Illumination-redistribution lenses for non-circular spots
NASA Astrophysics Data System (ADS)
Parkyn, William A.; Pelka, David G.
2005-08-01
The design of illumination lenses is far easier under the regime of the small-source approximation, whereby central rays are taken as representative of the entire source. This implies that the lens is much larger than the source's active emitter, and its entire interior surface is nowhere close to the source. Also, a given source luminance requires a minimum lens area to achieve the candlepower necessary for target illumination. We introduce two-surface aspheric lenses for specific illuminations tasks involving ceiling-mounted downlights, lenses that achieve uniform illuminance at the output aperture as well as at the target. This means that squared-off lenses will produce square spots. In particular, a semicircular lens and a vertical mirror will produce a semicircular spot suitable for gambling tables.
Generation of Olympic logo with freeform lens array
NASA Astrophysics Data System (ADS)
Liu, Chengkun; Huang, Qilu; Qiu, Yishen; Chen, Weijuan; Liao, Tingdi
2017-10-01
In this paper, the Olympic rings pattern is generated by using freeform lens array and illumination light source array. Based on nonimaging optics, the freeform lens array is designed for point light source, which can generate the focused pattern of annular light spot. In order to obtain the Olympic logo pattern of five rings, the array with five freeform lenses is used. By adjusting the emission angle of each light source, the annular spot is obtained at different positions of the target plane and the Olympic rings logo is formed. We used the shading plate on the surface of the freeform lens to reduce the local light intensity so that the light spot overall irradiance distribution is more uniform. We designed a freeform lens with aperture of 26.2mm, focal length of 2000mm and the diameter of a single annual spot is 400mm. We modeled freeform lens and simulated by optical software TracePro. The ray tracing results show that the Olympic rings with uniform illumination can be obtained on the target plane with the optical efficiency up to 85.7%. At the same time, this paper also studies the effects of the target plane defocusing on the spot pattern. Simulations show that when the distance of the receiving surface to the focal plane varies within 300mm, a reasonable uniform and small distorted light spot pattern can be obtained. Compared with the traditional projection method, our method of design has the advantages of high optical efficiency, low cost and the pattern is clear and uniform.
Automated optimization of an aspheric light-emitting diode lens for uniform illumination.
Luo, Xiaoxia; Liu, Hua; Lu, Zhenwu; Wang, Yao
2011-07-10
In this paper, an automated optimization method in the sequential mode of ZEMAX is proposed in the design of an aspheric lens with uniform illuminance for an LED source. A feedback modification is introduced in the design for the LED extended source. The user-defined merit function is written out by using ZEMAX programming language macros language and, as an example, optimum parameters of an aspheric lens are obtained via running an optimization. The optical simulation results show that the illumination efficiency and uniformity can reach 83% and 90%, respectively, on a target surface of 40 mm diameter and at 60 mm away for a 1×1 mm LED source. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Zhao, Zhili; Zhang, Honghai; Zheng, Huai; Liu, Sheng
2018-03-01
In light-emitting diode (LED) array illumination (e.g. LED backlighting), obtainment of high uniformity in the harsh condition of the large distance height ratio (DHR), extended source and near field is a key as well as challenging issue. In this study, we present a new reversing freeform lens design algorithm based on the illuminance distribution function (IDF) instead of the traditional light intensity distribution, which allows uniform LED illumination in the above mentioned harsh conditions. IDF of freeform lens can be obtained by the proposed mathematical method, considering the effects of large DHR, extended source and near field target at the same time. In order to prove the claims, a slim direct-lit LED backlighting with DHR equal to 4 is designed. In comparison with the traditional lenses, illuminance uniformity of LED backlighting with the new lens increases significantly from 0.45 to 0.84, and CV(RMSE) decreases dramatically from 0.24 to 0.03 in the harsh condition. Meanwhile, luminance uniformity of LED backlighting with the new lens is obtained as high as 0.92 at the condition of extended source and near field. This new method provides a practical and effective way to solve the problem of large DHR, extended source and near field for LED array illumination.
The first detection of neutral hydrogen in emission in a strong spiral lens
NASA Astrophysics Data System (ADS)
Lipnicky, Andrew; Chakrabarti, Sukanya; Wright, Melvyn C. H.; Blitz, Leo; Heiles, Carl; Cotton, William; Frayer, David; Blandford, Roger; Shu, Yiping; Bolton, Adam S.
2018-05-01
We report H I observations of eight spiral galaxies that are strongly lensing background sources. Our targets were selected from the Sloan WFC (Wide Field Camera) Edge-on Late-type Lens Survey (SWELLS) using the Arecibo, Karl G. Jansky Very Large Array, and Green Bank telescopes. We securely detect J1703+2451 at z = 0.063 with a signal-to-noise ratio of 6.7 and W50 = 79 ± 13 km s-1, obtaining the first detection of H I emission in a strong spiral lens. We measure a mass of M_{H I} = (1.77± 0.06^{+0.35}_{-0.75})× 10^9 M_{⊙} for this source. We find that this lens is a normal spiral, with observable properties that are fairly typical of spiral galaxies. For three other sources, we did not secure a detection; however, we are able to place strong constraints on the H I masses of those galaxies. The observations for four of our sources were rendered unusable due to strong radio frequency interference.
Variable Distance Angular Symbology Reader
NASA Technical Reports Server (NTRS)
Schramm, Harry F., Jr. (Inventor); Corder, Eric L. (Inventor)
2006-01-01
A variable distance angular symbology, reader utilizes at least one light source to direct light through a beam splitter and onto a target. A target may be angled relative to the impinging light beam up to and maybe even greater than 45deg. A reflected beam from the target passes through the beam splitter and is preferably directed 90deg relative to the light source through a telecentric lens to a scanner which records an image of the target such as a direct part marking code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Calen B., E-mail: henderson@astronomy.ohio-state.edu
2015-02-10
I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO onmore » the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σ{sub H{sub ℓ}}≤0.1 for ≳60% of planet detections ≥5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ∼28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for ≲ (16 · f {sub bin})% of planet detections, where f {sub bin} is the binary fraction, with the majority of these failures occurring for host stars with mass ≲0.3 M {sub ☉}.« less
A novel solution for LED wall lamp design and simulation
NASA Astrophysics Data System (ADS)
Ge, Rui; Hong, Weibin; Li, Kuangqi; Liang, Pengxiang; Zhao, Fuli
2014-11-01
The model of the wall washer lamp and the practical illumination application have been established with a new design of the lens to meet the uniform illumination demand for wall washer lamp based on the Lambertian light sources. Our secondary optical design of freeform surface lens to LED wall washer lamp based on the conservation law of energy and Snell's law can improve the lighting effects as a uniform illumination. With the relationship between the surface of the lens and the surface of the target, a great number of discrete points of the freeform profile curve were obtained through the iterative method. After importing the data into our modeling program, the optical entity was obtained. Finally, to verify the feasibility of the algorithm, the model was simulated by specialized software, with both the LED Lambertian point source and LED panel source model.
Optical design of transmitter lens for asymmetric distributed free space optical networks
NASA Astrophysics Data System (ADS)
Wojtanowski, Jacek; Traczyk, Maciej
2018-05-01
We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is examined, showing perfect agreement with expectations.
Using Adaptive Optics Follow-up to Characterize Microlensing Exoplanets
NASA Astrophysics Data System (ADS)
Henderson, Calen; Beichman, Charles; Shvartzvald, Yossi
2018-01-01
The mass and distance of a microlens are degenerate, thus requiring at least two relations to yield a unique solution. Measuring the finite-source effect from the light curve helps provide one mass-distance relation for the lens system. Currently, the primary avenue for establishing a second relation and thus uniquely solving for the mass and distance of the lens is by measuring the microlens parallax. One specific implementation is the satellite parallax technique, which involves taking observations simultaneously from two locations separated by a significant fraction of an AU, and which has been employed by Spitzer and K2's Campaign 9, transforming this methodology from a cottage industry to a booming economy. However, the majority of microlensing exoplanets to be discovered in the coming decades, up to and including the detections predicted for WFIRST, will not have a measurement of the satellite parallax, requiring another avenue for converting microlensing observables into physical parameters. Enter the lens flux characterization technique, through which a microlensing target is observed with a high-resolution facility, facilitating a constraint on the flux from the lens system. This yields a third mass-distance relation for the lens and can be combined with that from the detection of finite-source effects and/or the microlens parallax to determine the mass of the lens system as well as its distance from Earth. I will highlight recent programs using NIRC2 on Keck that are designed to make lens flux measurements for a myriad of exoplanetary lenses, including: (A) systems with high blend flux, which adaptive optics is perfectly suited to resolve; (B) systems with high relative lens-source proper motion; (C) free-floating planet candidates; and (D) bound exoplanets.
NASA Astrophysics Data System (ADS)
Ma, Qian; Shi, Chuan Bo; Chen, Tian Yi; Qing Qi, Mei; Li, Yun Bo; Cui, Tie Jun
2018-04-01
A new method is proposed to design gradient refractive-index metamaterial lens antennas by optimizing both the refractive-index distribution of the lens and the feed directivity. Comparing to the conventional design methods, source optimization provides a new degree of freedom to control aperture fields effectively. To demonstrate this method, two lenses with special properties based on this method are designed, to emit high-efficiency plane waves and fan-shaped beams, respectively. Both lenses have good performance and wide frequency band from 12 to 18 GHz, verifying the validity of the proposed method. The plane-wave emitting lens realized a high aperture efficiency of 75%, and the fan-beam lens achieved a high gain of 15 dB over board bandwidth. The experimental results have good agreement with the design targets and full-wave simulations.
Ko, Wooseok; Kim, Soohyun
2009-11-01
This paper proposes a new measurement system for measuring the refractive power of spherical and sphero-cylindrical lenses with a six-point light source, which is composed of a light emitting diode and a six-hole pattern aperture, and magnification ellipse fitting method. The position of the six light sources is changed into a circular or elliptical form subjected to the lens refractive power and meridian rotation angle. The magnification ellipse fitting method calculates the lens refractive power based on the ellipse equation with magnifications that are the ratios between initial diagonal lengths and measured diagonal lengths of the conjugated light sources changed by the target lens. The refractive powers of the spherical and sphero-cylindrical lenses certified in the Korea Research Institute of Standard and Science were measured to verify the measurement performance. The proposed method is estimated to have a repeatability of +/-0.01 D and an error value below 1%.
Sher, Mark H.; Macklin, John J.; Harris, Stephen E.
1989-09-26
A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.
An electrostatic deceleration lens for highly charged ions.
Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P
2010-04-01
The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.
NASA Technical Reports Server (NTRS)
Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.
2006-01-01
The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.
Radiocarbon measurements of small gaseous samples at CologneAMS
NASA Astrophysics Data System (ADS)
Stolz, A.; Dewald, A.; Altenkirch, R.; Herb, S.; Heinze, S.; Schiffer, M.; Feuerstein, C.; Müller-Gatermann, C.; Wotte, A.; Rethemeyer, J.; Dunai, T.
2017-09-01
A second SO-110 B (Arnold et al., 2010) ion source was installed at the 6 MV CologneAMS for the measurement of gaseous samples. For the gas supply a dedicated device from Ionplus AG was connected to the ion source. Special effort was devoted to determine optimized operation parameters for the ion source, which give a high carbon current output and a high 14C- yield. The latter is essential in cases when only small samples are available. Additionally a modified immersion lens and modified target pieces were tested and the target position was optimized.
Huang, Zhihua; Wei, Xiaofeng; Li, Mingzhong; Wang, Jianjun; Lin, Honghuan; Xu, Dangpeng; Deng, Ying; Zhang, Rui
2012-04-01
Coherent and incoherent combination of Gaussian beams employing a lens array distributed on the spherical chamber is theoretically analyzed. The output field of each source in the array is coupled through an individual optical system whose local optical axis coincides with the radial direction of the chamber. The resulting intensity profile near the origin is derived. The intensity profile and power in the bucket on the target for rectangular and hexagonal arrangement are numerically calculated. The influences of the center-to-center separation and the ring number of the focusing lens array are given. The synthetic intensity profile of incoherent combination changes little for a lens array scale much smaller than the chamber size. In contrast, the synthetic intensity profile of coherent combination shows an interference pattern with a sharp central peak and sidelobes.
Plasma Lens for Muon and Neutrino Beams
NASA Astrophysics Data System (ADS)
Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant
2008-04-01
The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.
The Gaussian Plasma Lens in Astrophysics: Refraction
NASA Astrophysics Data System (ADS)
Clegg, Andrew W.; Fey, Alan L.; Lazio, T. Joseph W.
1998-03-01
We present the geometrical optics for refraction of a distant background radio source by an interstellar plasma lens, with specific application to a lens with a Gaussian profile of free-electron column density. The refractive properties of the lens are specified completely by a dimensionless parameter α, which is a function of the wavelength of observation, the free-electron column density through the lens, the lens-observer distance, and the diameter of the lens transverse to the line of sight. A lens passing between the observer and a background source, due to the relative motions of the observer, lens, and source, produces modulations in the light curve of the background source. Because plasma lenses are diverging, the light curve displays a minimum in the background source's flux density, formed when the lens is on-axis, surrounded by enhancements above the nominal (unlensed) flux density. The exact form of the light curve depends only upon the parameter α and the relative angular sizes of the source and lens as seen by the observer. Other effects due to lensing include the following: (1) the formation of caustic surfaces, upon which the apparent brightness of the background source becomes very large; (2) the possible creation of multiple images of the background source; and (3) angular position wander of the background source. If caustics are formed, the separation of the outer caustics can be used to constrain α, while the separation of the inner caustics can constrain the size of the lens. We apply our analysis to two sources, which have undergone extreme scattering events: (1) 0954+658, a source for which we can identify multiple caustics in its light curve, and (2) 1741-038, for which polarization observations were obtained during and after the scattering event. We find general agreement between modeled and observed light curves at 2.25 GHz, but poor agreement at 8.1 GHz. The discrepancies between the modeled and observed light curves may result from some combination of substructure within the lens, an anisotropic lens shape, a lens which only grazes the source rather than passing completely over it, or unresolved substructure within the extragalactic sources. Our analysis also allows us to place constraints on the physical characteristics of the lens. The inferred properties of the lens responsible for the scattering event toward 0954+658 (1741-038) are that it was 0.38 AU (0.065 AU) in diameter with a peak column density of 0.24 pc cm-3 (10-4 pc cm-3), an electron density within the lens of 105 cm-3 (300 cm-3), and a mass of 6.5 × 10-14 M⊙ (10-18 M⊙). The angular position wander caused by the lens was 250 mas (0.4 mas) at 2.25 GHz. In the case of 1741-038, we can place an upper limit of only 100 mG on the magnetic field within the lens.
AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source
NASA Astrophysics Data System (ADS)
Nightingale, J. W.; Dye, S.; Massey, Richard J.
2018-05-01
This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.
Increase in velocimeter depth of focus through astigmatism. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D.J.
1995-09-26
Frequently, velocimeter targets are illuminated by a laser beam passing through a hole in a mirror. This mirror is responsible for diverting returning light from a target lens to a velocity interferometer system for any reflector (VISAR). This mirror is often a significant distance from the target lens. Consequently, at certain target focus positions the returning light is strongly vignetted by the hole, causing a loss of signal. The authors find that they can prevent loss of signal and greatly increase the useful depth of focus by attaching a cylindrical lens to the target lens.
Gaiser, Hilary; Ho, Connie; Janier, Nicole; Wee, Amy; Johnson, Catherine; Watanabe, Ronald
2017-03-01
To describe practitioner experiences regarding ocular complications in patients wearing decorative contact lenses, and to investigate the compliance of unauthorized distributors of decorative contact lenses to current Food and Drug Administration (FDA) and Federal Trade Commission (FTC) regulations. Also, to provide data to support a more targeted public health approach to reducing the incidence of illegal contact lens sales and associated ocular complications. An institutional review board-approved online survey was distributed through mass email to a list of 98 optometrists in the Boston, MA area. Concurrently, an empirical evaluation of independent, online decorative contact lens sellers who were not associated with FDA-approved contact lens manufacturers was performed to determine their adherence to FDA and FTC guidelines. The first 18 noncoincidental websites that resulted from a Google search for "costume contact lens sellers" and "cosmetic contact lens sellers" were examined as to the brands and parameters of lenses being sold, whether or not a valid prescription was required or verified, and if consumer education was provided. Twenty-two optometrists completed the online survey. Seventy-seven percent of respondents reported having patients with complications from decorative contact lenses that were purchased both legally and illegally. The most common age group for complications was 18 to 25 years (61%). One third of complications were seen in first-time lens wearers, half of whom never received proper care instructions or were unaware that care instructions existed. One quarter of the lenses were purchased illegally with unlicensed stores being the most common place of purchase. Of the 18 online sites examined, 72% of sellers failed to adhere to FTC and FDA regulations. A significant number of individuals who obtain contact lenses illegally from unauthorized sources are young adults. Most unauthorized sellers reviewed did not adhere to the proper protocol for selling contact lenses or instruct their customers on proper lens wear and care. A significant percentage of optometrists responding to the survey reported complications associated with contact lenses purchased through unauthorized sources, suggesting that the risk of contact lens-related complications increases when the lenses are purchased from one of these sources.
Increase in velocimeter depth of focus through astigmatism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D.J.
1996-05-01
Frequently, velocimeter targets are illuminated by a laser beam passing through a hole in a mirror. This mirror is responsible for diverting returning light from a target lens to a velocity interferometer system for any reflector (VISAR). This mirror is often a significant distance from the target lens. Consequently, at certain target focus positions the returning light is strongly vignetted by the hole, causing a loss of signal. We find that we can prevent loss of signal and greatly increase the useful depth of focus by attaching a cylindrical lens to the target lens. {copyright} {ital 1996 American Institute ofmore » Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, C. B.; Gould, A.; Gaudi, B. S.
The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidatesmore » for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr{sup –1}. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.« less
Visual accommodation trainer-tester
NASA Technical Reports Server (NTRS)
Randle, Robert J. (Inventor)
1988-01-01
An apparatus for training the human visual accommodation system is described. Specifically, the apparatus is useful for training personnel to volitionally control focus to the far point (normally infinity) from a position of myopia due to functional causes. The functional causes could be due, for example, to a behavioral accommodative spasm or the effects of an empty field. The device may also be used to measure accommodation, the accommodation resting position and the near and far points of vision. The device comprises a number of optical elements arranged on a single optical axis. Several of the elements are arranged in order on a movable stage in fixed relationship to each other: a light source, a lens, a target, an aperture and/or a second lens. On a base and in fixed relationship to each other are eyepiece and third lens. A stage generates an image of the target and the stage is movable with respect to the base by means of a knob. The device is utilized for the various training and test functions by following a series of procedural steps, and interchanging the apertures as necessary for the selected procedure.
Image registration reveals central lens thickness minimally increases during accommodation
Schachar, Ronald A; Mani, Majid; Schachar, Ira H
2017-01-01
Purpose To evaluate anterior chamber depth, central crystalline lens thickness and lens curvature during accommodation. Setting California Retina Associates, El Centro, CA, USA. Design Healthy volunteer, prospective, clinical research swept-source optical coherence biometric image registration study of accommodation. Methods Ten subjects (4 females and 6 males) with an average age of 22.5 years (range: 20–26 years) participated in the study. A 45° beam splitter attached to a Zeiss IOLMaster 700 (Carl Zeiss Meditec Inc., Jena, Germany) biometer enabled simultaneous imaging of the cornea, anterior chamber, entire central crystalline lens and fovea in the dilated right eyes of subjects before, and during focus on a target 11 cm from the cornea. Images with superimposable foveal images, obtained before and during accommodation, that met all of the predetermined alignment criteria were selected for comparison. This registration requirement assured that changes in anterior chamber depth and central lens thickness could be accurately and reliably measured. The lens radii of curvatures were measured with a pixel stick circle. Results Images from only 3 of 10 subjects met the predetermined criteria for registration. Mean anterior chamber depth decreased, −67 μm (range: −0.40 to −110 μm), and mean central lens thickness increased, 117 μm (range: 100–130 μm). The lens surfaces steepened, anterior greater than posterior, while the lens, itself, did not move or shift its position as appeared from the lack of movement of the lens nucleus, during 7.8 diopters of accommodation, (range: 6.6–9.7 diopters). Conclusion Image registration, with stable invariant references for image correspondence, reveals that during accommodation a large increase in lens surface curvatures is associated with only a small increase in central lens thickness and no change in lens position. PMID:28979092
A strong-lensing elliptical galaxy in the MaNGA survey
NASA Astrophysics Data System (ADS)
Smith, Russell J.
2017-01-01
I report discovery of a new galaxy-scale gravitational lens system, identified using public data from the Mapping Galaxies at Apache Point Observatory (MaNGA) survey, as part of a systematic search for lensed background line emitters. The lens is SDSS J170124.01+372258.0, a giant elliptical galaxy with velocity dispersion σ = 256 km s-1, at a redshift of zl = 0.122. After modelling and subtracting the target galaxy light, the integral-field data cube reveals [O II], [O III] and Hβ emission lines corresponding to a source at zs = 0.791, forming an identifiable ring around the galaxy centre. If the ring is formed by a single lensed source, then the Einstein radius is REin ≈ 2.3 arcsec, projecting to ˜5 kpc at the distance of the lens. The total projected lensing mass is MEin = (3.6 ± 0.6) × 1011 M⊙, and the total J-band mass-to-light ratio is 3.0 ± 0.7 solar units. Plausible estimates of the likely dark matter content could reconcile this with a Milky Way-like initial mass function (IMF), for which M/L ≈ 1.5 is expected, but heavier IMFs are by no means excluded with the present data. An alternative interpretation of the system, with a more complex source plane, is also discussed. The discovery of this system bodes well for future lens searches based on MaNGA and other integral-field spectroscopic surveys.
NASA Astrophysics Data System (ADS)
Scott, Jill R.; Tremblay, Paul L.
2002-03-01
Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (˜5 μm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ˜9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.
Increase in velocimeter depth of focus through astigmatism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D.J.
1995-11-01
Frequently, velocimeter targets are illuminated by a laser beam passing through a hole in a mirror. This mirror is responsible for diverting returning light from a target lens to a velocity interferometer system for any reflector. This mirror is often a significant distance from the target lens. Consequently, at certain target focus positions the returning light is strongly vignetted by the hole, causing a loss of signal. This note finds that the loss of signal can be prevented and that the useful depth can be greatly increased by attaching a cylindrical lens to the target lens. {copyright} {ital 1995} {italmore » American} {ital Institute} {ital of} {ital Physics}.« less
HST Imaging of the Eye of Horus, a Double Source Plane Gravitational Lens
NASA Astrophysics Data System (ADS)
Wong, Kenneth
2017-08-01
Double source plane (DSP) gravitational lenses are extremely rare alignments of a massive lens galaxy with two background sources at distinct redshifts. The presence of two source planes provides important constraints on cosmology and galaxy structure beyond that of typical lens systems by breaking degeneracies between parameters that vary with source redshift. While these systems are extremely valuable, only a handful are known. We have discovered the first DSP lens, the Eye of Horus, in the Hyper Suprime-Cam survey and have confirmed both source redshifts with follow-up spectroscopy, making this the only known DSP lens with both source redshifts measured. Furthermore, the brightest image of the most distant source (S2) is split into a pair of images by a mass component that is undetected in our ground-based data, suggesting the presence of a satellite or line-of-sight galaxy causing this splitting. In order to better understand this system and use it for cosmology and galaxy studies, we must construct an accurate lens model, accounting for the lensing effects of both the main lens galaxy and the intermediate source. Only with deep, high-resolution imaging from HST/ACS can we accurately model this system. Our proposed multiband imaging will clearly separate out the two sources by their distinct colors, allowing us to use their extended surface brightness distributions as constraints on our lens model. These data may also reveal the satellite galaxy responsible for the splitting of the brightest image of S2. With these observations, we will be able to take full advantage of the wealth of information provided by this system.
Echo scintillation Index affected by cat-eye target's caliber with Cassegrain lens
NASA Astrophysics Data System (ADS)
Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui
2015-10-01
The optical aperture of cat-eye target has the aperture averaging effect to the active detecting laser of active laser detection system, which can be used to identify optical targets. The echo scintillation characteristics of the transmission-type lens target have been studied in previous work. Discussing the differences of the echo scintillation characteristics between the transmission-type lens target and Cassegrain lens target can be helpful to targets classified. In this paper, the echo scintillation characteristics of Cat-eye target's caliber with Cassegrain lens has been discussed . By using the flashing theory of spherical wave in the weak atmospheric turbulence, the annular aperture filter function and the Kolmogorov power spectrum, the analytic expression of the scintillation index of the cat-eye target echo of the horizontal path two-way transmission was given when the light is normal incidence. Then the impact of turbulence inner and outer scale to the echo scintillation index and the analytic expression of the echo scintillation index at the receiving aperture were presented using the modified Hill spectrum and the modified Von Karman spectrum. Echo scintillation index shows the tendency of decreasing with the target aperture increases and different ratios of the inner and outer aperture diameter show the different echo scintillation index curves. This conclusion has a certain significance for target recognition in the active laser detection system that can largely determine the target type by largely determining the scope of the cat-eye target which depending on echo scintillation index.
Calibration Target as Seen by Mars Hand Lens Imager
2012-02-07
During pre-flight testing, the Mars Hand Lens Imager MAHLI camera on NASA Mars rover Curiosity took this image of the MAHLI calibration target from a distance of 3.94 inches 10 centimeters away from the target.
NASA Astrophysics Data System (ADS)
Teng, Dongdong; Liu, Lilin; Zhang, Yueli; Pang, Zhiyong; Wang, Biao
2014-09-01
Through the creative usage of a shiftable cylindrical lens, a wide-view-angle holographic display system is developed for medical object display in real three-dimensional (3D) space based on a time-multiplexing method. The two-dimensional (2D) source images for all computer generated holograms (CGHs) needed by the display system are only one group of computerized tomography (CT) or magnetic resonance imaging (MRI) slices from the scanning device. Complicated 3D message reconstruction on the computer is not necessary. A pelvis is taken as the target medical object to demonstrate this method and the obtained horizontal viewing angle reaches 28°.
Ptychographic imaging with partially coherent plasma EUV sources
NASA Astrophysics Data System (ADS)
Bußmann, Jan; Odstrčil, Michal; Teramoto, Yusuke; Juschkin, Larissa
2017-12-01
We report on high-resolution lens-less imaging experiments based on ptychographic scanning coherent diffractive imaging (CDI) method employing compact plasma sources developed for extreme ultraviolet (EUV) lithography applications. Two kinds of discharge sources were used in our experiments: a hollow-cathode-triggered pinch plasma source operated with oxygen and for the first time a laser-assisted discharge EUV source with a liquid tin target. Ptychographic reconstructions of different samples were achieved by applying constraint relaxation to the algorithm. Our ptychography algorithms can handle low spatial coherence and broadband illumination as well as compensate for the residual background due to plasma radiation in the visible spectral range. Image resolution down to 100 nm is demonstrated even for sparse objects, and it is limited presently by the sample structure contrast and the available coherent photon flux. We could extract material properties by the reconstruction of the complex exit-wave field, gaining additional information compared to electron microscopy or CDI with longer-wavelength high harmonic laser sources. Our results show that compact plasma-based EUV light sources of only partial spatial and temporal coherence can be effectively used for lens-less imaging applications. The reported methods may be applied in combination with reflectometry and scatterometry for high-resolution EUV metrology.
Mass analyzer ``MASHA'' high temperature target and plasma ion source
NASA Astrophysics Data System (ADS)
Semchenkov, A. G.; Rassadov, D. N.; Bekhterev, V. V.; Bystrov, V. A.; Chizov, A. Yu.; Dmitriev, S. N.; Efremov, A. A.; Guljaev, A. V.; Kozulin, E. M.; Oganessian, Yu. Ts.; Starodub, G. Ya.; Voskresensky, V. M.; Bogomolov, S. L.; Paschenko, S. V.; Zelenak, A.; Tikhonov, V. I.
2004-05-01
A new separator and mass analyzer of super heavy atoms (MASHA) has been created at the FLNR JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10-3. First experiments with the FEBIAD plasma ion source have been done and give an efficiency of ionization of up to 20% for Kr with a low flow test leak (6 particle μA). We suppose a magnetic field optimization, using the additional electrode (einzel lens type) in the extracting system, and an improving of the vacuum conditions in order to increase the ion source efficiency.
The partial coherence modulation transfer function in testing lithography lens
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2018-03-01
Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.
The Star Blended with the MOA-2008-BLG-310 Source Is Not the Exoplanet Host Star
NASA Astrophysics Data System (ADS)
Bhattacharya, A.; Bennett, D. P.; Anderson, J.; Bond, I. A.; Gould, A.; Batista, V.; Beaulieu, J. P.; Fouqué, P.; Marquette, J. B.; Pogge, R.
2017-08-01
High-resolution Hubble Space Telescope (HST) image analysis of the MOA-2008-BLG-310 microlens system indicates that the excess flux at the location of the source found in the discovery paper cannot primarily be due to the lens star because it does not match the lens-source relative proper motion, {μ }{rel}, predicted by the microlens models. This excess flux is most likely to be due to an unrelated star that happens to be located in close proximity to the source star. Two epochs of HST observations indicate proper motion for this blend star that is typical of a random bulge star but is not consistent with a companion to the source or lens stars if the flux is dominated by only one star, aside from the lens. We consider models in which the excess flux is due to a combination of an unrelated star and the lens star, and this yields a 95% confidence level upper limit on the lens star brightness of {I}L> 22.44 and {V}L> 23.62. A Bayesian analysis using a standard Galactic model and these magnitude limits yields a host star mass of {M}h={0.21}-0.09+0.21 {M}⊙ and a planet mass of {m}p={23.4}-9.9+23.9 {M}\\oplus at a projected separation of {a}\\perp ={1.12}-0.17+0.16 au. This result illustrates that excess flux in a high-resolution image of a microlens-source system need not be due to the lens. It is important to check that the lens-source relative proper motion is consistent with the microlensing prediction. The high-resolution image analysis techniques developed in this paper can be used to verify the WFIRST exoplanet microlensing survey mass measurements.
LENS: μLENS Simulations, Analysis, and Results
NASA Astrophysics Data System (ADS)
Rasco, Charles
2013-04-01
Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.
Smart optical writing head design for laser-based manufacturing
NASA Astrophysics Data System (ADS)
Amin, M. Junaid; Riza, Nabeel A.
2014-03-01
Proposed is a smart optical writing head design suitable for high precision industrial laser based machining and manufacturing applications. The design uses an Electronically Controlled Variable Focus Lens (ECVFL) which enables the highest achievable spatial resolution of writing head spot sizes for axial target distances reaching 8 meters. A proof-of-concept experiment is conducted using a visible wavelength laser with a collimated beam that is coupled to beam conditioning optics which includes an electromagnetically actuated deformable membrane liquid ECVFL cascaded with a bias convex lens of fixed focal length. Electronic tuning and control of the ECVFL keeps the laser writing head far-field spot beam radii under 1 mm that is demonstrated over a target range of 20 cm to 800 cm. Applications for the proposed writing head design, which can accommodate both continuous wave and pulsed wave sources, include laser machining, high precision industrial molding of components, as well as materials processing requiring material sensitive optical power density control.
Free-form surface design method for a collimator TIR lens.
Tsai, Chung-Yu
2016-04-01
A free-form (FF) surface design method is proposed for a general axial-symmetrical collimator system consisting of a light source and a total internal reflection lens with two coupled FF boundary surfaces. The profiles of the boundary surfaces are designed using a FF surface construction method such that each incident ray is directed (refracted and reflected) in such a way as to form a specified image pattern on the target plane. The light ray paths within the system are analyzed using an exact analytical model and a skew-ray tracing approach. In addition, the validity of the proposed FF design method is demonstrated by means of ZEMAX simulations. It is shown that the illumination distribution formed on the target plane is in good agreement with that specified by the user. The proposed surface construction method is mathematically straightforward and easily implemented in computer code. As such, it provides a useful tool for the design and analysis of general axial-symmetrical optical systems.
OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens
NASA Astrophysics Data System (ADS)
Yoo, Jaiyul; DePoy, D. L.; Gal-Yam, A.; Gaudi, B. S.; Gould, A.; Han, C.; Lipkin, Y.; Maoz, D.; Ofek, E. O.; Park, B.-G.; Pogge, R. W.; Mu-Fun Collaboration; Udalski, A.; Soszyński, I.; Wyrzykowski, Ł.; Kubiak, M.; Szymański, M.; Pietrzyński, G.; Szewczyk, O.; Żebruń, K.; OGLE Collaboration
2004-03-01
We analyze OGLE-2003-BLG-262, a relatively short (tE=12.5+/-0.1 day) microlensing event generated by a point-mass lens transiting the face of a K giant source in the Galactic bulge. We use the resulting finite-source effects to measure the angular Einstein radius, θE=195+/-17 μas, and so constrain the lens mass to the FWHM interval 0.08
NASA Astrophysics Data System (ADS)
Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Gaudi, B. S.; Henderson, C. B.; Hung, L.-W.; Jablonski, F.; Janczak, J.; Lee, C.-U.; Mallia, F.; Maury, A.; McCormick, J.; McGregor, D.; Monard, L. A. G.; Moorhouse, D.; Muñoz, J. A.; Natusch, T.; Nelson, C.; Park, B.-G.; Pogge, R. W.; "TG" Tan, T.-G.; Thornley, G.; Yee, J. C.; μFUN Collaboration; Abe, F.; Barnard, E.; Baudry, J.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Furusawa, K.; Hayashi, F.; Hearnshaw, J. B.; Hosaka, S.; Itow, Y.; Kamiya, K.; Kilmartin, P. M.; Kobara, S.; Korpela, A.; Lin, W.; Ling, C. H.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Nagaya, M.; Nishimoto, K.; Ohnishi, K.; Okumura, T.; Omori, K.; Perrott, Y. C.; Rattenbury, N.; Saito, To.; Skuljan, L.; Sullivan, D. J.; Suzuki, D.; Suzuki, K.; Sweatman, W. L.; Takino, S.; Tristram, P. J.; Wada, K.; Yock, P. C. M.; MOA Collaboration; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; OGLE Collaboration; Albrow, M. D.; Bachelet, E.; Batista, V.; Bennett, C. S.; Bowens-Rubin, R.; Brillant, S.; Cassan, A.; Cole, A.; Corrales, E.; Coutures, Ch.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Kane, S. R.; Menzies, J.; Sahu, K. C.; Wambsganss, J.; Williams, A.; Zub, M.; PLANET Collaboration; Allan, A.; Bramich, D. M.; Browne, P.; Clay, N.; Fraser, S.; Horne, K.; Kains, N.; Mottram, C.; Snodgrass, C.; Steele, I.; Tsapras, Y.; RoboNet Collaboration; Alsubai, K. A.; Bozza, V.; Burgdorf, M. J.; Calchi Novati, S.; Dodds, P.; Dreizler, S.; Finet, F.; Gerner, T.; Glitrup, M.; Grundahl, F.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Hundertmark, M.; Jørgensen, U. G.; Kerins, E.; Liebig, C.; Maier, G.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Proft, S.; Rahvar, S.; Ricci, D.; Scarpetta, G.; Schäfer, S.; Schönebeck, F.; Skottfelt, J.; Surdej, J.; Southworth, J.; Zimmer, F.; MiNDSTEp Consortium
2012-05-01
We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θE ~ 0.08 mas combined with the short timescale of t E ~ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ~0.84 M ⊙ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
Collimating lens for light-emitting-diode light source based on non-imaging optics.
Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian
2012-04-10
A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.
Wide Field Collimator 2 (WFC2) for GOES Imager and Sounder
NASA Technical Reports Server (NTRS)
Etemad, Shahriar; Bremer, James C.; Zukowski, Barbara J.; Pasquale, Bert A.; zukowski, Tmitri J.; Prince, Robert E.; O'Neill, Patrick A.; Ross, Robert W.
2004-01-01
Two of the GOES instruments, the Imager and the Sounder, perform scans of the Earth to provide a full disc picture of the Earth. To verify the entire scan process, an image of a target that covers an 18 deg. circular field-of-view is collimated and projected into the field of regard of each instrument. The Wide Field Collimator 2 (WFC2) has many advantages over its predecessor, WFC1, including lower thermal dissipation higher fir field MTF, smaller package, and a more intuitive (faster) focusing process. The illumination source is an LED array that emits in a narrow spectral band centered at 689 nm, within the visible spectral bands of the Imager and Sounder. The illumination level can be continuously adjusted electronically. Lower thermal dissipation eliminates the need for forced convection cooling and minimizes time to reach thermal stability. The lens system has been optimized for the illumination source spectral output and athernalized to remain in focus during bulk temperature changes within the laboratory environment. The MTF of the lens is higher than that of the WFC1 at the edge of FOV. The target is focused in three orthogonal motions, controlled by an ergonomic system that saves substantial time and produces a sharper focus. Key words: Collimator, GOES, Imager, Sounder, Projector
Development of a MeV proton beam irradiation system.
Park, Bum-Sik; Cho, Yong-Sub; Hong, In-Seok
2008-02-01
A proton beam irradiation system for the application of the MeV class proton beam, such as an implantation for a power semiconductor device and a smart-cut technology for a semiconductor production process, has been developed. This system consists of a negative ion source, an Einzel lens for a low energy beam transport, accelerating tubes, a gas stripper, a Cockroft-Walton high voltage power supply with 1 MV, a vacuum pumping system, and a high pressure insulating gas system. The negative hydrogen ion source is based on TRIUMF's design. Following the tandem accelerator, a pair of magnets is installed for raster scanning of the MeV proton beam to obtain a uniform irradiation pattern on the target. The system is 7 m long from the ion source to the target and is optimized for the proton beam irradiation. The details of the system development will be described.
Plant chlorophyll content meter
NASA Technical Reports Server (NTRS)
Spiering, Bruce A. (Inventor); Carter, Gregory A. (Inventor)
2000-01-01
A plant chlorophyll content meter is described which collects light reflected from a target plant and separates the collected light into two different wavelength bands. These wavelength bands, or channels, are described as having center wavelengths of 700 nm and 840 nm. The light collected in these two channels are processed using photo detectors and amplifiers. An analog to digital converter is described which provides a digital representation of the level of light collected by the lens and falling within the two channels. A controller provided in the meter device compares the level of light reflected from a target plant with a level of light detected from a light source, such as light reflected by a target having 100% reflectance, or transmitted through a diffusion receptor. The percent of reflection in the two separate wavelength bands from a target plant are compared to provide a ratio which indicates a relative level of plant physiological stress. A method of compensating for electronic drift is described where a sample is taken when a collection lens is covered to prevent light from entering the device. This compensation method allows for a more accurate reading by reducing error contributions due to electronic drift from environmental conditions at the location where a hand-held unit is used.
Three-dimensional microscope tracking system using the astigmatic lens method and a profile sensor
NASA Astrophysics Data System (ADS)
Kibata, Hiroki; Ishii, Katsuhiro
2018-03-01
We developed a three-dimensional microscope tracking system using the astigmatic lens method and a profile sensor, which provides three-dimensional position detection over a wide range at the rate of 3.2 kHz. First, we confirmed the range of target detection of the developed system, where the range of target detection was shown to be ± 90 µm in the horizontal plane and ± 9 µm in the vertical plane for a 10× objective lens. Next, we attempted to track a motion-controlled target. The developed system kept the target at the center of the field of view and in focus up to a target speed of 50 µm/s for a 20× objective lens. Finally, we tracked a freely moving target. We successfully demonstrated the tracking of a 10-µm-diameter polystyrene bead suspended in water for 40 min. The target was kept in the range of approximately 4.9 µm around the center of the field of view. In addition, the vertical direction was maintained in the range of ± 0.84 µm, which was sufficiently within the depth of focus.
NASA Astrophysics Data System (ADS)
Chu, Jiyoung; Cho, Sungwhi; Joo, Won Don; Jang, Sangdon
2017-08-01
One of the most popular methods for high precision lens assembly of an optical system is using an autocollimator and a rotation stage. Some companies provide software for calculating the state of the lens along with their lens assembly systems, but the calculation algorithms used by the software are unknown. In this paper, we suggest a calculation method for lens alignment errors using ray transfer matrices. Alignment errors resulting from tilting and decentering of a lens element can be calculated from the tilts of the front and back surfaces of the lens. The tilt of each surface can be obtained from the position of the reticle image on the CCD camera of the autocollimator. Rays from a reticle of the autocollimator are reflected from the target surface of the lens, which rotates with the rotation stage, and are imaged on the CCD camera. To obtain a clear image, the distance between the autocollimator and the first lens surface should be adjusted according to the focusing lens of the autocollimator and the lens surfaces from the first to the target surface. Ray propagations for the autocollimator and the tilted lens surfaces can be expressed effectively by using ray transfer matrices and lens alignment errors can be derived from them. This method was compared with Zemax simulation for various lenses with spherical or flat surfaces and the error was less than a few percent.
King, R.F.; Moak, C.D.; Parker, V.E.
1960-10-11
A device for generating ions in an ion source, forming the ions into a stream, deflecting the stream rapidly away from and back to its normal path along the axis of a cylindrical housing, and continually focusing the stream by suitable means into a sharp, intermittent beam along the axis is described. The beam exists through an axial aperture into a lens which focuses it into an accelerator tube. The ions in each burst are there accelerated to very high energies and are directed against a target placed in the high-energy end of the tube. Radiations from the target can then be analyzed in the interval between incidence of the bursts of ions on the target.
Large aperture diffractive space telescope
Hyde, Roderick A.
2001-01-01
A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.
Harrison, Thomas R.
1989-08-22
A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation cirtcuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance form the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.
Newborn mouse lens proteome and its alteration by lysine 6 mutant ubiquitin
USDA-ARS?s Scientific Manuscript database
Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. T...
Electron gun using carbon-nanofiber field emitter.
Sakai, Y; Haga, A; Sugita, S; Kita, S; Tanaka, S-I; Okuyama, F; Kobayashi, N
2007-01-01
An electron gun constructed using carbon-nanofiber (CNF) emitters and an electrostatic Einzel lens system has been characterized for the development of a high-resolution x-ray source. The CNFs used were grown on tungsten and palladium tips by plasma-enhanced chemical-vapor deposition. Electron beams with the energies of 10
Design of tracking and detecting lens system by diffractive optical method
NASA Astrophysics Data System (ADS)
Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei
2016-10-01
Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.
Lenstronomy: Multi-purpose gravitational lens modeling software package
NASA Astrophysics Data System (ADS)
Birrer, Simon; Amara, Adam
2018-04-01
Lenstronomy is a multi-purpose open-source gravitational lens modeling python package. Lenstronomy reconstructs the lens mass and surface brightness distributions of strong lensing systems using forward modelling and supports a wide range of analytic lens and light models in arbitrary combination. The software is also able to reconstruct complex extended sources as well as point sources. Lenstronomy is flexible and numerically accurate, with a clear user interface that could be deployed across different platforms. Lenstronomy has been used to derive constraints on dark matter properties in strong lenses, measure the expansion history of the universe with time-delay cosmography, measure cosmic shear with Einstein rings, and decompose quasar and host galaxy light.
Integral freeform illumination lens design of LED based pico-projector.
Zhao, Shuang; Wang, Kai; Chen, Fei; Qin, Zong; Liu, Sheng
2013-05-01
In this paper, an illumination lens design for a LED-based pico-projector is presented. Different from the traditional illumination systems composed by lens group, the integral illumination lens consists of a total internal reflector (TIR) and a freeform surface. TIR acts as collimation lens and its top surface formed by a freeform surface reshapes the nonuniform circular light pattern generated by TIR to be rectangular and uniform. Diameter and height of the lens are 16 and 10 mm, respectively. An optimization method to deal with the problem of extended light source is also presented in detail in this paper. According to the simulation results of the final optimized lens, 77% (neglecting the effect of polarization) of the power of light source is collected on liquid crystal on silicon panel with a 16∶9 ratio and illumination uniformity achieves 92%.
Gorenstein, M V; Shapiro, I I; Cohen, N L; Corey, B E; Falco, E E; Marcaide, J M; Rogers, A E; Whitney, A R; Porcas, R W; Preston, R A; Rius, A
1983-01-07
By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q09S7+561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +/- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives.
Development of three-dimensional tracking system using astigmatic lens method for microscopes
NASA Astrophysics Data System (ADS)
Kibata, Hiroki; Ishii, Katsuhiro
2017-07-01
We have developed a three-dimensional tracking system for microscopes. Using the astigmatic lens method and a CMOS image sensor, we realize a rapid detection of a target position in a wide range. We demonstrate a target tracking using the developed system.
NASA Astrophysics Data System (ADS)
Forest Stephens, Haynes; Lu, Jessica
2018-01-01
Stellar-mass black holes (BHs) are predicted to be abundant in the Milky Way (N=10^8 - 10^9) but only a few dozen have been detected observationally, all of which are in binary systems and actively accreting. Isolated BHs have yet to be detected. One method for attempting to detect isolated BHs is via gravitational microlensing; when a BH passes in front of a star and briefly magnifies the star's observed brightness. However, during a microlensing event, there is no certain method for determining whether the lens is a BH or another star. We present follow-up observations of two microlensing events, MACHO-1996-BLG-5 and MACHO-1998-BLG-6, which were observed in 1996 and 1998, respectively, and are both long-duration events with a high probability that the lens is a black hole. The closest projected approach between the source and lens was over 20 years ago. If the lens is an isolated BH, then the source and lens should have moved apart enough to be resolved with high-resolution imaging. Using adaptive optics images from the W. M. Keck Observatory, we observed the two candidates in 2016 July. No new sources were found within 0.3 arcseconds of the lensed source, a reasonable angular distance considering the maximum possible relative proper motion of the lens and source. We will present constraints on the lens mass, distance, and proper motion for both microlensing candidates, and explore the likelihood that the lenses are isolated BHs.
Space Optical Communications Using Laser Beams
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor)
2017-01-01
A system for communicating between an object in space and a ground station, between objects in space, or between ground stations, includes a telecentric lens. Photodetectors positioned upon a focal plane of the telecentric lens detect an inbound light beam, received from a source, that has passed through the telecentric lens to the focal plane. Lasers positioned upon the focal plane transmit light beams from the focal plane through the telecentric lens to an area that includes the source of the inbound light beam. A processor detect signals from individual photodetectors corresponding to light detected, and selectively signals individual lasers that are close to those photodetectors, resulting in a returning beam that arrives close to the source, and which carries encoded data.
NASA Astrophysics Data System (ADS)
Lavelle, Christopher M.
