator and SiPMs

    NASA Astrophysics Data System (ADS)

    Taggart, M. P.; Payne, C.; Sellin, P. J.

    2016-10-01

    The reduction in availability and inevitable increase in cost of traditional neutron detectors based on the 3He neutron capture reaction has resulted in a concerted effort to seek out new techniques and detection media to meet the needs of national nuclear security. Traditionally, the alternative has been provided through pulse shape discrimination (PSD) using liquid scintillators. However, these are not without their own inherent issues, primarily concerning user safety and ongoing maintenance. A potential system devised to separate neutron and gamma ray pulses utilising the PSD technique takes advantage of recent improvements in silicon photomultiplier (SiPM) technology and the development of plastic scintillators exhibiting the PSD phenomena. In this paper we present the current iteration of this ongoing work having achieved a Figure of Merit (FoM) of 1.39 at 1.5 MeVee.

  8. Transport synthetic acceleration with opposing reflecting boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zika, M.R.; Adams, M.L.

    2000-02-01

    The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iteratingmore » on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.« less

  9. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source.

    PubMed

    Hossack, Aaron C; Firman, Taylor; Jarboe, Thomas R; Prager, James R; Victor, Brian S; Wrobel, Jonathan S; Ziemba, Timothy

    2013-10-01

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2-3) × 10(19) m(-3) to 1 × 10(19) m(-3). Deuterium spheromak formation is possible with density as low as 2 × 10(18) m(-3). The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.

  10. Flexible Method for Developing Tactics, Techniques, and Procedures for Future Capabilities

    DTIC Science & Technology

    2009-02-01

    levels of ability, military experience, and motivation, (b) number and type of significant events, and (c) other sources of natural variability...research has developed a number of specific instruments designed to aid in this process. Second, the iterative, feed-forward nature of the method allows...FLEX method), but still lack the structured KE approach and iterative, feed-forward nature of the FLEX method. To facilitate decision making

  11. Threshold Voltage Instability in A-Si:H TFTS and the Implications for Flexible Displays and Circuits

    DTIC Science & Technology

    2008-12-01

    and negative gate voltages with and without elevated drain voltages for FDC TFTs. Extending techniques used to localize hot electron degradation...in MOSFETs, experiments in our lab have localized the degradation of a-Si:H to the gate dielectric/a-Si:H channel interface [Shringarpure, et al...saturation, increased drain source current measured with the source and drain reversed indicates localization of ΔVth to the gate dielectric/amorphous

  12. Inverse source problems in elastodynamics

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao

    2018-04-01

    We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.

  13. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; Portnoff, Samuel; Spencer, M. G.

    2016-01-01

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P+N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH3x) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm2. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm2, fill factor of 0.86, and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 105-106 cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P+N junction structure can mitigate some of the negative effects.

  14. Impact of SiNx capping on the formation of source/drain contact for In-Ga-Zn-O thin film transistor with self-aligned gate

    NASA Astrophysics Data System (ADS)

    Oh, Himchan; Pi, Jae-Eun; Hwang, Chi-Sun; Kwon, Oh-Sang

    2017-12-01

    Self-aligned gate structures are preferred for faster operation and scaling down of thin film transistors by reducing the overlapped region between source/drain and gate electrodes. Doping on source/drain regions is essential to fabricate such a self-aligned gate thin film transistor. For oxide semiconductors such as In-Ga-Zn-O, SiNx capping readily increases their carrier concentration. We report that the SiNx deposition temperature and thickness significantly affect the device properties, including threshold voltage, field effect mobility, and contact resistance. The reason for these variations in device characteristics mainly comes from the extension of the doped region to the gated area after the SiNx capping step. Analyses on capacitance-voltage and transfer length characteristics support this idea.

  15. On-site SiH4 generator using hydrogen plasma generated in slit-type narrow gap

    NASA Astrophysics Data System (ADS)

    Takei, Norihisa; Shinoda, Fumiya; Kakiuchi, Hiroaki; Yasutake, Kiyoshi; Ohmi, Hiromasa

    2018-06-01

    We have been developing an on-site silane (SiH4) generator based on use of the chemical etching reaction between solid silicon (Si) and the high-density H atoms that are generated in high-pressure H2 plasma. In this study, we have developed a slit-type plasma source for high-efficiency SiH4 generation. High-density H2 plasma was generated in a narrow slit-type discharge gap using a 2.45 GHz microwave power supply. The plasma’s optical emission intensity distribution along the slit was measured and the resulting distribution was reflected by both the electric power distribution and the hydrogen gas flow. Because the Si etching rate strongly affects the SiH4 generation rate, the Si etching behavior was investigated with respect to variations in the experimental parameters. The weight etch rate increased monotonically with increasing input microwave power. However, the weight etch rate decreased with increasing H2 pressure and an increasing plasma gap. This reduction in the etch rate appears to be related to shrinkage of the plasma generation area because increased input power is required to maintain a constant plasma area with increasing H2 pressure and the increasing plasma gap. Additionally, the weight etch rate also increases with increasing H2 flow rate. The SiH4 generation rate of the slit-type plasma source was also evaluated using gas-phase Fourier transform infrared absorption spectroscopy and the material utilization efficiencies of both Si and the H2 gas for SiH4 gas formation were discussed. The main etch product was determined to be SiH4 and the developed plasma source achieved a SiH4 generation rate of 10 sccm (standard cubic centimeters per minute) at an input power of 900 W. In addition, the Si utilization efficiency exceeded 60%.

  16. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  17. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    NASA Astrophysics Data System (ADS)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  18. Valence and charge-transfer optical properties for some SinCm (m, n ≤ 12) clusters: Comparing TD-DFT, complete-basis-limit EOMCC, and benchmarks from spectroscopy

    NASA Astrophysics Data System (ADS)

    Lutz, Jesse J.; Duan, Xiaofeng F.; Ranasinghe, Duminda S.; Jin, Yifan; Margraf, Johannes T.; Perera, Ajith; Burggraf, Larry W.; Bartlett, Rodney J.

    2018-05-01

    Accurate optical characterization of the closo-Si12C12 molecule is important to guide experimental efforts toward the synthesis of nano-wires, cyclic nano-arrays, and related array structures, which are anticipated to be robust and efficient exciton materials for opto-electronic devices. Working toward calibrated methods for the description of closo-Si12C12 oligomers, various electronic structure approaches are evaluated for their ability to reproduce measured optical transitions of the SiC2, Si2Cn (n = 1-3), and Si3Cn (n = 1, 2) clusters reported earlier by Steglich and Maier [Astrophys. J. 801, 119 (2015)]. Complete-basis-limit equation-of-motion coupled-cluster (EOMCC) results are presented and a comparison is made between perturbative and renormalized non-iterative triples corrections. The effect of adding a renormalized correction for quadruples is also tested. Benchmark test sets derived from both measurement and high-level EOMCC calculations are then used to evaluate the performance of a variety of density functionals within the time-dependent density functional theory (TD-DFT) framework. The best-performing functionals are subsequently applied to predict valence TD-DFT excitation energies for the lowest-energy isomers of SinC and Sin-1C7-n (n = 4-6). TD-DFT approaches are then applied to the SinCn (n = 4-12) clusters and unique spectroscopic signatures of closo-Si12C12 are discussed. Finally, various long-range corrected density functionals, including those from the CAM-QTP family, are applied to a charge-transfer excitation in a cyclic (Si4C4)4 oligomer. Approaches for gauging the extent of charge-transfer character are also tested and EOMCC results are used to benchmark functionals and make recommendations.

  19. NASA Tech Briefs, September 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: Brazing SiC/SiC Composites to Metals; Composite-Material Tanks with Chemically Resistant Liners; Thermally Conductive Metal-Tube/Carbon-Composite Joints; Improved BN Coatings on SiC Fibers in SiC Matrices; Iterative Demodulation and Decoding of Non-Square QAM; Measuring Radiation Patterns of Reconfigurable Patch Antennas on Wafers; Low-Cutoff, High-Pass Digital Filtering of Neural Signals; Further Improvement in 3DGRAPE; Ground Support Software for Spaceborne Instrumentation; MER SPICE Interface; Simulating Operation of a Planetary Rover; Analyzing Contents of a Computer Cache; Discrepancy Reporting Management System; Silicone-Rubber Microvalves Actuated by Paraffin; Hydraulic Apparatus for Mechanical Testing of Nuts; Heat Control via Torque Control in Friction Stir Welding; Manufacturing High-Quality Carbon Nanotubes at Lower Cost; Setup for Visual Observation of Carbon-Nanotube Arc Process; Solution Preserves Nucleic Acids in Body-Fluid Specimens; Oligodeoxynucleotide Probes for Detecting Intact Cells; Microwave-Spectral Signatures Would Reveal Concealed Objects; Digital Averaging Phasemeter for Heterodyne Interferometry; Optoelectronic Instrument Monitors pH in a Culture Medium; Imaging of gamma-Irradiated Regions of a Crystal; Photodiode-Based, Passive Ultraviolet Dosimeters; Discrete Wavelength-Locked External Cavity Laser; Flexible Shields for Protecting Spacecraft Against Debris; Part 2 of a Computational Study of a Drop-Laden Mixing Layer; Controllable Curved Mirrors Made from Single-Layer EAP Films; and Demonstration of a Pyrotechnic Bolt-Retractor System.

  20. ITER ECE Diagnostic: Design Progress of IN-DA and the diagnostic role for Physics

    NASA Astrophysics Data System (ADS)

    Pandya, H. K. B.; Kumar, Ravinder; Danani, S.; Shrishail, P.; Thomas, Sajal; Kumar, Vinay; Taylor, G.; Khodak, A.; Rowan, W. L.; Houshmandyar, S.; Udintsev, V. S.; Casal, N.; Walsh, M. J.

    2017-04-01

    The ECE Diagnostic system in ITER will be used for measuring the electron temperature profile evolution, electron temperature fluctuations, the runaway electron spectrum, and the radiated power in the electron cyclotron frequency range (70-1000 GHz), These measurements will be used for advanced real time plasma control (e.g. steering the electron cyclotron heating beams), and physics studies. The scope of the Indian Domestic Agency (IN-DA) is to design and develop the polarizer splitter units; the broadband (70 to 1000 GHz) transmission lines; a high temperature calibration source in the Diagnostics Hall; two Michelson Interferometers (70 to 1000 GHz) and a 122-230 GHz radiometer. The remainder of the ITER ECE diagnostic system is the responsibility of the US domestic agency and the ITER Organization (IO). The design needs to conform to the ITER Organization’s strict requirements for reliability, availability, maintainability and inspect-ability. Progress in the design and development of various subsystems and components considering various engineering challenges and solutions will be discussed in this paper. This paper will also highlight how various ECE measurements can enhance understanding of plasma physics in ITER.

  1. SiGN-SSM: open source parallel software for estimating gene networks with state space models.

    PubMed

    Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru

    2011-04-15

    SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.

  2. Bright nanowire single photon source based on SiV centers in diamond

    DOE PAGES

    Marseglia, L.; Saha, K.; Ajoy, A.; ...

    2018-01-01

    The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less

  3. Structural and dielectric properties of thin ZrO2 films on silicon grown by atomic layer deposition from cyclopentadienyl precursor

    NASA Astrophysics Data System (ADS)

    Niinistö, J.; Putkonen, M.; Niinistö, L.; Kukli, K.; Ritala, M.; Leskelä, M.

    2004-01-01

    ZrO2 thin films with thicknesses below 20 nm were deposited by the atomic layer deposition process on Si(100) substrates at 350 °C. An organometallic precursor, Cp2Zr(CH3)2 (Cp=cyclopentadienyl, C5H5) was used as the zirconium source and water or ozone as oxygen source. The influence of oxygen source and substrate pretreatment on the dielectric properties of ZrO2 films was investigated. Structural characterization with high-resolution transmission electron microscopy was performed to films grown onto HF-etched or native oxide covered silicon. Strong inhibition of ZrO2 film growth was observed with the water process on HF-etched Si. Ozone process on HF-etched Si resulted in interfacial SiO2 formation between the dense and uniform film and the substrate while water process produced interfacial layer with intermixing of SiO2 and ZrO2. The effective permittivity of ZrO2 in Al/ZrO2/Si/Al capacitor structures was dependent on the ZrO2 layer thickness and oxygen source used. The interfacial layer formation increased the capacitance equivalent oxide thickness (CET). CET of 2.0 nm was achieved with 5.9 nm ZrO2 film deposited with the H2O process on HF-stripped Si. The ozone-processed films showed good dielectric properties such as low hysteresis and nearly ideal flatband voltage. The leakage current density was lower and breakdown field higher for the ozone-processed ZrO2 films.

  4. Polysilicic acid gel method derived V2O5/SiO2 composite materials: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Zhou, Linzong; Feng, Xiaofei; Zhao, Ning; Yang, Bin

    2017-01-01

    The V2O5/SiO2 composite was prepared by a sol-gel method followed a sintering procedure. The low-cost Na2SiO3•9H2O was used as silicon source, while NH4VO3 was used as vanadium source. By adding NH4VO3 to Na2SiO3 solution and adjusting the mixture's pH with saturated (NH4)2SO4 solution the polysilicic acid gel was formed to give a homogeneous gel composite with VO3-well-distributed in it. The gel composite was dried at 100 °C to give the xerogel, then the xerogel was calcined in air to obtain the V2O5/SiO2 composite. The V2O5/SiO2 composites were characterized by SEM analysis, FT-IR spectroscopy and powder X-ray diffractions.

  5. The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.

  6. Development of the Long Pulse Negative Ion Source for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemsworth, R.S.; Svensson, L.; Esch, H.P.L. de

    2005-04-06

    A model of the ion source designed for the neutral beam injectors of the International Thermonuclear Experimental Reactor (ITER), the KAMABOKO III ion source, is being tested on the MANTIS test stand at the DRFC Cadarache in collaboration with JAERI, Japan, who designed and supplied the ion source. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter located 1.6 m from the source.During experiments on MANTIS three adverse effects of long pulse operation were found: The negative ionmore » current to the calorimeter is {approx_equal}50% of that obtained from short pulse operation Increasing the plasma grid (PG) temperature results in {<=}40% enhancement in negative ion yield, substantially below that reported for short pulse operation, {>=}100%. The caesium 'consumption' is up to 1500 times that expected.Results presented here indicate that each of these is, at least partially, explained by thermal effects. Additionally presented are the results of a detailed characterisation of the source, which enable the most efficient mode of operation to be identified.« less

  7. Ion-source modeling and improved performance of the CAMS high-intensity Cs-sputter ion source

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; Roberts, M. L.; Southon, J. R.

    2000-10-01

    The interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS) has been computer modeled using the program NEDLab, with the aim of improving negative ion output. Space charge effects on ion trajectories within the source were modeled through a successive iteration process involving the calculation of ion trajectories through Poisson-equation-determined electric fields, followed by calculation of modified electric fields incorporating the charge distribution from the previously calculated ion trajectories. The program has several additional features that are useful in ion source modeling: (1) averaging of space charge distributions over successive iterations to suppress instabilities, (2) Child's Law modeling of space charge limited ion emission from surfaces, and (3) emission of particular ion groups with a thermal energy distribution and at randomized angles. The results of the modeling effort indicated that significant modification of the interior geometry of the source would double Cs + ion production from our spherical ionizer and produce a significant increase in negative ion output from the source. The results of the implementation of the new geometry were found to be consistent with the model results.

  8. Mushroom-free selective epitaxial growth of Si, SiGe and SiGe:B raised sources and drains

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Benevent, V.; Barnes, J. P.; Veillerot, M.; Lafond, D.; Damlencourt, J. F.; Morvan, S.; Prévitali, B.; Andrieu, F.; Loubet, N.; Dutartre, D.

    2013-05-01

    We have evaluated various Cyclic Selective Epitaxial Growth/Etch (CSEGE) processes in order to grow "mushroom-free" Si and SiGe:B Raised Sources and Drains (RSDs) on each side of ultra-short gate length Extra-Thin Silicon-On-Insulator (ET-SOI) transistors. The 750 °C, 20 Torr Si CSEGE process we have developed (5 chlorinated growth steps with four HCl etch steps in-between) yielded excellent crystalline quality, typically 18 nm thick Si RSDs. Growth was conformal along the Si3N4 sidewall spacers, without any poly-Si mushrooms on top of unprotected gates. We have then evaluated on blanket 300 mm Si(001) wafers the feasibility of a 650 °C, 20 Torr SiGe:B CSEGE process (5 chlorinated growth steps with four HCl etch steps in-between, as for Si). As expected, the deposited thickness decreased as the total HCl etch time increased. This came hands in hands with unforeseen (i) decrease of the mean Ge concentration (from 30% down to 26%) and (ii) increase of the substitutional B concentration (from 2 × 1020 cm-3 up to 3 × 1020 cm-3). They were due to fluctuations of the Ge concentration and of the atomic B concentration [B] in such layers (drop of the Ge% and increase of [B] at etch step locations). Such blanket layers were a bit rougher than layers grown using a single epitaxy step, but nevertheless of excellent crystalline quality. Transposition of our CSEGE process on patterned ET-SOI wafers did not yield the expected results. HCl etch steps indeed helped in partly or totally removing the poly-SiGe:B mushrooms on top of the gates. This was however at the expense of the crystalline quality and 2D nature of the ˜45 nm thick Si0.7Ge0.3:B recessed sources and drains selectively grown on each side of the imperfectly protected poly-Si gates. The only solution we have so far identified that yields a lesser amount of mushrooms while preserving the quality of the S/D is to increase the HCl flow during growth steps.

  9. Polysilicon Prepared from SiCl4 by Atmospheric-Pressure Non-Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Wang, Nan; Yang, Jinhua; Wang, Younian; Zhu, Aimin

    2011-10-01

    Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition

  10. On the Relation of Silicates and SiO Maser in Evolved Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiaming; Jiang, Biwei, E-mail: bjiang@bnu.edu.cn

    2017-04-01

    The SiO molecule is one of the candidates for the seed of silicate dust in the circumstellar envelope of evolved stars, but this opinion is challenged. In this work we investigate the relation of the SiO maser emission power and the silicate dust emission power. With both our own observation by using the PMO/Delingha 13.7 m telescope and archive data, a sample is assembled of 21 SiO v  = 1, J  = 2 − 1 sources and 28 SiO v  = 1, J  = 1 − 0 sources that exhibit silicate emission features in the ISO /SWS spectrum as well. The analysis of their SiO maser and silicatemore » emission power indicates a clear correlation, which is not against the hypothesis that the SiO molecules are the seed nuclei of silicate dust. On the other hand, no correlation is found between SiO maser and silicate crystallinity, which may imply that silicate crystallinity does not correlate with mass-loss rate.« less

  11. Use of a Si(Li) detector as β spectrometer.

    PubMed

    Dryák, P; Kovář, P

    2014-05-01

    The aim of this work is to demonstrate the capability of a Si(Li) detector for the measurement of β spectra, despite the energy absorption in air and in the Be window. A simple source holder fixes the source on the symmetry axis at 3mm from the detector window. The β-sources are produced by evaporation on a plastic backing plate. Absorbing materials between the source and the sensitive volume of the detector are 3 mm of air, a Be window, 0.1 μm Si and 20 nm of gold. A model of the detector was created for β spectra simulation using the MCNP 4A code. Experimental spectra of (14)C, (147)Pm, (204)Tl, (90)Sr/(90)Y were compared with simulated spectra. © 2013 Published by Elsevier Ltd.

  12. Development of a domain-specific genetic language to design Chlamydomonas reinhardtii expression vectors.

    PubMed

    Wilson, Mandy L; Okumoto, Sakiko; Adam, Laura; Peccoud, Jean

    2014-01-15

    Expression vectors used in different biotechnology applications are designed with domain-specific rules. For instance, promoters, origins of replication or homologous recombination sites are host-specific. Similarly, chromosomal integration or viral delivery of an expression cassette imposes specific structural constraints. As de novo gene synthesis and synthetic biology methods permeate many biotechnology specialties, the design of application-specific expression vectors becomes the new norm. In this context, it is desirable to formalize vector design strategies applicable in different domains. Using the design of constructs to express genes in the chloroplast of Chlamydomonas reinhardtii as an example, we show that a vector design strategy can be formalized as a domain-specific language. We have developed a graphical editor of context-free grammars usable by biologists without prior exposure to language theory. This environment makes it possible for biologists to iteratively improve their design strategies throughout the course of a project. It is also possible to ensure that vectors designed with early iterations of the language are consistent with the latest iteration of the language. The context-free grammar editor is part of the GenoCAD application. A public instance of GenoCAD is available at http://www.genocad.org. GenoCAD source code is available from SourceForge and licensed under the Apache v2.0 open source license.

  13. A power-efficient communication system between brain-implantable devices and external computers.

    PubMed

    Yao, Ning; Lee, Heung-No; Chang, Cheng-Chun; Sclabassi, Robert J; Sun, Mingui

    2007-01-01

    In this paper, we propose a power efficient communication system for linking a brain-implantable device to an external system. For battery powered implantable devices, the processor and the transmitter power should be reduced in order to both conserve battery power and reduce the health risks associated with transmission. To accomplish this, a joint source-channel coding/decoding system is devised. Low-density generator matrix (LDGM) codes are used in our system due to their low encoding complexity. The power cost for signal processing within the implantable device is greatly reduced by avoiding explicit source encoding. Raw data which is highly correlated is transmitted. At the receiver, a Markov chain source correlation model is utilized to approximate and capture the correlation of raw data. A turbo iterative receiver algorithm is designed which connects the Markov chain source model to the LDGM decoder in a turbo-iterative way. Simulation results show that the proposed system can save up to 1 to 2.5 dB on transmission power.

  14. Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Pringle, Emily A.; Moynier, Frédéric; Savage, Paul S.; Jackson, Matthew G.; Moreira, Manuel; Day, James M. D.

    2016-09-01

    The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (∼several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (∼tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen. Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. On average, δ30Si values for OIB (-0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (-0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (δ30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.

  15. Development of in-vessel components of the microfission chamber for ITER.

    PubMed

    Ishikawa, M; Kondoh, T; Ookawa, K; Fujita, K; Yamauchi, M; Hayakawa, A; Nishitani, T; Kusama, Y

    2010-10-01

    Microfission chambers (MFCs) will measure the total neutron source strength in ITER. The MFCs will be installed behind blanket modules in the vacuum vessel (VV). Triaxial mineral insulated (MI) cables will carry signals from the MFCs. The joint connecting triaxial MI cables in the VV must be considered because the MFCs and the MI cables will be installed separately at different times. Vacuum tight triaxial connector of the MI cable has been designed and a prototype has been constructed. Performance tests indicate that the connector can be applied to the ITER environment. A small bending-radius test of the MI cable indicates no observed damage at a curvature radius of 100 mm.

  16. Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).

    PubMed

    McAdams, R

    2014-02-01

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  17. Development of in-vessel components of the microfission chamber for ITER1

    PubMed Central

    Ishikawa, M.; Kondoh, T.; Ookawa, K.; Fujita, K.; Yamauchi, M.; Hayakawa, A.; Nishitani, T.; Kusama, Y.

    2010-01-01

    Microfission chambers (MFCs) will measure the total neutron source strength in ITER. The MFCs will be installed behind blanket modules in the vacuum vessel (VV). Triaxial mineral insulated (MI) cables will carry signals from the MFCs. The joint connecting triaxial MI cables in the VV must be considered because the MFCs and the MI cables will be installed separately at different times. Vacuum tight triaxial connector of the MI cable has been designed and a prototype has been constructed. Performance tests indicate that the connector can be applied to the ITER environment. A small bending-radius test of the MI cable indicates no observed damage at a curvature radius of 100 mm. PMID:21033834

  18. Power Transmission From The ITER Model Negative Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boilson, D.; Esch, H. P. L. de; Grand, C.

    2007-08-10

    In Cadarache development on negative ion sources is being carried out on the KAMABOKO III ion source on the MANTIS test bed. This is a model of the ion source designed for the neutral beam injectors of ITER. This ion source has been developed in collaboration with JAERI, Japan, who also designed and supplied the ion source. Its target performance is to accelerate a D- beam, with a current density of 200 A/m2 and <1 electron extracted per accelerated D- ion, at a source filling pressure of 0.3 Pa. For ITER a continuous ion beam must be assured for pulsemore » lengths of 1000 s, but beams of up to 3,600 s are also envisaged. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter. During long pulse operation ({<=}1000 s) it was found that the current density of both D- and H- beams, measured at the calorimeter was lower than expected and that a large discrepancy existed between the accelerated currents measured electrically and those transmitted to the calorimeter. The possibility that this discrepancy arose because the accelerated current included electrons (which would not be able to reach the calorimeter) was investigated and subsequently eliminated. Further studies have shown that the fraction of the electrical current reaching the calorimeter varies with the pulse length, which led to the suggestion that one or more of the accelerator grids were distorting due to the incident power during operation, leading to a progressive deterioration in the beam quality.. New extraction and acceleration grids have been designed and installed, which should have a better tolerance to thermal loads than those previously used. This paper describes the measurements of the power transmission and distribution using these grids.« less

  19. Granger causal time-dependent source connectivity in the somatosensory network

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Sommerlade, Linda; Coffman, Brian; Zhang, Tongsheng; Stephen, Julia M.; Li, Dichen; Wang, Jue; Grebogi, Celso; Schelter, Bjoern

    2015-05-01

    Exploration of transient Granger causal interactions in neural sources of electrophysiological activities provides deeper insights into brain information processing mechanisms. However, the underlying neural patterns are confounded by time-dependent dynamics, non-stationarity and observational noise contamination. Here we investigate transient Granger causal interactions using source time-series of somatosensory evoked magnetoencephalographic (MEG) elicited by air puff stimulation of right index finger and recorded using 306-channel MEG from 21 healthy subjects. A new time-varying connectivity approach, combining renormalised partial directed coherence with state space modelling, is employed to estimate fast changing information flow among the sources. Source analysis confirmed that somatosensory evoked MEG was mainly generated from the contralateral primary somatosensory cortex (SI) and bilateral secondary somatosensory cortices (SII). Transient Granger causality shows a serial processing of somatosensory information, 1) from contralateral SI to contralateral SII, 2) from contralateral SI to ipsilateral SII, 3) from contralateral SII to contralateral SI, and 4) from contralateral SII to ipsilateral SII. These results are consistent with established anatomical connectivity between somatosensory regions and previous source modeling results, thereby providing empirical validation of the time-varying connectivity analysis. We argue that the suggested approach provides novel information regarding transient cortical dynamic connectivity, which previous approaches could not assess.

  20. Overview of the design of the ITER heating neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.

    2017-02-01

    The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H- and D- remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of the HNB injectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushing which separates the vacuum of the beamline from the high pressure SF6 of the high voltage (1 MV) transmission line, through which the power, gas and cooling water are supplied to the beam source. Also the magnetic field reduction system is not described.

  1. Secondary students' views about scientific inquiry

    NASA Astrophysics Data System (ADS)

    Galano, Silvia; Zappia, Alessandro; Smaldone, Luigi; Testa, Italo

    2016-05-01

    In this study we investigated the views about Scientific Inquiry (SI) of about 300 students at the beginning of the secondary school course (14-15years old). An adapted version of the Views On Scientific Inquiry (VOSI) questionnaire was used as research instrument. The questionnaire, focused on six specific aspects of SI, was submitted before and after a six-hours in-classroom delivery of a teaching-learning sequence (TLS) that targeted explicitly the six SI aspects. We first analyzed responses using a five-level categorization: a) informed view; b) mixed or partially correct view; c) naıve view; d) unclear; e) not given. Two independent researchers iteratively analyzed the data with a final inter-rater reliability of about 90%. Then, we collapsed the initial categories into three macro-categories: C1) informed/partial view; C2) naıve view; C3) unclear or not given; and calculated the shift in the macro-categorization between pre- and post-test. Finally, we investigated a possible relationship between how the TLSs were enacted and the students' achievements. Data show that the percentage of students' informed responses only slightly increased between pre- and post-test in the majority of the targeted aspects. Moreover, students' achievements seem to depend on how the teachers enacted the TLSs. Our results suggest that short inquiry-based teaching interventions are not sufficient to effectively teach SI aspects. Moreover, our results suggest to develop specific training courses aimed at improving teachers' own beliefs and practices about SI.

  2. Design and simulation of betavoltaic angle sensor Based on ⁶³Ni-Si.

    PubMed

    Ghasemi Nejad, Gholam Reza; Rahmani, Faezeh

    2016-01-01

    A theoretical design and simulation of betavoltaic angle sensor (beta-AS) based on (63)Ni-Si using MCNP code is presented in this article. It can measure the full angle of 0-360° in the temperature range of 233-353 K. Beta-AS is composed of semicircular (63)Ni as the beta source, which rotates along the circular (four-quadrant) surface of Si as a semiconductor (in p-n structure), so that the change in the source angle in relation to Si surface can be measured based on the changes in V(oc) observed in each quadrant of Si. For better performance, characteristics of Si and (63)Ni have been optimized: N(D) and N(A) values of 8e19 and 4e18 cm(-3) (donor and acceptor doping concentration in Si, respectively), source thickness and activity of 1.5 µm and 18 mCi, respectively. The relation between angle and V(oc) is also investigated. The maximum difference between measured and real values of angle (the worst case, i.e., 0.18° for the angle of 45°) occurs at 233 K. It has been shown that sensitivity of the sensor decreases with an increase of angle. The results also show that the change in activity does not affect the sensitivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.

    PubMed

    Hsieh, Ping-Yen; Lee, Chi-Young; Tai, Nyan-Hwa

    2016-02-01

    We developed an innovative approach of self-biased sputtering solid doping source process to synthesize doped crystalline Si film on flexible polyimide (PI) substrate via microwave-plasma-enhanced chemical vapor deposition (MWPECVD) using SiCl4/H2 mixture. In this process, P dopants or B dopants were introduced by sputtering the solid doping target through charged-ion bombardment in situ during high-density microwave plasma deposition. A strong correlation between the number of solid doping targets and the characteristics of doped Si films was investigated in detail. The results show that both P- and B-doped crystalline Si films possessed a dense columnar structure, and the crystallinity of these structures decreased with increasing the number of solid doping targets. The films also exhibited a high growth rate (>4.0 nm/s). Under optimal conditions, the maximum conductivity and corresponding carrier concentration were, respectively, 9.48 S/cm and 1.2 × 10(20) cm(-3) for P-doped Si film and 7.83 S/cm and 1.5 × 10(20) cm(-3) for B-doped Si film. Such high values indicate that the incorporation of dopant with high doping efficiency (around 40%) into the Si films was achieved regardless of solid doping sources used. Furthermore, a flexible crystalline Si film solar cell with substrate configuration was fabricated by using the structure of PI/Mo film/n-type Si film/i-type Si film/p-type Si film/ITO film/Al grid film. The best solar cell performance was obtained with an open-circuit voltage of 0.54 V, short-circuit current density of 19.18 mA/cm(2), fill factor of 0.65, and high energy conversion of 6.75%. According to the results of bending tests, the critical radius of curvature (RC) was 12.4 mm, and the loss of efficiency was less than 1% after the cyclic bending test for 100 cycles at RC, indicating superior flexibility and bending durability. These results represent important steps toward a low-cost approach to high-performance flexible crystalline Si film-based photovoltaic devices.

  4. First principles pulse pile-up balance equation and fast deterministic solution

    NASA Astrophysics Data System (ADS)

    Sabbatucci, Lorenzo; Fernández, Jorge E.

    2017-08-01

    Pulse pile-up (PPU) is an always present effect which introduces a distortion into the spectrum measured with radiation detectors and that worsen with the increasing emission rate of the radiation source. It is fully ascribable to the pulse handling circuitry of the detector and it is not comprised in the detector response function which is well explained by a physical model. The PPU changes both the number and the height of the recorded pulses, which are related, respectively, with the number of detected particles and their energy. In the present work, it is derived a first principles balance equation for second order PPU to obtain a post-processing correction to apply to X-ray measurements. The balance equation is solved for the particular case of rectangular pulse shape using a deterministic iterative procedure for which it will be shown the convergence. The proposed method, deterministic rectangular PPU (DRPPU), requires minimum amount of information and, as example, it is applied to a solid state Si detector with active or off-line PPU suppression circuitry. A comparison shows that the results obtained with this fast and simple approach are comparable to those from the more sophisticated procedure using precise detector pulse shapes.

  5. CVD growth and properties of boron phosphide on 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padavala, Balabalaji; Frye, C. D.; Wang, Xuejing

    Improving the crystalline quality of boron phosphide (BP) is essential for realizing its full potential in semiconductor device applications. In this study, 3C-SiC was tested as a substrate for BP epitaxy. BP films were grown on 3C-SiC(100)/Si, 3C-SiC(111)/Si, and 3C-SiC(111)/4H-SiC(0001) substrates in a horizontal chemical vapor deposition (CVD) system. Films were produced with good crystalline orientation and morphological features in the temperature range of 1000–1200 °C using a PH3+B2H6+H2 mixture. Rotational twinning was absent in the BP due to the crystal symmetry-matching with 3C-SiC. Confocal 3D Raman imaging of BP films revealed primarily uniform peak shift and peak widths acrossmore » the scanned area, except at defects on the surface. Synchrotron white beam X-ray topography showed the epitaxial relationship between BP and 3C-SiC was (100) <011>BP||(100) <011>3C-SiC and (111)View the MathML sourceBP||(111)View the MathML source3C-SiC. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis indicated residual tensile strain in the films and improved crystalline quality at temperatures below 1200 °C. These results indicated that BP properties could be further enhanced by employing high quality bulk 3C-SiC or 3C-SiC epilayers on 4H-SiC substrates.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane; Collins, Benjamin; Kochunas, Brendan

    The MPACT code, being developed collaboratively by the University of Michigan and Oak Ridge National Laboratory, is the primary deterministic neutron transport solver being deployed within the Virtual Environment for Reactor Applications (VERA) as part of the Consortium for Advanced Simulation of Light Water Reactors (CASL). In many applications of the MPACT code, transport-corrected scattering has proven to be an obstacle in terms of stability, and considerable effort has been made to try to resolve the convergence issues that arise from it. Most of the convergence problems seem related to the transport-corrected cross sections, particularly when used in the 2Dmore » method of characteristics (MOC) solver, which is the focus of this work. Here in this paper, the stability and performance of the 2-D MOC solver in MPACT is evaluated for two iteration schemes: Gauss-Seidel and Jacobi. With the Gauss-Seidel approach, as the MOC solver loops over groups, it uses the flux solution from the previous group to construct the inscatter source for the next group. Alternatively, the Jacobi approach uses only the fluxes from the previous outer iteration to determine the inscatter source for each group. Consequently for the Jacobi iteration, the loop over groups can be moved from the outermost loop$-$as is the case with the Gauss-Seidel sweeper$-$to the innermost loop, allowing for a substantial increase in efficiency by minimizing the overhead of retrieving segment, region, and surface index information from the ray tracing data. Several test problems are assessed: (1) Babcock & Wilcox 1810 Core I, (2) Dimple S01A-Sq, (3) VERA Progression Problem 5a, and (4) VERA Problem 2a. The Jacobi iteration exhibits better stability than Gauss-Seidel, allowing for converged solutions to be obtained over a much wider range of iteration control parameters. Additionally, the MOC solve time with the Jacobi approach is roughly 2.0-2.5× faster per sweep. While the performance and stability of the Jacobi iteration are substantially improved compared to the Gauss-Seidel iteration, it does yield a roughly 8$-$10% increase in the overall memory requirement.« less

  7. Improvement of transport-corrected scattering stability and performance using a Jacobi inscatter algorithm for 2D-MOC

    DOE PAGES

    Stimpson, Shane; Collins, Benjamin; Kochunas, Brendan

    2017-03-10

    The MPACT code, being developed collaboratively by the University of Michigan and Oak Ridge National Laboratory, is the primary deterministic neutron transport solver being deployed within the Virtual Environment for Reactor Applications (VERA) as part of the Consortium for Advanced Simulation of Light Water Reactors (CASL). In many applications of the MPACT code, transport-corrected scattering has proven to be an obstacle in terms of stability, and considerable effort has been made to try to resolve the convergence issues that arise from it. Most of the convergence problems seem related to the transport-corrected cross sections, particularly when used in the 2Dmore » method of characteristics (MOC) solver, which is the focus of this work. Here in this paper, the stability and performance of the 2-D MOC solver in MPACT is evaluated for two iteration schemes: Gauss-Seidel and Jacobi. With the Gauss-Seidel approach, as the MOC solver loops over groups, it uses the flux solution from the previous group to construct the inscatter source for the next group. Alternatively, the Jacobi approach uses only the fluxes from the previous outer iteration to determine the inscatter source for each group. Consequently for the Jacobi iteration, the loop over groups can be moved from the outermost loop$-$as is the case with the Gauss-Seidel sweeper$-$to the innermost loop, allowing for a substantial increase in efficiency by minimizing the overhead of retrieving segment, region, and surface index information from the ray tracing data. Several test problems are assessed: (1) Babcock & Wilcox 1810 Core I, (2) Dimple S01A-Sq, (3) VERA Progression Problem 5a, and (4) VERA Problem 2a. The Jacobi iteration exhibits better stability than Gauss-Seidel, allowing for converged solutions to be obtained over a much wider range of iteration control parameters. Additionally, the MOC solve time with the Jacobi approach is roughly 2.0-2.5× faster per sweep. While the performance and stability of the Jacobi iteration are substantially improved compared to the Gauss-Seidel iteration, it does yield a roughly 8$-$10% increase in the overall memory requirement.« less

  8. Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Amin, S. Intekhab; Anand, Sunny; Sarin, R. K.

    2016-04-01

    In this work, the performance comparison of two heterojunction PIN TFETs having Si channel and Si0.5Ge0.5 source with high-k (SiGe DGTFET HK) and hetero-gate dielectric (SiGe DGTFET HG) respectively with those of two homojunction Si based PIN (DGTFET HK and DGTFET HG) TFETs is performed. Similarly, by employing the technique of pocketing at source junction in above four PIN TFETs, the performances of resultant four PNPN TFETs (SiGe PNPN DGTFET HK, SiGe PNPN DGTFET HG, PNPN DGTFET HK and PNPN DGTFET HG) are also compared with each other. Due to lower tunnel resistance of SiGe based heterojunction PIN and PNPN TFETs, the DC parameters such as ON current, ON-OFF current ratio, average subthreshold slope are improved significantly as compared to Si based PIN and PNPN TFETs respectively. The output characteristics of HG architectures in Si based homojunction PIN and PNPN TFETs is observed to be identical to with respective Si based HK PIN and PNPN TFET architectures. However, the output characteristics of HG architectures in SiGe based heterojunction PIN and PNPN TFETs degrade as compared to their respective SiGe based HK PIN and PNPN TFET architectures. In ON state, SiGe based HK and HG PIN and PNPN TFETs have lower gate capacitance (Cgg) as compared to their respective Si based HK and HG PIN and PNPN TFETs. Moreover, HG architecture suppresses gate to drain capacitance (Cgd) and ambipolar conduction. Transconductance (gm) and cut off frequency (fT) is also observed to be higher for SiGe based PIN and PNPN TFETs.

  9. Liquid-phase growth of few-layered graphene on sapphire substrates using SiC micropowder source

    NASA Astrophysics Data System (ADS)

    Maruyama, Takahiro; Yamashita, Yutaka; Saida, Takahiro; Tanaka, Shin-ichiro; Naritsuka, Shigeya

    2017-06-01

    We demonstrated direct synthesis of graphene films consisting of a few layers (few-layered graphene) on sapphire substrates by liquid-phase growth (LPG), using liquid Ga as the melt and SiC micropowder as the source material. When the dissolution temperature was above 700 °C, almost all Si atoms of SiC diffused into the Ga melt and only carbon atoms remained at the interface beneath the liquid Ga. Above 800 °C, X-ray photoelectron spectra showed that most of the remaining carbon was graphitized. When the dissolution temperature was 1000 °C, Raman spectra showed that few-layered graphene films grew on the sapphire substrates.

  10. Thousands of Stellar SiO masers in the Galactic center: The Bulge Asymmetries and Dynamic Evolution (BAaDE) survey

    NASA Astrophysics Data System (ADS)

    Sjouwerman, Loránt O.; Pihlström, Ylva M.; Rich, R. Michael; Morris, Mark R.; Claussen, Mark J.

    2017-01-01

    A radio survey of red giant SiO sources in the inner Galaxy and bulge is not hindered by extinction. Accurate stellar velocities (<1 km/s) are obtained with minimal observing time (<1 min) per source. Detecting over 20,000 SiO maser sources yields data comparable to optical surveys with the additional strength of a much more thorough coverage of the highly obscured inner Galaxy. Modeling of such a large sample would reveal dynamical structures and minority populations; the velocity structure can be compared to kinematic structures seen in molecular gas, complex orbit structure in the bar, or stellar streams resulting from recently infallen systems. Our Bulge Asymmetries and Dynamic Evolution (BAaDE) survey yields bright SiO masers suitable for follow-up Galactic orbit and parallax determination using VLBI. Here we outline our early VLA observations at 43 GHz in the northern bulge and Galactic plane (0

  11. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector.

    PubMed

    Barbisan, M; Zaniol, B; Pasqualotto, R

    2014-11-01

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H(-)/D(-) ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the Hα/Dα emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled Hα spectra in the case of MITICA experiment.

  12. Hybrid cloud and cluster computing paradigms for life science applications

    PubMed Central

    2010-01-01

    Background Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Results Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. Conclusions The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. Methods We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments. PMID:21210982

  13. Hybrid cloud and cluster computing paradigms for life science applications.

    PubMed

    Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey

    2010-12-21

    Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.

  14. Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; JET-EFDA contributors

    2015-08-01

    The JET ITER-Like Wall experiment (JET-ILW) provides an ideal test bed to investigate plasma-surface interaction (PSI) and plasma operation with the ITER plasma-facing material selection employing beryllium in the main chamber and tungsten in the divertor. The main PSI processes: material erosion and migration, (b) fuel recycling and retention, (c) impurity concentration and radiation have be1en studied and compared between JET-C and JET-ILW. The current physics understanding of these key processes in the JET-ILW revealed that both interpretation of previously obtained carbon results (JET-C) and predictions to ITER need to be revisited. The impact of the first-wall material on the plasma was underestimated. Main observations are: (a) low primary erosion source in H-mode plasmas and reduction of the material migration from the main chamber to the divertor (factor 7) as well as within the divertor from plasma-facing to remote areas (factor 30 - 50). The energetic threshold for beryllium sputtering minimises the primary erosion source and inhibits multi-step re-erosion in the divertor. The physical sputtering yield of tungsten is low as 10-5 and determined by beryllium ions. (b) Reduction of the long-term fuel retention (factor 10 - 20) in JET-ILW with respect to JET-C. The remaining retention is caused by implantation and co-deposition with beryllium and residual impurities. Outgassing has gained importance and impacts on the recycling properties of beryllium and tungsten. (c) The low effective plasma charge (Zeff = 1.2) and low radiation capability of beryllium reveal the bare deuterium plasma physics. Moderate nitrogen seeding, reaching Zeff = 1.6 , restores in particular the confinement and the L-H threshold behaviour. ITER-compatible divertor conditions with stable semi-detachment were obtained owing to a higher density limit with ILW. Overall JET demonstrated successful plasma operation in the Be/W material combination and confirms its advantageous PSI behaviour and gives strong support to the ITER material selection.

  15. Discriminatory Analysis II. Factor Analysis and Discrimination

    DTIC Science & Technology

    1950-10-01

    present In a given-’test. The last phase of factor ana2lysis is concerned -- -kv’-~ ’psyc Ig hological-siLr ifi-cance to the rectors, extract -, aed*-hee...tests. However, as IHotelling t s procedu~re is an iterative ~ one,.it can be stopped after the extraction of’ any nuLmber of coiuponenta if., one -deems...need not extract 22 ’l p factors and that one can factior R1 by this method as well as R, However, the fact remains that the coomrponents do not have

  16. Microcrystalline silicon growth for heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Leung, D. C.; Fang, P. H.

    1984-01-01

    A single source of evaporation with B mixed with highly doped Si is used instead of the coevaporation of separate Si and B sources to reduce possible carbon contamination. The results of both the heterojunction or heteroface structures, however, are similar when evaporation is used. The best Voc of the heterojunction is about 460mV and no improvement in Voc in the heteroface structure is observed. Slight Voc degradation occurred. A study of the p m-Si/p c-Si structure showed a negative Voc in many cases. The interface properties between the two materials are such that instead of repelling minority carriers from the substrate carrier, collection actually occurred. Another study of cells made in the part of substrates not covered by n-Si results in performance lower than the controls. This indicates possible substrate degradation in the process.

  17. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossack, Aaron C.; Jarboe, Thomas R.; Victor, Brian S.

    2013-10-15

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2–3) × 10{sup 19} m{sup −3} to 1 × 10{sup 19} m{sup −3}. Deuterium spheromak formation is possible with density as low as 2 × 10{sup 18} m{sup −3}. The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reductionmore » of breakdown density is presented.« less

  18. Atomic oxygen durability of solar concentrator materials for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Terlep, Judith A.; Dever, Therese M.

    1990-01-01

    The findings are reviewed of atomic oxygen exposure testing of candidate solar concentrator materials containing SiO2 and Al2O3 protective coatings for use on Space Station Freedom solar dynamic power modules. Both continuous and iterative atomic oxygen exposure tests were conducted. Iterative air plasma ashing resulted in larger specular reflectance decreases and solar absorptance increases than continuous ashing to the same fluence, and appears to provide a more severe environment than the continuous atomic oxygen exposure that would occur in the low Earth orbit environment. First generation concentrator fabrication techniques produced surface defects including scratches, macroscopic bumps, dendritic regions, porosity, haziness, and pin hole defects. Several of these defects appear to be preferential sites for atomic oxygen attack leading to erosive undercutting. Extensive undercutting and flaking of reflective and protective coatings were found to be promoted through an undercutting tearing propagation process. Atomic oxygen erosion processes and effects on optical performance is presented.

  19. Development and tests of molybdenum armored copper components for MITICA ion source

    NASA Astrophysics Data System (ADS)

    Pavei, Mauro; Böswirth, Bernd; Greuner, Henri; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo

    2016-02-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  20. Development and tests of molybdenum armored copper components for MITICA ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it; Marcuzzi, Diego; Rizzolo, Andrea

    2016-02-15

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analysesmore » of the prototypes simulating the test conditions in GLADIS as well as the experimental results.« less

  1. Development and tests of molybdenum armored copper components for MITICA ion source.

    PubMed

    Pavei, Mauro; Böswirth, Bernd; Greuner, Henri; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo

    2016-02-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  2. Two Populations of SiO Masers in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Trapp, Adam; Rich, Robert Michael; Morris, Mark; Pihlstrom, Ylva; Sjouwerman, Lorant; Claussen, Mark J.; Stroh, Michael

    2017-01-01

    We present a summary of the kinematics of stellar SiO masers observed in the direction of the galactic bulge with ALMA (885 sources), and the JVLA (2,479 sources). These objects are selected by color from the MSX point source catalog, which has given an SiO detection rate of ~70%. The presented sample, along with the ~24,000 sources still being observed and reduced, enable radial velocity measurements even in regions with extreme optical extinction. These maser stars are compared to the known bulge surveys: APOGEE (~25,000 sources), BRAVA (~8000 sources), and GIBS (~6,400 sources). We have found that BAaDE stars in the direction of the bulge exist in two subpopulations: (1) A kinematically hot population exhibiting cylindrical rotation consistent with the other bulge surveys, and (2) a kinematically cold population more consistent with a disk population. In the ALMA data, we find evidence for a -200 km/s feature at (l,b) = (-9,0), possibly the symmetric complement to a previously proposed +200 km/s feature (Nidever 2012), that we do not confirm with our data.

  3. Superlattice Multinanolayered Thin Films of SiO2/SiO2 + Ge for Thermoelectric Device Applications

    DTIC Science & Technology

    2013-04-05

    radioiso- tope sources in the past. In a space nuclear reactor system, the energy source is the heat generated by the controlled fission of uranium ...to the nanodots and/or nanocluster formations in the multilayered thin films. This is one of the expected results of the ion beam bombardments on...very large (150 W m 1 K 1 for Si and 63 W m 1 K 1 for Ge). The lattice thermal conductivity can be substantially reduced by alloy formation between

  4. Data from: Solving the Robot-World Hand-Eye(s) Calibration Problem with

    Science.gov Websites

    Iterative Methods | National Agricultural Library Skip to main content Home National Agricultural Library United States Department of Agriculture Ag Data Commons Beta Toggle navigation Datasets . License U.S. Public Domain Funding Source(s) National Science Foundation IOS-1339211 Agricultural Research

  5. Silicon carbon(001) gas-source molecular beam epitaxy from methyl silane and silicon hydride: The effects of carbon incorporation and surface segregation on growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Yong-Lim

    Si1-yCy alloys were grown on Si(001) by gas-source molecular-beam epitaxy (GS-MBE) from Si2H6/CH3 SiH3 mixtures as a function of C concentration y (0 to 2.6 at %) and deposition temperature Ts (500--600°C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In-situ isotopically-tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregates to the second-layer during steady-state Si1-y Cy(001) growth. This, in turn, results in charge-transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θ Si*(y, Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H 6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts, JSi2H6,J CH3SiH3 ) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in good agreement with the experimental data. At higher growth temperature (725 and 750°C), superlattice structures consisting of alternating Si-rich and C-rich sublayers form spontaneously during the gas-source molecular beam epitaxial growth of Si1-y Cy layers from constant Si2H6 and CH 3SiH3 precursor fluxes. The formation of a self-organized superstructure is due to a complex interaction among competing surface reactions. During growth of the initial Si-rich sublayer, C strongly segregates to the second layer resulting in charge transfer from surface Si atom dangling bonds of to C backbonds. This, in turn, decreases the Si2H6 sticking probability and, hence, the sublayer deposition rate. This continues until a critical C coverage is reached allowing the nucleation and growth of a C-rich sublayer until the excess C is depleted. At this point, the self-organized bilayer process repeats itself.

  6. One step growth of GaN/SiO2 core/shell nanowire in vapor-liquid-solid route by chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Barick, B. K.; Yadav, Shivesh; Dhar, S.

    2017-11-01

    GaN/SiO2 core/shell nanowires are grown by cobalt phthalocyanine catalyst assisted vapor-liquid-solid route, in which Si wafer coated with a mixture of gallium and indium is used as the source for Ga and Si and ammonia is used as the precursor for nitrogen and hydrogen. Gallium in the presence of indium and hydrogen, which results from the dissociation of ammonia, forms Si-Ga-In alloy at the growth temperature ∼910 °C. This alloy acts as the source of Si, Ga and In. A detailed study using a variety of characterization tools reveals that these wires, which are several tens of micron long, has a diameter distribution of the core ranging from 20 to 50 nm, while the thickness of the amorphous SiO2 shell layer is about 10 nm. These wires grow along [ 1 0 1 bar 0 ] direction. It has also been observed that the average diameter of these wires decreases, while their density increases as the gallium proportion in the Ga-In mixture is increased.

  7. The Stellar Imager (SI) Project: A Deep Space UV/Optical Interferometer (UVOI) to Observe the Universe at 0.1 Milli-Arcsec Angular Resolution

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2008-01-01

    The Stellar Imager (SI) is a space-based, UV/ Optical Interferometer (UVOI) designed to enable 0.1 milliarcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding, of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA's Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this missin. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  8. Transport properties of Sb doped Si nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Usha, Philipose

    2011-10-01

    n-type Si nanowires were synthesized at ambient pressure using SiCl4 as Si source and Sb source as the dopant. Sb doping of 3-4 wt % was achieved through a post growth diffusion technique. The nanowires were found to have an amorphous oxide shell that developed post-growth; the thickness of the shell is estimated to be about 3-4 nm. The composition of the amorphous shell covering the crystalline Si core was determined by Raman spectroscopy, with evidence that the shell was an amorphous oxide layer. Optical characterization of the as-grown nanowires showed green emission, attributed to the presence of the oxide shell covering the Si nanowire core. Etching of the oxide shell was found to decrease the intensity of this green emission. A single undoped Si nanowire contacted in an FET type configuration was found to be p-type with channel mobility of 20 cm^2V-1S-1. Sb doped Si nanowires exhibited n-type behavior, compensating for the holes in the undoped nanowire. The doped nanowires had carrier mobility and concentration of 160 cm^2V-1S-1 and 9.6 x 10^18cm-3 respectively.

  9. Using Si depletion in aerosol to identify the sources of crustal dust in two Chinese megacities

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; He, Kebin; Rahn, Kenneth A.; Ma, Yongliang; Yang, Fumo; Duan, Fengkui

    2010-07-01

    Depletion of Si in transported dust has been recognized for many years. It can be used to distinguish between transported and local dust in cities, although it rarely has been. Here we use the variations of the Si/Al ratio in 15 months of continuous PM 2.5 samples at Beijing (northern China) and Chongqing (southwestern China) to reveal the seasonal patterns of their dust sources. For both cities, peaks of concentration for Si and Al in PM 2.5 corresponded with minima of Si/Al, and could often be linked to pulsed air flow from deserts to the northwest. With significant depletion (up to 80%) and homogeneous distribution at urban and rural sites, Si/Al showed a clear seasonal evolution, which decreased from spring to summer, increased from fall to winter, and collapsed during Chinese Spring Festival, indicating the dominance of transported dust, local fugitive dust and firework influence, respectively. The low ratios implied that desert dust is a common source during spring at Chongqing, whereas its presence during cold season at Beijing was also more frequent than expected. Failing to recognize the depletion of Si may lead to an overestimate of desert dust by 15%-65% when using the average abundance of Al in crust (6%-8%), as in previous studies. The difference in Si/Al ratio between local and transported dust implies that >60% of the dust at Beijing came from outside the city during the springs of 2004-2006. This result can help resolve the contradictory findings on this topic that have been presented earlier.

  10. Shock-tube studies of silicon-compound vapors

    NASA Technical Reports Server (NTRS)

    Park, C.; Fujiwara, T.

    1977-01-01

    Test gas mixtures containing SiO, SiO2, Si2, and SiH were produced in a shock tube by processing shock waves through a mixture of SiCl4 + N2O + Ar, SiH4 + Ar, or SiH4 + O2 + Ar. Absorption spectra of the test gases were studied photographically in the reflected shock region using a xenon flash lamp as the light source in the range of wavelengths between 250 and 600 nm. SiO was found to be a dominant species in the vapors produced by the SiCl4 + N2O and SiH4 + O2 mixtures. Spontaneous combustion was observed in the SiH4 + O2 + Ar mixture prior to the shock arrival, and the resulting solid SiO2 particles evaporated behind the shock wave. Spectral absorption characteristics of SiO, SiO2, Si2, and SiH were determined by studying the test gases.

  11. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

    PubMed Central

    Liu, Nian; Huo, Kaifu; McDowell, Matthew T.; Zhao, Jie; Cui, Yi

    2013-01-01

    The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes. Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive. Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricultural byproduct produced at a rate of 1.2 × 108 tons/year, with a conversion yield as high as 5% by mass. And owing to their small size (10–40 nm) and porous nature, these recovered SiNPs exhibits high performance as Li-ion battery anodes, with high reversible capacity (2,790 mA h g−1, seven times greater than graphite anodes) and long cycle life (86% capacity retention over 300 cycles). Using RHs as the raw material source, overall energy-efficient, green, and large scale synthesis of low-cost and functional Si nanomaterials is possible. PMID:23715238

  12. Evaluating the effect of increased pitch, iterative reconstruction and dual source CT on dose reduction and image quality.

    PubMed

    Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier

    2018-06-14

    To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.

  13. Transport properties of Sb-doped Si nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Philipose, U.

    2012-08-01

    We present a safe and cost-effective approach for synthesis of n-type Sb-doped Si nanowires. The nanowires were synthesized at ambient pressure using SiCl4 as Si source and pure Sb as the dopant source. Structural and compositional characterization using electron microscopy and X-ray spectroscopy show crystalline nanowires with lengths of 30-40 μm and diameters of 40-100 nm. A 3-4 nm thick amorphous oxide shell covers the surface of the nanowire, post-growth. The composition of this shell was confirmed by Raman spectroscopy. Growth of Si nanowires, followed by low temperature annealing in Sb vapor, was shown to be an effective technique for synthesizing Sb-doped Si nanowires. The doping concentration of Sb was found to be dependent on temperature, with Sb re-evaporating from the Si nanowire at higher doping temperatures. Field effect transistors (FETs) were fabricated to investigate the electrical transport properties of these nanowires. The as-grown Si nanowires were found to be p-type with a channel mobility of 40 cm2 V-1 s-1. After doping with Sb, these nanowires exhibited n-type behavior. The channel mobility and carrier concentration of the Sb-doped Si nanowires were estimated to be 288 cm2 V-1 s-1 and 5.3×1018 cm-3 respectively.

  14. Improvements in surface singularity analysis and design methods. [applicable to airfoils

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1979-01-01

    The coupling of the combined source vortex distribution of Green's potential flow function with contemporary numerical techniques is shown to provide accurate, efficient, and stable solutions to subsonic inviscid analysis and design problems for multi-element airfoils. The analysis problem is solved by direct calculation of the surface singularity distribution required to satisfy the flow tangency boundary condition. The design or inverse problem is solved by an iteration process. In this process, the geometry and the associated pressure distribution are iterated until the pressure distribution most nearly corresponding to the prescribed design distribution is obtained. Typically, five iteration cycles are required for convergence. A description of the analysis and design method is presented, along with supporting examples.

  15. The silicon isotope composition of the upper continental crust

    NASA Astrophysics Data System (ADS)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Halliday, Alex N.

    2013-05-01

    The upper continental crust (UCC) is the major source of silicon (Si) to the oceans and yet its isotopic composition is not well constrained. In an effort to investigate the degree of heterogeneity and provide a robust estimate for the average Si isotopic composition of the UCC, a representative selection of well-characterised, continentally-derived clastic sediments have been analysed using high-precision MC-ICPMS. Analyses of loess samples define a narrow range of Si isotopic compositions (δ30Si = -0.28‰ to -0.15‰). This is thought to reflect the primary igneous mineralogy and predominance of mechanical weathering in the formation of such samples. The average loess δ30Si is -0.22 ± 0.07‰ (2 s.d.), identical to average granite and felsic igneous compositions. Therefore, minor chemical weathering does not resolvably affect bulk rock δ30Si, and loess is a good proxy for the Si isotopic composition of unweathered, crystalline, continental crust. The Si isotopic compositions of shales display much more variability (δ30Si = -0.82‰ to 0.00‰). Shale Si isotope compositions do not correlate well with canonical proxies for chemical weathering, such as CIA values, but do correlate negatively with insoluble element concentrations and Al/Si ratios. This implies that more intensive or prolonged chemical weathering of a sedimentary source, with attendant desilicification, is required before resolvable negative Si isotopic fractionation occurs. Shale δ30Si values that are more positive than those of felsic igneous rocks most likely indicate the presence of marine-derived silica in such samples. Using the data gathered in this study, combined with already published granite Si isotope analyses, a weighted average composition of δ30Si = -0.25 ± 0.16‰ (2 s.d.) for the UCC has been calculated.

  16. The Ge/Si ratio quantifies the role of recycled crust in the generation of MORBs

    NASA Astrophysics Data System (ADS)

    Yang, S.; Humayun, M.; Salters, V. J. M.

    2017-12-01

    Global MORBs cover a broad spectrum of incompatible element compositions from depleted [(La/Sm)N < 0.5] to enriched [(La/Sm)N 0.5-2]. Two explanations for the origin of the enriched mantle sources of E-MORBs from ridge segments not associated with plumes have been proposed: (1) re-fertilization of Depleted Mantle (DM) by infiltration of low-degree melts (<1%) from subducted crust, or (2) by entrainment of solid recycled crust in the Depleted Mantle (DM). Whether pyroxenite contributes melt to E-MORB can be resolved by chemically distinguishing between partial melts of a peridotite source vs. those of a lithologically heterogeneous source of peridotite and pyroxenite. In this study, we exploit the mineralogical preferences of elements like Ge and Si to distinguish melts formed from peridotite or pyroxenite. In-situ analyses of 60 elements in 319 MORB glasses from north (10-36 °N) Mid-Atlantic Ridge (MAR) and Mid-Cayman Rise were performed by LA-ICP-MS. Use of a large laser spot size (150 μm) and high repetition rate (50 Hz) yielded a low blank correction (< 5%) for Ge, and high external precision for the Ge/Si ratio (± 3%, 1σ) in MORB glasses. E-MORBs (6.4±0.2) are systematically lower in Ge/Si than D-MORBs (7.2±0.2), while N-MORBs fall in between and are not fully resolved from either D- or E-MORB. Based on experimental Ds, partial melts from pyroxenites are always lower in Ge/Si than partial melts from peridotites because Ge is more compatible in garnet and clinopyroxene than in olivine [1]. E-MORBs also have lower Sc abundances (37 vs. 43 ppm) but slightly higher Fe/Mn ratios (55 vs. 53) than D-MORBs, and lower La/Nb (0.6 vs. 1-2) and Sr/Nb (<20 vs. >40), consistent with addition of 27% pyroxenite-derived melts to a D-MORB-like composition. This requires that the amount of solid recycled garnet pyroxenite in a peridotite source is 12%. The Ge/Si ratio is a new tool that effectively discriminates between melts derived from peridotite sources and melts derived from pyroxenite sources. Extrapolating from the correlation between K2O/TiO2 and Ge/Si established in this study, we estimated the distribution of pyroxenite, solid recycled crust, in the mantle sources of global MORB segments, which reveals a mode of 3-4% pyroxenite in the MORB source. [1] Davis et al., 2013

  17. Solution based synthesis of mixed-phase materials in the Li2TiO3-Li4SiO4 system

    NASA Astrophysics Data System (ADS)

    Hanaor, Dorian A. H.; Kolb, Matthias H. H.; Gan, Yixiang; Kamlah, Marc; Knitter, Regina

    2015-01-01

    As candidate tritium breeder materials for use in the ITER helium cooled pebble bed, ceramic multiphasic compounds lying in the region of the quasi-binary lithium metatitanate-lithium orthosilicate system may exhibit mechanical and physical advantages relative to single phase materials. Here we present an organometallic solution-based synthesis procedure for the low-temperature fabrication of compounds in the Li2TiO3-Li4SiO4 region and investigate phase stability and transformations through temperature varied X-ray diffraction and scanning calorimetry. Results demonstrate that the metatitanate and metasilicate phases Li2TiO3 and Li2SiO3 readily crystallise in nanocrystalline form at temperatures below 180 °C. Lithium deficiency in the region of 5% results from Li sublimation from Li4SiO4 and/or from excess Li incorporation in the metatitanate phase and brings about a stoichiometry shift, with product compounds exhibiting mixed lithium orthosilicate/metasilicate content towards the Si rich region and predominantly Li2TiO3 content towards the Ti rich region. Above 1150 °C the transformation of monoclinic to cubic γ-Li2TiO3 disordered solid-solution occurs while the melting of silicate phases indicates a likely monotectic type system with a solidus line in the region 1050-1100 °C. Synthesis procedures involving a lithium chloride precursor are not likely to be a viable option for breeder pebble synthesis as this route was found to yield materials with a more significant Li-deficiency exhibiting the crystallisation of the Li2TiSiO5 phase at intermediate compositions.

  18. Development and Evaluation of Two Abbreviated Questionnaires for Mentoring and Research Self-Efficacy.

    PubMed

    Jeffe, Donna B; Rice, Treva K; Boyington, Josephine E A; Rao, Dabeeru C; Jean-Louis, Girardin; Dávila-Román, Victor G; Taylor, Anne L; Pace, Betty S; Boutjdir, Mohamed

    2017-01-01

    To reduce respondent burden for future evaluations of the National Heart, Lung, and Blood Institute-supported Programs to Increase Diversity Among Individuals Engaged in Health-Related Research (PRIDE), a mentored-research education program, we sought to shorten the 33-item Ragins and McFarlin Mentor Role Instrument (RMMRI), measuring mentor-role appraisals, and the 69-item Clinical Research Appraisal Inventory (CRAI), measuring research self-efficacy. Three nationally recruited, junior-faculty cohorts attended two, annual 2-3 week Summer Institutes (SI-1/SI-2: 2011/2012, 2012/2013, 2013/2014) at one of six PRIDE sites. Mentees completed the RMMRI two months after mentor assignment and the CRAI at baseline (pre-SI-1) and 6-month (mid-year) and 12-month (post-SI-2) follow-up. Publications data obtained from Scopus in October 2015 were verified with mentees' curriculum vitae. The RMMRI and CRAI were shortened using an iterative process of principal-components analysis. The shortened measures were examined in association with each other (multiple linear regression) and with increase in publications (repeated-measures analysis of covariance). PRIDE enrolled 152 mentees (70% women; 60% Black, 35% Hispanic/Latino). Cronbach's alphas for the new 9-item RMMRI, 19-item CRAI, and four CRAI-19 subscales were excellent. Controlling for baseline self-efficacy and cohort, RMMRI-9 scores were independently, positively associated with post-SI-2 scores on the CRAI-19 and three subscales (writing, study design/data analysis, and collaboration/grant preparation). Controlling for cohort, higher RMMRI-9 and post-SI-2 CRAI-19 scores were each associated with greater increase in publications. The RMMRI-9 and CRAI-19 retained the excellent psychometric properties of the longer measures. Findings support use of the shortened measures in future evaluations of PRIDE.

  19. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Christopher; Portnoff, Samuel; Spencer, M. G.

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P{sup +}N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH{sup 3}{sub x}) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm{sup 2}. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm{sup 2}, fill factor of 0.86,more » and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 10{sup 5}–10{sup 6 }cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P{sup +}N junction structure can mitigate some of the negative effects.« less

  20. Children's eyewitness memory: repeating post-event misinformation reduces the distinctiveness of a witnessed event.

    PubMed

    Bright-Paul, Alexandra; Jarrold, Christopher

    2012-01-01

    Children may incorporate misinformation into reports of witnessed events, particularly if the misinformation is repeated. One explanation is that the misinformation trace is strengthened by repetition. Alternatively, repeating misinformation may reduce the discriminability between event and misinformation sources, increasing interference between them. We tested trace strength and distinctiveness accounts by showing 5- and 6-year-olds an event and then presenting either the "same" or "varying" items of post-event misinformation across three iterations. Performance was compared to a baseline in which misinformation was presented once. Repeating the same misinformation increased suggestibility when misinformation was erroneously attributed to both event and misinformation sources, supporting a trace strength interpretation. However, suggestibility measured by attributing misinformation solely to the event, was lower when misinformation was presented repeatedly rather than once. In contrast, identification of the correct source of the event was less likely if the misinformation was repeated, whether the same or different across iterations. Thus a reduction in the distinctiveness of sources disrupted memory for the event source. Moreover, there was strong association between memory for the event and a measure of distinctiveness of sources, which takes into account both the number of confusable source and their apparent temporal spacing from the point of retrieval.

  1. Ion beam figuring of CVD silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  2. SI: The Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  3. Silicon Isotope Geochemistry of Ocean Island Basalts: Search for Deep Mantle Heterogeneities and Evidence for Recycled Altered Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.; Moynier, F.

    2014-12-01

    Analyses of Ocean Island Basalts (OIB) have shown that the Earth's mantle contains isotopically distinct components, but debate about the degree and cause of variability persists. The study of silicon (Si) isotopes in OIBs has the potential to elucidate mantle heterogeneities. Relatively large (~several per mil) Si isotopic fractionation occurs in low-temperature environments during precipitation from dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes [1], but only a limited range (~tenths of a per mil) of Si isotope fractionation has been observed due to high-temperature igneous processes [2]. Therefore, Si isotopes may be useful as tracers for the presence of crustal material in OIB source regions in a manner similar to more conventional stable isotope systems, such as oxygen. Here we present the first comprehensive suite of high-precision Si isotopic data obtained by MC-ICP-MS for a diverse set of OIBs representing the EM-1, EM-2, and HIMU mantle components. In general, the Si isotopic compositions of OIBs analyzed here are agreement with previous estimates for Bulk Silicate Earth (BSE). However, small systematic variations are present; the HIMU end-member Mangaia and HIMU-type Cape Verde island São Nicolau are enriched in the light isotopes of Si (δ30Si = -0.37 ± 0.06‰ and δ30Si = -0.39 ± 0.04‰, respectively; errors are 2sd), with compositions intermediary between Mid Ocean Ridge Basalts and chondritic values. Additionally, Iceland samples from volcanic complexes in the Northern Rift Zone show similar Si isotope compositions (on average, δ30Si = -0.40 ± 0.06‰). In contrast, the δ30Si averages of the EM-1 end-member Pitcairn (-0.28 ± 0.07‰), the EM-2 end-member Samoa (-0.31 ± 0.07‰) and other OIB localities do not show any significant difference from previous estimates for the δ30Si value of BSE [3]. The Si isotopic variability in some HIMU-type and Icelandic OIBs most likely reflects the incorporation of recycled altered oceanic crust in the plume source. However, the sampling of a primitive reservoir enriched in the light isotopes of Si, as suggested by [4], cannot be ruled out as a potential source of Si isotope variations in OIBs. References: [1] Ziegler et al., GCA 2005 [2] Savage et al., GCA 2011 [3] Savage et al., EPSL 2010 [4] Huang et al., GCA 2014

  4. CVD of silicon carbide on structural fibers - Microstructure and composition

    NASA Technical Reports Server (NTRS)

    Veitch, Lisa C.; Terepka, Francis M.; Gokoglu, Suleyman A.

    1992-01-01

    Structural fibers are currently being considered as reinforcements for intermetallic and ceramic materials. Some of these fibers, however, are easily degraded in a high temperature oxidative environment. Therefore, coatings are needed to protect the fibers from environmental attack. Silicon carbide (SiC) was chemically vapor deposited (CVD) on Textron's SCS6 fibers. Fiber temperatures ranging from 1350 to 1500 C were studied. Silane (SiH4) and propane (C2H8) were used for the source gases and different concentrations of these source gases were studied. Deposition rates were determined for each group of fibers at different temperatures. Less variation in deposition rates were observed for the dilute source gas experiments than the concentrated source gas experiments. A careful analysis was performed on the stoichiometry of the CVD SiC coating using electron microprobe. Microstructures for the different conditions were compared. At 1350 C, the microstructures were similar; however, at higher temperatures, the microstructure for the more concentrated source gas group were porous and columnar in comparison to the cross sections taken from the same area for the dilute source gas group.

  5. CVD of silicon carbide on structural fibers: Microstructure and composition

    NASA Technical Reports Server (NTRS)

    Veitch, Lisa C.; Terepka, Francis M.; Gokoglu, Suleyman A.

    1992-01-01

    Structural fibers are currently being considered as reinforcements for intermetallic and ceramic materials. Some of these fibers, however, are easily degraded in a high temperature oxidative environment. Therefore, coatings are needed to protect the fibers from environmental attack. Silicon carbide (SiC) was chemically vapor deposited (CVD) on Textron's SCS6 fibers. Fiber temperatures ranging from 1350 to 1500 C were studied. Silane (SiH4) and propane (C2H8) were used for the source gases and different concentrations of these source gases were studied. Deposition rates were determined for each group of fibers at different temperatures. Less variation in deposition rates were observed for the dilute source gas experiments than the concentrated source gas experiments. A careful analysis was performed on the stoichiometry of the CVD SiC coating using electron microprobe. Microstructures for the different conditions were compared. At 1350 C, the microstructures were similar; however, at higher temperatures, the microstructure for the more concentrated source gas group were porous and columnar in comparison to the cross sections taken from the same area for the dilute source gas group.

  6. Si1-yCy/Si(001) gas-source molecular beam epitaxy from Si2H6 and CH3SiH3: Surface reaction paths and growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Desjardins, P.; Greene, J. E.

    2003-04-01

    In situ surface probes and postdeposition analyses were used to follow surface reaction paths and growth kinetics of Si1-yCy alloys grown on Si(001) by gas-source molecular-beam epitaxy from Si2H6/CH3SiH3 mixtures as a function of C concentration y (0-2.6 at %) and temperature Ts (500-600 °C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In situ isotopically tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregation during steady-state Si1-yCy(001) growth results in charge transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θSi*(y,Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. θSi* increases with increasing y and Ts in the kinetically limited segregation regime while Ed decreases from 2.52 eV for H2 desorption from Si surface sites with Si back bonds to 2.22 eV from Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts,JSi2H6,JCH3SiH3) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in excellent agreement with the experimental data.

  7. Adjoint tomography of Europe

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Bozdag, E.; Peter, D. B.; Tromp, J.

    2010-12-01

    We use spectral-element and adjoint methods to image crustal and upper mantle heterogeneity in Europe. The study area involves the convergent boundaries of the Eurasian, African and Arabian plates and the divergent boundary between the Eurasian and North American plates, making the tectonic structure of this region complex. Our goal is to iteratively fit observed seismograms and improve crustal and upper mantle images by taking advantage of 3D forward and inverse modeling techniques. We use data from 200 earthquakes with magnitudes between 5 and 6 recorded by 262 stations provided by ORFEUS. Crustal model Crust2.0 combined with mantle model S362ANI comprise the initial 3D model. Before the iterative adjoint inversion, we determine earthquake source parameters in the initial 3D model by using 3D Green functions and their Fréchet derivatives with respect to the source parameters (i.e., centroid moment tensor and location). The updated catalog is used in the subsequent structural inversion. Since we concentrate on upper mantle structures which involve anisotropy, transversely isotropic (frequency-dependent) traveltime sensitivity kernels are used in the iterative inversion. Taking advantage of the adjoint method, we use as many measurements as can obtain based on comparisons between observed and synthetic seismograms. FLEXWIN (Maggi et al., 2009) is used to automatically select measurement windows which are analyzed based on a multitaper technique. The bandpass ranges from 15 second to 150 second. Long-period surface waves and short-period body waves are combined in source relocations and structural inversions. A statistical assessments of traveltime anomalies and logarithmic waveform differences is used to characterize the inverted sources and structure.