Neutron scattering research is performed primarily at large-scale facilities. However, history has shown that smaller scale neutron scattering facilities can play a useful role in education and innovation while performing valuable materials research. This dissertation details the design and experimental validation of the LENS TMR as an example for a small scale accelerator driven neutron source. LENS achieves competitive long wavelength neutron intensities by employing a novel long pulse mode of operation, where the neutron production target is irradiated on a time scale comparable to the emission time of neutrons from the system. Monte Carlo methods have been employed to develop a design for optimal production of long wavelength neutrons from the 9Be(p,n) reaction at proton energies ranging from 7 to 13 MeV proton energy. The neutron spectrum was experimentally measured using time of flight, where it is found that the impact of the long pulse mode on energy resolution can be eliminated at sub-eV neutron energies if the emission time distribution of neutron from the system is known. The emission time distribution from the TMR system is measured using a time focussed crystal analyzer. Emission time of the fundamental cold neutron mode is found to be consistent with Monte Carlo results. The measured thermal neutron spectrum from the water reflector is found to be in agreement with Monte Carlo predictions if the scattering kernels employed are well established. It was found that the scattering kernels currently employed for cryogenic methane are inadequate for accurate prediction of the cold neutron intensity from the system. The TMR and neutronic modeling have been well characterized and the source design is flexible, such that it is possible for LENS to serve as an effective test bed for future work in neutronic development. Suggestions for improvements to the design that would allow increased neutron flux into the instruments are provided.
NASA Astrophysics Data System (ADS)
Marchetti, Lucia
2017-08-01
We propose WFC3/IR F110W Snapshot observations of 200 gravitational lensing systems selected using Herschel submm data taken in all the major Herschel extragalactic surveys (over 850 square degrees). This proposal aims to build upon the successful results of our cycle-19 snapshot (ID:12488) to complete the study of the brightest lensed galaxies ever discovered by Herschel in the Equatorial and Southern Sky. Our successful submm-based selection method identifies lensing events at much higher redshift than any other optical-based selection and is independent of the nature of the magnifier. With these data we will (1) characterize the morphology of the lenses and thus statistically determine what populations are responsible for the gravitational optical depth of the Universe, (2) make accurate fits to the lens light profiles disentangling the foreground lenses from the background sources (3) constrain (and in some cases directly detect) the rest-frame optical emission from the background sources providing estimates of the background source extinction, (4) identify the most extreme star-forming galaxies and rare lensing configurations in the Universe providing the best candidates for future ALMA follow-up, (5) measure the evolution of both the lens mass-density profile, constraing their assembly history, and the lens IMF. This HST program is well-timed with our on-going large spectroscopic program with SALT (3-year program, started in late 2015). This synergy guarantees the timely spectroscopic characterization of our targets securing a long-lasting legacy for this program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnello, A.; et al.
We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epochmore » $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $$\\approx0.8$$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($$R_{\\rm E}\\approx0.2$$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $$\\approx 6\\times10^{11}M_{\\odot},$$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $$\\approx 85$$ (resp. $$\\approx125$$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less
Models of the strongly lensed quasar DES J0408−5354
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnello, A.; et al.
We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epochmore » $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $$\\approx0.8$$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($$R_{\\rm E}\\approx0.2$$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $$\\approx 6\\times10^{11}M_{\\odot},$$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $$\\approx 85$$ (resp. $$\\approx125$$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less
Magnetic lens apparatus for a low-voltage high-resolution electron microscope
Crewe, Albert V.
1996-01-01
A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.
A HIGHLY ELONGATED PROMINENT LENS AT z = 0.87: FIRST STRONG-LENSING ANALYSIS OF EL GORDO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitrin, Adi; Menanteau, Felipe; Hughes, John P.
We present the first strong-lensing (SL) analysis of the galaxy cluster ACT-CL J0102-4915 (El Gordo), in recent HST/ACS images, revealing a prominent strong lens at a redshift of z = 0.87. This finding adds to the already-established unique properties of El Gordo: it is the most massive, hot, X-ray luminous, and bright Sunyaev-Zeldovich effect cluster at z {approx}> 0.6, and the only {sup b}ullet{sup -}like merging cluster known at these redshifts. The lens consists of two merging massive clumps, where, for a source redshift of z{sub s} {approx} 2, each clump exhibits only a small, separate critical area, with amore » total area of 0.69 {+-} 0.11{open_square}' over the two clumps. For a higher source redshift, z{sub s} {approx} 4, the critical curves of the two clumps merge together into one bigger and very elongated lens (axis ratio {approx_equal} 5.5), enclosing an effective area of 1.44 {+-} 0.22{open_square}'. The critical curves continue expanding with increasing redshift so that for high-redshift sources (z{sub s} {approx}> 9) they enclose an area of {approx}1.91 {+-} 0.30{open_square}' (effective {theta}{sub e} {approx_equal} 46.''8 {+-} 3.''7) and a mass of 6.09 {+-} 1.04 Multiplication-Sign 10{sup 14} M{sub Sun }. According to our model, the area of high magnification ({mu} > 10) for such high-redshift sources is {approx_equal}1.2{open_square}', and the area with {mu} > 5 is {approx_equal}2.3{open_square}', making El Gordo a compelling target for studying the high-redshift universe. We obtain a strong lower limit on the total mass of El Gordo, {approx}> 1.7 Multiplication-Sign 10{sup 15} M{sub Sun} from the SL regime alone, suggesting a total mass of roughly M{sub 200} {approx} 2.3 Multiplication-Sign 10{sup 15} M{sub Sun }. Our results should be revisited when additional spectroscopic and HST imaging data are available.« less
Dual FOV infrared lens design with the laser common aperture optics
NASA Astrophysics Data System (ADS)
Chang, Wei-jun; Zhang, Xuan-zhi; Luan, Ya-dong; Zhang, Bo
2015-02-01
With the demand of autonomous precision guidance of air defense missile, the system scheme of the IR imaging/Ladar dual-mode seeker with a common aperture was proposed, and the optical system used in was designed. The system had a common receiving aperture, and its structure was very compact, so it could meet the requirement for the miniaturization of the seeker. Besides, it also could meet the demands of a wide field of view for searching target, and the demands for accurately recognizing and tracking the target at the same time. In order to increase the narrow FOV tracking performance, the dual FOV infrared optical used the zooming mode which some components flip in or out the optical system to firm the target signal. The dual FOV optics are divided into the zooming part, with dual variable focal length, and the reimaging part which was chosen in such a way to minimize the objective lens while maintaining 100% cold shield efficiency. The final infrared optics including 4°×3°(NFOV) and 16°×12°(WFOV) was designed. The NFOV lens composed of two common IR/Ladar lens, three relay lens, a beam splitter and two reflective fold mirrors, while WFOV lens increased two lens such as Germanium and Silicon. The common IR/Ladar lens ZnS and ZnSe could refractive the IR optics and Laser optics. The beam splitter which refractived IR optics and reflected Laser optics was located in the middle of Germanium and Silicon. The designed optical system had good image quality, and fulfilled the performance requirement of seeker system.
Aberration design of zoom lens systems using thick lens modules.
Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi
2014-12-20
A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.
NASA Astrophysics Data System (ADS)
Hudson, Michael J.; Gwyn, Stephen D. J.; Dahle, Håkon; Kaiser, Nick
1998-08-01
A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity. The typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/- 40 km s-1 at MB = -18.5, if q0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.
Computational Ghost Imaging for Remote Sensing
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.
2012-01-01
This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In CGI, the measurement obtained from the reference arm (with the high-resolution detector) is replaced by a computational derivation of the measurement-plane intensity profile of the reference-arm beam. The algorithms applied to computational ghost imaging have diversified beyond simple correlation measurements, and now include modern reconstruction algorithms based on compressive sensing.
NASA Astrophysics Data System (ADS)
Michaelis, D.; Schreiber, P.; Li, C.; Bräuer, A.; Gross, H.
2015-09-01
The concept of multichannel array projection is generalized in order to realize an ultraslim, highly efficient optical system for structured illumination with high lumen output, where additionally the Köhler illumination principle is utilized and source light homogenization occurs. The optical system consists of a multitude of neighboring optical channels. In each channel two optical freeforms generate a real or a virtual spatial light pattern and furthermore, the ray directions are modified to enable Köhler illumination of a subsequent projection lens. The internal light pattern may be additionally influenced by absorbing apertures or slides. The projection lens transfers the resulting light pattern to a target, where the total target distribution is produced by superposition of all individual channel output pattern. The optical system without absorbing apertures can be regarded as a generalization of a fly's eye condenser for structured illumination. In this case light pattern is exclusively generated by freeform light redistribution. The commonly occurring blurring effect for freeform beamshaping is reduced due to the creation of a virtual object light structure by means of the two freeform surfaces and its imaging towards the target. But, the remaining blurring inhibits very high spatial frequencies at the target. In order to create target features with very high spatial resolution the absorbing apertures can be utilized. In this case the freeform beamshaping can be used for an enhanced light transmission through the absorbing apertures. The freeform surfaces are designed by a generalized approach of Cartesian oval representation.
Freeform lens generation for quasi-far-field successive illumination targets
NASA Astrophysics Data System (ADS)
Zhuang, Zhenfeng; Thibault, Simon
2018-07-01
A predefined mapping to tailor one or more freeform surfaces is employed to build a freeform illumination system. The emergent rays from the light source corresponding to the prescribed target mesh for a pre-determined lighting distance are mapped by a point-to-point algorithm with respect to the freeform optics, which involves limiting design flexibility. To tackle the problem of design limitation and find the optimum design results, a freeform lens is exploited to produce the desired rectangular illumination distribution at successive target planes at quasi-far-field lighting distances. It is generated using numerical solutions to find out an initial starting point, and an appropriate approach to obtain variables for parameterization of the freeform surface is introduced. The relative standard deviation, which is a useful figure of merit for the analysis, is set up as merit function with respect to illumination non-uniformity at the successive sampled target planes. Therefore, the irradiance distribution in terms of the specific lighting distance range can be ensured by the proposed scheme. A design example of a freeform illumination system, composed of a spherical surface and a freeform surface, is given to produce desired irradiance distribution within the lighting distance range. An optical performance with low non-uniformity and high efficiency is achieved. Compared with the conventional approach, the uniformity of the sampled targets is dramatically enhanced; meanwhile, a design result with a large tolerance of LED size is offered.
Patton, Gail Y.; Torgerson, Darrel D.
1987-01-01
An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.
A Neptune-mass Free-floating Planet Candidate Discovered by Microlensing Surveys
NASA Astrophysics Data System (ADS)
Mróz, Przemek; Ryu, Y.-H.; Skowron, J.; Udalski, A.; Gould, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Pawlak, M.; Ulaczyk, K.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Jung, Y. K.; Han, C.; Hwang, K.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration
2018-03-01
Current microlensing surveys are sensitive to free-floating planets down to Earth-mass objects. All published microlensing events attributed to unbound planets were identified based on their short timescale (below two days), but lacked an angular Einstein radius measurement (and hence lacked a significant constraint on the lens mass). Here, we present the discovery of a Neptune-mass free-floating planet candidate in the ultrashort (t E = 0.320 ± 0.003 days) microlensing event OGLE-2016-BLG-1540. The event exhibited strong finite-source effects, which allowed us to measure its angular Einstein radius of θ E = 9.2 ± 0.5 μas. There remains, however, a degeneracy between the lens mass and distance. The combination of the source proper motion and source-lens relative proper motion measurements favors a Neptune-mass lens located in the Galactic disk. However, we cannot rule out that the lens is a Saturn-mass object belonging to the bulge population. We exclude stellar companions up to ∼15 au.
Beam steering performance of compressed Luneburg lens based on transformation optics
NASA Astrophysics Data System (ADS)
Gao, Ju; Wang, Cong; Zhang, Kuang; Hao, Yang; Wu, Qun
2018-06-01
In this paper, two types of compressed Luneburg lenses based on transformation optics are investigated and simulated using two different sources, namely, waveguides and dipoles, which represent plane and spherical wave sources, respectively. We determined that the largest beam steering angle and the related feed point are intrinsic characteristics of a certain type of compressed Luneburg lens, and that the optimized distance between the feed and lens, gain enhancement, and side-lobe suppression are related to the type of source. Based on our results, we anticipate that these lenses will prove useful in various future antenna applications.
Sensitive glow discharge ion source for aerosol and gas analysis
Reilly, Peter T. A. [Knoxville, TN
2007-08-14
A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.
Harrison, T.R.
1987-07-10
A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, T.R.
1987-07-10
A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the lightmore » pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, T.R.
1989-08-22
A proximity fuze system is described. It includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal dependingmore » upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.« less
NASA Astrophysics Data System (ADS)
Wang, Ying; Chen, Anmin; Wang, Qiuyun; Sui, Laizhi; Ke, Da; Cao, Sheng; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing
2018-03-01
In this study, the influence of distance between the focusing lens and target surface on the plasma temperature of copper induced by a Nd:YAG laser was investigated in the atmosphere. The plasma temperature was calculated by using the Cu (I) lines (510.55 nm, 515.32 nm, and 521.82 nm). The Cu (I) lines were recorded under different lens-to-sample distances and laser pulse energies (15.8 mJ, 27.0 mJ, 43.4 mJ, 59.2 mJ, and 76.8 mJ). The results indicated that the plasma temperature depended strongly on the distance between the focusing lens and target surface. With the increase in the distance, the plasma temperature firstly rose, and then dropped. This could be attributed to the interaction between the tailing of the nanosecond laser pulse and the front portion of the plasma plume, the plasma shielding effect, and the expanding of the plasma. In addition, there was an interesting phenomenon that the plasma temperature and the emission intensity were not completely consistent with the change of the lens-to-sample distance. It is hoped that our research will provide a deeper insight into the underlying physical processes.
Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi
2014-10-20
Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.
Isochoric heating of solid gold targets with the PW-laser-driven ion beams
NASA Astrophysics Data System (ADS)
Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim
2016-10-01
We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalantar, D.
This document provides information on the distribution of unconverted light in the National Ignition Facility (NIF) target chamber with the wedged final focus lens that has been adopted by the NIF project. It includes a comparison of the wedged lens configuration with the color separation grating (CSG). There are significant benefits to the wedged lens design as it greatly simplifies experiment design.
Endobronchial Photoacoustic Microscopy for Staging of Lung Cancer
2016-08-01
acoustic lens: (1) Three hairs were buried at different depths within the background phantom with 4mm distance between each hair . The advantage of this...and carried out tests to demonstrate this advantage using human hair as micro-scale targets (Figure 4). The targets were buried in a background with...the signal from the hair targets. The 30MHz transducer has outer diameter 11mm, and was equipped with corresponding lens whose apertures fit its outer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.
We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median i -band limiting magnitude for extended objects (10 σ ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an i -band limiting magnitude for extended objects (10 σ ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified basedmore » on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.« less
NASA Astrophysics Data System (ADS)
Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Collett, T. E.; Furlanetto, C.; Gill, M. S. S.; More, A.; Nightingale, J.; Odden, C.; Pellico, A.; Tucker, D. L.; da Costa, L. N.; Fausti Neto, A.; Kuropatkin, N.; Soares-Santos, M.; Welch, B.; Zhang, Y.; Frieman, J. A.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nugent, P.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; DES Collaboration
2017-09-01
We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median I-band limiting magnitude for extended objects (10σ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an I-band limiting magnitude for extended objects (10σ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified based on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.
Improved illumination system of laparoscopes using an aspherical lens array.
Wu, Rengmao; Qin, Yi; Hua, Hong
2016-06-01
The current fiber-based illumination systems of laparoscopes are unable to uniformly illuminate a large enough area in abdomen due to the limited numerical aperture (NA) of the fiber bundle. Most energy is concentrated in a small region at the center of the illumination area. This limitation becomes problematic in laparoscopes which require capturing a wide field of view. In this paper, we propose an aspherical lens array which is used to direct the outgoing rays from the fiber bundle of laparoscope to produce a more uniformly illuminated, substantially larger field coverage than standalone fiber source. An intensity feedback method is developed to design the aspherical lens unit for extended non-Lambertian sources, which is the key to the design of this lens array. By this method, the lens unit is obtained after only one iteration, and the lens array is constructed by Boolean operation. Then, the ray-tracing technique is used to verify the design. Further, the lens array is fabricated and experimental tests are performed. The results clearly show that the well-illuminated area is increased to about 0.107m(2) from 0.02m(2) (about 5x larger than a standard fiber illumination source). More details of the internal organs can be clearly observed under this improved illumination condition, which also reflects the significant improvement in the optical performance of the laparoscope.
Holographic Optics for Missile Guidance Systems.
1978-12-20
according to SnelPs Law when the ray encounters a change in index of refraction (i.e., a change in the speed of light ). Conventional lenses and prisms are...AA ’ to change the magnification of the system , or individual light sources may be used to address each lens group . Each lens group consists of four...individual lens elements. Element I collimates the light from a source H, 17—mm away . Element II uses the collimated light beam , 8 —. now propagat
NASA Astrophysics Data System (ADS)
Li, Bo; Charan, Kriti; Wang, Ke; Sinefeld, David; Xu, Chris
2017-02-01
We demonstrate a robust, all-fiber, two-wavelength time-lens source for background-free coherent anti-Stokes Raman scattering (CARS) imaging. The time-lens source generates two picosecond pulse trains simultaneously: one at 1064 nm and the other tunable between 1040 nm and 1075 nm ( 400 mW for each wavelength). When synchronized to a modelocked Ti:Sa laser, the two wavelengths are used to obtain on- and off-resonance CARS images. Real-time subtraction of the nonresonant background in the CARS image is achieved by the synchronization of the pixel clock and the time-lens source. Background-free CARS imaging of sebaceous glands in ex vivo mouse tissue is demonstrated.
NASA Astrophysics Data System (ADS)
Tanaka, Masayuki; Wong, Kenneth C.; More, Anupreeta; Dezuka, Arsha; Egami, Eiichi; Oguri, Masamune; Suyu, Sherry H.; Sonnenfeld, Alessandro; Higuchi, Ryo; Komiyama, Yutaka; Miyazaki, Satoshi; Onoue, Masafusa; Oyamada, Shuri; Utsumi, Yousuke
2016-08-01
We report the serendipitous discovery of HSC J142449-005322, a double source plane lens system in the Hyper Suprime-Cam Subaru Strategic Program. We dub the system Eye of Horus. The lens galaxy is a very massive early-type galaxy with stellar mass of ˜ 7× {10}11 {M}⊙ located at {z}{{L}}=0.795. The system exhibits two arcs/rings with clearly different colors, including several knots. We have performed spectroscopic follow-up observations of the system with FIRE on Magellan. The outer ring is confirmed at {z}{{S}2}=1.988 with multiple emission lines, while the inner arc and counterimage is confirmed at {z}{{S}1}=1.302. This makes it the first double source plane system with spectroscopic redshifts of both sources. Interestingly, redshifts of two of the knots embedded in the outer ring are found to be offset by {{Δ }}z=0.002 from the other knots, suggesting that the outer ring consists of at least two distinct components in the source plane. We perform lens modeling with two independent codes and successfully reproduce the main features of the system. However, two of the lensed sources separated by ˜0.7 arcsec cannot be reproduced by a smooth potential, and the addition of substructure to the lens potential is required to reproduce them. Higher-resolution imaging of the system will help decipher the origin of this lensing feature and potentially detect the substructure.
Analysis of the effect on optical equipment caused by solar position in target flight measure
NASA Astrophysics Data System (ADS)
Zhu, Shun-hua; Hu, Hai-bin
2012-11-01
Optical equipment is widely used to measure flight parameters in target flight performance test, but the equipment is sensitive to the sun's rays. In order to avoid the disadvantage of sun's rays directly shines to the optical equipment camera lens when measuring target flight parameters, the angle between observation direction and the line which connects optical equipment camera lens and the sun should be kept at a big range, The calculation method of the solar azimuth and altitude to the optical equipment at any time and at any place on the earth, the equipment observation direction model and the calculating model of angle between observation direction and the line which connects optical equipment camera lens are introduced in this article. Also, the simulation of the effect on optical equipment caused by solar position at different time, different date, different month and different target flight direction is given in this article.
Sources of perceived responsiveness in family relationships.
Cook, William L; Dezangré, Marie; De Mol, Jan
2018-05-10
Perceived responsiveness has become one of the most important constructs in the relationship sciences. It is central to the development of a secure attachment style, the experience of social support, an internal locus of control, and the sense of control in close relationships. Conversely, an unresponsive environment is associated with learned helplessness and depression. Viewed through the lens of the social relations model (SRM), perceived responsiveness in family relationships could have multiple sources: the perceiver; the target or partner; the perceiver-target relationship; and the family group. This study used the SRM to determine the relative importance of these sources of perceived responsiveness in the relationships of 207 two-parent two-child families. Characteristics of the perceiver and the target each accounted for about 25% of the systematic variance in perceived responsiveness, whereas the perceiver-target relationship accounted for approximately 48%. At the individual level of analysis, reciprocity of perceived responsiveness was pervasive in the family relationships of the two children. Regardless of age, young people who generally perceived others as responsive were generally perceived by others as responsive. At the dyadic level of analysis, reciprocity was present in two dyads: mother-father and older child-younger child. Reliable target variances support the view that perceived responsiveness is not just "inside the head" of the perceiver, and reciprocity correlations suggest potentially useful systemic interventions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Discovery of a Gas Giant Planet in Microlensing Event Ogle-2014-BLG-1760
NASA Technical Reports Server (NTRS)
Bhattacharya, A.; Bennett, D. P.; Bond, I. A.; Sumi, T.; Udalski, A.; Street, R.; Tsapras, Y.; Abe, F.; Freeman, M.; Fukui, A.
2016-01-01
We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light-curve signal due to the presence of a Jupiter mass ratio planet. One unusual feature of this event is that the source star is quite blue, with V-I = 1.48 +/- 0.08. This is marginally consistent with a source star in the Galactic bulge, but it could possibly indicate a young source star on the far side of the disk. Assuming a bulge source, we perform a Bayesian analysis assuming a standard Galactic model, and this indicates that the planetary system resides in or near the Galactic bulge at D(sub L) = 6.9 +/- 1.1 kpc. It also indicates a host-star mass of M(sub *) = 0.51(sup + 0.44/sub -0.28) M(sub theta), a planet mass of m(sub p ) = 0.56(sup +0.34/sub -0.26) M(sub J), and a projected star-planet separation of a(perpendicular) = 1.75(sup +0.33/sub -0.34) au. The lens-source relative proper motion is micro(sub rel) = 6.5 +/- 1.1mas per yr. The lens (and stellar host star) is estimated to be very faint compared to the source star, so it is most likely that it can be detected only when the lens and source stars start to separate. Due to the relatively high relative proper motion, the lens and source will be resolved to about approximately 46 mas in 6-8 yr after the peak magnification. So, by 2020-2022, we can hope to detect the lens star with deep, high-resolution images.
Inoue, Makoto; Noda, Toru; Mihashi, Toshifumi; Ohnuma, Kazuhiko; Bissen-Miyajima, Hiroko; Hirakata, Akito
2011-04-01
To evaluate the quality of the image of a grating target placed in a model eye viewed through multifocal intraocular lenses (IOLs). Laboratory investigation. Refractive (NXG1 or PY60MV) or diffractive (ZM900 or SA60D3) multifocal IOLs were placed in a fluid-filled model eye with human corneal aberrations. A United States Air Force resolution target was placed on the posterior surface of the model eye. A flat contact lens or a wide-field contact lens was placed on the cornea. The contrasts of the gratings were evaluated under endoillumination and compared to those obtained through a monofocal IOL. The grating images were clear when viewed through the flat contact lens and through the central far-vision zone of the NXG1 and PY60MV, although those through the near-vision zone were blurred and doubled. The images observed through the central area of the ZM900 with flat contact lens were slightly defocused but the images in the periphery were very blurred. The contrast decreased significantly in low frequencies (P<.001). The images observed through the central diffractive zone of the SA60D3 were slightly blurred, although the images in the periphery were clearer than that of the ZM900. The images were less blurred in all of the refractive and diffractive IOLs with the wide-field contact lens. Refractive and diffractive multifocal IOLs blur the grating target but less with the wide-angle viewing system. The peripheral multifocal optical zone may be more influential on the quality of the images with contact lens system. Copyright © 2011 Elsevier Inc. All rights reserved.
Design method of freeform light distribution lens for LED automotive headlamp based on DMD
NASA Astrophysics Data System (ADS)
Ma, Jianshe; Huang, Jianwei; Su, Ping; Cui, Yao
2018-01-01
We propose a new method to design freeform light distribution lens for light-emitting diode (LED) automotive headlamp based on digital micro mirror device (DMD). With the Parallel optical path architecture, the exit pupil of the illuminating system is set in infinity. Thus the principal incident rays of micro lens in DMD is parallel. DMD is made of high speed digital optical reflection array, the function of distribution lens is to distribute the emergent parallel rays from DMD and get a lighting pattern that fully comply with the national regulation GB 25991-2010.We use DLP 4500 to design the light distribution lens, mesh the target plane regulated by the national regulation GB 25991-2010 and correlate the mesh grids with the active mirror array of DLP4500. With the mapping relations and the refraction law, we can build the mathematics model and get the parameters of freeform light distribution lens. Then we import its parameter into the three-dimensional (3D) software CATIA to construct its 3D model. The ray tracing results using Tracepro demonstrate that the Illumination value of target plane is easily adjustable and fully comply with the requirement of the national regulation GB 25991-2010 by adjusting the exit brightness value of DMD. The theoretical optical efficiencies of the light distribution lens designed using this method could be up to 92% without any other auxiliary lens.
Apparatus for precision focussing and positioning of a beam waist on a target
NASA Technical Reports Server (NTRS)
Lynch, Dana H. (Inventor); Gunter, William D. (Inventor); Mcalister, Kenneth W. (Inventor)
1991-01-01
The invention relates to optical focussing apparatus and, more particularly, to optical apparatus for focussing a highly collimated Gaussian beam which provides independent and fine control over the focus waist diameter, the focus position both along the beam axis and transverse to the beam, and the focus angle. A beam focussing and positioning apparatus provides focussing and positioning for the waist of a waisted beam at a desired location on a target such as an optical fiber. The apparatus includes a first lens, having a focal plane f sub 1, disposed in the path of an incoming beam and a second lens, having a focal plane f sub 2 and being spaced downstream from the first lens by a distance at least equal to f sub 1 + 10 f sub 2, which cooperates with the first lens to focus the waist of the beam on the target. A rotatable optical device, disposed upstream of the first lens, adjusts the angular orientation of the beam waist. The transverse position of the first lens relative to the axis of the beam is varied to control the transverse position of the beam waist relative to the target (a fiber optic as shown) while the relative axial positions of the lenses are varied to control the diameter of the beam waist and to control the axial position of the beam waist. Mechanical controllers C sub 1, C sub 2, C sub 3, C sub 4, and C sub 5 control the elements of the optical system. How seven adjustments can be made to correctly couple a laser beam into an optical fiber is illustrated. Prior art systems employing optical techniques to couple a laser beam into an optical fiber or other target simply do not provide the seven necessary adjustments. The closest known prior art, a Newport coupler, provides only two of the seven required adjustments.
Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Kun; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang
2015-01-14
Based on the Huygens-Fresnel principle, we design a planar lens to efficiently realize the interconversion between the point-like sound source and Gaussian beam in ambient air. The lens is constructed by a planar plate perforated elaborately with a nonuniform array of zigzag slits, where the slit exits act as subwavelength-sized secondary sources carrying desired sound responses. The experiments operated at audible regime agree well with the theoretical predictions. This compact device could be useful in daily life applications, such as for medical and detection purposes.
2013-09-01
of the cosmic microwave background dipole velocity onto the lens plane, as done by Kochanek (2004). We compare the simulated light curves to the...observer, the background source, the foreground lens galaxy, and its stars cause uncorrelated variations in the source magnification as a function of...hereafter SBS 0909; αJ2000 = 09h13m01.s05, δJ2000 = +52d59m28.s83) is a doubly-imaged quasar lens sys- tem in which the background quasar has redshift
Feedforward operation of a lens setup for large defocus and astigmatism correction
NASA Astrophysics Data System (ADS)
Verstraete, Hans R. G. W.; Almasian, MItra; Pozzi, Paolo; Bilderbeek, Rolf; Kalkman, Jeroen; Faber, Dirk J.; Verhaegen, Michel
2016-04-01
In this manuscript, we present a lens setup for large defocus and astigmatism correction. A deformable defocus lens and two rotational cylindrical lenses are used to control the defocus and astigmatism. The setup is calibrated using a simple model that allows the calculation of the lens inputs so that a desired defocus and astigmatism are actuated on the eye. The setup is tested by determining the feedforward prediction error, imaging a resolution target, and removing introduced aberrations.
Hideshima, T; Cottini, F; Ohguchi, H; Jakubikova, J; Gorgun, G; Mimura, N; Tai, Y-T; Munshi, N C; Richardson, P G; Anderson, K C
2015-05-15
Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide (Len) and pomalidomide trigger anti-tumor activities in multiple myeloma (MM) by targetting cereblon and thereby impacting IZF1/3, c-Myc and IRF4. Histone deacetylase inhibitors (HDACi) also downregulate c-Myc. We therefore determined whether IMiDs with HDACi trigger significant MM cell growth inhibition by inhibiting or downregulating c-Myc. Combination treatment of Len with non-selective HDACi suberoylanilide hydroxamic acid or class-I HDAC-selective inhibitor MS275 induces synergic cytotoxicity, associated with downregulation of c-Myc. Unexpectedly, we observed that decreased levels of cereblon (CRBN), a primary target protein of IMiDs, was triggered by these agents. Indeed, sequential treatment of MM cells with MS275 followed by Len shows less efficacy than simultaneous treatment with this combination. Importantly ACY1215, an HDAC6 inhibitor with minimal effects on class-I HDACs, together with Len induces synergistic MM cytotoxicity without alteration of CRBN expression. Our results showed that only modest class-I HDAC inhibition is able to induce synergistic MM cytotoxicity in combination with Len. These studies may provide the framework for utilizing HDACi in combination with Len to both avoid CRBN downregulation and enhance anti-MM activities.
NASA Astrophysics Data System (ADS)
Boyce, Edward R.
This thesis describes the Extragalactic Lens VLBI Imaging Survey (ELVIS), a search for central images in gravitational lenses. We present the first four ELVIS targets, for which we have radio VLBI observations with resolutions of a few milli-arcseconds and sensitivities of 15 - 38mJy. For PMN J1838-3427, CLASS B0739+366 and CLASS B0445+123 we have not detected any central images, but have set stringent upper limits on their flux densities. For CLASS B2319+051 we have made a tentative detection of a third radio source, which may be either a central image or radio emission from the lens galaxy. Using the upper limits on the central image flux densities, we gain new information about the matter distributions in the lens galaxies of these systems. We fit a broken power law model for the matter profile, and constrain the allowed break radii and inner index of this model. To demagnify the central images to the observed level the matter profiles must be slightly shallower than or steeper than isothermal, which is consistent with previous studies of early type galaxy profiles. The presence of a super-massive black hole weakens the constraints somewhat, but the profiles are still close to isothermal. Relative to previous work, we reduce the maximum sizes of shallow cores by factors of 2 to 3, and raise the indices of r 0( r -g central cusps by g = 0.05 - 0.35. If we take the source in B2319+051 to be a central image, then we select a narrow band of allowed break radii and inner indices, finding that a constant density core has size 150--380 pc, and a pure power law has index g = 1.5 - 1.67. Our constraints still allow sufficiently shallow profiles that some super-massive black holes may form central image pairs rather than eliminating the central image, and these image pairs may be detected with future instruments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
NASA Astrophysics Data System (ADS)
Cantley, Justin L.; Hanlon, Justin; Chell, Erik; Lee, Choonsik; Smith, W. Clay; Bolch, Wesley E.
2013-10-01
Age-related macular degeneration is a leading cause of vision loss for the elderly population of industrialized nations. The IRay® Radiotherapy System, developed by Oraya® Therapeutics, Inc., is a stereotactic low-voltage irradiation system designed to treat the wet form of the disease. The IRay System uses three robotically positioned 100 kVp collimated photon beams to deliver an absorbed dose of up to 24 Gy to the macula. The present study uses the Monte Carlo radiation transport code MCNPX to assess absorbed dose to six non-targeted tissues within the eye—total lens, radiosensitive tissues of the lens, optic nerve, distal tip of the central retinal artery, non-targeted portion of the retina, and the ciliary body--all as a function of eye size and beam entry angle. The ocular axial length was ranged from 20 to 28 mm in 2 mm increments, with the polar entry angle of the delivery system varied from 18° to 34° in 2° increments. The resulting data showed insignificant variations in dose for all eye sizes. Slight variations in the dose to the optic nerve and the distal tip of the central retinal artery were noted as the polar beam angle changed. An increase in non-targeted retinal dose was noted as the entry angle increased, while the dose to the lens, sensitive volume of the lens, and ciliary body decreased as the treatment polar angle increased. Polar angles of 26° or greater resulted in no portion of the sensitive volume of the lens receiving an absorbed dose of 0.5 Gy or greater. All doses to non-targeted structures reported in this study were less than accepted thresholds for post-procedure complications.
Lenses matching of compound eye for target positioning
NASA Astrophysics Data System (ADS)
Guo, Fang; Zheng, Yan Pei; Wang, Keyi
2012-10-01
Compound eye, as a new imaging method with multi-lens for a large field of view, could complete target positioning and detection fastly, especially at close range. Therefore it could be applicated in the fields of military and medical treatment and aviation with vast market potential and development prospect. Yet the compound eye imaging method designed use three layer construction of multiple lens array arranged in a curved surface and refractive lens and imaging sensor of CMOS. In order to simplify process structure and increase the imaging area of every sub-eye, the imaging area of every eye is coved with the whole CMOS. Therefore, for several imaging point of one target, the corresponding lens of every imaging point is unkonown, and thus to identify. So an algorithm was put forward. Firstly, according to the Regular Geometry relationship of several adjacent lenses, data organization of seven lenses with a main lens was built. Subsequently, by the data organization, when one target was caught by several unknown lenses, we search every combined type of the received lenses. And for every combined type, two lenses were selected to combine and were used to calculate one three-dimensional (3D) coordinate of the target. If the 3D coordinates are same to the some combine type of the lenses numbers, in theory, the lenses and the imaging points are matched. So according to error of the 3D coordinates is calculated by the different seven lenses numbers combines, the unknown lenses could be distinguished. The experimental results show that the presented algorithm is feasible and can complete matching task for imaging points and corresponding lenses.
Copper crystal lens for medical imaging: first results
NASA Astrophysics Data System (ADS)
Roa, Dante E.; Smither, Robert K.
2001-06-01
A copper crystal lens designed to focus gamma ray energies of 100 to 200 keV has been assembled at Argonne National Laboratory. In particular, the lens has been optimized to focus the 140.6 keV gamma rays from technetium-99 m typically used in radioactive tracers. This new approach to medical imaging relies on crystal diffraction to focus incoming gamma rays in a manner similar to a simple convex lens focusing visible light. The lens is envisioned to be part of an array of lenses that can be used as a complementary technique to gamma cameras for localized scans of suspected tumor regions in the body. In addition, a 2- lens array can be used to scan a woman's breast in search of tumors with no discomfort to the patient. The incoming gamma rays are diffracted by a set of 828 copper crystal cubes arranged in 13 concentric rings, which focus the gamma rays into a very small area on a well-shielded NaI detector. Experiments performance with technetium-99 m and cobalt 57 radioactive sources indicate that a 6-lens array should be capable of detecting sources with (mu) Ci strength.
Spry1 and Spry2 Are Necessary for Lens Vesicle Separation and Corneal Differentiation
Kuracha, Murali R.; Burgess, Daniel; Siefker, Ed; Cooper, Jake T.; Licht, Jonathan D.; Robinson, Michael L.
2011-01-01
Purpose. The studies reported here were performed to analyze the roles of Sproutys (Sprys), downstream targets and negative feedback regulators of the fibroblast growth factor (FGF) signaling pathway, in lens and corneal differentiation. Methods. Spry1 and -2 were conditionally deleted in the lens and corneal epithelial precursors using the Le-Cre transgene and floxed alleles of Spry1 and -2. Alterations in lens and corneal development were assessed by hematoxylin and eosin staining, in situ hybridization, and immunohistochemistry. Results. Spry1 and -2 were upregulated in the lens fibers at the onset of fiber differentiation. FGF signaling was both necessary and sufficient for induction of Spry1 and -2 in the lens fiber cells. Spry1 and -2 single- or double-null lenses failed to separate from the overlying ectoderm and showed persistent keratolenticular stalks. Apoptosis of stalk cells, normally seen during lens vesicle detachment from the ectoderm, was inhibited in Spry mutant lenses, with concomitant ERK activation. Prox1 and p57KIP2, normally upregulated at the onset of fiber differentiation were prematurely induced in the Spry mutant lens epithelial cells. However, terminal differentiation markers such as β- or γ-crystallin were not induced. Corneal epithelial precursors in Spry1 and -2 double mutants showed increased proliferation with elevated expression of Erm and DUSP6 and decreased expression of the corneal differentiation marker K12. Conclusions. Collectively, the results indicate that Spry1 and -2 (1) through negative modulation of ERKs allow lens vesicle separation, (2) are targets of FGF signaling in the lens during initiation of fiber differentiation and (3) function redundantly in the corneal epithelial cells to suppress proliferation. PMID:21743007
Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor
NASA Technical Reports Server (NTRS)
LeCroy, Jerry E.; Howard, Richard T.; Hallmark, Dean S.
2007-01-01
Testing of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary of test results from sensor confidence tests and system performance testing.
Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor
NASA Technical Reports Server (NTRS)
LeCroy, Jerry E.; Hallmark, Dean S.; Howard, Richard T.
2007-01-01
Testing Of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction, to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary ,of test results from sensor confidence tests and system performance testing.
Method and apparatus for sputtering with a plasma lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, Andre
A plasma lens for enhancing the quality and rate of sputter deposition onto a substrate is described herein. The plasma lens serves to focus positively charged ions onto the substrate while deflecting negatively charged ions, while at the same time due to the line of sight positioning of the lens, allowing for free passage of neutrals from the target to the substrate. The lens itself is formed of a wound coil of multiple turns, inside of which are deposed spaced lens electrodes which are electrically paired to impress an E field overtop the B field generated by the coil, themore » potential applied to the electrodes increasing from end to end towards the center of the lens, where the applied voltage is set to a high potential at the center electrodes as to produce a potential minimum on the axis of the lens.« less
Smart lens: tunable liquid lens for laser tracking
NASA Astrophysics Data System (ADS)
Lin, Fan-Yi; Chu, Li-Yu; Juan, Yu-Shan; Pan, Sih-Ting; Fan, Shih-Kang
2007-05-01
A tracking system utilizing tunable liquid lens is proposed and demonstrated. Adapting the concept of EWOD (electrowetting-on-dielectric), the curvature of a droplet on a dielectric film can be controlled by varying the applied voltage. When utilizing the droplet as an optical lens, the focal length of this adaptive liquid lens can be adjusted as desired. Moreover, the light that passes through it can therefore be focused to different positions in space. In this paper, the tuning range of the curvature and focal length of the tunable liquid lens is investigated. Droplet transformation is observed and analyzed under a CCD camera. A tracking system combining the tunable liquid lens with a laser detection system is also proposed. With a feedback circuit that maximizing the returned signal by controlling the tunable lens, the laser beam can keep tracked on a distant reflected target while it is moving.
Freeform Lens Design for Scattering Data with General Radiant Fields
NASA Astrophysics Data System (ADS)
Gutiérrez, Cristian E.; Sabra, Ahmad
2018-05-01
We show the existence of a lens, when its lower face is given, such that it refracts radiation emanating from a planar source, with a given field of directions, into the far field that preserves a given distribution of energies. Conditions are shown under which the lens obtained is physically realizable. It is shown that the upper face of the lens satisfies a pde of Monge-Ampère type.
A scheiner-principle vernier optometer
NASA Astrophysics Data System (ADS)
Cushman, William B.
1989-06-01
A method and optometer apparatus is disclosed for measuring the dark focus of accommodation. In a preferred embodiment, the optometer apparatus includes: a pinhole aperture plate having first and second horizontally positioned apertures disposed on opposite sides of a first optical axis; first and second orthogonally-oriented polarizing filters respectively covering the first and second horizontally positioned apertures; a positive lens having an optical axis on the first optical axis and being positioned at a distance of approximately one focal length from the pinhole aperture plate; a lens system having an optical axis on the first optical axis; a slit aperture plate having a vertical slit and being disposed on the first optical axis and between the positive lens and the lens system; third and fourth vertically positioned polarizing filters selectively disposed adjacent to the slit aperture plate to divide the slit vertically, a monochromatic light source for propagating light along the first optical axis through the lens system; and movable means attached to the slit aperture plate, the lens system and the monochromatic light source for moving the slit aperture plate.
An electrostatically and a magnetically confined electron gun lens system
NASA Technical Reports Server (NTRS)
Bernius, Mark T.; Man, Kin F.; Chutjian, Ara
1988-01-01
Focal properties, electron trajectory calculations, and geometries are given for two electron 'gun' lens systems that have a variety of applications in, for example, electron-neutral and electron-ion scattering experiments. One nine-lens system utilizes only electrostatic confinement and is capable of focusing electrons onto a fixed target with extremely small divergence angles, over a range of final energies 1-790 eV. The second gun lens system is a simpler three-lens system suitable for use in a uniform, solenoidal magnetic field. While the focusing properties of such a magnetically confined lens systenm are simpler to deal with, the system does illustrate features of electron extraction and Brillouin flow that have not been suitably emphasized in the literature.
NASA Astrophysics Data System (ADS)
Calchi Novati, S.; Skowron, J.; Jung, Y. K.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Yee, J. C.; Zhu, W.; Spitzer Team; Udalski, A.; Szymański, M. K.; Mróz, P.; Poleski, R.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Hwang, K.-H.; Ryu, Y.-H.; Shin, I.-G.; Zang, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration
2018-06-01
We analyze the combined Spitzer and ground-based data for OGLE-2017-BLG-1140 and show that the event was generated by a Jupiter-class ({m}p≃ 1.6 {M}{{J}{{u}}{{p}}}) planet orbiting a mid-late M dwarf (M≃ 0.2 {M}ȯ ) that lies {D}LS}≃ 1.0 {kpc} in the foreground of the microlensed Galactic-bar source star. The planet–host projected separation is {a}\\perp ≃ 1.0 {au}, i.e., well beyond the snow line. By measuring the source proper motion {{\\boldsymbol{μ }}}s from ongoing long-term OGLE imaging and combining this with the lens-source relative proper motion {{\\boldsymbol{μ }}}rel} derived from the microlensing solution, we show that the lens proper motion {{\\boldsymbol{μ }}}l={{\\boldsymbol{μ }}}rel}+{{\\boldsymbol{μ }}}s is consistent with the lens lying in the Galactic disk, although a bulge lens is not ruled out. We show that while the Spitzer and ground-based data are comparably well fitted by planetary (i.e., binary-lens (2L1S)) and binary-source (1L2S) models, the combination of Spitzer and ground-based data decisively favors the planetary model. This is a new channel to resolve the 2L1S/1L2S degeneracy, which can be difficult to break in some cases.
Isochoric heating of solid gold targets with the PW-laser-driven ion beams (Conference Presentation)
NASA Astrophysics Data System (ADS)
Steinke, Sven; Ji, Qing; Bulanov, Stepan S.; Barnard, John; Vincenti, Henri; Schenkel, Thomas; Esarey, Eric H.; Leemans, Wim P.
2017-05-01
We present first results on ion acceleration with the BELLA PW laser as well as end-to-end simulation for isochoric heating of solid gold targets using PW-laser generated ion beams: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/65) beamline at laser intensities of ˜[5×10]^19 Wcm-2 at spot size of 0=53 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled [1] by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes taking the source parameters obtained from the PIC simulation. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. Reference: J. van Tilborg et al, Phys. Rev. Lett. 115, 184802 (2015). This work was supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu Zhe; Lin, W. P.; Yang Xiaofeng, E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn
Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. Wemore » find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.« less
Investigation of Parallax Issues for Multi-Lens Multispectral Camera Band Co-Registration
NASA Astrophysics Data System (ADS)
Jhan, J. P.; Rau, J. Y.; Haala, N.; Cramer, M.
2017-08-01
The multi-lens multispectral cameras (MSCs), such as Micasense Rededge and Parrot Sequoia, can record multispectral information by each separated lenses. With their lightweight and small size, which making they are more suitable for mounting on an Unmanned Aerial System (UAS) to collect high spatial images for vegetation investigation. However, due to the multi-sensor geometry of multi-lens structure induces significant band misregistration effects in original image, performing band co-registration is necessary in order to obtain accurate spectral information. A robust and adaptive band-to-band image transform (RABBIT) is proposed to perform band co-registration of multi-lens MSCs. First is to obtain the camera rig information from camera system calibration, and utilizes the calibrated results for performing image transformation and lens distortion correction. Since the calibration uncertainty leads to different amount of systematic errors, the last step is to optimize the results in order to acquire a better co-registration accuracy. Due to the potential issues of parallax that will cause significant band misregistration effects when images are closer to the targets, four datasets thus acquired from Rededge and Sequoia were applied to evaluate the performance of RABBIT, including aerial and close-range imagery. From the results of aerial images, it shows that RABBIT can achieve sub-pixel accuracy level that is suitable for the band co-registration purpose of any multi-lens MSC. In addition, the results of close-range images also has same performance, if we focus on the band co-registration on specific target for 3D modelling, or when the target has equal distance to the camera.
Microscope using an x-ray tube and a bubble compound refractive lens
NASA Astrophysics Data System (ADS)
Piestrup, M. A.; Gary, C. K.; Park, H.; Harris, J. L.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.; Kolchevsky, N. N.; Komarov, F. F.
2005-03-01
We present x-ray images of grid meshes and biological material obtained using an unfiltered x-ray tube and a compound refractive lens composed of microbubbles embedded in epoxy inside a glass capillary. Images obtained using this apparatus are compared with those using a synchrotron source and the same lens. We find that the field of view is larger than that obtained using the synchrotron source, whereas the contrast and resolution are reduced. Geometrical distortion around the edges of the field of view is also reduced. The experiments demonstrate the usefulness of the apparatus in a modest laboratory setting.
Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei
2017-01-01
To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), -1 D, -3 D and -5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress.
Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei
2017-01-01
Objective To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. Methods and analysis One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), −1 D, −3 D and −5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. Results The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. Conclusions This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress. PMID:29354706
Ku80 Counters Oxidative Stress-Induced DNA Damage and Cataract Formation in the Human Lens.
Smith, Andrew John Oliver; Ball, Simon Sidney Robert; Manzar, Kamal; Bowater, Richard Peter; Wormstone, Ian Michael
2015-12-01
Oxidative stress in the human lens leads to a wide range of damage including DNA strand breaks, which are likely to contribute to cataract formation. The protein Ku80 is a fundamental component of the nonhomologous end-joining pathway that repairs DNA double strand breaks. This study investigates the putative impact of Ku80 in cataract prevention in the human lens. The present study used the human lens epithelial cell line FHL124 and whole human lens organ culture. Targeted siRNA was used to deplete Ku80, with Western blot and immunocytochemistry employed to assess Ku80 expression levels. Oxidative stress was induced with hydrogen peroxide and DNA strand breaks measured by alkaline comet assay and γH2AX foci counts. Visual quality of whole human lenses was measured with image analysis software. Expression of Ku80 was predominately found in the cell nucleus of both FHL124 cells and native human lens epithelium. Treatment of FHL124 cells and whole lens cultures with siRNA targeted against Ku80 resulted in a significant knockdown at the protein level. Application of oxidative stress (30 μM H2O2) created more DNA strand breaks when added to Ku80 knockdown cells than in scrambled siRNA control cells as determined by the alkaline comet assay and the number of γH2AX foci. In whole lens cultures, exposure to 1 mM H2O2 resulted in more lens opacity in Ku80 knockdown lenses than match-paired controls. Depletion of Ku80 in the lens through acute change or a consequence of aging is likely to increase levels of DNA strand breaks, which could negatively influence physiological function and promote lens opacity. It is therefore feasible that Ku80 plays a role in retarding cataract formation.
Abjani, Farhat; Khan, Naveed Ahmed; Jung, Suk Yul; Siddiqui, Ruqaiyyah
2017-12-01
The aim of this study was (i) to assess the antimicrobial effects of contact lens disinfecting solutions marketed in Malaysia against common bacterial eye pathogens and as well as eye parasite, Acanthamoeba castellanii, and (ii) to determine whether targeting cyst wall would improve the efficacy of contact lens disinfectants. Using ISO 14729 Stand-Alone Test for disinfecting solutions, bactericidal and amoebicidal assays of six different contact lens solutions including Oxysept ® , AO SEPT PLUS, OPTI-FREE ® pure moist ® , Renu ® fresh™, FreshKon ® CLEAR and COMPLETE RevitaLens™ were performed using Manufacturers Minimum recommended disinfection time (MRDT). The efficacy of contact lens solutions was determined against keratitis-causing microbes, namely: Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, and Acanthamoeba castellanii. In addition, using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, we determined whether combination of both agents can enhance efficacy of marketed contact lens disinfectants against A. castellanii trophozoites and cysts, in vitro. The results revealed that all contact lens disinfectants tested showed potent bactericidal effects exhibiting 100% kill against all bacterial species tested. In contrast, none of the contact lens disinfectants had potent effects against Acanthamoeba cysts viability. When tested against trophozoites, two disinfectants, Oxysept Multipurpose and AO-sept Multipurpose showed partial amoebicidal effects. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents in contact lens disinfectants abolished viability of A. castellanii cysts and trophozoites. Given the inefficacy of contact lens disinfectants tested in this study, these findings present a significant concern to public health. These findings revealed that targeting cyst wall by using cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy against this devastating eye infection. Copyright © 2017 Elsevier Inc. All rights reserved.
[Preliminary use of HoloLens glasses in surgery of liver cancer].
Shi, Lei; Luo, Tao; Zhang, Li; Kang, Zhongcheng; Chen, Jie; Wu, Feiyue; Luo, Jia
2018-05-28
To establish the preoperative three dimensional (3D) model of liver cancer, and to precisely match the preoperative planning with the target organs during the operation. Methods: The 3D model reconstruction based on magnetic resonance data, which was combined with virtual reality technology via HoloLens glasses, was applied in the operation of liver cancer to achieve preoperative 3D modeling and surgical planning, and to directly match it with the operative target organs during operation. Results: The 3D model reconstruction of liver cancer based on magnetic resonance data was completed. The exact match with the target organ was performed during the operation via HoloLens glasses leaded by the 3D model. Conclusion: Magnetic resonance data can be used for the 3D model reconstruction to improve preoperative assessment and accurate match during the operation.
DEEP, SHALLOW AND EYE LENS DOSES FROM 106Ru/106Rh-A COMPARSION.
Kumar, Munish; Bakshi, A K; Rakesh, R B; Ratna, P; Kulkarni, M S; Datta, D
2017-11-01
106Ru/106Rh is unique amongst other commonly used beta sources such as 147Pm, 85Kr, 204Tl, 32P, natU and 90Sr/90Y in the sense that it is capable of simultaneously delivering shallow/skin, eye lens and deep/whole body doses (WBDs) and they differ from each other substantially. In view of this, the investigation of various quantities defined for individual monitoring is possible and this makes 106Ru/106Rh beta source, a classical example in radiation protection and dosimetry. This led us to estimate skin, eye lens and WBDs for 106Ru/106Rh beta source. Optically stimulated luminescence based ultra-thin α-Al2O3:C disc dosimeters were used in the present study. Typical values (relative) of the eye lens and whole body/deep doses with respective to the skin dose (100%) were experimentally measured as ~66 ± 4.6% and 17 ± 3.9%, respectively. The study shows that 106Ru/106Rh beta source is capable of delivering even WBD which is not the case with other beta sources. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Turpin, Jeremiah Paul
Metamaterials and Transformation Optics (TO) have been used to design and implement many novel electromagnetic devices that can achieve effects not possible using conventional materials. Compact high-gain antennas are one of the more popular and successful emerging applications for the new TO and metamaterial design approaches. This dissertation details an extension of uniaxial near-zero-index metamaterial lenses through the incorporation of a tunable or reconfigurable metamaterial as a replacement for the static metamaterial of the original antenna. A design is presented for a beam-scanning TO lens that allows an arbitrary number of beams at controlled magnitudes to be dynamically synthesized from a single omnidirectional source, unlike the equivalent antenna constructed using an array. A cylindrical slab of zero-index magnetic metamaterial controls the radiation pattern by altering the effective shape of the lens through switching of selected regions 'off' to emulate free-space conditions. A design for a switchable metamaterial is presented that allows for digital control over its bulk properties, from near-zero-index to near-free-space at the targeted operational frequency. Extensive modeling and simulations were performed for the design of the lens and metamaterial and during the analysis of measurement results. Initial prototypes of the tunable metamaterial were fabricated and characterized to confirm the original measurements, and the design updated to incorporate the measured data. These measurements were performed using custom test fixtures manufactured specifically for this project. Finally, a simplified prototype lens was manufactured and characterized in an anechoic as a proof-of-concept for the design. This dissertation presents the lens and metamaterial specifications, as well as the design process and considerations that were determined for practical tunable and reconfigurable metamaterials. Although the focus is on the particular example of the beam-scanning reconfigurable antenna, the analysis and modeling methods presented here are applicable to any reconfigurable metamaterial application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, D. P.; Batista, V.; Bond, I. A.
2014-04-20
We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M {sub host} ∼ 4 Jupiter masses hosting a sub-Earth mass moon. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M{sub L} π{sub rel} where M{sub L} is the lens system mass and π{sub rel} is the lens-source relative parallax. If the lens system is nearby (large π{sub rel}), then M{sub L} is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has amore » large lens-source relative proper motion, μ{sub rel} = 19.6 ± 1.6 mas yr{sup –1}, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, there is an alternate solution that has a lower proper motion and fits the data almost as well. This solution is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of M{sub host}=0.12{sub −0.06}{sup +0.19} M{sub ⊙} and m{sub comp}=18{sub −10}{sup +28} M{sub ⊕}, at a projected separation of a{sub ⊥}=0.84{sub −0.14}{sup +0.25} AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.« less
The Top 10 List of Gravitational Lens Candidates from the HUBBLE SPACE TELESCOPE Medium Deep Survey
NASA Astrophysics Data System (ADS)
Ratnatunga, Kavan U.; Griffiths, Richard E.; Ostrander, Eric J.
1999-05-01
A total of 10 good candidates for gravitational lensing have been discovered in the WFPC2 images from the Hubble Space Telescope (HST) Medium Deep Survey (MDS) and archival primary observations. These candidate lenses are unique HST discoveries, i.e., they are faint systems with subarcsecond separations between the lensing objects and the lensed source images. Most of them are difficult objects for ground-based spectroscopic confirmation or for measurement of the lens and source redshifts. Seven are ``strong lens'' candidates that appear to have multiple images of the source. Three are cases in which the single image of the source galaxy has been significantly distorted into an arc. The first two quadruply lensed candidates were reported by Ratnatunga et al. We report on the subsequent eight candidates and describe them with simple models based on the assumption of singular isothermal potentials. Residuals from the simple models for some of the candidates indicate that a more complex model for the potential will probably be required to explain the full structural detail of the observations once they are confirmed to be lenses. We also discuss the effective survey area that was searched for these candidate lens objects.
Chromaticity of gravitational microlensing events
NASA Astrophysics Data System (ADS)
Han, Cheongho; Park, Seong-Hong; Jeong, Jang-Hae
2000-07-01
In this paper, we investigate the colour changes of gravitational microlensing events caused by the two different mechanisms of differential amplification for a limb-darkened extended source and blending. From this investigation, we find that the colour changes of limb-darkened extended source events (colour curves) have dramatically different characteristics depending on whether the lens transits the source star or not. We show that for a source transit event, the lens proper motion can be determined by simply measuring the turning time of the colour curve instead of fitting the overall colour or light curves. We also find that even for a very small fraction of blended light, the colour changes induced by blending are equivalent to those induced by limb darkening, causing serious distortion in the observed colour curve. Therefore, to obtain useful information about the lens and source star from the colour curve of an event, it will be essential to correct for blending. We discuss various methods of blending correction.
Ultrasound field measurement using a binary lens
Clement, G.T.; Nomura, H.; Kamakura, T.
2014-01-01
Field characterization methods using a scattering target in the absence of a point-like receiver have been well described in which scattering is recorded by a relatively large receiver located outside the field of measurement. Unfortunately, such methods are prone to artifacts due to averaging across the receiver surface. To avoid this problem while simultaneously increasing the gain of a received signal, the present study introduces a binary plate lens designed to focus spherically-spreading waves onto a planar region having a nearly-uniform phase proportional to that of the target location. The lens is similar to a zone plate, but modified to produce a biconvex-like behavior, such that it focuses both planar and spherically spreading waves. A measurement device suitable for characterizing narrowband ultrasound signals in air is designed around this lens by coupling it to a target and planar receiver. A prototype device is constructed and used to characterize the field of a highly-focused 400 kHz air transducer along 2 radial lines. Comparison of the measurements with numeric predictions formed from nonlinear acoustic simulation showed good relative pressure correlation, with mean differences of 10% and 12% over center 3dB FWHM drop and 12% and 17% over 6dB. PMID:25643084
Linear and angular retroreflecting interferometric alignment target
Maxey, L. Curtis
2001-01-01
The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.
NASA Astrophysics Data System (ADS)
Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik
2008-09-01
Gravitational lensing provides a unique and powerful probe of the mass distributions of distant galaxies. Four-image lens systems with fold and cusp configurations have two or three bright images near a critical point. Within the framework of singularity theory, we derive analytic relations that are satisfied for a light source that lies a small but finite distance from the astroid caustic of a four-image lens. Using a perturbative expansion of the image positions, we show that the time delay between the close pair of images in a fold lens scales with the cube of the image separation, with a constant of proportionality that depends on a particular third derivative of the lens potential. We also apply our formalism to cusp lenses, where we develop perturbative expressions for the image positions, magnifications and time delays of the images in a cusp triplet. Some of these results were derived previously for a source asymptotically close to a cusp point, but using a simplified form of the lens equation whose validity may be in doubt for sources that lie at astrophysically relevant distances from the caustic. Along with the work of Keeton, Gaudi & Petters, this paper demonstrates that perturbation theory plays an important role in theoretical lensing studies.
10 CFR 431.222 - Definitions concerning traffic signal modules and pedestrian modules.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., all portions of the module behind the lens are within the chamber at a temperature of 74 °C and the air temperature in front of the lens is maintained at a minimum of 49 °C. Nominal wattage means the... signal indication that— (1) Consists of a light source, a lens, and all other parts necessary for...
NASA Astrophysics Data System (ADS)
Essameldin, Mahmoud; Fleischmann, Friedrich; Henning, Thomas; Lang, Walter
2017-02-01
Freeform optical systems are playing an important role in the field of illumination engineering for redistributing the light intensity, because of its capability of achieving accurate and efficient results. The authors have presented the basic idea of the freeform lens design method at the 117th annual meeting of the German Society of Applied Optics (DGAOProceedings). Now, we demonstrate the feasibility of the design method by designing and evaluating a freeform lens. The concepts of luminous intensity mapping, energy conservation and differential equation are combined in designing a lens for non-imaging applications. The required procedures to design a lens including the simulations are explained in detail. The optical performance is investigated by using a numerical simulation of optical ray tracing. For evaluation, the results are compared with another recently published design method, showing the accurate performance of the proposed method using a reduced number of mapping angles. As a part of the tolerance analyses of the fabrication processes, the influence of the light source misalignments (translation and orientation) on the beam-shaping performance is presented. Finally, the importance of considering the extended light source while designing a freeform lens using the proposed method is discussed.
Optical gravitational lensing experiment: OGLE-1999-BUL-19 - the first multipeak parallax event
NASA Astrophysics Data System (ADS)
Smith, Martin C.; Mao, Shude; Woźniak, P.; Udalski, A.; Szymański, M.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Żebruń, K.
2002-10-01
We describe a highly unusual microlensing event, OGLE-1999-BUL-19. Unlike most standard microlensing events, this event exhibits multiple peaks in its light curve. The Einstein radius crossing time for this event is approximately 1 yr, which is unusually long. We show that the additional peaks in the light curve can be caused by the very small value for the relative transverse velocity of the lens projected on to the observer plane (). Since this value is significantly less than the speed of the orbit of the Earth around the Sun (v⊕~ 30km s-1), the motion of the Earth induces these multiple peaks in the light curve. This value for is the lowest velocity so far published and we believe that this is the first multiple-peak parallax event ever observed. We also found that the event can be somewhat better fitted by a rotating binary-source model, although this is to be expected since every parallax microlensing event can be exactly reproduced by a suitable binary-source model. A face-on rotating binary-lens model was also identified, but this provides a significantly worse fit. We conclude that the most likely cause for this multipeak behaviour is parallax microlensing rather than microlensing by a binary source. However, this event may be exhibiting a slight binary-source signature in addition to these parallax-induced multiple peaks. With spectroscopic observations it is possible to test this `parallax plus binary-source' hypothesis and (in the instance that the hypothesis turns out to be correct) to simultaneously fit both models and obtain a measurement of the lens mass. Furthermore, spectroscopic observations could also supply information regarding the lens properties, possibly providing another avenue for determining the lens mass. We also investigated the nature of the blending for this event, and found that the majority of the I-band blending is contributed by a source roughly aligned with the lensed source. This implies that most of the I-band blending is caused by light from the lens or a binary companion to the source. However, in the V band, there appears to be a second blended source 0.35 arcsec away from the lensed source. Hubble Space Telescope observations will be very useful for understanding the nature of the blends. We also suggest that a radial velocity survey of all parallax events will be very useful for further constraining the lensing kinematics and understanding the origins of these events and the excess of long events toward the bulge.
Three-Dimensional Cataract Crystalline Lens Imaging With Swept-Source Optical Coherence Tomography.
de Castro, Alberto; Benito, Antonio; Manzanera, Silvestre; Mompeán, Juan; Cañizares, Belén; Martínez, David; Marín, Jose María; Grulkowski, Ireneusz; Artal, Pablo
2018-02-01
To image, describe, and characterize different features visible in the crystalline lens of older adults with and without cataract when imaged three-dimensionally with a swept-source optical coherence tomography (SS-OCT) system. We used a new SS-OCT laboratory prototype designed to enhance the visualization of the crystalline lens and imaged the entire anterior segment of both eyes in two groups of participants: patients scheduled to undergo cataract surgery, n = 17, age range 36 to 91 years old, and volunteers without visual complains, n = 14, age range 20 to 81 years old. Pre-cataract surgery patients were also clinically graded according to the Lens Opacification Classification System III. The three-dimensional location and shape of the visible opacities were compared with the clinical grading. Hypo- and hyperreflective features were visible in the lens of all pre-cataract surgery patients and in some of the older adults in the volunteer group. When the clinical examination revealed cortical or subcapsular cataracts, hyperreflective features were visible either in the cortex parallel to the surfaces of the lens or in the posterior pole. Other type of opacities that appeared as hyporeflective localized features were identified in the cortex of the lens. The OCT signal in the nucleus of the crystalline lens correlated with the nuclear cataract clinical grade. A dedicated OCT is a useful tool to study in vivo the subtle opacities in the cataractous crystalline lens, revealing its position and size three-dimensionally. The use of these images allows obtaining more detailed information on the age-related changes leading to cataract.
Inoue, Makoto; Noda, Toru; Ohnuma, Kazuhiko; Bissen-Miyajima, Hiroko; Hirakata, Akito
2011-11-01
To determine the quality of the image of a grating target placed in the vitreous of isolated pig eyes and photographed through implanted refractive and diffractive multifocal intraocular lenses (IOL). Refractive multifocal (NXG1, PY60MV), diffractive multifocal (ZM900, SA60D3) and monofocal (SA60AT, ZA9003) IOL were implanted in the capsular bag of isolated pig eyes. A grating target was placed in the vitreous and photographed through a flat or a wide-field viewing contact lens. The contrast of the grating targets of different spatial frequencies was measured. With the flat corneal contact lens, the gratings appeared clear and not distorted when viewed through the optics of the NXG1 and PY60MV for far vision but were distorted with reduced contrast when viewed through the optical zone for near vision. The images through the diffractive zone of the ZM900 and SA60D3 were more defocused than with the monofocal IOL (p < 0.005). Ghost images oriented centrifugally of the original image were seen with the ZM900 resulting in lower contrast at higher spatial frequencies than with the SA60D3 with less defocused images only in the central area. With the wide-field viewing contact lens, the images were less defocused and the contrast was comparable to both refractive and diffractive multifocal IOL. Both refractive and diffractive multifocal IOL reduced the contrast of the retinal image when viewed through a flat corneal contact lens but less defocused when viewed through a wide-field viewing contact lens. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.
Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy
NASA Astrophysics Data System (ADS)
Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan
2018-02-01
Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.
Extended source effect on microlensing light curves by an Ellis wormhole
NASA Astrophysics Data System (ADS)
Tsukamoto, Naoki; Gong, Yungui
2018-04-01
We can survey an Ellis wormhole which is the simplest Morris-Thorne wormhole in our Galaxy with microlensing. The light curve of a point source microlensed by the Ellis wormhole shows approximately 4% demagnification while the total magnification of images lensed by a Schwarzschild lens is always larger than unity. We investigate an extended source effect on the light curves microlensed by the Ellis wormhole. We show that the depth of the gutter of the light curves of an extended source is smaller than the one of a point source since the magnified part of the extended source cancels the demagnified part out. We can, however, distinguish between the light curves of the extended source microlensed by the Ellis wormhole and the ones by the Schwarzschild lens in their shapes even if the size of the source is a few times larger than the size of an Einstein ring on a source plane. If the relative velocity of a star with the radius of 1 06 km at 8 kpc in the bulge of our Galaxy against an observer-lens system is smaller than 10 km /s on a source plane, we can detect microlensing of the star lensed by the Ellis wormhole with the throat radius of 1 km at 4 kpc.
A frozen super-Earth orbiting a star at the bottom of the main sequence
NASA Astrophysics Data System (ADS)
Kubas, D.; Beaulieu, J. P.; Bennett, D. P.; Cassan, A.; Cole, A.; Lunine, J.; Marquette, J. B.; Dong, S.; Gould, A.; Sumi, T.; Batista, V.; Fouqué, P.; Brillant, S.; Dieters, S.; Coutures, C.; Greenhill, J.; Bond, I.; Nagayama, T.; Udalski, A.; Pompei, E.; Nürnberger, D. E. A.; Le Bouquin, J. B.
2012-04-01
Context. Microlensing is a unique method to probe low mass exoplanets beyond the snow line. However, the scientific potential of the new microlensing planet discovery is often unfulfilled due to lack of knowledge of the properties of the lens and source stars. The discovery light curve of the super Earth MOA-2007-BLG-192Lb suffers from significant degeneracies that limit what can be inferred about its physical properties. Aims: High resolution adaptive optics images allow us to solve this problem by resolving the microlensing target from all unrelated background stars, yielding the unique determination of magnified source and lens fluxes. This estimation permits the solution of our microlens model for the mass of the planet and its host and their physical projected separation. Methods: We observed the microlensing event MOA-2007-BLG-192 at high angular resolution in JHKs with the NACO adaptive optics system on the VLT while the object was still amplified by a factor 1.23 and then at baseline 18 months later. We analyzed and calibrated the NACO photometry in the standard 2MASS system in order to accurately constrain the source and the lens star fluxes. Results: We detect light from the host star of MOA-2007-BLG-192Lb, which significantly reduces the uncertainties in its characteristics as compared to earlier analyses. We find that MOA-2007-BLG-192L is most likely a very low mass late type M-dwarf (0.084-0.012+0.015 M⊙) at a distance of 660-70+100 pc orbited by a 3.2-1.8+5.2 M⊕ super-Earth at 0.66-0.22+0.51 AU. We then discuss the properties of this cold planetary system. Based on observations under ESO Prog.IDs: 279.C-5044(A) and 383-C.0495(A).
Analysis and improvement of gas turbine blade temperature measurement error
NASA Astrophysics Data System (ADS)
Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui
2015-10-01
Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.
In-situ spectrophotometric probe
Prather, William S.
1992-01-01
A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.
Cryogenic optical systems for the rapid infrared imager/spectrometer (RIMAS)
NASA Astrophysics Data System (ADS)
Capone, John I.; Content, David A.; Kutyrev, Alexander S.; Robinson, Frederick D.; Lotkin, Gennadiy N.; Toy, Vicki L.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.
2014-07-01
The Rapid Infrared Imager/Spectrometer (RIMAS) is designed to perform follow-up observations of transient astronomical sources at near infrared (NIR) wavelengths (0.9 - 2.4 microns). In particular, RIMAS will be used to perform photometric and spectroscopic observations of gamma-ray burst (GRB) afterglows to compliment the Swift satellite's science goals. Upon completion, RIMAS will be installed on Lowell Observatory's 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The instrument's optical design includes a collimator lens assembly, a dichroic to divide the wavelength coverage into two optical arms (0.9 - 1.4 microns and 1.4 - 2.4 microns respectively), and a camera lens assembly for each optical arm. Because the wavelength coverage extends out to 2.4 microns, all optical elements are cooled to ~70 K. Filters and transmission gratings are located on wheels prior to each camera allowing the instrument to be quickly configured for photometry or spectroscopy. An athermal optomechanical design is being implemented to prevent lenses from loosing their room temperature alignment as the system is cooled. The thermal expansion of materials used in this design have been measured in the lab. Additionally, RIMAS has a guide camera consisting of four lenses to aid observers in passing light from target sources through spectroscopic slits. Efforts to align these optics are ongoing.
Babizhayev, Mark A; Yegorov, Yegor E
2016-01-01
The aging eye appears to be at considerable risk from oxidative stress. A great deal of research indicates that dysfunctional mitochondria are the primary site of reactive oxygen species (ROS). More than 95% of O2 produced during normal metabolism is generated by the electron transport chain in the inner mitochondrial membrane. Mitochondria are also the major target of ROS. Cataract formation, the opacification of the eye lens, is one of the leading causes of human blindness worldwide, accounting for 47.8% of all causes of blindness. Cataracts result from the deposition of aggregated proteins in the eye lens and lens fiber cell plasma membrane damage, which causes clouding of the lens, light scattering, and obstruction of vision. ROS-induced damage in the lens cell may consist of oxidation of proteins, DNA damage, and/or lipid peroxidation, all of which have been implicated in cataractogenesis. This article is an attempt to integrate how mitochondrial ROS are altered in the aging eye along with those protective and repair therapeutic systems believed to regulate ROS levels in ocular tissues and how damage to these systems contributes to age-onset eye disease and cataract formation. Mitochondria-targeted antioxidants might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo. As a result of the combination of weak metal chelating, OH and lipid peroxyl radicals scavenging, reducing activities to liberated fatty acid, and phospholipid hydroperoxides, carnosine and carcinine appear to be physiological antioxidants able to efficiently protect the lipid phase of biologic membranes and aqueous environments and act as the antiapoptotic natural drug compounds The authors developed and patented the new ophthalmic compositions, including N-acetylcarnosine, acting as a prodrug of naturally targeted to mitochondria L-carnosine endowed with pluripotent antioxidant activities combined with mitochondria-targeted rechargeable antioxidant (either MitoVit E, Mito Q, or SkQs) as a potent medicine to treat ocular diseases. Such specificity is explained by the fact that developed compositions might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo and outside mitochondria in the cellular and tissue structures of the lens and eye compartments. Mitochondrial targeting of compounds with universal types of antioxidant activity represents a promising approach for treating a number of ROS-related ocular diseases of the aging eye and can be implicated in the management of cataracts.
Design of Magnetic Charged Particle Lens Using Analytical Potential Formula
NASA Astrophysics Data System (ADS)
Al-Batat, A. H.; Yaseen, M. J.; Abbas, S. R.; Al-Amshani, M. S.; Hasan, H. S.
2018-05-01
In the current research was to benefit from the potential of the two cylindrical electric lenses to be used in the product a mathematical model from which, one can determine the magnetic field distribution of the charged particle objective lens. With aid of simulink in matlab environment, some simulink models have been building to determine the distribution of the target function and their related axial functions along the optical axis of the charged particle lens. The present study showed that the physical parameters (i.e., the maximum value, Bmax, and the half width W of the field distribution) and the objective properties of the charged particle lens have been affected by varying the main geometrical parameter of the lens named the bore radius R.
Method and apparatus for a multibeam beacon laser assembly for optical communications
NASA Technical Reports Server (NTRS)
Biswas, Abhijit (Inventor); Sanji, Babak (Inventor); Wright, Malcolm W. (Inventor); Page, Norman Alan (Inventor)
2005-01-01
An optical beacon is comprised of a telescope having a primary focal plane or Coud? focal plane, a plurality of fiber coupled laser sources for generating a plurality of beams, a collimator for collimating the plurality of beams, and optics for combining and focusing the plurality of collimated beams onto the primary or Coud? focal plane of the telescope. The telescope propagates the optical beacon, which is arranged into a ring of incoherent plurality of collimated beams. The apparatus further comprises fiber splitters coupled to each laser source to provide at least eight beams from at least four laser sources. The optics comprises a prism assembly, a combiner lens, a focusing lens and a field lens for focusing the plurality of collimated beams onto the primary focal plane or Coud? focal plane of the telescope.
NASA Technical Reports Server (NTRS)
Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.;
2004-01-01
We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.
Gravitational lensing of gravitational waves: a statistical perspective
NASA Astrophysics Data System (ADS)
Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun
2018-05-01
In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.
Mars Hand Lens Imager Sends Ultra High-Res Photo from Mars
2013-10-17
This image of a U.S. penny on a calibration target was taken by the Mars Hand Lens Imager MAHLI aboard NASA Curiosity rover in Gale Crater on Mars. At 14 micrometers per pixel, this is the highest-resolution image that MAHLI can acquire.
Discovery of three strongly lensed quasars in the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Williams, P. R.; Agnello, A.; Treu, T.; Abramson, L. E.; Anguita, T.; Apostolovski, Y.; Chen, G. C.-F.; Fassnacht, C. D.; Hsueh, J. W.; Lemaux, B. C.; Motta, V.; Oldham, L.; Rojas, K.; Rusu, C. E.; Shajib, A. J.; Wang, X.
2018-06-01
We present the discovery of three quasar lenses in the Sloan Digital Sky Survey, selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46 arcsec on either side of a galaxy, has source and lens redshifts 1.54 and 0.343. Images of J2257+2349 show two point sources separated by 1.67 arcsec on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at zs = 2.10. SDSS J1640+1045 has two quasar spectra at zs = 1.70 and fits to the SDSS and Pan-STARRS images confirm the presence of a galaxy between the two point sources. We observed 56 photometrically selected lens candidates in this follow-up campaign, confirming three new lenses, re-discovering one known lens, and ruling out 36 candidates, with 16 still inconclusive. This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars.
NASA Astrophysics Data System (ADS)
Wang, Hong; Li, Xiufeng; Ge, Peng
2017-02-01
We propose a design method of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp. The TIR freeform surface controls the edge rays of the LED source. It totally reflects the edge rays and makes them emit from the top surface of the lens. And the middle rays of the LED source go through the refractive surface and reach the measured plane. We simulate the model by Monte Carlo method. Simulation results show that the front fog lamp system can satisfy the requirement of ECE R19 Rev7. The light control efficiency can reach up to 76%.
Babizhayev, Mark A; Yegorov, Yegor E
2016-01-01
Visual impairment broadly impacts the ability of affected people to maintain their function and to remain independent during their daily occupations as they grow older. Visual impairment affects survival of older patients, quality of life, can affect a person's self-ranking of health, may be associated with social and functional decline, use of community support services, depression, falls, nursing home placement, and increased mortality. It has been hypothesized that senile cataract may serve as a marker for generalised tissue aging, since structural changes occurring in the proteins of the lens during cataract formation are similar to those which occur elsewhere as part of the aging process. The published analysis revealed a strong age-dependent relationship between undergoing cataract surgery and subsequent mortality. Nuclear opacity, particularly severe nuclear opacity, and mixed opacities with nuclear were significant predictors of mortality independent of body mass index, comorbid conditions, smoking, age, race, and sex. The lens opacity status is considered as an independent predictor of 2-year mortality, an association that could not be explained by potential confounders. Telomeres have become important biomarkers for aging as well as for oxidative stress-related disease. The lens epithelium is especially vulnerable to oxidative stress. Oxidative damage to the cuboidal epithelial cells on the anterior surface of the lens mediated by reactive oxygen species and phospholipid hydroperoxides can precede and contribute to human lens cataract formation. The erosion and shortening of telomeres in human lens epithelial cells in the lack of telomerase activity has been recognized as a primary cause of premature lens senescence phenotype that trigger human cataractogenesis. In this study we aimed to be focused on research defining the mechanisms that underlie linkages among telomere attrition in human lens epithelial cells associated with oxidative stress, biology of the lens response to oxidative damages, aging and health, cataract versus neuroendocrine regulation and disease. The cumulative results demonstrate that carnosine, released ophthalmically from the patented 1% Nacetylcarnosine prodrug lubricant eye drops, at physiological concentration might remarkably reduce the rate of telomere shortening in the lens cells subjected to oxidative stress in the lack of efficient antioxidant lens protection. Carnosine promotes the protection of normal cells from acquiring phenotypic characteristics of cellular senescence. The data of visual functions (visual acuity, glare sensitivity) in older adult subjects and older subjects with cataract treated with 1% N-acetylcarnosine lubricant eye drops showed significant improvement as compared, by contrast with the control group which showed generally no improvement in visual functions, with no difference from baseline in visual acuity and glare sensitivity readings. N-acetylcarnosine derived from the lubricant eye drops may be transported into the hypothalamic tuberomammillary nucleus (TMN) histamine neurons and gradually hydrolyzed. The resulting L-histidine may subsequently be converted into histamine, which could be responsible for the effects of carnosine on neurotransmission and hormone-like antiaging and anti-cataract physiological function. The research utilizing the N-acetylcarnosine lubricant eye drops powerful therapeutic platform provides the findings related to the intraocular uptake exposure sources as well as a timing dosage and duration systemic absorption of said preparation from the conjunctional sac reaching the hypothalamus with activities transfer into the hypothalamic-neuroendocrine pathways affecting across the hypothalamus metabolic pathway the telomere biology and cataract disease occurrence, reversal and prevention and the average expected lifespan of an individual. Such findings can be translated into clinical practice and may provide a basis for personalized cataract disease and aging prevention and treatment approaches.
Serendipitous discovery of quadruply imaged quasars: two diamonds
NASA Astrophysics Data System (ADS)
Lucey, John R.; Schechter, Paul L.; Smith, Russell J.; Anguita, T.
2018-05-01
Gravitationally lensed quasars are powerful and versatile astrophysical tools, but they are challengingly rare. In particular, only ˜25 well-characterized quadruple systems are known to date. To refine the target catalogue for the forthcoming Taipan Galaxy Survey, the images of a large number of sources are being visually inspected in order to identify objects that are confused by a foreground star or galaxies that have a distinct multicomponent structure. An unexpected by-product of this work has been the serendipitous discovery of about a dozen galaxies that appear to be lensing quasars, i.e. pairs or quartets of foreground stellar objects in close proximity to the target source. Here, we report two diamond-shaped systems. Follow-up spectroscopy with the IMACS instrument on the 6.5m Magellan Baade telescope confirms one of these as a z = 1.975 quasar quadruply lensed by a double galaxy at z = 0.293. Photometry from publicly available survey images supports the conclusion that the other system is a highly sheared quadruply imaged quasar. In starting with objects thought to be galaxies, our lens finding technique complements the conventional approach of first identifying sources with quasar-like colours and subsequently finding evidence of lensing.
Binary Sources and Binary Lenses in Microlensing Surveys of MACHOs
NASA Astrophysics Data System (ADS)
Petrovic, N.; Di Stefano, R.; Perna, R.
2003-12-01
Microlensing is an intriguing phenomenon which may yield information about the nature of dark matter. Early observational searches identified hundreds of microlensing light curves. The data set consisted mainly of point-lens light curves and binary-lens events in which the light curves exhibit caustic crossings. Very few mildly perturbed light curves were observed, although this latter type should constitute the majority of binary lens light curves. Di Stefano (2001) has suggested that the failure to take binary effects into account may have influenced the estimates of optical depth derived from microlensing surveys. The work we report on here is the first step in a systematic analysis of binary lenses and binary sources and their impact on the results of statistical microlensing surveys. In order to asses the problem, we ran Monte-Carlo simulations of various microlensing events involving binary stars (both as the source and as the lens). For each event with peak magnification > 1.34, we sampled the characteristic light curve and recorded the chi squared value when fitting the curve with a point lens model; we used this to asses the perturbation rate. We also recorded the parameters of each system, the maximum magnification, the times at which each light curve started and ended and the number of caustic crossings. We found that both the binarity of sources and the binarity of lenses increased the lensing rate. While the binarity of sources had a negligible effect on the perturbation rates of the light curves, the binarity of lenses had a notable effect. The combination of binary sources and binary lenses produces an observable rate of interesting events exhibiting multiple "repeats" in which the magnification rises above and dips below 1.34 several times. Finally, the binarity of lenses impacted both the durations of the events and the maximum magnifications. This work was supported in part by the SAO intern program (NSF grant AST-9731923) and NASA contracts NAS8-39073 and NAS8-38248 (CXC).
Candidate Binary Microlensing Events from the MACHO Project
NASA Astrophysics Data System (ADS)
Becker, A. C.; Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; Baines, D.; Brakel, A.; Crook, B.; Howard, J.; Leach, T.; McDowell, D.; McKeown, S.; Mitchell, J.; Moreland, J.; Pozza, E.; Purcell, P.; Ring, S.; Salmon, A.; Ward, K.; Wyper, G.; Heller, A.; Kaspi, S.; Kovo, O.; Maoz, D.; Retter, A.; Rhie, S. H.; Stetson, P.; Walker, A.; MACHO Collaboration
1998-12-01
We present the lightcurves of 22 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey which are likely examples of lensing by binary systems. These events were selected from a total sample of ~ 300 events which were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. Many of these events appear to have undergone a caustic or cusp crossing, and 2 of the events are well fit with lensing by binary systems with large mass ratios, indicating secondary companions of approximately planetary mass. The event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars. The utility of binary lensing in helping to solve the Galactic dark matter problem is demonstrated with analyses of 3 binary microlensing events seen towards the Magellanic Clouds. Source star resolution during caustic crossings in 2 of these events allows us to estimate the location of the lensing systems, assuming each source is a single star and not a short period binary. * MACHO LMC-9 appears to be a binary lensing event with a caustic crossing partially resolved in 2 observations. The resulting lens proper motion appears too small for a single source and LMC disk lens. However, it is considerably less likely to be a single source star and Galactic halo lens. We estimate the a priori probability of a short period binary source with a detectable binary character to be ~ 10 %. If the source is also a binary, then we currently have no constraints on the lens location. * The most recent of these events, MACHO 98-SMC-1, was detected in real-time. Follow-up observations by the MACHO/GMAN, PLANET, MPS, EROS and OGLE microlensing collaborations lead to the robust conclusion that the lens likely resides in the SMC.
OGLE-2012-bLG-0950Lb: the First Planet Mass Measurement From Only Microlens Parallax and Lens Flux
NASA Technical Reports Server (NTRS)
Koshimoto, N.; Udalski, A.; Beaulieu, J. P.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Fukui, A.; Bhattacharya, A.; Suzuki, D.
2016-01-01
We report the discovery of a microlensing planet OGLE-2012-BLG-0950Lb with a planet/host mass ratio Periapsis Approx. = 2 x10(exp. -4). A long term distortion detected in both MOA and OGLE light curve can be explained by themicrolens parallax due to the Earths orbital motion around the Sun. Although the finite source effect is not detected, we obtain the lens flux by the high resolution Keck AO observation. Combining the microlens parallax and the lens flux reveal the nature of the lens: a planet with mass of M(sub p) = 35(+17/-)M compared to Earth is orbiting around an M-dwarf with mass of M(sub host) = 0.56(+0.12/-0.16) M compared to the Sun with a planet-host projected separation of r1 = 2.7(+0.6/-0.7) au located at Luminosity Distance = 3.0(+0.8/-1.1) kpc from us. This is the first mass measurement from only microlens parallax and the lens flux without the finite source effect. In the coming space observation-era with Spitzer, K2, Euclid, and WFIRST, we expect many such events for which we will not be able to measure any finite source effect. This work demonstrates an ability of mass measurements in such events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhou; Tu, Juan; Cheng, Jianchun
An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.
Petrishia, A; Sasikala, M
2014-04-01
A Prolate-Spheroidal Impulse Radiating Antenna (PSIRA) is used as a non-invasive technique for generating an electromagnetic implosion to kill melanoma cells. It can launch and focus fast (100 ps) high voltage (>50 KV) pulses into the biological targets. It can be used to obtain electromagnetic focusing on the target to reduce the damage to the tissue layers surrounding the target (skin). The main aim of this work is to improve the gain of the antenna, enhance the electric field intensity and to reduce the spot size at the focal point. In this work the PSIRA with tapered arm is designed to increase the gain of the antenna. The log periodic lens system is designed to enhance the electric field and reduce the spot size. The IRA with tapered arms located at the position of φ = 60° gives a gain improvement of 14.28% when compared to a traditional IRA. In this work a 10-layer dielectric lens system is designed to match the 100 ps pulses to the skin phantom. Simulation results show that the electric field is increased by a factor of 2. The spot size is reduced from 1 cm to 0.75 cm at the focal point where the target is placed. The proposed Log periodic lens system provides an increase in electric field amplitude and reduction in spot size.
Instruments for Reading Direct-Marked Data-Matrix Symbols
NASA Technical Reports Server (NTRS)
Schramm, Harry F.; Corder, Eric L.
2006-01-01
Improved optoelectronic instruments (specially configured digital cameras) for reading direct-marked data-matrix symbols on the surfaces of optically reflective objects (including specularly reflective ones) are undergoing development. Data-matrix symbols are two-dimensional binary patterns that are used, like common bar codes, for automated identification of objects. The first data-matrix symbols were checkerboard-like patterns of black-and-white rectangles, typically existing in the forms of paint, ink, or detachable labels. The major advantage of direct marking (the marks are more durable than are painted or printed symbols or detachable labels) is offset by a major disadvantage (the marks generated by some marking methods do not provide sufficient contrast to be readable by optoelectronic instruments designed to read black-and-white data-matrix symbols). Heretofore, elaborate lighting, lensing, and software schemes have been tried in efforts to solve the contrast problem in direct-mark matrix- symbol readers. In comparison with prior readers based on those schemes, the readers now undergoing development are expected to be more effective while costing less. All of the prior direct-mark matrix-symbol readers are designed to be aimed perpendicularly to marked target surfaces, and they tolerate very little angular offset. However, the reader now undergoing development not only tolerates angular offset but depends on angular offset as a means of obtaining the needed contrast, as described below. The prototype reader (see Figure 1) includes an electronic camera in the form of a charge-coupled-device (CCD) image detector equipped with a telecentric lens. It also includes a source of collimated visible light and a source of collimated infrared light for illuminating a target. The visible and infrared illumination complement each other: the visible illumination is more useful for aiming the reader toward a target, while the infrared illumination is more useful for reading symbols on highly reflective surfaces. By use of beam splitters, the visible and infrared collimated lights are introduced along the optical path of the telecentric lens, so that the target is illuminated and viewed from the same direction.
Crewe, Albert V.
2000-01-01
Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.
Dyksterhuis, L.D.; White, J.F.; Hickey, M.; Kirby, N.; Mudie, S.; Hawley, A.; Vashi, A.; Nigro, J.; Werkmeister, J.A.; Ramshaw, J.A.M.
2011-01-01
We assessed the importance of glycosaminoglycans and sulfur-mediated bonds for the mechanical properties of lens capsules by comparing the stress-strain responses from control and treated pairs of bovine source. No significant change in mechanical properties was observed upon reduction of disulfide bonds. However, removal of glycosaminoglycan chains resulted in a significantly stiffer lens capsule, whereas high concentrations of reducing agent, which is expected to reduce the recently reported sulfilimine bond of collagen IV, resulted in a significantly less stiff lens capsule. A comparison of the diffraction patterns of the control and strongly reduced lens capsules indicated structural rearrangements on a nanometer scale. PMID:21539774
Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.
Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori
2013-04-22
We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.
In-situ spectrophotometric probe
Prather, W.S.
1992-12-15
A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.
Su, Haijing; Zhou, Xiaoming; Xu, Xianchen; Hu, Gengkai
2014-04-01
A holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves. The condition is derived for the resonant tunneling, by which evanescent waves can completely transmit through the structured lens without decaying. As an advantage of the proposed lens, the imaging frequency can be modified by the diameter modulation of internal holes without the change of the lens thickness in contrast to the lens due to the Fabry-Pérot resonant mechanism. In this experiment, the lens is assembled by aluminum plates drilled with cylindrical holes. The imaging experiment demonstrates that the designed lens can clearly distinguish two sources separated in the distance below the diffraction limit at the tunneling frequency.
2010-01-01
Background Brahma-related gene 1 (Brg1, also known as Smarca4 and Snf2β) encodes an adenosine-5'-triphosphate (ATP)-dependent catalytical subunit of the (switch/sucrose nonfermentable) (SWI/SNF) chromatin remodeling complexes. SWI/SNF complexes are recruited to chromatin through multiple mechanisms, including specific DNA-binding factors (for example, heat shock transcription factor 4 (Hsf4) and paired box gene 6 (Pax6)), chromatin structural proteins (for example, high-mobility group A1 (HMGA1)) and/or acetylated core histones. Previous studies have shown that a single amino acid substitution (K798R) in the Brg1 ATPase domain acts via a dominant-negative (dn) mechanism. Genetic studies have demonstrated that Brg1 is an essential gene for early (that is, prior implantation) mouse embryonic development. Brg1 also controls neural stem cell maintenance, terminal differentiation of multiple cell lineages and organs including the T-cells, glial cells and limbs. Results To examine the roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific αA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (that is, denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in embryonic day 15.5 (E15.5) wild-type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous and Hsf4 homozygous lenses identified multiple genes coregulated by Brg1, Hsf4 and Pax6. DNase IIβ, a key enzyme required for lens fiber cell denucleation, was found to be downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation, for expression of DNase IIβ, for lens fiber cell denucleation and indirectly for retinal development. Conclusions These studies demonstrate a cell-autonomous role for Brg1 in lens fiber cell terminal differentiation and identified DNase IIβ as a potential direct target of SWI/SNF complexes. Brg1 is directly or indirectly involved in processes that degrade lens fiber cell chromatin. The presence of nuclei and other organelles generates scattered light incompatible with the optical requirements for the lens. PMID:21118511
NASA Astrophysics Data System (ADS)
Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Pratt, M. R.; Quinn, P. J.; Rhie, S. H.; Rodgers, A. W.; Stetson, P. B.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.
1999-06-01
We present photometric observations and analysis of the second microlensing event detected toward the Small Magellanic Cloud (SMC), MACHO Alert 98-SMC-1. This event was detected early enough to allow intensive observation of the light curve. These observations revealed 98-SMC-1 to be the first caustic crossing binary microlensing event toward the Magellanic Clouds to be discovered in progress. Frequent coverage of the evolving light curve allowed an accurate prediction for the date of the source crossing out of the lens caustic structure. The caustic crossing temporal width, along with the angular size of the source star, measures the proper motion of the lens with respect to the source and thus allows an estimate of the location of the lens. Lenses located in the Galactic halo would have a velocity projected to the SMC of v̂~1500 kms-1, while an SMC lens would typically have v̂~60 kms-1. The event light curve allows us to obtain a unique fit to the parameters of the binary lens and to estimate the proper motion of the lensing system. We have performed a joint fit to the MACHO/GMAN data presented here, including recent EROS data of this event from Afonso and collaborators. These joint data are sufficient to constrain the time t* for the lens to move an angle equal to the source angular radius: t*=0.116+/-0.010 days. We estimate a radius for the lensed source of R*=1.1+/-0.1 Rsolar from its unblended color and magnitude. This yields a projected velocity of v̂=76+/-10 kms-1. Only 0.12% of halo lenses would be expected to have a v̂ value at least as small as this, while 38% of SMC lenses would be expected to have v̂ as large as this. This implies that the lensing system is more likely to reside in the SMC than in the Galactic halo. Similar observations of future Magellanic Cloud microlensing events will help to determine the contribution of MACHOS to the Galaxy's dark halo.
Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.
1997-01-01
An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.
Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.
1997-07-22
An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.
THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Yiping; Bolton, Adam S.; Montero-Dorta, Antonio D.