  8. Accurate Micro-Tool Manufacturing by Iterative Pulsed-Laser Ablation

    NASA Astrophysics Data System (ADS)

    Warhanek, Maximilian; Mayr, Josef; Dörig, Christian; Wegener, Konrad

    2017-12-01

    Iterative processing solutions, including multiple cycles of material removal and measurement, are capable of achieving higher geometric accuracy by compensating for most deviations manifesting directly on the workpiece. Remaining error sources are the measurement uncertainty and the repeatability of the material-removal process including clamping errors. Due to the lack of processing forces, process fluids and wear, pulsed-laser ablation has proven high repeatability and can be realized directly on a measuring machine. This work takes advantage of this possibility by implementing an iterative, laser-based correction process for profile deviations registered directly on an optical measurement machine. This way efficient iterative processing is enabled, which is precise, applicable for all tool materials including diamond and eliminates clamping errors. The concept is proven by a prototypical implementation on an industrial tool measurement machine and a nanosecond fibre laser. A number of measurements are performed on both the machine and the processed workpieces. Results show production deviations within 2 μm diameter tolerance.

  9. Data-driven Green's function retrieval and application to imaging with multidimensional deconvolution

    NASA Astrophysics Data System (ADS)

    Broggini, Filippo; Wapenaar, Kees; van der Neut, Joost; Snieder, Roel

    2014-01-01

    An iterative method is presented that allows one to retrieve the Green's function originating from a virtual source located inside a medium using reflection data measured only at the acquisition surface. In addition to the reflection response, an estimate of the travel times corresponding to the direct arrivals is required. However, no detailed information about the heterogeneities in the medium is needed. The iterative scheme generalizes the Marchenko equation for inverse scattering to the seismic reflection problem. To give insight in the mechanism of the iterative method, its steps for a simple layered medium are analyzed using physical arguments based on the stationary phase method. The retrieved Green's wavefield is shown to correctly contain the multiples due to the inhomogeneities present in the medium. Additionally, a variant of the iterative scheme enables decomposition of the retrieved wavefield into its downgoing and upgoing components. These wavefields then enable creation of a ghost-free image of the medium with either cross correlation or multidimensional deconvolution, presenting an advantage over standard prestack migration.

  10. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks

    PubMed Central

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng

    2017-01-01

    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement. PMID:28677636

  11. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks.

    PubMed

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng

    2017-07-04

    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.

  12. Achievements in the development of the Water Cooled Solid Breeder Test Blanket Module of Japan to the milestones for installation in ITER

    NASA Astrophysics Data System (ADS)

    Tsuru, Daigo; Tanigawa, Hisashi; Hirose, Takanori; Mohri, Kensuke; Seki, Yohji; Enoeda, Mikio; Ezato, Koichiro; Suzuki, Satoshi; Nishi, Hiroshi; Akiba, Masato

    2009-06-01

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, a water cooled solid breeder (WCSB) TBM is being developed. This paper shows the recent achievements towards the milestones of ITER TBMs prior to the installation, which consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, targeting the detailed design final report in 2012, structure designs of the WCSB TBM and the interfacing components (common frame and backside shielding) that are placed in a test port of ITER and the layout of the cooling system are presented. As for the module qualification, a real-scale first wall mock-up fabricated by using the hot isostatic pressing method by structural material of reduced activation martensitic ferritic steel, F82H, and flow and irradiation test of the mock-up are presented. As for safety milestones, the contents of the preliminary safety report in 2008 consisting of source term identification, failure mode and effect analysis (FMEA) and identification of postulated initiating events (PIEs) and safety analyses are presented.

  13. Realization of 10 GHz minus 30dB on-chip micro-optical links with Si-Ge RF bi-polar technology

    NASA Astrophysics Data System (ADS)

    Ogudo, Kingsley A.; Snyman, Lukas W.; Polleux, Jean-Luc; Viana, Carlos; Tegegne, Zerihun

    2014-06-01

    Si Avalanche based LEDs technology has been developed in the 650 -850nm wavelength regime [1, 2]. Correspondingly, small micro-dimensioned detectors with pW/μm2 sensitivity have been developed for the same wavelength range utilizing Si-Ge detector technology with detection efficiencies of up to 0.85, and with a transition frequencies of up to 80 GHz [3] A series of on-chip optical links of 50 micron length, utilizing 650 - 850 nm propagation wavelength have been designed and realized, utilizing a Si Ge radio frequency bipolar process. Micron dimensioned optical sources, waveguides and detectors were all integrated on the same chip to form a complete optical link on-chip. Avalanche based Si LEDs (Si Av LEDs), Schottky contacting, TEOS densification strategies, silicon nitride based waveguides, and state of the art Si-Ge bipolar detector technologies were used as key design strategies. Best performances show optical coupling from source to detector of up to 10GHz and - 40dBm total optical link budget loss with a potential transition frequency coupling of up to 40GHz utilizing Si Ge based LEDs. The technology is particularly suitable for application as on-chip optical links, optical MEMS and MOEMS, as well as for optical interconnects utilizing low loss, side surface, waveguide- to-optical fiber coupling. Most particularly is one of our designed waveguide which have a good core axis alignment with the optical source and yield 10GHz -30dB on-chip micro-optical links as shown in Fig 9 (c). The technology as developed has been appropriately IP protected.

  14. Receiver function stacks: initial steps for seismic imaging of Cotopaxi volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Bishop, J. W.; Lees, J. M.; Ruiz, M. C.

    2017-12-01

    Cotopaxi volcano is a large, andesitic stratovolcano located within 50 km of the the Ecuadorean capital of Quito. Cotopaxi most recently erupted for the first time in 73 years during August 2015. This eruptive cycle (VEI = 1) featured phreatic explosions and ejection of an ash column 9 km above the volcano edifice. Following this event, ash covered approximately 500 km2 of the surrounding area. Analysis of Multi-GAS data suggests that this eruption was fed from a shallow source. However, stratigraphic evidence surveying the last 800 years of Cotopaxi's activity suggests that there may be a deep magmatic source. To establish a geophysical framework for Cotopaxi's activity, receiver functions were calculated from well recorded earthquakes detected from April 2015 to December 2015 at 9 permanent broadband seismic stations around the volcano. These events were located, and phase arrivals were manually picked. Radial teleseismic receiver functions were then calculated using an iterative deconvolution technique with a Gaussian width of 2.5. A maximum of 200 iterations was allowed in each deconvolution. Iterations were stopped when either the maximum iteration number was reached or the percent change fell beneath a pre-determined tolerance. Receiver functions were then visually inspected for anomalous pulses before the initial P arrival or later peaks larger than the initial P-wave correlated pulse, which were also discarded. Using this data, initial crustal thickness and slab depth estimates beneath the volcano were obtained. Estimates of crustal Vp/Vs ratio for the region were also calculated.

  15. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Carpenter, K. G.; Schrijver, C. J.; Karovska, M.; Si Vision Mission Team

    2009-09-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a ``Flagship and Landmark Discovery Mission'' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a ``Pathways to Life Observatory'' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) and its ability to image the Biggest, Baddest, Coolest Stars.

  16. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth; Schrijver, Carolus J.; Karovska, Margarita

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a 'Flagship and Landmark Discovery Mission' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a 'Pathways to Life Observatory' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) its ability to image the 'Biggest, Baddest, Coolest Stars'.

  17. PROGRESS TOWARDS NEXT GENERATION, WAVEFORM BASED THREE-DIMENSIONAL MODELS AND METRICS TO IMPROVE NUCLEAR EXPLOSION MONITORING IN THE MIDDLE EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, B; Peter, D; Covellone, B

    2009-07-02

    Efforts to update current wave speed models of the Middle East require a thoroughly tested database of sources and recordings. Recordings of seismic waves traversing the region from Tibet to the Red Sea will be the principal metric in guiding improvements to the current wave speed model. Precise characterizations of the earthquakes, specifically depths and faulting mechanisms, are essential to avoid mapping source errors into the refined wave speed model. Errors associated with the source are manifested in amplitude and phase changes. Source depths and paths near nodal planes are particularly error prone as small changes may severely affect themore » resulting wavefield. Once sources are quantified, regions requiring refinement will be highlighted using adjoint tomography methods based on spectral element simulations [Komatitsch and Tromp (1999)]. An initial database of 250 regional Middle Eastern events from 1990-2007, was inverted for depth and focal mechanism using teleseismic arrivals [Kikuchi and Kanamori (1982)] and regional surface and body waves [Zhao and Helmberger (1994)]. From this initial database, we reinterpreted a large, well recorded subset of 201 events through a direct comparison between data and synthetics based upon a centroid moment tensor inversion [Liu et al. (2004)]. Evaluation was done using both a 1D reference model [Dziewonski and Anderson (1981)] at periods greater than 80 seconds and a 3D model [Kustowski et al. (2008)] at periods of 25 seconds and longer. The final source reinterpretations will be within the 3D model, as this is the initial starting point for the adjoint tomography. Transitioning from a 1D to 3D wave speed model shows dramatic improvements when comparisons are done at shorter periods, (25 s). Synthetics from the 1D model were created through mode summations while those from the 3D simulations were created using the spectral element method. To further assess errors in source depth and focal mechanism, comparisons between the three methods were made. These comparisons help to identify problematic stations and sources which may bias the final solution. Estimates of standard errors were generated for each event's source depth and focal mechanism to identify poorly constrained events. A final, well characterized set of sources and stations will be then used to iteratively improve the wave speed model of the Middle East. After a few iterations during the adjoint inversion process, the sources will be reexamined and relocated to further reduce mapping of source errors into structural features. Finally, efforts continue in developing the infrastructure required to 'quickly' generate event kernels at the n-th iteration and invert for a new, (n+1)-th, wave speed model of the Middle East. While development of the infrastructure proceeds, initial tests using a limited number of events shows the 3D model, while showing vast improvement compared to the 1D model, still requires substantial modifications. Employing our new, full source set and iterating the adjoint inversions at successively shorter periods will lead to significant changes and refined wave speed structures of the Middle East.« less

  18. The Stellar Imager (SI) project: a deep space UV/Optical Interferometer (UVOI) to observe the Universe at 0.1 milli-arcsec angular resolution

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2009-04-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI’s science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a “Flagship and Landmark Discovery Mission” in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA’s Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/

  19. Giant Dirac point shift of graphene phototransistors by doped silicon substrate current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimatani, Masaaki; Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke

    2016-03-15

    Graphene is a promising new material for photodetectors due to its excellent optical properties and high-speed response. However, graphene-based phototransistors have low responsivity due to the weak light absorption of graphene. We have observed a giant Dirac point shift upon white light illumination in graphene-based phototransistors with n-doped Si substrates, but not those with p-doped substrates. The source-drain current and substrate current were investigated with and without illumination for both p-type and n-type Si substrates. The decay time of the drain-source current indicates that the Si substrate, SiO{sub 2} layer, and metal electrode comprise a metal-oxide-semiconductor (MOS) capacitor due tomore » the presence of defects at the interface between the Si substrate and SiO{sub 2} layer. The difference in the diffusion time of the intrinsic major carriers (electrons) and the photogenerated electron-hole pairs to the depletion layer delays the application of the gate voltage to the graphene channel. Therefore, the giant Dirac point shift is attributed to the n-type Si substrate current. This phenomenon can be exploited to realize high-performance graphene-based phototransistors.« less

  20. Polyamidoamine-Decorated Nanodiamonds as a Hybrid Gene Delivery Vector and siRNA Structural Characterization at the Charged Interfaces.

    PubMed

    Lim, Dae Gon; Rajasekaran, Nirmal; Lee, Dukhee; Kim, Nam Ah; Jung, Hun Soon; Hong, Sungyoul; Shin, Young Kee; Kang, Eunah; Jeong, Seong Hoon

    2017-09-20

    Nanodiamonds have been discovered as a new exogenous material source in biomedical applications. As a new potent form of nanodiamond (ND), polyamidoamine-decorated nanodiamonds (PAMAM-NDs) were prepared for E7 or E6 oncoprotein-suppressing siRNA gene delivery for high risk human papillomavirus-induced cervical cancer, such as types 16 and 18. It is critical to understand the physicochemical properties of siRNA complexes immobilized on cationic solid ND surfaces in the aspect of biomolecular structural and conformational changes, as the new inert carbon material can be extended into the application of a gene delivery vector. A spectral study of siRNA/PAMAM-ND complexes using differential scanning calorimetry and circular dichroism spectroscopy proved that the hydrogen bonding and electrostatic interactions between siRNA and PAMAM-NDs decreased endothermic heat capacity. Moreover, siRNA/PAMAM-ND complexes showed low cell cytotoxicity and significant suppressing effects for forward target E6 and E7 oncogenic genes, proving functional and therapeutic efficacy. The cellular uptake of siRNA/PAMAM-ND complexes at 8 h was visualized by macropinocytes and direct endosomal escape of the siRNA/PAMAM-ND complexes. It is presumed that PAMAM-NDs provided a buffering cushion to adjust the pH and hard mechanical stress to escape endosomes. siRNA/PAMAM-ND complexes provide a potential organic/inorganic hybrid material source for gene delivery carriers.

  1. The effect of X-ray exposure on Ba2SiO4:Eu3+

    NASA Astrophysics Data System (ADS)

    Volhard, Max-Fabian; Jüstel, Thomas

    2018-03-01

    The ortho-silicates Ba2SiO4:Eu3+ and Ba2SiO4:Eu2+ are well-established materials for fluorescent light sources, e.g., phosphor converted LEDs. Samples containing Eu2+or Eu3+were synthesised by the solid-state-method, and the phase purity was determined by X-ray powder diffractometry. The photoluminescence of both phosphors was examined as a function of the pre-treatment. Upon irradiation of Ba2SiO4:Eu3+ with X-rays (tungsten target source), the reduction of Eu3+ towards Eu2+ was observed. This reduction behaviour was thoroughly recorded, and the linearity of the process was determined. Furthermore, the relationship between the acceleration voltage and the reduction process is discussed.

  2. Pump-dump iterative squeezing of vibrational wave packets.

    PubMed

    Chang, Bo Y; Sola, Ignacio R

    2005-12-22

    The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.

  3. A photoelastic-modulator-based motional Stark effect polarimeter for ITER that is insensitive to polarized broadband background reflections.

    PubMed

    Thorman, A; Michael, C; De Bock, M; Howard, J

    2016-07-01

    A motional Stark effect polarimeter insensitive to polarized broadband light is proposed. Partially polarized background light is anticipated to be a significant source of systematic error for the ITER polarimeter. The proposed polarimeter is based on the standard dual photoelastic modulator approach, but with the introduction of a birefringent delay plate, it generates a sinusoidal spectral filter instead of the usual narrowband filter. The period of the filter is chosen to match the spacing of the orthogonally polarized Stark effect components, thereby increasing the effective signal level, but resulting in the destructive interference of the broadband polarized light. The theoretical response of the system to an ITER like spectrum is calculated and the broadband polarization tolerance is verified experimentally.

  4. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay

    1991-01-01

    Run-time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run-time, wavefronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing, and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run-time reordering of loop indexes can have a significant impact on performance.

  5. Advanced Data Acquisition System Implementation for the ITER Neutron Diagnostic Use Case Using EPICS and FlexRIO Technology on a PXIe Platform

    NASA Astrophysics Data System (ADS)

    Sanz, D.; Ruiz, M.; Castro, R.; Vega, J.; Afif, M.; Monroe, M.; Simrock, S.; Debelle, T.; Marawar, R.; Glass, B.

    2016-04-01

    To aid in assessing the functional performance of ITER, Fission Chambers (FC) based on the neutron diagnostic use case deliver timestamped measurements of neutron source strength and fusion power. To demonstrate the Plant System Instrumentation & Control (I&C) required for such a system, ITER Organization (IO) has developed a neutron diagnostics use case that fully complies with guidelines presented in the Plant Control Design Handbook (PCDH). The implementation presented in this paper has been developed on the PXI Express (PXIe) platform using products from the ITER catalog of standard I&C hardware for fast controllers. Using FlexRIO technology, detector signals are acquired at 125 MS/s, while filtering, decimation, and three methods of neutron counting are performed in real-time via the onboard Field Programmable Gate Array (FPGA). Measurement results are reported every 1 ms through Experimental Physics and Industrial Control System (EPICS) Channel Access (CA), with real-time timestamps derived from the ITER Timing Communication Network (TCN) based on IEEE 1588-2008. Furthermore, in accordance with ITER specifications for CODAC Core System (CCS) application development, the software responsible for the management, configuration, and monitoring of system devices has been developed in compliance with a new EPICS module called Nominal Device Support (NDS) and RIO/FlexRIO design methodology.

  6. Heating and current drive requirements towards steady state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.

    2014-02-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  7. Adjoint Inversion for Extended Earthquake Source Kinematics From Very Dense Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Ampuero, J. P.; Somala, S.; Lapusta, N.

    2010-12-01

    Addressing key open questions about earthquake dynamics requires a radical improvement of the robustness and resolution of seismic observations of large earthquakes. Proposals for a new generation of earthquake observation systems include the deployment of “community seismic networks” of low-cost accelerometers in urban areas and the extraction of strong ground motions from high-rate optical images of the Earth's surface recorded by a large space telescope in geostationary orbit. Both systems could deliver strong motion data with a spatial density orders of magnitude higher than current seismic networks. In particular, a “space seismometer” could sample the seismic wave field at a spatio-temporal resolution of 100 m, 1 Hz over areas several 100 km wide with an amplitude resolution of few cm/s in ground velocity. The amount of data to process would be immensely larger than what current extended source inversion algorithms can handle, which hampers the quantitative assessment of the cost-benefit trade-offs that can guide the practical design of the proposed earthquake observation systems. We report here on the development of a scalable source imaging technique based on iterative adjoint inversion and its application to the proof-of-concept of a space seismometer. We generated synthetic ground motions for M7 earthquake rupture scenarios based on dynamic rupture simulations on a vertical strike-slip fault embedded in an elastic half-space. A range of scenarios include increasing levels of complexity and interesting features such as supershear rupture speed. The resulting ground shaking is then processed accordingly to what would be captured by an optical satellite. Based on the resulting data, we perform source inversion by an adjoint/time-reversal method. The gradient of a cost function quantifying the waveform misfit between data and synthetics is efficiently obtained by applying the time-reversed ground velocity residuals as surface force sources, back-propagating onto the locked fault plane through a seismic wave simulation and recording the fault shear stress, which is the adjoint field of the fault slip-rate. Restricting the procedure to a single iteration is known as imaging. The source reconstructed by imaging reproduces the original forward model quite well in the shallow part of the fault. However, the deeper part of the earthquake source is not well reproduced, due to the lack of data on the side and bottom boundaries of our computational domain. To resolve this issue, we are implementing the complete iterative procedure and we will report on the convergence aspects of the adjoint iterations. Our current work is also directed towards addressing the lack of data on other boundaries of our domain and improving the source reconstruction by including teleseismic data for those boundaries and non-negativity constraints on the dominant slip-rate component.

  8. A feasibility study for the application of seismic interferometry by multidimensional deconvolution for lithospheric-scale imaging

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; van der Neut, Joost; Djikpesse, Hugues; Chen, Chin-Wu; Wapenaar, Kees

    2010-05-01

    Active-source surveys are widely used for the delineation of hydrocarbon accumulations. Most source and receiver configurations are designed to illuminate the first 5 km of the earth. For a deep understanding of the evolution of the crust, much larger depths need to be illuminated. The use of large-scale active surveys is feasible, but rather costly. As an alternative, we use passive acquisition configurations, aiming at detecting responses from distant earthquakes, in combination with seismic interferometry (SI). SI refers to the principle of generating new seismic responses by combining seismic observations at different receiver locations. We apply SI to the earthquake responses to obtain responses as if there was a source at each receiver position in the receiver array. These responses are subsequently migrated to obtain an image of the lithosphere. Conventionally, SI is applied by a crosscorrelation of responses. Recently, an alternative implementation was proposed as SI by multidimensional deconvolution (MDD) (Wapenaar et al. 2008). SI by MDD compensates both for the source-sampling and the source wavelet irregularities. Another advantage is that the MDD relation also holds for media with severe anelastic losses. A severe restriction though for the implementation of MDD was the need to estimate responses without free-surface interaction, from the earthquake responses. To mitigate this restriction, Groenestijn en Verschuur (2009) proposed to introduce the incident wavefield as an additional unknown in the inversion process. As an alternative solution, van der Neut et al. (2010) showed that the required wavefield separation may be implemented after a crosscorrelation step. These last two approaches facilitate the application of MDD for lithospheric-scale imaging. In this work, we study the feasibility for the implementation of MDD when considering teleseismic wavefields. We address specific problems for teleseismic wavefields, such as long and complicated source wavelets, source-side reverberations and illumination gaps. We exemplify the feasibility of SI by MDD on synthetic data, based on field data from the Laramie and the POLARIS-MIT array. van Groenestijn, G.J.A. & Verschuur, D.J., 2009. Estimation of primaries by sparse inversion from passive seismic data, Expanded abstracts, 1597-1601, SEG. van der Neut, J.R, Ruigrok, E.N., Draganov, D.S., & Wapenaar, K., 2010. Retrieving the earth's reflection response by multi-dimensional deconvolution of ambient seismic noise, Extended abstracts, submitted, EAGE. Wapenaar, K., van der Neut, J., & Ruigrok, E.N., 2008. Passive seismic interferometry by multidimensional deconvolution, Geophysics, 75, A51-A56.

  9. Fan-beam densitometry of the growing skeleton: are we measuring what we think we are?

    PubMed

    Cole, Jacqueline H; Scerpella, Tamara A; van der Meulen, Marjolein C H

    2005-01-01

    Magnification error in fan-beam densitometers varies with distance from the X-ray source to the bone measured and might obscure bone mineral changes in the growing skeleton. Magnification was examined by scanning aluminum rods of different shapes (square, rectangular, solid round, and hollow round) at four distances above the X-ray source in two orientations, with rods aligned parallel (SI) and perpendicular (ML) to the longitudinal axis of the scanning table. Measured area (cm(2)) decreased linearly with distance above the X-ray source for all rods in the SI orientation (p < 0.005). Measured mineral content (g) decreased linearly with distance but only for SI round rods (p < 0.0001) and for ML hollow round rods (p < 0.005). Area and mineral content decreased 1.6-1.8% per centimeter above the source for round rods. Measured mineral density (g/cm(2)) decreased linearly with distance from the source only for ML hollow round rods (p < 0.005). Variation in area, mineral content, and mineral density measurements was 6.6-6.9%, 6.9-7.5%, and 1.9-2.3%, respectively, for SI round rods. Magnification errors of this magnitude are problematic for clinical studies using fan-beam densitometry. Particularly in pediatric subjects, increases in soft tissue during normal growth could increase a bone's distance from the fan-beam source and result in apparent reductions in area and bone mineral content.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masuda, Takuya; PRESTO, Japan Science and Technology Agency; Yoshikawa, Hideki

    In situ electrochemical X-ray photoelectron spectroscopy (XPS) apparatus, which allows XPS at solid/liquid interfaces under potential control, was constructed utilizing a microcell with an ultra-thin Si membrane, which separates vacuum and a solution. Hard X-rays from a synchrotron source penetrate into the Si membrane surface exposed to the solution. Electrons emitted at the Si/solution interface can pass through the membrane and be analyzed by an analyzer placed in vacuum. Its operation was demonstrated for potential-induced Si oxide growth in water. Effect of potential and time on the thickness of Si and Si oxide layers was quantitatively determined at sub-nanometer resolution.

  11. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black.

    PubMed

    Wang, Feng-Lei; Zhang, Li-Ying; Zhang, Ya-Fei

    2008-11-22

    SiC nanowires have been synthesized at 1,600 degrees C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO(2) nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism.

  12. Non-ideal operating conditions of the ion source prototype for the ITER neutral beam injector due to thermal deformation of the support structure.

    PubMed

    Sartori, E; Pavei, M; Marcuzzi, D; Zaccaria, P

    2014-02-01

    The beam formation and acceleration of the ITER neutral beam injector will be studied in the full-scale ion source, Source for Production of Ions of Deuterium Extracted from a RF plasma (SPIDER). It will be able to sustain 40 A deuterium ion beam during 1-h pulses. The operating conditions of its multi-aperture electrodes will diverge from ideality, as a consequence of inhomogeneous heating and thermally induced deformations in the support structure of the extraction and acceleration grids, which operate at different temperatures. Meeting the requirements on the aperture alignment and distance between the grids with such a large number of apertures (1280) and the huge support structures constitute a challenge. Examination of the structure thermal deformation in transient and steady conditions has been carried out, evaluating their effect on the beam performance: the paper describes the analyses and the solutions proposed to mitigate detrimental effects.

  13. Physics design of the injector source for ITER neutral beam injector (invited).

    PubMed

    Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P

    2014-02-01

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented.

  14. Acoustical source reconstruction from non-synchronous sequential measurements by Fast Iterative Shrinkage Thresholding Algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Liang; Antoni, Jerome; Leclere, Quentin; Jiang, Weikang

    2017-11-01

    Acoustical source reconstruction is a typical inverse problem, whose minimum frequency of reconstruction hinges on the size of the array and maximum frequency depends on the spacing distance between the microphones. For the sake of enlarging the frequency of reconstruction and reducing the cost of an acquisition system, Cyclic Projection (CP), a method of sequential measurements without reference, was recently investigated (JSV,2016,372:31-49). In this paper, the Propagation based Fast Iterative Shrinkage Thresholding Algorithm (Propagation-FISTA) is introduced, which improves CP in two aspects: (1) the number of acoustic sources is no longer needed and the only making assumption is that of a "weakly sparse" eigenvalue spectrum; (2) the construction of the spatial basis is much easier and adaptive to practical scenarios of acoustical measurements benefiting from the introduction of propagation based spatial basis. The proposed Propagation-FISTA is first investigated with different simulations and experimental setups and is next illustrated with an industrial case.

  15. Executing SPARQL Queries over the Web of Linked Data

    NASA Astrophysics Data System (ADS)

    Hartig, Olaf; Bizer, Christian; Freytag, Johann-Christoph

    The Web of Linked Data forms a single, globally distributed dataspace. Due to the openness of this dataspace, it is not possible to know in advance all data sources that might be relevant for query answering. This openness poses a new challenge that is not addressed by traditional research on federated query processing. In this paper we present an approach to execute SPARQL queries over the Web of Linked Data. The main idea of our approach is to discover data that might be relevant for answering a query during the query execution itself. This discovery is driven by following RDF links between data sources based on URIs in the query and in partial results. The URIs are resolved over the HTTP protocol into RDF data which is continuously added to the queried dataset. This paper describes concepts and algorithms to implement our approach using an iterator-based pipeline. We introduce a formalization of the pipelining approach and show that classical iterators may cause blocking due to the latency of HTTP requests. To avoid blocking, we propose an extension of the iterator paradigm. The evaluation of our approach shows its strengths as well as the still existing challenges.

  16. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbisan, M., E-mail: marco.barbisan@igi.cnr.it; Zaniol, B.; Pasqualotto, R.

    2014-11-15

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurementmore » is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.« less

  17. 40 CFR 60.4247 - What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4247 Section 60.4247 Protection of Environment ENVIRONMENTAL...

  18. The Abundance of SiC2 in Carbon Star Envelopes: Evidence that SiC2 is a gas-phase precursor of SiC dust.

    PubMed

    Massalkhi, Sarah; Agúndez, M; Cernicharo, J; Velilla Prieto, L; Goicoechea, J R; Quintana-Lacaci, G; Fonfría, J P; Alcolea, J; Bujarrabal, V

    2018-03-01

    Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich AGB stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si-C bond detected in C-rich AGB stars are SiC 2 , SiC, and Si 2 C. To date, the ring molecule SiC 2 has been observed in a handful of evolved stars, while SiC and Si 2 C have only been detected in the C-star envelope IRC +10216. We aim to study how widespread and abundant SiC 2 , SiC, and Si 2 C are in envelopes around C-rich AGB stars and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars. We carried out sensitive observations with the IRAM 30m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC 2 , SiC, and Si 2 C in the λ 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC 2 and to derive SiC 2 fractional abundances in the observed envelopes. We detect SiC 2 in most of the sources, SiC in about half of them, and do not detect Si 2 C in any source, at the exception of IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC 2 line emission, which suggests that both species are chemically linked, the SiC radical probably being the photodissociation product of SiC 2 in the external layer of the envelope. We find a clear trend in which the denser the envelope, the less abundant SiC 2 is. The observed trend is interpreted as an evidence of efficient incorporation of SiC 2 onto dust grains, a process which is favored at high densities owing to the higher rate at which collisions between particles take place. The observed behavior of a decline in the SiC 2 abundance with increasing density strongly suggests that SiC 2 is an important gas-phase precursor of SiC dust in envelopes around carbon stars.

  19. Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites.

    PubMed

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-11-21

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).

  20. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid-infrared laser sources for integrated photonics.

  1. Simulated nutrient dissolution of Asian aerosols in various atmospheric waters: Potential links to marine primary productivity

    NASA Astrophysics Data System (ADS)

    Wang, Lingyan; Bi, Yanfeng; Zhang, Guosen; Liu, Sumei; Zhang, Jing; Xu, Zhaomeng; Ren, Jingling; Zhang, Guiling

    2017-09-01

    To probe the bioavailability and environmental mobility of aerosol nutrient elements (N, P, Si) in atmospheric water (rainwater, cloud and fog droplets), ten total suspended particulate (TSP) samples were collected at Fulong Mountain, Qingdao from prevailing air mass trajectory sources during four seasons. Then, a high time-resolution leaching experiment with simulated non-acidic atmospheric water (non-AAW, Milli-Q water, pH 5.5) and subsequently acidic atmospheric water (AAW, hydrochloric acid solution, pH 2) was performed. We found that regardless of the season or source, a monotonous decreasing pattern was observed in the dissolution of N, P and Si compounds in aerosols reacted with non-AAW, and the accumulated dissolved curves of P and Si fit a first-order kinetic model. No additional NO3- + NO2- dissolved out, while a small amount of NH4+ in Asian dust (AD) samples was released in AAW. The similar dissolution behaviour of P and Si from non-AAW to AAW can be explained by the Transition State Theory. The sources of aerosols related to various minerals were the natural reasons that affected the amounts of bioavailable phosphorus and silicon in aerosols (i.e., solubility), which can be explained by the dissolution rate constant of P and Si in non-AAW with lower values in mineral aerosols. The acid/particle ratio and particle/liquid ratio also have a large effect on the solubility of P and Si, which was implied by Pearson correlation analysis. Acid processing of aerosols may have great significance for marine areas with limited P and Si and post-acidification release increases of 1.1-10-fold for phosphorus and 1.2-29-fold for silicon. The decreasing mole ratio of P and Si in AAW indicates the possibility of shifting from a Si-limit to a P-limit in aerosols in the ocean, which promotes the growth of diatoms prior to other algal species.

  2. The Abundance of SiC2 in Carbon Star Envelopes⋆: Evidence that SiC2 is a gas-phase precursor of SiC dust

    PubMed Central

    Massalkhi, Sarah; Agúndez, M.; Cernicharo, J.; Velilla Prieto, L.; Goicoechea, J. R.; Quintana-Lacaci, G.; Fonfría, J. P.; Alcolea, J.; Bujarrabal, V.

    2017-01-01

    Context Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich AGB stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si–C bond detected in C-rich AGB stars are SiC2, SiC, and Si2C. To date, the ring molecule SiC2 has been observed in a handful of evolved stars, while SiC and Si2C have only been detected in the C-star envelope IRC +10216. Aims We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars. Methods We carried out sensitive observations with the IRAM 30m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, and Si2C in the λ 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC2 and to derive SiC2 fractional abundances in the observed envelopes. Results We detect SiC2 in most of the sources, SiC in about half of them, and do not detect Si2C in any source, at the exception of IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC2 line emission, which suggests that both species are chemically linked, the SiC radical probably being the photodissociation product of SiC2 in the external layer of the envelope. We find a clear trend in which the denser the envelope, the less abundant SiC2 is. The observed trend is interpreted as an evidence of efficient incorporation of SiC2 onto dust grains, a process which is favored at high densities owing to the higher rate at which collisions between particles take place. Conclusions The observed behavior of a decline in the SiC2 abundance with increasing density strongly suggests that SiC2 is an important gas-phase precursor of SiC dust in envelopes around carbon stars. PMID:29628518

  3. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effects of Bias Pulsing on Etching of SiO2 Pattern in Capacitively-Coupled Plasmas for Nano-Scale Patterning of Multi-Level Hard Masks.

    PubMed

    Kim, Sechan; Choi, Gyuhyun; Chae, Heeyeop; Lee, Nae-Eung

    2016-05-01

    In order to study the effects of bias pulsing on the etching characteristics of a silicon dioxide (SiO2) layer using multi-level hard mask (MLHM) structures of ArF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer (ACL)/SiO2, the effects of bias pulsing conditions on the etch characteristics of a SiO2 layer with an ACL mask pattern in C4F8/CH2F2/O2/Ar etch chemistries were investigated in a dual-frequency capacitively-coupled plasma (CCP) etcher. The effects of the pulse frequency, duty ratio, and pulse-bias power in the 2 MHz low-frequency (LF) power source were investigated in plasmas generated by a 27.12 MHz high-frequency (HF) power source. The etch rates of ACL and SiO2 decreased, but the etch selectivity of SiO2/ACL increased with decreasing duty ratio. When the ACL and SiO2 layers were etched with increasing pulse frequency, no significant change was observed in the etch rates and etch selectivity. With increasing LF pulse-bias power, the etch rate of ACL and SiO2 slightly increased, but the etch selectivity of SiO2/ACL decreased. Also, the precise control of the critical dimension (CD) values with decreasing duty ratio can be explained by the protection of sidewall etching of SiO2 by increased passivation. Pulse-biased etching was successfully applied to the patterning of the nano-scale line and space of SiO2 using an ACL pattern.

  5. Source term evaluation for accident transients in the experimental fusion facility ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virot, F.; Barrachin, M.; Cousin, F.

    2015-03-15

    We have studied the transport and chemical speciation of radio-toxic and toxic species for an event of water ingress in the vacuum vessel of experimental fusion facility ITER with the ASTEC code. In particular our evaluation takes into account an assessed thermodynamic data for the beryllium gaseous species. This study shows that deposited beryllium dusts of atomic Be and Be(OH){sub 2} are formed. It also shows that Be(OT){sub 2} could exist in some conditions in the drain tank. (authors)

  6. Accuracy Improvement for Light-Emitting-Diode-Based Colorimeter by Iterative Algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Pao-Keng

    2011-09-01

    We present a simple algorithm, combining an interpolating method with an iterative calculation, to enhance the resolution of spectral reflectance by removing the spectral broadening effect due to the finite bandwidth of the light-emitting diode (LED) from it. The proposed algorithm can be used to improve the accuracy of a reflective colorimeter using multicolor LEDs as probing light sources and is also applicable to the case when the probing LEDs have different bandwidths in different spectral ranges, to which the powerful deconvolution method cannot be applied.

  7. Stress Characterization of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) using Raman Spectroscopy and the Finite Element Method.

    PubMed

    Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu

    2016-07-01

    We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.

  8. Abundance of SiC2 in carbon star envelopes

    NASA Astrophysics Data System (ADS)

    Massalkhi, S.; Agúndez, M.; Cernicharo, J.; Velilla Prieto, L.; Goicoechea, J. R.; Quintana-Lacaci, G.; Fonfría, J. P.; Alcolea, J.; Bujarrabal, V.

    2018-03-01

    Context. Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich asymptotic giant branch (AGB) stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si-C bond detected in C-rich AGB stars are SiC2, SiC, and Si2C. To date, the ring molecule SiC2 has been observed in a handful of evolved stars, while SiC and Si2C have only been detected in the C-star envelope IRC +10216. Aim. We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars, and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars. Methods: We carried out sensitive observations with the IRAM 30 m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, and Si2C in the λ 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC2 and to derive SiC2 fractional abundances in the observed envelopes. Results: We detect SiC2 in most of the sources, SiC in about half of them, and do not detect Si2C in any source except IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC2 line emission, which suggests that both species are chemically linked; the SiC radical is probably the photodissociation product of SiC2 in the external layer of the envelope. We find a clear trend where the denser the envelope, the less abundant SiC2 is. The observed trend is interpreted as evidence of efficient incorporation of SiC2 onto dust grains, a process that is favored at high densities owing to the higher rate at which collisions between particles take place. Conclusions: The observed behavior of a decline in the SiC2 abundance with increasing density strongly suggests that SiC2 is an important gas-phase precursor of SiC dust in envelopes around carbon stars. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  9. Investigation of interface property in Al/SiO2/ n-SiC structure with thin gate oxide by illumination

    NASA Astrophysics Data System (ADS)

    Chang, P. K.; Hwu, J. G.

    2017-04-01

    The reverse tunneling current of Al/SiO2/ n-SiC structure employing thin gate oxide is introduced to examine the interface property by illumination. The gate current at negative bias decreases under blue LED illumination, yet increases under UV lamp illumination. Light-induced electrons captured by interface states may be emitted after the light sources are off, leading to the recovery of gate currents. Based on transient characteristics of gate current, the extracted trap level is close to the light energy for blue LED, indicating that electron capture induced by lighting may result in the reduction of gate current. Furthermore, bidirectional C- V measurements exhibit a positive voltage shift caused by electron trapping under blue LED illumination, while a negative voltage shift is observed under UV lamp illumination. Distinct trapping and detrapping behaviors can be observed from variations in I- V and C- V curves utilizing different light sources for 4H-SiC MOS capacitors with thin insulators.