We present Hubble Space Telescope F606W-band imaging observations of 21 galaxy-Ly α emitter lens candidates in the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey (BELLS) for the GALaxy-Ly α EmitteR sYstems (BELLS GALLERY) survey. Seventeen systems are confirmed to be definite lenses with unambiguous evidence of multiple imaging. The lenses are primarily massive early-type galaxies (ETGs) at redshifts of approximately 0.55, while the lensed sources are Ly α emitters (LAEs) at redshifts from two to three. Although most of the lens systems are well fit by smooth lens models consisting of singular isothermal ellipsoids in an external shear field, a thoroughmore » exploration of dark substructures in the lens galaxies is required. The Einstein radii of the BELLS GALLERY lenses are, on average, 60% larger than those of the BELLS lenses because of the much higher source redshifts. This will allow for a detailed investigation of the radius evolution of the mass profile in ETGs. With the aid of the average ∼13× lensing magnification, the LAEs are frequently resolved into individual star-forming knots with a wide range of properties. They have characteristic sizes from less than 100 pc to several kiloparsecs, rest-frame far-UV apparent AB magnitudes from 29.6 to 24.2, and typical projected separations of 500 pc to 2 kpc.« less
Experimental validation of a transformation optics based lens for beam steering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Jianjia; Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de
2015-10-12
A transformation optics based lens for beam control is experimentally realized and measured at microwave frequencies. Laplace's equation is adopted to construct the mapping between the virtual and physical spaces. The metamaterial-based lens prototype is designed using electric LC resonators. A planar microstrip antenna source is used as transverse electric polarized wave launcher for the lens. Both the far field radiation patterns and the near-field distributions have been measured to experimentally demonstrate the beam steering properties. Measurements agree quantitatively and qualitatively with numerical simulations, and a non-narrow frequency bandwidth operation is observed.
Donnelly, William
2008-11-01
To present a commercially available software tool for creating eye models to assist the development of ophthalmic optics and instrumentation, simulate ailments or surgery-induced changes, explore vision research questions, and provide assistance to clinicians in planning treatment or analyzing clinical outcomes. A commercially available eye modeling system was developed, the Advanced Human Eye Model (AHEM). Two mainstream optical software engines, ZEMAX (ZEMAX Development Corp) and ASAP (Breault Research Organization), were used to construct a similar software eye model and compared. The method of using the AHEM is described and various eye modeling scenarios are created. These scenarios consist of retinal imaging of targets and sources; optimization capability; spectacles, contact lens, and intraocular lens insertion and correction; Zernike surface deformation on the cornea; cataract simulation and scattering; a gradient index lens; a binocular mode; a retinal implant; system import/export; and ray path exploration. Similarity of the two different optical software engines showed validity to the mechanism of the AHEM. Metrics and graphical data are generated from the various modeling scenarios particular to their input specifications. The AHEM is a user-friendly commercially available software tool from Breault Research Organization, which can assist the design of ophthalmic optics and instrumentation, simulate ailments or refractive surgery-induced changes, answer vision research questions, or assist clinicians in planning treatment or analyzing clinical outcomes.
Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken.
Tattersall, Rebecca J; Prashar, Ankush; Singh, Krish D; Tokarczuk, Pawel F; Erichsen, Jonathan T; Hocking, Paul M; Guggenheim, Jeremy A
2010-02-02
A reduction in the power of the crystalline lens during childhood is thought to be important in the emmetropization of the maturing eye. However, in humans and model organisms, little is known about the factors that determine the dimensions of the crystalline lens and in particular whether these different parameters (axial thickness, surface curvatures, equatorial diameter, and volume) are under a common source of control or regulated independently of other aspects of eye size and shape. Using chickens from a broiler-layer experimental cross as a model system, three-dimensional magnetic resonance imaging (MRI) scans were obtained at 115-microm isotropic resolution for one eye of 501 individuals aged 3-weeks old. After fixation with paraformaldehyde, the excised eyes were scanned overnight (16 h) in groups of 16 arranged in a 2x2x4 array. Lens dimensions were calculated from each image by fitting a three-dimensional mesh model to the lens, using the semi-automated analysis program mri3dX. The lens dimensions were compared to measures of eye and body size obtained in vivo using techniques that included keratometry and A-scan ultrasonography. A striking finding was that axial lens thickness measured using ex vivo MRI was only weakly correlated with lens thickness measured in vivo by ultrasonography (r=0.19, p<0.001). In addition, the MRI lens thickness estimates had a lower mean value and much higher variance. Indeed, about one-third of crystalline lenses showed a kidney-shaped appearance instead of the typical biconvex shape. Since repeat MRI scans of the same eye showed a high degree of reproducibility for the scanning and mri3dX analysis steps (the correlation in repeat lens thickness measurements was r=0.95, p<0.001) and a recent report has shown that paraformaldehyde fixation induces a loss of water from the human crystalline lens, it is likely that the tissue fixation step caused a variable degree of shrinkage and a change in shape to the lenses examined here. Despite this serious source of imprecision, we found significant correlations between lens volume and eye/body size (p<0.001) and between lens equatorial diameter and eye/body size (p<0.001) in these chickens. Our results suggest that certain aspects of lens size (specifically, lens volume and equatorial diameter) are controlled by factors that also regulate the size of the eye and body (presumably, predominantly genetic factors). However, since it has been shown previously that axial lens thickness is regulated almost independently of eye and body size, these results suggest that different systems might operate to control lens volume/diameter and lens thickness in normal chickens.
Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken
Tattersall, Rebecca J.; Prashar, Ankush; Singh, Krish D.; Tokarczuk, Pawel F.; Erichsen, Jonathan T.; Hocking, Paul M.
2010-01-01
Purpose A reduction in the power of the crystalline lens during childhood is thought to be important in the emmetropization of the maturing eye. However, in humans and model organisms, little is known about the factors that determine the dimensions of the crystalline lens and in particular whether these different parameters (axial thickness, surface curvatures, equatorial diameter, and volume) are under a common source of control or regulated independently of other aspects of eye size and shape. Methods Using chickens from a broiler-layer experimental cross as a model system, three-dimensional magnetic resonance imaging (MRI) scans were obtained at 115-µm isotropic resolution for one eye of 501 individuals aged 3-weeks old. After fixation with paraformaldehyde, the excised eyes were scanned overnight (16 h) in groups of 16 arranged in a 2×2×4 array. Lens dimensions were calculated from each image by fitting a three-dimensional mesh model to the lens, using the semi-automated analysis program mri3dX. The lens dimensions were compared to measures of eye and body size obtained in vivo using techniques that included keratometry and A-scan ultrasonography. Results A striking finding was that axial lens thickness measured using ex vivo MRI was only weakly correlated with lens thickness measured in vivo by ultrasonography (r=0.19, p<0.001). In addition, the MRI lens thickness estimates had a lower mean value and much higher variance. Indeed, about one-third of crystalline lenses showed a kidney-shaped appearance instead of the typical biconvex shape. Since repeat MRI scans of the same eye showed a high degree of reproducibility for the scanning and mri3dX analysis steps (the correlation in repeat lens thickness measurements was r=0.95, p<0.001) and a recent report has shown that paraformaldehyde fixation induces a loss of water from the human crystalline lens, it is likely that the tissue fixation step caused a variable degree of shrinkage and a change in shape to the lenses examined here. Despite this serious source of imprecision, we found significant correlations between lens volume and eye/body size (p<0.001) and between lens equatorial diameter and eye/body size (p<0.001) in these chickens. Conclusions Our results suggest that certain aspects of lens size (specifically, lens volume and equatorial diameter) are controlled by factors that also regulate the size of the eye and body (presumably, predominantly genetic factors). However, since it has been shown previously that axial lens thickness is regulated almost independently of eye and body size, these results suggest that different systems might operate to control lens volume/diameter and lens thickness in normal chickens. PMID:20142845
The Life and Work of Joseph Fraunhofer (1787-1826)
ERIC Educational Resources Information Center
Leitner, Alfred
1975-01-01
Describes Fraunhofer's scientific career as a glass and lens maker, a discoverer of dark lines in the solar spectrum, a corrector of lens aberration, and investigator of diffraction. Gives biographical data and anecdotes. Includes a bibliography, mainly of German sources. (GH)
Lentil genetic and genomic resources
USDA-ARS?s Scientific Manuscript database
Lentil (Lens culinaris spp. culinaris) has a long history associated with the early civilizations 11,000 BP in southwestern Asia. The progenitor taxon is Lens culinaris spp. orientalis. The primary source of germplasm for lentil crop improvement is from the International Center for Agricultural Rese...
Design of LED projector based on gradient-index lens
NASA Astrophysics Data System (ADS)
Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang
2018-01-01
In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.
Light absorption cell combining variable path and length pump
Prather, William S.
1993-01-01
A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.
Time delay of critical images in the vicinity of cusp point of gravitational-lens systems
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Zhdanov, V.
2016-12-01
We consider approximate analytical formulas for time-delays of critical images of a point source in the neighborhood of a cusp-caustic. We discuss zero, first and second approximations in powers of a parameter that defines the proximity of the source to the cusp. These formulas link the time delay with characteristics of the lens potential. The formula of zero approximation was obtained by Congdon, Keeton & Nordgren (MNRAS, 2008). In case of a general lens potential we derived first order correction thereto. If the potential is symmetric with respect to the cusp axis, then this correction is identically equal to zero. For this case, we obtained second order correction. The relations found are illustrated by a simple model example.
Compliance among soft contact lens wearers.
Kuzman, Tomislav; Kutija, Marija Barisić; Masnec, Sanja; Jandroković, Sonja; Mrazovac, Danijela; Jurisić, Darija; Skegro, Ivan; Kalauz, Miro; Kordić, Rajko
2014-12-01
Contact lens compliance is proven to be crucial for preventing lens wear-related complications because of the interdependence of the steps in lens care regime and their influence on lens system microbial contamination. Awareness of the patients' lens handling compliance as well as correct recognition of non-compliant behaviours is the basis for creating more targeted strategies for patient education. The aim of this study was to investigate compliance among soft contact lens (SCL) wearers in different aspects of lens care handling and wearing habits. In our research 50 asymptomatic lens wearers filled out a questionnaire containing demographic data, lens type, hygiene and wearing habits, lenses and lens care system replacement schedule and self-evaluation of contact lens handling hygiene. We established criteria of compliance according to available manufacturer's recommendations, prior literature and our clinical experience. Only 2 (4%) of patients were fully compliant SCL wearers. The most common non-compliant behaviours were insufficient lens solution soaking time (62%), followed by failure to daily exchange lens case solution and showering while wearing lenses. 44% of patients reported storing lenses in saline solution. Mean lens storage case replacement was 3.6 months, with up to 78% patients replacing lens case at least once in 3 months. Average grade in self evaluating level of compliance was very good (4 +/- 0.78) (from 1-poor level of hygiene to 5-great level of hygiene). Lens wearers who reported excessive daily lens wear and more than 10 years of lens wearing experience were also found to be less compliant with other lens system care procedures. (t = -2.99, df=47, p < 0.0045 and t = -2.33, df= 48, p < 0.024, respectively). Our study indicates that almost all patients had some degree of non-compliance in lens system maintenance steps. Most common non-compliant behaviours were the ones that are crucial for maintaining lens sterility and preventing infection. Despite the low objective compliance rate, self grading was relatively high. Therefore, these results indicate the need for patient education and encouragement of better lens wearing habits and all of the lens maintenance steps at each patient visit.
Dose estimation to eye lens of industrial gamma radiography workers using the Monte Carlo method.
de Lima, Alexandre Roza; Hunt, John Graham; Da Silva, Francisco Cesar Augusto
2017-12-01
The ICRP Statement on Tissue Reactions (2011), based on epidemiological evidence, recommended a reduction for the eye lens equivalent dose limit from 150 to 20 mSv per year. This paper presents mainly the dose estimations received by industrial gamma radiography workers, during planned or accidental exposure to the eye lens, Hp(10) and effective dose. A Brazilian Visual Monte Carlo Dose Calculation program was used and two relevant scenarios were considered. For the planned exposure situation, twelve radiographic exposures per day for 250 days per year, which leads to a direct exposure of 10 h per year, were considered. The simulation was carried out using a 192 Ir source with 1.0 TBq of activity; a source/operator distance between 5 and 10 m and placed at heights of 0.02 m, 1 m and 2 m, and an exposure time of 12 s. Using a standard height of 1 m, the eye lens doses were estimated as being between 16.3 and 60.3 mGy per year. For the accidental exposure situation, the same radionuclide and activity were used, but in this case the doses were calculated with and without a collimator. The heights above ground considered were 1.0 m, 1.5 m and 2.0 m; the source/operator distance was 40 cm, and the exposure time 74 s. The eye lens doses at 1.5 m were 12.3 and 0.28 mGy without and with a collimator, respectively. The conclusions were that: (1) the estimated doses show that the 20 mSv annual limit for eye lens equivalent dose can directly impact industrial gamma radiography activities, mainly in industries with high number of radiographic exposures per year; (2) the risk of lens opacity has a low probability for a single accident, but depending on the number of accidental exposures and the dose levels found in planned exposures, the threshold dose can easily be exceeded during the professional career of an industrial radiography operator, and; (3) in a first approximation, Hp(10) can be used to estimate the equivalent dose to the eye lens.
Design of TIR collimating lens for ordinary differential equation of extended light source
NASA Astrophysics Data System (ADS)
Zhan, Qianjing; Liu, Xiaoqin; Hou, Zaihong; Wu, Yi
2017-10-01
The source of LED has been widely used in our daily life. The intensity angle distribution of single LED is lambert distribution, which does not satisfy the requirement of people. Therefore, we need to distribute light and change the LED's intensity angle distribution. The most commonly method to change its intensity angle distribution is the free surface. Generally, using ordinary differential equations to calculate free surface can only be applied in a point source, but it will lead to a big error for the expand light. This paper proposes a LED collimating lens based on the ordinary differential equation, combined with the LED's light distribution curve, and adopt the method of calculating the center gravity of the extended light to get the normal vector. According to the law of Snell, the ordinary differential equations are constructed. Using the runge-kutta method for solution of ordinary differential equation solution, the curve point coordinates are gotten. Meanwhile, the edge point data of lens are imported into the optical simulation software TracePro. Based on 1mm×1mm single lambert body for light conditions, The degrees of collimating light can be close to +/-3. Furthermore, the energy utilization rate is higher than 85%. In this paper, the point light source is used to calculate partial differential equation method and compared with the simulation of the lens, which improve the effect of 1 degree of collimation.
Compact and high resolution virtual mouse using lens array and light sensor
NASA Astrophysics Data System (ADS)
Qin, Zong; Chang, Yu-Cheng; Su, Yu-Jie; Huang, Yi-Pai; Shieh, Han-Ping David
2016-06-01
Virtual mouse based on IR source, lens array and light sensor was designed and implemented. Optical architecture including lens amount, lens pitch, baseline length, sensor length, lens-sensor gap, focal length etc. was carefully designed to achieve low detective error, high resolution, and simultaneously, compact system volume. System volume is 3.1mm (thickness) × 4.5mm (length) × 2, which is much smaller than that of camera-based device. Relative detective error of 0.41mm and minimum resolution of 26ppi were verified in experiments, so that it can replace conventional touchpad/touchscreen. If system thickness is eased to 20mm, resolution higher than 200ppi can be achieved to replace real mouse.
An unusually strong Einstein ring in the radio source PKS1830 - 211
NASA Technical Reports Server (NTRS)
Jauncey, D. L.; Reynolds, J. E.; Tzioumis, A. K.; Murphy, D. W.; Preston, R. A.; Jones, D. L.; Meier, D. L.; Hoard, D. W.; Lobdell, E. T.; Skjerve, L.
1991-01-01
High-resolution radio images of PKS1830 - 211 are obtained to study the possibility that the double structure is a gravitationally lensed object. The VLBI observations, taken from interferometric radiotelescope networks, reveal an elliptical ring that connects two bright spots of similar composition. Because the lens and the lensed object are closely aligned, and because of the structure of the two spots, the source is concluded to be a radio Einstein ring. The source is found to be close to the galactic plane, and the lens and the lensed object are extragalactic. The source is also found to be unusually bright, suggesting that it is aligned with a bright background source or amplified by some mechanism related to a source that is not so bright.
The new design of final optics assembly on SG-III prototype facility
NASA Astrophysics Data System (ADS)
Li, Ping; Zhao, Runchang; Wang, Wei; Jia, Huaiting; Chen, Liangmin; Su, Jingqin
2014-09-01
To improve the performance of SG-III prototype facility (TIL-Technical Integration Line), final optics assembly (FOA) is re-designed. It contains that stray light and focusing ghosts are optimized, operational performance and environments are improved and the total thickness of optics is reduced. With the re-designed FOA, Some performance advantages are achieved. First, the optics damages are mitigated obviously, especially crystals and Focus lens; Second, stray light and focusing ghosts are controlled better that organic contamination sources inside FOA are eliminated; Third, maintenance and operation are more convenient for the atoms environment; Fourth, the focusable power on target is increased for lower B-integral.
NASA Astrophysics Data System (ADS)
Zavalin, Andre; Yang, Junhai; Haase, Andreas; Holle, Armin; Caprioli, Richard
2014-06-01
We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 μm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 μm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 μm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain.
Zavalin, Andre; Yang, Junhai; Haase, Andreas; Holle, Armin; Caprioli, Richard
2014-06-01
We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 μm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 μm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 μm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain.
Apparatus for Direct Optical Fiber Through-Lens Illumination of Microscopy or Observational Objects
NASA Technical Reports Server (NTRS)
Kadogawa, Hiroshi (Inventor)
2001-01-01
In one embodiment of the invention, a microscope or other observational apparatus, comprises a hollow tube, a lens mounted to the tube, a light source and at least one flexible optical fiber having an input end and an output end. The input end is positioned to receive light from the light source, and the output end is positioned within the tube so as to directly project light along a straight path to the lens to illuminate an object to be viewed. The path of projected light is uninterrupted and free of light deflecting elements. By passing the light through the lens, the light can be diffused or otherwise defocused to provide more uniform illumination across the surface of the object, increasing the quality of the image of the object seen by the viewer. The direct undeflected and uninterrupted projection of light, without change of direction, eliminates the need for light-deflecting elements, such as beam-splitters, mirrors, prisms, or the like, to direct the projected light towards the object.
The nature of ultra-massive lens galaxies
NASA Astrophysics Data System (ADS)
Canameras, Raoul
2017-08-01
During the past decade, strong gravitational lensing analyses have contributed tremendously to the characterization of the inner properties of massive early-type galaxies, beyond the local Universe. Here we intend to extend studies of this kind to the most massive lens galaxies known to date, well outside the mass limits investigated by previous lensing surveys. This will allow us to probe the physics of the likely descendants of the most violent episodes of star formation and of the compact massive galaxies at high redshift. We propose WFC3 imaging (F438W and F160W) of four extremely massive early-type lens galaxies at z 0.5, in order to put them into context with the evolutionary trends of ellipticals as a function of mass and redshift. These systems were discovered in the SDSS and show one single main lens galaxy with a stellar mass above 1.5x10^12 Msun and large Einstein radii. Our high-resolution spectroscopic follow-up with VLT/X-shooter provides secure lens and source redshifts, between 0.3 and 0.7 and between 1.5 and 2.5, respectively, and confirm extreme stellar velocity dispersions > 400 km/s for the lenses. The excellent angular resolution of the proposed WFC3 imaging - not achievable from the ground - is the remaining indispensable piece of information to :(1) Resolve the lens structural parameters and obtain robust measurements of their stellar mass distributions,(2) Model the amount and distribution of the lens total masses and measure their M/L ratios and stellar IMF with joint strong lensing and stellar dynamics analyses,(3) Enhance our on-going lens models through the most accurate positions and morphologies of the blue multiply-imaged sources.
Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.
Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R
2013-03-21
In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.
Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.
Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin
2015-08-24
We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.
NASA Technical Reports Server (NTRS)
Chutjian, A.
1979-01-01
Geometries and focal properties are given for two types of electron-lens system commonly needed in electron scattering. One is an electron gun that focuses electrons from a thermionic emitter onto a fixed point (target) over a wide range of final energies. The other is an electron analyzer system that focuses scattered electrons of variable energy onto a fixed position (e.g., the entrance plane of an analyzer) at fixed energy with a zero final beam angle. Analyzer-system focusing properties are given for superelastically, elastically, and inelastically scattered electrons. Computer calculations incorporating recent accurate tube-lens focal properties are used to compute lens voltages, locations and diameters of all pupils and windows, filling factors, and asymptotic rays throughout each lens system. Focus voltages as a function of electron energy and energy change are given, and limits of operation of each system discussed. Both lens systems have been in routine use for several years, and good agreement has been consistently found between calculated and operating lens voltages.
X-ray bubble lens and x-ray hollow plastic ball lens
NASA Astrophysics Data System (ADS)
Kohmura, Yoshiki; Awaji, Mitsuhiro; Suzuki, Yoshio; Ishikawa, Tetsuya
1998-11-01
Recent development of anew refractive x-ray lens at SPring-8 is reported. This is the first refractive x-ray lens with a string of spherical lens in-spite of the string of cylindrical holes. Two types of the lends were developed which consists of a string of bubbles formed in a viscous liquid and a string of hollow plastic balls on pure water. They are sealed inside a container made from an acrylic resin. The x-ray focusing properties were investigated with the monochromated beam at an undulator beam line BL47 in SPring-8. Demagnified images of the source for these tow types of lens were observed at the energy of 19.0-24.5 keV with the focal length of approximately 5m. For the bubble lens, a gain of about 12 was observed. The observed vertical image size, 48 micrometers , was 6 times larger than the expected size. The method to improve the focusing capability is discussed.
A passively tunable acoustic metamaterial lens for selective ultrasonic excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, H.; Semperlotti, F., E-mail: Fabio.Semperlotti.1@nd.edu
2014-09-07
In this paper, we present an approach to ultrasonic beam-forming and beam-steering in structures based on the concept of embedded acoustic metamaterial lenses. The lens design exploits the principle of acoustic drop-channel that enables the dynamic coupling of multiple ultrasonic waveguides at selected frequencies. In contrast with currently available technology, the embedded lens allows exploiting the host structure as a key component of the transducer system therefore enabling directional excitation by means of a single ultrasonic transducer. The design and the performance of the lens are numerically investigated by using Plane Wave Expansion and Finite Difference Time Domain techniques appliedmore » to bulk structures. Then, the design is experimentally validated on a thin aluminum plate waveguide where the lens is implemented by through-holes. The dynamic response of the embedded lens is estimated by reconstructing, via Laser Vibrometry, the velocity field induced by a single source located at the center of the lens.« less
Flat Lens Focusing Demonstrated With Left-Handed Metamaterial
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Schwartz, Zachary D.; Chevalier, Christine T.; Downey, Alan N.; Vaden, Karl R.
2004-01-01
Left-handed metamaterials (LHM's) are a new media engineered to possess an effective negative index of refraction over a selected frequency range. This characteristic enables LHM's to exhibit physical properties never before observed. In particular, a negative index of refraction should cause electromagnetic radiation to refract or bend at a negative angle when entering an LHM, as shown in the figure above on the left. The figure on the right shows that this property could be used to bring radiation to a focus with a flat LHM lens. The advantage of a flat lens in comparison to a conventional curved lens is that the focal length could be varied simply by adjusting the distance between the lens and the electromagnetic wave source. In this in-house work, researchers at the NASA Glenn Research Center developed a computational model for LHM's with the three-dimensional electromagnetic commercial code Microwave Studio, constructed an LHM flat lens, and used it to experimentally demonstrate the reversed refraction and flat lens focusing of microwave radiation.
Chen, Hsi-Chao; Yang, Chi-Hao
2014-05-10
The effects of different pitch and angle of gradual-triangle lenticular lens for the point-blank LED fog lamp were investigated under the standard of ECE R19. The novel LED fog lamp was assembled from a point-blank LED light source, a parabolic reflector, and a gradual-triangle lenticular lens. Light tracing analysis was used for the design of the gradual-triangle lenticular lens. The pitch, which varied from 1 to 6 mm, and the apex angle, which changed from 5 to 32 deg, were both investigated in regard to the gradual-triangle lenticular lens. The optimum pitch was 5 mm, and the efficiency of the lamp system and lenticular lens could reach 93% and 98.1% by simulation, respectively. The results of experiment had over 94%, which is similar to that of simulation by normalized cross correlation (NCC) for the light intensity.
Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Jayroe, Robert
1998-01-01
Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion, a set of design equations has been derived to define the groove angles for each groove on the lens. These equations allow the distribution of light by wavelength within the image spot to be calculated. Combining these equations with the blackbody radiation equations, energy distribution, power, and flux within the image spot can be calculated. In addition, equations have been derived to design a lens to produce maximum flux in a given spot size. Using these equations, a lens may be designed to optimize the spot energy concentration for given energy source.
Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating.
Hu, Run; Luo, Xiaobing; Zheng, Huai; Qin, Zong; Gan, Zhiqiang; Wu, Bulong; Liu, Sheng
2012-06-18
A conformal phosphor coating can realize a phosphor layer with uniform thickness, which could enhance the angular color uniformity (ACU) of light-emitting diode (LED) packaging. In this study, a novel freeform lens was designed for simultaneous realization of LED uniform illumination and conformal phosphor coating. The detailed algorithm of the design method, which involves an extended light source and double refractions, was presented. The packaging configuration of the LED modules and the modeling of the light-conversion process were also presented. Monte Carlo ray-tracing simulations were conducted to validate the design method by comparisons with a conventional freeform lens. It is demonstrated that for the LED module with the present freeform lens, the illumination uniformity and ACU was 0.89 and 0.9283, respectively. The present freeform lens can realize equivalent illumination uniformity, but the angular color uniformity can be enhanced by 282.3% when compared with the conventional freeform lens.
Light absorption cell combining variable path and length pump
Prather, W.S.
1993-12-07
A device is described for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid there between and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data. 2 figures.
Coupling of high power laser diode optical power.
Landry, M J; Rupert, J W; Mittas, A
1991-06-20
This paper describes the characteristics of optical couplers with high power laser diodes as sources. The couplers investigated include gradient-index (GRIN) lenses manufactured by Nippon Sheet Glass, a plano-convex lens, a prism, optical fibers manufactured by Ensign-Bickford and Nippon Sheet Glass, and fiber optic stub manufacture by Spec Tran. The characteristics measured included: (1) GRIN lens transmission of up to 97%, fiber transmission of up to 90%, plano-convex lens transmission of up to 92%; (2) intensity distribution contours and profiles of the beam transmitted through GRIN lenses and optical fibers; (3) the beam dimensions of a collimating system; and (4) the divergence of optical fibers of varying lengths. Spectra Diode Laboratory and McDonnell Astronautics Company/Opto Electronics Center manufactured the laser diodes sources that emitted up to 3.6 W.
Simulated imaging properties of a series of magnetic electron lenses
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1995-01-01
The paraxial lens data were determined for a series of symmetrical magnetic lenses of equal lens diameter but variable air gap width for a wide range of lens excitations using the three-dimensional electrodynamic computer code MAFIA. The results are compared with a similar study done by Liebman and Grad wherein the field distributions within the lenses were measured experimentally with a resistance network analogue. Using these fields the lens data were obtained through numerical trajectory tracing. The utility of using MAFIA, instead of experimental methods for lens design is shown by the excellent agreement of the simulated results compared to experiment. Also demonstrated is the capability of using MAFIA to investigate aberration sources such as higher order off-axis magnetic field and space-charge effects.
Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode
Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt; ...
2017-05-18
We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM 00 pump laser sources, and their effect on the Kerr lens modelocking process.
Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt
We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM 00 pump laser sources, and their effect on the Kerr lens modelocking process.
A comparative cDNA microarray analysis reveals a spectrum of genes regulated by Pax6 in mouse lens
Chauhan, Bharesh K.; Reed, Nathan A.; Yang, Ying; Čermák, Lukáš; Reneker, Lixing; Duncan, Melinda K.; Cvekl, Aleš
2007-01-01
Background Pax6 is a transcription factor that is required for induction, growth, and maintenance of the lens; however, few direct target genes of Pax6 are known. Results In this report, we describe the results of a cDNA microarray analysis of lens transcripts from transgenic mice over-expressing Pax6 in lens fibre cells in order to narrow the field of potential direct Pax6 target genes. This study revealed that the transcript levels were significantly altered for 508 of the 9700 genes analysed, including five genes encoding the cell adhesion molecules β1-integrin, JAM1, L1 CAM, NCAM-140 and neogenin. Notably, comparisons between the genes differentially expressed in Pax6 heterozygous and Pax6 over-expressing lenses identified 13 common genes, including paralemmin, GDIβ, ATF1, Hrp12 and Brg1. Immunohistochemistry and Western blotting demonstrated that Brg1 is expressed in the embryonic and neonatal (2-week-old) but not in 14-week adult lenses, and confirmed altered expression in transgenic lenses over-expressing Pax6. Furthermore, EMSA demonstrated that the BRG1 promoter contains Pax6 binding sites, further supporting the proposition that it is directly regulated by Pax6. Conclusions These results provide a list of genes with possible roles in lens biology and cataracts that are directly or indirectly regulated by Pax6. PMID:12485166
Electrostatic lens to focus an ion beam to uniform density
Johnson, Cleland H.
1977-01-11
A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.
Novel wafer stepper with violet LED light source
NASA Astrophysics Data System (ADS)
Ting, Yung-Chiang; Shy, Shyi-Long
2014-03-01
Novel wafer stepper by using contact or proximity printing will be developed, using violet LED light source to replace Hg Arc. lamp or laser. Mirror, filter and condenser lens for Hg Arc. Lamp or laser and reduction lens for projection printing can be discarded. Reliability and manufacturing cost of wafer stepper can be improved. Exposure result by using IP3600 resist and wafer stepper with violet LED light source (wave-length 360nm to 410 nm) will be obtained. This novel wafer stepper can be used for 3DIC, MEMS and bio-chip lithography application by using thin and thick resist with sub-micron to 100 micron thickness.
MAHLI Calibration Target in Ultraviolet Light
2012-02-07
During pre-flight testing in March 2011, the Mars Hand Lens Imager MAHLI camera on NASA Mars rover Curiosity took this image of the MAHLI calibration target under illumination from MAHLI two ultraviolet LEDs light emitting diodes.
Photometric microlensing and stellar mass determination
NASA Astrophysics Data System (ADS)
Samadi, R.
Microlensing was suggested for stellar mass determination of nearby stars by several authors (e.g. Paczynski 1995 and Miralada-Escude 1996). There are two aspects in gravitational microlensing: photometry and astrometry. Here only the photometric aspect -i.e. magnification of a background source by a stellar lens- will be considered. The first study in this domain was done by Paczyński (1995). An attempt to investigate some observational constraints (Alard et al. 1996), takes its origin in this study. It will be shown here that blending of the source by the lens, not only induces a degeneracy which has been pointed out by Wozniak and Paczynski (1997) and can be removed by measuring the flux of the source outside the microlensing event, but also strongly reduces the photometric cross section as well as the duration of microlensing events. The expected number of events decreases strongly with blending. Blending effects can be reduced by selecting faint lens candidates. Unfortunately however, it is difficult to monitor a sufficient number of lens candidates per night, and restricting oneself to nearby and high proper motion objects would lead to a very small number of lens candidates. In the case of short duration events, the light curve must be sampled at short time intervals. When sampling daily, the condition is very strong and the expected rate of events very small. Observing from space would increase significantly the rate, but this gain is still insufficient. We conclude that the event rate will be very small and that the project does not seem to be feasible at least under current observing conditions and even in the near future.
Analysis of LED arrangement in an array with respect to lens geometry
NASA Astrophysics Data System (ADS)
Ley, Peer-Phillip; Held, Marcel Philipp; Lachmayer, Roland
2018-02-01
Highly adaptive light sources such as LED arrays have been surpassing conventional light sources (halogen, xenon) for automotive applications. Individual LED arrangements within the array, high durability and low energy consumption of the LEDs are some of the reasons. With the introduction of Audi's Matrix beam system, efforts to increase the quantity of pixels were already underway and the stage was practically set for pixel light systems. Current efforts are focused towards the exploration of an optimal LED array density and the use of spatial light modulators. In both cases, one question remains - What arrangement of LEDs is the most suitable in terms of light output efficiency for a given lens geometry? The radiation characteristics of an LED usually shows a Lambertian pattern. Following from the definition of luminous efficacy, this characteristic property of LEDs has a decisive impact on the lens geometry in a given array. Due to the proportional correlation between the lens diameter and the distance of LEDs emission surface to the lens surface. Assuming a constant viewing angle an increase of the distance leads to an increase of the lens diameter. In this paper, two different approaches for an optimized LED array with regards to the LED arrangement will be presented. The introduced designs result from one imaging and one non-imaging optical system, which will be investigated. The paper is concluded with a comparative analysis of the LED array design as a function of the LED pitch and the luminous efficacy.
2011-01-01
Background Surgical removal of the lens from larval Xenopus laevis results in a rapid transdifferention of central corneal cells to form a new lens. The trigger for this process is understood to be an induction event arising from the unprecedented exposure of the cornea to the vitreous humour that occurs following lens removal. The molecular identity of this trigger is unknown. Results Here, we have used a functional transgenic approach to show that BMP signalling is required for lens regeneration and a microarray approach to identify genes that are upregulated specifically during this process. Analysis of the array data strongly implicates Wnt signalling and the Pitx family of transcription factors in the process of cornea to lens transdifferentiation. Our analysis also captured several genes associated with congenital cataract in humans. Pluripotency genes, in contrast, were not upregulated, supporting the idea that corneal cells transdifferentiate without returning to a stem cell state. Several genes from the array were expressed in the forming lens during embryogenesis. One of these, Nipsnap1, is a known direct target of BMP signalling. Conclusions Our results strongly implicate the developmental Wnt and BMP signalling pathways in the process of cornea to lens transdifferentiation (CLT) in Xenopus, and suggest direct transdifferentiation between these two anterior eye tissues. PMID:21896182
Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark
2017-05-01
There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.
Designs for optimizing depth of focus and spot size for UV laser ablation
NASA Astrophysics Data System (ADS)
Wei, An-Chi; Sze, Jyh-Rou; Chern, Jyh-Long
2010-11-01
The proposed optical systems are designed for extending the depths of foci (DOF) of UV lasers, which can be exploited in the laser-ablation technologies, such as laser machining and lithography. The designed systems are commonly constructed by an optical module that has at least one aspherical surface. Two configurations of optical module, lens-only and lens-reflector, are presented with the designs of 2-lens and 1-lens-1-reflector demonstrated by commercially optical software. Compared with conventional DOF-enhanced systems, which required the chromatic aberration lenses and the light sources with multiple wavelengths, the proposed designs are adapted to the single-wavelength systems, leading to more economical and efficient systems.
Perinuclear lens retrodots: a role for ascorbate in cataractogenesis.
Bron, A J; Brown, N A
1987-01-01
Lens retrodots are round, oblong, or oval features in the perinuclear zone of the adult lens after the fifth decade of life and associated with cataract. Retrodots were found in 47 out of 121 eyes with cataract (39%) in the present series. They show birefringence in vivo and in vitro, and chemical studies suggest that they contain calcium oxalate. It is proposed that ascorbic acid, which is abundant in the normal human lens, is the most likely source for this oxalate. Ascorbic acid is thought to have a protective role against oxidative stress in the lens and other parts of the eye, and its level is known to be reduced in senile cataract. The presence of the retrodots may identify lenses which have been exposed to oxidative stress and are less capable of resisting oxidative damage. Images PMID:3828268
Lens testing using total internal reflection holography
Hildebrand, Bernard P.
1976-12-14
Accurate, rapid and inexpensive testing and inspecting of lens surfaces tugh holographic means requiring no beamsplitters, mirrors or overpower optics, and wherein a hologram formed in accordance with one aspect of the invention contains the entire interferometer and serves as both a master and illuminating source for both concave and convex surfaces to be so tested.
Detecting an Extended Light Source through a Lens
ERIC Educational Resources Information Center
Litaker, E. T.; Machacek, J. R.; Gay, T. J.
2011-01-01
We present a Monte Carlo simulation of a cylindrical luminescent volume and a typical lens-detector system. The results of this simulation yield a graphically simple picture of the regions within the cylindrical volume from which this system detects light. Because the cylindrical volume permits large angles of incidence, we use a modification of…
Mocking the weak lensing universe: The LensTools Python computing package
NASA Astrophysics Data System (ADS)
Petri, A.
2016-10-01
We present a newly developed software package which implements a wide range of routines frequently used in Weak Gravitational Lensing (WL). With the continuously increasing size of the WL scientific community we feel that easy to use Application Program Interfaces (APIs) for common calculations are a necessity to ensure efficiency and coordination across different working groups. Coupled with existing open source codes, such as CAMB (Lewis et al., 2000) and Gadget2 (Springel, 2005), LensTools brings together a cosmic shear simulation pipeline which, complemented with a variety of WL feature measurement tools and parameter sampling routines, provides easy access to the numerics for theoretical studies of WL as well as for experiment forecasts. Being implemented in PYTHON (Rossum, 1995), LensTools takes full advantage of a range of state-of-the art techniques developed by the large and growing open-source software community (Jones et al., 2001; McKinney, 2010; Astrophy Collaboration, 2013; Pedregosa et al., 2011; Foreman-Mackey et al., 2013). We made the LensTools code available on the Python Package Index and published its documentation on http://lenstools.readthedocs.io.
Plural output optimetric sample cell and analysis system
NASA Technical Reports Server (NTRS)
Haley, F. C. (Inventor)
1971-01-01
An apparatus suitable for receiving a sample for optimetric analysis includes a sample cell comprising an opaque hollow tube. Several apertures are defined in the wall of the tubing and a lens barrel which extends beyond to opposite surfaces of the wall is supported within at least one of the apertures. A housing is provided with one channel for receiving the sample cell and a series of channels extending from the exterior housing to the sample cell apertures. A filter element is housed in each of these latter channels. These channels slidingly receive an excitation light source for a photodetector cell to permit selective focusing. A sample cell containing at least three apertures in the walls can be mounted for rotation relative to a light source or photoconduction means for simultaneous or alternative optimetric determination of the components of a single sample. The sample cell is fabricated by supporting a lens barrel within the aperture. A molten portion of glass is deposited in the lens barrel and cooled while in a horizontal position to form a lens having an acceptable angle.
Maeng, Sung Jun; Kim, Jinhwan; Cho, Gyuseong
2018-03-15
ICRP (2011) revised the dose limit to the eye lens to 20 mSv/y based on a recent epidemiological study of radiation-induced cataracts. Maintenance of steam generators at nuclear power plants is one of the highest radiation-associated tasks within a non-uniform radiation field. This study aims to evaluate eye lens doses in the steam generators of the Korean OPR1000 design. The source term was characterized based on the CRUD-specific activity, and both the eye lens dose and organ dose were simulated using MCNP6 combined with an ICRP voxel phantom and a mesh phantom, respectively. The eye lens dose was determined to be 5.39E-02-9.43E-02 Sv/h, with a negligible effect by beta particles. As the effective dose was found to be 0.81-1.21 times the lens equivalent dose depending on the phantom angles, the former can be used to estimate the lens dose in the SG of the OPR1000 for radiation monitoring purposes.
LENS: Science Scope and Development Stages
NASA Astrophysics Data System (ADS)
Vogelaar, R. Bruce
2013-04-01
The Low-Energy Neutrino Spectroscopy (LENS) experiment will resolve the solar metallicity question via measurement of the CNO neutrino flux, as well as test the predicted equivalence of solar luminosity as measured by photon versus neutrinos. The LENS detector uses charged-current interaction of neutrinos on Indium-115 (loaded in a scintillator, InLS) to reveal the complete solar neutrino spectrum. LENS's optically segmented 3D lattice geometry achieves precise time and spatial resolution and unprecedented background rejection and sensitivity for low-energy neutrino events. This first-of-a-kind lattice design is also suited for a range of other applications where high segmentation and large light collection are required (eg: sterile neutrinos with sources, double beta decay, and surface detection of reactor neutrinos). The physics scope, detector design, and logic driving the microLENS and miniLENS prototyping stages will be presented. The collaboration is actively running programs; building, operating, developing, and simulating these prototypes using the Kimballton Underground Research Facility (KURF). New members are welcome to the LENS Collaboration, and interested parties should contact R. Bruce Vogelaar.
NASA Astrophysics Data System (ADS)
Nucita, A. A.; Licchelli, D.; De Paolis, F.; Ingrosso, G.; Strafella, F.; Katysheva, N.; Shugarov, S.
2018-05-01
The transient event labelled as TCP J05074264+2447555 recently discovered towards the Taurus region was quickly recognized to be an ongoing microlensing event on a source located at distance of only 700-800 pc from Earth. Here, we show that observations with high sampling rate close to the time of maximum magnification revealed features that imply the presence of a binary lens system with very low-mass ratio components. We present a complete description of the binary lens system, which host an Earth-like planet with most likely mass of 9.2 ± 6.6 M⊕. Furthermore, the source estimated location and detailed Monte Carlo simulations allowed us to classify the event as due to the closest lens system, being at a distance of ≃380 pc and mass ≃0.25 M⊙.
NASA Technical Reports Server (NTRS)
Shulman, A. R. (Inventor)
1971-01-01
A method and apparatus for substantially eliminating noise in a coherent energy imaging system, and specifically in a light imaging system of the type having a coherent light source and at least one image lens disposed between an input signal plane and an output image plane are, discussed. The input signal plane is illuminated with the light source by rotating the lens about its optical axis. In this manner, the energy density of coherent noise diffraction patterns as produced by imperfections such as dust and/or bubbles on and/or in the lens is distributed over a ring-shaped area of the output image plane and reduced to a point wherein it can be ignored. The spatial filtering capability of the coherent imaging system is not affected by this noise elimination technique.
1994-07-15
xi- ACKNOWLEDGMENTS The I/DBTWG co-chairs would like to thank Ms. Linda Quicker of RAND for her efforts in coordinating the I/DBTWG meeting and...Subgroup on Authoritative Data Sources: Mr. Bill Dunn 0930-0945 Report from M&S Complex Data Task Force Subgroup on Categorization: Mr. Len Seligman ...issues; and need to address maintenance of the Authoritative Data Source directory by DMSO/IAC. - 15- Mr. Len Seligman : Report from M&S Complex Data Tasm
Energy considerations for a superlens based on metal/dielectric multilayers.
Bloemer, Mark J; D'Aguanno, Giuseppe; Scalora, Michael; Mattiucci, Nadia; de Ceglia, Domenico
2008-11-10
We investigate the resolution and absorption losses of a Ag/GaP multilayer superlens. For a fixed source to image distance the resolution is independent of the position of the lens but the losses depend strongly on the lens placement. The absorption losses associated with the evanescent waves can be significantly larger than losses associated with the propagating waves especially when the superlens is close to the source. The interpretation of transmittance values greater than unity for evanescent waves is clarified with respect to the associated absorption losses.
Fabrication of Fiber Optic Grating Apparatus and Method
NASA Technical Reports Server (NTRS)
Wang, Ying (Inventor); Sharma, Anup (Inventor); Grant, Joseph (Inventor)
2005-01-01
An apparatus and method for forming a Bragg grating on an optical fiber using a phase mask to diffract a beam of coherent energy and a lens combined with a pair of mirrors to produce two symmetrical virtual point sources of coherent energy in the plane of the optical fiber. The two virtual light sources produce an interference pattern along the optical fiber. In a further embodiment, the period of the pattern and therefore the Bragg wavelength grating applied to the fiber is varied with the position of the optical fiber relative the lens.
NASA Astrophysics Data System (ADS)
Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.
2016-06-01
There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.
Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development.
Manthey, Abby L; Lachke, Salil A; FitzGerald, Paul G; Mason, Robert W; Scheiblin, David A; McDonald, John H; Duncan, Melinda K
2014-02-01
SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFβ signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development
Manthey, Abby L.; Lachke, Salil A.; FitzGerald, Paul G.; Mason, Robert W.; Scheiblin, David A.; McDonald, John H.; Duncan, Melinda K.
2014-01-01
SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson Syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFβ signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts. PMID:24161570
Design of optical transmitting antenna with enhance performance in visible light communication
NASA Astrophysics Data System (ADS)
Kuang, Dang; Wang, Jianping; Lu, Huimin
2016-10-01
An optical transmitting antenna for visible light communication(VLC) is designed in this work, in which the antenna is positioned before the light-emitting diodes (LED) source to change the lighting distribution, in order to achieve uniform received power effect. The method to design antenna is introduced into physical optical lens principle. According to the energy conservation law and Snell law, the antenna is designed via establishing energy mapping between the luminous flux emitted by a LED source with Lambertian distribution and the target plane. The coordinates of the antenna model are obtained under matrix laboratory (MATLAB). The antenna model entity is generated through three dimensional (3D) composition software AutoCAD with the coordinates of antenna. Ray-tracing software Tracepro is used to trace the ray which through antenna, and validate the irradiance maps. The uniformity of illumination and received power of the designed VLC is improved from approximately 35% to over 83%.
Infrared telephoto lenses design for joint transform correlator
NASA Astrophysics Data System (ADS)
Chen, Yu; Huo, Furong; Zheng, Liqin
2014-11-01
Joint transform correlator (JTC) is quite useful for pattern recognition in many fields, which can realize automatic real-time recognition of target in cluttered background with high precision. For military application, JTC can also be applied for thermo target recognition especially at night. To make JTC recognize thermo targets, an infrared telephoto lens is designed in this paper. Long focal length and short tube length are required for this usage. So the structure of a positive lens group and a negative lens group are adopted. Besides, the effective focal length and relative aperture should be large enough to ensure the distant targets can be detected with adequate illumination. In this paper, the working waveband of adopted infrared CCD detector is 8-12μm. According to Nyquist law, the characteristic frequency of the system is 14lp/mm. The optional materials are very few for infrared optical systems, in which only several kinds of materials such as Germanium, ZnSe, ZnS are commonly used. Various aberrations are not easy to be corrected. So it is very difficult to design a good infrared optical system. Besides, doublet or triplet should be avoided to be used in infrared optical system considering possible cracking for different thermal expansion coefficients of different infrared materials. The original configuration is composed of three lenses. After optimization, the image quality can get limit diffraction. The root mean square (RMS) radii of three fields are 6.754μm, 7.301μm and 12.158μm respectively. They are all less than the Airy spot diameter 48.8μm. Wavefront aberration at 0.707 field of view (FOV) is only 0.1wavelength. After adjusting the radius to surface templates, setting tolerances and giving element drawings, this system has been fabricated successfully. Optical experimental results of infrared target recognition using JTC are given in this paper. The correlation peaks can be detected and located easily, which confirms the good image quality of the designed infrared telephoto lens.