  10. First mm-VLBI Observations between the TRAO 14-m and the NRO 45-m Telescopes: Observations of 86 GHz SiO Masers in VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Shibata, Katsunori M.; Chung, Hyung-Soo; Kameno, Seiji; Roh, Duk-Gyoo; Umemoto, Tomofumi; Kim, Kwang-Dong; Asada, Keiichi; Han, Seog-Tae; Mochizuki, Nanako; Cho, Se-Hyung; Sawada-Satoh, Satoko; Kim, Hyun-Goo; Bushimata, Takeshi; Minh, Young Chol; Miyaji, Takeshi; Kuno, Nario; Mikoshiba, Hiroshi; Sunada, Kazuyoshi; Inoue, Makoto; Kobayashi, Hideyuki

    2004-06-01

    We have made VLBI observations at 86GHz using a 1000-km baseline between Korea and Japan with successful detections of SiO v = 1, J = 2 - 1 maser emissions from VY CMa and Orion KL in 2001 June. This was the first VLBI result for this baseline and the first astronomical VLBI observation for the Korean telescope. Since then, we observed SiO v = 1, J = 2 - 1 maser emission in VY CMa in 2002 January and 2003 February and derived the distributions of the maser emissions. Our results show that the maser emissions extend over 2-4 stellar radii, and were within the inner radius of the dust shell. We observed other SiO maser sources and continuum sources, and 86-GHz continuum emissions were detected from three continuum sources. It was verified that this baseline has a performance comparable to the most sensitive baseline in the VLBA and the CMVA, and is capable of investigating the proper motions of maser features in circumstellar envelopes using monitoring observations.

  11. Coherent Phonon Transport Measurement and Controlled Acoustic Excitations Using Tunable Acoustic Phonon Source in GHz-sub THz Range with Variable Bandwidth.

    PubMed

    Shen, Xiaohan; Lu, Zonghuan; Timalsina, Yukta P; Lu, Toh-Ming; Washington, Morris; Yamaguchi, Masashi

    2018-05-04

    We experimentally demonstrated a narrowband acoustic phonon source with simultaneous tunabilities of the centre frequency and the spectral bandwidth in the GHz-sub THz frequency range based on photoacoustic excitation using intensity-modulated optical pulses. The centre frequency and bandwidth are tunable from 65 to 381 GHz and 17 to 73 GHz, respectively. The dispersion of the sound velocity and the attenuation of acoustic phonons in silicon dioxide (SiO 2 ) and indium tin oxide (ITO) thin films were investigated using the acoustic phonon source. The sound velocities of SiO 2 and ITO films were frequency-independent in the measured frequency range. On the other hand, the phonon attenuations of both of SiO 2 and ITO films showed quadratic frequency dependences, and polycrystalline ITO showed several times larger attenuation than those in amorphous SiO 2 . In addition, the selective excitation of mechanical resonance modes was demonstrated in nanoscale tungsten (W) film using acoustic pulses with various centre frequencies and spectral widths.

  12. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of...

  13. High density group IV semiconductor nanowire arrays fabricated in nanoporous alumina templates

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Dilts, Sarah M.; Lew, Kok-Keong; Cranmer, Alexana E.; Mohney, Suzanne E.

    2005-11-01

    The fabrication of high density arrays of semiconductor nanowires is of interest for nanoscale electronics, chemical and biological sensing and energy conversion applications. We have investigated the synthesis, intentional doping and electrical characterization of Si and Ge nanowires grown by the vapor-liquid-solid (VLS) method in nanoporous alumina membranes. Nanoporous membranes provide a convenient platform for nanowire growth and processing, enabling control of wire diameter via pore size and the integration of contact metals for electrical testing. For VLS growth in nanoporous materials, reduced pressures and temperatures are required in order to promote the diffusion of reactants into the pore without premature decomposition on the membrane surface or pore walls. The effect of growth conditions on the growth rate of Si and Ge nanowires from SiH 4 and GeH 4 sources, respectively, was investigated and compared. In both cases, the measured activation energies for nanowire growth were substantially lower than activation energies typically reported for Si and Ge thin film deposition under similar growth conditions, suggesting that gold plays a catalytic role in the VLS growth process. Intentionally doped SiNW arrays were also prepared using trimethylboron (TMB) and phosphine (PH 3) as p-type and n-type dopant sources, respectively. Nanowire resistivities were calculated from plots of the array resistance as a function of nanowire length. A decrease in resistivity was observed for both n-type and p-type doped SiNW arrays compared to those grown without the addition of a dopant source.

  14. Landscape cultivation alters δ30Si signature in terrestrial ecosystems.

    NASA Astrophysics Data System (ADS)

    Vandevenne, F. I.; Delvaux, C.; Huyghes, H.; Ronchi, B.; Govers, G.; Barão, A. L.; Clymans, W.; Meire, P.; André, L.; Struyf, E.

    2014-12-01

    Despite increasing recognition of the importance of biological Si cycling in controlling dissolved Si (DSi) in soil and stream water, effects of human cultivation on the Si cycle remain poorly understood. Sensitive tracer techniques to identify and quantify Si in the soil-plant-water system could be highly relevant in addressing these uncertainties. Stable Si isotopes are promising tools to define Si sources and sinks along the ecosystem flow path, as intense fractionation occurs during chemical weathering and uptake of dissolved Si in plants. Yet they remain underexploited in the end product of the soil-plant system: the soil water. Here, stable Si isotope ratios (δ30Si) of dissolved Si in soil water were measured along a land use gradient (continuous forest, continuous pasture, young cropland and continuous cropland) with similar parent material (loess) and homogenous bulk mineralogical and climatological properties (Belgium). Soil water δ30Si signatures are clearly separated along the gradient, with highest average signatures in continuous cropland (+1.61‰), intermediate in pasture (+1.05‰) and young cropland (+0.89 ‰) and lowest in forest soil water (+0.62‰). Our data do not allow distinguishing biological from pedogenic/lithogenic processes, but point to a strong interaction of both. We expect that increasing export of light isotopes in disturbed land uses (i.e. through agricultural harvest), and higher recycling of 28Si and elevated weathering intensity (including clay dissolution) in forest systems will largely determine soil water δ30Si signatures of our systems. Our results imply that soil water δ30Si signature is biased through land management before it reaches rivers and coastal zones, where other fractionation processes take over (e.g. diatom uptake and reverse weathering in floodplains). In particular, a direct role of agriculture systems in lowering export Si fluxes towards rivers and coastal systems has been shown. Stable Si isotopes have a large potential to track human disturbance on the Si cycle, including subtle changes in clay evolution and biogenic sink/source functions as induced by land use conversions.

  15. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Vandevenne, Floor; Delvaux, Claire; Hughes, Harold; Ronchi, Benedicta; Clymans, Wim; Barao, Ana Lucia; Govers, Gerard; Cornelis, Jean Thomas; André, Luc; Struyf, Eric

    2015-04-01

    Despite increasing recognition of the importance of biological Si cycling in controlling dissolved Si (DSi) in soil and stream water, effects of human cultivation on the Si cycle remain poorly understood. Sensitive tracer techniques to identify and quantify Si in the soil-plant-water system could be highly relevant in addressing these uncertainties. Stable Si isotopes are promising tools to define Si sources and sinks along the ecosystem flow path, as intense fractionation occurs during chemical weathering and uptake of dissolved Si in plants. Yet they remain underexploited in the end product of the soil-plant system: the soil water. Here, stable Si isotope ratios (δ30Si) of dissolved Si in soil water were measured along a land use gradient (continuous forest, continuous pasture, young cropland and continuous cropland) with similar parent material (loess) and homogenous bulk mineralogical and climatological (Belgium). Soil water δ30Si signatures are clearly separated along the gradient, with highest average signatures in continuous cropland (+1.61%), intermediate in pasture (+1.05%) and young cropland (+0.89%) and lowest in forest soil water (+0.62%). Our data do not allow distinguishing biological from pedogenic/lithogenic processes, but point to a strong interaction of both. We expect that increasing export of light isotopes in disturbed land uses (i.e. through agricultural harvest), and higher recycling of 28Si and elevated weathering intensity (including clay dissolution) in forest systems will largely determine soil water δ30Si signatures of our systems. Our results imply that soil water δ30Si signature is biased through land management before it reaches rivers and coastal zones, where other fractionation processes take over (e.g. diatom uptake and reverse weathering in floodplains). In particular, a direct role of agriculture systems in lowering export Si fluxes towards rivers and coastal systems has been shown. Stable Si isotopes have a large potential to track human disturbance on the Si cycle, including subtle changes in clay evolution and biogenic sink/source functions as induced by land use conversions.

  16. Automatic software correction of residual aberrations in reconstructed HRTEM exit waves of crystalline samples

    DOE PAGES

    Ophus, Colin; Rasool, Haider I.; Linck, Martin; ...

    2016-11-30

    We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less

  17. Mechanical Characteristics of SiC Coating Layer in TRISO Fuel Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Hosemann; J. N. Martos; D. Frazer

    2013-11-01

    Tristructural isotropic (TRISO) particles are considered as advanced fuel forms for a variety of fission platforms. While these fuel structures have been tested and deployed in reactors, the mechanical properties of these structures as a function of production parameters need to be investigated in order to ensure their reliability during service. Nanoindentation techniques, indentation crack testing, and half sphere crush testing were utilized in order to evaluate the integrity of the SiC coating layer that is meant to prevent fission product release in the coated particle fuel form. The results are complimented by scanning electron microscopy (SEM) of the grainmore » structure that is subject to change as a function of processing parameters and can alter the mechanical properties such as hardness, elastic modulus, fracture toughness and fracture strength. Through utilization of these advanced techniques, subtle differences in mechanical properties that can be important for in-pile fuel performance can be distinguished and optimized in iteration with processing science of coated fuel particle production.« less

  18. Automatic software correction of residual aberrations in reconstructed HRTEM exit waves of crystalline samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ophus, Colin; Rasool, Haider I.; Linck, Martin

    We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less

  19. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    NASA Astrophysics Data System (ADS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-08-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm-2 of Nickle-63 (63Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure.

  20. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    PubMed Central

    2009-01-01

    SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism. PMID:20596456

  1. Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Amari, Sachiko; Zinner, Ernst; Ireland, Trevor; Lewis, Roy S.

    1994-01-01

    Seven hundred and twenty SiC grains from the Murchison CM2 chondrite, ranging in size from 1 to 10 micrometers, were analyzed by ion microprobe mass spectrometry for their C-isotopic compositions. Subsets of the grains were also analyzed for N (450 grains), Si (183 grains), Mg (179 grains), and Ti (28 grains) isotopes. These results are compared with previous measurements on 41 larger SiC grains (up to 15 x 26 micrometers) from a different sample of Murchison analyzed by Virag et al. (1992) and Ireland, Zinner, & Amari (1991a). All grains of the present study are isotopically anomalous with C-12/C-13 ratios ranging from 0.022 to 28.4 x solar, N-14/N-15 ratios from 0.046 to 30 x solar, Si-29/Si-28 from 0.54 to 1.20 x solar, Si-30/Si-28 from 0.42 to 1.14 x solar, Ti-49/Ti-48 from 0.96 to 1.95 x solar, and Ti-50/Ti-48 from 0.94 to 1.39 x solar. Many grains have large Mg-26 excesses from the decay of Al-26 with inferred Al-26/Al-27 ratios ranging up to 0.61, or 12,200 x the ratio of 5 x 10(exp -5) inferred for the early solar system. Several groups can be distinguished among the SiC grains. Most of the grains have C-13 and N-14 excesses, and their Si isotopic compositions (mostly excesses in Si-29 and Si-30) plot close to a slope 1.34 line on a Delta Si-29/Si-28 versus Delta Si-30/Si-28 three-isotope plot. Grains with small C-12/C-13 ratios (less than 10) tend to have smaller or no N-14 excesses and high Al-26/Al-27 ratios (up to 0.01). Grains with C-12/C-13 greater than 150 fall into two groups: grains X have N-15 excesses and Si-29 and Si-30 deficits and the highest (0.1 to 0.6) Al-26/Al-27 ratios; grains Y have N-14 excesses and plot on a slope 0.35 line on a Si three-isotope plot. In addition, large SiC grains of the Virag et al. (1992) study fall into three-distinct clusters according to their C-, Si-, and Ti-isotopic compositions. The isotopic diversity of the grains and the clustering of their isotopic compositions imply distinct and multiple stellar sources. The C- and N-isotopic compositions of most grains are consistent with H-burning in the CNO cycle. These and s-process Kr, Xe, Ba, and Nd suggest asymptotic giant branch (AGB) or Wolf-Rayet stars as likely sources for the grains, but existing models of nucleosynthesis in these stellar sites fail to account in detail for all the observed isotopic compositions. Special problems are posed by grains with C-12/C-13 less than 10 and almost normal and heavy N-isotopic compositions. Also the Si- and Ti-isotopic compositions, with excesses in Si-29 and Si-30 relative to Si-28 and excesses in all Ti isotopes relative to Ti-48, do not precisely conform with the compositions predicted for slow neutron capture. Additional theoretical efforts are needed to achieve an understanding of the isotopic composition of the SiC grains and their stellar sources.

  2. SiS in Circumstellar Shells

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Wootten, A.; Clegg, R. E. S.

    1985-07-01

    The author has observed the spectrum of SiS toward the Mira variable IRC+10216, and made a detailed model incorporating a radial SiS abundance gradient due to photodissociation by interstellar UV (Sahai, Wootten, and Clegg 1984). The sensitive search for SiS J = 7-6 and J = 6-5 lines in other carbon-rich, oxygen-rich, and S-type envelopes has revealed three new sources, CIT 6, CRL 2688 and IRC+20370, all of which are carbon-rich.

  3. Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.

  4. Silicon Nitride Deposition for Flexible Organic Electronic Devices by VHF (162 MHz)-PECVD Using a Multi-Tile Push-Pull Plasma Source.

    PubMed

    Kim, Ki Seok; Kim, Ki Hyun; Ji, You Jin; Park, Jin Woo; Shin, Jae Hee; Ellingboe, Albert Rogers; Yeom, Geun Young

    2017-10-19

    Depositing a barrier film for moisture protection without damage at a low temperature is one of the most important steps for organic-based electronic devices. In this study, the authors investigated depositing thin, high-quality SiN x film on organic-based electronic devices, specifically, very high-frequency (162 MHz) plasma-enhanced chemical vapor deposition (VHF-PECVD) using a multi-tile push-pull plasma source with a gas mixture of NH 3 /SiH 4 at a low temperature of 80 °C. The thin deposited SiN x film exhibited excellent properties in the stoichiometry, chemical bonding, stress, and step coverage. Thin film quality and plasma damage were investigated by the water vapor transmission rate (WVTR) and by electrical characteristics of organic light-emitting diode (OLED) devices deposited with SiN x , respectively. The thin deposited SiN x film exhibited a low WVTR of 4.39 × 10 -4  g (m 2 · day) -1 for a single thin (430 nm thick) film SiN x and the electrical characteristics of OLED devices before and after the thin SiN x film deposition on the devices did not change, which indicated no electrical damage during the deposition of SiN x on the OLED device.

  5. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic.

    PubMed

    Rowan, W L; Houshmandyar, S; Phillips, P E; Austin, M E; Beno, J H; Hubbard, A E; Khodak, A; Ouroua, A; Taylor, G

    2016-11-01

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  6. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowan, W. L., E-mail: w.l.rowan@austin.utexas.edu; Houshmandyar, S.; Phillips, P. E.

    2016-11-15

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct viewmore » of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.« less

  7. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    DOE PAGES

    Rowan, W. L.; Houshmandyar, S.; Phillips, P. E.; ...

    2016-09-07

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct viewmore » of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Here, blackbody radiation sources are provided for in situ calibration.« less

  8. Conceptual Design of the ITER ECE Diagnostic - An Update

    NASA Astrophysics Data System (ADS)

    Austin, M. E.; Pandya, H. K. B.; Beno, J.; Bryant, A. D.; Danani, S.; Ellis, R. F.; Feder, R.; Hubbard, A. E.; Kumar, S.; Ouroua, A.; Phillips, P. E.; Rowan, W. L.

    2012-09-01

    The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  9. Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials

    PubMed Central

    Yamasaka, Shuto; Nakamura, Yoshiaki; Ueda, Tomohiro; Takeuchi, Shotaro; Sakai, Akira

    2015-01-01

    Phonon transport in Si films was controlled using epitaxially-grown ultrasmall Ge nanodots (NDs) with ultrahigh density for the purpose of developing Si-based thermoelectric materials. The Si/Ge ND stacked structures, which were formed by the ultrathin SiO2 film technique, exhibited lower thermal conductivities than those of the conventional nanostructured SiGe bulk alloys, despite the stacked structures having a smaller Ge fraction. This came from the large thermal resistance caused by phonon scattering at the Si/Ge ND interfaces. The phonon scattering can be controlled by the Ge ND structure, which was independent of Si layer structure for carrier transport. These results demonstrate the effectiveness of ultrasmall epitaxial Ge NDs as phonon scattering sources, opening up a route for the realisation of Si-based thermoelectric materials. PMID:26434678

  10. Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation

    NASA Astrophysics Data System (ADS)

    Litaker, Eric T.

    1994-12-01

    The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.

  11. C incorporation and segregation during Si 1- yC y/Si( 0 0 1 ) gas-source molecular beam epitaxy from Si 2H 6 and CH 3SiH 3

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Soares, J. A. N. T.; Desjardins, P.; Greene, J. E.

    2002-08-01

    We have used in situ D 2 temperature-programmed desorption (TPD) to probe C incorporation and surface segregation kinetics, as well as hydrogen desorption pathways, during Si 1- yC y(0 0 1) gas-source molecular beam epitaxy from Si 2H 6/CH 3SiH 3 mixtures at temperatures Ts between 500 and 650 °C. Parallel D 2 TPD results from C-adsorbed Si(0 0 1) wafers exposed to varying CH 3SiH 3 doses serve as reference data. Si 1- yC y(0 0 1) layer spectra consist of three peaks: first-order β 1 at 515 °C and second-order β 2 at 405 °C, due to D 2 desorption from Si monodeuteride and dideuteride phases, as well as a new second-order C-induced γ 1 peak at 480 °C. C-adsorbed Si(0 0 1) samples with very high CH 3SiH 3 exposures yielded a higher-temperature TPD feature, corresponding to D 2 desorption from surface C atoms, which was never observed in Si 1- yC y(0 0 1) layer spectra. The Si 1- yC y(0 0 1) γ 1 peak arises due to desorption from Si monodeuteride species with C backbonds. γ 1 occurs at a lower temperature than β 1 reflecting the lower D-Si * bond strength, where Si * represents surface Si atoms bonded to second-layer C atoms, as a result of charge transfer from dangling bonds. The total integrated monohydride (β 1+γ 1) intensity, and hence the dangling bond density, remains constant with y indicating that C does not deactivate surface dangling bonds as it segregates to the second-layer during Si 1- yC y(0 0 1) growth. Si * coverages increase with y at constant Ts and with Ts at constant y. The positive Ts-dependence shows that C segregation is kinetically limited at Ts⩽650 °C. D 2 desorption activation energies from β 1, γ 1 and β 2 sites are 2.52, 2.22 and 1.88 eV.

  12. WE-G-18A-03: Cone Artifacts Correction in Iterative Cone Beam CT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, H; Folkerts, M; Jiang, S

    Purpose: For iterative reconstruction (IR) in cone-beam CT (CBCT) imaging, data truncation along the superior-inferior (SI) direction causes severe cone artifacts in the reconstructed CBCT volume images. Not only does it reduce the effective SI coverage of the reconstructed volume, it also hinders the IR algorithm convergence. This is particular a problem for regularization based IR, where smoothing type regularization operations tend to propagate the artifacts to a large area. It is our purpose to develop a practical cone artifacts correction solution. Methods: We found it is the missing data residing in the truncated cone area that leads to inconsistencymore » between the calculated forward projections and measured projections. We overcome this problem by using FDK type reconstruction to estimate the missing data and design weighting factors to compensate the inconsistency caused by the missing data. We validate the proposed methods in our multi-GPU low-dose CBCT reconstruction system on multiple patients' datasets. Results: Compared to the FDK reconstruction with full datasets, while IR is able to reconstruct CBCT images using a subset of projection data, the severe cone artifacts degrade overall image quality. For head-neck case under a full-fan mode, 13 out of 80 slices are contaminated. It is even more severe in pelvis case under half-fan mode, where 36 out of 80 slices are affected, leading to inferior soft-tissue delineation. By applying the proposed method, the cone artifacts are effectively corrected, with a mean intensity difference decreased from ∼497 HU to ∼39HU for those contaminated slices. Conclusion: A practical and effective solution for cone artifacts correction is proposed and validated in CBCT IR algorithm. This study is supported in part by NIH (1R01CA154747-01)« less

  13. Optimized x-ray source scanning trajectories for iterative reconstruction in high cone-angle tomography

    NASA Astrophysics Data System (ADS)

    Kingston, Andrew M.; Myers, Glenn R.; Latham, Shane J.; Li, Heyang; Veldkamp, Jan P.; Sheppard, Adrian P.

    2016-10-01

    With the GPU computing becoming main-stream, iterative tomographic reconstruction (IR) is becoming a com- putationally viable alternative to traditional single-shot analytical methods such as filtered back-projection. IR liberates one from the continuous X-ray source trajectories required for analytical reconstruction. We present a family of novel X-ray source trajectories for large-angle CBCT. These discrete (sparsely sampled) trajectories optimally fill the space of possible source locations by maximising the degree of mutually independent information. They satisfy a discrete equivalent of Tuy's sufficiency condition and allow high cone-angle (high-flux) tomog- raphy. The highly isotropic nature of the trajectory has several advantages: (1) The average source distance is approximately constant throughout the reconstruction volume, thus avoiding the differential-magnification artefacts that plague high cone-angle helical computed tomography; (2) Reduced streaking artifacts due to e.g. X-ray beam-hardening; (3) Misalignment and component motion manifests as blur in the tomogram rather than double-edges, which is easier to automatically correct; (4) An approximately shift-invariant point-spread-function which enables filtering as a pre-conditioner to speed IR convergence. We describe these space-filling trajectories and demonstrate their above-mentioned properties compared with a traditional helical trajectories.

  14. An adaptive Bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release

    NASA Astrophysics Data System (ADS)

    Rajaona, Harizo; Septier, François; Armand, Patrick; Delignon, Yves; Olry, Christophe; Albergel, Armand; Moussafir, Jacques

    2015-12-01

    In the eventuality of an accidental or intentional atmospheric release, the reconstruction of the source term using measurements from a set of sensors is an important and challenging inverse problem. A rapid and accurate estimation of the source allows faster and more efficient action for first-response teams, in addition to providing better damage assessment. This paper presents a Bayesian probabilistic approach to estimate the location and the temporal emission profile of a pointwise source. The release rate is evaluated analytically by using a Gaussian assumption on its prior distribution, and is enhanced with a positivity constraint to improve the estimation. The source location is obtained by the means of an advanced iterative Monte-Carlo technique called Adaptive Multiple Importance Sampling (AMIS), which uses a recycling process at each iteration to accelerate its convergence. The proposed methodology is tested using synthetic and real concentration data in the framework of the Fusion Field Trials 2007 (FFT-07) experiment. The quality of the obtained results is comparable to those coming from the Markov Chain Monte Carlo (MCMC) algorithm, a popular Bayesian method used for source estimation. Moreover, the adaptive processing of the AMIS provides a better sampling efficiency by reusing all the generated samples.

  15. Development of a tool to assess adherence to a model of the division of responsibility in feeding young children: using response mapping to capacitate validation measures.

    PubMed

    Lohse, Barbara; Satter, Ellyn; Arnold, Kristen

    2014-04-01

    Accurate early assessment and targeted intervention with problematic parent/child feeding dynamics is critical for the prevention and treatment of child obesity. The division of responsibility in feeding (sDOR), articulated by the Satter Feeding Dynamics Model (fdSatter), has been demonstrated clinically as an effective approach to reduce child feeding problems, including those leading to obesity. Lack of a tested instrument to examine adherence to fdSatter stimulated initial construction of the Satter Feeding Dynamics Inventory (fdSI). The aim of this project was to refine the item pool to establish translational validity, making the fdSI suitable for advanced psychometric analysis. Cognitive interviews (n = 80) with caregivers of varied socioeconomic strata informed revisions that demonstrated face and content validity. fdSI responses were mapped to interviews using an iterative, multi-phase thematic approach to provide an instrument ready for construct validation. fdSI development required five interview phases over 32 months: Foundational; Refinement; Transitional; Assurance; and Launching. Each phase was associated with item reduction and revision. Thirteen items were removed from the 38-item Foundational phase and seven were revised in the Refinement phase. Revisions, deletions, and additions prompted by Transitional and Assurance phase interviews resulted in the 15-item Launching phase fdSI. Only one Foundational phase item was carried through all development phases, emphasizing the need to test for item comprehension and interpretation before psychometric analyses. Psychometric studies of item pools without encrypted meanings will facilitate progress toward a tool that accurately detects adherence to sDOR. Ability to measure sDOR will facilitate focus on feeding behaviors associated with reduced risk of childhood obesity.

  16. Hyperedge bundling: Data, source code, and precautions to modeling-accuracy bias to synchrony estimates.

    PubMed

    Wang, Sheng H; Lobier, Muriel; Siebenhühner, Felix; Puoliväli, Tuomas; Palva, Satu; Palva, J Matias

    2018-06-01

    It has not been well documented that MEG/EEG functional connectivity graphs estimated with zero-lag-free interaction metrics are severely confounded by a multitude of spurious interactions (SI), i.e., the false-positive "ghosts" of true interactions [1], [2]. These SI are caused by the multivariate linear mixing between sources, and thus they pose a severe challenge to the validity of connectivity analysis. Due to the complex nature of signal mixing and the SI problem, there is a need to intuitively demonstrate how the SI are discovered and how they can be attenuated using a novel approach that we termed hyperedge bundling. Here we provide a dataset with software with which the readers can perform simulations in order to better understand the theory and the solution to SI. We include the supplementary material of [1] that is not directly relevant to the hyperedge bundling per se but reflects important properties of the MEG source model and the functional connectivity graphs. For example, the gyri of dorsal-lateral cortices are the most accurately modeled areas; the sulci of inferior temporal, frontal and the insula have the least modeling accuracy. Importantly, we found the interaction estimates are heavily biased by the modeling accuracy between regions, which means the estimates cannot be straightforwardly interpreted as the coupling between brain regions. This raise a red flag that the conventional method of thresholding graphs by estimate values is rather suboptimal: because the measured topology of the graph reflects the geometric property of source-model instead of the cortical interactions under investigation.

  17. Si /SiGe n-type resonant tunneling diodes fabricated using in situ hydrogen cleaning

    NASA Astrophysics Data System (ADS)

    Suet, Z.; Paul, D. J.; Zhang, J.; Turner, S. G.

    2007-05-01

    In situ hydrogen cleaning to reduce the surface segregation of n-type dopants in SiGe epitaxy has been used to fabricate Si /SiGe resonant tunneling diodes in a joint gas source chemical vapor deposition and molecular beam epitaxial system. Diodes fabricated without the in situ clean demonstrate linear current-voltage characteristics, while a 15min hydrogen clean produces negative differential resistance with peak-to-valley current ratios up to 2.2 and peak current densities of 5.0A/cm2 at 30K. Analysis of the valley current and the band structure of the devices suggest methods for increasing the operating temperature of Si /SiGe resonant tunneling diodes as required for applications.

  18. Escaping the Tyranny of Carbothermal Reduction: Fumed Silica from Sustainable, Green Sources without First Having to Make SiCl4.

    PubMed

    Yi, Eongyu; Hyde, Clare E; Sun, Kai; Laine, Richard M

    2016-02-12

    Fumed silica is produced in 1000 tons per year quantities by combusting SiCl4 in H2 /O2 flames. Given that both SiCl4 and combustion byproduct HCl are corrosive, toxic and polluting, this route to fumed silica requires extensive safeguards that may be obviated if an alternate route were found. Silica, including rice hull ash (RHA) can be directly depolymerized using hindered diols to generate distillable spirocyclic alkoxysilanes or Si(OEt)4 . We report here the use of liquid-feed flame spray pyrolysis (LF-FSP) to combust the aforementioned precursors to produce fumed silica very similar to SiCl4 -derived products. The resulting powders are amorphous, necked, <50 nm average particle sizes, with specific surface areas (SSAs) of 140-230 m(2)  g(-1) . The LF-FSP approach does not require the containment constraints of the SiCl4 process and given that the RHA silica source is produced in million ton per year quantities worldwide, the reported approach represents a sustainable, green and potentially lower-cost alternative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Concentration gradient induced morphology evolution of silica nanostructure growth on photoresist-derived carbon micropatterns

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Shi, Tielin; Xi, Shuang; Lai, Wuxing; Liu, Shiyuan; Li, Xiaoping; Tang, Zirong

    2012-09-01

    The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor-liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features.

  20. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.

    PubMed

    Hermann, Peter; Hoehl, Arne; Ulrich, Georg; Fleischmann, Claudia; Hermelink, Antje; Kästner, Bernd; Patoka, Piotr; Hornemann, Andrea; Beckhoff, Burkhard; Rühl, Eckart; Ulm, Gerhard

    2014-07-28

    We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

  1. Retraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhiheng; Feldman, Leonard C; Tolk, Norman H.

    IN OUR 2006 REPORT, DESORPTION OF H FROM SI(111) BY RESONANT EXCITATION OF THE Si-H vibrational stretch mode (1), we reported resonant photodesorption of hydrogen from a Si(111) surface using tunable infrared radiation that corresponded to the Si-H vibrational stretch mode. Our recent attempts to reproduce these experiments have been unsuccessful, and the free electron laser facility at Vanderbilt, a unique light source for this experiment, has shut down, prohibiting further research. Because our conclusions are now in question, we retract the Report.

  2. Multi-Kilovolt Solid-State Picosecond Switch Studies

    DTIC Science & Technology

    2013-06-01

    waveforms for the SiC device. Figure 7 shows the nanosecond driving pulse and the delayed avalanche breakdown of the SiC device. The driving...of the sharpened pulse RS VS VOLTAGE SOURCE TEST DEVICE VOLTAGE MONITOR R1 R2 TO SCOPE Figure 6. Simplified SiC avalanche diode test setup 0 2 4...Measured waveforms showing nanosecond driving pulse and subnanosecond delayed avalanche dreakdown of SiC device 50 µm 75 µm 10 µm p+ n+n Anode Cathode

  3. Heavy Ion Microbeam and Broadbeam Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; McMorrow, Dale; Vizkelethy, Gyorgy; Dodd, Paul E.; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philippe; Duhamel, Olivier; Phillips, Stanley D.; hide

    2009-01-01

    SiGe HBT heavy ion current transients are measured using microbeam and both high- and low-energy broadbeam sources. These new data provide detailed insight into the effects of ion range, LET, and strike location.

  4. Ion Microbeam Analyses of Dust Particles and Codeposits from JET with the ITER-Like Wall.

    PubMed

    Fazinić, Stjepko; Tadić, Tonči; Vukšić, Marin; Rubel, Marek; Petersson, Per; Fortuna-Zaleśna, Elżbieta; Widdowson, Anna

    2018-05-01

    Generation of metal dust in the JET tokamak with the ITER-like wall (ILW) is a topic of vital interest to next-step fusion devices because of safety issues with plasma operation. Simultaneous Nuclear Reaction Analysis (NRA) and Particle-Induced X-ray Emission (PIXE) with a focused four MeV 3 He microbeam was used to determine the composition of dust particles related to the JET operation with the ILW. The focus was on "Be-rich particles" collected from the deposition zone on the inner divertor tile. The particles found are composed of a mix of codeposited species up to 120 μm in size with a thickness of 30-40 μm. The main constituents are D from the fusion fuel, Be and W from the main plasma-facing components, and Ni and Cr from the Inconel grills of the antennas for auxiliary plasma heating. Elemental concentrations were estimated by iterative NRA-PIXE analysis. Two types of dust particles were found: (i) larger Be-rich particles with Be concentrations above 90 at% with a deuterium presence of up to 3.4 at% and containing Ni (1-3 at%), Cr (0.4-0.8 at%), W (0.2-0.9 at%), Fe (0.3-0.6 at%), and Cu and Ti in lower concentrations and (ii) small particles rich in Al and/or Si that were in some cases accompanied by other elements, such as Fe, Cu, or Ti or W and Mo.

  5. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    NASA Astrophysics Data System (ADS)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1. Electronic supplementary information (ESI) available: Raman spectroscopy characterization of the SiHfCN-based ceramics. See DOI: 10.1039/c4nr03376k

  6. Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.

    1993-01-01

    An ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer super lattices grown by MBE at low temperature (500 C) is presented, and results are compared with x ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. It is shown that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. It was also noted that we do not observe any strain effect on the E(sub 1) critical point.

  7. Fabrication of Si/ZnS radial nanowire heterojunction arrays for white light emitting devices on Si substrates.

    PubMed

    Katiyar, Ajit K; Sinha, Arun Kumar; Manna, Santanu; Ray, Samit K

    2014-09-10

    Well-separated Si/ZnS radial nanowire heterojunction-based light-emitting devices have been fabricated on large-area substrates by depositing n-ZnS film on p-type nanoporous Si nanowire templates. Vertically oriented porous Si nanowires on p-Si substrates have been grown by metal-assisted chemical etching catalyzed using Au nanoparticles. Isolated Si nanowires with needle-shaped arrays have been made by KOH treatment before ZnS deposition. Electrically driven efficient white light emission from radial heterojunction arrays has been achieved under a low forward bias condition. The observed white light emission is attributed to blue and green emission from the defect-related radiative transition of ZnS and Si/ZnS interface, respectively, while the red arises from the porous surface of the Si nanowire core. The observed white light emission from the Si/ZnS nanowire heterojunction could open up the new possibility to integrate Si-based optical sources on a large scale.

  8. Challenge of Si/SiGe technology to optoelectronics

    NASA Astrophysics Data System (ADS)

    Chang, C. Y.; Jung, J. G.

    1993-01-01

    Low temperature epitaxy (LTE) of Si and SiGecanbe performed at a temperature of 550 C or lower. Very promising applications can be opened. Such as high speed/high frequency operations at 90GHZ by constructing heterojunction bipolar transistors. High performance FET'slikepseudomorphic p-channel orn-channel high mobility field effect transistors are presented which canbe composed to perform CMOS operations. Optoelectronic devices such as IRdetectors (1-12um), mutiple quantum well (MOW), disordered superlattice (d-SL) which are the potential candidatesof IR detector and optical sources (e.q. LED, LD etc.) Various physical insights regarding to SiGe heterostructures are presented which includeswave function filter, mass filter as well as band mixing are introduced. Researchesat National Nano Device Laboratory (NDL) which processes the capability of 0.3um Si ULSI technologies and SiGe works as well as lll-V, a-Si/SiGe lines are also presented.

  9. The Cadarache negative ion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massmann, P.; Bottereau, J.M.; Belchenko, Y.

    1995-12-31

    Up to energies of 140 keV neutral beam injection (NBI) based on positive ions has proven to be a reliable and flexible plasma heating method and has provided major contributions to most of the important experiments on virtually all large tokamaks around the world. As a candidate for additional heating and current drive on next step fusion machines (ITER ao) it is hoped that NBI can be equally successful. The ITER NBI parameters of 1 MeV, 50 MW D{degree} demand primary D{sup {minus}} beams with current densities of at least 15 mA/cm{sup 2}. Although considerable progress has been made inmore » the area of negative ion production and acceleration the high demands still require substantial and urgent development. Regarding negative ion production Cs seeded plasma sources lead the way. Adding a small amount of Cs to the discharge (Cs seeding) not only increases the negative ion yield by a factor 3--5 but also has the advantage that the discharge can be run at lower pressures. This is beneficial for the reduction of stripping losses in the accelerator. Multi-ampere negative ion production in a large plasma source is studied in the MANTIS experiment. Acceleration and neutralization at ITER relevant parameters is the objective of the 1 MV SINGAP experiment.« less

  10. Progress of the ELISE test facility: towards one hour pulses in hydrogen

    NASA Astrophysics Data System (ADS)

    Wünderlich, D.; Fantz, U.; Heinemann, B.; Kraus, W.; Riedl, R.; Wimmer, C.; the NNBI Team

    2016-10-01

    In order to fulfil the ITER requirements, the negative hydrogen ion source used for NBI has to deliver a high source performance, i.e. a high extracted negative ion current and simultaneously a low co-extracted electron current over a pulse length up to 1 h. Negative ions will be generated by the surface process in a low-temperature low-pressure hydrogen or deuterium plasma. Therefore, a certain amount of caesium has to be deposited on the plasma grid in order to obtain a low surface work function and consequently a high negative ion production yield. This caesium is re-distributed by the influence of the plasma, resulting in temporal instabilities of the extracted negative ion current and the co-extracted electrons over long pulses. This paper describes experiments performed in hydrogen operation at the half-ITER-size NNBI test facility ELISE in order to develop a caesium conditioning technique for more stable long pulses at an ITER relevant filling pressure of 0.3 Pa. A significant improvement of the long pulse stability is achieved. Together with different plasma diagnostics it is demonstrated that this improvement is correlated to the interplay of very small variations of parameters like the electrostatic potential and the particle densities close to the extraction system.

  11. Atomic hydrogen cleaning of EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Ê/hr for sputtered carbon and 40 Ê/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.