Fiber optic coupled optical sensor
Fleming, Kevin J.
2001-01-01
A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.
LENSED: a code for the forward reconstruction of lenses and sources from strong lensing observations
NASA Astrophysics Data System (ADS)
Tessore, Nicolas; Bellagamba, Fabio; Metcalf, R. Benton
2016-12-01
Robust modelling of strong lensing systems is fundamental to exploit the information they contain about the distribution of matter in galaxies and clusters. In this work, we present LENSED, a new code which performs forward parametric modelling of strong lenses. LENSED takes advantage of a massively parallel ray-tracing kernel to perform the necessary calculations on a modern graphics processing unit (GPU). This makes the precise rendering of the background lensed sources much faster, and allows the simultaneous optimization of tens of parameters for the selected model. With a single run, the code is able to obtain the full posterior probability distribution for the lens light, the mass distribution and the background source at the same time. LENSED is first tested on mock images which reproduce realistic space-based observations of lensing systems. In this way, we show that it is able to recover unbiased estimates of the lens parameters, even when the sources do not follow exactly the assumed model. Then, we apply it to a subsample of the Sloan Lens ACS Survey lenses, in order to demonstrate its use on real data. The results generally agree with the literature, and highlight the flexibility and robustness of the algorithm.
Kozak, Igor; Luttrull, Jeffrey K.
2014-01-01
Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation. PMID:25892934
Citation parameters of contact lens-related articles published in the ophthalmic literature.
Cardona, Genís; Sanz, Joan P
2014-09-01
This study aimed at exploring the citation parameters of contact lenses articles published in the Ophthalmology thematic category of the Journal Citation Reports (JCR). The Thompson Reuters Web of Science database was accessed to record bibliometric information and citation parameters of all journals listed under the Ophthalmology area of the 2011 JCR edition, including the journals with main publication interests in the contact lens field. In addition, the same database was used to unveil all contact lens-related articles published in 2011 in the same thematic area, whereupon differences in citation parameters between those articles published in contact lens and non-contact lens-related journals were explored. Significant differences in some bibliometric indicators such as half-life and overall citation count were found between contact lens-related journals (shorter half-life and fewer citations) and the median values for the Ophthalmology thematic area of the JCR. Visual examination of all Ophthalmology journals uncovered a total of 156 contact lens-related articles, published in 28 different journals, with 27 articles each for Contact Lens & Anterior Eye, Eye & Contact Lens, and Optometry and Vision Science. Significant differences in citation parameters were encountered between those articles published in contact lens and non-contact lens source journals. These findings, which disclosed contact lenses to be a fertile area of research, may be of interest to researchers and institutions. Differences in bibliometric indicators are of relevance to avoid unwanted bias when conducting between- and within-discipline comparisons of articles, journals, and researchers.
A new method of measuring lens refractive index.
Buckley, John
2008-07-01
A new clinical method for determining the refractive index of a lens is described. By measuring lens power in air and then immersing the lens in a liquid of known refractive index (n), it is possible to calculate the refractive index of the lens material (micro) by using the formula: micro = (nK (v,1) - K(v,n))/(K (v,1) - K (v,n)) where K (v,1) is the lens power determined in air K (v,n) is the lens power determined in the immersion liquid. The only materials required are a digital lensmeter and a wet cell for holding the lens in a liquid. The theoretical basis of the method is explained and a description given of the limitations. The optimal method of measuring different types of lenses is discussed. Sources of error include the thin lens theory behind the method, the use of a wetcell and the digital lensmeter. The theoretical accuracy of the results is given as 0.02 but 0.01 is usually achieved. In all cases, measuring the front vertex powers (FVP) yields a more accurate estimate of refractive index of a lens than measuring back vertex power (BVP). The author found half the lenses measured attained values within 0.005 of the known material index. This method is usually sufficiently accurate to isolate which lens material has been used in manufacturing and permit manufacturing spectacles that mimic the appearance of an earlier pair. Some suggestions for further refinement are given.
Control of lens development by Lhx2-regulated neuroretinal FGFs
Thein, Thuzar; de Melo, Jimmy; Zibetti, Cristina; Clark, Brian S.; Juarez, Felicia
2016-01-01
Fibroblast growth factor (FGF) signaling is an essential regulator of lens epithelial cell proliferation and survival, as well as lens fiber cell differentiation. However, the identities of these FGF factors, their source tissue and the genes that regulate their synthesis are unknown. We have found that Chx10-Cre;Lhx2lox/lox mice, which selectively lack Lhx2 expression in neuroretina from E10.5, showed an early arrest in lens fiber development along with severe microphthalmia. These mutant animals showed reduced expression of multiple neuroretina-expressed FGFs and canonical FGF-regulated genes in neuroretina. When FGF expression was genetically restored in Lhx2-deficient neuroretina of Chx10-Cre;Lhx2lox/lox mice, we observed a partial but nonetheless substantial rescue of the defects in lens cell proliferation, survival and fiber differentiation. These data demonstrate that neuroretinal expression of Lhx2 and neuroretina-derived FGF factors are crucial for lens fiber development in vivo. PMID:27633990
Mini-LENS: developing a charged-current approach to measuring CNO and pp solar neutrinos
NASA Astrophysics Data System (ADS)
Vogelaar, R. Bruce
2014-03-01
The Low-Energy Neutrino Spectroscopy (LENS) experiment is based on neutrino detection via a charged-current interaction with 115In and offers the ability to cleanly observe both pp and CNO neutrinos. In contrast, elastic-scattering detectors, such as Borexino and SNO + suffer from virtually inseparable backgrounds. Thus, LENS might be uniquely positioned to resolve the solar metallicity question via measurement of the CNO neutrino flux, as well as test the predicted equivalence of solar luminosity as measured by photons versus neutrinos The mini-LENS program is testing the performance of the optically-segmented 3D lattice geometry unique to LENS. This first-of-a-kind lattice design is also suited for a range of other applications where high segmentation and large light collection are required (eg: sterile neutrinos with sources, double beta decay, and surface detection of reactor neutrinos). The current status and recent design changes of miniLENS at KURF will be presented. funded by NSF: 1001394.
Martin, Heiner; Guthoff, Rudolf; Schmitz, Klaus-Peter
2011-09-01
Polymer injection into the capsular bag after phakoemulsification is an interesting and promising approach to lens surgery. Safe clinical application of this technique will require an appropriate estimate of the effect of implantation variables on the lens power. This article details the results of finite element investigations into the effects of the injected polymer volume and capsular bag contraction on the resultant lens power and accommodation amplitude. An axisymmetric finite element model was created from literature sources. Polymer injection and the capsular contraction were simulated, and their effect on the lens power was calculated. The simulations show that overfilling during polymer injection leads to a refractive power increase of the lens. Capsular bag contraction also results in a power increase. The calculated accommodative amplitude of the lens is minimally affected by capsular bag contraction but decreases significantly with increased capsular bag stiffness as a result of fibrosis. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.
A portable non-contact displacement sensor and its application of lens centration error measurement
NASA Astrophysics Data System (ADS)
Yu, Zong-Ru; Peng, Wei-Jei; Wang, Jung-Hsing; Chen, Po-Jui; Chen, Hua-Lin; Lin, Yi-Hao; Chen, Chun-Cheng; Hsu, Wei-Yao; Chen, Fong-Zhi
2018-02-01
We present a portable non-contact displacement sensor (NCDS) based on astigmatic method for micron displacement measurement. The NCDS are composed of a collimated laser, a polarized beam splitter, a 1/4 wave plate, an aspheric objective lens, an astigmatic lens and a four-quadrant photodiode. A visible laser source is adopted for easier alignment and usage. The dimension of the sensor is limited to 115 mm x 36 mm x 56 mm, and a control box is used for dealing with signal and power control between the sensor and computer. The NCDS performs micron-accuracy with +/-30 μm working range and the working distance is constrained in few millimeters. We also demonstrate the application of the NCDS for lens centration error measurement, which is similar to the total indicator runout (TIR) or edge thickness difference (ETD) of a lens measurement using contact dial indicator. This application has advantage for measuring lens made in soft materials that would be starched by using contact dial indicator.
Hojnik, Nataša; Filipič, Gregor; Lazović, Saša; Vesel, Alenka; Primc, Gregor; Mozetič, Miran; Hawlina, Marko; Petrovski, Goran; Cvelbar, Uroš
2016-01-01
Inducing selective or targeted cell apoptosis without affecting large number of neighbouring cells remains a challenge. A plausible method for treatment of posterior capsular opacification (PCO) due to remaining lens epithelial cells (LECs) by reactive chemistry induced by localized single electrode microplasma discharge at top of a needle-like glass electrode with spot size ~3 μm is hereby presented. The focused and highly-localized atmospheric pressure microplasma jet with electrode discharge could induce a dose-dependent apoptosis in selected and targeted individual LECs, which could be confirmed by real-time monitoring of the morphological and structural changes at cellular level. Direct cell treatment with microplasma inside the medium appeared more effective in inducing apoptosis (caspase 8 positivity and DNA fragmentation) at a highly targeted cell level compared to treatment on top of the medium (indirect treatment). Our results show that single cell specific micropipette plasma can be used to selectively induce demise in LECs which remain in the capsular bag after cataract surgery and thus prevent their migration (CXCR4 positivity) to the posterior lens capsule and PCO formation. PMID:27832099
Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams
van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; ...
2015-10-28
The compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.
NASA Astrophysics Data System (ADS)
Cirino, Giuseppe A.; Barcellos, Robson; Morato, Spero P.; Bereczki, Allan; Neto, Luiz G.
2006-09-01
A cubic-phase distribution is applied in the design, fabrication and characterization of inexpensive Fresnel lens arrays for passive infrared motion sensors. The resulting lens array produces a point spread function (PSF) capable of distinguish the presence of humans from pets by the employment of the so-called wavefront coding method. The cubic phase distribution used in the design can also reduce the optical aberrations present in the system. This aberration control allows a high tolerance in the fabrication of the lenses and in the alignment errors of the sensor. In order to proof the principle, a lens was manufactured on amorphous hydrogenated carbon thin film, by well-known micro fabrication process steps. The optical results demonstrates that the optical power falling onto the detector surface is attenuated for targets that present a mass that is horizontally distributed in space (e.g. pets) while the optical power is enhanced for targets that present a mass vertically distributed in space (e.g. humans). Then a mould on steel was fabricated by laser engraving, allowing large-scale production of the lens array in polymeric material. A polymeric lens was injected and its optical transmittance was characterized by Fourier Transform Infrared Spectrometry technique, which has shown an adequate optical transmittance in the 8-14 μm wavelength range. Finally the performance of the sensor was measured in a climate-controlled test laboratory constructed for this purpose. The results show that the sensor operates normally with a human target, with a 12 meter detection zone and within an angle of 100 degrees. On the other hand, when a small pet runs through a total of 22 different trajectories no sensor trips are observed. The novelty of this work is the fact that the so-called pet immunity function was implemented in a purely optical filtering. As a result, this approach allows the reduction of some hardware parts as well as decreasing the software complexity, once the information about the intruder is optically processed before it is transduced by the pyroelectric sensor.
Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses
NASA Astrophysics Data System (ADS)
Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.
2012-03-01
Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and therefore the normalization of the surface mass density) to within 2 and 4 per cent, respectively.
Probing small-scale structure in galaxies with strong gravitational lensing
NASA Astrophysics Data System (ADS)
Congdon, Arthur Benjamin
We use gravitational lensing to study the small-scale distribution of matter in galaxies. First, we examine galaxies and their dark matter halos. Roughly half of all observed four-image quasar lenses have image flux ratios that differ from the values predicted by simple lens potentials. We show that smooth departures from elliptical symmetry fail to explain anomalous radio fluxes, strengthening the case for dark matter substructure. Our results have important implications for the "missing satellites'' problem. We then consider how time delays between lensed images can be used to identify lens galaxies containing small-scale structure. We derive an analytic relation for the time delay between the close pair of images in a "fold'' lens, and perform Monte Carlo simulations to investigate the utility of time delays for probing small- scale structure in realistic lens populations. We compare our numerical predictions with systems that have measured time delays and discover two anomalous lenses. Next, we consider microlensing, where stars in the lens galaxy perturb image magnifications. This is relevant at optical wavelengths, where the size of the lensed source is comparable to the Einstein radius of a typical star. Our simulations of negative-parity images show that raising the fraction of dark matter relative to stars increases image flux variability for small sources, and decreases it for large sources. This suggests that quasar accretion disks and broad-emission-line regions may respond differently to microlensing. We also consider extended sources with a range of ellipticities, which has relevance to a population of inclined accretion disks. Depending on their orientation, more elongated sources lead to more rapid variability, which may complicate the interpretation of microlensing light curves. Finally, we consider prospects for observing strong lensing by the supermassive black hole at the center of the Milky Way, Sgr A*. Assuming a black hole on the million- solar-mass scale, we predict that the probability of observing strong lensing of a background star is roughly 56%. We also consider how lensing by Sgr A* could be used to test general relativity against alternative theories, concluding that microarcsecond resolution would make this possible.
Classroom Data Analysis with the Five Strands of Mathematical Proficiency
ERIC Educational Resources Information Center
Groth, Randall E.
2017-01-01
Qualitative classroom data from video recordings and students' written work can play important roles in improving mathematics instruction. In order to take full advantage of these data sources, it is helpful to have a strong analytic lens to orient one's reflections on the data. One promising analytic lens is the National Research Council's five…
Magnifying lens for 800 MeV proton radiography.
Merrill, F E; Campos, E; Espinoza, C; Hogan, G; Hollander, B; Lopez, J; Mariam, F G; Morley, D; Morris, C L; Murray, M; Saunders, A; Schwartz, C; Thompson, T N
2011-10-01
This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.
Magnifying lens for 800 MeV proton radiography
NASA Astrophysics Data System (ADS)
Merrill, F. E.; Campos, E.; Espinoza, C.; Hogan, G.; Hollander, B.; Lopez, J.; Mariam, F. G.; Morley, D.; Morris, C. L.; Murray, M.; Saunders, A.; Schwartz, C.; Thompson, T. N.
2011-10-01
This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.
The CASTLES Imaging Survey of Gravitational Lenses
NASA Astrophysics Data System (ADS)
Peng, C. Y.; Falco, E. E.; Lehar, J.; Impey, C. D.; Kochanek, C. S.; McLeod, B. A.; Rix, H.-W.
1997-12-01
The CASTLES survey (Cfa-Arizona-(H)ST-Lens-Survey) is imaging most known small-separation gravitational lenses (or lens candidates), using the NICMOS camera (mostly H-band) and the WFPC2 (V and I band) on HST. To date nearly half of the IR imaging survey has been completed. The main goals are: (1) to search for lens galaxies where none have been directly detected so far; (2) obtain photometric redshift estimates (VIH) for the lenses where no spectroscopic redshifts exist; (3) study and model the lens galaxies in detail, in part to study the mass distribution within them, in part to identify ``simple" systems that may permit accurate time delay estimates for H_0; (3) measure the M/L evolution of the sample of lens galaxies with look-back time (to z ~ 1); (4) determine directly which fraction of sources are lensed by ellipticals vs. spirals. We will present the survey specifications and the images obtained so far.
LensFlow: A Convolutional Neural Network in Search of Strong Gravitational Lenses
NASA Astrophysics Data System (ADS)
Pourrahmani, Milad; Nayyeri, Hooshang; Cooray, Asantha
2018-03-01
In this work, we present our machine learning classification algorithm for identifying strong gravitational lenses from wide-area surveys using convolutional neural networks; LENSFLOW. We train and test the algorithm using a wide variety of strong gravitational lens configurations from simulations of lensing events. Images are processed through multiple convolutional layers that extract feature maps necessary to assign a lens probability to each image. LENSFLOW provides a ranking scheme for all sources that could be used to identify potential gravitational lens candidates by significantly reducing the number of images that have to be visually inspected. We apply our algorithm to the HST/ACS i-band observations of the COSMOS field and present our sample of identified lensing candidates. The developed machine learning algorithm is more computationally efficient and complimentary to classical lens identification algorithms and is ideal for discovering such events across wide areas from current and future surveys such as LSST and WFIRST.
An analytical and experimental evaluation of a Fresnel lens solar concentrator
NASA Technical Reports Server (NTRS)
Hastings, L. J.; Allums, S. A.; Cosby, R. M.
1976-01-01
An analytical and experimental evaluation of line focusing Fresnel lenses with application potential in the 200 to 370 C range was studied. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves down lens. Experimentation was based on a 56 cm wide, f/1.0 lens. A Sun tracking heliostat provided a nonmoving solar source. Measured data indicated more spreading at the profile base than analytically predicted, resulting in a peak concentration 18 percent lower than the computed peak of 57. The measured and computed transmittances were 85 and 87 percent, respectively. Preliminary testing with a subsequent lens indicated that modified manufacturing techniques corrected the profile spreading problem and should enable improved analytical experimental correlation.
An analytical and experimental evaluation of the plano-cylindrical Fresnel lens solar concentrator
NASA Technical Reports Server (NTRS)
Hastings, L. J.; Allums, S. L.; Cosby, R. M.
1976-01-01
Plastic Fresnel lenses for solar concentration are attractive because of potential for low-cost mass production. An analytical and experimental evaluation of line-focusing Fresnel lenses with application potential in the 200 to 370 C range is reported. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves-down lens. Experimentation was based primarily on a 56 cm-wide lens with f-number 1.0. A sun-tracking heliostat provided a non-moving solar source. Measured data indicated more spreading at the profile base than analytically predicted. The measured and computed transmittances were 85 and 87% respectively. Preliminary testing with a second lens (1.85 m) indicated that modified manufacturing techniques corrected the profile spreading problem.
NASA Astrophysics Data System (ADS)
Eigenbrod, A.; Courbin, F.; Meylan, G.; Vuissoz, C.; Magain, P.
2006-06-01
Aims.We measure the redshift of the lensing galaxy in eight gravitationally lensed quasars in view of determining the Hubble parameter H0 from the time delay method. Methods.Deep VLT/FORS1 spectra of lensed quasars are spatially deconvolved in order to separate the spectrum of the lensing galaxies from the glare of the much brighter quasar images. A new observing strategy is devised. It involves observations in Multi-Object-Spectroscopy (MOS) which allows the simultaneous observation of the target and of several PSF and flux calibration stars. The advantage of this method over traditional long-slit observations is a much more reliable extraction and flux calibration of the spectra. Results.For the first time we measure the redshift of the lensing galaxy in three multiply-imaged quasars: SDSS J1138+0314 (z_lens = 0.445), SDSS J1226-0006 (z_lens = 0.517), SDSS J1335+0118 (z_lens = 0.440), and we give a tentative estimate of the redshift of the lensing galaxy in Q 1355-2257 (z_lens = 0.701). We confirm four previously measured redshifts: HE 0047-1756 (z_lens = 0.407), HE 0230-2130 (z_lens = 0.523), HE 0435-1223 (z_lens = 0.454) and WFI J2033-4723 (z_lens = 0.661). In addition, we determine the redshift of the second lensing galaxy in HE 0230-2130 (z_lens = 0.526). The spectra of all lens galaxies are typical for early-type galaxies, except for the second lensing galaxy in HE 0230-2130 which displays prominent [OII] emission.
NASA Astrophysics Data System (ADS)
Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Yu-Feng; Liu, Hong-Sheng
2018-02-01
In the present work, the binding interaction between lenalidomide (LEN) and calf thymus DNA (ct-DNA) was systematically studied by using fluorescence, ultraviolet-visible (UV-vis) absorption, circular dichroism (CD) spectroscopies under imitated physiological conditions (pH = 7.4) coupled with molecular docking. It was found that LEN was bound to ct-DNA with high binding affinity (Ka = 2.308 × 105 M-1 at 283 K) through groove binding as evidenced by a slight decrease in the absorption intensity in combination with CD spectra. Thermodynamic parameters (ΔG < 0, ΔH > 0 and ΔS < 0) of the LEN-DNA system obtained at three different temperatures suggested that the binding process was spontaneous and was primarily driven by hydrogen bonds and hydrophobic interaction. Furthermore, competitive binding experiments with ethidium bromide and 4‧, 6-dia-midino-2-phenylindoleas probes showed that LEN could preferentially bind in the minor groove of double-stranded DNA. The average lifetime of LEN was calculated to be 7.645 ns. The φ of LEN was measured as 0.09 and non-radiation energy transfer between LEN and DNA had occurred. The results of the molecular docking were consistent with the experimental results. This study explored the potential applicability of the spectroscopic properties of LEN and also investigated its interactions with relevant biological targets. In addition, it will provide some theoretical references for the deep research of simultaneous administration of LEN with other drugs.
Kerr, Christine L.; Huang, Jian; Williams, Trevor; West-Mays, Judith A.
2012-01-01
Purpose. The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. Methods. We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. Results. Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. Conclusions. Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3. PMID:22491411
Ruggeri, Marco; de Freitas, Carolina; Williams, Siobhan; Hernandez, Victor M.; Cabot, Florence; Yesilirmak, Nilufer; Alawa, Karam; Chang, Yu-Cherng; Yoo, Sonia H.; Gregori, Giovanni; Parel, Jean-Marie; Manns, Fabrice
2016-01-01
Abstract: Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle. PMID:27446660
Ruggeri, Marco; de Freitas, Carolina; Williams, Siobhan; Hernandez, Victor M; Cabot, Florence; Yesilirmak, Nilufer; Alawa, Karam; Chang, Yu-Cherng; Yoo, Sonia H; Gregori, Giovanni; Parel, Jean-Marie; Manns, Fabrice
2016-04-01
Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle.
Plasma lens experiments at the Final Focus Test Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barletta, B.; Chattopadhyay, S.; Chen, P.
1993-04-01
We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization andmore » beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.« less
Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation
NASA Astrophysics Data System (ADS)
Kang, Han Gyu; Song, Seong Hyun; Han, Young Been; Kim, Kyeong Min; Hong, Seong Jong
2018-02-01
Optical imaging techniques are widely used for in vivo preclinical studies, and it is well known that the Geant4 Application for Emission Tomography (GATE) can be employed for the Monte Carlo (MC) modeling of light transport inside heterogeneous tissues. However, the GATE MC toolkit is limited in that it does not yet include optical lens implementation, even though this is required for a more realistic optical imaging simulation. We describe our implementation of a biconvex lens into the GATE MC toolkit to improve both the sensitivity and spatial resolution for optical imaging simulation. The lens implemented into the GATE was validated against the ZEMAX optical simulation using an US air force 1951 resolution target. The ray diagrams and the charge-coupled device images of the GATE optical simulation agreed with the ZEMAX optical simulation results. In conclusion, the use of a lens on the GATE optical simulation could improve the image quality of bioluminescence and fluorescence significantly as compared with pinhole optics.
NASA Astrophysics Data System (ADS)
Alexandrov, A. N.; Zhdanov, V. I.; Koval, S. M.
We derive approximate formulas for the coordinates and magnification of critical images of a point source in a vicinity of a cusp caustic arising in the gravitational lens mapping. In the lowest (zero-order) approximation, these formulas were obtained in the classical work by Schneider&Weiss (1992) and then studied by a number of authors; first-order corrections in powers of the proximity parameter were treated by Congdon, Keeton and Nordgren. We have shown that the first-order corrections are solely due to the asymmetry of the cusp. We found expressions for the second-order corrections in the case of general lens potential and for an arbitrary position of the source near a symmetric cusp. Applications to a lensing galaxy model represented by a singular isothermal sphere with an external shear y are studied and the role of the second-order corrections is demonstrated.
NASA Technical Reports Server (NTRS)
Zabower, H. R. (Inventor)
1973-01-01
A small, lightweight, compact, hand-held photomicroscope provides simultaneous viewing and photographing, with adjustable specimen illumination and exchangeable camera format. The novel photomicroscope comprises a main housing having a top plate, bottom plate, and side walls. The objective lens is mounted on the top plate in an inverted manner relative to the normal type of mounting. The specimen holder has an adjusting mechanism for adjustably moving the specimen vertically along an axis extending through the objective lens as well as transverse of the axis. The lens system serves to split the beam of light into two paths, one to the eyepiece and the other to a camera mounting. A light source is mounted on the top plate and directs light onto the specimen. A rheostat device is mounted on the top plate and coupled to the power supply for the light source so that the intensity of the light may be varied.
Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis
Maddala, Rupalatha; Nagendran, Tharkika; Lang, Richard A.; Morozov, Alexei; Rao, Ponugoti V.
2015-01-01
Rap1, a Ras-like small GTPase, plays a crucial role in cell-matrix adhesive interactions, cell-cell junction formation, cell polarity and migration. The role of Rap1 in vertebrate organ development and tissue architecture, however, remains elusive. We addressed this question in a mouse lens model system using a conditional gene targeting approach. While individual germline deficiency of either Rap1a or Rap1b did not cause overt defects in mouse lens, conditional double deficiency (Rap1 cKO) prior to lens placode formation led to an ocular phenotype including microphthalmia and lens opacification in embryonic mice. The embryonic Rap1 cKO mouse lens exhibited striking defects including loss of E-cadherin- and ZO-1-based cell-cell junctions, disruption of paxillin and β1-integrin-based cell adhesive interactions along with abnormalities in cell shape and apical-basal polarity of epithelium. These epithelial changes were accompanied by increased levels of α-smooth muscle actin, vimentin and N-cadherin, and expression of transcriptional suppressors of E-cadherin (Snai1, Slug and Zeb2), and a mesenchymal metabolic protein (Dihydropyrimidine dehydrogenase). Additionally, while lens differentiation was not overtly affected, increased apoptosis and dysregulated cell cycle progression were noted in epithelium and fibers in Rap1 cKO mice. Collectively these observations uncover a requirement for Rap1 in maintenance of lens epithelial phenotype and morphogenesis. PMID:26212757
IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik, E-mail: acongdon@jpl.nasa.go, E-mail: keeton@physics.rutgers.ed, E-mail: nordgren@sas.upenn.ed
2010-02-01
We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxiesmore » with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.« less
Identifying Anomalies in Gravitational Lens Time Delays
NASA Astrophysics Data System (ADS)
Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik
2010-02-01
We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a "fold" lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.
Multiband super-resolution imaging of graded-index photonic crystal flat lens
NASA Astrophysics Data System (ADS)
Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun
2018-05-01
Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.
Anbaraki, Afrooz; Khoshaman, Kazem; Ghasemi, Younes; Yousefi, Reza
2016-10-01
The main components of sunlight reaching the eye lens are UVA and visible light exerting their photo-damaging effects indirectly by the aid of endogenous photosensitizer molecules such as riboflavin (RF). In this study, lens proteins solutions were incubated with RF and exposed to the sunlight. Then, gel mobility shift analysis and different spectroscopic assessments were applied to examine the structural damaging effects of solar radiation on these proteins. Exposure of lens proteins to direct sunlight, in the presence of RF, leads to marked structural crosslinking, oligomerization and proteolytic instability. These structural damages were also accompanied with reduction in the emission fluorescence of Trp and Tyr and appearance of a new absorption peak between 300 and 400nm which can be related to formation of new chromophores. Also, photo-oxidation of lens crystallins increases their oligomeric size distribution as examined by dynamic light scattering analysis. The above mentioned structural insults, as potential sources of sunlight-induced senile cataract and blindness, were significantly attenuated in the presence of ascorbic acid and glutathione which are two important components of lens antioxidant defense system. Therefore, the powerful antioxidant defense mechanism of eye lens is an important barrier against molecular photo-damaging effects of solar radiations during the life span. Copyright © 2016 Elsevier B.V. All rights reserved.
Nyström, Marcus; Andersson, Richard; Magnusson, Måns; Pansell, Tony; Hooge, Ignace
2015-02-01
It is well known that the crystalline lens (henceforth lens) can oscillate (or 'wobble') relative to the eyeball at the end of saccades. Recent research has proposed that such wobbling of the lens is a source of post-saccadic oscillations (PSOs) seen in data recorded by eye trackers that estimate gaze direction from the location of the pupil. Since the size of the lens wobbles increases with accommodative effort, one would predict a similar increase of PSO-amplitude in data recorded with a pupil based eye tracker. In four experiments, we investigated the role of lens accommodation on PSOs in a video-based eye tracker. In Experiment 1, we replicated previous results showing that PSO-amplitudes increase at near viewing distances (large vergence angles), when the lens is highly accommodated. In Experiment 2a, we manipulated the accommodative state of the lens pharmacologically using eye drops at a fixed viewing distance and found, in contrast to Experiment 1, no significant difference in PSO-amplitude related to the accommodative state of the lens. Finally, in Experiment 2b, the effect of vergence angle was investigated by comparing PSO-amplitudes at near and far while maintaining a fixed lens accommodation. Despite the pharmacologically fixed degree of accommodation, PSO-amplitudes were systematically larger in the near condition. In summary, PSOs cannot exhaustively be explained by lens wobbles. Possible confounds related to pupil size and eye-camera angle are investigated in Experiments 3 and 4, and alternative mechanisms behind PSOs are probed in the discussion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Emerging issues in radiogenic cataracts and cardiovascular disease.
Hamada, Nobuyuki; Fujimichi, Yuki; Iwasaki, Toshiyasu; Fujii, Noriko; Furuhashi, Masato; Kubo, Eri; Minamino, Tohru; Nomura, Takaharu; Sato, Hitoshi
2014-09-01
In 2011, the International Commission on Radiological Protection issued a statement on tissue reactions (formerly termed non-stochastic or deterministic effects) to recommend lowering the threshold for cataracts and the occupational equivalent dose limit for the crystalline lens of the eye. Furthermore, this statement was the first to list circulatory disease (cardiovascular and cerebrovascular disease) as a health hazard of radiation exposure and to assign its threshold for the heart and brain. These changes have stimulated various discussions and may have impacts on some radiation workers, such as those in the medical sector. This paper considers emerging issues associated with cataracts and cardiovascular disease. For cataracts, topics dealt with herein include (i) the progressive nature, stochastic nature, target cells and trigger events of lens opacification, (ii) roles of lens protein denaturation, oxidative stress, calcium ions, tumor suppressors and DNA repair factors in cataractogenesis, (iii) dose rate effect, radiation weighting factor, and classification systems for cataracts, and (iv) estimation of the lens dose in clinical settings. Topics for cardiovascular disease include experimental animal models, relevant surrogate markers, latency period, target tissues, and roles of inflammation and cellular senescence. Future research needs are also discussed. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Effect of dual-focus soft contact lens wear on axial myopia progression in children.
Anstice, Nicola S; Phillips, John R
2011-06-01
To test the efficacy of an experimental Dual-Focus (DF) soft contact lens in reducing myopia progression. Prospective, randomized, paired-eye control, investigator-masked trial with cross-over. Forty children, 11-14 years old, with mean spherical equivalent refraction (SER) of -2.71 ± 1.10 diopters (D). Dual-Focus lenses had a central zone that corrected refractive error and concentric treatment zones that created 2.00 D of simultaneous myopic retinal defocus during distance and near viewing. Control was a single vision distance (SVD) lens with the same parameters but without treatment zones. Children wore a DF lens in 1 randomly assigned eye and an SVD lens in the fellow eye for 10 months (period 1). Lens assignment was then swapped between eyes, and lenses were worn for a further 10 months (period 2). Primary outcome was change in SER measured by cycloplegic autorefraction over 10 months. Secondary outcome was a change in axial eye length (AXL) measured by partial coherence interferometry over 10 months. Accommodation wearing DF lenses was assessed using an open-field autorefractor. In period 1, the mean change in SER with DF lenses (-0.44 ± 0.33 D) was less than with SVD lenses (-0.69 ± 0.38 D; P < 0.001); mean increase in AXL was also less with DF lenses (0.11 ± 0.09 mm) than with SVD lenses (0.22 ± 0.10 mm; P < 0.001). In 70% of the children, myopia progression was reduced by 30% or more in the eye wearing the DF lens relative to that wearing the SVD lens. Similar reductions in myopia progression and axial eye elongation were also observed with DF lens wear during period 2. Visual acuity and contrast sensitivity with DF lenses were not significantly different than with SVD lenses. Accommodation to a target at 40 cm was driven through the central distance-correction zone of the DF lens. Dual-Focus lenses provided normal acuity and contrast sensitivity and allowed accommodation to near targets. Myopia progression and eye elongation were reduced significantly in eyes wearing DF lenses. The data suggest that sustained myopic defocus, even when presented to the retina simultaneously with a clear image, can act to slow myopia progression without compromising visual function. Proprietary or commercial disclosure may be found after the references. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.
2016-05-01
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from amore » laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.« less
2007-08-01
is accomplished using either an AMLCD with a lenticular lens20 or a parallax barrier21 or two separate optical paths with a pair of image sources.22...24 The primary advantage of this approach is no eyewear is required. The designs using the parallax barrier or lenticular lens place these optical
Testing and inspecting lens by holographic means
Hildebrand, Bernard P.
1976-01-01
Processes for the accurate, rapid and inexpensive testing and inspecting of oncave and convex lens surfaces through holographic means requiring no beamsplitters, mirrors or overpower optics, and wherein a hologram formed in accordance with one aspect of the invention contains the entire interferometer and serves as both a master and illuminating source for both concave and said convex surfaces to be so tested.
The Opaque Projector: The Inverse of the Camera Obscura
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
2011-01-01
Many years ago I was running the standard laboratory experiment on thin lens optics. The source was the usual self illuminated object mounted on an optical bench, and a converging lens formed a real image on a screen. One of the students sitting near one wall of the darkened lab was having some trouble with the idea of image formation. Her face…
Lens-based wavefront sensorless adaptive optics swept source OCT
NASA Astrophysics Data System (ADS)
Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.
2016-06-01
Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.
A method of LED free-form tilted lens rapid modeling based on scheme language
NASA Astrophysics Data System (ADS)
Dai, Yidan
2017-10-01
According to nonimaging optical principle and traditional LED free-form surface lens, a new kind of LED free-form tilted lens was designed. And a method of rapid modeling based on Scheme language was proposed. The mesh division method was applied to obtain the corresponding surface configuration according to the character of the light source and the desired energy distribution on the illumination plane. Then 3D modeling software and the Scheme language programming are used to generate lens model respectively. With the help of optical simulation software, a light source with the size of 1mm*1mm*1mm in volume is used in experiment, and the lateral migration distance of illumination area is 0.5m, in which total one million rays are computed. We could acquire the simulated results of both models. The simulated output result shows that the Scheme language can prevent the model deformation problems caused by the process of the model transfer, and the degree of illumination uniformity is reached to 82%, and the offset angle is 26°. Also, the efficiency of modeling process is greatly increased by using Scheme language.
Ground-based Parallax Confirmed by Spitzer: Binary Microlensing Event MOA-2015-BLG-020
NASA Astrophysics Data System (ADS)
Wang, Tianshu; Zhu, Wei; Mao, Shude; Bond, I. A.; Gould, A.; Udalski, A.; Sumi, T.; Bozza, V.; Ranc, C.; Cassan, A.; Yee, J. C.; Han, C.; Abe, F.; Asakura, Y.; Barry, R.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyazaki, S.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Rattenbury, N.; Saito, To.; Sharan, A.; Shibai, H.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yonehara, A.; MOA Collaboration; KozŁowski, S.; Mróz, P.; Pawlak, M.; Pietrukowicz, P.; Poleski, R.; Skowron, J.; Soszyński, I.; Szymański, M. K.; Ulaczyk, K.; OGLE Collaboration; Beichman, C.; Bryden, G.; Calchi Novati, S.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Wibking, B.; Spitzer Team; Albrow, M. D.; Chung, S.-J.; Hwang, K.-H.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Street, R. A.; Tsapras, Y.; Hundertmark, M.; Bachelet, E.; Dominik, M.; Horne, K.; Figuera Jaimes, R.; Wambsganss, J.; Bramich, D. M.; Schmidt, R.; Snodgrass, C.; Steele, I. A.; Menzies, J.; RoboNet Collaboration
2017-08-01
We present the analysis of the binary gravitational microlensing event MOA-2015-BLG-020. The event has a fairly long timescale (˜63 days) and thus the light curve deviates significantly from the lensing model that is based on the rectilinear lens-source relative motion. This enables us to measure the microlensing parallax through the annual parallax effect. The microlensing parallax parameters constrained by the ground-based data are confirmed by the Spitzer observations through the satellite parallax method. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined. It is found that the binary lens is composed of two dwarf stars with masses {M}1=0.606+/- 0.028 {M}⊙ and {M}2=0.125 +/- 0.006 {M}⊙ in the Galactic disk. Assuming that the source star is at the same distance as the bulge red clump stars, we find the lens is at a distance {D}L=2.44+/- 0.10 {kpc}. We also provide a summary and short discussion of all of the published microlensing events in which the annual parallax effect is confirmed by other independent observations.
Symbolic algebra approach to the calculation of intraocular lens power following cataract surgery
NASA Astrophysics Data System (ADS)
Hjelmstad, David P.; Sayegh, Samir I.
2013-03-01
We present a symbolic approach based on matrix methods that allows for the analysis and computation of intraocular lens power following cataract surgery. We extend the basic matrix approach corresponding to paraxial optics to include astigmatism and other aberrations. The symbolic approach allows for a refined analysis of the potential sources of errors ("refractive surprises"). We demonstrate the computation of lens powers including toric lenses that correct for both defocus (myopia, hyperopia) and astigmatism. A specific implementation in Mathematica allows an elegant and powerful method for the design and analysis of these intraocular lenses.
Imaging objects behind small obstacles using axicon lens
NASA Astrophysics Data System (ADS)
Perinchery, Sandeep M.; Shinde, Anant; Murukeshan, V. M.
2017-06-01
Axicon lenses are conical prisms, which are known to focus a light source to a line comprising of multiple points along the optical axis. In this study, we analyze the potential of axicon lenses to view, image and record the object behind opaque obstacles in free space. The advantage of an axicon lens over a regular lens is demonstrated experimentally. Parameters such as obstacle size, object and the obstacle position in the context of imaging behind obstacles are tested using Zemax optical simulation. This proposed concept can be easily adapted to most of the optical imaging methods and microscopy modalities.
Ocular hazards of light sources: review of current knowledge.
Ham, W T
1983-02-01
Retinal damage is the most important hazard from light. There are three types of retinal damage classified as structural, thermal and photochemical; damage type depends on wavelength, power level and exposure time. Photochemical damage from blue light produces solar retinitis and is postulated to accelerate aging which leads to senile macular degeneration. The lens protects the retina from blue light and near ultraviolet (UV) but at the expense of cataractogenesis. Lens removal exposes retina to near UV that is six times more dangerous than blue light. Filters are recommended to protect lens and retina from blue light and near UV.
NASA Astrophysics Data System (ADS)
Minami, K.; Saito, Y.; Kai, H.; Shirota, K.; Yada, K.
2009-09-01
We have newly developed an open type fine-focus X-ray tube "TX-510" to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The "TX-510" employs a ZrO/W(100) Schottky emitter and an "In-Lens Field Emission Gun". The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.
ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hezaveh, Y. D.; Marrone, D. P.; Spilker, J. S.
2013-04-20
We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 {mu}m imaging of four high-redshift (z = 2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.''5 resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1''-3'', consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpretmore » the source structure. Lens models indicate that SPT0346-52, located at z = 5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 Multiplication-Sign 10{sup 13} L{sub Sun} and star formation surface density of 4200 M{sub Sun} yr{sup -1} kpc{sup -2}. We find magnification factors of 5 to 22, with lens Einstein radii of 1.''1-2.''0 and Einstein enclosed masses of 1.6-7.2 Multiplication-Sign 10{sup 11} M{sub Sun }. These observations confirm the lensing origin of these objects, allow us to measure their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.« less
Lens-free imaging-based low-cost microsensor for in-line wear debris detection in lube oils
NASA Astrophysics Data System (ADS)
Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko
2017-02-01
The current paper describes the application of lens-free imaging principles for the detection and classification of wear debris in lubricant oils. The potential benefits brought by the lens-free microscopy techniques in terms of resolution, deep of field and active areas have been tailored to develop a micro sensor for the in-line monitoring of wear debris in oils used in lubricated or hydraulic machines as gearboxes, actuators, engines, etc. The current work presents a laboratory test-bench used for evaluating the optical performance of the lens-free approach applied to the wear particle detection in oil samples. Additionally, the current prototype sensor is presented, which integrates a LED light source, CMOS imager, embedded CPU, the measurement cell and the appropriate optical components for setting up the lens-free system. The imaging performance is quantified using micro structured samples, as well as by imaging real used lubricant oils. Probing a large volume with a decent 2D spatial resolution, this lens-free micro sensor can provide a powerful tool at very low cost for inline wear debris monitoring.
Maynard, Juliana; Sykes, Angela; Powell, Helen; Healing, Guy; Scott, Marietta; Holmes, Andrew; Ricketts, Sally-Ann; Stewart, Jane; Davis, Stewart
2014-12-01
The lens is formed in utero with new secondary lens fibres added as outer layers throughout life in a growth pattern characteristic of the species. This study examined the time course of beagle lens growth to better understand the optimal starting age of dogs for safety studies to support adult versus paediatric indications, and to assess the feasibility of non-invasively monitoring lens growth with high frequency ultrasound. Ultrasound scanning was performed in six female beagle dogs using the Vevo770. All dogs were imaged in B-mode using local anaesthetic but without sedation. Imaging was carried out every 2 weeks from 8 to 22 weeks of age and then monthly until 62 weeks of age. The dogs tolerated the procedure well. The lens was visible in all dogs and measuring the lens thickness with high frequency ultrasound demonstrated good analytical reproducibility [Root Mean Square (RMS) = 3.13%]. No differences between the left and right eye existed and lens thickness correlated with body weight. The highest weekly growth rate was before 12 weeks of age. A statistically significant difference between monthly thickness was detected until 42 weeks of age at which point growth reached a plateau. During the experiment, lenses grew by 29.7% reaching an average thickness of 6.4 mm ± 0.03. By 10 months of age (the typical age used for routine toxicological evaluation), beagles have reached a plateau in lens growth that is analogous to human adults. Where lens is a target organ of concern it is suggested that beagles under 6 months old may be a better model for determining paediatric safety. Copyright © 2014 John Wiley & Sons, Ltd.
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-01-01
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-12-25
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.
Stereo View of Martian Rock Target 'Funzie'
2018-02-08
The surface of the Martian rock target in this stereo image includes small hollows with a "swallowtail" shape characteristic of some gypsum crystals, most evident in the lower left quadrant. These hollows may have resulted from the original crystallizing mineral subsequently dissolving away. The view appears three-dimensional when seen through blue-red glasses with the red lens on the left. The scene spans about 2.5 inches (6.5 centimeters). This rock target, called "Funzie," is near the southern, uphill edge of "Vera Rubin Ridge" on lower Mount Sharp. The stereo view combines two images taken from slightly different angles by the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover, with the camera about 4 inches (10 centimeters) above the target. Fig. 1 and Fig. 2 are the separate "right-eye" and "left-eye" images, taken on Jan. 11, 2018, during the 1,932nd Martian day, or sol, of the rover's work on Mars. Right-eye and left-eye images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22212
Englerin A Delivers One-Two Punch to Kidney Cancer Cells | Center for Cancer Research
While overall cancer death rates continue to decline in the U.S., mortality rates for certain cancer sites, including the kidney, are on the rise. New treatments are needed to reverse this trend and one potentially rich source is natural products, compounds derived from living organisms. John Beutler, Ph.D., and his colleagues, in CCR’s Molecular Targets Laboratory located at the NCI campus in Frederick, Maryland, identified englerin A from an extract of the African plant Phyllanthus engleri that was particularly toxic to kidney cancer cells. To further investigate the activity of englerin A, the Beutler group teamed up with researchers led by Marston Linehan, M.D., and Len Neckers, Ph.D., in CCR’s Urologic Oncology Branch.
Absolute colorimetric characterization of a DSLR camera
NASA Astrophysics Data System (ADS)
Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo
2014-03-01
A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.
Three-dimensional confocal microscopy of the living cornea and ocular lens
NASA Astrophysics Data System (ADS)
Masters, Barry R.
1991-07-01
The three-dimensional reconstruction of the optic zone of the cornea and the ocular crystalline lens has been accomplished using confocal microscopy and volume rendering computer techniques. A laser scanning confocal microscope was used in the reflected light mode to obtain the two-dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with a 488 nm wavelength. The microscope objective was a Leitz X25, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133 three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their 'beaded' cell borders, basal lamina, nerve plexus, nerve fibers, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in- situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers. The three-dimensional data sets of the cornea and the ocular lens were reconstructed in the computer using volume rendering techniques. Stereo pairs were also created of the two- dimensional ocular images for visualization. The stack of two-dimensional images was reconstructed into a three-dimensional object using volume rendering techniques. This demonstration of the three-dimensional visualization of the intact, enucleated eye provides an important step toward quantitative three-dimensional morphometry of the eye. The important aspects of three-dimensional reconstruction are discussed.
Characterization of lens based photoacoustic imaging system.
Francis, Kalloor Joseph; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund
2017-12-01
Some of the challenges in translating photoacoustic (PA) imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF). Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinwiddie, Ralph Barton; Parris, Larkin S.; Lindal, John M.
This paper explores the temperature range extension of long-wavelength infrared (LWIR) cameras by placing an aperture in front of the lens. An aperture smaller than the lens will reduce the radiance to the sensor, allowing the camera to image targets much hotter than typically allowable. These higher temperatures were accurately determined after developing a correction factor which was applied to the built-in temperature calibration. The relationship between aperture diameter and temperature range is linear. The effect of pre-lens apertures on the image uniformity is a form of anti-vignetting, meaning the corners appear brighter (hotter) than the rest of the image.more » An example of using this technique to measure temperatures of high melting point polymers during 3D printing provide valuable information of the time required for the weld-line temperature to fall below the glass transition temperature.« less
Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets
NASA Technical Reports Server (NTRS)
Beaulieu, J.-P.; Bennett, D. P.; Batista, V.; Fukui, A.; Marquette, J.-B.; Brillant, S.; Cole, A. A.; Rogers, L. A.; Sumi, T.; Abe, F.
2016-01-01
Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 +/- 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of an approximately 4-9 Gyr lens star of M(sub lens) = 1.06 +/- 0.05 solar mass at a distance of D(sub lens) = 4.0 +/- 0.3 kpc, orbited by two giant planets of 0.145 +/- 0.008 M(sub Jup) and 0.86 +/- 0.06 M(sub Jup), with projected separations of 4.0 +/- 0.5 au and 4.8 +/- 0.7 au, respectively. Because the lens is brighter than the source star by 16 +/- 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8-10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.
REVISITING THE MICROLENSING EVENT OGLE 2012-BLG-0026: A SOLAR MASS STAR WITH TWO COLD GIANT PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulieu, J.-P.; Batista, V.; Marquette, J.-B., E-mail: beaulieu@iap.fr, E-mail: batista@iap.fr, E-mail: marquett@iap.fr
2016-06-20
Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 ± 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modelingmore » using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H -band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of a ∼4–9 Gyr lens star of M {sub lens} = 1.06 ± 0.05 M {sub ⊙} at a distance of D {sub lens} = 4.0 ± 0.3 kpc, orbited by two giant planets of 0.145 ± 0.008 M {sub Jup} and 0.86 ± 0.06 M {sub Jup}, with projected separations of 4.0 ± 0.5 au and 4.8 ± 0.7 au, respectively. Because the lens is brighter than the source star by 16 ± 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8–10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.« less
Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter
Neisius, Andreas; Smith, Nathan B.; Sankin, Georgy; Kuntz, Nicholas John; Madden, John Francis; Fovargue, Daniel E.; Mitran, Sorin; Lipkin, Michael Eric; Simmons, Walter Neal; Preminger, Glenn M.; Zhong, Pei
2014-01-01
The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The −6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters. PMID:24639497
Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter.
Neisius, Andreas; Smith, Nathan B; Sankin, Georgy; Kuntz, Nicholas John; Madden, John Francis; Fovargue, Daniel E; Mitran, Sorin; Lipkin, Michael Eric; Simmons, Walter Neal; Preminger, Glenn M; Zhong, Pei
2014-04-01
The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The -6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adachi, T.; The Graduate University for Advanced Studies, Hayama, Miura, Kanagawa 240-0193; Arai, T.
A new type of pulse chopper called an Einzel lens chopper is described. An Einzel lens placed immediately after an electron cyclotron resonance ion source is driven by high-voltage pulses generated by a newly developed solid-state Marx generator. A rectangular negative barrier pulse-voltage is controlled in time, and the barrier pulse is turned on only when a beam pulse is required. The results of successful experiments are reported herein.
Bar coded retroreflective target
Vann, Charles S.
2000-01-01
This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.
Galaxy–galaxy lensing estimators and their covariance properties
Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uros; ...
2017-07-21
Here, we study the covariance properties of real space correlation function estimators – primarily galaxy–shear correlations, or galaxy–galaxy lensing – using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens densitymore » field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.« less
Galaxy–galaxy lensing estimators and their covariance properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uros
Here, we study the covariance properties of real space correlation function estimators – primarily galaxy–shear correlations, or galaxy–galaxy lensing – using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens densitymore » field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.« less
Galaxy-galaxy lensing estimators and their covariance properties
NASA Astrophysics Data System (ADS)
Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose
2017-11-01
We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.
Gravitational lens recovery with GLASS: measuring the mass profile and shape of a lens
NASA Astrophysics Data System (ADS)
Coles, Jonathan P.; Read, Justin I.; Saha, Prasenjit
2014-12-01
We use a new non-parametric gravitational modelling tool - GLASS - to determine what quality of data (strong lensing, stellar kinematics, and/or stellar masses) are required to measure the circularly averaged mass profile of a lens and its shape. GLASS uses an underconstrained adaptive grid of mass pixels to model the lens, searching through thousands of models to marginalize over model uncertainties. Our key findings are as follows: (i) for pure lens data, multiple sources with wide redshift separation give the strongest constraints as this breaks the well-known mass-sheet or steepness degeneracy; (ii) a single quad with time delays also performs well, giving a good recovery of both the mass profile and its shape; (iii) stellar masses - for lenses where the stars dominate the central potential - can also break the steepness degeneracy, giving a recovery for doubles almost as good as having a quad with time-delay data, or multiple source redshifts; (iv) stellar kinematics provide a robust measure of the mass at the half-light radius of the stars r1/2 that can also break the steepness degeneracy if the Einstein radius rE ≠ r1/2; and (v) if rE ˜ r1/2, then stellar kinematic data can be used to probe the stellar velocity anisotropy β - an interesting quantity in its own right. Where information on the mass distribution from lensing and/or other probes becomes redundant, this opens up the possibility of using strong lensing to constrain cosmological models.
Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Kristian, Jerome; Groth, Edward J.; Shaya, Edward J.; Schneider, Donald P.; Holtzman, Jon A.; Baum, William A.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Danielson, G. E.
1993-01-01
This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera of the HST. We have resolved the gravitational lens system PG 1115+080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2. Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H0 = 50, q0 = 0.5).
Method and device for remotely monitoring an area using a low peak power optical pump
Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.
2014-07-22
A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.
Portraiture lens concept in a mobile phone camera
NASA Astrophysics Data System (ADS)
Sheil, Conor J.; Goncharov, Alexander V.
2017-11-01
A small form-factor lens was designed for the purpose of portraiture photography, the size of which allows use within smartphone casing. The current general requirement of mobile cameras having good all-round performance results in a typical, familiar, many-element design. Such designs have little room for improvement, in terms of the available degrees of freedom and highly-demanding target metrics such as low f-number and wide field of view. However, the specific application of the current portraiture lens relaxed the requirement of an all-round high-performing lens, allowing improvement of certain aspects at the expense of others. With a main emphasis on reducing depth of field (DoF), the current design takes advantage of the simple geometrical relationship between DoF and pupil diameter. The system has a large aperture, while a reasonable f-number gives a relatively large focal length, requiring a catadioptric lens design with double ray path; hence, field of view is reduced. Compared to typical mobile lenses, the large diameter reduces depth of field by a factor of four.
Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation.
Kang, Han Gyu; Song, Seong Hyun; Han, Young Been; Kim, Kyeong Min; Hong, Seong Jong
2018-02-01
Optical imaging techniques are widely used for in vivo preclinical studies, and it is well known that the Geant4 Application for Emission Tomography (GATE) can be employed for the Monte Carlo (MC) modeling of light transport inside heterogeneous tissues. However, the GATE MC toolkit is limited in that it does not yet include optical lens implementation, even though this is required for a more realistic optical imaging simulation. We describe our implementation of a biconvex lens into the GATE MC toolkit to improve both the sensitivity and spatial resolution for optical imaging simulation. The lens implemented into the GATE was validated against the ZEMAX optical simulation using an US air force 1951 resolution target. The ray diagrams and the charge-coupled device images of the GATE optical simulation agreed with the ZEMAX optical simulation results. In conclusion, the use of a lens on the GATE optical simulation could improve the image quality of bioluminescence and fluorescence significantly as compared with pinhole optics. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birrer, Simon; Amara, Adam; Refregier, Alexandre, E-mail: simon.birrer@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch
We present extended modelling of the strong lens system RXJ1131-1231 with archival data in two HST bands in combination with existing line-of-sight contribution and velocity dispersion estimates. Our focus is on source size and its influence on time-delay cosmography. We therefore examine the impact of mass-sheet degeneracy and especially the degeneracy pointed out by Schneider and Sluse (2013) [1] using the source reconstruction scale. We also extend on previous work by further exploring the effects of priors on the kinematics of the lens and the external convergence in the environment of the lensing system. Our results coming from RXJ1131-1231 aremore » given in a simple analytic form so that they can be easily combined with constraints coming from other cosmological probes. We find that the choice of priors on lens model parameters and source size are subdominant for the statistical errors for H {sub 0} measurements of this systems. The choice of prior for the source is sub-dominant at present (2% uncertainty on H {sub 0}) but may be relevant for future studies. More importantly, we find that the priors on the kinematic anisotropy of the lens galaxy have a significant impact on our cosmological inference. When incorporating all the above modeling uncertainties, we find H {sub 0} = 86.6{sup +6.8}{sub -6.9} km s{sup -1} Mpc{sup -1}, when using kinematic priors similar to other studies. When we use a different kinematic prior motivated by Barnabè et al. (2012) [2] but covering the same anisotropic range, we find H {sub 0} = 74.5{sup +8.0}{sub -7.8} km s{sup -1} Mpc{sup -1}. This means that the choice of kinematic modeling and priors have a significant impact on cosmographic inferences. The way forward is either to get better velocity dispersion measures which would down weight the impact of the priors or to construct physically motivated priors for the velocity dispersion model.« less
Noninvasive detection of diabetes mellitus
NASA Astrophysics Data System (ADS)
Eppstein, Jonathan A.; Bursell, Sven-Erik
1992-05-01
Recent advances in fluorescence spectroscopy of the lens reveal the potential of a non-invasive device and methodology to sensitively measure changes in the lens of the eye associated with diabetes mellitus. The system relies on the detection of the spectrum of fluorescence emitted from a selected volume (approximately 1/10 mm3) of the lens of living human subjects using low power excitation illumination from monochromatic light sources. The sensitivity of this technique is based on the measurement of the fluorescence intensity in a selected region of the fluorescence spectrum and normalization of this fluorescence with respect to attenuation (scattering and absorption) of the incident excitation light. The amplitude of the unshifted Rayleigh line, measured as part of the fluorescence spectrum, is used as a measure of the attenuation of the excitation light in the lens. Using this methodology we have demonstrated that the normalized lens fluorescence provides a more sensitive discrimination between diabetic and non-diabetic lenses than more conventional measurements of fluorescence intensity from the lens. The existing instrumentation will be described as well as the proposed design for a commercial version of the instrument expected to be ready for FDA trials by late 1992. The results from clinical measurements are used to describe a relationship between normalized lens fluorescence and hemoglobin A1c levels in diabetic patients.
Analysis of High Energy Laser Weapon Employment from a Navy Ship
2012-09-01
meters Capacity ~ 400 kg (T.B. Racing and Marine, 2011) Speed 80 knots (148 km/h = 42 m/s) Material Fiberglass / Aluminium Explosive Improvised...CIWS) and requires the ship’s electrical power of about 400 kW. This would be deemed adequate for employment on an LCS ship. A boat target with an...Inflammation of the cornea, similar to sunburn 315 - 400 nm (Ultraviolet UV-A) CORNEA and LENS Photochemical cataract; Clouding of the lens 400
Wei, Xiaoyong; Chen, Dan; Yi, Yanchun; Qi, Hui; Gao, Xinxin; Fang, Hua; Gu, Qiong; Wang, Ling; Gu, Lianquan
2012-01-01
Objective. Effects of Syringic acid (SA) extracted from dendrobii on diabetic cataract (DC) pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC. PMID:23365598
Discovery of the target for immunomodulatory drugs (IMiDs).
Ito, Takumi; Ando, Hideki; Handa, Hiroshi
2016-05-01
Half a century ago, the sedative thalidomide caused a serious drug disaster because of its teratogenicity and was withdrawn from the market. However, thalidomide, which has returned to the market, is now used for the treatment of leprosy and multiple myeloma (MM) under strict control. The mechanism of thalidomide action had been a long-standing question. We developed a new affinity bead technology and identified cereblon (CRBN) as a thalidomide-binding protein. We found that CRBN functions as a substrate receptor of an E3 cullin-Ring ligase complex 4 (CRL4) and is a primary target of thalidomide teratogenicity. Recently, new thalidomide derivatives, called immunomodulatory drugs (IMiDs), have been developed by Celgene. Among them, lenalidomide (Len) and pomalidomide (Pom) were shown to exert strong therapeutic effects against MM. It was found that Len and Pom both bind CRBN-CRL4 and recruit neomorphic substrates (Ikaros and Aiolos). More recently it was reported that casein kinase 1a (Ck1a) was identified as a substrate for CRBN-CRL4 in the presence of Len, but not Pom. Ck1a breakdown explains why Len is specifically effective for myelodysplastic syndrome with 5q deletion. It is now proposed that binding of IMiDs to CRBN appears to alter the substrate specificity of CRBN-CRL4. In this review, we introduce recent findings on IMiDs.
Indirect tissue electrophoresis: a new method for analyzing solid tissue protein.
Smith, A C
1988-01-01
1. The eye lens core (nucleus) has been a valuable source of molecular biologic information. 2. In these studies, lens nuclei are usually homogenized so that any protein information related to anatomical subdivisions, or layers, of the nucleus is lost. 3. The present report is of a new method, indirect tissue electrophoresis (ITE), which, when applied to fish lens nuclei, permitted (a) automatic correlation of protein information with anatomic layer, (b) production of large, clear electrophoretic patterns even from small tissue samples and (c) detection of more proteins than in liquid extracts of homogenized tissues. 4. ITE seems potentially applicable to a variety of solid tissues.
Lynnerup, Niels; Kjeldsen, Henrik; Heegaard, Steffen; Jacobsen, Christina; Heinemeier, Jan
2008-01-30
Lens crystallines are special proteins in the eye lens. Because the epithelial basement membrane (lens capsule) completely encloses the lens, desquamation of aging cells is impossible, and due to the complete absence of blood vessels or transport of metabolites in this area, there is no subsequent remodelling of these fibers, nor removal of degraded lens fibers. Human tissue ultimately derives its (14)C content from the atmospheric carbon dioxide. The (14)C content of the lens proteins thus reflects the atmospheric content of (14)C when the lens crystallines were formed. Precise radiocarbon dating is made possible by comparing the (14)C content of the lens crystallines to the so-called bomb pulse, i.e. a plot of the atmospheric (14)C content since the Second World War, when there was a significant increase due to nuclear-bomb testing. Since the change in concentration is significant even on a yearly basis this allows very accurate dating. Our results allow us to conclude that the crystalline formation in the lens nucleus almost entirely takes place around the time of birth, with a very small, and decreasing, continuous formation throughout life. The close relationship may be further expressed as a mathematical model, which takes into account the timing of the crystalline formation. Such a life-long permanence of human tissue has hitherto only been described for dental enamel. In confront to dental enamel it must be held in mind that the eye lens is a soft structure, subjected to almost continuous deformation, due to lens accommodation, yet its most important constituent, the lens crystalline, is never subject to turnover or remodelling once formed. The determination of the (14)C content of various tissues may be used to assess turnover rates and degree of substitution (for example for brain cell DNA). Potential targets may be nervous tissues in terms of senile or pre-senile degradation, as well as other highly specialised structures of the eyes. The precision with which the year of birth may be calculated points to forensic uses of this technique.
Lynnerup, Niels; Kjeldsen, Henrik; Heegaard, Steffen; Jacobsen, Christina; Heinemeier, Jan
2008-01-01
Background Lens crystallines are special proteins in the eye lens. Because the epithelial basement membrane (lens capsule) completely encloses the lens, desquamation of aging cells is impossible, and due to the complete absence of blood vessels or transport of metabolites in this area, there is no subsequent remodelling of these fibers, nor removal of degraded lens fibers. Human tissue ultimately derives its 14C content from the atmospheric carbon dioxide. The 14C content of the lens proteins thus reflects the atmospheric content of 14C when the lens crystallines were formed. Precise radiocarbon dating is made possible by comparing the 14C content of the lens crystallines to the so-called bomb pulse, i.e. a plot of the atmospheric 14C content since the Second World War, when there was a significant increase due to nuclear-bomb testing. Since the change in concentration is significant even on a yearly basis this allows very accurate dating. Methodology/Principal Findings Our results allow us to conclude that the crystalline formation in the lens nucleus almost entirely takes place around the time of birth, with a very small, and decreasing, continuous formation throughout life. The close relationship may be further expressed as a mathematical model, which takes into account the timing of the crystalline formation. Conclusions/Significance Such a life-long permanence of human tissue has hitherto only been described for dental enamel. In confront to dental enamel it must be held in mind that the eye lens is a soft structure, subjected to almost continuous deformation, due to lens accommodation, yet its most important constituent, the lens crystalline, is never subject to turnover or remodelling once formed. The determination of the 14C content of various tissues may be used to assess turnover rates and degree of substitution (for example for brain cell DNA). Potential targets may be nervous tissues in terms of senile or pre-senile degradation, as well as other highly specialised structures of the eyes. The precision with which the year of birth may be calculated points to forensic uses of this technique. PMID:18231610
Vann, Charles S.
2003-09-09
This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji-Hyung
A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperaturesmore » derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.« less
Double frequency of difference frequency signals for optical Doppler effect measuring velocity
NASA Astrophysics Data System (ADS)
Yang, Xiufang; Zhou, Renkui; Wei, W. L.; Wang, Xiaoming
2005-12-01
The mathematical model for measuring moving objects (including fluid body, rolled steel materials in the steel works, turbulent flow, vibration body, etc.) velocity or speed by non-contact method is established using light-wave Doppler effect in this paper. In terms of concrete conditions of different optical circuits, and with the correlated conditions substituted, it is easy to obtain the measurement velocity formulas related to optical circuits. An optical circuit layout of difference Doppler effect measuring velocity is suggested in this paper. The fine beam of light emitted by laser is divided into parallel two beam by spectroscope and mirror They are focused on the object point p by a condenser lens respectively. The object point p become a diffuse source. It scatter rays to every aspect. Some rays scattered by the diffuse source p are collected by a lens. Photoelectric detecter receive the lights collected by the lens. This optical circuit layout can realize the double frequency of difference frequency signals in a novel way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji Hyung
A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperaturesmore » derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.« less
Potential Direct Single-Star Mass Measurement
NASA Astrophysics Data System (ADS)
Ghosh, H.; DePoy, D. L.; Gal-Yam, A.; Gaudi, B. S.; Gould, A.; Han, C.; Lipkin, Y.; Maoz, D.; Ofek, E. O.; Park, B.-G.; Pogge, R. W.; Salim, S.; Mu Fun Collaboration; Abe, F.; Bennett, D. P.; Bond, I. A.; Eguchi, S.; Furuta, Y.; Hearnshaw, J. B.; Kamiya, K.; Kilmartin, P. M.; Kurata, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Noda, S.; Okajima, K.; Rattenbury, N. J.; Sako, T.; Sekiguchi, T.; Sullivan, D. J.; Sumi, T.; Tristram, P. J.; Yanagisawa, T.; Yock, P. C. M.; MOA Collaboration; Udalski, A.; Soszyński, I.; Wyrzykowski, Ł.; Kubiak, M.; Szymański, M. K.; Pietrzyński, G.; Szewczyk, O.; Żebruń, K.; OGLE Collaboration; Albrow, M. D.; Beaulieu, J.-P.; Caldwell, J. A. R.; Cassan, A.; Coutures, C.; Dominik, M.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Hill, K.; Horne, K.; Jørgensen, U. G.; Kane, S.; Kubas, D.; Martin, R.; Menzies, J.; Pollard, K. R.; Sahu, K. C.; Wambsganss, J.; Watson, R.; Williams, A.; PLANET Collaboration
2004-11-01
We analyze the light curve of the microlensing event OGLE-2003-BLG-175/MOA-2003-BLG-45 and show that it has two properties that, when combined with future high-resolution astrometry, could lead to a direct, accurate measurement of the lens mass. First, the light curve shows clear signs of distortion due to the Earth's accelerated motion, which yields a measurement of the projected Einstein radius rE. Second, from precise astrometric measurements, we show that the blended light in the event is coincident with the microlensed source to within about 15 mas. This argues strongly that this blended light is the lens and hence opens the possibility of directly measuring the lens-source relative proper motion μrel and so the mass M=(c2/4G)μreltErE, where tE is the measured Einstein timescale. While the light-curve-based measurement of rE is, by itself, severely degenerate, we show that this degeneracy can be completely resolved by measuring the direction of proper motion μrel.
Evaluate depth of field limits of fixed focus lens arrangements in thermal infrared
NASA Astrophysics Data System (ADS)
Schuster, Norbert
2016-05-01
More and more modern thermal imaging systems use uncooled detectors. High volume applications work with detectors that have a reduced pixel count (typically between 200x150 and 640x480). This reduces the usefulness of modern image treatment procedures such as wave front coding. On the other hand, uncooled detectors demand lenses with fast fnumbers, near f/1.0, which reduces the expected Depth of Field (DoF). What are the limits on resolution if the target changes distance to the camera system? The desire to implement lens arrangements without a focusing mechanism demands a deeper quantification of the DoF problem. A new approach avoids the classic "accepted image blur circle" and quantifies the expected DoF by the Through Focus MTF of the lens. This function is defined for a certain spatial frequency that provides a straightforward relation to the pixel pitch of imaging device. A certain minimum MTF-level is necessary so that the complete thermal imaging system can realize its basic functions, such as recognition or detection of specified targets. Very often, this technical tradeoff is approved with a certain lens. But what is the impact of changing the lens for one with a different focal length? Narrow field lenses, which give more details of targets in longer distances, tighten the DoF problem. A first orientation is given by the hyperfocal distance. It depends in a square relation on the focal length and in a linear relation on the through focus MTF of the lens. The analysis of these relations shows the contradicting requirements between higher thermal and spatial resolution, faster f-number and desired DoF. Furthermore, the hyperfocal distance defines the DoF-borders. Their relation between is such as the first order imaging formulas. A calculation methodology will be presented to transfer DoF-results from an approved combination lens and camera to another lens in combination with the initial camera. Necessary input for this prediction is the accepted DoF of the initial combination and the through focus MTFs of both lenses. The accepted DoF of the initial combination defines an application and camera related MTF-level, which must be provided also by the new lens. Examples are provided. The formula of the Diffraction-Limited-Through-Focus-MTF (DLTF) quantifies the physical limit and works without any ray trace. This relation respects the pixel pitch, the waveband and the aperture based f-number, but is independent of detector size. The DLTF has a steeper slope than the ray traced Through-Focus-MTF; its maximum is the diffraction limit. The DLTF predicts the DoF-relations quite precisely. Differences to ray trace results are discussed. Last calculations with modern detectors show that a static chosen MTF-level doesn't reflect the reality for the DoFproblem. The MTF-level to respect depends on application, pixel pitch, IR-camera and image treatment. A value of 0.250 at the detector Nyquist frequency seems to be a reasonable starting point for uncooled FPAs with 17μm pixel pitch.
The association of contact lens solution use and Acanthamoeba keratitis
Joslin, Charlotte E.; Tu, Elmer Y.; Shoff, Megan E.; Booton, Gregory C.; Fuerst, Paul A.; McMahon, Timothy T.; Anderson, Robert J.; Dworkin, Mark S.; Sugar, Joel; Davis, Faith G.; Stayner, Leslie T.
2009-01-01
Purpose Diagnosis of Acanthamoeba keratitis, a rare but serious corneal infection, has recently increased significantly at the University of Illinois at Chicago (UIC) Cornea Service. The purpose is to investigate Acanthamoeba keratitis risk factors. Design Retrospective case-control study. Methods Setting University, tertiary care hospital. Patients Fifty-five Acanthamoeba keratitis cases with contact lens use were diagnosed between May 1, 2003 and September 15, 2006. Clinic-matched controls with contact lens use were recruited. Subjects completed surveys targeting lens hygiene, contact lens solution use, and water exposure. Main Outcome Measure Acanthamoeba keratitis. Results Thirty-nine (73.6%) cases and 113 (65.3%) controls participated; 38 cases had complete contact lens data. Thirty-five of 38 cases (92.1%) and 47 of 100 controls (47.0%) used soft lenses. Analysis was performed on 30 cases and 39 controls with matched pairs with soft lens use. Exclusive use of AMO Complete MoisturePlus Multi-Purpose Solution was independently associated with Acanthamoeba keratitis in multivariable analysis (55.2% vs. 10.5%; OR, 16.67; 95% CI, 2.11–162.63; p = 0.008). However, 38.8% of cases reported no use of AMO Complete MoisturePlus Multi-Purpose Solution or used it in combination with other solutions. Although not statistically significant, additional hygiene-related variables (solution ‘reuse’, lack of ‘rubbing’, and showering with lenses) suggest a pattern of risk,. Conclusions AMO Complete MoisturePlus Multi-Purpose Solution use is independently associated with Acanthamoeba keratitis among soft contact lens users. However, it does not explain all cases, suggesting additional factors. Further research into environmental risk factors and hygiene practices is warranted, especially considering this is the second outbreak of an atypical, contact lens-related infection. PMID:17588524
The association of contact lens solution use and Acanthamoeba keratitis.
Joslin, Charlotte E; Tu, Elmer Y; Shoff, Megan E; Booton, Gregory C; Fuerst, Paul A; McMahon, Timothy T; Anderson, Robert J; Dworkin, Mark S; Sugar, Joel; Davis, Faith G; Stayner, Leslie T
2007-08-01
To investigate Acanthamoeba keratitis (AK) risk factors. Diagnosis of AK, a rare but serious corneal infection, has recently increased significantly at the University of Illinois at Chicago (UIC) Cornea Service. Retrospective case-control study. settings: University, tertiary care hospital. patients: Fifty-five AK cases with contact lens use were diagnosed between May 1, 2003 and September 15, 2006. Clinic-matched controls with contact lens use were recruited. Subjects completed surveys targeting lens hygiene, contact lens solution use, and water exposure. main outcome measure: Acanthamoeba keratitis. Thirty-nine (73.6%) cases and 113 (65.3%) controls participated; 38 cases had complete contact lens data. Thirty-five of 38 cases (92.1%) and 47 of 100 controls (47.0%) used soft lenses. Analysis was performed on 30 cases and 39 controls with matched pairs with soft lens use. Exclusive use of Advance Medical Optics (AMO) Complete MoisturePlus Multi-Purpose Solution was independently associated with AK in multivariable analysis (55.2% vs 10.5%; odds ratio [OR], 16.67; 95% confidence interval [CI] 2.11 to 162.63; P = .008). However, 38.8% of cases reported no use of AMO Complete MoisturePlus Multi-Purpose Solution either alone or in combination with other solutions. Although not statistically significant, additional hygiene-related variables (solution "reuse," lack of "rubbing," and showering with lenses) suggest a pattern of risk. AMO Complete MoisturePlus Multi-Purpose Solution use is independently associated with AK among soft contact lens users. However, it does not explain all cases, suggesting additional factors. Further research into environmental risk factors and hygiene practices is warranted, especially considering this is the second outbreak of an atypical, contact lens-related infection.
The Galactic Distribution of Planets via Spitzer Microlensing Parallax
NASA Astrophysics Data System (ADS)
Gould, Andrew; Yee, Jennifer; Carey, Sean; Shvartzvald, Yossi
2018-05-01
We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 200 events, including 3 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by >1.5 AU in projection. The proposed observations are part of a campaign that we have conducted with Spitzer since 2014. The planets expected to be identified in this campaign when combined with previous work will yield a first statistically significant measurement of the frequency of planets in the Galactic bulge versus the Galactic disk. As we have demonstrated in three previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the KMTNet observing strategy that covers >85 sq.deg t >0.4/hr cadence, 24/7 from 3 southern observatories and a alert system KMTNet is implementing for 2019. This same observing program also provides a unique probe of dark objects. It will yield an improved measurement of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.
Systematics errors in strong lens modeling
NASA Astrophysics Data System (ADS)
Johnson, Traci L.; Sharon, Keren; Bayliss, Matthew B.
We investigate how varying the number of multiple image constraints and the available redshift information can influence the systematic errors of strong lens models, specifically, the image predictability, mass distribution, and magnifications of background sources. This work will not only inform upon Frontier Field science, but also for work on the growing collection of strong lensing galaxy clusters, most of which are less massive and are capable of lensing a handful of galaxies.
Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens.
Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent
2017-03-02
We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.
Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens
NASA Astrophysics Data System (ADS)
Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent
2017-03-01
We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.
Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens
Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent
2017-01-01
We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated. PMID:28252033
FPscope: a field-portable high-resolution microscope using a cellphone lens.
Dong, Siyuan; Guo, Kaikai; Nanda, Pariksheet; Shiradkar, Radhika; Zheng, Guoan
2014-10-01
The large consumer market has made cellphone lens modules available at low-cost and in high-quality. In a conventional cellphone camera, the lens module is used to demagnify the scene onto the image plane of the camera, where image sensor is located. In this work, we report a 3D-printed high-resolution Fourier ptychographic microscope, termed FPscope, which uses a cellphone lens in a reverse manner. In our platform, we replace the image sensor with sample specimens, and use the cellphone lens to project the magnified image to the detector. To supersede the diffraction limit of the lens module, we use an LED array to illuminate the sample from different incident angles and synthesize the acquired images using the Fourier ptychographic algorithm. As a demonstration, we use the reported platform to acquire high-resolution images of resolution target and biological specimens, with a maximum synthetic numerical aperture (NA) of 0.5. We also show that, the depth-of-focus of the reported platform is about 0.1 mm, orders of magnitude longer than that of a conventional microscope objective with a similar NA. The reported platform may enable healthcare accesses in low-resource settings. It can also be used to demonstrate the concept of computational optics for educational purposes.
Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge
NASA Astrophysics Data System (ADS)
Zhang, Chao; Koepke, Juergen; Kirchner, Clemens; Götze, Niko; Behrens, Harald
2014-09-01
Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed ``gabbro glacier'' model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-1050°C to 600°C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.
NASA Astrophysics Data System (ADS)
Bennett, D. P.; Bond, I. A.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; MOA Collaboration
2017-08-01
We present the MOA Collaboration light-curve data for the planetary microlensing event OGLE-2015-BLG-0954, which was previously announced in a paper by the KMTNet and OGLE Collaborations. The MOA data cover the caustic exit, which was not covered by the KMTNet or Optical Gravitational Lensing Experiment (OGLE) data, and they provide a more reliable measurement of the finite source effect. The MOA data also provide a new source color measurement that reveals a lens-source relative proper motion of μ rel = 11.8 ± 0.8 mas yr-1, which compares to the value of μ rel = 18.4 ± 1.7 mas yr-1 reported in the KMTNet-OGLE paper. This new MOA value for μ rel has an a priori probability that is a factor of ≳100 times larger than the previous value, and it does not require a lens system distance of D L < 1 kpc. Based on the corrected source color, we find that the lens system consists of a planet of mass {3.4}-1.6+3.7 {M}{Jup} orbiting a {0.30}-0.14+0.34 {M}⊙ star at an orbital separation of {2.1}-1.0+2.2 {au} and a distance of {1.2}-0.5+1.1 {kpc}.
Emmetropization and Eye Growth in Young Aphakic Chickens
Ai, Likun; Li, Jing; Guan, Huan; Wildsoet, Christine F.
2009-01-01
Purpose To establish a chick model to investigate the trends of eye growth and emmetropization after early lensectomy for congenital cataract. Methods Four monocular treatments were applied: lens extraction (LX); sham surgery/-30 D lens; LX/+20 D lens; and LX/+30-D lens (nine per group). Lens powers were selected to slightly undercorrect or overcorrect the induced hyperopia in LX eyes and to induce comparable hyperopia in sham-surgery eyes. Refractive errors and axial ocular dimensions were measured over a 28-day period. External ocular dimensions were obtained when the eyes were enucleated on the last day. Results The growth patterns of experimental (Exp) eyes varied with the type of manipulation. All eyes experiencing hyperopia initially grew more than their fellow eyes and exhibited myopic shifts in refraction. The sham/-30 D lens group showed the greatest increase in optical axial length, followed by the LX group, and then the LX/+20 D lens group. The Exp eyes of the LX/+30 D lens group, which were initially slightly myopic, grew least, and showed a small hyperopic shift. Lensectomized eyes enlarged more equatorially than axially (i.e., oblate), irrespective of the optical treatment applied. Conclusions The refractive changes observed in young, aphakic eyes are consistent with compensation for the defocus experienced, and thus emmetropization. However, differences in the effects of lensectomy compared to those of sham surgery raise the possibility that the lens is a source of essential growth factors. Alterative optical and mechanical explanations are offered for the oblate shapes of aphakic eyes. PMID:18719085
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, J; Kim, S; Hristov, D
Purpose: To assess the potential benefit of trajectory modulated arc therapy (TMAT) for treatments of small benign intracranial tumor, pituitary adenoma. Methods: A TMAT planning platform that incorporates complex source motion trajectory involving synchronized gantry rotation with translational and rotational couch movement was used for the study. The platform couples an interactive trajectory generation tool with a VMAT algorithm that performs multi-resolution, progressive sampling MLC optimization on a user-designed trajectory. A continuous couch rotation of 160° angular span with ±20° mini gantry arcs was used to emulate a non-coplanar horizontal arc-like trajectory. Compared to conventional non-coplanar gantry arcs (60°-100° gantrymore » rotation with couch kicks), TMAT limited the unnecessary low to medium dose spread in the anterior and posterior directions, where primary OARs (e.g., brainstem, optic chiasm, optic nerves, and lens) are in close proximity to the targeted pituitary tumor volume. For 5 standard fractionation pituitary adenoma cases (50.4Gy/28fractions), TMAT and non-coplanar VMAT plans were generated and compared under equivalent objectives/constraints. TMAT delivery was implemented and demonstrated on Varian TrueBeam via XML scripts. Results: Both techniques showed good target coverage while OARs were able to meet the constraints on QUANTEC guidelines. Notably, TMAT decreased the dose deposition in the anterior-to-posterior direction surrounding PTV. TMAT significantly reduced the mean doses on brainstem, optic nerves, eyes and lens by 47.29%±13.17%, 28.51%±8.68%, 80.82%±8.71% and 65.38%±19.99% compared with VMAT, all p≤0.01. Percentage reductions of maximum point dose in eyes and lens were 75.68%±10.30% and 70.72%±18.62% respectively for TMAT versus VMAT, all p≤0.01. A representative isocentric TMAT pituitary plan was delivered via an XML script with 200 control points and 282 MUs. Conclusion: Deliverable TMAT plans were achieved in developer mode in TrueBeam. TMAT was shown to be superior for pituitary adenoma irradiation in terms of OARs sparing.« less
Precision cosmology with time delay lenses: High resolution imaging requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration ofmore » the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ tot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of order a few minutes per system, thus making the follow-up of hundreds of systems a practical and efficient cosmological probe.« less
Precision cosmology with time delay lenses: high resolution imaging requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xiao-Lei; Liao, Kai; Treu, Tommaso
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration ofmore » the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of order a few minutes per system, thus making the follow-up of hundreds of systems a practical and efficient cosmological probe.« less
Potential sources of bacteria that are isolated from contact lenses during wear.
Willcox, M D; Power, K N; Stapleton, F; Leitch, C; Harmis, N; Sweeney, D F
1997-12-01
The aim of this paper was to determine the possible contamination sources of contact lenses during wear. Potential sources of the microbiota that colonized hydrogel contact lenses during wear were examined. The microorganisms that colonize contact lenses were grown, identified, and compared to those microorganisms that colonized the lower lid margins, upper bulbar conjunctiva, hands, and contact lens cases of contact lens wearers. In addition, the incidence of contamination of the domestic water supply in the Sydney area was obtained, and this was compared to the incidence of colonization of contact lenses by microorganisms in general and gram-negative bacteria in particular. There was a wide diversity of bacteria that were isolated from each site sampled. Coagulase-negative staphylococci and Propionibacterium spp. were the most common isolates from all ocular sites examined, and constituted the normal ocular microbiota. Other bacteria, including members of the families Enterobacteriaceae and Pseudomonadaceae, were isolated infrequently from all sites, but most frequently from contact lens cases. Statistical analysis revealed that there was a correlation between the isolation of bacteria from the contact lens and the lower lid margin (p < 0.001). Analysis of this correlation revealed that this was true for the normal microbiota. A correlation was also noted between the colonization of contact lenses by gram-negative bacteria and contamination of the domestic water supply. This study has demonstrated that the likely route for the normal ocular microbiota colonizing contact lenses is via the lid margins, whereas colonization by gram-negative bacteria, including potential agents of microbial keratitis, is likely to be from the domestic water supply.
Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.
2013-10-01
Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.
Electronic Absolute Cartesian Autocollimator
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.
2006-01-01
An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the mirror is slightly tilted. Hence, one can determine the amount and direction of tilt from the coordinates of the target image on the viewing plane.
Flexible high-voltage supply for experimental electron microscope
NASA Technical Reports Server (NTRS)
Chapman, G. L.; Jung, E. A.; Lewis, R. N.; Van Loon, L. S.; Welter, L. M.
1969-01-01
Scanning microscope uses a field-emission tip for the electron source, an electron gun that simultaneously accelerates and focuses electrons from the source, and one auxiliary lens to produce a final probe size at the specimen on the order of angstroms.
PARALLAX AND ORBITAL EFFECTS IN ASTROMETRIC MICROLENSING WITH BINARY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nucita, A. A.; Paolis, F. De; Ingrosso, G.
2016-06-01
In gravitational microlensing, binary systems may act as lenses or sources. Identifying lens binarity is generally easy, in particular in events characterized by caustic crossing since the resulting light curve exhibits strong deviations from a smooth single-lensing light curve. In contrast, light curves with minor deviations from a Paczyński behavior do not allow one to identify the source binarity. A consequence of gravitational microlensing is the shift of the position of the multiple image centroid with respect to the source star location — the so-called astrometric microlensing signal. When the astrometric signal is considered, the presence of a binary sourcemore » manifests with a path that largely differs from that expected for single source events. Here, we investigate the astrometric signatures of binary sources taking into account their orbital motion and the parallax effect due to the Earth’s motion, which turn out not to be negligible in most cases. We also show that considering the above-mentioned effects is important in the analysis of astrometric data in order to correctly estimate the lens-event parameters.« less
Development and testing of a homogenous multi-wavelength LED light source
NASA Astrophysics Data System (ADS)
Bolton, Frank J.; Bernat, Amir; Jacques, Steven L.; Levitz, David
2017-03-01
Multispectral imaging of human tissue is a powerful method that allows for quantify scattering and absorption parameters of the tissue and differentiate tissue types or identify pathology. This method requires imaging at multiple wavelengths and then fitting the measured data to a model based on light transport theory. Earlier, a mobile phone based multi-spectral imaging system was developed to image the uterine cervix from the colposcopy geometry, outside the patient's body at a distance of 200-300 mm. Such imaging of a distance object has inherent challenges, as bright and homogenous illumination is required. Several solutions addressing this problem were developed, with varied degrees of success. In this paper, several multi-spectral illumination setups were developed and tested for brightness and uniformity. All setups were specifically designed with low cost in mind, utilizing a printed circuit board with surface-mounted LEDs. The three setups include: LEDs illuminating the target directly, LEDs illuminating focused by a 3D printed miniature lens array, and LEDs coupled to a mixing lens and focusing optical system. In order to compare the illumination uniformity and intensity performance two experiments were performed. Test results are presented, and various tradeoffs between the three system configurations are discussed. Test results are presented, and various tradeoffs between the three system configurations are discussed.
Laser focus compensating sensing and imaging device
Vann, Charles S.
1993-01-01
A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.
Laser focus compensating sensing and imaging device
Vann, C.S.
1993-08-31
A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a Cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the Cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the Cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a Cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.
A gravitational lens candidate with an unusually red optical counterpart
NASA Technical Reports Server (NTRS)
Hewitt, J. N.; Turner, E. L.; Lawrence, C. R.; Schneider, D. P.; Brody, J. P.
1992-01-01
The properties of the strong radio source MG0414 + 0534 are described. It is found to display many of the properties expected in a gravitational lens system. At radio wavelengths and 0.5-arcsec resolution, MG0414 + 0534 is made up of four compact components whose unusual configuration and relative flux densities are similar to those found in confirmed four-image gravitational lens systems. At optical wavelengths three objects are detected, consistent with there being optical objects at the positions of the radio components, given the lower optical resolution. The radio and optical centroid positions agree within the astrometric errors, and the relative ordering of the fluxes is the same. The colors and radiooptical spectral indices are similar, but there are differences larger than the photometric errors and the measured variability (about 30 percent). Extinction by dust might simultaneously explain the unusually red color and the absence of light from a lens.
High numerical aperture multilayer Laue lenses
Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; ...
2015-06-01
The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along themore » lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.« less
Method for quick thermal tolerancing of optical systems
NASA Astrophysics Data System (ADS)
Werschnik, J.; Uhlendorf, K.
2016-09-01
Optical systems for lithography (projection lens), inspection (micro-objectives) or laser material processing usually have tight specifications regarding focus and wave-front stability. The same is true regarding the field dependent properties. Especially projection lenses have tight specifications on field curvature, magnification and distortion. Unwanted heating either from internal or external sources lead to undesired changes of the above properties. In this work we show an elegant and fast method to analyze the thermal sensitivity using ZEMAX. The key point of this method is using the thermal changes of the lens data from the multi-configuration editor as starting point for a (standard) tolerance analysis. Knowing the sensitivity we can either define requirements on the environment or use it to systematically improve the thermal behavior of the lens. We demonstrate this method for a typical projection lens for which we optimized the thermal field curvature to a minimum.
Quantitative characterization of porosity in stainless steel LENS powders and deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan, D.F.; Puskar, J.D.; Brooks, J.A.
2006-07-15
Laser Engineered Net Shaping (LENS) utilizes a laser beam to melt fine powders to produce three-dimensional engineering structures line by line and layer by layer. When building these structures, defects including lack-of-fusion (LOF) at interlayer boundaries and intralayer porosity are sometimes observed. LOF defects can be minimized by adjusting processing parameters, but the sources of intralayer porosity are less apparent. In this paper, the amount and size distributions of 17-4PH and 304L powders and pores within the powder were characterized in parallel with the intralayer porosity in LENS deposits fabricated from the same materials. Intralayer porosity increased with increased powdermore » porosity; but was not well correlated with deposition parameters. The results demonstrate the importance of careful characterization and specification of starting powders on the quality of the final LENS deposits.« less
Open-source do-it-yourself multi-color fluorescence smartphone microscopy
Sung, Yulung; Campa, Fernando; Shih, Wei-Chuan
2017-01-01
Fluorescence microscopy is an important technique for cellular and microbiological investigations. Translating this technique onto a smartphone can enable particularly powerful applications such as on-site analysis, on-demand monitoring, and point-of-care diagnostics. Current fluorescence smartphone microscope setups require precise illumination and imaging alignment which altogether limit its broad adoption. We report a multi-color fluorescence smartphone microscope with a single contact lens-like add-on lens and slide-launched total-internal-reflection guided illumination for three common tasks in investigative fluorescence microscopy: autofluorescence, fluorescent stains, and immunofluorescence. The open-source, simple and cost-effective design has the potential for do-it-yourself fluorescence smartphone microscopy. PMID:29188104
Wolf, Louise; Gao, Chun S.; Gueta, Karen; Xie, Qing; Chevallier, Tiphaine; Podduturi, Nikhil R.; Sun, Jian; Conte, Ivan; Zelenka, Peggy S.; Ashery-Padan, Ruth; Zavadil, Jiri; Cvekl, Ales
2013-01-01
MicroRNAs (miRNAs) and fibroblast growth factor (FGF) signaling regulate a wide range of cellular functions, including cell specification, proliferation, migration, differentiation, and survival. In lens, both these systems control lens fiber cell differentiation; however, a possible link between these processes remains to be examined. Herein, the functional requirement for miRNAs in differentiating lens fiber cells was demonstrated via conditional inactivation of Dicer1 in mouse (Mus musculus) lens. To dissect the miRNA-dependent pathways during lens differentiation, we used a rat (Rattus norvegicus) lens epithelial explant system, induced by FGF2 to differentiate, followed by mRNA and miRNA expression profiling. Transcriptome and miRNome analysis identified extensive FGF2-regulated cellular responses that were both independent and dependent on miRNAs. We identified 131 FGF2-regulated miRNAs. Seventy-six of these miRNAs had at least two in silico predicted and inversely regulated target mRNAs. Genes modulated by the greatest number of FGF-regulated miRNAs include DNA-binding transcription factors Nfib, Nfat5/OREBP, c-Maf, Ets1, and N-Myc. Activated FGF signaling influenced bone morphogenetic factor/transforming growth factor-β, Notch, and Wnt signaling cascades implicated earlier in lens differentiation. Specific miRNA:mRNA interaction networks were predicted for c-Maf, N-Myc, and Nfib (DNA-binding transcription factors); Cnot6, Cpsf6, Dicer1, and Tnrc6b (RNA to miRNA processing); and Ash1l, Med1/PBP, and Kdm5b/Jarid1b/Plu1 (chromatin remodeling). Three miRNAs, including miR-143, miR-155, and miR-301a, down-regulated expression of c-Maf in the 3′-UTR luciferase reporter assays. These present studies demonstrate for the first time global impact of activated FGF signaling in lens cell culture system and predicted novel gene regulatory networks connected by multiple miRNAs that regulate lens differentiation. PMID:24142921
In-line digital holography with phase-shifting Greek-ladder sieves
NASA Astrophysics Data System (ADS)
Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang
2018-04-01
Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.
Time delay in the Einstein ring PKS 1830-211
NASA Technical Reports Server (NTRS)
Van Ommen, T. D.; Jones, D. L.; Preston, R. A.; Jauncey, D. L.
1995-01-01
We present radio observations of the gravitational lens PKS 1830-211 at 8.4 and 15 GHz acquired using the Very Large Array. The observations were made over a 13 month period. Significant flux density changes over this period provide strong constraints on the time delay between the two lensed images and suffest a value of 44 +/- 9 days. This offers new direct evidence that this source is indeed a gravitational lens. The lens distance is dependent upon the model chosen, but reasonable limits on the mass of the lensing galaxy suggest that it is unlikely to be at a redshift less than a few tenths, and may well be significantly more distant.
Machine learning enhanced optical distance sensor
NASA Astrophysics Data System (ADS)
Amin, M. Junaid; Riza, N. A.
2018-01-01
Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm uses the acquired features and corresponding labels that are the actual target distance values to train a machine learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance range. Using the machine learning algorithm produces a training set and testing set distance measurement errors of <0.8 mm and <2.2 mm, respectively. The test measurement error is at least a factor of 4 improvement over our prior sensor demonstration without the use of machine learning. Applications for the proposed sensor include industrial scenario distance sensing where target material specific training models can be generated to realize low <1% measurement error distance measurements.
The development and progress of XeCl Excimer laser system
NASA Astrophysics Data System (ADS)
Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru
2015-05-01
A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.