  12. Atomic hydrogen cleaning of EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Å/hr for sputtered carbon and 40 Å/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.

  13. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2011-01-01

    Reconstruction algorithms are presented for two-step solutions of the bioluminescence tomography (BLT) and the fluorescence tomography (FT) problems. In the first step, a continuous wave (cw) diffuse optical tomography (DOT) algorithm is used to reconstruct the tissue optical properties assuming known anatomical information provided by x-ray computed tomography or other methods. Minimization problems are formed based on L1 norm objective functions, where normalized values for the light fluence rates and the corresponding Green’s functions are used. Then an iterative minimization solution shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. Throughout this process the permissible region shrinks from the entire object to just a few points. The optimum reconstructed bioluminescence and fluorescence distributions are chosen to be the results of the iteration corresponding to the permissible region where the objective function has its global minimum This provides efficient BLT and FT reconstruction algorithms without the need for a priori information about the bioluminescence sources or the fluorophore concentration. Multiple small sources and large distributed sources can be reconstructed with good accuracy for the location and the total source power for BLT and the total number of fluorophore molecules for the FT. For non-uniform distributed sources, the size and magnitude become degenerate due to the degrees of freedom available for possible solutions. However, increasing the number of data points by increasing the number of excitation sources can improve the accuracy of reconstruction for non-uniform fluorophore distributions. PMID:21326647

  14. Performance Analysis of the ITER Plasma Position Reflectometry (PPR) Ex-vessel Transmission Lines

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; Simonetto, A.; Cappa, Á.; Rincón, M. E.; Cabrera, S.; Ramos, F. J.

    2018-03-01

    As the design of the ITER Plasma Position Reflectometry (PPR) diagnostic progresses, some segments of the transmission line have become fully specified and estimations of their performance can already be obtained. This work presents the calculations carried out for the longest section of the PPR, which is in final state of design and will be the main contributor to the total system performance. Considering the 88.9 mm circular corrugated waveguide (CCWG) that was previously chosen, signal degradation calculations have been performed. Different degradation sources have been studied: ohmic attenuation losses for CCWG; mode conversion losses for gaps, mitre bends, waveguide sag and different types of misalignments; reflection and absorption losses due to microwave windows and coupling losses to free space Gaussian beam. Contributions from all these sources have been integrated to give a global estimation of performance in the transmission lines segments under study.

  15. Low-energy mass-selected ion beam production of fragments produced from hexamethyldisilane for SiC film formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, Satoru, E-mail: yosimura@ppl.eng.osaka-u.ac.jp; Sugimoto, Satoshi; Kiuchi, Masato

    2016-03-14

    We have proposed an experimental methodology which makes it possible to deposit silicon carbide (SiC) films on Si substrates with a low-energy mass-selected ion beam system using hexamethyldisilane (HMD) as a gas source. In this study, one of the fragment ions produced from HMD, SiCH{sub 4}{sup +}, was mass-selected. The ion energy was approximately 100 eV. Then, the SiCH{sub 4}{sup +} ions were irradiated to a Si(100) substrate. When the temperature of the Si substrate was set at 800 °C during the ion irradiation, the X-ray diffraction and Raman spectroscopy of the substrate following the completion of ion irradiation experiment demonstrated themore » occurrence of 3C-SiC deposition.« less

  16. Synthesis and electrochemical performance of mesoporous SiO{sub 2}–carbon nanofibers composite as anode materials for lithium secondary batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, Yura; Choi, Jin-Yeong; Park, Heai-Ku

    Highlights: • Mesoporous SiO{sub 2}–carbon nanofibers composite synthesized on Ni foam without any binder. • This composite was directly applied as anode material of Li secondary batteries. • Showed the highest initial (2420 mAh/g) and discharging (2092 mAh/g) capacity. • This material achieved a retention rate of 86.4% after 30 cycles. - Abstract: In this study, carbon nanofibers (CNFs) and mesoporous SiO{sub 2}–carbon nanofibers composite were synthesized and applied as the anode materials in lithium secondary batteries. CNFs and mesoporous SiO{sub 2}–CNFs composite were grown via chemical vapor deposition method with iron-copper catalysts. Mesoporous SiO{sub 2} materials were prepared bymore » sol–gel method using tetraethylorthosilicate as the silica source and cetyltrimethylammoniumchloride as the template. Ethylene was used as the carbon source and passes into a quartz reactor of a tube furnace heated to 600 °C, and the temperature was maintained at 600 °C for 10 min to synthesize CNFs and mesoporous SiO{sub 2}–CNFs composite. The electrochemical characteristics of the as-prepared CNFs and mesoporous SiO{sub 2}–CNFs composite as the anode of lithium secondary batteries were investigated using a three-electrode cell. In particular, the mesoporous SiO{sub 2}–CNFs composites synthesized without binder after depositing mesoporous SiO{sub 2} on Ni foam showed the highest charging and discharging capacity and retention rate. The initial capacity (2420 mAh/g) of mesoporous SiO{sub 2}–CNFs composites decreased to 2092 mAh/g after 30 cycles at a retention rate of 86.4%.« less

  17. Investigation of the boundary layer during the transition from volume to surface dominated H- production at the BATMAN test facility

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Schiesko, L.; Fantz, U.

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 1/8 scale H- source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H- production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H- density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H- density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (jH-, je) exists with the Cs emission.

  18. Investigation of the boundary layer during the transition from volume to surface dominated H⁻ production at the BATMAN test facility.

    PubMed

    Wimmer, C; Schiesko, L; Fantz, U

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 18 scale H(-) source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H(-) production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H(-) density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H(-) density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (j(H(-)), j(e)) exists with the Cs emission.

  19. Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, Y.

    2016-12-01

    We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.

  20. A fast feedback method to design easy-molding freeform optical system with uniform illuminance and high light control efficiency.

    PubMed

    Hongtao, Li; Shichao, Chen; Yanjun, Han; Yi, Luo

    2013-01-14

    A feedback method combined with fitting technique based on variable separation mapping is proposed to design freeform optical systems for an extended LED source with prescribed illumination patterns, especially with uniform illuminance distribution. Feedback process performs well with extended sources, while fitting technique contributes not only to the decrease of pieces of sub-surfaces in discontinuous freeform lenses which may cause loss in manufacture, but also the reduction in the number of feedback iterations. It is proved that light control efficiency can be improved by 5%, while keeping a high uniformity of 82%, with only two feedback iterations and one fitting operation can improve. Furthermore, the polar angle θ and azimuthal angle φ is used to specify the light direction from the light source, and the (θ,φ)-(x,y) based mapping and feedback strategy makes sure that even few discontinuous sections along the equi-φ plane exist in the system, they are perpendicular to the base plane, making it eligible for manufacturing the surfaces using injection molding.

  1. Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery.

    PubMed

    Hashemi, SayedMasoud; Song, William Y; Sahgal, Arjun; Lee, Young; Huynh, Christopher; Grouza, Vladimir; Nordström, Håkan; Eriksson, Markus; Dorenlot, Antoine; Régis, Jean Marie; Mainprize, James G; Ruschin, Mark

    2017-04-07

    One of the limiting factors in cone-beam CT (CBCT) image quality is system blur, caused by detector response, x-ray source focal spot size, azimuthal blurring, and reconstruction algorithm. In this work, we develop a novel iterative reconstruction algorithm that improves spatial resolution by explicitly accounting for image unsharpness caused by different factors in the reconstruction formulation. While the model-based iterative reconstruction techniques use prior information about the detector response and x-ray source, our proposed technique uses a simple measurable blurring model. In our reconstruction algorithm, denoted as simultaneous deblurring and iterative reconstruction (SDIR), the blur kernel can be estimated using the modulation transfer function (MTF) slice of the CatPhan phantom or any other MTF phantom, such as wire phantoms. The proposed image reconstruction formulation includes two regularization terms: (1) total variation (TV) and (2) nonlocal regularization, solved with a split Bregman augmented Lagrangian iterative method. The SDIR formulation preserves edges, eases the parameter adjustments to achieve both high spatial resolution and low noise variances, and reduces the staircase effect caused by regular TV-penalized iterative algorithms. The proposed algorithm is optimized for a point-of-care head CBCT unit for image-guided radiosurgery and is tested with CatPhan phantom, an anthropomorphic head phantom, and 6 clinical brain stereotactic radiosurgery cases. Our experiments indicate that SDIR outperforms the conventional filtered back projection and TV penalized simultaneous algebraic reconstruction technique methods (represented by adaptive steepest-descent POCS algorithm, ASD-POCS) in terms of MTF and line pair resolution, and retains the favorable properties of the standard TV-based iterative reconstruction algorithms in improving the contrast and reducing the reconstruction artifacts. It improves the visibility of the high contrast details in bony areas and the brain soft-tissue. For example, the results show the ventricles and some brain folds become visible in SDIR reconstructed images and the contrast of the visible lesions is effectively improved. The line-pair resolution was improved from 12 line-pair/cm in FBP to 14 line-pair/cm in SDIR. Adjusting the parameters of the ASD-POCS to achieve 14 line-pair/cm caused the noise variance to be higher than the SDIR. Using these parameters for ASD-POCS, the MTF of FBP and ASD-POCS were very close and equal to 0.7 mm -1 which was increased to 1.2 mm -1 by SDIR, at half maximum.

  2. Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery

    NASA Astrophysics Data System (ADS)

    Hashemi, SayedMasoud; Song, William Y.; Sahgal, Arjun; Lee, Young; Huynh, Christopher; Grouza, Vladimir; Nordström, Håkan; Eriksson, Markus; Dorenlot, Antoine; Régis, Jean Marie; Mainprize, James G.; Ruschin, Mark

    2017-04-01

    One of the limiting factors in cone-beam CT (CBCT) image quality is system blur, caused by detector response, x-ray source focal spot size, azimuthal blurring, and reconstruction algorithm. In this work, we develop a novel iterative reconstruction algorithm that improves spatial resolution by explicitly accounting for image unsharpness caused by different factors in the reconstruction formulation. While the model-based iterative reconstruction techniques use prior information about the detector response and x-ray source, our proposed technique uses a simple measurable blurring model. In our reconstruction algorithm, denoted as simultaneous deblurring and iterative reconstruction (SDIR), the blur kernel can be estimated using the modulation transfer function (MTF) slice of the CatPhan phantom or any other MTF phantom, such as wire phantoms. The proposed image reconstruction formulation includes two regularization terms: (1) total variation (TV) and (2) nonlocal regularization, solved with a split Bregman augmented Lagrangian iterative method. The SDIR formulation preserves edges, eases the parameter adjustments to achieve both high spatial resolution and low noise variances, and reduces the staircase effect caused by regular TV-penalized iterative algorithms. The proposed algorithm is optimized for a point-of-care head CBCT unit for image-guided radiosurgery and is tested with CatPhan phantom, an anthropomorphic head phantom, and 6 clinical brain stereotactic radiosurgery cases. Our experiments indicate that SDIR outperforms the conventional filtered back projection and TV penalized simultaneous algebraic reconstruction technique methods (represented by adaptive steepest-descent POCS algorithm, ASD-POCS) in terms of MTF and line pair resolution, and retains the favorable properties of the standard TV-based iterative reconstruction algorithms in improving the contrast and reducing the reconstruction artifacts. It improves the visibility of the high contrast details in bony areas and the brain soft-tissue. For example, the results show the ventricles and some brain folds become visible in SDIR reconstructed images and the contrast of the visible lesions is effectively improved. The line-pair resolution was improved from 12 line-pair/cm in FBP to 14 line-pair/cm in SDIR. Adjusting the parameters of the ASD-POCS to achieve 14 line-pair/cm caused the noise variance to be higher than the SDIR. Using these parameters for ASD-POCS, the MTF of FBP and ASD-POCS were very close and equal to 0.7 mm-1 which was increased to 1.2 mm-1 by SDIR, at half maximum.

  3. Structural and electrical properties of trimethylboron-doped silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, K.-K.; Pan Ling; Bogart, Timothy E.

    2004-10-11

    Trimethylboron (TMB) was investigated as a p-type dopant source for the vapor-liquid-solid growth of boron-doped silicon nanowires (SiNWs). The boron concentration in the nanowires was measured using secondary ion mass spectrometry and results were compared for boron-doping using TMB and diborane (B{sub 2}H{sub 6}) sources. Boron concentrations ranging from 1x10{sup 18} to 4x10{sup 19} cm{sup -3} were obtained by varying the inlet dopant/SiH{sub 4} gas ratio. TEM characterization revealed that the B{sub 2}H{sub 6}-doped SiNWs consisted of a crystalline core with a thick amorphous Si coating, while the TMB-doped SiNWs were predominantly single crystal even at high boron concentrations. Themore » difference in structural properties was attributed to the higher thermal stability and reduced reactivity of TMB compared to B{sub 2}H{sub 6}. Four-point resistivity and gate-dependent conductance measurements were used to confirm p-type conductivity in the TMB-doped nanowires and to investigate the effect of dopant concentration on nanowire resistivity.« less

  4. Fabrication and properties of multilayer structures

    NASA Astrophysics Data System (ADS)

    Tiller, W. A.

    1983-09-01

    The synthesis of SiC films and Pd2Si films via single source and dual source sputtering, respectively, has been experimentally investigated while the reactive sputter deposition of SiO sub x films has been theoretically analyzed. The SiO sub x film data requires a mobile precursor adsorption process to be operative for the oxygen and an oxygen sticking coefficient of between 1.56 x 10 to the minus 3rd power and 4.17 x 10 to the minus 3rd power. An analysis of in-situ electrical diagnostics of the films via a non-contact technique shows the method to be of marginal accuracy for the example selected. An important new formulation of the stress and elastic constant tensors in the vicinity of interfaces has been developed and applied to the simple example of adsorbed layer/substrate interactions via a parametric analysis. Atomic modeling of the SiO system yields peroxide bond formation for oxygen-rich (100) alpha-cristobalite surfaces. Radial distribution function and angular distribution function data have been calculated for bulk alpha-quartz and bulk alpha-cristobalite in good agreement with experiment.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marseglia, L.; Saha, K.; Ajoy, A.

    The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less

  6. Do meteoritic silicon carbide grains originate from asymptotic giant branch stars of super-solar metallicity?

    NASA Astrophysics Data System (ADS)

    Lugaro, Maria; Karakas, Amanda I.; Pető, Mária; Plachy, Emese

    2018-01-01

    We compare literature data for the isotopic ratios of Zr, Sr, and Ba from analysis of single meteoritic stardust silicon carbide (SiC) grains to new predictions for the slow neutron-capture process (the s process) in metal-rich asymptotic giant branch (AGB) stars. The models have initial metallicities Z = 0.014 (solar) and Z = 0.03 (twice-solar) and initial masses 2-4.5 M⊙ , selected such as the condition C/O > 1 for the formation of SiC is achieved. Because of the higher Fe abundance, the twice-solar metallicity models result in a lower number of total free neutrons released by the 13C(α ,n)16O neutron source. Furthermore, the highest-mass (4-4.5 M⊙) AGB stars of twice-solar metallicity present a milder activation of the 22Ne(α ,n)25Mg neutron source than their solar metallicity counterparts, due to cooler temperatures resulting from the effect of higher opacities. They also have a lower amount of the 13C neutron source than the lower-mass models, following their smaller He-rich region. The combination of these different effects allows our AGB models of twice-solar metallicity to provide a match to the SiC data without the need to consider large variations in the features of the 13C neutron source nor neutron-capture processes different from the s process. This raises the question if the AGB parent stars of meteoritic SiC grains were in fact on average of twice-solar metallicity. The heavier-than-solar Si and Ti isotopic ratios in the same grains are in qualitative agreement with an origin in stars of super-solar metallicity because of the chemical evolution of the Galaxy. Further, the SiC dust mass ejected from C-rich AGB stars is predicted to significantly increase with increasing the metallicity.

  7. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

    PubMed

    Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

    2016-09-19

    The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

  8. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay

    1990-01-01

    Run time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases, where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run time, wave fronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run time reordering of loop indices can have a significant impact on performance. Furthermore, the overheads associated with this type of reordering are amortized when the loop is executed several times with the same dependency structure.

  9. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.

    PubMed

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-01

    The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used in the reconstruction process. The concept of assessing temporal resolution by means of the data employed for reconstruction can nicely be extended from single-source to dual-source CT. However, for advanced (possibly nonlinear iterative) reconstruction algorithms the examined approach fails to deliver accurate results. New methods and measures to assess the temporal resolution of CT images need to be developed to be able to accurately compare the performance of such algorithms.

  10. Nanostructures on fused silica surfaces produced by ion beam sputtering with Al co-deposition

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Hirsch, Dietmar; Fechner, Renate; Hong, Yilin; Fu, Shaojun; Frost, Frank; Rauschenbach, Bernd

    2018-01-01

    The ion beam sputtering (IBS) of smooth mono-elemental Si with impurity co-deposition is extended to a pre-rippled binary compound surface of fused silica (SiO2). The dependence of the rms roughness and the deposited amount of Al on the distance from the Al source under Ar+ IBS with Al co-deposition was investigated on smooth SiO2, pre-rippled SiO2, and smooth Si surfaces, using atomic force microscopy and X-ray photoelectron spectroscopy. Although the amounts of Al deposited on these three surfaces all decreased with increasing distance from the Al target, the morphology and rms roughness of the smooth Si surface did not demonstrate a strong distance dependence. In contrast to smooth Si, the rms roughness of both the smooth and pre-rippled SiO2 surfaces exhibited a similar distance evolution trend of increasing, decreasing, and final stabilization at the distance where the results were similar to those obtained without Al co-deposition. However, the pre-rippled SiO2 surfaces showed a stronger modulation of rms roughness than the smooth surfaces. At the incidence angles of 60° and 70°, dot-decorated ripples and roof-tiles were formed on the smooth SiO2 surfaces, respectively, whereas nanostructures of closely aligned grains and blazed facets were generated on the pre-rippled SiO2, respectively. The combination of impurity co-deposition with pre-rippled surfaces was found to facilitate the formation of novel types of nanostructures and morphological growth. The initial ripples act as a template to guide the preferential deposition of Al on the tops of the ripples or the ripple sides facing the Al wedge, but not in the valleys between the ripples, leading to 2D grains and quasi-blazed grating, which offer significant promise in optical applications. The rms roughness enhancement is attributed not to AlSi, but to AlOxFy compounds originating mainly from the Al source.

  11. High throughput production of nanocomposite SiO x powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries.

    PubMed

    Homma, Keiichiro; Kambara, Makoto; Yoshida, Toyonobu

    2014-04-01

    Nanocomposite Si/SiO x powders were produced by plasma spray physical vapor deposition (PS-PVD) at a material throughput of 480 g h -1 . The powders are fundamentally an aggregate of primary ∼20 nm particles, which are composed of a crystalline Si core and SiO x shell structure. This is made possible by complete evaporation of raw SiO powders and subsequent rapid condensation of high temperature SiO x vapors, followed by disproportionation reaction of nucleated SiO x nanoparticles. When CH 4 was additionally introduced to the PS-PVD, the volume of the core Si increases while reducing potentially the SiO x shell thickness as a result of the enhanced SiO reduction, although an unfavorable SiC phase emerges when the C/Si molar ratio is greater than 1. As a result of the increased amount of Si active material and reduced source for irreversible capacity, half-cell batteries made of PS-PVD powders with C/Si = 0.25 have exhibited improved initial efficiency and maintenance of capacity as high as 1000 mAh g -1 after 100 cycles at the same time.

  12. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    PubMed Central

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-01-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil. PMID:27385598

  13. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    NASA Astrophysics Data System (ADS)

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-07-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil.

  14. Auger-electron diffraction in the low kinetic-energy range: The Si(111)7×7 surface reconstruction and Ge/Si interface formation

    NASA Astrophysics Data System (ADS)

    de Crescenzi, M.; Gunnella, R.; Bernardini, R.; de Marco, M.; Davoli, I.

    1995-07-01

    We have investigated the Auger-electron diffraction (AED) of the L2,3VV Auger line of the clean 7×7 reconstructed Si(111) surface and the Ge/Si interface formed after a few monolayers (ML) of Ge deposition. The experimental AED in the low kinetic-energy regime has been interpreted within the framework of a multiple-scattering theory. The comparison of the AED data taken using both the x-ray source and an electron source evidences that the incident beam plays a negligible role when the experimental conditions require the use of an angular detector. The evolution of the Ge/Si(111) interface is studied by monitoring the intensity anisotropy of the Auger peaks of the two elements at room temperature (RT) and at 400 °C annealing temperature of the substrate. The evolution of the growth mechanism underlying the Ge/Si interface formation has been studied by exploiting the very low electron escape depth of this technique (<=5 Å). While at RT two monolayers of Ge deposition appear uniform and amorphous, the successive annealing induces an intermixing and a recrystallization only in the first two layers of the interface without any further interdiffusion. Furthermore, a Stranski-Krastanow growth mode has been deduced after deposition of 4 ML of Ge on a clean Si sample kept at 400 °C.

  15. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001).

    PubMed

    Kwoen, Jinkwan; Jang, Bongyong; Lee, Joohang; Kageyama, Takeo; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2018-04-30

    Directly grown III-V quantum dot (QD) laser on on-axis Si (001) is a good candidate for achieving monolithically integrated Si photonics light source. Nowadays, laser structures containing high quality InAs / GaAs QD are generally grown by molecular beam epitaxy (MBE). However, the buffer layer between the on-axis Si (001) substrate and the laser structure are usually grown by metal-organic chemical vapor deposition (MOCVD). In this paper, we demonstrate all MBE grown high-quality InAs/GaAs QD lasers on on-axis Si (001) substrates without using patterning and intermediate layers of foreign material.

  16. Synthesis and Hydrodeoxygenation Properties of Ruthenium Phosphide Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowker, Richard H.; Smith, Mica C.; Pease, Melissa

    2011-07-01

    Ru2P/SiO2 and RuP/SiO2 catalysts were prepared by the temperature-programmed reduction (TPR) of uncalcined precursors containing hypophosphite ion (H2PO2-) as the phosphorus source. The Ru2P/SiO2 and RuP/SiO2 catalysts had small average particle sizes (~4 nm) and high CO chemisorption capacities (90-110 umol/g). The Ru phosphide catalysts exhibited similar or higher furan (C4H4O) hydrodeoxygenation (HDO) activities than did a Ru/SiO2 catalyst, and the phosphide catalysts favored C4 hydrocarbon products while the Ru metal catalyst produced primarily C3 hydrocarbons.

  17. New high-capacity, calcium-based sorbents, calcium silicate sorbents. Final report, 1993--August 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, M.C.; Chiang, R.K.; Fillgrove, K.L.

    1995-02-01

    A search is being carried out for new calcium-based S0{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The objectives for the current year include the study of sorbents made from Ca(OH){sub 2}, from mixtures of Ca(OH){sub 2} and SiO{sub 2}, and from portland cement. They also include the study of sorbents made from model compounds. During this year, sorbents prepared from Ca(OH){sub 2} and from mixtures of Ca(OH){sub 2} and fumed SiO{sub 2} were investigated. The results show that very good SiO{sub 2}-modifiedmore » Ca(OH){sub 2} sorbents in which the Si-to-Ca reactant ratio is low can be prepared from Ca(OH){sub 2} and fumed SiO{sub 2}. Sorbents prepared from Ca(OH){sub 2} and natural SiO{sub 2} or natural SiO{sub 2} sources were also studied. The results obtained show that very good SiO{sub 2}-modified Ca(OH){sub 2} sorbents and calcium silicate hydrate sorbents, C-S-H sorbents, can be prepared from Ca(OH){sub 2} and diatomite, pumice or perlite, minerals that are readily available. In addition. sorbents prepared from Ca{sub 3}SiO{sub 5} and {beta}-Ca{sub 2}SiO{sub 4} and from mixtures of these compounds and SiO{sub 2} were studied. The results secured demonstrate that very good C-S-H rich sorbents can be prepared from these compounds and from mixtures of them with SiO{sub 2}. They also provide information useful for interpreting the cement sorbent results. Sorbents prepared from cement and from mixtures of cement and natural SiO{sub 2} or SiO{sub 2} sources were investigated as well. The results secured show that cement and mixtures of it with diatomite, pumice or perlite rapidly yield excellent sorbents with the proper reaction conditions.« less

  18. Development of Vertical Cable Seismic System (3)

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of shot points and receiver points in the field include the errors. We use these data as initial guesses, we invert iteratively shot and receiver positions to match the travel time data. After several iterations we could finally estimate the most probable positions. Integration of the constraint of VCS hydrophone positions, such as the spacing is 10m, can accelerate the convergence of the iterative inversion and improve results. The accuracy of the estimated positions from the travel time date is enough for the VCS data processing.

  19. Effect of Atomic Hydrogen on Preparation of Highly Moisture-Resistive SiNx Films at Low Substrate Temperatures

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Niki, Toshikazu; Takano, Masahiro; Yonezawa, Yasuto; Minamikawa, Toshiharu; Muroi, Susumu; Minami, Shigehira; Izumi, Akira; Masuda, Atsushi; Umemoto, Hironobu; Matsumura, Hideki

    2004-12-01

    Highly moisture-resistive SiNx films on a Si substrate are obtained at substrate temperatures of 80°C by catalytic chemical vapor deposition (Cat-CVD) using a source gas with H2. Atomic hydrogen effected the selective etching of a weak-bond regions and an increase in atomic density induced by the energy of the surface reaction. It is concluded that Cat-CVD using H2 is a promising candidate for the fabrication of highly moisture-resistive SiNx films at low temperatures.

  20. Experimental validation of an OSEM-type iterative reconstruction algorithm for inverse geometry computed tomography

    NASA Astrophysics Data System (ADS)

    David, Sabrina; Burion, Steve; Tepe, Alan; Wilfley, Brian; Menig, Daniel; Funk, Tobias

    2012-03-01

    Iterative reconstruction methods have emerged as a promising avenue to reduce dose in CT imaging. Another, perhaps less well-known, advance has been the development of inverse geometry CT (IGCT) imaging systems, which can significantly reduce the radiation dose delivered to a patient during a CT scan compared to conventional CT systems. Here we show that IGCT data can be reconstructed using iterative methods, thereby combining two novel methods for CT dose reduction. A prototype IGCT scanner was developed using a scanning beam digital X-ray system - an inverse geometry fluoroscopy system with a 9,000 focal spot x-ray source and small photon counting detector. 90 fluoroscopic projections or "superviews" spanning an angle of 360 degrees were acquired of an anthropomorphic phantom mimicking a 1 year-old boy. The superviews were reconstructed with a custom iterative reconstruction algorithm, based on the maximum-likelihood algorithm for transmission tomography (ML-TR). The normalization term was calculated based on flat-field data acquired without a phantom. 15 subsets were used, and a total of 10 complete iterations were performed. Initial reconstructed images showed faithful reconstruction of anatomical details. Good edge resolution and good contrast-to-noise properties were observed. Overall, ML-TR reconstruction of IGCT data collected by a bench-top prototype was shown to be viable, which may be an important milestone in the further development of inverse geometry CT.

  1. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison.

    PubMed

    Mangold, Stefanie; De Cecco, Carlo N; Wichmann, Julian L; Canstein, Christian; Varga-Szemes, Akos; Caruso, Damiano; Fuller, Stephen R; Bamberg, Fabian; Nikolaou, Konstantin; Schoepf, U Joseph

    2016-05-01

    To compare, on an intra-individual basis, the effect of automated tube voltage selection (ATVS), integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of aortic CTA studies using 2nd and 3rd generation dual-source CT (DSCT). We retrospectively evaluated 32 patients who had undergone CTA of the entire aorta with both 2nd generation DSCT at 120kV using filtered back projection (FBP) (protocol 1) and 3rd generation DSCT using ATVS, an integrated circuit detector and advanced iterative reconstruction (protocol 2). Contrast-to-noise ratio (CNR) was calculated. Image quality was subjectively evaluated using a five-point scale. Radiation dose parameters were recorded. All studies were considered of diagnostic image quality. CNR was significantly higher with protocol 2 (15.0±5.2 vs 11.0±4.2; p<.0001). Subjective image quality analysis revealed no significant differences for evaluation of attenuation (p=0.08501) but image noise was rated significantly lower with protocol 2 (p=0.0005). Mean tube voltage and effective dose were 94.7±14.1kV and 6.7±3.9mSv with protocol 2; 120±0kV and 11.5±5.2mSv with protocol 1 (p<0.0001, respectively). Aortic CTA performed with 3rd generation DSCT, ATVS, integrated circuit detector, and advanced iterative reconstruction allow a substantial reduction of radiation exposure while improving image quality in comparison to 120kV imaging with FBP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Vapor-liquid-solid growth of <110> silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Eichfeld, Sarah M.; Hainey, Mel F.; Shen, Haoting; Kendrick, Chito E.; Fucinato, Emily A.; Yim, Joanne; Black, Marcie R.; Redwing, Joan M.

    2013-09-01

    The epitaxial growth of <110> silicon nanowires on (110) Si substrates by the vapor-liquid-solid growth process was investigated using SiCl4 as the source gas. A high percentage of <110> nanowires was obtained at high temperatures and reduced SiCl4 partial pressures. Transmission electron microscopy characterization of the <110> Si nanowires revealed symmetric V-shaped {111} facets at the tip and large {111} facets on the sidewalls of the nanowires. The symmetric {111} tip faceting was explained as arising from low catalyst supersaturation during growth which is expected to occur given the near-equilibrium nature of the SiCl4 process. The predominance of {111} facets obtained under these conditions promotes the growth of <110> SiNWs.

  3. VizieR Online Data Catalog: Relativistic MR-MP energy levels for Si (Santana+, 2018)

    NASA Astrophysics Data System (ADS)

    Santana, J. A.; Lopez-Dauphin, N. A.; Beiersdorfer, P.

    2018-03-01

    Level energies are reported for Si V, Si VI, Si VII, Si VIII, Si IX, Si X, Si XI, and Si XII. The energies have been calculated with the relativistic Multi- Reference Moller-Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20eV in SiV to 0.04eV in SiXII. For K-vacancy states, the available values recommended in the NIST database are limited to Si XII and Si XIII. The average energy deviation is below 0.3eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. We expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements. (1 data file).

  4. Si nanowire growth on sapphire: Classical incubation, reverse reaction, and steady state supersaturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakthivel, Dhayalan; Rathkanthiwar, Shashwat; Raghavan, Srinivasan, E-mail: sraghavan@cense.iisc.ernet.in

    2015-04-28

    Si nanowire growth on sapphire substrates by the vapor-liquid-solid (VLS) method using Au catalyst particles has been studied. Sapphire was chosen as the substrate to ensure that the vapor phase is the only source of Si. Three hitherto unreported observations are described. First, an incubation period of 120–480 s, which is shown to be the incubation period as defined in classical nucleation theory, is reported. This incubation period permits the determination of a desolvation energy of Si from Au-Si alloys of 15 kT. Two, transmission electron microscopy studies of incubation, point to Si loss by reverse reaction as an important partmore » of the mechanism of Si nanowire growth by VLS. Three, calculations using these physico-chemical parameters determined from incubation and measured steady state growth rates of Si nanowires show that wire growth happens from a supersaturated catalyst droplet.« less

  5. Preparation of Si3N4 Form Diatomite via a Carbothermal Reduction-Nitridation Process

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Huang, Zhaohui; Mei, Lefu; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Hu, Xiaozhi

    2016-05-01

    Si3N4 was produced using diatomite and sucrose as silicon and carbon sources, respectively. The effect of the C/SiO2 molar ratio, heating temperature and soaking time on the morphology and phase compositions of the final products was investigated by scanning electron microscopy, x-ray diffraction analysis and energy dispersive spectroscopy. The phase equilibrium relationships of the system at different heating temperatures were also investigated based on the thermodynamic analysis. The results indicate that the phase compositions depended on the C/SiO2 molar ratio, heating temperature and soaking time. Fabrication of Si3N4 from the precursor via carbothermal reduction nitridation was achieved at 1550°C for 1-8 h using a C/SiO2 molar ratio of 3.0. The as-prepared Si3N4 contained a low amount of Fe3Si (<1 wt.%).

  6. Preparation and characterization of epitaxial MgO thin film by atmospheric-pressure metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zeng, J. M.; Wang, H.; Shang, S. X.; Wang, Z.; Wang, M.

    1996-12-01

    Magnesium oxide (MgO) thin films have been prepared on Si(100), {SiO2(100) }/{Si} and {Pt(111) }/{Si} substrates by atmospheric-pressure metalorganic chemical vapor deposition (AP-MOCVD) for the first time. The relationship between the temperature of substrates ( Ts) and crystallographic orientations was also investigated. Magnesium acetylacetonate [Mg(CH 2COCH 2COCH 3) 2] was used as the metalorganic source. The relatively low temperature of substrates is about 480°C and the MgO thin films obtained were uniform, dense and well-ordered single crystal. X-ray diffraction experiments provided evidence that the MgO thin films on Si(100) ( Ts ≈ 400-680°C), {SiO2}/{Si} and {Pt}/{Si} were fully textured with (100) orientation. The deliquescent character of MgO thin films was also studied.

  7. SU-F-I-49: Vendor-Independent, Model-Based Iterative Reconstruction On a Rotating Grid with Coordinate-Descent Optimization for CT Imaging Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Hoffman, J; McNitt-Gray, M

    Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with amore » quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low-dose helical CT, in particular as part of our ongoing development of an acquisition/reconstruction pipeline for generating images under a wide range of conditions. Our algorithm will be made available open-source as “FreeCT-ICD”. NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  8. 40 CFR Table 4 to Subpart Jjjj of... - Applicability of Mobile Source Provisions for Manufacturers Participating in the Voluntary...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SI ICE to Emission Standards in Table 1 of Subpart JJJJ 4 Table 4 to Subpart JJJJ of Part 60... Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ [As stated in § 60.4247, you must comply... voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart...

  9. 40 CFR Table 4 to Subpart Jjjj of... - Applicability of Mobile Source Provisions for Manufacturers Participating in the Voluntary...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SI ICE to Emission Standards in Table 1 of Subpart JJJJ 4 Table 4 to Subpart JJJJ of Part 60... Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ [As stated in § 60.4247, you must comply... voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart...

  10. 40 CFR Table 4 to Subpart Jjjj of... - Applicability of Mobile Source Provisions for Manufacturers Participating in the Voluntary...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SI ICE to Emission Standards in Table 1 of Subpart JJJJ 4 Table 4 to Subpart JJJJ of Part 60... Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ [As stated in § 60.4247, you must comply... voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart...

  11. 40 CFR Table 4 to Subpart Jjjj of... - Applicability of Mobile Source Provisions for Manufacturers Participating in the Voluntary...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SI ICE to Emission Standards in Table 1 of Subpart JJJJ 4 Table 4 to Subpart JJJJ of Part 60... Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ [As stated in § 60.4247, you must comply... voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart...

  12. 40 CFR Table 4 to Subpart Jjjj of... - Applicability of Mobile Source Provisions for Manufacturers Participating in the Voluntary...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SI ICE to Emission Standards in Table 1 of Subpart JJJJ 4 Table 4 to Subpart JJJJ of Part 60... Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ [As stated in § 60.4247, you must comply... voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart...

  13. The source of dissolved silicon in soil surface solutions of a temperate forest ecosystem: Ge/Si and Si isotope ratios as biogeochemical tracers

    NASA Astrophysics Data System (ADS)

    Cornelis, J.; Delvaux, B.; Cardinal, D.; André, L.; Ranger, J.; Opfergelt, S.

    2010-12-01

    Understand the biogeochemical cycle of silicon (Si) in the Earth’s critical zone and the dissolved Si transfer from the litho-pedosphere into the hydrosphere is of great interest for the global balance of biogeochemical processes, including the global C cycle. Indeed, the interaction between Si and C cycles regulates the atmospheric CO2 through the chemical weathering of silicate minerals, the C sequestration in stable organo-mineral compounds and the Si nutrition of phytoplankton CO2-consumers in oceans. H4SiO4 released by mineral dissolution contributes to the critical zone evolution through neoformation of secondary minerals, adsorption onto hydroxyl-bearing phases and recycling by vegetation and return of phytoliths on topsoil. The neoformation of secondary precipitates (clay minerals and phytoliths polymerized in plants) and adsorption of Si onto Fe and Al (hydr)oxides are processes favoring the light Si isotope incorporation, generating rivers enriched in heavy Si isotopes. On the other hand, clay minerals and phytoliths display contrasting Ge/Si ratios since clay-sized weathering products are enriched in Ge and phytoliths are depleted in Ge. Thus stable Si isotope and Ge/Si ratios constitute very interesting proxies to trace transfer of Si in the critical zone. Here we report Si isotopic and Ge/Si ratios of the different Si pools in a temperate soil-tree system (Breuil experimental forest, France) involving various tree species grown on Alumnic Cambisol derived from granitic bedrock. Relative to granitic bedrock (δ30Si = -0.07 ‰; Ge/Si = 2.5 µmol/mol), clay-sized minerals are enriched in 28Si (-1.07 ‰) and Ge (6.2 µmol/mol) while phytoliths are enriched in 28Si (-0.28 to -0.64 ‰) and depleted in Ge (0.1 to 0.3 µmol/mol). This contrast allows us to infer the relative contribution of litho/pedogenic and biogenic mineral dissolution on the release of H4SiO4 in soil surface solutions. The Si-isotope signatures and Ge/Si ratios of forest floor solutions evolve towards lighter values (-1.38 and -2.05 ‰) and higher Ge/Si ratios (2.7 µmol/mol) relative to granite bedrock. This suggests a partial dissolution of 28Si and Ge-enriched secondary clays minerals incorporated by bioturbation in organic-rich horizons, with a fractionation releasing preferentially light Si isotopes. Without considering that organic acids promote dissolution of minerals, clay minerals detected in the organic layer (vermiculite, chlorite, illite and Ca-montmorillonite) are not stable and could have been partially dissolved and transformed in the chemical environment of forest floor. Sources of H4SiO4 in forest floor solutions are influenced by tree species which control the extent of clay-sized minerals mixed in organic horizons by bioturbation and, to a lesser extent, the Si recycling by forest vegetation.