Calibration of the Nikon 200 for Close Range Photogrammetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheriff, Lassana; /City Coll., N.Y. /SLAC
2010-08-25
The overall objective of this project is to study the stability and reproducibility of the calibration parameters of the Nikon D200 camera with a Nikkor 20 mm lens for close-range photogrammetric surveys. The well known 'central perspective projection' model is used to determine the camera parameters for interior orientation. The Brown model extends it with the introduction of radial distortion and other less critical variables. The calibration process requires a dense network of targets to be photographed at different angles. For faster processing, reflective coded targets are chosen. Two scenarios have been used to check the reproducibility of the parameters.more » The first one is using a flat 2D wall with 141 coded targets and 12 custom targets that were previously measured with a laser tracker. The second one is a 3D Unistrut structure with a combination of coded targets and 3D reflective spheres. The study has shown that this setup is only stable during a short period of time. In conclusion, this camera is acceptable when calibrated before each use. Future work should include actual field tests and possible mechanical improvements, such as securing the lens to the camera body.« less
Development of solid tunable optics for ultra-miniature imaging systems
NASA Astrophysics Data System (ADS)
Yongchao, Zou
This thesis focuses on the optimal design, fabrication and testing of solid tunable optics and exploring their applications in miniature imaging systems. It starts with the numerical modelling of such lenses, followed by the optimum design method and alignment tolerance analysis. A miniature solid tunable lens driven by a piezo actuator is then developed. To solve the problem of limited maximum optical power and tuning range in conventional lens designs, a novel multi-element solid tunable lens is proposed and developed. Inspired by the Alvarez principle, a novel miniature solid tunable dual-focus lens, which is designed using freeform surfaces and driven by one micro-electro-mechanical-systems (MEMS) rotary actuator, is demonstrated. To explore the applications of these miniature solid tunable lenses, a miniature adjustable-focus endoscope and one compact adjustable-focus camera module are developed. The adjustable-focus capability of these two miniature imaging systems is fully proved by electrically focusing targets placed at different positions.
Loss of the six3/6 controlling pathways might have resulted in pinhole-eye evolution in Nautilus.
Ogura, Atsushi; Yoshida, Masa-aki; Moritaki, Takeya; Okuda, Yuki; Sese, Jun; Shimizu, Kentaro K; Sousounis, Konstantinos; Tsonis, Panagiotis A
2013-01-01
Coleoid cephalopods have an elaborate camera eye whereas nautiloids have primitive pinhole eye without lens and cornea. The Nautilus pinhole eye provides a unique example to explore the module of lens formation and its evolutionary mechanism. Here, we conducted an RNA-seq study of developing eyes of Nautilus and pygmy squid. First, we found that evolutionary distances from the common ancestor to Nautilus or squid are almost the same. Although most upstream eye development controlling genes were expressed in both species, six3/6 that are required for lens formation in vertebrates was not expressed in Nautilus. Furthermore, many downstream target genes of six3/6 including crystallin genes and other lens protein related genes were not expressed in Nautilus. As six3/6 and its controlling pathways are widely conserved among molluscs other than Nautilus, the present data suggest that deregulation of the six3/6 pathway led to the pinhole eye evolution in Nautilus.
Loss of the six3/6 controlling pathways might have resulted in pinhole-eye evolution in Nautilus
Ogura, Atsushi; Yoshida, Masa-aki; Moritaki, Takeya; Okuda, Yuki; Sese, Jun; Shimizu, Kentaro K.; Sousounis, Konstantinos; Tsonis, Panagiotis A.
2013-01-01
Coleoid cephalopods have an elaborate camera eye whereas nautiloids have primitive pinhole eye without lens and cornea. The Nautilus pinhole eye provides a unique example to explore the module of lens formation and its evolutionary mechanism. Here, we conducted an RNA-seq study of developing eyes of Nautilus and pygmy squid. First, we found that evolutionary distances from the common ancestor to Nautilus or squid are almost the same. Although most upstream eye development controlling genes were expressed in both species, six3/6 that are required for lens formation in vertebrates was not expressed in Nautilus. Furthermore, many downstream target genes of six3/6 including crystallin genes and other lens protein related genes were not expressed in Nautilus. As six3/6 and its controlling pathways are widely conserved among molluscs other than Nautilus, the present data suggest that deregulation of the six3/6 pathway led to the pinhole eye evolution in Nautilus. PMID:23478590
Rusin; Hall; Nichol; Marlow; Richards; Myers
2000-04-20
We present adaptive optics imaging of the CLASS gravitational lens system B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the infrared K band. The observations show at least three brightness peaks within the ring of lensed images, which we identify as emission from multiple lensing galaxies. The results confirm the suspected compound nature of the lens, as deduced from preliminary mass modeling. The detection of several additional nearby galaxies suggests that B1359+154 is lensed by the compact core of a small galaxy group. We attempted to produce an updated lens model based on the CFHT observations and new 5 GHz radio data obtained with the MERLIN array, but there are too few constraints to construct a realistic model at this time. The uncertainties inherent with modeling compound lenses make B1359+154 a challenging target for Hubble constant determination through the measurement of differential time delays. However, time delays will offer additional constraints to help pin down the mass model. This lens system therefore presents a unique opportunity to directly measure the mass distribution of a galaxy group at intermediate redshift.
NASA Astrophysics Data System (ADS)
Spilker, J. S.; Marrone, D. P.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; de Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Rotermund, K. M.; Strandet, M.; Vieira, J. D.; Weiss, A.; Welikala, N.
2016-08-01
The South Pole Telescope has discovered 100 gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.″5 resolution 870 μ {{m}} Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z=1.9{--}5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies ({μ }870μ {{m}}\\gt 2), with a median magnification of {μ }870μ {{m}}=6.3, extending to {μ }870μ {{m}}\\gt 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of two compared to estimates using a single value for this wavelength. We investigate the relationship between the [C II] line and the far-infrared luminosity and find that the same correlation between the [C II]/{L}{{FIR}} ratio and {{{Σ }}}{{FIR}} found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in {{{Σ }}}{{FIR}}. This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the “[C II] deficit.”
NASA Astrophysics Data System (ADS)
Lacki, Brian C.; Kochanek, Christopher S.; Stanek, Krzysztof Z.; Inada, Naohisa; Oguri, Masamune
2009-06-01
Difference imaging provides a new way to discover gravitationally lensed quasars because few nonlensed sources will show spatially extended, time variable flux. We test the method on the fields of lens candidates in the Sloan Digital Sky Survey (SDSS) Supernova Survey region from the SDSS Quasar Lens Search (SQLS) and one serendipitously discovered lensed quasar. Starting from 20,536 sources, including 49 SDSS quasars, 32 candidate lenses/lensed images, and one known lensed quasar, we find that 174 sources including 35 SDSS quasars, 16 candidate lenses/lensed images, and the known lensed quasar are nonperiodic variable sources. We can measure the spatial structure of the variable flux for 119 of these variable sources and identify only eight as candidate extended variables, including the known lensed quasar. Only the known lensed quasar appears as a close pair of sources on the difference images. Inspection of the remaining seven suggests they are false positives, and only two were spectroscopically identified quasars. One of the lens candidates from the SQLS survives our cuts, but only as a single image instead of a pair. This indicates a false positive rate of order ~1/4000 for the method, or given our effective survey area of order 0.82 deg2, ~5 per deg2 in the SDSS Supernova Survey. The fraction of quasars not found to be variable and the false positive rate would both fall if we had analyzed the full, later data releases for the SDSS fields. While application of the method to the SDSS is limited by the resolution, depth, and sampling of the survey, several future surveys such as Pan-STARRS, LSST, and SNAP will significantly improve on these limitations.
HUBBLE'S TOP TEN GRAVITATIONAL LENSES
NASA Technical Reports Server (NTRS)
2002-01-01
The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368+6212 is a blue arc in the Hubble Deep Field (HDF). [Bottom Right] - HST 18078+4600 is a blue arc caused by the gravitational potential of a small group of 4 galaxies. Credit: Kavan Ratnatunga (Carnegie Mellon Univ.) and NASA
International Society of Refractive Surgery of the American Academy of Ophthalmology
... Eye Drop Targets Miosis and Accommodation, Femtosecond Laser Lens Softening for Presbyopia Correction Read Outlook ... system below. Google Calendar Outlook or Apple Calendar Yahoo Calendar Note: ...
Cornea and ocular lens visualized with three-dimensional confocal microscopy
NASA Astrophysics Data System (ADS)
Masters, Barry R.
1992-08-01
This paper demonstrates the advantages of three-dimensional reconstruction of the cornea and the ocular crystalline lens by confocal microscopy and volume rendering computer techniques. The advantages of noninvasive observation of ocular structures in living, unstained, unfixed tissue include the following: the tissue is in a natural living state without the artifacts of fixation, mechanical sectioning, and staining; the three-dimensional structure can be observed from any view point and quantitatively analyzed; the dynamics of morphological changes can be studied; and the use of confocal microscopic observation results in a reduction of the number of animals required for ocular morphometric studies. The main advantage is that the dynamic morphology of ocular structures can be investigated in living ocular tissue. A laser scanning confocal microscope was used in the reflected light mode to obtain the two- dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with 488 nm wavelength. The microscope objective was a Leitz 25X, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133, three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The under sampling resulted in a three-dimensional visualization rendering in which the corneal thickness (z-axis) is compressed. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their `beaded' cell borders, basal lamina, nerve plexus, nerve fibers, free nerve endings in the basal epithelial cells, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in-situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers.
Dadoukis, Panagiotis; Klagas, Ioannis; Komnenou, Anastasia; Karakiulakis, George; Karoutis, Athanasios; Karampatakis, Vassilios; Papakonstantinou, Eleni
2013-08-01
Prolonged exposure to infrared (IR) radiation is associated with different types of damage to cornea and lens. The aim of our study was to investigate the effect of acute and chronic exposure to IR radiation on the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 and on the expression of glycosaminoglycans (GAG) in the rabbit cornea and crystalline lens. New Zealand rabbits were subjected to IR radiation for 4 months (chronic exposure to IR) or to normal light (control group). In experiments regarding acute exposure, animals were subjected to IR radiation or normal light for 12 h, in the presence of 0.1% diclofenac sodium (eye drops instilled in the right eye of animals) or saline (instilled in the left eye of animals). The cornea and lens were dissected away and homogenized. The activity of MMP-2 and MMP-9 was assayed by gelatine zymography. Total GAG were isolated from tissue specimens after lipid extraction and extensive digestion with pronase and DNase and characterized by treatment with GAG-degrading enzymes, followed by electrophoresis on cellulose acetate membranes. Acute or chronic exposure to IR radiation induced the activity of MMP-2 in cornea and lens, whereas only acute IR radiation increased the content of heparan sulphate in crystalline lens. Local administration of diclofenac sodium did not prevent the above effects of acute IR radiation. The detrimental effects of excessive or prolonged exposure of the eyes to IR radiation are associated with induced activity of MMP-2 in cornea and lens and alterations in the content of heparan sulphate in lens. Thus, MMP and GAG may offer alternative targets for pharmacological intervention to confront ocular damages associated with IR radiation.
A SEARCH FOR STELLAR-MASS BLACK HOLES VIA ASTROMETRIC MICROLENSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J. R.; Sinukoff, E.; Ofek, E. O.
While dozens of stellar-mass black holes (BHs) have been discovered in binary systems, isolated BHs have eluded detection. Their presence can be inferred when they lens light from a background star. We attempt to detect the astrometric lensing signatures of three photometrically identified microlensing events, OGLE-2011-BLG-0022, OGLE-2011-BLG-0125, and OGLE-2012-BLG-0169 (OB110022, OB110125, and OB120169), located toward the Galactic Bulge. These events were selected because of their long durations, which statistically favors more massive lenses. Astrometric measurements were made over one to two years using laser-guided adaptive optics observations from the W. M. Keck Observatory. Lens model parameters were first constrained bymore » the photometric light curves. The OB120169 light curve is well fit by a single-lens model, while both OB110022 and OB110125 light curves favor binary lens models. Using the photometric fits as prior information, no significant astrometric lensing signal was detected and all targets were consistent with linear motion. The significant lack of astrometric signal constrains the lens mass of OB110022 to 0.05–1.79 M {sub ⊙} in a 99.7% confidence interval, which disfavors a BH lens. Fits to OB110125 yielded a reduced Einstein crossing time and insufficient observations during the peak, so no mass limits were obtained. Two degenerate solutions exist for OB120169, which have a lens mass between 0.2–38.8 M {sub ⊙} and 0.4–39.8 M {sub ⊙} for a 99.7% confidence interval. Follow-up observations of OB120169 will further constrain the lens mass. Based on our experience, we use simulations to design optimal astrometric observing strategies and show that with more typical observing conditions the detection of BHs is feasible.« less
Sequential and combinatorial roles of maf family genes define proper lens development.
Reza, Hasan Mahmud; Urano, Atsuyo; Shimada, Naoko; Yasuda, Kunio
2007-01-16
Maf proteins have been shown to play pivotal roles in lens development in vertebrates. The developing chick lens expresses at least three large Maf proteins. However, the transcriptional relationship among the three large maf genes and their various roles in transactivating the downstream genes largely remain to be elucidated. Chick embryos were electroporated with wild-type L-maf, c-maf, and mafB by in ovo electroporation, and their effects on gene expression were determined by in situ hybridization using specific probes or by immunostaining. Endogenous gene expression was determined using nonelectroporated samples. A regulation mechanism exists among the members of maf family gene. An early-expressed member of this gene family typically stimulates the expression of later-expressed members. We also examined the regulation of various lens-expressing genes with a focus on the interaction between different Maf proteins. We found that the transcriptional ability of Maf proteins varies, even when the target is the same, in parallel with their discrete functions. L-Maf and c-Maf have no effect on E-cadherin expression, whereas MafB enhances its expression and thereby impedes lens vesicle formation. This study also revealed that Maf proteins can regulate the expression of gap junction genes, connexins, and their interacting partner, major intrinsic protein (MIP), during lens development. Misexpression of L-Maf and c-Maf induces ectopic expression of Cx43 and MIP; in contrast, MafB appears to have no effect on Cx43, but induces MIP significantly as evidenced from our gain-of-function experiments. Our results indicate that large Maf function is indispensable for chick lens initiation and development. In addition, L-Maf positively regulates most of the essential genes in this program and directs a series of molecular events leading to proper formation of the lens.
Raju, Murugesan; Mooney, Brian P.; Thakkar, Kavi M.; Giblin, Frank J.; Schey, Kevin L.; Sharma, K. Krishna
2015-01-01
Earlier we reported that low molecular weight (LMW) peptides accumulate in aging human lens tissue and that among the LMW peptides, the chaperone inhibitor peptide αA66-80, derived from α-crystallin protein, is one of the predominant peptides. We showed that in vitro αA66-80 induces protein aggregation. The current study was undertaken to determine whether LMW peptides are also present in guinea pig lens tissue subjected to hyperbaric oxygen (HBO) in vivo. The nuclear opacity induced by HBO in guinea pig lens is the closest animal model for studying age-related cataract formation in humans. A LMW peptide profile by mass spectrometry showed the presence of an increased amount of LMW peptides in HBO-treated guinea pig lenses compared to age-matched controls. Interestingly, the mass spectrometric data also showed that the chaperone inhibitor peptide αA66-80 accumulates in HBO-treated guinea pig lens. Following incubation of synthetic chaperone inhibitor peptide αA66-80 with α-crystallin from guinea pig lens extracts, we observed a decreased ability of α-crystallin to inhibit the amorphous aggregation of the target protein alcohol dehydrogenase and the formation of large light scattering aggregates, similar to those we have observed with human α-crystallin and αA66-80 peptide. Further, time-lapse recordings showed that a preformed complex of α-crystallin and αA66-80 attracted additional crystallin molecules to form even larger aggregates. These results demonstrate that LMW peptide–mediated cataract development in aged human lens and in HBO-induced lens opacity in the guinea pig may have common molecular pathways. PMID:25639202
Raju, Murugesan; Mooney, Brian P; Thakkar, Kavi M; Giblin, Frank J; Schey, Kevin L; Sharma, K Krishna
2015-03-01
Earlier we reported that low molecular weight (LMW) peptides accumulate in aging human lens tissue and that among the LMW peptides, the chaperone inhibitor peptide αA66-80, derived from α-crystallin protein, is one of the predominant peptides. We showed that in vitro αA66-80 induces protein aggregation. The current study was undertaken to determine whether LMW peptides are also present in guinea pig lens tissue subjected to hyperbaric oxygen (HBO) in vivo. The nuclear opacity induced by HBO in guinea pig lens is the closest animal model for studying age-related cataract formation in humans. A LMW peptide profile by mass spectrometry showed the presence of an increased amount of LMW peptides in HBO-treated guinea pig lenses compared to age-matched controls. Interestingly, the mass spectrometric data also showed that the chaperone inhibitor peptide αA66-80 accumulates in HBO-treated guinea pig lens. Following incubation of synthetic chaperone inhibitor peptide αA66-80 with α-crystallin from guinea pig lens extracts, we observed a decreased ability of α-crystallin to inhibit the amorphous aggregation of the target protein alcohol dehydrogenase and the formation of large light scattering aggregates, similar to those we have observed with human α-crystallin and αA66-80 peptide. Further, time-lapse recordings showed that a preformed complex of α-crystallin and αA66-80 attracted additional crystallin molecules to form even larger aggregates. These results demonstrate that LMW peptide-mediated cataract development in aged human lens and in HBO-induced lens opacity in the guinea pig may have common molecular pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Strongly Lensed Massive Ultracompact Quiescent Galaxy at z ~ 2.4 in the COSMOS/UltraVISTA Field
NASA Astrophysics Data System (ADS)
Muzzin, Adam; Labbé, Ivo; Franx, Marijn; van Dokkum, Pieter; Holt, J.; Szomoru, Daniel; van de Sande, Jesse; Brammer, Gabriel; Marchesini, Danilo; Stefanon, Mauro; Buitrago, F.; Caputi, K. I.; Dunlop, James; Fynbo, J. P. U.; Le Févre, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo
2012-12-01
We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z = 0.960. This system was serendipitously discovered as a set of extremely Ks -bright high-redshift galaxies with red J - Ks colors using new data from the UltraVISTA YJHKs near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the source at z = 2.4 ± 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the Ks -band image, to constrain the size and Sérsic profile of the galaxy. The best-fit model is an ultracompact galaxy (Re = 0.64+0.08 - 0.18 kpc, lensing-corrected), with a Sérsic profile that is intermediate between a disk and a bulge profile (n = 2.2+2.3 - 0.9), albeit with considerable uncertainties on the Sérsic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M star/M ⊙) = 10.8+0.1 - 0.1, lensing-corrected) with an age of 1.0+1.0 - 0.4 Gyr, moderate dust extinction (Av = 0.8+0.5 - 0.6), and a low specific star formation rate (log(SSFR) <-11.0 yr-1). This is typical of massive "red-and-dead" galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects of finding a larger sample of these galaxies. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO program ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium.
Non-Invasive Early Detection and Molecular Analysis of Low X-ray Dose Effects in the Lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Lee
This is the Final Progress Report for DOE-funded research project DE-PS02-08ER08-01 titled “Non-Invasive Early Detection and Molecular Analysis of Low X-ray Dose Effects in the Lens”. The project focuses on the effects of low-linear energy transfer (LET) radiation on the ocular lens. The lens is an exquisitely radiosensitive tissue with a highly-ordered molecular structure that is amenable to non-invasive optical study from the periphery. These merits point to the lens as an ideal target for laser-based molecular biodosimetry (MBD). Following exposure to different types of ionizing radiations, the lens demonstrates molecular changes (e.g., oxidation, racemization, crosslinkage, truncation, aggregation, etc.) thatmore » impact the structure and function of the long-lived proteins in the cytosol of lens fiber cells. The vast majority of proteins in the lens comprise the highly-ordered crystallins. These highly conserved lens proteins are amongst the most concentrated and stable in the body. Once synthesized, the crystallins are retained in the fiber cell cytoplasm for life. Taken together, these properties point to the lens as an ideal system for quantitative in vivo MBD assessment using quasi-elastic light scattering (QLS) analysis. In this project, we deploy a purpose-designed non-invasive infrared laser QLS instrument as a quantitative tool for longitudinal assessment of pre-cataractous molecular changes in the lenses of living mice exposed to low-dose low-LET radiation compared to non-irradiated sham controls. We hypothesize that radiation exposure will induce dose-dependent changes in the molecular structure of matrix proteins in the lens. Mechanistic assays to ascertain radiation-induced molecular changes in the lens focus on protein aggregation and gene/protein expression patterns. We anticipate that this study will contribute to our understanding of early molecular changes associated with radiation-induced tissue pathology. This study also affords potential for translational development of molecular biodosimetry instrumentation to assess human exposure to mixed radiation fields.« less
Spectral transmission of the pig lens: effect of ultraviolet A+B radiation.
Artigas, C; Navea, A; López-Murcia, M-M; Felipe, A; Desco, C; Artigas, J-M
2014-12-01
To determine the spectral transmission curve of the crystalline lens of the pig. To analyse how this curve changes when the crystalline lens is irradiated with ultraviolet A+B radiation similar to that of the sun. To compare these results with literature data from the human crystalline lens. We used crystalline lenses of the common pig from a slaughterhouse, i.e. genetically similar pigs, fed with the same diet, and slaughtered at six months old. Spectral transmission was measured with a Perkin-Elmer Lambda 35 UV/VIS spectrometer. The lenses were irradiated using an Asahi Spectra Lax-C100 ultraviolet source, which made it possible to select the spectral emission band as well as the intensity and exposure time. The pig lens transmits all the visible spectrum (95%) and lets part of the ultraviolet A through (15%). Exposure to acute UV (A+B) irradiation causes a decrease in its transmission as the intensity or exposure time increases: this decrease is considerable in the UV region. We were able to determine the mean spectral transmission curve of the pig lens. It appears to be similar to that of the human lens in the visible spectrum, but different in the ultraviolet. Pig lens transmission is reduced by UV (A+B) irradiation and its transmission in the UV region can even disappear as the intensity or exposure time increases. An adequate exposure intensity and time of UV (A+B) radiation always causes an anterior subcapsular cataract (ASC). Copyright © 2014. Published by Elsevier Masson SAS.
Dual Telecentric Lens System For Projection Onto Tilted Toroidal Screen
NASA Technical Reports Server (NTRS)
Gold, Ronald S.; Hudyma, Russell M.
1995-01-01
System of two optical assemblies for projecting image onto tilted toroidal screen. One projection lens optimized for red and green spectral region; other for blue. Dual-channel approach offers several advantages which include: simplified color filtering, simplified chromatic aberration corrections, less complex polarizing prism arrangement, and increased throughput of blue light energy. Used in conjunction with any source of imagery, designed especially to project images formed by reflection of light from liquid-crystal light valve (LCLV).
Electron microscope aperture system
NASA Technical Reports Server (NTRS)
Heinemann, K. (Inventor)
1976-01-01
An electron microscope including an electron source, a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen, and an objective lens having an annular objective aperture, for focusing electrons passing through the specimen onto an image plane are described. The invention also entails a method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques.
Two families of astrophysical diverging lens models
NASA Astrophysics Data System (ADS)
Er, Xinzhong; Rogers, Adam
2018-03-01
In the standard gravitational lensing scenario, rays from a background source are bent in the direction of a foreground lensing mass distribution. Diverging lens behaviour produces deflections in the opposite sense to gravitational lensing, and is also of astrophysical interest. In fact, diverging lensing due to compact distributions of plasma has been proposed as an explanation for the extreme scattering events that produce frequency-dependent dimming of extragalactic radio sources, and may also be related to the refractive radio wave phenomena observed to affect the flux density of pulsars. In this work we study the behaviour of two families of astrophysical diverging lenses in the geometric optics limit, the power law, and the exponential plasma lenses. Generally, the members of these model families show distinct behaviour in terms of image formation and magnification, however the inclusion of a finite core for certain power-law lenses can produce a caustic and critical curve morphology that is similar to the well-studied Gaussian plasma lens. Both model families can produce dual radial critical curves, a novel distinction from the tangential distortion usually produced by gravitational (converging) lenses. The deflection angle and magnification of a plasma lens vary with the observational frequency, producing wavelength-dependent magnifications that alter the amplitudes and the shape of the light curves. Thus, multiwavelength observations can be used to physically constrain the distribution of the electron density in such lenses.
NASA Astrophysics Data System (ADS)
Simon, Patrick; Hilbert, Stefan
2018-05-01
Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as a function of physical scale k with weak gravitational lensing. This method enables us to reconstruct the galaxy bias factor b(k) as well as the galaxy-matter correlation r(k) on spatial scales between 0.01 h Mpc-1 ≲ k ≲ 10 h Mpc-1 for redshift-binned lens galaxies below redshift z ≲ 0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructed r(k). For simulated data, the reconstructions achieve an accuracy of 3-7% (68% confidence level) over the above k-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 10-15%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates for b(k) and r(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn Deep Survey and give a physical interpretation of the lens population.
NASA Astrophysics Data System (ADS)
Beaulieu, J.-P.; Batista, V.; Bennett, D. P.; Marquette, J.-B.; Blackman, J. W.; Cole, A. A.; Coutures, C.; Danielski, C.; Dominis Prester, D.; Donatowicz, J.; Fukui, A.; Koshimoto, N.; Lončarić, K.; Morales, J. C.; Sumi, T.; Suzuki, D.; Henderson, C.; Shvartzvald, Y.; Beichman, C.
2018-02-01
To obtain accurate mass measurements for cold planets discovered by microlensing, it is usually necessary to combine light curve modeling with at least two lens mass–distance relations. The physical parameters of the planetary system OGLE-2014-BLG-0124L have been constrained thanks to accurate parallax effect between ground-based and simultaneous space-based Spitzer observations. Here, we resolved the source+lens star from sub-arcsecond blends in H-band using adaptive optics (AO) observations with NIRC2 mounted on Keck II telescope. We identify additional flux, coincident with the source to within 160 mas. We estimate the potential contributions to this blended light (chance-aligned star, additional companion to the lens or to the source) and find that 85% of the NIR flux is due to the lens star at H L = 16.63 ± 0.06 and K L = 16.44 ± 0.06. We combined the parallax constraint and the AO constraint to derive the physical parameters of the system. The lensing system is composed of a mid-late type G main sequence star of M L = 0.9 ± 0.05 M ⊙ located at D L = 3.5 ± 0.2 kpc in the Galactic disk. Taking the mass ratio and projected separation from the original study leads to a planet of M p = 0.65 ± 0.044 M Jupiter at 3.48 ± 0.22 au. Excellent parallax measurements from simultaneous ground-space observations have been obtained on the microlensing event OGLE-2014-BLG-0124, but it is only when they are combined with ∼30 minutes of Keck II AO observations that the physical parameters of the host star are well measured.
Wu, Rengmao; Hua, Hong
2016-01-01
Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for extended sources, especially for extended non-Lambertian sources. What we present here is to our knowledge the first direct method for extended non-Lambertian sources in three-dimensional (3D) rotational geometry. In this method, both meridional rays and skew rays of the extended source are taken into account to tailor the lens profile in the meridional plane. A set of edge rays and interior rays emitted from the extended source which will take a given direction after the refraction of the aspherical lens are found by the Snell’s law, and the output intensity at this direction is then calculated to be the integral of the luminance function of the outgoing rays at this direction. This direct method is effective for both extended non-Lambertian sources and extended Lambertian sources in 3D rotational symmetry, and can directly find a solution to the prescribed design problem without cumbersome iterative illuminance compensation. Two examples are presented to demonstrate the effectiveness of the proposed method in terms of performance and capacity for tackling complex designs. PMID:26832484
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzin, Adam; Labbe, Ivo; Franx, Marijn
2012-12-20
We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z 0.960. This system was serendipitously discovered as a set of extremely K{sub s} -bright high-redshift galaxies with red J - K{sub s} colors using new data from the UltraVISTA YJHK{sub s} near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the sourcemore » at z = 2.4 {+-} 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the K{sub s} -band image, to constrain the size and Sersic profile of the galaxy. The best-fit model is an ultracompact galaxy (R{sub e} = 0.64{sup +0.08}{sub -0.18} kpc, lensing-corrected), with a Sersic profile that is intermediate between a disk and a bulge profile (n 2.2{sup +2.3}{sub -{sub 0.9}}), albeit with considerable uncertainties on the Sersic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M{sub star}/M{sub Sun }) = 10.8{sup +0.1}{sub -0.1}, lensing-corrected) with an age of 1.0{sup +1.0}{sub -0.4} Gyr, moderate dust extinction (A{sub v} = 0.8{sup +0.5}{sub -0.6}), and a low specific star formation rate (log(SSFR) <-11.0 yr{sup -1}). This is typical of massive ''red-and-dead'' galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects of finding a larger sample of these galaxies.« less
Biocular vehicle display optical designs
NASA Astrophysics Data System (ADS)
Chu, H.; Carter, Tom
2012-06-01
Biocular vehicle display optics is a fast collimating lens (f / # < 0.9) that presents the image of the display at infinity to both eyes of the viewer. Each eye captures the scene independently and the brain merges the two images into one through the overlapping portions of the images. With the recent conversion from analog CRT based displays to lighter, more compact active-matrix organic light-emitting diodes (AMOLED) digital image sources, display optical designs have evolved to take advantage of the higher resolution AMOLED image sources. To maximize the field of view of the display optics and fully resolve the smaller pixels, the digital image source is pre-magnified by relay optics or a coherent taper fiber optics plate. Coherent taper fiber optics plates are used extensively to: 1. Convert plano focal planes to spherical focal planes in order to eliminate Petzval field curvature. This elimination enables faster lens speed and/or larger field of view of eye pieces, display optics. 2. Provide pre-magnification to lighten the work load of the optics to further increase the numerical aperture and/or field of view. 3. Improve light flux collection efficiency and field of view by collecting all the light emitted by the image source and guiding imaging light bundles toward the lens aperture stop. 4. Reduce complexity of the optical design and overall packaging volume by replacing pre-magnification optics with a compact taper fiber optics plate. This paper will review and compare the performance of biocular vehicle display designs without and with taper fiber optics plate.
Particle Collection Efficiency of a Lens-Liquid Filtration System
NASA Astrophysics Data System (ADS)
Wong, Ross Y. M.; Ng, Moses L. F.; Chao, Christopher Y. H.; Li, Z. G.
2011-09-01
Clinical and epidemiological studies have shown that indoor air quality has substantial impact on the health of building occupants [1]. Possible sources of indoor air contamination include hazardous gases as well as particulate matters (PMs) [2]. Experimental studies show that the size distribution of PMs in indoor air ranges from tens of nanometers to a few hundreds of micrometers [3]. Vacuum cleaners can be used as a major tool to collect PMs from floor/carpets, which are the main sources of indoor PMs. However, the particle collection efficiency of typical cyclonic filters in the vacuums drops significantly for particles of diameter below 10 μm. In this work, we propose a lens-liquid filtration system (see Figure 1), where the flow channel is formed by a liquid free surface and a planar plate with fin/lens structures. Computational fluid dynamics simulations are performed by using FLUENT to optimize the structure of the proposed system toward high particle collection efficiency and satisfactory pressure drop. Numerical simulations show that the system can collect 250 nm diameter particles with collection efficiency of 50%.
NASA Technical Reports Server (NTRS)
Jung, Y. K.; Udalski, A.; Yee, J. C.; Sumi, T.; Gould, A.; Han, C.; Albrow, M. D.; Lee, C.-U.; Bennett, D. P.; Suzuki, D.
2017-01-01
In the process of analyzing an observed light curve, one often confronts various scenarios that can mimic the planetary signals causing difficulties in the accurate interpretation of the lens system. In this paper, we present the analysis of the microlensing event OGLE-2016-BLG-0733. The light curve of the event shows a long-term asymmetric perturbation that would appear to be due to a planet. From the detailed modeling of the lensing light curve, however, we find that the perturbation originates from the binarity of the source rather than the lens. This result demonstrates that binary sources with roughly equal-luminosity components can mimic long-term perturbations induced by planets with projected separations near the Einstein ring. The result also represents the importance of the consideration of various interpretations in planet-like perturbations and of high-cadence observations for ensuring the unambiguous detection of the planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Y. B., E-mail: southub@postech.ac.kr; Yun, G. S.; Lee, D. J.
Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) T{sub e} fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2–2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ∼2.0 m to 0.4 mmore » with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.« less
NASA Astrophysics Data System (ADS)
Jung, Y. K.; Udalski, A.; Bond, I. A.; Yee, J. C.; Gould, A.; Han, C.; Albrow, M. D.; Lee, C.-U.; Kim, S.-L.; Hwang, K.-H.; Chung, S.-J.; Ryu, Y.-H.; Shin, I.-G.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Kim, H.-W.; Pogge, R. W.; KMTNet Collaboration; Skowron, J.; Szymański, M. K.; Poleski, R.; Mróz, P.; Kozłowski, S.; Pietrukowicz, P.; Soszyński, I.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Abe, F.; Bennett, D. P.; Barry, R.; Sumi, T.; Asakura, Y.; Bhattacharya, A.; Donachie, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Rattenbury, N. J.; Evans, P.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; MOA Collaboration
2017-06-01
We report the analysis of the first resolved caustic-crossing binary-source microlensing event OGLE-2016-BLG-1003. The event is densely covered by round-the-clock observations of three surveys. The light curve is characterized by two nested caustic-crossing features, which is unusual for typical caustic-crossing perturbations. From the modeling of the light curve, we find that the anomaly is produced by a binary source passing over a caustic formed by a binary lens. The result proves the importance of high-cadence and continuous observations, and the capability of second-generation microlensing experiments to identify such complex perturbations that are previously unknown. However, the result also raises the issues of the limitations of current analysis techniques for understanding lens systems beyond two masses and of determining the appropriate multiband observing strategy of survey experiments.
BIASES IN PHYSICAL PARAMETER ESTIMATES THROUGH DIFFERENTIAL LENSING MAGNIFICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Er Xinzhong; Ge Junqiang; Mao Shude, E-mail: xer@nao.cas.cn
2013-06-20
We study the lensing magnification effect on background galaxies. Differential magnification due to different magnifications of different source regions of a galaxy will change the lensed composite spectra. The derived properties of the background galaxies are therefore biased. For simplicity, we model galaxies as a superposition of an axis-symmetric bulge and a face-on disk in order to study the differential magnification effect on the composite spectra. We find that some properties derived from the spectra (e.g., velocity dispersion, star formation rate, and metallicity) are modified. Depending on the relative positions of the source and the lens, the inferred results canmore » be either over- or underestimates of the true values. In general, for an extended source at strong lensing regions with high magnifications, the inferred physical parameters (e.g., metallicity) can be strongly biased. Therefore, detailed lens modeling is necessary to obtain the true properties of the lensed galaxies.« less
The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA)
NASA Astrophysics Data System (ADS)
Moustakas, Leonidas A.; Bolton, Adam J.; Booth, Jeffrey T.; Bullock, James S.; Cheng, Edward; Coe, Dan; Fassnacht, Christopher D.; Gorjian, Varoujan; Heneghan, Cate; Keeton, Charles R.; Kochanek, Christopher S.; Lawrence, Charles R.; Marshall, Philip J.; Metcalf, R. Benton; Natarajan, Priyamvada; Nikzad, Shouleh; Peterson, Bradley M.; Wambsganss, Joachim
2008-07-01
Dark matter in a universe dominated by a cosmological constant seeds the formation of structure and is the scaffolding for galaxy formation. The nature of dark matter remains one of the fundamental unsolved problems in astrophysics and physics even though it represents 85% of the mass in the universe, and nearly one quarter of its total mass-energy budget. The mass function of dark matter "substructure" on sub-galactic scales may be enormously sensitive to the mass and properties of the dark matter particle. On astrophysical scales, especially at cosmological distances, dark matter substructure may only be detected through its gravitational influence on light from distant varying sources. Specifically, these are largely active galactic nuclei (AGN), which are accreting super-massive black holes in the centers of galaxies, some of the most extreme objects ever found. With enough measurements of the flux from AGN at different wavelengths, and their variability over time, the detailed structure around AGN, and even the mass of the super-massive black hole can be measured. The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA) is a mission concept for a 1.5-m near-UV through near-IR space observatory that will be dedicated to frequent imaging and spectroscopic monitoring of ~100 multiply-imaged active galactic nuclei over the whole sky. Using wavelength-tailored dichroics with extremely high transmittance, efficient imaging in six channels will be done simultaneously during each visit to each target. The separate spectroscopic mode, engaged through a flip-in mirror, uses an image slicer spectrograph. After a period of many visits to all targets, the resulting multidimensional movies can then be analyzed to a) measure the mass function of dark matter substructure; b) measure precise masses of the accreting black holes as well as the structure of their accretion disks and their environments over several decades of physical scale; and c) measure a combination of Hubble's local expansion constant and cosmological distances to unprecedented precision. We present the novel OMEGA instrumentation suite, and how its integrated design is ideal for opening the time domain of known cosmologically-distant variable sources, to achieve the stated scientific goals.
Targeting GPR110 in HER2-Overexpressing Breast Cancers
2015-10-01
lentiviral plasmids containing GPR110 cDNA using the pHAGE system, which includes the HA tag, under the control of inducible Tet-on promoter. The map of... pHAGE lentiviral plasmid is shown in Figure 3A. Using this, the BT474 and SKBR3 parental cells were stably infected with the lentiviral plasmid...in HER2+ breast cancer. Figure.’GPR110/overexpression’using’pHAGE’len:viral’mediated’infec:on’of’BT474’cells.’ A.#Map#of# pHAGE # len/viral
Non-Thermal Electromagnetic Radiation Damage to Lens Epithelium
Bormusov, Elvira; P.Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva
2008-01-01
High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5ºC for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat. PMID:19517034
Defect inspection of actuator lenses using swept-source optical coherence tomography
NASA Astrophysics Data System (ADS)
Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun
2017-12-01
Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.
Engineering equations for characterizing non-linear laser intensity propagation in air with loss.
Karr, Thomas; Stotts, Larry B; Tellez, Jason A; Schmidt, Jason D; Mansell, Justin D
2018-02-19
The propagation of high peak-power laser beams in real atmospheres will be affected at long range by both linear and nonlinear effects contained therein. Arguably, J. H. Marburger is associated with the mathematical characterization of this phenomenon. This paper provides a validated set of engineering equations for characterizing the self-focusing distance from a laser beam propagating through non-turbulent air with, and without, loss as well as three source configurations: (1) no lens, (2) converging lens and (3) diverging lens. The validation was done against wave-optics simulation results. Some validated equations follow Marburger completely, but others do not, requiring modification of the original theory. Our results can provide a guide for numerical simulations and field experiments.
Analysis of Tyman green detection system based on polarization interference
NASA Astrophysics Data System (ADS)
Huang, Yaolin; Wang, Min; Shao, Xiaoping; Kou, Yuanfeng
2018-02-01
The optical surface deviation of the lens can directly affect the quality of the optical system.In order to effectively and accurately detect the surface shape, an optical surface on-line detection system based on polarization interference technology is designed and developed. The system is based on Tyman-Green interference optical path, join the polarization interference measuring technology. Based on the theoretical derivation of the optical path and the ZEMAX software simulation, the experimental optical path is constructed. The parallel light is used to detect the concave lens. The parallel light is used as the light source, the size of the polarization splitting prism, detection radius of curvature, the relations between and among the size of the lens aperture, a detection range is given.
Magnetic quadrupoles lens for hot spot proton imaging in inertial confinement fusion
NASA Astrophysics Data System (ADS)
Teng, J.; Gu, Y. Q.; Chen, J.; Zhu, B.; Zhang, B.; Zhang, T. K.; Tan, F.; Hong, W.; Zhang, B. H.; Wang, X. Q.
2016-08-01
Imaging of DD-produced protons from an implosion hot spot region by miniature permanent magnetic quadrupole (PMQ) lens is proposed. Corresponding object-image relation is deduced and an adjust method for this imaging system is discussed. Ideal point-to-point imaging demands a monoenergetic proton source; nevertheless, we proved that the blur of image induced by proton energy spread is a second order effect therefore controllable. A proton imaging system based on miniature PMQ lens is designed for 2.8 MeV DD-protons and the adjust method in case of proton energy shift is proposed. The spatial resolution of this system is better than 10 μm when proton yield is above 109 and the spectra width is within 10%.
Newborn Mouse Lens Proteome and Its Alteration by Lysine 6 Mutant Ubiquitin
2015-01-01
Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. To study the developmental processes that require intact ubiquitin, we executed the most extensive characterization of the lens proteome to date. We quantified lens protein expression changes in multiple replicate pools of P1 wild-type and K6W-Ub-expressing mouse lenses. Lens proteins were digested with trypsin, peptides were separated using strong cation exchange and reversed-phase liquid chromatography, and tandem mass (MS/MS) spectra were collected with a linear ion trap. Transgenic mice that expressed low levels of K6W-Ub (low expressers) had normal, clear lenses at birth, whereas the lenses that expressed high levels of K6W-Ub (higher expressers) had abnormal lenses and cataracts at birth. A total of 2052 proteins were identified, of which 996 were reliably quantified and compared between wild-type and K6W-Ub transgenic mice. Consistent with a delayed developmental program, fiber-cell-specific proteins, such as γ-crystallins (γA, γB, γC, and γE), were down-regulated in K6W-Ub higher expressers. Up-regulated proteins were involved in energy metabolism, signal transduction, and proteolysis. The K6W-Ub low expressers exhibited delayed onset and milder cataract consistent with smaller changes in protein expression. Because lens protein expression changes occurred prior to lens morphological abnormalities and cataract formation in K6W-Ub low expressers, it appears that expression of K6W-Ub sets in motion a process of altered protein expression that results in developmental defects and cataract. PMID:24450463
Germ-line and somatic EPHA2 coding variants in lens aging and cataract.
Bennett, Thomas M; M'Hamdi, Oussama; Hejtmancik, J Fielding; Shiels, Alan
2017-01-01
Rare germ-line mutations in the coding regions of the human EPHA2 gene (EPHA2) have been associated with inherited forms of pediatric cataract, whereas, frequent, non-coding, single nucleotide variants (SNVs) have been associated with age-related cataract. Here we sought to determine if germ-line EPHA2 coding SNVs were associated with age-related cataract in a case-control DNA panel (> 50 years) and if somatic EPHA2 coding SNVs were associated with lens aging and/or cataract in a post-mortem lens DNA panel (> 48 years). Micro-fluidic PCR amplification followed by targeted amplicon (exon) next-generation (deep) sequencing of EPHA2 (17-exons) afforded high read-depth coverage (1000x) for > 82% of reads in the cataract case-control panel (161 cases, 64 controls) and > 70% of reads in the post-mortem lens panel (35 clear lens pairs, 22 cataract lens pairs). Novel and reference (known) missense SNVs in EPHA2 that were predicted in silico to be functionally damaging were found in both cases and controls from the age-related cataract panel at variant allele frequencies (VAFs) consistent with germ-line transmission (VAF > 20%). Similarly, both novel and reference missense SNVs in EPHA2 were found in the post-mortem lens panel at VAFs consistent with a somatic origin (VAF > 3%). The majority of SNVs found in the cataract case-control panel and post-mortem lens panel were transitions and many occurred at di-pyrimidine sites that are susceptible to ultraviolet (UV) radiation induced mutation. These data suggest that novel germ-line (blood) and somatic (lens) coding SNVs in EPHA2 that are predicted to be functionally deleterious occur in adults over 50 years of age. However, both types of EPHA2 coding variants were present at comparable levels in individuals with or without age-related cataract making simple genotype-phenotype correlations inconclusive.
Germ-line and somatic EPHA2 coding variants in lens aging and cataract
Bennett, Thomas M.; M’Hamdi, Oussama; Hejtmancik, J. Fielding
2017-01-01
Rare germ-line mutations in the coding regions of the human EPHA2 gene (EPHA2) have been associated with inherited forms of pediatric cataract, whereas, frequent, non-coding, single nucleotide variants (SNVs) have been associated with age-related cataract. Here we sought to determine if germ-line EPHA2 coding SNVs were associated with age-related cataract in a case-control DNA panel (> 50 years) and if somatic EPHA2 coding SNVs were associated with lens aging and/or cataract in a post-mortem lens DNA panel (> 48 years). Micro-fluidic PCR amplification followed by targeted amplicon (exon) next-generation (deep) sequencing of EPHA2 (17-exons) afforded high read-depth coverage (1000x) for > 82% of reads in the cataract case-control panel (161 cases, 64 controls) and > 70% of reads in the post-mortem lens panel (35 clear lens pairs, 22 cataract lens pairs). Novel and reference (known) missense SNVs in EPHA2 that were predicted in silico to be functionally damaging were found in both cases and controls from the age-related cataract panel at variant allele frequencies (VAFs) consistent with germ-line transmission (VAF > 20%). Similarly, both novel and reference missense SNVs in EPHA2 were found in the post-mortem lens panel at VAFs consistent with a somatic origin (VAF > 3%). The majority of SNVs found in the cataract case-control panel and post-mortem lens panel were transitions and many occurred at di-pyrimidine sites that are susceptible to ultraviolet (UV) radiation induced mutation. These data suggest that novel germ-line (blood) and somatic (lens) coding SNVs in EPHA2 that are predicted to be functionally deleterious occur in adults over 50 years of age. However, both types of EPHA2 coding variants were present at comparable levels in individuals with or without age-related cataract making simple genotype-phenotype correlations inconclusive. PMID:29267365
Lensometry by two-laser holography with photorefractive Bi12TiO20
NASA Astrophysics Data System (ADS)
Barbosa, Eduardo A.; Preto, André O.
2008-04-01
Refractive and profilometric measurements of lenses were performed through holography with a photorefractive Bi12TiO20 crystal as the recording medium. Two properly aligned diode lasers emitting in the red region were employed as light sources. Both lasers were tuned in order to provide millimetric and sub-millimetric synthetic wavelengths. The surfaces of the test lens were covered by a 25-μm opaque plastic tape in order to allow the lens profilometry upon illuminating them with a collimated beam. The resulting holographic images appear covered by interference fringes corresponding to the wavefront geometry of the wave scattered by the lens. For refractive index measurement a diffusely scattering flat surface was positioned behind the uncovered lens which was also illuminated by a plane wave. The resulting contour interferogram describes the form of the wavefront after the beam traveled back and forth through the lens. The fringe quantitative evaluation was carried out through the four-stepping technique and the resulting phase map and the Branch-cut method was employed for phase unwrapping. The only non-optical procedure for lens characterization was the thickness measurement, made by a dial caliper. Exact ray tracing calculation was performed in order to establish a relation between the output wavefront geometry and the lens parameters like radii of curvature, thickness and refractive index. By quantitatively comparing the theoretical wavefront geometry with the experimental results relative uncertainties bellow 3% for refractive index and 1 % for focal length were obtained.