  14. Proof of feasibility of the Vacuum Silicon PhotoMultiplier Tube (VSiPMT)

    NASA Astrophysics Data System (ADS)

    Barbarino, G.; Campajola, L.; de Asmundis, R.; De Rosa, G.; Fiorillo, G.; Migliozzi, P.; Barbato, F. C. T.; Mollo, C. M.; Russo, A.; Vivolo, D.

    2013-04-01

    The Vacuum Silicon PhotoMultiplier Tube (VSiPMT) is an innovative design we propose for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a hemispherical vacuum glass PMT standard envelope. The basic idea is to replace the classical dynode chain of a PMT with a SiPM, which acts as an electron multiplying detector. Such a solution will match the goal of a large photocathode sensitive area with the performances of a SiPM. This will lead to many advantages such as lower power consumption, mild sensitivity to magnetic fields and high quantum efficiency. The feasibility of this idea has been throughly studied both from a theoretical and experimental point of view. As a first step we performed the full characterization of a special non-windowed Hamamatsu MPPC with a laser source. The response of the SiPM to an electron beam was studied as a function of the energy and of the incident angle by means of a Geant4-based simulation. In this paper we present the preliminary results of the characterization of the SiPM with an electron source and we discuss how the development of next generation SiPMs will overcome the main weaknesses of VSiPMT, such as relatively low PDE and high photocathode voltage.

  15. EUV multilayer mirrors with enhanced stability

    NASA Astrophysics Data System (ADS)

    Benoit, Nicolas; Yulin, Sergiy; Feigl, Torsten; Kaiser, Norbert

    2006-08-01

    The application of multilayer optics in EUV lithography requires not only the highest possible normal-incidence reflectivity but also a long-term thermal and radiation stability at operating temperatures. This requirement is most important in the case of the collector mirror of the illumination system close to the EUV source where a short-time decrease in reflectivity is most likely. Mo/Si multilayer mirrors, designed for high normal reflectivity at the wavelength of 13.5 nm and deposited by dc magnetron sputtering, were directly exposed to EUV radiation without mitigation system. They presented a loss of reflectivity of more than 18% after only 8 hours of irradiation by a Xe-discharge source. Another problem of Mo/Si multilayers is the instability of reflectivity and peak wavelength under high heat load. It becomes especially critical at temperatures above 200°C, where interdiffusion between the molybdenum and the silicon layers is observed. The development of high-temperature multilayers was focused on two alternative Si-based systems: MoSi II/Si and interface engineered Mo/C/Si/C multilayer mirrors. The multilayer designs as well as the deposition parameters of all systems were optimized in terms of high peak reflectivity (>= 60 %) at a wavelength of 13.5 nm and high thermal stability. Small thermally induced changes of the MoSi II/Si multilayer properties were found but they were independent of the annealing time at all temperatures examined. A wavelength shift of -1.7% and a reflectivity drop of 1.0% have been found after annealing at 500°C for 100 hours. The total degradation of optical properties above 650°C can be explained by a recrystallization process of MoSi II layers.

  16. Novel passivation dielectrics-The boron- or phosphorus-doped hydrogenated amorphous silicon carbide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.Y.; Fang, Y.K.; Huang, C.F.

    1985-02-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared and studied in a radiofrequency glowdischarge system, using a gas mixture of SiH/sub 4/ and one of the following carbon sources: methane (CH/sub 4/), benzene (C/sub 6/H/sub 6/), toluene (C/sub 7/H/sub 8/), sigma-xylene (C/sub 8/H/sub 10/), trichloroethane (C/sub 2/H/sub 3/Cl/sub 3/), trichloroethylene (C/sub 2/HCl/sub 3/), or carbon tetrachloride (CCl/sub 4/). The effect of doping phosphorus and boron into those a-SiC:H films on chemical etching rate, electrica dc resistivity, breakdown strength, and optical refractive index have been systematically investigated. Their chemical etching properties were examined by immersing in 49% HF, buffered HF,more » 180/sup 0/C H/sub 3/PO/sub 4/ solutions, or in CF/sub 4/ + O/sub 2/ plasma. It was found that the boron-doped a-SiC:H film possesses five times slower etching rate than the undoped one, while phosphorus-doped a-SiC:H film shows about three times slower. Among those a-SiC:H films, the one obtained from a mixture of SiH/sub 4/ and benzene shows the best etch-resistant property, while the ones obtained from a mixture of SiH/sub 4/ and chlorine containing carbon sources (e.g., trichloroethylene, trichloroethane, or carbon tetrachloride) shows that they are poor in etching resistance (i.e., the etching rate is higher). By measuring dc resistivity, dielectric breakdown strength, and effective refractive index, it was found that boron- or phosphorus-doped a-SiC:H films exhibit much higher dielectric strength and resistivity, but lower etching rate, presumably because of higher density.« less

  17. Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii

    NASA Astrophysics Data System (ADS)

    Stolper, Edward; Sherman, Sarah; Garcia, Michael; Baker, Michael; Seaman, Caroline

    2004-07-01

    The Hawaii Scientific Drilling Project recovered ˜3 km of basalt by coring into the flank of Mauna Kea volcano at Hilo, Hawaii. Rocks recovered from deeper than ˜1 km were deposited below sea level and contain considerable fresh glass. We report electron microprobe analyses of 531 glasses from the submarine section of the core, providing a high-resolution record of petrogenesis over ca. 200 Kyr of shield building of a Hawaiian volcano. Nearly all the submarine glasses are tholeiitic. SiO2 contents span a significant range but are bimodally distributed, leading to the identification of low-SiO2 and high-SiO2 magma series that encompass most samples. The two groups are also generally distinguishable using other major and minor elements and certain isotopic and incompatible trace element ratios. On the basis of distributions of high- and low-SiO2 glasses, the submarine section of the core is divided into four zones. In zone 1 (1079-˜1950 mbsl), most samples are degassed high-SiO2 hyaloclastites and massive lavas, but there are narrow intervals of low-SiO2 hyaloclastites. Zone 2 (˜1950-2233 mbsl), a zone of degassed pillows and hyaloclastites, displays a continuous decrease in silica content from bottom to top. In zone 3 (2233-2481 mbsl), nearly all samples are undegassed low-SiO2 pillows. In zone 4 (2481-3098 mbsl), samples are mostly high-SiO2 undegassed pillows and degassed hyaloclastites. This zone also contains most of the intrusive units in the core, all of which are undegassed and most of which are low-SiO2. Phase equilibrium data suggest that parental magmas of the low-SiO2 suite could be produced by partial melting of fertile peridotite at 30-40 kbar. Although the high-SiO2 parents could have equilibrated with harzburgite at 15-20 kbar, they could have been produced neither simply by higher degrees of melting of the sources of the low-SiO2 parents nor by mixing of known dacitic melts of pyroxenite/eclogite with the low-SiO2 parents. Our hypothesis for the relationship between these magma types is that as the low-SiO2 magmas ascended from their sources, they interacted chemically and thermally with overlying peridotites, resulting in dissolution of orthopyroxene and clinopyroxene and precipitation of olivine, thereby generating high-SiO2 magmas. There are glasses with CaO, Al2O3, and SiO2 contents slightly elevated relative to most low-SiO2 samples; we suggest that these differences reflect involvement of pyroxene-rich lithologies in the petrogenesis of the CaO-Al2O3-enriched glasses. There is also a small group of low-SiO2 glasses distinguished by elevated K2O and CaO contents; the sources of these samples may have been enriched in slab-derived fluid/melts. Low-SiO2 glasses from the top of zone 3 (2233-2280 mbsl) are more alkaline, more fractionated, and incompatible-element-enriched relative to other glasses from zone 3. This excursion at the top of zone 3, which is abruptly overlain by more silica-rich tholeiitic magmas, is reminiscent of the end of Mauna Kea shield building higher in the core.

  18. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    DOE PAGES

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    2018-01-15

    Level energies are reported for Si v, Si vi, Si vii, Si viii, Si ix, Si x, Si xi, and Si xii. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si v to 0.04 eV in Si xii. For K-vacancy states, the available values recommendedmore » in the NIST database are limited to Si xii and Si xiii. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. Here, we expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.« less

  19. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    2018-01-01

    Level energies are reported for Si V, Si VI, Si VII, Si VIII, Si IX, Si X, Si XI, and Si XII. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si V to 0.04 eV in Si XII. For K-vacancy states, the available values recommended in the NIST database are limited to Si XII and Si XIII. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. We expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.

  20. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    Level energies are reported for Si v, Si vi, Si vii, Si viii, Si ix, Si x, Si xi, and Si xii. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si v to 0.04 eV in Si xii. For K-vacancy states, the available values recommendedmore » in the NIST database are limited to Si xii and Si xiii. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. Here, we expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.« less

  1. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.

    PubMed

    Demi, L; van Dongen, K W A; Verweij, M D

    2011-03-01

    Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation. © 2011 Acoustical Society of America

  2. Evaluation of a Silicon 90Sr Betavoltaic Power Source.

    PubMed

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-12-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90 Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90 Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.

  3. Evaluation of a Silicon 90Sr Betavoltaic Power Source

    PubMed Central

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-01-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles. PMID:27905521

  4. Evaluation of a Silicon 90Sr Betavoltaic Power Source

    NASA Astrophysics Data System (ADS)

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-12-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.

  5. Characterization of high-dose and high-energy implanted gate and source diode and analysis of lateral spreading of p gate profile in high voltage SiC static induction transistors

    NASA Astrophysics Data System (ADS)

    Onose, Hidekatsu; Kobayashi, Yutaka; Onuki, Jin

    2017-03-01

    The effect of the p gate dose on the characteristics of the gate-source diode in SiC static induction transistors (SIT) was investigated. It was found that a dose of 1.5 × 1014 cm-2 yields a pn junction breakdown voltage higher than 60 V and good forward characteristics. A normally on SiC SIT was fabricated and demonstrated. A blocking voltage higher than 2.0 kV at a gate-source voltage of -50 V and on-resistance of 70 mΩ cm2 were obtained. Device simulations were performed to investigate the effect of the lateral spreading. By comparing the measured I-V curves with simulation results, the lateral spreading factor was estimated to be about 0.5. The lateral spreading detrimentally affected the electrical properties of the SIT made using implantations at energies higher than 1 MeV.

  6. Fabrication of Coaxial Si1−xGex Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    PubMed Central

    2010-01-01

    We report on bifurcate reactions on the surface of well-aligned Si1−xGex nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1−xGex nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1−xGex or SiO2/Si1−xGex coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively. PMID:21076699

  7. Growth characteristics of nanocrystalline silicon films fabricated by using chlorinated precursors at low temperatures.

    PubMed

    Huang, Rui; Ding, Honglin; Song, Jie; Guo, Yanqing; Wang, Xiang; Lin, Xuanying

    2010-11-01

    We employed plasma enhanced chemical vapor deposition technique to fabricate nanocrystalline Si films at a low temperature of 250 degrees C by using SiCl4 and H2 as source gases. The evolution of microstructure of the films with deposition periods shows that nanocrystalline Si can be directly grown on amorphous substrate at the initial growth process, which is in contrast to the growth behavior observed in the SiH4/H2 system. Furthermore, it is interesting to find that the area density of nanocrystalline Si as well as grain size can be controlled by modulating the concentration of SiCl4. By decreasing the SiCl4 concentration, the area density of nanocrystalline Si can be enhanced up to 10(11) cm(-2), while the grain size is shown to decrease down to 10 nm. It is suggested that Cl plays an important role in the low-temperature growth of nanocrystalline Si.

  8. Fabrication of Coaxial Si1- x Ge x Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    NASA Astrophysics Data System (ADS)

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-10-01

    We report on bifurcate reactions on the surface of well-aligned Si1- x Ge x nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1- x Ge x nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1- x Ge x or SiO2/Si1- x Ge x coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  9. Fabrication of Coaxial Si(1-x)Ge(x) Heterostructure Nanowires by O(2) Flow-Induced Bifurcate Reactions.

    PubMed

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-06-17

    We report on bifurcate reactions on the surface of well-aligned Si(1-x)Ge(x) nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si(1-x)Ge(x) nanowires were grown in a chemical vapor transport process using SiCl(4) gas and Ge powder as a source. After the growth of nanowires, SiCl(4) flow was terminated while O(2) gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO(2) by the O(2) gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O(2) pressure without any intermediate region and enables selectively fabricated Ge/Si(1-x)Ge(x) or SiO(2)/Si(1-x)Ge(x) coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  10. Simulation of cesium injection and distribution in rf-driven ion sources for negative hydrogen ion generation.

    PubMed

    Gutser, R; Fantz, U; Wünderlich, D

    2010-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. Stability and delivered current density depend highly on the cesium conditions during plasma-on and plasma-off phases of the ion source. The Monte Carlo code CSFLOW3D was used to study the transport of neutral and ionic cesium in both phases. Homogeneous and intense flows were obtained from two cesium sources in the expansion region of the ion source and from a dispenser array, which is located 10 cm in front of the converter surface.

  11. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions and electrons, agree rather well with the experiment.

  12. New technologies for solar energy silicon - Cost analysis of dichlorosilane process

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Li, K.-Y.; Chu, T. C. T.; Fang, C. S.; Lutwack, R.; Briglio, A., Jr.

    1981-01-01

    A reduction in the cost of silicon for solar cells is an important objective in a project concerned with the reduction of the cost of electricity produced with solar cells. The cost goal for the silicon material is about $14 per kg (1980 dollars). The process which is currently employed to produce semiconductor grade silicon from trichlorosilane is not suited for meeting this cost goal. Other processes for producing silicon are, therefore, being investigated. A description is presented of results obtained for the DCS process which involves the production of dichlorosilane as a silicon source material for solar energy silicon. Major benefits of dichlorosilane as a silicon source material include faster reaction rates for chemical vapor deposition of silicon. The DCS process involves the reaction 2SiHCl3 yields reversibly SiH2Cl2 + SiCl4. The results of a cost analysis indicate a total product cost without profit of $1.29/kg of SiH2Cl2.

  13. Hydrogen passivation of poly-Si/SiO x contacts for Si solar cells using Al 2O 3 studied with deuterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnabel, Manuel; van de Loo, Bas W. H.; Nemeth, William

    Here, the interplay between hydrogenation and passivation of poly-Si/SiO x contacts to n-type Si wafers is studied using atomic layer deposited Al 2O 3 and anneals in forming gas and nitrogen. The poly-Si/SiO x stacks are prepared by thermal oxidation followed by thermal crystallization of a-Si:H films deposited by plasma-enhanced chemical vapor deposition. Implied open-circuit voltages as high as 710 mV are achieved for p-type poly-Si/SiO x contacts to n-type Si after hydrogenation. Correlating minority carrier lifetime data and secondary ion mass spectrometry profiles reveals that the main benefit of Al 2O 3 is derived from its role as amore » hydrogen source for chemically passivating defects at SiO x; Al 2O 3 layers are found to hydrogenate poly-Si/SiO x much better than a forming gas anneal. By labelling Al 2O 3 and the subsequent anneal with different hydrogen isotopes, it is found that Al 2O 3 exchanges most of its hydrogen with the ambient upon annealing at 400 °C for 1 h even though there is no significant net change in its total hydrogen content.« less

  14. Hydrogen passivation of poly-Si/SiOx contacts for Si solar cells using Al2O3 studied with deuterium

    NASA Astrophysics Data System (ADS)

    Schnabel, Manuel; van de Loo, Bas W. H.; Nemeth, William; Macco, Bart; Stradins, Paul; Kessels, W. M. M.; Young, David L.

    2018-05-01

    The interplay between hydrogenation and passivation of poly-Si/SiOx contacts to n-type Si wafers is studied using atomic layer deposited Al2O3 and anneals in forming gas and nitrogen. The poly-Si/SiOx stacks are prepared by thermal oxidation followed by thermal crystallization of a-Si:H films deposited by plasma-enhanced chemical vapor deposition. Implied open-circuit voltages as high as 710 mV are achieved for p-type poly-Si/SiOx contacts to n-type Si after hydrogenation. Correlating minority carrier lifetime data and secondary ion mass spectrometry profiles reveals that the main benefit of Al2O3 is derived from its role as a hydrogen source for chemically passivating defects at SiOx; Al2O3 layers are found to hydrogenate poly-Si/SiOx much better than a forming gas anneal. By labelling Al2O3 and the subsequent anneal with different hydrogen isotopes, it is found that Al2O3 exchanges most of its hydrogen with the ambient upon annealing at 400 °C for 1 h even though there is no significant net change in its total hydrogen content.

  15. Hydrogen passivation of poly-Si/SiO x contacts for Si solar cells using Al 2O 3 studied with deuterium

    DOE PAGES

    Schnabel, Manuel; van de Loo, Bas W. H.; Nemeth, William; ...

    2018-05-14

    Here, the interplay between hydrogenation and passivation of poly-Si/SiO x contacts to n-type Si wafers is studied using atomic layer deposited Al 2O 3 and anneals in forming gas and nitrogen. The poly-Si/SiO x stacks are prepared by thermal oxidation followed by thermal crystallization of a-Si:H films deposited by plasma-enhanced chemical vapor deposition. Implied open-circuit voltages as high as 710 mV are achieved for p-type poly-Si/SiO x contacts to n-type Si after hydrogenation. Correlating minority carrier lifetime data and secondary ion mass spectrometry profiles reveals that the main benefit of Al 2O 3 is derived from its role as amore » hydrogen source for chemically passivating defects at SiO x; Al 2O 3 layers are found to hydrogenate poly-Si/SiO x much better than a forming gas anneal. By labelling Al 2O 3 and the subsequent anneal with different hydrogen isotopes, it is found that Al 2O 3 exchanges most of its hydrogen with the ambient upon annealing at 400 °C for 1 h even though there is no significant net change in its total hydrogen content.« less

  16. Tailored Organometallic Polymers

    DTIC Science & Technology

    1993-01-31

    2-4). These synthetic pathways provide access to a wide variety of new silicon compounds for use as reagents in organic syntheses and the electronics...34Si0 2 as a Source of Si Containing Compounds / Polymers", D.J. Ray, R.M. Laine, C. Viney and T.R. Robinson, ACS Polymer Preprints (1991) 32(3), 550...3) as precursors to orgar.osilicon compounds .[10-12] Pentacoordinate silicates are easily prepa’ed frotv tetrasubstituted Si centers containing

  17. Mass-Spectrometric Studies of Catalytic Chemical Vapor Deposition Processes of Organic Silicon Compounds Containing Nitrogen

    NASA Astrophysics Data System (ADS)

    Morimoto, Takashi; Ansari, S. G.; Yoneyama, Koji; Nakajima, Teppei; Masuda, Atsushi; Matsumura, Hideki; Nakamura, Megumi; Umemoto, Hironobu

    2006-02-01

    The mechanism of catalytic chemical vapor deposition (Cat-CVD) processes for hexamethyldisilazane (HMDS) and trisdimethylaminosilane (TDMAS), which are used as source gases to prepare SiNx or SiCxNy films, was studied using three different mass spectrometric techniques: ionization by Li+ ion attachment, vacuum-ultraviolet radiation and electron impact. The results for HMDS show that Si-N bonds dissociate selectively, although Si-C bonds are weaker, and (CH3)3SiNH should be one of the main precursors of deposited films. This decomposition mechanism did not change when NH3 was introduced, but the decomposition efficiency was slightly increased. Similar results were obtained for TDMAS.

  18. Temperature effect on betavoltaic microbatteries based on Si and GaAs under 63Ni and 147Pm irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Tang, Xiao-bin; Liu, Yun-Peng; Xu, Zhi-Heng; Liu, Min; Chen, Da

    2015-09-01

    The effect of temperature on the output performance of four different types of betavoltaic microbatteries was investigated experimental and theoretical. Si and GaAs were selected as the energy conversion devices in four types of betavoltaic microbatteries, and 63Ni and 147Pm were used as beta sources. Current density-voltage curves were determined at a temperature range of 213.15-333.15 K. A simplified method was used to calculate the theoretical parameters of the betavoltaic microbatteries considering the energy loss of beta particles for self-absorption of radioactive source, the electron backscatter effect of different types of semiconductor materials, and the absorption of dead layer. Both the experimental and theoretical results show that the short-circuit current density increases slightly and the open-circuit voltage (VOC) decreases evidently with the increase in temperature. Different combinations of energy conversion devices and beta sources cause different effects of temperature on the microbatteries. In the approximately linear range, the VOC sensitivities caused by temperature for 63Ni-Si, 63Ni-GaAs, 147Pm-Si, and 147Pm-GaAs betavoltaic microbatteries were -2.57, -5.30, -2.53, and -4.90 mV/K respectively. Both theoretical and experimental energy conversion efficiency decreased evidently with the increase in temperature.

  19. Thermal Synthesis of Perchlorinated Oligosilanes: A Fresh Look at an Old Reaction.

    PubMed

    Neumeyer, Felix; Schweizer, Julia I; Meyer, Lioba; Sturm, Alexander G; Nadj, Andor; Holthausen, Max C; Auner, Norbert

    2017-09-07

    A combined experimental and theoretical study of the high-temperature reaction of SiCl 4 and elemental silicon is presented. The nature and reactivity of the product formed upon rapid cooling of the gaseous reaction mixture is investigated by comparison with the defined model compounds cyclo-Si 5 Cl 10 , n-Si 5 Cl 12 and n-Si 4 Cl 10 . A DFT assessment provides mechanistic insight into the oligosilane formation. Experimental 29 Si NMR investigations, supported by quantum-chemical 29 Si NMR calculations, consistently show that the reaction product is composed of discrete molecular perchlorinated oligosilanes. Low-temperature chlorination is an unexpectedly selective means for the transformation of cyclosilanes to acyclic species by endocyclic Si-Si bond cleavage, and we provide a mechanistic rationalization for this observation. In contrast to the raw material, the product obtained after low-temperature chlorination represents an efficient source of neo-Si 5 Cl 12 or the amine-stabilized disilene EtMe 2 N⋅SiCl 2 Si(SiCl 3 ) 2 through reaction with aliphatic amines. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transmission electron microscopy characterization of the erbium silicide formation process using a Pt/Er stack on a silicon-on-insulator substrate.

    PubMed

    Łaszcz, A; Katcki, J; Ratajczak, J; Tang, Xiaohui; Dubois, E

    2006-10-01

    Very thin erbium silicide layers have been used as source and drain contacts to n-type Si in low Schottky barrier MOSFETs on silicon-on-insulator substrates. Erbium silicide is formed by a solid-state reaction between the metal and silicon during annealing. The influence of annealing temperature (450 degrees C, 525 degrees C and 600 degrees C) on the formation of an erbium silicide layer in the Pt/Er/Si/SiO(2)/Si structure was analysed by means of cross-sectional transmission electron microscopy. The Si grains/interlayer formed at the interface and the presence of Si grains within the Er-related layer constitute proof that Si reacts with Er in the presence of a Pt top layer in the temperature range 450-600 degrees C. The process of silicide formation in the Pt/Er/Si structure differs from that in the Er/Si structure. At 600 degrees C, the Pt top layer vanishes and a (Pt-Er)Si(x) system is formed.

  1. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Masanori; Park, Jin Myung; Giruzzi, G.

    2011-01-01

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fullymore » noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.« less

  2. Automating Microbial Directed Evolution For Bioengineering Applications

    NASA Astrophysics Data System (ADS)

    Lee, A.; Demachkie, I. S.; Sardesh, N.; Arismendi, D.; Ouandji, C.; Wang, J.; Blaich, J.; Gentry, D.

    2016-12-01

    From a micro-biology perspective, directed evolution is a technique that uses controlled environmental pressures to select for a desired phenotype. Directed evolution has the distinct advantage over rational design of not needing extensive knowledge of the genome or pathways associated with a microorganism to induce phenotypes. However, there are currently limitations to the applicability of this technique including being time-consuming, error-prone, and dependent on existing assays that may lack selectivity for the given phenotype. The AADEC (Autonomous Adaptive Directed Evolution Chamber) system is a proof-of-concept instrument to automate and improve the technique such that directed evolution can be used more effectively as a general bioengineering tool. A series of tests using the automated system and comparable by-hand survival assay measurements have been carried out using UV-C radiation and Escherichia coli cultures in order to demonstrate the advantages of the AADEC versus traditional implementations of directed evolution such as random mutagenesis. AADEC uses UV-C exposure as both a source of environmental stress and mutagenesis, so in order to evaluate the UV-C tolerance obtained from the cultures, a manual UV-C exposure survival assay was developed alongside the device to compare the survival fractions at a fixed dosage. This survival assay involves exposing E.coli to UV-C radiation using a custom-designed exposure hood to control the flux and dose. Surviving cells are counted then transferred to the next iteration and so on for several iterations to calculate the survival fractions for each exposure iteration. This survival assay primarily serves as a baseline for the AADEC device, allowing quantification of the differences between the AADEC system over the manual approach. The primary data of comparison is survival fractions; this is obtained by optical density and plate counts in the manual assay and by optical density growth curve fits pre- and post-exposure in the automated case. This data can then be compiled to calculate trends over the iterations to characterize increasing UV-C resistance of the E.coli strains. The observed trends are statistically indistinguishable through several iterations from both sources.

  3. FENDL: International reference nuclear data library for fusion applications

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. B.; Wienke, H.; Ganesan, S.

    1996-10-01

    The IAEA Nuclear Data Section, in co-operation with several national nuclear data centres and research groups, has created the first version of an internationally available Fusion Evaluated Nuclear Data Library (FENDL-1). The FENDL library has been selected to serve as a comprehensive source of processed and tested nuclear data tailored to the requirements of the engineering design activity (EDA) of the ITER project and other fusion-related development projects. The present version of FENDL consists of the following sublibraries covering the necessary nuclear input for all physics and engineering aspects of the material development, design, operation and safety of the ITER project in its current EDA phase: FENDL/A-1.1: neutron activation cross-sections, selected from different available sources, for 636 nuclides, FENDL/D-1.0: nuclear decay data for 2900 nuclides in ENDF-6 format, FENDL/DS-1.0: neutron activation data for dosimetry by foil activation, FENDL/C-1.0: data for the fusion reactions D(d,n), D(d,p), T(d,n), T(t,2n), He-3(d,p) extracted from ENDF/B-6 and processed, FENDL/E-1.0:data for coupled neutron—photon transport calculations, including a data library for neutron interaction and photon production for 63 elements or isotopes, selected from ENDF/B-6, JENDL-3, or BROND-2, and a photon—atom interaction data library for 34 elements. The benchmark validation of FENDL-1 as required by the customer, i.e. the ITER team, is considered to be a task of high priority in the coming months. The well tested and validated nuclear data libraries in processed form of the FENDL-2 are expected to be ready by mid 1996 for use by the ITER team in the final phase of ITER EDA after extensive benchmarking and integral validation studies in the 1995-1996 period. The FENDL data files can be electronically transferred to users from the IAEA nuclear data section online system through INTERNET. A grand total of 54 (sub)directories with 845 files with total size of about 2 million blocks or about 1 Gigabyte (1 block = 512 bytes) of numerical data is currently available on-line.

  4. Data Integration Tool: From Permafrost Data Translation Research Tool to A Robust Research Application

    NASA Astrophysics Data System (ADS)

    Wilcox, H.; Schaefer, K. M.; Jafarov, E. E.; Strawhacker, C.; Pulsifer, P. L.; Thurmes, N.

    2016-12-01

    The United States National Science Foundation funded PermaData project led by the National Snow and Ice Data Center (NSIDC) with a team from the Global Terrestrial Network for Permafrost (GTN-P) aimed to improve permafrost data access and discovery. We developed a Data Integration Tool (DIT) to significantly speed up the time of manual processing needed to translate inconsistent, scattered historical permafrost data into files ready to ingest directly into the GTN-P. We leverage this data to support science research and policy decisions. DIT is a workflow manager that divides data preparation and analysis into a series of steps or operations called widgets. Each widget does a specific operation, such as read, multiply by a constant, sort, plot, and write data. DIT allows the user to select and order the widgets as desired to meet their specific needs. Originally it was written to capture a scientist's personal, iterative, data manipulation and quality control process of visually and programmatically iterating through inconsistent input data, examining it to find problems, adding operations to address the problems, and rerunning until the data could be translated into the GTN-P standard format. Iterative development of this tool led to a Fortran/Python hybrid then, with consideration of users, licensing, version control, packaging, and workflow, to a publically available, robust, usable application. Transitioning to Python allowed the use of open source frameworks for the workflow core and integration with a javascript graphical workflow interface. DIT is targeted to automatically handle 90% of the data processing for field scientists, modelers, and non-discipline scientists. It is available as an open source tool in GitHub packaged for a subset of Mac, Windows, and UNIX systems as a desktop application with a graphical workflow manager. DIT was used to completely translate one dataset (133 sites) that was successfully added to GTN-P, nearly translate three datasets (270 sites), and is scheduled to translate 10 more datasets ( 1000 sites) from the legacy inactive site data holdings of the Frozen Ground Data Center (FGDC). Iterative development has provided the permafrost and wider scientific community with an extendable tool designed specifically for the iterative process of translating unruly data.

  5. Bose-Einstein correlations in Si + Al and Si + Au collisions at 14.6A GeV/c

    NASA Technical Reports Server (NTRS)

    Abbott, T.; Akiba, Y.; Beavis, D.; Bloomer, M. A.; Bond, P. D.; Chasman, C.; Chen, Z.; Chu, Y. Y.; Cole, B. A.; Costales, J. B.

    1992-01-01

    The E802 Spectrometer at the Brookhaven Alternating Gradient Synchrotron has been used to measure the correlation in relative momentum between like-sign pions emitted in central Si + Al and Si + Au collisions at 14.6A GeV/c. Data are presented in terms of the correlation function for both identified pi(-) and pi(+) pairs near the nucleon-nucleon center-of-mass rapidity. All parametrizations of the correlation function are consistent with a spherically symmetric source of rms radius 3.5 +/- 0.4 fm and lifetime fm/c.

  6. A-few-second synthesis of silicon nanoparticles by gas-evaporation and their self-supporting electrodes based on carbon nanotube matrix for lithium secondary battery anodes

    NASA Astrophysics Data System (ADS)

    Kowase, Takayuki; Hori, Keisuke; Hasegawa, Kei; Momma, Toshiyuki; Noda, Suguru

    2017-09-01

    Rapid gas-evaporation method is proposed and developed, which yields Si nanoparticles (SiNPs) in a few seconds at high yields of 20%-60% from inexpensive and safe bulk Si. Such rapid process is realized by heating the Si source to a temperature ≥2000 °C, much higher than the melting point of Si (1414 °C). The size of SiNPs is controlled at tens to hundreds nanometers simply by the Ar gas pressure during the evaporation process. Self-supporting films are fabricated simply by co-dispersion and filtration of the SiNPs and carbon nanotubes (CNTs) without using binders nor metal foils. The half-cell tests showed the improved performances of the SiNP-CNT composite films as anode when coated with graphitic carbon layer. Their performances are evaluated with various SiNP sizes and Si/CNT ratios systematically. The SiNP-CNT film with a Si/CNT mass ratio of 4 realizes the balanced film-based capacities of 618 mAh/gfilm, 230 mAh/cm3, and 0.644 mAh/cm2 with a moderate Si-based performance of 863 mAh/gSi at the 100th cycle.

  7. Si light-emitting device in integrated photonic CMOS ICs

    NASA Astrophysics Data System (ADS)

    Xu, Kaikai; Snyman, Lukas W.; Aharoni, Herzl

    2017-07-01

    The motivation for integrated Si optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here CMOS-compatible Si light-emitting device structures are presented for investigating the effect of various depletion layer profiles and defect engineering on the photonic transition in the 1.4-2.8 eV. A novel Si device is proposed to realize both a two-terminal Si-diode light-emitting device and a three-terminal Si gate-controlled diode light-emitting device in the same device structure. In addition to the spectral analysis, differences between two-terminal and three-terminal devices are discussed, showing the light emission efficiency change. The proposed Si optical source may find potential applications in micro-photonic systems and micro-optoelectro-mechanical systems (MOEMS) in CMOS integrated circuitry.

  8. Comparative studies of Ge and Si p-channel metal-oxide-semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate

    NASA Astrophysics Data System (ADS)

    Hu, Ai-Bin; Xu, Qiu-Xia

    2010-05-01

    Ge and Si p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with hafnium silicon oxynitride (HfSiON) gate dielectric and tantalum nitride (TaN) metal gate are fabricated. Self-isolated ring-type transistor structures with two masks are employed. W/TaN metal stacks are used as gate electrode and shadow masks of source/drain implantation separately. Capacitance-voltage curve hysteresis of Ge metal-oxide-semiconductor (MOS) capacitors may be caused by charge trapping centres in GeO2 (1 < x < 2). Effective hole mobilities of Ge and Si transistors are extracted by using a channel conductance method. The peak hole mobilities of Si and Ge transistors are 33.4 cm2/(V · s) and 81.0 cm2/(V · s), respectively. Ge transistor has a hole mobility 2.4 times higher than that of Si control sample.

  9. Analytical model of nanoscale junctionless transistors towards controlling of short channel effects through source/drain underlap and channel thickness engineering

    NASA Astrophysics Data System (ADS)

    Roy, Debapriya; Biswas, Abhijit

    2018-01-01

    We develop a 2D analytical subthreshold model for nanoscale double-gate junctionless transistors (DGJLTs) with gate-source/drain underlap. The model is validated using well-calibrated TCAD simulation deck obtained by comparing experimental data in the literature. To analyze and control short-channel effects, we calculate the threshold voltage, drain induced barrier lowering (DIBL) and subthreshold swing of DGJLTs using our model and compare them with corresponding simulation value at channel length of 20 nm with channel thickness tSi ranging 5-10 nm, gate-source/drain underlap (LSD) values 0-7 nm and source/drain doping concentrations (NSD) ranging 5-12 × 1018 cm-3. As tSi reduces from 10 to 5 nm DIBL drops down from 42.5 to 0.42 mV/V at NSD = 1019 cm-3 and LSD = 5 nm in contrast to decrement from 71 to 4.57 mV/V without underlap. For a lower tSiDIBL increases marginally with increasing NSD. The subthreshold swing reduces more rapidly with thinning of channel thickness rather than increasing LSD or decreasing NSD.

  10. Somatosensory responses in normal aging, mild cognitive impairment, and Alzheimer's disease.

    PubMed

    Stephen, Julia M; Montaño, Rebecca; Donahue, Christopher H; Adair, John C; Knoefel, Janice; Qualls, Clifford; Hart, Blaine; Ranken, Doug; Aine, Cheryl J

    2010-02-01

    As a part of a larger study of normal aging and Alzheimer's disease (AD), which included patients with mild cognitive impairment (MCI), we investigated the response to median nerve stimulation in primary and secondary somatosensory areas. We hypothesized that the somatosensory response would be relatively spared given the reported late involvement of sensory areas in the progression of AD. We applied brief pulses of electric current to left and right median nerves to test the somatosensory response in normal elderly (NE), MCI, and AD. MEG responses were measured and were analyzed with a semi-automated source localization algorithm to characterize source locations and timecourses. We found an overall difference in the amplitude of the response of the primary somatosensory source (SI) based on diagnosis. Across the first three peaks of the SI response, the MCI patients exhibited a larger amplitude response than the NE and AD groups (P < 0.03). Additional relationships between neuropsychological measures and SI amplitude were also determined. There was no significant difference in amplitude for the contralateral secondary somatosensory source across diagnostic category. These results suggest that somatosensory cortex is affected early in the progression of AD and may have some consequence on behavioral and functional measures.

  11. 3D unstructured-mesh radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less

  12. Self-induced steady-state magnetic field in the negative ion sources with localized rf power deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shivarova, A.; Todorov, D., E-mail: dimitar-tdrv@phys.uni-sofia-bg; Lishev, St.

    2016-02-15

    The study is in the scope of a recent activity on modeling of SPIDER (Source for Production of Ions of Deuterium Extracted from RF plasma) which is under development regarding the neutral beam injection heating system of ITER. The regime of non-ambipolarity in the source, established before, is completed here by introducing in the model the steady state magnetic field, self-induced in the discharge due to the dc current flowing in it. Strong changes in the discharge structure are reported.

  13. DECONVOLUTION OF IMAGES FROM BLAST 2005: INSIGHT INTO THE K3-50 AND IC 5146 STAR-FORMING REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Arabindo; Netterfield, Calvin B.; Ade, Peter A. R.

    2011-04-01

    We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Compared to the direct Fourier transform method of deconvolution, the L-R operation restores images with better-controlled background noise and increases source detectability. Intermediate iterated images are useful for studying extended diffuse structures, while the later iterations truly enhance point sources to near the designed diffraction limit of the telescope. The L-R method of deconvolution is efficient in resolving compact sources in crowded regions while simultaneously conserving their respective flux densities. We have analyzed itsmore » performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available high-resolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4.'5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the spectral energy distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21 cm radio continuum and {sup 12}CO molecular line emission. The restored extended large-scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high-resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below {approx} 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power young stellar objects. Further evidence for starless clumps has also been found in the IC 5146 region.« less

  14. Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Roy, Arabindo; Ade, Peter A. R.; Bock, James J.; Brunt, Christopher M.; Chapin, Edward L.; Devlin, Mark J.; Dicker, Simon R.; France, Kevin; Gibb, Andrew G.; Griffin, Matthew; Gundersen, Joshua O.; Halpern, Mark; Hargrave, Peter C.; Hughes, David H.; Klein, Jeff; Marsden, Gaelen; Martin, Peter G.; Mauskopf, Philip; Netterfield, Calvin B.; Olmi, Luca; Patanchon, Guillaume; Rex, Marie; Scott, Douglas; Semisch, Christopher; Truch, Matthew D. P.; Tucker, Carole; Tucker, Gregory S.; Viero, Marco P.; Wiebe, Donald V.

    2011-04-01

    We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Compared to the direct Fourier transform method of deconvolution, the L-R operation restores images with better-controlled background noise and increases source detectability. Intermediate iterated images are useful for studying extended diffuse structures, while the later iterations truly enhance point sources to near the designed diffraction limit of the telescope. The L-R method of deconvolution is efficient in resolving compact sources in crowded regions while simultaneously conserving their respective flux densities. We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available high-resolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4farcm5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the spectral energy distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21 cm radio continuum and 12CO molecular line emission. The restored extended large-scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high-resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power young stellar objects. Further evidence for starless clumps has also been found in the IC 5146 region.

  15. Ge{sub 1−x−y}Si{sub x}Sn{sub y} light emitting diodes on silicon for mid-infrared photonic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, J. D.; Xu, C.; Menéndez, J.

    This paper reports initial the demonstration of prototype Ge{sub 1−x−y}Si{sub x}Sn{sub y} light emitting diodes with distinct direct and indirect edges and high quality I-V characteristics. The devices are fabricated on Si (100) wafers in heterostructure pin geometry [n-Ge/i-Ge{sub 1−x−y}Si{sub x}Sn{sub y}/p-Ge(Sn/Si)] using ultra low-temperature (T < 300 °C) depositions of the highly reactive chemical sources Si{sub 4}H{sub 10}, Ge{sub 4}H{sub 10}, Ge{sub 3}H{sub 8}, and SnD{sub 4}. The Sn content in the i-Ge{sub 1−x−y}Si{sub x}Sn{sub y} layer was varied from ∼3.5% to 11%, while the Si content was kept constant near 3%. The Si/Sn amounts in the p-layer were selected to mitigatemore » the lattice mismatch so that the top interface grows defect-free, thereby reducing the deleterious effects of mismatch-induced dislocations on the optical/electrical properties. The spectral responsivity plots of the devices reveal sharp and well-defined absorption edges that systematically red-shift in the mid-IR from 1750 to 2100 nm with increasing Sn content from 3.5% to 11%. The electroluminescence spectra reveal strong direct-gap emission peaks and weak lower energy shoulders attributed to indirect gaps. Both peaks in a given spectrum red-shift with increasing Sn content and their separation decreases as the material approaches direct gap conditions in analogy with binary Ge{sub 1−y}Sn{sub y} counterparts. These findings-combined with the enhanced thermal stability of Ge{sub 1−x−y}Si{sub x}Sn{sub y} relative to Ge{sub 1−y}Sn{sub y} and the observation that ternary alloy disorder does not adversely affect the emission properties—indicate that Ge{sub 1−x−y}Si{sub x}Sn{sub y} may represent a practical target system for future generations of group-IV light sources on Si.« less

  16. Solving coupled groundwater flow systems using a Jacobian Free Newton Krylov method

    NASA Astrophysics Data System (ADS)

    Mehl, S.

    2012-12-01

    Jacobian Free Newton Kyrlov (JFNK) methods can have several advantages for simulating coupled groundwater flow processes versus conventional methods. Conventional methods are defined here as those based on an iterative coupling (rather than a direct coupling) and/or that use Picard iteration rather than Newton iteration. In an iterative coupling, the systems are solved separately, coupling information is updated and exchanged between the systems, and the systems are re-solved, etc., until convergence is achieved. Trusted simulators, such as Modflow, are based on these conventional methods of coupling and work well in many cases. An advantage of the JFNK method is that it only requires calculation of the residual vector of the system of equations and thus can make use of existing simulators regardless of how the equations are formulated. This opens the possibility of coupling different process models via augmentation of a residual vector by each separate process, which often requires substantially fewer changes to the existing source code than if the processes were directly coupled. However, appropriate perturbation sizes need to be determined for accurate approximations of the Frechet derivative, which is not always straightforward. Furthermore, preconditioning is necessary for reasonable convergence of the linear solution required at each Kyrlov iteration. Existing preconditioners can be used and applied separately to each process which maximizes use of existing code and robust preconditioners. In this work, iteratively coupled parent-child local grid refinement models of groundwater flow and groundwater flow models with nonlinear exchanges to streams are used to demonstrate the utility of the JFNK approach for Modflow models. Use of incomplete Cholesky preconditioners with various levels of fill are examined on a suite of nonlinear and linear models to analyze the effect of the preconditioner. Comparisons of convergence and computer simulation time are made using conventional iteratively coupled methods and those based on Picard iteration to those formulated with JFNK to gain insights on the types of nonlinearities and system features that make one approach advantageous. Results indicate that nonlinearities associated with stream/aquifer exchanges are more problematic than those resulting from unconfined flow.

  17. Total Ionizing Dose Effects on Ge Channel $p$FETs with Raised $${\\rm Si}_{0.55}{\\rm Ge}_{0.45}$$ Source/Drain

    DOE PAGES

    Wang, Liang; Zhang, En Xia; Schrimpf, Ronald D.; ...

    2015-12-17

    Here, the total ionizing dose response of Ge channel pFETs with raised Si 0.55Ge 0.45 source/drain is investigated under different radiation bias conditions. Threshold-voltage shifts and transconductance degradation are noticeable only for negative-bias (on state) irradiation, and are mainly due to negative bias-temperature instability (NBTI). Nonmonotonic leakage changes during irradiation are observed, which are attributed to the competition of radiation-induced field transistor leakage and S/D junction leakage.

  18. Iterative image reconstruction in elastic inhomogenous media with application to transcranial photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Poudel, Joemini; Matthews, Thomas P.; Mitsuhashi, Kenji; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-03-01

    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured data due to the propagation of the photoacoustic wavefields through the skull. To properly account for these effects, a wave equation-based inversion method should be employed that can model the heterogeneous elastic properties of the medium. In this study, an iterative image reconstruction method for 3D transcranial PACT is developed based on the elastic wave equation. To accomplish this, a forward model based on a finite-difference time-domain discretization of the elastic wave equation is established. Subsequently, gradient-based methods are employed for computing penalized least squares estimates of the initial source distribution that produced the measured photoacoustic data. The developed reconstruction algorithm is validated and investigated through computer-simulation studies.

  19. Mashups over the Deep Web

    NASA Astrophysics Data System (ADS)

    Hornung, Thomas; Simon, Kai; Lausen, Georg

    Combining information from different Web sources often results in a tedious and repetitive process, e.g. even simple information requests might require to iterate over a result list of one Web query and use each single result as input for a subsequent query. One approach for this chained queries are data-centric mashups, which allow to visually model the data flow as a graph, where the nodes represent the data source and the edges the data flow.

  20. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  1. Efficiency analysis of betavoltaic elements

    NASA Astrophysics Data System (ADS)

    Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, M. R.; Sokolovskyi, I. O.

    2015-09-01

    The conversion of energy of electrons produced by a radioactive β-source into electricity in a Si and SiC p- n junctions is modeled. The features of the generation function that describes the electron-hole pair production by an electron flux and the emergence of a "dead layer" are discussed. The collection efficiency Q that describes the rate of electron-hole pair production by incident beta particles, is calculated taking into account the presence of the dead layer. It is shown that in the case of high-grade Si p- n junctions, the collection efficiency of electron-hole pairs created by a high-energy electrons flux (such as, e.g., Pm-147 beta flux) is close or equal to unity in a wide range of electron energies. For SiC p-n junctions, Q is near unity only for electrons with relatively low energies of about 5 keV (produced, e.g., by a tritium source) and decreases rapidly with further increase of electron energy. The conditions, under which the influence of the dead layer on the collection efficiency is negligible, are determined. The open-circuit voltage is calculated for realistic values of the minority carriers' diffusion coefficients and lifetimes in Si and SiC p- n junctions, irradiated by a high-energy electrons flux. Our calculations allow to estimate the attainable efficiency of betavoltaic elements.

  2. Synthesis of high-performance Li2FeSiO4/C composite powder by spray-freezing/freeze-drying a solution with two carbon sources

    NASA Astrophysics Data System (ADS)

    Fujita, Yukiko; Iwase, Hiroaki; Shida, Kenji; Liao, Jinsun; Fukui, Takehisa; Matsuda, Motohide

    2017-09-01

    Li2FeSiO4 is a promising cathode active material for lithium-ion batteries due to its high theoretical capacity. Spray-freezing/freeze-drying, a practical process reported for the synthesis of various ceramic powders, is applied to the synthesis of Li2FeSiO4/C composite powders and high-performance Li2FeSiO4/C composite powders are successfully synthesized by using starting solutions containing both Indian ink and glucose as carbon sources followed by heating. The synthesized composite powders have a unique structure, composed of Li2FeSiO4 nanoparticles coated with a thin carbon layer formed by the carbonization of glucose and carbon nanoparticles from Indian ink. The carbon layer enhances the electrochemical reactivity of the Li2FeSiO4, and the carbon nanoparticles play a role in the formation of electron-conducting paths in the cathode. The composite powders deliver an initial discharge capacity of 195 and 137 mAh g-1 at 0.1 C and 1 C, respectively, without further addition of conductive additive. The discharge capacity at 1 C is 72 mAh g-1 after the 100th cycle, corresponding to approximately 75% of the capacity at the 2nd cycle.

  3. Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells.

    PubMed

    Wang, Qing; Zhang, Chunlei; Shen, Guangxia; Liu, Huiyang; Fu, Hualin; Cui, Daxiang

    2014-12-30

    Fluorescent carbon dots (Cdots) have attracted increasing attention due to their potential applications in sensing, catalysis, and biomedicine. Currently, intensive research has been concentrated on the synthesis and imaging-guided therapy of these benign photoluminescent materials. Meanwhile, Cdots have been explored as nonviral vector for nucleic acid or drug delivery by chemical modification on purpose. We have developed a microwave assisted one-step synthesis of Cdots with citric acid as carbon source and tryptophan (Trp) as both nitrogen source and passivation agent. The Cdots with uniform size show superior water solubility, excellent biocompatibility, and high quantum yield. Afterwards, the PEI (polyethylenimine)-adsorbed Cdots nanoparticles (Cdots@PEI) were applied to deliver Survivin siRNA into human gastric cancer cell line MGC-803. The results have confirmed the nanocarrier exhibited excellent biocompatibility and a significant increase in cellular delivery of siRNA, inducing efficient knockdown for Survivin protein to 6.1%. In addition, PEI@Cdots complexes mediated Survivin silencing, the arrested cell cycle progression in G1 phase as well as cell apoptosis was observed. The Cdots-based and PEI-adsorbed complexes both as imaging agents and siRNA nanocarriers have been developed for Survivin siRNA delivery. And the results indicate that Cdots-based nanocarriers could be utilized in a broad range of siRNA delivery systems for cancer therapy.

  4. An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks

    PubMed Central

    2011-01-01

    Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman. PMID:21849077

  5. Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations

    USDA-ARS?s Scientific Manuscript database

    Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...

  6. Particle model of full-size ITER-relevant negative ion source.

    PubMed

    Taccogna, F; Minelli, P; Ippolito, N

    2016-02-01

    This work represents the first attempt to model the full-size ITER-relevant negative ion source including the expansion, extraction, and part of the acceleration regions keeping the mesh size fine enough to resolve every single aperture. The model consists of a 2.5D particle-in-cell Monte Carlo collision representation of the plane perpendicular to the filter field lines. Magnetic filter and electron deflection field have been included and a negative ion current density of j(H(-)) = 660 A/m(2) from the plasma grid (PG) is used as parameter for the neutral conversion. The driver is not yet included and a fixed ambipolar flux is emitted from the driver exit plane. Results show the strong asymmetry along the PG driven by the electron Hall (E × B and diamagnetic) drift perpendicular to the filter field. Such asymmetry creates an important dis-homogeneity in the electron current extracted from the different apertures. A steady state is not yet reached after 15 μs.

  7. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding

    NASA Astrophysics Data System (ADS)

    Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.

    2016-03-01

    In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.

  8. Silicon Isotope Geochemistry of Ocean Island Basalts: Mantle Heterogeneities and Contribution of Recycled Oceanic Crust and Lithosphere

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.

    2015-12-01

    The study of Silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to elucidate between possible heterogeneities in the mantle. Relatively large (~several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes [1]. In contrast, only a limited range (~tenths of a per mil) of Si isotope fractionation has been observed in high-temperature igneous processes [2]. Therefore, Si isotopes may be useful as tracers for the presence of crustal material (derived from low-temperature surface processes) in OIB source regions in a manner similar to more conventional stable isotope systems, such as O. Here we present the first comprehensive set of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIBs, including new data for the Canary Islands. Samples represent the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. Average δ30Si values for OIBs representing the EM-1 (-0.32 ± 0.06‰, 2 sd), EM-2 (-0.30 ± 0.01‰, 2 sd), and HIMU (-0.34 ± 0.09‰, 2 sd) mantle components are all in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth [3]. However, small systematic variations are present; HIMU (Mangaia, Cape Verde, La Palma) and Iceland OIBs are enriched in the lighter isotopes of Si (δ30Si values lower than MORB). Further, the difference in Si isotope composition between La Palma and El Heirro (Canary Islands) has previously been observed for O isotopes [4], suggesting a relationship between the Si and O isotope mantle systematics. The Si isotope variations among OIBs may be explained by the sampling of a primitive mantle reservoir enriched in the light isotopes of Si, as suggested by [5], but most likely reflects the incorporation of recycled altered oceanic crust and lithosphere in the plume source. References: [1] Ziegler et al., GCA 2005 [2] Savage et al., GCA 2011 [3] Savage et al., EPSL 2010 [4] Day et al., Geology 2009 [5] Huang et al., GCA 2014

  9. Real time dynamics of Si magic clusters mediating phase transformation: Si(111)-(1 × 1) to (7 × 7) reconstruction revisited

    NASA Astrophysics Data System (ADS)

    Ong, Wei Jie; Tok, Eng Soon

    2012-07-01

    Using Scanning Tunneling Microscope (STM), we show that the surface undergoes phase transformation from disordered "1 × 1" to (7 × 7) reconstruction which is mediated by the formation of Si magic clusters. Mono-disperse Si magic clusters of size ~ 13.5 ± 0.5 Å can be formed by heating the Si(111) surface to 1200 °C and quenching it to room temperature at cooling rates of at least 100 °C/min. The structure consists of 3 tetra-clusters of size ~ 4.5 Ǻ similar to the Si magic clusters that were formed from Si adatoms deposited by Si solid source on Si(111)-(7 × 7) [1]. Using real time STM scanning to probe the surface at ~ 400 °C, we show that Si magic clusters pop up from the (1 × 1) surface and form spontaneously during the phase transformation. This is attributed to the difference in atomic density between "disordered 1 × 1" and (7 × 7) surface structures which lead to the release of excess Si atoms onto the surface as magic clusters.

  10. Surface properties of SiO2 with and without H2O2 treatment as gate dielectrics for pentacene thin-film transistor applications

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    The effect of H2O2 treatment on the surface properties of SiO2 is studied. H2O2 treatment leads to the formation of Si(sbnd OH)x at the SiO2 surface that serves to reduce the number of trap states, inducing the shift of the Fermi level toward the conduction band minimum. H2O2 treatment also leads to a noticeable reduction in the value of the SiO2 capacitance per unit area. The effect of SiO2 layers with H2O2 treatment on the behavior of carrier transports for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. Experimental identification confirms that the shift of the threshold voltage towards negative gate-source voltages is due to the reduced number of trap states in SiO2 near the pentacene/SiO2 interface. The existence of a hydrogenated layer between pentacene and SiO2 leads to a change in the pentacene-SiO2 interaction, increasing the value of the carrier mobility.

  11. Conceptual design of the DEMO neutral beam injectors: main developments and R&D achievements

    NASA Astrophysics Data System (ADS)

    Sonato, P.; Agostinetti, P.; Bolzonella, T.; Cismondi, F.; Fantz, U.; Fassina, A.; Franke, T.; Furno, I.; Hopf, C.; Jenkins, I.; Sartori, E.; Tran, M. Q.; Varje, J.; Vincenzi, P.; Zanotto, L.

    2017-05-01

    The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, are usually understood to lie somewhere between those of ITER and a ‘first of a kind’ commercial plant. Hence, in DEMO the issues related to efficiency and RAMI (reliability, availability, maintainability and inspectability) are among the most important drivers for the design, as the cost of the electricity produced by this power plant will strongly depend on these aspects. In the framework of the EUROfusion Work Package Heating and Current Drive within the Power Plant Physics and Development activities, a conceptual design of the neutral beam injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum pumping systems.

  12. Fast sweeping method for the factored eikonal equation

    NASA Astrophysics Data System (ADS)

    Fomel, Sergey; Luo, Songting; Zhao, Hongkai

    2009-09-01

    We develop a fast sweeping method for the factored eikonal equation. By decomposing the solution of a general eikonal equation as the product of two factors: the first factor is the solution to a simple eikonal equation (such as distance) or a previously computed solution to an approximate eikonal equation. The second factor is a necessary modification/correction. Appropriate discretization and a fast sweeping strategy are designed for the equation of the correction part. The key idea is to enforce the causality of the original eikonal equation during the Gauss-Seidel iterations. Using extensive numerical examples we demonstrate that (1) the convergence behavior of the fast sweeping method for the factored eikonal equation is the same as for the original eikonal equation, i.e., the number of iterations for the Gauss-Seidel iterations is independent of the mesh size, (2) the numerical solution from the factored eikonal equation is more accurate than the numerical solution directly computed from the original eikonal equation, especially for point sources.

  13. Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface

    NASA Astrophysics Data System (ADS)

    Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.

    2017-10-01

    In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show a net exponential decay of the time-dependent survival probability for the H-Si initial vibrational state, allowing an easy extraction of the bending mode "lifetime." This is in contrast with the D-Si system, whose survival probability exhibits a non-monotonic decay, making it difficult to define such a lifetime. This different behavior of the vibrational decay is rationalized in terms of the power spectrum of the adsorbate-surface system. In the case of D-Si, it consists of several, non-uniformly distributed peaks around the bending mode frequency, whereas the H-Si spectrum exhibits a single Lorentzian lineshape, whose width corresponds to the calculated lifetime. The present work gives some insight into mechanisms of vibration-phonon coupling at surfaces. It also serves as a benchmark for multidimensional system-bath quantum dynamics, for comparison with approximate schemes such as reduced, open-system density matrix theory (where the bath is traced out and a Liouville-von Neumann equation is solved) or approximate wavefunction methods to solve the combined system-bath Schrödinger equation.

  14. Effect of an external magnetic field on the mass attenuation coefficients of p-Si and n-Si

    NASA Astrophysics Data System (ADS)

    Yılmaz, D.; Önder, P.

    2018-05-01

    In this study, the mass attenuation coefficients of p-Si and n-Si semiconductor samples have been determined in an external magnetic field. The semiconductor samples were located to the external magnetic field of intensities 0.2 T, 0.4 T, 0.6 T and 0.8 T. The samples were bombarded by 59.5 keV, 80.1 keV, 121.8 keV and 244.7 keV gamma-rays emitted from Am241, Ba133 and Eu152 radioactive sources. The transmitted photons were detected by a CdTe detector. It was observed that the mass attenuation coefficients of p-Si and n-Si semiconductor samples decrease with increasing gamma-ray energy. Also, the mass attenuation coefficients of the samples increase with applying magnetic field intensity.

  15. siMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide siRNA Screens.

    PubMed

    Singh, Nitin Kumar; Seo, Bo Yeun; Vidyasagar, Mathukumalli; White, Michael A; Kim, Hyun Seok

    2013-03-01

    Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute.

  16. siMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide siRNA Screens

    PubMed Central

    Singh, Nitin Kumar; Seo, Bo Yeun; Vidyasagar, Mathukumalli; White, Michael A.

    2013-01-01

    Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute. PMID:23613684

  17. Nonvolatile Memories Using Quantum Dot (QD) Floating Gates Assembled on II-VI Tunnel Insulators

    NASA Astrophysics Data System (ADS)

    Suarez, E.; Gogna, M.; Al-Amoody, F.; Karmakar, S.; Ayers, J.; Heller, E.; Jain, F.

    2010-07-01

    This paper presents preliminary data on quantum dot gate nonvolatile memories using nearly lattice-matched ZnS/Zn0.95Mg0.05S/ZnS tunnel insulators. The GeO x -cladded Ge and SiO x -cladded Si quantum dots (QDs) are self-assembled site-specifically on the II-VI insulator grown epitaxially over the Si channel (formed between the source and drain region). The pseudomorphic II-VI stack serves both as a tunnel insulator and a high- κ dielectric. The effect of Mg incorporation in ZnMgS is also investigated. For the control gate insulator, we have used Si3N4 and SiO2 layers grown by plasma- enhanced chemical vapor deposition.

  18. Emerging technologies in Si active photonics

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxin; Liu, Jifeng

    2018-06-01

    Silicon photonics for synergistic electronic–photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronicSilicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro–optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronic–photonic integration with performance inaccessible from conventional Si photonics technologies-photonic integration with performance inaccessible from conventional Si photonics technologies.

  19. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    NASA Astrophysics Data System (ADS)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  20. A high performance pMOSFET with two-step recessed SiGe-S/D structure for 32 nm node and beyond

    NASA Astrophysics Data System (ADS)

    Yasutake, Nobuaki; Azuma, Atsushi; Ishida, Tatsuya; Ohuchi, Kazuya; Aoki, Nobutoshi; Kusunoki, Naoki; Mori, Shinji; Mizushima, Ichiro; Morooka, Tetsu; Kawanaka, Shigeru; Toyoshima, Yoshiaki

    2007-11-01

    A novel SiGe-S/D structure for high performance pMOSFET called two-step recessed SiGe-source/drain (S/D) is developed with careful optimization of recessed SiGe-S/D structure. With this method, hole mobility, short channel effect and S/D resistance in pMOSFET are improved compared with conventional recessed SiGe-S/D structure. To enhance device performance such as drain current drivability, SiGe region has to be closer to channel region. Then, conventional deep SiGe-S/D region with carefully optimized shallow SiGe SDE region showed additional device performance improvement without SCE degradation. As a result, high performance 24 nm gate length pMOSFET was demonstrated with drive current of 451 μA/μm at ∣ Vdd∣ of 0.9 V and Ioff of 100 nA/μm (552 μA/μm at ∣ Vdd∣ of 1.0 V). Furthermore, by combining with Vdd scaling, we indicate the extendability of two-step recessed SiGe-S/D structure down to 15 nm node generation.

  1. Characterization of SiGe thin films using a laboratory X-ray instrument

    PubMed Central

    Ulyanenkova, Tatjana; Myronov, Maksym; Benediktovitch, Andrei; Mikhalychev, Alexander; Halpin, John; Ulyanenkov, Alex

    2013-01-01

    The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si0.4Ge0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2–6 nm layers. For another set of partially relaxed layers, 50–200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation. PMID:24046495

  2. Characterization of SiGe thin films using a laboratory X-ray instrument.

    PubMed

    Ulyanenkova, Tatjana; Myronov, Maksym; Benediktovitch, Andrei; Mikhalychev, Alexander; Halpin, John; Ulyanenkov, Alex

    2013-08-01

    The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si 0.4 Ge 0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2-6 nm layers. For another set of partially relaxed layers, 50-200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation.

  3. Fast growth of n-type 4H-SiC bulk crystal by gas-source method

    NASA Astrophysics Data System (ADS)

    Hoshino, Norihiro; Kamata, Isaho; Tokuda, Yuichiro; Makino, Emi; Kanda, Takahiro; Sugiyama, Naohiro; Kuno, Hironari; Kojima, Jun; Tsuchida, Hidekazu

    2017-11-01

    Fast growth of n-type 4H-SiC crystals was attempted using a high-temperature gas-source method. High growth rates exceeding 9 mm/h were archived at a seed temperature of 2550 °C, although the formation of macro-step bunching caused doping fluctuation and voids in the grown crystal. We investigated a trade-off between growth-rate enhancement and macro-step formation and how to improve the trade-off. By controlling the growth conditions, the growth of highly nitrogen-doped 4H-SiC crystals without the doping fluctuation and void formation were accomplished under a high growth rate exceeding 3 mm/h, maintaining the density of threading screw dislocations in the same level with the seed crystal. The influence of growth parameters on nitrogen incorporations into grown crystals was also surveyed.

  4. III-nitride nanowire LEDs and diode lasers: monolithic light sources on (001) Si emitting in the 600-1300nm range

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Hazari, A.; Jahangir, S.

    2018-02-01

    GaN-based nanowire heterostructure arrays epitaxially grown on (001)Si substrates have unique properties and present the potential to realize useful devices. The active light-emitting region in the nanowire heterostructures are usually InGaN disks, whose composition can be varied to tune the emission wavelength. We have demonstrated light emitting diodes and edgeemitting diode lasers with power outputs 10mW with emission in the 600-1300nm wavelength range. These light sources are therefore useful for a variety of applications, including silicon photonics. Molecular beam epitaxial growth of the nanowire heterostructure arrays on (001)Si substrates and the characteristics of 1.3μm nanowire array edge emitting lasers, guided wave photodiodes and a monolithic photonic integrated circuit designed for 1.3μm operation are described.

  5. Characterization of high density SiPM non-linearity and energy resolution for prompt gamma imaging applications

    NASA Astrophysics Data System (ADS)

    Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.

    2017-07-01

    Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.

  6. Tunable Far Infrared Semiconductor Sources.

    DTIC Science & Technology

    1984-01-01

    plasmons in Si-MOS4 hot electron transport in Si-MOS-devices a , ABSTR ACT (Coathwe st e verse 8641 It ut’.weemY dmd ideti ty by block tnmber) {fhe...After baking at 900C for 20 minutes the photoresist was -17- exposed for 8 seconds on the SUss-MJB3-contact lithography machine. To obtain grating...could fabricate Al gratings with 1.5 am - periods on Si-MOSFETs and GaAs-samples by optical contact lithography and lift-off metallization. Fig. 8 shows

  7. A method for characterizing after-pulsing and dark noise of PMTs and SiPMs

    NASA Astrophysics Data System (ADS)

    Butcher, A.; Doria, L.; Monroe, J.; Retière, F.; Smith, B.; Walding, J.

    2017-12-01

    Photo-multiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) are detectors sensitive to single photons that are widely used for the detection of scintillation and Cerenkov light in subatomic physics and medical imaging. This paper presents a method for characterizing two of the main noise sources that PMTs and SiPMs share: dark noise and correlated noise (after-pulsing). The proposed method allows for a model-independent measurement of the after-pulsing timing distribution and dark noise rate.

  8. Thermal decomposition of silane to form hydrogenated amorphous Si film

    DOEpatents

    Strongin, Myron; Ghosh, Arup K.; Wiesmann, Harold J.; Rock, Edward B.; Lutz, III, Harry A.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silano (SiH.sub.4) or other gases comprising H and Si, at elevated temperatures of about 1700.degree.-2300.degree. C., and preferably in a vacuum of about 10.sup.-8 to 10.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseous mixture onto a substrate outside said source of thermal decomposition to form hydrogenated amorphous silicon.

  9. Iterative combination of national phenotype, genotype, pedigree, and foreign information

    USDA-ARS?s Scientific Manuscript database

    Single step methods can combine all sources of information into accurate rankings for animals with and without genotypes. Equations that require inverting the genomic relationship matrix G work well with limited numbers of animals, but equivalent models without inversion are needed as numbers increa...

  10. Selective evaluation of high density lipoprotein from mouse small intestine by an in situ perfusion technique[S

    PubMed Central

    Yamaguchi, Satoshi; Zhang, Bo; Tomonaga, Takeshi; Seino, Utako; Kanagawa, Akiko; Segawa, Masaru; Nagasaka, Hironori; Suzuki, Akira; Miida, Takashi; Yamada, Sohsuke; Sasaguri, Yasuyuki; Doi, Takefumi; Saku, Keijiro; Okazaki, Mitsuyo; Tochino, Yoshihiro; Hirano, Ken-ichi

    2014-01-01

    The small intestine (SI) is the second-greatest source of HDL in mice. However, the selective evaluation of SI-derived HDL (SI-HDL) has been difficult because even the origin of HDL obtained in vivo from the intestinal lymph duct of anesthetized rodents is doubtful. To shed light on this question, we have developed a novel in situ perfusion technique using surgically isolated mouse SI, with which the possible filtration of plasma HDL into the SI lymph duct can be prevented. With the developed method, we studied the characteristics of and mechanism for the production and regulation of SI-HDL. Nascent HDL particles were detected in SI lymph perfusates in WT mice, but not in ABCA1 KO mice. SI-HDL had a high protein content and was smaller than plasma HDL. SI-HDL was rich in TG and apo AIV compared with HDL in liver perfusates. SI-HDL was increased by high-fat diets and reduced in apo E KO mice. In conclusion, with our in situ perfusion model that enables the selective evaluation of SI-HDL, we demonstrated that ABCA1 plays an important role in intestinal HDL production, and SI-HDL is small, dense, rich in apo AIV, and regulated by nutritional and genetic factors. PMID:24569139

  11. Kinetic Investigations of SiMn Slags From Different Mn Sources

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghwa Peace; Tangstad, Merete

    2018-06-01

    The kinetics of MnO and SiO2 reduction were investigated for Silicomanganese (SiMn) slags using a Thermogravimetric analysis (TGA) between 1773 K and 1923 K (1500 °C and 1650 °C) under CO atmospheric pressure. The charge materials were based on Assmang ore and HC FeMn Slag. Rate models for MnO and SiO2 reduction were applied to describe the metal-producing rates, as shown by the following equations: r_{MnO} = k_{MnO} × A × ( {a_{MnO} - {a_{Mn} }/{K_{T }}} ) r_{{{SiO}2 }} = k_{SiO2} × A × ( {a_{{{SiO}2 }} - {a_{Si} }/{K_{T }}} ). The results show that the choice of raw materials in the charge considerably affected the reduction rate of MnO and SiO2. The highest reduction rate was found to be from charges using HC FeMn slag. The difference in the driving forces was insignificant among the SiMn slags, and the similar slag viscosities could not explain the different reduction rates. Instead, the difference is attributed to small amounts of sulfur and the amount of iron in the charge. In addition, the rate models were applicable to describe the reduction of MnO and SiO2 in SiMn slags.

  12. Quasiballistic heat removal from small sources studied from first principles

    NASA Astrophysics Data System (ADS)

    Vermeersch, Bjorn; Mingo, Natalio

    2018-01-01

    Heat sources whose characteristic dimension R is comparable to phonon mean free paths display thermal resistances that exceed conventional diffusive predictions. This has direct implications to (opto)electronics thermal management and phonon spectroscopy. Theoretical analyses have so far limited themselves to particular experimental configurations. Here, we build upon the multidimensional Boltzmann transport equation (BTE) to derive universal expressions for the apparent conductivity suppression S (R ) =κeff(R ) /κbulk experienced by radially symmetric 2D and 3D sources. In striking analogy to cross-plane heat conduction in thin films, a distinct quasiballistic regime emerges between ballistic (κeff˜R ) and diffusive (κeff≃κbulk ) asymptotes that displays a logarithmic dependence κeff˜ln(R ) in single crystals and fractional power dependence κeff˜R2 -α in alloys (with α the Lévy superdiffusion exponent). Analytical solutions and Monte Carlo simulations for spherical and circular heat sources in Si, GaAs, Si0.99Ge0.01 , and Si0.82Ge0.18 , all carried out from first principles, confirm the predicted generic tendencies. Contrary to the thin film case, common approximations like kinetic theory estimates κeff≃∑Sωgreyκω and modified Fourier temperature curves perform relatively poorly. Up to threefold deviations from the BTE solutions for sub-100 nm sources underline the need for rigorous treatment of multidimensional nondiffusive transport.

  13. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong

    2009-03-01

    Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.

  14. 2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model.

    PubMed

    Bindu, G; Semenov, S

    2013-01-01

    This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.

  15. Burning plasma regime for Fussion-Fission Research Facility

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2010-11-01

    The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

  16. Memory-induced nonlinear dynamics of excitation in cardiac diseases.

    PubMed

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  17. EC power management and NTM control in ITER

    NASA Astrophysics Data System (ADS)

    Poli, Francesca; Fredrickson, E.; Henderson, M.; Bertelli, N.; Farina, D.; Figini, L.; Nowak, S.; Poli, E.; Sauter, O.

    2016-10-01

    The suppression of Neoclassical Tearing Modes (NTMs) is an essential requirement for the achievement of the demonstration baseline in ITER. The Electron Cyclotron upper launcher is specifically designed to provide highly localized heating and current drive for NTM stabilization. In order to assess the power management for shared applications, we have performed time-dependent simulations for ITER scenarios covering operation from half to full field. The free-boundary TRANSP simulations evolve the magnetic equilibrium and the pressure profiles in response to the heating and current drive sources and are interfaced with a GRE for the evolution of size and frequency of the magnetic islands. Combined with a feedback control of the EC power and the steering angle, these simulations are used to model the plasma response to NTM control, accounting for the misalignment of the EC deposition with the resonant surfaces, uncertainties in the magnetic equilibrium reconstruction and in the magnetic island detection threshold. Simulations indicate that the threshold for detection of the island should not exceed 2-3cm, that pre-emptive control is a preferable option, and that for safe operation the power needed for NTM control should be reserved, rather than shared with other applications. Work supported by ITER under IO/RFQ/13/9550/JTR and by DOE under DE-AC02-09CH11466.

  18. Fusion Breeding for Sustainable, Mid Century, Carbon Free Power

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2015-11-01

    If ITER achieves Q ~10, it is still very far from useful fusion. The fusion power, and the driver power will allow only a small amount of power to be delivered, <~50MW for an ITER scale tokamak. It is unlikely, considering ``conservative design rules'' that tokamaks can ever be economical pure fusion power producers. Considering the status of other magnetic fusion concepts, it is also very unlikely that any alternate concept will either. Laser fusion does not seem to be constrained by any conservative design rules, but considering the failure of NIF to achhieve ignition, at this point it has many more obstacles to overcome than magnetic fusion. One way out of this dilemma is to use an ITER size tokamak, or a NIF size laser, as a fuel breeder for searate nuclear reactors. Hence ITER and NIF become ends in themselves, instead of steps to who knows what DEMO decades later. Such a tokamak can easily live within the consrtaints of conservative design rules. This has led the author to propose ``The Energy Park'' a sustainable, carbon free, economical, and environmently viable power source without prolifertion risk. It is one fusion breeder fuels 5 conventional nuclear reactors, and one fast neutron reactor burns the actinide wastes.

  19. Memory-induced nonlinear dynamics of excitation in cardiac diseases

    NASA Astrophysics Data System (ADS)

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  20. Some not such wonderful magnetic fusion facts; and their solution

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2017-10-01

    The first not such wonderful fusion fact (NSWFF) is that if ITER is successful, it is nowhere near ready to develop into a DEMO. The design Q=10, along with electricity generating efficiency of 1/3 prevents this. Making it smaller and cheaper, increasing the gain by 3 or 4, and the wall loading by an order of magnitude is not a minor detail, it is not at all clear the success with ITER will lead to a similar, pure fusion DEMO. The second NSWFF is that tokamaks are unlikely to improve to the point where they can be effective fusion reactors because their performance is limited by conservative design rules. The third NSWFF is that developing large fusion devices like ITER takes an enormous amount of time and dollars, there are no second chances. The fourth NSWFF is that it is unlikely that alternative confinement configurations will succeed either, at least in this century; they are simply too far behind. There is only a single solution for fusion to become a sustainable, carbon free power source by midcentury or shortly thereafter. This is to develop ITER (assuming it is successful) into a fusion breeder. This work was not supported by any organization, private or public.

  1. Electrode-stress-induced nanoscale disorder in Si quantum electronic devices

    DOE PAGES

    Park, J.; Ahn, Y.; Tilka, J. A.; ...

    2016-06-20

    Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Furthermore, electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.

  2. Silica uptake and release in live and decaying biomass in a northern hardwood forest.

    PubMed

    Clymans, Wim; Conley, Daniel J; Battles, John J; Frings, Patrick J; Koppers, Mary Margaret; Likens, Gene E; Johnson, Chris E

    2016-11-01

    In terrestrial ecosystems, a large portion (20-80%) of the dissolved Si (DSi) in soil solution has passed through vegetation. While the importance of this "terrestrial Si filter" is generally accepted, few data exist on the pools and fluxes of Si in forest vegetation and the rate of release of Si from decomposing plant tissues. We quantified the pools and fluxes of Si through vegetation and coarse woody debris (CWD) in a northern hardwood forest ecosystem (Watershed 6, W6) at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA. Previous work suggested that the decomposition of CWD may have significantly contributed to an excess of DSi reported in stream-waters following experimental deforestation of Watershed 2 (W2) at the HBEF. We found that woody biomass (wood + bark) and foliage account for approximately 65% and 31%, respectively, of the total Si in biomass at the HBEF. During the decay of American beech (Fagus grandifolia) boles, Si loss tracked the whole-bole mass loss, while yellow birch (Betula alleghaniensis) and sugar maple (Acer saccharum) decomposition resulted in a preferential Si retention of up to 30% after 16 yr. A power-law model for the changes in wood and bark Si concentrations during decomposition, in combination with an exponential model for whole-bole mass loss, successfully reproduced Si dynamics in decaying boles. Our data suggest that a minimum of 50% of the DSi annually produced in the soil of a biogeochemical reference watershed (W6) derives from biogenic Si (BSi) dissolution. The major source is fresh litter, whereas only ~2% comes from the decay of CWD. Decay of tree boles could only account for 9% of the excess DSi release observed following the experimental deforestation of W2. Therefore, elevated DSi concentrations after forest disturbance are largely derived from other sources (e.g., dissolution of BSi from forest floor soils and/or mineral weathering). © 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  3. Theory and Application of Auger and Photoelectron Diffraction and Holography

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    This dissertation addresses the theories and applications of three important surface analysis techniques: Auger electron diffraction (AED), x-ray photoelectron diffraction (XPD), and Auger and photoelectron holography. A full multiple-scattering scheme for the calculations of XPD, AED, and Kikuchi electron diffraction pattern from a surface cluster is described. It is used to simulate 64 eV M_{2,3}VV and 913 eV L_3VV AED patterns from Cu(001) surfaces, in order to test assertions in the literature that they are explicable by a classical "blocking" and channeling model. We find that this contention is not valid, and that only a quantum mechanical multiple-scattering calculation is able to simulate these patterns well. The same multiple scattering simulation scheme is also used to investigate the anomalous phenomena of peak shifts off the forward-scattering directions in photo -electron diffraction patterns of Mg KLL (1180 eV) and O 1s (955 eV) from MgO(001) surfaces. These shifts are explained by calculations assuming a short electron mean free path. Similar simulations of XPD from a CoSi_2(111) surface for Co-3p and Si-2p normal emission agree well with experimental diffraction patterns. A filtering process aimed at eliminating the self -interference effect in photoelectron holography is developed. A better reconstructed image from Si-2p XPD from a Si(001) (2 times 1) surface is seen at atomic resolution. A reconstruction algorithm which corrects for the anisotropic emitter waves as well as the anisotropic atomic scattering factors is used for holographic reconstruction from a Co-3p XPD pattern from a CoSi_2 surface. This new algorithm considerably improves the reconstructed image. Finally, a new reconstruction algorithm called "atomic position recovery by iterative optimization of reconstructed intensities" (APRIORI), which takes account of the self-interference terms omitted by the other holographic algorithms, is developed. Tests on a Ni-C-O chain and Si(111)(sqrt{3} times sqrt{3})B surface suggest that this new method may overcome the twin image problem in the traditional holographic methods, reduce the artifacts in real space, and even separately identify the chemical species of the scatterers.

  4. Manual of Documentation Practices Applicable to Defence-Aerospace Scientific and Technical Information. Volume 1. Section 1 - Acquisition and Sources. Section 2 - Descriptive Cataloguing. Section 3 - Abstracting and Subject Analysis

    DTIC Science & Technology

    1978-08-01

    weeding I I ORGANISATION & MANAGEMENT Aims and objectives, staffing, promotional activities, identifying u;ers 12 NETWORKS & EXTERNAL SOURCES OF...Acquisition Clerks with typing capability are required for meticulous recordkeeping. Typing capability of 50 words per minute and a working knowledge ...81 Adminhistration and Management Includes management planning and research. 64 Numerical Analysis Includes iteration, difference equations, and 82

  5. Chemical vapor deposition of W-Si-N and W-B-N

    DOEpatents

    Fleming, James G.; Roherty-Osmun, Elizabeth Lynn; Smith, Paul M.; Custer, Jonathan S.; Jones, Ronald V.; Nicolet, Marc-A.; Madar, Roland; Bernard, Claude

    1999-01-01

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF.sub.6, either silicon or boron, and nitrogen. The result is a W--Si--N or W--B--N thin film useful for diffusion barrier and micromachining applications.

  6. Epitaxial Growth of GaN Films by Pulse-Mode Hot-Mesh Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Komae, Yasuaki; Yasui, Kanji; Suemitsu, Maki; Endoh, Tetsuo; Ito, Takashi; Nakazawa, Hideki; Narita, Yuzuru; Takata, Masasuke; Akahane, Tadashi

    2009-07-01

    Intermittent gas supplies for hot-mesh chemical vapor deposition (CVD) for the epitaxial growth of gallium nitride (GaN) films were investigated to improve film crystallinity and optical properties. The GaN films were deposited on SiC/Si(111) substrates using an alternating-source gas supply or an intermittent supply of source gases such as ammonia (NH3) and trimethylgallium (TMG) in hot-mesh CVD after deposition of an aluminum nitride (AlN) buffer layer. The AlN layer was deposited using NH3 and trimethylaluminum (TMA) on a SiC layer grown by carbonization of a Si substrate using propane (C3H8). GaN films were grown on the AlN layer by a reaction between NHx radicals generated on a ruthenium (Ru)-coated tungsten (W) mesh and TMG molecules. After testing various gas supply modes, GaN films with good crystallinity and surface morphology were obtained using an intermittent supply of TMG and a continuous supply of NH3 gas. An optimal interval for the TMG gas supply was also obtained for the apparatus employed.

  7. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    NASA Astrophysics Data System (ADS)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  8. Vibrational spectra and structures of neutral Si(m)C(n) clusters (m + n = 6): sequential doping of silicon clusters with carbon atoms.

    PubMed

    Savoca, Marco; Lagutschenkov, Anita; Langer, Judith; Harding, Dan J; Fielicke, André; Dopfer, Otto

    2013-02-14

    Vibrational spectra of mixed silicon carbide clusters Si(m)C(n) with m + n = 6 in the gas phase are obtained by resonant infrared-vacuum-ultraviolet two-color ionization (IR-UV2CI for n ≤ 2) and density functional theory (DFT) calculations. Si(m)C(n) clusters are produced in a laser vaporization source, in which the silicon plasma reacts with methane. Subsequently, they are irradiated with tunable IR light from an IR free electron laser before they are ionized with UV photons from an F(2) laser. Resonant absorption of one or more IR photons leads to an enhanced ionization efficiency for Si(m)C(n) and provides the size-specific IR spectra. IR spectra measured for Si(6), Si(5)C, and Si(4)C(2) are assigned to their most stable isomers by comparison with calculated linear absorption spectra. The preferred Si(m)C(n) structures with m + n = 6 illustrate the systematic transition from chain-like geometries for bare C(6) to three-dimensional structures for bare Si(6). In contrast to bulk SiC, carbon atom segregation is observed already for the smallest n (n = 2).

  9. A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem

    PubMed Central

    Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.

    2013-01-01

    Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554

  10. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanacore, G. M.; Zani, M.; Tagliaferri, A., E-mail: alberto.tagliaferri@polimi.it

    2015-03-14

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by themore » surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.« less

  11. Tungsten Isotopic Compositions in Stardust SiC Grains from the Murchison Meteorite: Constraints on the s-process in the Hf-Ta-W-Re-Os Region

    NASA Astrophysics Data System (ADS)

    Ávila, Janaína N.; Lugaro, Maria; Ireland, Trevor R.; Gyngard, Frank; Zinner, Ernst; Cristallo, Sergio; Holden, Peter; Buntain, Joelene; Amari, Sachiko; Karakas, Amanda

    2012-01-01

    We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes 182,183,184,186W and 179,180Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the 182W/184W and 183W/184W ratios, with deficits in 182W and 183W with respect to 184W. The 186W/184W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar 182W/184W, 183W/184W, and 186W/184W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their 182W/184W, 183W/184W, and 179Hf/180Hf isotopic compositions, although a small adjustment in the s-process production of 183W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the 186W/184W ratios observed in the SiC grains, even when the current 185W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e.g., the formation of the 13C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the 22Ne neutron source) may affect current s-process predictions.

  12. Ways to improve the efficiency and reliability of radio frequency driven negative ion sources for fusion.

    PubMed

    Kraus, W; Briefi, S; Fantz, U; Gutmann, P; Doerfler, J

    2014-02-01

    Large RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources ("drivers") and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.

  13. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain

    PubMed Central

    Biswas, Binay Kumar; Dey, Samarjit; Biswas, Saumya; Mohan, Varinder Kumar

    2016-01-01

    Sacroiliac (SI) joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF) neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] – 9/10) with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18th-month follow-up, he is pain free except for mild pain (NRS 2/10) on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment. PMID:28096589

  14. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain.

    PubMed

    Biswas, Binay Kumar; Dey, Samarjit; Biswas, Saumya; Mohan, Varinder Kumar

    2016-01-01

    Sacroiliac (SI) joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF) neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] - 9/10) with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18 th -month follow-up, he is pain free except for mild pain (NRS 2/10) on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment.

  15. Effectiveness of plasma and radical control for the low temperature synthesis and properties of a-SiNx:H films using RF-near microwave PECVD

    NASA Astrophysics Data System (ADS)

    Sahu, Bibhuti Bhusan; Toyoda, Hirotaka; Han, Jeon Geon

    2018-02-01

    By mixing and alternating power conditions of radio frequency and microwave plasma sources, a detailed study of a-SiNx:H films in the SiH4/N2 plasma enhanced chemical vapour deposition processes is undertaken. Data reveal a remarkable coherence between the deposition conditions, material's quality, bond densities, optical property, and stoichiometry of the films. The film composition can simply vary from Si-rich to N-rich by incorporating suitable plasma and atomic radical parameters. Highly transparent and wide bandgap films with N to Si and N to H atomic ratios up to ˜2.3 and 3.1, respectively, are prepared by controlling the plasma parameters and radicals. The presented results pave the way for dual frequency PECVD utilization in a-SiNx:H films for their use in controlled-bandgap nanodevices and light emitting applications.

  16. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    PubMed

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  17. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  18. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials

    PubMed Central

    Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-01-01

    The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092

  19. Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2007-01-01

    The Stellar Imager (SI) is one of NASA's "Vision Missions" - concepts for future, space-based, strategic missions that could enormously increase our capabilities for observing the Cosmos. SI is designed as a UV/Optical Interferometer which will enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI, with a characteristic angular resolution of 0.1 milli-arcseconds at 2000 Angstroms, represents an advance in image detail of several hundred times over that provided by the Hubble Space Telescope. The Stellar Imager will zoom in on what today-with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool as fundamental to astrophysics as the microscope is to the study of life on Earth. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. It's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. Stellar Imager is included as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005) and as such is a candidate mission for the 2025-2030 timeframe. An artist's drawing of the current "baseline" concept for SI is presented.

  20. Reducing contralateral SI activity reveals hindlimb receptive fields in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Chiaia, Nicolas L; Rhoades, Robert W; Lane, Richard D

    2005-09-01

    In adult rats that sustained forelimb amputation on the day of birth, >30% of multiunit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) also respond to cutaneous hindlimb stimulation when cortical GABA(A+B) receptors are blocked (GRB). This study examined whether hindlimb receptive fields could also be revealed in forelimb-stump sites by reducing one known source of excitatory input to SI GABAergic neurons, the contralateral SI cortex. Corpus callosum projection neurons connect homotopic SI regions, making excitatory contacts onto pyramidal cells and interneurons. Thus in addition to providing monosynaptic excitation in SI, callosal fibers can produce disynaptic inhibition through excitatory synapses with inhibitory interneurons. Based on the latter of these connections, we hypothesized that inactivating the contralateral (intact) SI forelimb region would "unmask" normally suppressed hindlimb responses by reducing the activity of SI GABAergic neurons. The SI forelimb-stump representation was first mapped under normal conditions and then during GRB to identify stump/hindlimb responsive sites. After GRB had dissipated, the contralateral (intact) SI forelimb region was mapped and reversibly inactivated with injections of 4% lidocaine, and selected forelimb-stump sites were retested. Contralateral SI inactivation revealed hindlimb responses in approximately 60% of sites that were stump/hindlimb responsive during GRB. These findings indicate that activity in the contralateral SI contributes to the suppression of reorganized hindlimb receptive fields in neonatally amputated rats.

  1. Calculating Remote Sensing Reflectance Uncertainties Using an Instrument Model Propagated Through Atmospheric Correction via Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Karakoylu, E.; Franz, B.

    2016-01-01

    First attempt at quantifying uncertainties in ocean remote sensing reflectance satellite measurements. Based on 1000 iterations of Monte Carlo. Data source is a SeaWiFS 4-day composite, 2003. The uncertainty is for remote sensing reflectance (Rrs) at 443 nm.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozhdestvenskyy, S.

    This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm 2 of active detector area.

  3. Somatosensory responses in normal aging, mild cognitive impairment, and Alzheimer’s disease

    PubMed Central

    Montaño, Rebecca; Donahue, Christopher H.; Adair, John C.; Knoefel, Janice; Qualls, Clifford; Hart, Blaine; Ranken, Doug; Aine, Cheryl J.

    2010-01-01

    As a part of a larger study of normal aging and Alzheimer’s disease (AD), which included patients with mild cognitive impairment (MCI), we investigated the response to median nerve stimulation in primary and secondary somatosensory areas. We hypothesized that the somatosensory response would be relatively spared given the reported late involvement of sensory areas in the progression of AD. We applied brief pulses of electric current to left and right median nerves to test the somato-sensory response in normal elderly (NE), MCI, and AD. MEG responses were measured and were analyzed with a semi-automated source localization algorithm to characterize source locations and timecourses. We found an overall difference in the amplitude of the response of the primary somatosensory source (SI) based on diagnosis. Across the first three peaks of the SI response, the MCI patients exhibited a larger amplitude response than the NE and AD groups (P < 0.03). Additional relationships between neuropsychological measures and SI amplitude were also determined. There was no significant difference in amplitude for the contralateral secondary somatosensory source across diagnostic category. These results suggest that somatosensory cortex is affected early in the progression of AD and may have some consequence on behavioral and functional measures. PMID:20013008

  4. Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: Thickness scaling

    NASA Astrophysics Data System (ADS)

    Jain, Prateek; Rastogi, Priyank; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh

    2017-07-01

    The direct and indirect valleys in Germanium (Ge) are separated by a very small offset, which opens up the prospect of direct tunneling in the Γ valley of an extended Ge source tunnel field effect transistor (TFET). We explore the impact of thickness scaling of extended Ge source lateral TFET on the band to band tunneling (BTBT) current. The Ge source is extended inside the gate by 2 nm to confine the tunneling in Ge only. We observe that as the thickness is scaled, the band alignment at the Si/Ge heterojunction changes significantly, which results in an increase in Ge to Si BTBT current. Based on density functional calculations, we first obtain the band structure parameters (bandgap, effective masses, etc.) for the Ge and Si slabs of varying thickness, and these are then used to obtain the thickness dependent Kane's BTBT tunneling parameters. We find that electrostatics improves as the thickness is reduced in the ultra-thin Ge film ( ≤ 10 nm). The ON current degrades as we scale down in thickness; however, the subthreshold slope ( S S AVG ) improves remarkably with thickness scaling due to subsurface BTBT. We predict that 8 nm thin devices offer the best option for optimized ON current and S S AVG .

  5. Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software

    USGS Publications Warehouse

    West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Kumar, Sunil; Swallow, Aaron; Luizza, Matthew; Chignell, Steve

    2017-01-01

    Among the most pressing concerns of land managers in post-wildfire landscapes are the establishment and spread of invasive species. Land managers need accurate maps of invasive species cover for targeted management post-disturbance that are easily transferable across space and time. In this study, we sought to develop an iterative, replicable methodology based on limited invasive species occurrence data, freely available remotely sensed data, and open source software to predict the distribution of Bromus tectorum (cheatgrass) in a post-wildfire landscape. We developed four species distribution models using eight spectral indices derived from five months of Landsat 8 Operational Land Imager (OLI) data in 2014. These months corresponded to both cheatgrass growing period and time of field data collection in the study area. The four models were improved using an iterative approach in which a threshold for cover was established, and all models had high sensitivity values when tested on an independent dataset. We also quantified the area at highest risk for invasion in future seasons given 2014 distribution, topographic covariates, and seed dispersal limitations. These models demonstrate the effectiveness of using derived multi-date spectral indices as proxies for species occurrence on the landscape, the importance of selecting thresholds for invasive species cover to evaluate ecological risk in species distribution models, and the applicability of Landsat 8 OLI and the Software for Assisted Habitat Modeling for targeted invasive species management.

  6. A Parallel Fast Sweeping Method for the Eikonal Equation

    NASA Astrophysics Data System (ADS)

    Baker, B.

    2017-12-01

    Recently, there has been an exciting emergence of probabilistic methods for travel time tomography. Unlike gradient-based optimization strategies, probabilistic tomographic methods are resistant to becoming trapped in a local minimum and provide a much better quantification of parameter resolution than, say, appealing to ray density or performing checkerboard reconstruction tests. The benefits associated with random sampling methods however are only realized by successive computation of predicted travel times in, potentially, strongly heterogeneous media. To this end this abstract is concerned with expediting the solution of the Eikonal equation. While many Eikonal solvers use a fast marching method, the proposed solver will use the iterative fast sweeping method because the eight fixed sweep orderings in each iteration are natural targets for parallelization. To reduce the number of iterations and grid points required the high-accuracy finite difference stencil of Nobel et al., 2014 is implemented. A directed acyclic graph (DAG) is created with a priori knowledge of the sweep ordering and finite different stencil. By performing a topological sort of the DAG sets of independent nodes are identified as candidates for concurrent updating. Additionally, the proposed solver will also address scalability during earthquake relocation, a necessary step in local and regional earthquake tomography and a barrier to extending probabilistic methods from active source to passive source applications, by introducing an asynchronous parallel forward solve phase for all receivers in the network. Synthetic examples using the SEG over-thrust model will be presented.

  7. Using multi-date satellite imagery to monitor invasive grass species distribution in post-wildfire landscapes: An iterative, adaptable approach that employs open-source data and software

    NASA Astrophysics Data System (ADS)

    West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Kumar, Sunil; Swallow, Aaron; Luizza, Matthew W.; Chignell, Stephen M.

    2017-07-01

    Among the most pressing concerns of land managers in post-wildfire landscapes are the establishment and spread of invasive species. Land managers need accurate maps of invasive species cover for targeted management post-disturbance that are easily transferable across space and time. In this study, we sought to develop an iterative, replicable methodology based on limited invasive species occurrence data, freely available remotely sensed data, and open source software to predict the distribution of Bromus tectorum (cheatgrass) in a post-wildfire landscape. We developed four species distribution models using eight spectral indices derived from five months of Landsat 8 Operational Land Imager (OLI) data in 2014. These months corresponded to both cheatgrass growing period and time of field data collection in the study area. The four models were improved using an iterative approach in which a threshold for cover was established, and all models had high sensitivity values when tested on an independent dataset. We also quantified the area at highest risk for invasion in future seasons given 2014 distribution, topographic covariates, and seed dispersal limitations. These models demonstrate the effectiveness of using derived multi-date spectral indices as proxies for species occurrence on the landscape, the importance of selecting thresholds for invasive species cover to evaluate ecological risk in species distribution models, and the applicability of Landsat 8 OLI and the Software for Assisted Habitat Modeling for targeted invasive species management.

  8. A 2 m inelastic x-ray scattering spectrometer at CMC-XOR, Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, J. P.; Coburn, D. S.; Kim, Y. J.

    2007-07-01

    The design and commissioning of an inelastic X-ray scattering instrument at CMC-XOR at the Advanced Photon Source is reported. The instrument features a 2 m vertical-scattering arm with a novel counterweight design to reduce the twisting moment as the arm is moved in the scattering plane. A Ge(733) spherical analyzer was fabricated and an overall resolution of 118 meV (FWHM) was obtained with a Si(444) monochromator and a Si(111) pre-monochromator. Early results from a representative cuprate, La{sub 2}CuO{sub 4}, are reported.

  9. Bn and Si-Doped Bn Coatings on Woven Fabrics

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Scott, John M.; Wheeler, Donald R.; Chayka, Paul V.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    A computer controlled, pulsed chemical vapor infiltration (CVI) system has been developed to deposit BN from a liquid borazine (B3N3H6) source, as well as silicon doped BN coatings using borazine and a silicon source, into 2-D woven ceramic fabric preforms. The coating process was evaluated as a function of deposition temperature, pressure, and precursor flow rate. Coatings were characterized by field emission scanning electron microscopy, electron dispersive spectroscopy and Auger spectroscopy. By controlling the reactant feed ratios, Si incorporation could be controlled over the range of 6-24 atomic percent.

  10. Design of Strain-Engineered GeSn/GeSiSn Quantum Dots for Mid-IR Direct Bandgap Emission on Si Substrate

    NASA Astrophysics Data System (ADS)

    Al-Saigh, Reem; Baira, Mourad; Salem, Bassem; Ilahi, Bouraoui

    2018-06-01

    Strain-engineered self-assembled GeSn/GeSiSn quantum dots in Ge matrix have been numerically investigated aiming to study their potentiality towards direct bandgap emission in the mid-IR range. The use of GeSiSn alloy as surrounding media for GeSn quantum dots (QD) allows adjusting the strain around the QD through the variation of Si and/or Sn composition. Accordingly, the lattice mismatch between the GeSn quantum dots and the GeSiSn surrounding layer has been tuned between - 2.3 and - 4.5% through the variation of the Sn barrier composition for different dome-shaped QD sizes. The obtained results show that the emission wavelength, fulfilling the specific QD directness criteria, can be successively tuned over a broad mid-IR range from 3 up to7 μm opening new perspectives for group IV laser sources fully integrated in Si photonic systems for sensing applications.

  11. TDC Array Tradeoffs in Current and Upcoming Digital SiPM Detectors for Time-of-Flight PET

    NASA Astrophysics Data System (ADS)

    Tétrault, Marc-André; Therrien, Audrey Corbeil; Lemaire, William; Fontaine, Réjean; Pratte, Jean-François

    2017-03-01

    Radiation detection used in positron emission tomography (PET) exploits the timing information to remove background noise and refine position measurement through time-of-flight information. Fine time resolution in the order of 10 ps full-width at half-maximum (FWHM) would not only improve contrast in the image, but would also enable direct image reconstruction without iterative or back-projected algorithms. Currently, PET experimental setups based on silicon photomultipliers (SiPMs) reach 73 ps FWHM, where the scintillation process plays the larger role in spreading the timing resolution. This will change with the optimization of faster light emission mechanisms (prompt photons), where readout optoelectronics will once more have a noticeable contribution to the timing resolution limit. In addition to reducing electronic jitter as much as possible, other aspects of the design space must also explored, especially for digital SiPMs. Unlike traditional SiPMs, digital SiPMs can integrate circuits like time-to-digital converters (TDCs) directly with individual or groups of light sensing cells. Designers should consider the number of TDCs to integrate, the area they occupy, their power consumption, their resolution, and the impact of signal processing algorithms and find a compromise with the figure of merit and the coincidence timing resolution (CTR). This paper presents a parametric simulation flow for digital SiPM microsystems that evaluates CTR based on these aspects and on the best linear unbiased estimator (BLUE) in order to guide their design for present and future PET systems. For a small 1.1 × 1.1 × 3.0 mm3 LYSO crystal, the simulations indicate that for a low jitter digital SiPM microsystem with 18.2% photon detection efficiency, fewer than four timestamps with any multi-TDC configuration scheme nearly obtain the optimal CTR with BLUE (just below 100 ps FWHM), but with limited 5% improvement over only using the first observed photon. On the other hand, if a similar crystal but with 2.5% prompt photon fraction is considered, BLUE provides an improvement between 80% and 200% (depending on electronic jitter) over using only the first observed photon. In this case, a few tens of timestamps are required, yielding very different design guidelines than for standard LYSO scintillators.

  12. 5.8kV SiC PiN Diode for Switching of High-Efficiency Inductive Pulsed Plasma Thruster Circuits

    NASA Technical Reports Server (NTRS)

    Toftul, Alexandra; Polzin, Kurt A.; Hudgins, Jerry L.

    2014-01-01

    Inductive Pulsed Plasma Thruster (IPPT) pulse circuits, such as those needed to operate the Pulsed Inductive Thruster (PIT), are required to quickly switch capacitor banks operating at a period of µs while conducting current at levels on the order of at least 10 kA. [1,2] For all iterations of the PIT to date, spark gaps have been used to discharge the capacitor bank through an inductive coil. Recent availability of fast, high-power solid state switching devices makes it possible to consider the use of semiconductor switches in modern IPPTs. In addition, novel pre-ionization schemes have led to a reduction in discharge energy per pulse for electric thrusters of this type, relaxing the switching requirements for these thrusters. [3,4] Solid state switches offer the advantage of greater controllability and reliability, as well as decreased drive circuit dimensions and mass relative to spark gap switches. The use of solid state devices such as Integrated Gate Bipolar Transistors (IGBTs), Gate Turn-off Thyristors (GTOs) and Silicon-Controlled Rectifiers (SCRs) often involves the use of power diodes. These semiconductor devices may be connected antiparallel to the switch for protection from reverse current, or used to reduce power loss in a circuit by clamping off current ringing. In each case, higher circuit efficiency may be achieved by using a diode that is able to transition, or 'switch,' from the forward conducting state ('on' state) to the reverse blocking state ('off' state) in the shortest amount of time, thereby minimizing current ringing and switching losses. Silicon Carbide (SiC) PiN diodes offer significant advantages to conventional fast-switching Silicon (Si) diodes for high power and fast switching applications. A wider band gap results in a breakdown voltage 10 times that of Si, so that a SiC device may have a thinner drift region for a given blocking voltage. [5] This leads to smaller, lighter devices for high voltage applications, as well as reduced forward conduction losses, faster reverse recovery time (faster turn-off), and lower-magnitude reverse recovery current. In addition, SiC devices have lower leakage current as compared to their Si counterparts, and a high thermal conductivity, potentially allowing the former to operate at higher temperatures with a smaller, lighter heatsink (or no heatsink at all).

  13. Novel duplex vapor-electrochemical method for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Kapur, V. K.; Nanis, L.; Sanjurjo, A.

    1977-01-01

    Silicon obtained by the SiF4-Na reaction was analyzed by spark source mass spectrometry (SSMS). Silicon samples prepared from induction melted powder were evaluated for electrical properties using four point probe conductivity and thermoelectric methods. SiF4-Na reaction under P sub SiF4 greater than 1 atmosphere. The amount of silicon produced was increased from 25 g per batch (in the glass reactor) to greater than 70 g per batch in the stainless steel reactor. The study of the effects of reaction variables such as P sub SiF4 and maximum temperature attained on the particle size of silicon powder showed that the silicon particle size tends to grow larger with increasing pressure of the SiF4 gas in the reaction system.

  14. Color sensitive silicon photomultiplers with micro-cell level encoding for DOI PET detectors

    NASA Astrophysics Data System (ADS)

    Shimazoe, Kenji; Koyama, Akihiro; Takahashi, Hiroyuki; Ganka, Thomas; Iskra, Peter; Marquez Seco, Alicia; Schneider, Florian; Wiest, Florian

    2017-11-01

    There have been many studies on Depth Of Interaction (DOI) identification for high resolution Positron Emission Tomography (PET) systems, including those on phoswich detectors, double-sided readout, light sharing methods, and wavelength discrimination. The wavelength discrimination method utilizes the difference in wavelength of stacked scintillators and requires a color sensitive photodetector. Here, a new silicon photomultiplier (SiPM) coupled to a color filter (colorSiPM) was designed and fabricated for DOI detection. The fabricated colorSiPM has two anode readouts that are sensitive to blue and green color. The colorSiPM's response and DOI identification capability for stacked GAGG and LYSO crystals are characterized. The fabricated colorSiPM is sensitive enough to detect a peak of 662 keV from a 137 Cs source.

  15. Magmatism in the Shapinggou district of the Dabie orogen, China: Implications for the formation of porphyry Mo deposits in a collisional orogenic belt

    NASA Astrophysics Data System (ADS)

    Ren, Zhi; Zhou, Taofa; Hollings, Pete; White, Noel C.

    2018-05-01

    The Shapinggou molybdenum deposit is located in the Qinling-Dabie Orogen, which hosts the world's largest molybdenum belt. The igneous rocks at Shapinggou can be divided into two stages (136-127 Ma and 118-114 Ma), the early suite of felsic (136-127 Ma, SiO2 = 58.0 to 72.9 wt%) and mafic rocks (133-128 Ma, SiO2 = 45.2 to 57.0 wt%), and a later suite comprising syenite (117 Ma, SiO2 = 64.2 to 65.0 wt%), quartz syenite porphyry (116 Ma, 62.5 to 70.0 wt%), granite porphyry (112 Ma, SiO2 = 75.5 to 77.6 wt%) and diorite porphyry (111 Ma, SiO2 = 56.6 to 59.7 wt%). The early-stage felsic rocks display high SiO2, Al2O3, Na2O, K2O, Sr, LREE contents, and Sr/Y, (La/Yb)N ratios, initial Sr isotope ratios of 0.7076 to 0.7089, but low MgO, FeOT, Y, Yb contents and negative εNd(t) values, consistent with partial melting of the lower continental crust. The early-stage mafic rocks exhibit low SiO2, high MgO, Ni and Cr contents, consistent with an upper mantle source, but trace element and isotope data suggest a role for crustal contamination. The late-stage syenite and quartz syenite porphyry show high abundances of Na2O, K2O, Al2O3, HFSEs (e.g., Th, U, Zr, Hf) and significant negative Eu anomalies. The late-stage granite porphyry displays high SiO2 contents, and depletions in Ba, Sr, Eu and Ti. The geochemical features of the late-stage intrusions are similar to A-type granites. Crystal fractionation of plagioclase, K-feldspar, biotite/ muscovite, amphibole/ garnet and Fe-Ti oxides controlled the evolution of the magma. The geochemical and isotopic data suggest that the rocks at Shapinggou were likely derived from a mixed source of lithospheric mantle, subducted continental crust of the Yangtze Block (Kongling Group) and partial melts of the Dabie Complex. Early stage rocks represent melts of the source with a lower proportion of Dabie Complex materials, whereas late stage rocks were derived from a source with a higher proportion Dabie Complex component. The geochemical and isotopic variations of the intrusions at Shapinggou were controlled by both source characteristics and fractional crystallization. Although the Shapinggou deposit is located in a continental collision orogen, the magmas formed in an intraplate extension setting, with an increase in the amount of extension from the early to late stages. As well, both stages intrusions at Shapinggou were generated by the addition of heat, due to lithospheric delamination, mantle upwelling and rapid mantle convection, related to the far-field effects of the westward subduction of the paleo-Pacific Plate beneath the Asian continent. The geochemistry and setting suggest that the formation of a giant Mo deposit does not require a Mo-rich magma source, but rather an efficient convection mechanism for the transport of volatiles and Mo in a granitic magma system. The fluids derived from the granite porphyry at Shapinggou were more oxidised than that from the barren intrusions.

  16. Tests of a two-color interferometer and polarimeter for ITER density measurements

    NASA Astrophysics Data System (ADS)

    Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O'Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.

    2017-12-01

    A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m-2.

  17. Low-dose 4D cardiac imaging in small animals using dual source micro-CT

    NASA Astrophysics Data System (ADS)

    Holbrook, M.; Clark, D. P.; Badea, C. T.

    2018-01-01

    Micro-CT is widely used in preclinical studies, generating substantial interest in extending its capabilities in functional imaging applications such as blood perfusion and cardiac function. However, imaging cardiac structure and function in mice is challenging due to their small size and rapid heart rate. To overcome these challenges, we propose and compare improvements on two strategies for cardiac gating in dual-source, preclinical micro-CT: fast prospective gating (PG) and uncorrelated retrospective gating (RG). These sampling strategies combined with a sophisticated iterative image reconstruction algorithm provide faster acquisitions and high image quality in low-dose 4D (i.e. 3D  +  Time) cardiac micro-CT. Fast PG is performed under continuous subject rotation which results in interleaved projection angles between cardiac phases. Thus, fast PG provides a well-sampled temporal average image for use as a prior in iterative reconstruction. Uncorrelated RG incorporates random delays during sampling to prevent correlations between heart rate and sampling rate. We have performed both simulations and animal studies to validate these new sampling protocols. Sampling times for 1000 projections using fast PG and RG were 2 and 3 min, respectively, and the total dose was 170 mGy each. Reconstructions were performed using a 4D iterative reconstruction technique based on the split Bregman method. To examine undersampling robustness, subsets of 500 and 250 projections were also used for reconstruction. Both sampling strategies in conjunction with our iterative reconstruction method are capable of resolving cardiac phases and provide high image quality. In general, for equal numbers of projections, fast PG shows fewer errors than RG and is more robust to undersampling. Our results indicate that only 1000-projection based reconstruction with fast PG satisfies a 5% error criterion in left ventricular volume estimation. These methods promise low-dose imaging with a wide range of preclinical applications in cardiac imaging.

  18. The pattern of N/P/Si stoichiometry and ecological nutrient limitation in Ganga River: up- and downstream urban influences

    NASA Astrophysics Data System (ADS)

    Yadav, Amita; Pandey, Jitendra

    2018-06-01

    The pattern of N/P/Si stoichiometry, although an important driver regulating river ecology, has received limited research attention for Ganga River. We investigated shifts in N/P/Si stoichiometry and ecological nutrient limitation as influenced by Varanasi urban core along a 37-km-long stretch of Ganga River. We also assessed the trophic status of the river in relation to shifting elemental stoichiometry. Together with point sources, atmospheric deposition coupled surface runoff appeared important factors leading to N/P/Si stoichiometric imbalances along the study stretch. The N/P and Si/P ratios declined downstream from 15.5 to 6.5 and 15.7 to 4.4, respectively, whereas N/Si increased from 1.01 to 1.6. Significant negative correlation of N/Si with biogenic silica to chlorophyll a (Chl a) ratios, and biogenic silica to phycocyanin ratios indicated increased growth of non-siliceous algae downstream signifying N and Si limitation with possible implications on food-web dynamics and feedback processes in the river in long run.

  19. Tribological properties of SiC-based MCD films synthesized using different carbon sources when sliding against Si3N4

    NASA Astrophysics Data System (ADS)

    Wang, Xinchang; Shen, Xiaotian; Zhao, Tianqi; Sun, Fanghong; Shen, Bin

    2016-04-01

    Micro-crystalline diamond (MCD) films are deposited on reactive sintering SiC substrates by the bias enhanced hot filament chemical vapor deposition (BE-HFCVD) method, respectively using the methane, acetone, methanol and ethanol as the carbon source. Two sets of standard tribotests are conducted, adopting Si3N4 balls as the counterpart balls, respectively with the purpose of clarifying differences among tribological properties of different MCD films, and studying detailed effects of the carbon source C, normal load Fn and sliding velocity v based on orthogonal analyses. It is clarified that the methane-MCD film presents the lowest growth rate, the highest film quality, the highest hardness and the best adhesion, in consequence, it also performs the best tribological properties, including the lowest coefficient of friction (COF) and wear rate Id, while the opposite is the methanol-MCD film. Under a normal load Fn of 7 N and at a sliding velocity v of 0.4183 m/s, for the methane-MCD film, the maximum COF (MCOF) is 0.524, the average COF during the relatively steady-state regime (ACOF) is 0.144, and the Id is about 1.016 × 10-7 mm3/N m; and for the methanol-MCD film, the MCOF is 0.667, the ACOF is 0.151, and the Id is 1.448 × 10-7 mm3/N m. Moreover, the MCOF, ACOF, Id and the wear rate of the Si3N4 ball Ib will all increase with the Fn, while the v only has significant effect on the ACOF, which shows a monotone increasing trend with the v.

  20. Quantitative investigation into the source of current slump in AlGaN/GaN HEMT on both Si (111) and sapphire: Self-heating and trapping

    NASA Astrophysics Data System (ADS)

    Bag, Ankush; Mukhopadhyay, Partha; Ghosh, Saptarsi; Das, Palash; Chakraborty, Apurba; Dinara, Syed M.; Kabi, Sanjib; Biswas, Dhurbes

    2015-05-01

    We have experimentally studied trapping and self-heating effect in terms of current slump in AlGaN/GaN HEMT grown and identically processed on Silicon (111) and Sapphire (0001) substrates. Different responses have been observed through DC characterization of different duty cycle (100%, 50%, 5% and 0.5%) of pulses at drain end. Effect of self-heating is more in case of HEMT on Sapphire due to its comparative poor thermal conductivity whereas trapped charges have strong contribution in current drop of HEMT on Si (111) due to larger lattice as well as thermal expansion coefficient mismatched epitaxy between GaN and Si (111). These results have been compared among substrates that lead us to find out optimal source of current slump quantitatively between traps and self-heating.

Top