Perform light and optic experiments in Augmented Reality
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan; Javahiraly, Nicolas; Israel, Kai
2015-10-01
In many scientific studies lens experiments are part of the curriculum. The conducted experiments are meant to give the students a basic understanding for the laws of optics and its applications. Most of the experiments need special hardware like e.g. an optical bench, light sources, apertures and different lens types. Therefore it is not possible for the students to conduct any of the experiments outside of the university's laboratory. Simple optical software simulators enabling the students to virtually perform lens experiments already exist, but are mostly desktop or web browser based. Augmented Reality (AR) is a special case of mediated and mixed reality concepts, where computers are used to add, subtract or modify one's perception of reality. As a result of the success and widespread availability of handheld mobile devices, like e.g. tablet computers and smartphones, mobile augmented reality applications are easy to use. Augmented reality can be easily used to visualize a simulated optical bench. The students can interactively modify properties like e.g. lens type, lens curvature, lens diameter, lens refractive index and the positions of the instruments in space. Light rays can be visualized and promote an additional understanding of the laws of optics. An AR application like this is ideally suited to prepare the actual laboratory sessions and/or recap the teaching content. The authors will present their experience with handheld augmented reality applications and their possibilities for light and optic experiments without the needs for specialized optical hardware.
VizieR Online Data Catalog: Grism Lens-Amplified Survey from Space (GLASS). I. (Treu+, 2015)
NASA Astrophysics Data System (ADS)
Treu, T.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Wang, X.; Bradac, M.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; Henry, A. L.; Hoag, A.; Huang, K.-H.; Jones, T. A.; Kelly, P. L.; Malkan, M. A.; Mason, C.; Pentericci, L.; Poggianti, B.; Stiavelli, M.; Trenti, M.; von der Linden, A.
2016-02-01
In this paper we give an overview of Grism Lens Amplified Survey from Space (GLASS; PI Treu; GO 13459) and we present the first release of the data for MACS J0717.5+3745, the first cluster targeted by the survey. Spectra for 1151 galaxies down to magnitude HAB=24 (F140W) have been visually inspected by members of our team to ensure quality control. GLASS is a cycle-21 large program with the Hubble Space Telescope (HST), targeting 10 massive clusters, including the 6 Frontier Fields, using the WFC3 and ACS grisms. The program consists of 140 primary orbits (with the G102 and G141 grisms; range 0.81-1.69μm) and 140 parallel orbits (with the G800L grism). (2 data files).
Multifunction Imaging and Spectroscopic Instrument
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis
2004-01-01
A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.
Genetic algorithm in the structural design of Cooke triplet lenses
NASA Astrophysics Data System (ADS)
Hazra, Lakshminarayan; Banerjee, Saswatee
1999-08-01
This paper is in tune with our efforts to develop a systematic method for multicomponent lens design. Our aim is to find a suitable starting point in the final configuration space, so that popular local search methods like damped least squares (DLS) may directly lead to a useful solution. For 'ab initio' design problems, a thin lens layout specifying the powers of the individual components and the intercomponent separations are worked out analytically. Requirements of central aberration targets for the individual components in order to satisfy the prespecified primary aberration targets for the overall system are then determined by nonlinear optimization. The next step involves structural design of the individual components by optimization techniques. This general method may be adapted for the design of triplets and their derivatives. However, for the thin lens design of a Cooke triplet composed of three airspaced singlets, the two steps of optimization mentioned above may be combined into a single optimization procedure. The optimum configuration for each of the single set, catering to the required Gaussian specification and primary aberration targets for the Cooke triplet, are determined by an application of genetic algorithm (GA). Our implementation of this algorithm is based on simulations of some complex tools of natural evolution, like selection, crossover and mutation. Our version of GA may or may not converge to a unique optimum, depending on some of the algorithm specific parameter values. With our algorithm, practically useful solutions are always available, although convergence to a global optimum can not be guaranteed. This is perfectly in keeping with our need to allow 'floating' of aberration targets in the subproblem level. Some numerical results dealing with our preliminary investigations on this problem are presented.
Frank, Alan M.; Edwards, William R.
1983-01-01
A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.
Ion source for high-precision mass spectrometry
Todd, Peter J.; McKown, Henry S.; Smith, David H.
1984-01-01
The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.
Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources
2010-05-01
ability of the fixed- angle curved mirrors in the Z- cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the...duty cycle at varying PRFs. 20 Table 4: Thermal Lensing Power at 1 kHz PRF, 1 W peak power, Q-switched Laser PRF (kHz) Thermal lens power (m-1...with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an angle . To counteract this
Method of forming aperture plate for electron microscope
NASA Technical Reports Server (NTRS)
Heinemann, K. (Inventor)
1974-01-01
An electron microscope is described with an electron source a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen. It also has objective lens with an annular objective aperture, for focusing electrons passing through the specimen onto an image plane. A method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques is included.
Karl Otto Himmler, manufacturer of the first contact lens.
Pearson, Richard M
2007-03-01
In 1889 August Müller (1864-1949) reported the correction of his own high myopia with a ground scleral contact lens that had been manufactured in Berlin two years earlier. This paper provides the first conclusive identification, based upon primary sources, of the manufacturer of these lenses. They were made by an optical engineer, Karl Otto Himmler (1841-1903), whose firm enjoyed, until the outbreak of World War II, an international reputation for the manufacture of microscopes and their accessories.
428th Brookhaven Lecture. Lighthouses, Light Sources and the Kinoform Route to 1nm
Evans-Lutterodt, Kenneth
2017-12-11
At Brookhaven Lab, a team of researchers has overcome a major x-ray focusing obstacle to allow the study of molecules, atoms, and advanced materials at the nanoscale, which is on the order of billionths of a meter. Their innovative method uses a type of refractive lens called a kinoform lens --similar to the kind found in lighthouses -- in order to focus the x-rays down to the extremely small spots needed for a sharp image at small dimensions.
Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François
2018-01-16
The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N = 3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.
Influence of refractive correction on ocular dominance
NASA Astrophysics Data System (ADS)
Nakayama, Nanami; Kawamorita, Takushi; Uozato, Hiroshi
2010-07-01
We investigated the effects of refractive correction and refractive defocus on the assessment of sensory ocular dominance. In 25 healthy subjects (4 males and 21 females) aged between 20 and 31 years, a quantitative measurement of sensory ocular dominance was performed with refractive correction and the addition of a positive lens on the dominant eye. Sensory ocular dominance was measured with a chart using binocular rivalry targets. The reversal point changed after the addition of a +1.00 D lens on the dominant eye in all subjects. However, sighting ocular dominance and stereopsis did not change after the addition of a positive lens on the dominant eye ( P > 0:05, Wilcoxon test). These results suggest that refractive correction affects sensory ocular dominance, indicating the possible development of a new type of occlusion for amblyopia in the future.
NASA Astrophysics Data System (ADS)
Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François
2018-01-01
The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N = 3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.
Negative refraction imaging of acoustic metamaterial lens in the supersonic range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jianning; Wen, Tingdun; Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051
2014-05-15
Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with thatmore » of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.« less
Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond
2014-01-01
We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.
Pink-beam focusing with a one-dimensional compound refractive lens
Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.; ...
2016-07-28
The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less
Compound refractive X-ray lens
Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas
2000-01-01
An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.
Dose limits to the lens of the eye: International Basic Safety Standards and related guidance.
Boal, T J; Pinak, M
2015-06-01
The International Atomic Energy Agency (IAEA) safety requirements: 'General Safety Requirements Part 3--Radiation protection and safety of radiation sources: International Basic Safety Standards' (BSS) was approved by the IAEA Board of Governors at its meeting in September 2011, and was issued as General Safety Requirements Part 3 in July 2014. The equivalent dose limit for the lens of the eye for occupational exposure in planned exposure situations was reduced from 150 mSv year(-1) to 20 mSv year(-1), averaged over defined periods of 5 years, with no annual dose in a single year exceeding 50 mSv. This reduction in the dose limit for the lens of the eye followed the recommendation of the International Commission on Radiological Protection in its statement on tissue reactions of 21 April 2011. IAEA has developed guidance on the implications of the new dose limit for the lens of the eye. This paper summarises the process that led to the inclusion of the new dose limit for the lens of the eye in the BSS, and the implications of the new dose limit. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Coherent beam control with an all-dielectric transformation optics based lens
NASA Astrophysics Data System (ADS)
Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André
2016-01-01
Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.
Does infrared or ultraviolet light damage the lens?
Söderberg, P G; Talebizadeh, N; Yu, Z; Galichanin, K
2016-01-01
In daylight, the human eye is exposed to long wavelength ultraviolet radiation (UVR), visible radiation and short wavelength infrared radiation (IRR). Almost all the UVR and a fraction of the IRR waveband, respectively, left over after attenuation in the cornea, is absorbed in the lens. The time delay between exposure and onset of biological response in the lens varies from immediate-to-short-to-late. After exposure to sunlight or artificial sources, generating irradiances of the same order of magnitude or slightly higher, biological damage may occur photochemically or thermally. Epidemiological studies suggest a dose-dependent association between short wavelength UVR and cortical cataract. Experimental data infer that repeated daily in vivo exposures to short wavelength UVR generate photochemically induced damage in the lens, and that short delay onset cataract after UVR exposure is photochemically induced. Epidemiology suggests that daily high-intensity short wavelength IRR exposure of workers, is associated with a higher prevalence of age-related cataract. It cannot be excluded that this effect is owing to a thermally induced higher denaturation rate. Recent experimental data rule out a photochemical effect of 1090 nm in the lens but other wavelengths in the near IRR should be investigated. PMID:26768915
Coherent beam control with an all-dielectric transformation optics based lens.
Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André
2016-01-05
Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.
Method for fabrication of cylindrical microlenses of selected shape
Snyder, J.J.; Baer, T.M.
1992-01-14
The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector. 11 figs.
Solar powered desalination system using Fresnel lens
NASA Astrophysics Data System (ADS)
Sales, M. T. B. F.
2016-11-01
The Philippines is surrounded by coastal areas and these areas can be a potential source for potable water. This study aims to design and construct a solar powered desalination system using Fresnel lens. The experimental study was conducted using polluted salt water for the sample and desalination was carried out using the designed system. The desalination system was composed of the solar concentrator, solar still and the condenser system. The Fresnel lens was made of acrylic plastic and was an effective solar concentrator. Solar stills made of dark colored glass bottles were effective in absorbing the solar energy. The condenser system made of polybutylene and polystyrene were effective in condensing the vapor at ambient temperature. The shortest time of vaporization of the salt water was at 293 sec and the optimum angle of position of the lens was 36.42°. The amount of condensate collected was directly proportional to the amount of salt water in the solar still. The highest mean efficiency of the designed set-up was 34.82%. The water produced by the solar powered desalination system using Fresnel lens passed the standards set by WHO (World Health Organization) for drinking water.
Method for fabrication of cylindrical microlenses of selected shape
Snyder, James J.; Baer, Thomas M.
1992-01-01
The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector.
Whitson, Jeremy A.; Sell, David R.; Goodman, Michael C.; Monnier, Vincent M.; Fan, Xingjun
2016-01-01
Purpose Lens glutathione synthesis knockout (LEGSKO) mouse lenses lack de novo glutathione (GSH) synthesis but still maintain >1 mM GSH. We sought to determine the source of this residual GSH and the mechanism by which it accumulates in the lens. Methods Levels of GSH, glutathione disulfide (GSSG), and GSH-related compounds were measured in vitro and in vivo using isotope standards and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results Wild-type (WT) lenses could accumulate GSH from γ-glutamylcysteine and glycine or from intact GSH, but LEGSKO lenses could only accumulate GSH from intact GSH, indicating that LEGSKO lens GSH content is not due to synthesis by a salvage pathway. Uptake of GSH in cultured lenses occurred at the same rate for LEGSKO and WT lenses, could not be inhibited, and occurred primarily through cortical fiber cells. In contrast, uptake of GSH from aqueous humor could be competitively inhibited and showed an enhanced Km in LEGSKO lenses. Mouse vitreous had >1 mM GSH, whereas aqueous had <20 μM GSH. Testing physiologically relevant GSH concentrations for uptake in vivo, we found that both LEGSKO and WT lenses could obtain GSH from the vitreous but not from the aqueous. Vitreous rapidly accumulated GSH from the circulation, and depletion of circulating GSH reduced vitreous but not aqueous GSH. Conclusions The above data provide, for the first time, evidence for the existence of dual mechanisms of GSH uptake into the lens, one mechanism being a passive, high-flux transport through the vitreous exposed side of the lens versus an active, carrier-mediated uptake mechanism at the anterior of the lens. PMID:27472077
Circuit design for the retina-like image sensor based on space-variant lens array
NASA Astrophysics Data System (ADS)
Gao, Hongxun; Hao, Qun; Jin, Xuefeng; Cao, Jie; Liu, Yue; Song, Yong; Fan, Fan
2013-12-01
Retina-like image sensor is based on the non-uniformity of the human eyes and the log-polar coordinate theory. It has advantages of high-quality data compression and redundant information elimination. However, retina-like image sensors based on the CMOS craft have drawbacks such as high cost, low sensitivity and signal outputting efficiency and updating inconvenience. Therefore, this paper proposes a retina-like image sensor based on space-variant lens array, focusing on the circuit design to provide circuit support to the whole system. The circuit includes the following parts: (1) A photo-detector array with a lens array to convert optical signals to electrical signals; (2) a strobe circuit for time-gating of the pixels and parallel paths for high-speed transmission of the data; (3) a high-precision digital potentiometer for the I-V conversion, ratio normalization and sensitivity adjustment, a programmable gain amplifier for automatic generation control(AGC), and a A/D converter for the A/D conversion in every path; (4) the digital data is displayed on LCD and stored temporarily in DDR2 SDRAM; (5) a USB port to transfer the data to PC; (6) the whole system is controlled by FPGA. This circuit has advantages as lower cost, larger pixels, updating convenience and higher signal outputting efficiency. Experiments have proved that the grayscale output of every pixel basically matches the target and a non-uniform image of the target is ideally achieved in real time. The circuit can provide adequate technical support to retina-like image sensors based on space-variant lens array.
Pulse position modulation for compact all-fiber vehicle laser rangefinder development
NASA Astrophysics Data System (ADS)
Mao, Xuesong; Cheng, Yongzhi; Xiong, Ying; Inoue, Daisuke; Kagami, Manabu
2017-10-01
We propose a method for developing small all-fiber vehicle laser rangefinders that is based on pulse position modulation (PPM) and data integration and present a theoretical study on its performance. Compared with spatial coupling, which is employed by most of the current commercial vehicle laser rangefinders, fiber coupling has the advantage that it can guide laser echoes into the interior of a car, so the electronic components following the photodiode can operate in a moderate-temperature environment. However, optical fibers have numerical apertures (NAs), which means that a laser beam from a receiving lens cannot be coupled into an optical fiber if its incident angle exceeds the critical value. Therefore, the effective size of the receiving lens is typically small since it is limited by its focal length and the NA of the fiber, causing the power of the laser echoes gathered by the receiving lens to be insufficient for performing target identification. Instead of increasing the peak transmitting laser power unrestrictedly, PPM and data integration effectively compensate for the low signal-to-noise ratio that results from the effective receiving lens size reduction. We validated the proposed method by conducting numerical simulations and performance analysis. Finally, we compared the proposed method with pseudorandom noise (PN) code modulation and found that, although the two methods perform equally well in single-target measurement scenarios, PPM is more effective than PN code modulation for multitarget measurement. In addition, PPM enables the transmission of laser beams with higher peak powers and requires less computation than PN code modulation does.
Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch
Kuschel, S.; Hollatz, D.; Heinemann, T.; ...
2016-07-20
We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less
ERIC Educational Resources Information Center
May, Amy; Tenzek, Kelly E.
2018-01-01
Bullying within academia often focuses on peer bullying or the student victim. However, the student bully who targets professors is a neglected area of study yet just as destructive, demeaning, and intimidating. Using a narrative lens analysis, the researchers share how the story of bullying unfolds in the classroom. Distinct triggers, such as…
OGLE-2017-BLG-1522: A Giant Planet around a Brown Dwarf Located in the Galactic Bulge
NASA Astrophysics Data System (ADS)
Jung, Y. K.; Udalski, A.; Gould, A.; Ryu, Y.-H.; Yee, J. C.; and; Han, C.; Albrow, M. D.; Lee, C.-U.; Kim, S.-L.; Hwang, K.-H.; Chung, S.-J.; Shin, I.-G.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Lee, D.-J.; Kim, H.-W.; Pogge, R. W.; The KMTNet Collaboration; Szymański, M. K.; Mróz, P.; Poleski, R.; Skowron, J.; Pietrukowicz, P.; Soszyński, I.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; The OGLE Collaboration
2018-05-01
We report the discovery of a giant planet in the OGLE-2017-BLG-1522 microlensing event. The planetary perturbations were clearly identified by high-cadence survey experiments despite the relatively short event timescale of t E ∼ 7.5 days. The Einstein radius is unusually small, θ E = 0.065 mas, implying that the lens system either has very low mass or lies much closer to the microlensed source than the Sun, or both. A Bayesian analysis yields component masses ({M}host},{M}planet})=({46}-25+79,{0.75}-0.40+1.26) {M}{{J}} and source-lens distance {D}LS}={0.99}-0.54+0.91 {kpc}, implying that this is a brown-dwarf/Jupiter system that probably lies in the Galactic bulge, a location that is also consistent with the relatively low lens-source relative proper motion μ = 3.2 ± 0.5 mas yr‑1. The projected companion-host separation is {0.59}-0.11+0.12 {au}, indicating that the planet is placed beyond the snow line of the host, i.e., a sl ∼ 0.12 au. Planet formation scenarios combined with the small companion-host mass ratio q ∼ 0.016 and separation suggest that the companion could be the first discovery of a giant planet that formed in a protoplanetary disk around a brown-dwarf host.
Zhou, Hong; Liu, Shihang; Liu, Yujiao; Liu, Yaxi; You, Jing; Deng, Mei; Ma, Jian; Chen, Guangdeng; Wei, Yuming; Liu, Chunji; Zheng, Youliang
2016-09-13
Kernel length is an important target trait in barley (Hordeum vulgare L.) breeding programs. However, the number of known quantitative trait loci (QTLs) controlling kernel length is limited. In the present study, we aimed to identify major QTLs for kernel length, as well as putative candidate genes that might influence kernel length in wild barley. A recombinant inbred line (RIL) population derived from the barley cultivar Baudin (H. vulgare ssp. vulgare) and the long-kernel wild barley genotype Awcs276 (H.vulgare ssp. spontaneum) was evaluated at one location over three years. A high-density genetic linkage map was constructed using 1,832 genome-wide diversity array technology (DArT) markers, spanning a total of 927.07 cM with an average interval of approximately 0.49 cM. Two major QTLs for kernel length, LEN-3H and LEN-4H, were detected across environments and further validated in a second RIL population derived from Fleet (H. vulgare ssp. vulgare) and Awcs276. In addition, a systematic search of public databases identified four candidate genes and four categories of proteins related to LEN-3H and LEN-4H. This study establishes a fundamental research platform for genomic studies and marker-assisted selection, since LEN-3H and LEN-4H could be used for accelerating progress in barley breeding programs that aim to improve kernel length.
Refinement of Perioperative Feeding in a Mouse Model of Vertical Sleeve Gastrectomy.
Doerning, Carolyn M; Burlingame, Lisa A; Lewis, Alfor G; Myronovych, Andriy; Seeley, Randy J; Lester, Patrick A
2018-05-01
Provision of liquid enteral nutrition (LEN) during the perioperative period is standard practice for rodents undergoing bariatric surgery, yet these diets are associated with several challenges, including coagulation of the liquid diet within the delivery system and decreased postoperative consumption. We investigated the use of a commercially available high-calorie dietary gel supplement (DG) as an alternative food source for mice during the perioperative period. C57BL/6J male mice were fed high-fat diet for 8 to 10 wk prior to surgery. The study groups were: vertical sleeve gastrectomy (VSG) +DG, VSG+LEN, sham surgery+DG, and sham+LEN. Food and water intakes, body weight, and body fat composition was monitored throughout the study. Mice that received DG lost significantly more weight preoperatively than those fed LEN. However, during the postoperative period, body weight, body fat composition, and water and caloric intake were similar among all experimental diet groups. Three mice in the VSG+LEN group were euthanized due to clinical illness during the course of the study. In summary, feeding a high-calorie DG to mice undergoing VSG surgery is a viable alternative to LEN, given that DG does not significantly affect the surgical model of weight loss or result in adverse clinical outcomes. We recommend additional metabolic characterization of DG supplementation to ensure that this novel diet does not confound specific research goals in the murine VSG model.
NASA Astrophysics Data System (ADS)
Rattenbury, N. J.; Bennett, D. P.; Sumi, T.; Koshimoto, N.; Bond, I. A.; Udalski, A.; Shvartzvald, Y.; Maoz, D.; Jørgensen, U. G.; Dominik, M.; Street, R. A.; Tsapras, Y.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Evans, P.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Oyokawa, H.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yonehara, A.; Poleski, R.; Skowron, J.; Mróz, P.; Szymański, M. K.; Soszyński, I.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Friedmann, M.; Kaspi, S.; Alsubai, K.; Browne, P.; Andersen, J. M.; Bozza, V.; Calchi Novati, S.; Damerdji, Y.; Diehl, C.; Dreizler, S.; Elyiv, A.; Giannini, E.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Liebig, C.; Hundertmark, M.; Juncher, D.; Kains, N.; Kerins, E.; Korhonen, H.; Mancini, L.; Martin, R.; Mathiasen, M.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Skottfelt, J.; Snodgrass, C.; Surdej, J.; Taylor, J.; Tregloan-Reed, J.; Vilela, C.; Wambsganss, J.; Williams, A.; D'Ago, G.; Bachelet, E.; Bramich, D. M.; Figuera Jaimes, R.; Horne, K.; Menzies, J.; Schmidt, R.; Steele, I. A.
2017-04-01
We report the discovery of a planet - OGLE-2014-BLG-0676Lb- via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNET/Las Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and μ-FUN. All analyses of the light-curve data favour a lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 ± 0.13) × 10-3. Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09_{-1.12}^{+1.02} MJ planet orbiting a 0.62_{-0.22}^{+0.20} M⊙ host star at a deprojected orbital separation of 4.40_{-1.46}^{+2.16} au. The distance to the lens system is 2.22_{-0.83}^{+0.96} kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discovered using gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.
Gravitational lens modelling in a citizen science context
NASA Astrophysics Data System (ADS)
Küng, Rafael; Saha, Prasenjit; More, Anupreeta; Baeten, Elisabeth; Coles, Jonathan; Cornen, Claude; Macmillan, Christine; Marshall, Phil; More, Surhud; Odermatt, Jonas; Verma, Aprajita; Wilcox, Julianne K.
2015-03-01
We develop a method to enable collaborative modelling of gravitational lenses and lens candidates, that could be used by non-professional lens enthusiasts. It uses an existing free-form modelling program (GLASS), but enables the input to this code to be provided in a novel way, via a user-generated diagram that is essentially a sketch of an arrival-time surface. We report on an implementation of this method, SpaghettiLens, which has been tested in a modelling challenge using 29 simulated lenses drawn from a larger set created for the Space Warps citizen science strong lens search. We find that volunteers from this online community asserted the image parities and time ordering consistently in some lenses, but made errors in other lenses depending on the image morphology. While errors in image parity and time ordering lead to large errors in the mass distribution, the enclosed mass was found to be more robust: the model-derived Einstein radii found by the volunteers were consistent with those produced by one of the professional team, suggesting that given the appropriate tools, gravitational lens modelling is a data analysis activity that can be crowd-sourced to good effect. Ideas for improvement are discussed; these include (a) overcoming the tendency of the models to be shallower than the correct answer in test cases, leading to systematic overestimation of the Einstein radius by 10 per cent at present, and (b) detailed modelling of arcs.
NASA Technical Reports Server (NTRS)
Rattenbury, N. J.; Bennett, D. P.; Sumi, T.; Koshimoto, N.; Bond, I. A.; Udalski, A.; Shvartzvald, Y.; Maoz, D.; Jorgensen, U. G.; Barry, R.;
2016-01-01
We report the discovery of a planet OGLE-2014-BLG-0676Lb via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNETLas Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and -FUN. All analyses of the light-curve data favoura lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 +/- 0.13) 10(exp -3). Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09(+1.02/-1.12) MJ planet orbiting a 0.62(+0.20/-0.22) solar mass host star at a deprojected orbital separation of 4.40(+2.16/-1.46) au. The distance to the lens system is 2.22(+0.96/-0.83) kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discover redusing gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.
Frank, A.M.; Edwards, W.R.
1983-10-11
A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.
Frank, A.M.; Edwards, W.R.
1982-03-23
A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.
Haddock, Luis J; Kim, David Y; Mukai, Shizuo
2013-01-01
Purpose. We describe in detail a relatively simple technique of fundus photography in human and rabbit eyes using a smartphone, an inexpensive app for the smartphone, and instruments that are readily available in an ophthalmic practice. Methods. Fundus images were captured with a smartphone and a 20D lens with or without a Koeppe lens. By using the coaxial light source of the phone, this system works as an indirect ophthalmoscope that creates a digital image of the fundus. The application whose software allows for independent control of focus, exposure, and light intensity during video filming was used. With this app, we recorded high-definition videos of the fundus and subsequently extracted high-quality, still images from the video clip. Results. The described technique of smartphone fundus photography was able to capture excellent high-quality fundus images in both children under anesthesia and in awake adults. Excellent images were acquired with the 20D lens alone in the clinic, and the addition of the Koeppe lens in the operating room resulted in the best quality images. Successful photodocumentation of rabbit fundus was achieved in control and experimental eyes. Conclusion. The currently described system was able to take consistently high-quality fundus photographs in patients and in animals using readily available instruments that are portable with simple power sources. It is relatively simple to master, is relatively inexpensive, and can take advantage of the expanding mobile-telephone networks for telemedicine.
Production of needle-type liquid-metal ion sources and their application in a scanning ion muscope
NASA Astrophysics Data System (ADS)
Knapp, Helmut; Rübesame, Detlef; Niedrig, Heinz
1991-07-01
A tungsten wire is electrochemically etched in NaOH to produce tip radii of 4-10 μm for use in liquid-metal ion sources (LMIS). To ensure complete wetting of the needle with the liquid metal (Sn, Ga), the needle has to be annealed at 800-1000°C by electron bombardment in a vacuum. It is then immediately dipped into the liquid metal in the same vacuum chamber. An anode prepared in this way is part of a triode system, followed by an octupole stigmator, an electrostatic einzel lens and the scanning unit. Upon application of a high voltage the liquid metal will form a Taylor cone at the needle tip. In the resulting high electrical field ions are extracted through field evaporation. Typical beam current and spot size values during scanning ion muscope (SIM) operation are 2.5 μA and 10 μm respectively. An Everhart-Thornley detector and a quadrupole mass spectrometer are available to allow analysis of secondary particles emitted from the target.
A gravitationally lensed quasar discovered in OGLE
NASA Astrophysics Data System (ADS)
Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Lemon, Cameron; Anguita, T.; Greiner, J.; Auger, M. W.; Wyrzykowski, Ł.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.
2018-05-01
We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ˜670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ˜60 `red W1 - W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made `the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 < tAB < -76 d (90 per cent CL), with the median tAB ≈ -102 d (in the observer frame), and where the fainter image B lags image A. The system consists of the two quasar images separated by 1.5 arcsec on the sky, with I ≈ 20.0 mag and I ≈ 19.6 mag, respectively, and a lensing galaxy that becomes detectable as I ≈ 21.5 mag source, 1.0 arcsec from image A, after subtracting the two lensed images. Both quasar images show clear AGN broad emission lines at z = 2.16 in the New Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ≈ 0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model).
Levin, Robert E.; English, George J.
1986-08-05
An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.
Ion source for high-precision mass spectrometry
Todd, P.J.; McKown, H.S.; Smith, D.H.
1982-04-26
The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.
Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, De-Qin; School of Science, Tianjin University of Technology and Education, Tianjin 300222; Song, Xin-Bing
It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical predictionmore » in the two-photon quantum imaging regime.« less
Maddala, Rupalatha; Chauhan, Bharesh K.; Walker, Christopher; Zheng, Yi; Robinson, Michael L.; Lang, Richard A.; Rao, Ponugoti V.
2011-01-01
Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/β-catenin/Rap1/Nectin-based cell-cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover. PMID:21945075
Aquaporin-0 Targets Interlocking Domains to Control the Integrity and Transparency of the Eye Lens
Lo, Woo-Kuen; Biswas, Sondip K.; Brako, Lawrence; Shiels, Alan; Gu, Sumin; Jiang, Jean X.
2014-01-01
Purpose. Lens fiber cell membranes contain aquaporin-0 (AQP0), which constitutes approximately 50% of the total fiber cell membrane proteins and has a dual function as a water channel protein and an adhesion molecule. Fiber cell membranes also develop an elaborate interlocking system that is required for maintaining structural order, stability, and lens transparency. Herein, we used an AQP0-deficient mouse model to investigate an unconventional adhesion role of AQP0 in maintaining a normal structure of lens interlocking protrusions. Methods. The loss of AQP0 in AQP0−/− lens fibers was verified by Western blot and immunofluorescence analyses. Changes in membrane surface structures of wild-type and AQP0−/− lenses at age 3 to 12 weeks were examined with scanning electron microscopy. Preferential distribution of AQP0 in wild-type fiber cell membranes was analyzed with immunofluorescence and immunogold labeling using freeze-fracturing transmission electron microscopy. Results. Interlocking protrusions in young differentiating fiber cells developed normally but showed minor abnormalities at approximately 50 μm deep in the absence of AQP0 in all ages studied. Strikingly, protrusions in maturing fiber cells specifically underwent uncontrolled elongation, deformation, and fragmentation, while cells still retained their overall shape. Later in the process, these changes eventually resulted in fiber cell separation, breakdown, and cataract formation in the lens core. Immunolabeling at the light microscopy and transmission electron microscopy levels demonstrated that AQP0 was particularly enriched in interlocking protrusions in wild-type lenses. Conclusions. This study suggests that AQP0 exerts its primary adhesion or suppression role specifically to maintain the normal structure of interlocking protrusions that is critical to the integrity and transparency of the lens. PMID:24458158
A method for profiling biometric changes during disaccommodation.
Alderson, Alison; Davies, Leon N; Mallen, Edward A H; Sheppard, Amy L
2012-05-01
To demonstrate the application of low-coherence reflectometry to the study of biometric changes during disaccommodation responses in human eyes after cessation of a near task and to evaluate the effect of contact lenses on low-coherence reflectometry biometric measurements. Ocular biometric parameters of crystalline lens thickness (LT) and anterior chamber depth (ACD) were measured with the LenStar device during and immediately after a 5 D accommodative task in 10 participants. In a separate trial, accommodation responses were recorded with a Shin-Nippon WAM-5500 optometer in a subset of two participants. Biometric data were interleaved to form a profile of post-task anterior segment changes. In a further experiment, the effect of soft contact lenses on LenStar measurements was evaluated in 15 participants. In 10 adult participants, increased LT and reduced ACD was seen during the 5 D task. Post-task, during fixation of a 0 D target, a profile of the change in LT and ACD against time was observed. In the two participants with accommodation data (one a sufferer of nearwork-induced transient myopia and other a non-sufferer), the post-task changes in refraction compared favorably with the interleaved LenStar biometry data. The insertion of soft contact lenses did not have a significant effect on LenStar measures of ACD or LT (mean change: -0.007 mm, p = 0.265 and + 0.001 mm, p = 0.875, respectively). With the addition of a relatively simple stimulus modification, the LenStar instrument can be used to produce a profile of post-task changes in LT and ACD. The spatial and temporal resolution of the system is sufficient for the investigation of nearwork-induced transient myopia from a biometric viewpoint. LenStar measurements of ACD and LT remain valid after the fitting of soft contact lenses.
Armoiry, Xavier; Connock, Martin; Tsertsvadze, Alexander; Cummins, Ewen; Melendez-Torres, G J; Royle, Pam; Clarke, Aileen
2018-03-26
Ixazomib is an oral proteasome inhibitor used in combination with lenalidomide plus dexamethasone (IXA-LEN-DEX) and licensed for relapsed or refractory multiple myeloma. As part of a single technology appraisal (ID807) undertaken by the National Institute of Health and Care Excellence, the Evidence Review Group, Warwick Evidence was invited to independently review the evidence submitted by the manufacturer of ixazomib, Takeda UK Ltd. The main source of clinical effectiveness data about IXA-LEN-DEX came from the Tourmaline-MM1 randomized controlled trial in which 771 patients with relapsed or refractory multiple myeloma received either IXA-LEN-DEX or placebo-LEN-DEX as their second-, third-, or fourth-line treatment. Takeda estimated the cost effectiveness of IXA-LEN-DEX using a de-novo partitioned-survival model with three health states (pre-progression, post-progression, and dead). In their first submission, this model was used to estimate the cost effectiveness of IXA-LEN-DEX vs. bortezomib plus dexamethasone (BORT-DEX) in second-line treatment, and of IXA-LEN-DEX vs. LEN-DEX in third-line treatment. To estimate the relative clinical performance of IXA-LEN-DEX vs. BORT-DEX, Takeda conducted network meta-analyses for important outcomes. The network meta-analysis for overall survival was found to be flawed in several respects, but mainly because a hazard ratio input for one of the studies in the network had been inverted, resulting in a large inflation of the claimed superiority of IXA-LEN-DEX over BORT-DEX and a considerable overestimation of its cost effectiveness. In subsequent submissions, Takeda withdrew second-line treatment as an option for IXA-LEN-DEX. The manufacturer's first submission comparing IXA-LEN-DEX with LEN-DEX for third-line therapy employed Tourmaline-MM1 data from third- and fourth-line patients as proxy for a third-line population. The appraisal committee did not consider this reasonable because randomization in Tourmaline-MM1 was stratified according to one previous treatment and two or more previous treatments. A further deficiency was considered to be the manufacturer's use of interim survival data rather than the most mature data available. A second submission from the company focussed on IXA-LEN-DEX vs. LEN-DEX as third- or fourth-line treatment (the two or more previous lines population) and a new patient access scheme was introduced. Covariate modeling of survival outcomes was proposed using the most mature survival data. The Evidence Review Group's main criticisms of the new evidence included: the utility associated with the pre-progression health state was overestimated, treatment costs of ixazomib were underestimated, survival models were still associated with great uncertainty, leading to clinically implausible anomalies and highly variable incremental cost-effectiveness ratio estimates, and the company had not explored a strong assumption that the survival benefit of IXA-LEN-DEX over LEN-DEX would be fully maintained for a further 22 years beyond the observed data, which encompassed only approximately 2.5 years of observation. The appraisal committee remained unconvinced that ixazomib represented a cost-effective use of National Health Service resources. Takeda's third submission offered new base-case parametric models for survival outcomes, a new analysis of utilities, and proposed a commercial access agreement. In a brief critique of the third submission, the Evidence Review Group agreed that the selection of appropriate survival models was problematic and at the request of the National Institute for Health Care and Excellence investigated external sources of evidence regarding survival outcomes. The Evidence Review Group considered that some cost and utility estimates in the submission may have remained biased in favor of ixazomib. As a result of their third appraisal meeting, the committee judged that for the two to three prior therapies population, and at the price agreed in a commercial access agreement, ixazomib had the potential to be cost effective. It was referred to the Cancer Drugs Fund so that further data could accrue with the aim of diminishing the clinical uncertainties.
Dual-beam laser autofocusing system based on liquid lens
NASA Astrophysics Data System (ADS)
Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing
2017-02-01
A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme ;Time-sharing focus, fast conversion; is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.
Eldred, Julie A.; McDonald, Matthew; Wilkes, Helen S.; Spalton, David J.; Wormstone, I. Michael
2016-01-01
Secondary visual loss occurs in millions of patients due to a wound-healing response, known as posterior capsule opacification (PCO), following cataract surgery. An intraocular lens (IOL) is implanted into residual lens tissue, known as the capsular bag, following cataract removal. Standard IOLs allow the anterior and posterior capsules to become physically connected. This places pressure on the IOL and improves contact with the underlying posterior capsule. New open bag IOL designs separate the anterior capsule and posterior capsules and further reduce PCO incidence. It is hypothesised that this results from reduced cytokine availability due to greater irrigation of the bag. We therefore explored the role of growth factor restriction on PCO using human lens cell and tissue culture models. We demonstrate that cytokine dilution, by increasing medium volume, significantly reduced cell coverage in both closed and open capsular bag models. This coincided with reduced cell density and myofibroblast formation. A screen of 27 cytokines identified nine candidates whose expression profile correlated with growth. In particular, VEGF was found to regulate cell survival, growth and myofibroblast formation. VEGF provides a therapeutic target to further manage PCO development and will yield best results when used in conjunction with open bag IOL designs. PMID:27076230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Kenneth C.; Suyu, Sherry H.; Auger, Matthew W.
Strong gravitational lenses with measured time delays between the multiple images allow a direct measurement of the time-delay distance to the lens, and thus a measure of cosmological parameters, particularly the Hubble constant, H0. We present a blind lens model analysis of the quadruply imaged quasar lens HE 0435-1223 using deep Hubble Space Telescope imaging, updated time-delay measurements from the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL), a measurement of the velocity dispersion of the lens galaxy based on Keck data, and a characterization of the mass distribution along the line of sight. HE 0435-1223 is the third lens analysed as a part of the H0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) project. We account for various sources of systematic uncertainty, including the detailed treatment of nearby perturbers, the parametrization of the galaxy light and mass profile, and the regions used for lens modelling. We constrain the effective time-delay distance to be D Δt=2612more » $$+208\\atop{-191}$$Mpc, a precision of 7.6 per cent. From HE 0435-1223 alone, we infer a Hubble constant of H 0=73.1$$+5.7\\atop{-6.0}$$kms -1Mpc -1 assuming a flat ΛCDM cosmology. Lastly, the cosmographic inference based on the three lenses analysed by H0LiCOW to date is presented in a companion paper (H0LiCOW Paper V).« less
Wong, Kenneth C.; Suyu, Sherry H.; Auger, Matthew W.; ...
2016-11-29
Strong gravitational lenses with measured time delays between the multiple images allow a direct measurement of the time-delay distance to the lens, and thus a measure of cosmological parameters, particularly the Hubble constant, H0. We present a blind lens model analysis of the quadruply imaged quasar lens HE 0435-1223 using deep Hubble Space Telescope imaging, updated time-delay measurements from the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL), a measurement of the velocity dispersion of the lens galaxy based on Keck data, and a characterization of the mass distribution along the line of sight. HE 0435-1223 is the third lens analysed as a part of the H0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) project. We account for various sources of systematic uncertainty, including the detailed treatment of nearby perturbers, the parametrization of the galaxy light and mass profile, and the regions used for lens modelling. We constrain the effective time-delay distance to be D Δt=2612more » $$+208\\atop{-191}$$Mpc, a precision of 7.6 per cent. From HE 0435-1223 alone, we infer a Hubble constant of H 0=73.1$$+5.7\\atop{-6.0}$$kms -1Mpc -1 assuming a flat ΛCDM cosmology. Lastly, the cosmographic inference based on the three lenses analysed by H0LiCOW to date is presented in a companion paper (H0LiCOW Paper V).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prentice, H. J.; Proud, W. G.
2006-07-28
A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical andmore » numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses.« less
Understanding Students' Use of Sources in Research Writing through an Epistemological Lens
ERIC Educational Resources Information Center
Nicolas, Corinne E.
2012-01-01
Concerns about the poor quality of students' use of sources in undergraduate research writing have typically led to investigations either of students' information-seeking strategies or of their composing practices. I argue that an either/or approach provides an incomplete picture of students' research writing processes, and that an exploration of…
Source brightness and useful beam current of carbon nanotubes and other very small emitters
NASA Astrophysics Data System (ADS)
Kruit, P.; Bezuijen, M.; Barth, J. E.
2006-01-01
The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.
Improved alternating gradient transport and focusing of neutral molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalnins, Juris; Lambertson, Glen; Gould, Harvey
2001-12-02
Polar molecules, in strong-field seeking states, can be transported and focused by an alternating sequence of electric field gradients that focus in one transverse direction while defocusing in the other. We show by calculation and numerical simulation, how one may greatly improve the alternating gradient transport and focusing of molecules. We use a new optimized multipole lens design, a FODO lattice beam transport line, and lenses to match the beam transport line to the beam source and the final focus. We derive analytic expressions for the potentials, fields, and gradients that may be used to design these lenses. We describemore » a simple lens optimization procedure and derive the equations of motion for tracking molecules through a beam transport line. As an example, we model a straight beamline that transports a 560 m/s jet-source beam of methyl fluoride molecules 15 m from its source and focuses it to 2 mm diameter. We calculate the beam transport line acceptance and transmission, for a beam with velocity spread, and estimate the transmitted intensity for specified source conditions. Possible applications are discussed.« less
Ion acceleration with a narrow energy spectrum by nanosecond laser-irradiation of solid target
NASA Astrophysics Data System (ADS)
Altana, C.; Lanzalone, G.; Mascali, D.; Muoio, A.; Cirrone, G. A. P.; Schillaci, F.; Tudisco, S.
2016-02-01
In laser-driven plasma, ion acceleration of aluminum with the production of a quasi-monoenergetic beam has occurred. A useful device to analyze the ions is the Thomson parabolas spectrometer, a well-known diagnostic that is able to obtain information on charge-to-mass ratio and energy distribution of the charged particles. At the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS in Catania, experimental measures were carried out; the features of LENS are: Q-switched Nd:YAG laser with 2 J laser energy, 1064 nm fundamental wavelengths, and 6 ns pulse duration.
Ion acceleration with a narrow energy spectrum by nanosecond laser-irradiation of solid target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altana, C., E-mail: altana@lns.infn.it; Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania; Lanzalone, G.
2016-02-15
In laser-driven plasma, ion acceleration of aluminum with the production of a quasi-monoenergetic beam has occurred. A useful device to analyze the ions is the Thomson parabolas spectrometer, a well-known diagnostic that is able to obtain information on charge-to-mass ratio and energy distribution of the charged particles. At the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS in Catania, experimental measures were carried out; the features of LENS are: Q-switched Nd:YAG laser with 2 J laser energy, 1064 nm fundamental wavelengths, and 6 ns pulse duration.
Stretched Lens Array Squarerigger (SLASR) Technology Maturation
NASA Technical Reports Server (NTRS)
O'Neill, Mark; McDanal, A.J.; Howell, Joe; Lollar, Louis; Carrington, Connie; Hoppe, David; Piszczor, Michael; Suszuki, Nantel; Eskenazi, Michael; Aiken, Dan;
2007-01-01
Since April 2005, our team has been underway on a competitively awarded program sponsored by NASA s Exploration Systems Mission Directorate to develop, refine, and mature the unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of performance metrics, SLASR offers an unprecedented portfolio of performance metrics, including the following: Areal Power Density = 300 W/m2 (2005) - 400 W/m2 (2008 Target) Specific Power = 300 W/kg (2005) - 500 W/kg (2008 Target) for a Full 100 kW Solar Array Stowed Power = 80 kW/cu m (2005) - 120 kW/m3 (2008 Target) for a Full 100 kW Solar Array Scalable Array Capacity = 100 s of W s to 100 s of kW s Super-Insulated Small Cell Circuit = High-Voltage (300-600 V) Operation at Low Mass Penalty Super-Shielded Small Cell Circuit = Excellent Radiation Hardness at Low Mass Penalty 85% Cell Area Savings = 75% Lower Array Cost per Watt than One-Sun Array Modular, Scalable, & Mass-Producible at MW s per Year Using Existing Processes and Capacities
Invited Review Article: Development of crystal lenses for energetic photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smither, Robert K.
2014-08-15
This paper follows the development of crystal diffraction lenses designed to focus energetic photons. It begins with the search for a solution to the astrophysics problem of how to detect weak astrophysics sources of gamma rays and x-rays. This led to the basic designs for a lens and to the understanding of basic limitations of lens design. The discussion of the development of crystal diffraction lenses is divided into two parts: lenses using crystals with mosaic structure, and lenses that use crystals with curved crystal planes. This second group divides into two sub-groups: (1) Curved crystals that are used tomore » increase the acceptance angle of the diffraction of a monochromatic beam and to increase the energy bandwidth of the diffraction. (2) Curved crystals used to focus gamma ray beams. The paper describes how these two types of crystals affect the design of the corresponding crystal lenses in different fields: astrophysics, medical imaging, detection of weak, distant, gamma-ray sources, etc. The designs of crystal lenses for these applications are given in enough detail to allow the reader to design a lens for his own application.« less
Optical antenna for a visible light communications receiver
NASA Astrophysics Data System (ADS)
Valencia-Estrada, Juan Camilo; García-Márquez, Jorge; Topsu, Suat; Chassagne, Luc
2018-01-01
Visible Light Communications (VLC) receivers adapted to be used in high transmission rates will eventually use either, high aperture lenses or non-linear optical elements capable of converting light arriving to the receiver into an electric signal. The high aperture lens case, reveals a challenge from an optical designers point-of-view. As a matter of fact, the lens must collect a wide aperture intensity flux using a limited aperture as its use is intended to portable devices. This last also limits both, lens thickness and its focal length. Here, we show a first design to be adapted to a VLC receiver that take these constraints into account. This paper describes a method to design catadioptric and monolithic lenses to be used as an optical collector of light entering from a near point light source as a spherical fan L with a wide acceptance angle α° and high efficiency. These lenses can be mass produced and therefore one can find many practical applications in VLC equipped devices. We show a first design for a near light source without magnification, and second one with a detector's magnification in a meridional section. We utilize rigorous geometric optics, vector analysis and ordinary differential equations.
Shi, Xiaohe; Cui, Bin; Wang, Zhugang; Weng, Lin; Xu, Zhongping; Ma, Jinjin; Xu, Guotong; Kong, Xiangyin; Hu, Landian
2009-02-19
Heat-shock transcription factor 4 (HSF4) mutations are associated with autosomal dominant lamellar cataract and Marner cataract. Disruptions of the Hsf4 gene cause lens defects in mice, indicating a requirement for HSF4 in fiber cell differentiation during lens development. However, neither the relationship between HSF4 and crystallins nor the detailed mechanism of maintenance of lens transparency by HSF4 is fully understood. In an attempt to determine how the underlying biomedical and physiological mechanisms resulting from loss of HSF4 contribute to cataract formation, we generated an Hsf4 knockout mouse model. We showed that the Hsf4 knockout mouse (Hsf4-/-) partially mimics the human cataract caused by HSF4 mutations. Q-PCR analysis revealed down-regulation of several cataract-relevant genes, including gamma S-crystallin (Crygs) and lens-specific beaded filament proteins 1 and 2 (Bfsp1 and Bfsp2), in the lens of the Hsf4-/- mouse. Transcription activity analysis using the dual-luciferase system suggested that these cataract-relevant genes are the direct downstream targets of HSF4. The effect of HSF4 on gamma S-crystallin is exemplified by the cataractogenesis seen in the Hsf4-/-,rncat intercross. The 2D electrophoretic analysis of whole-lens lysates revealed a different expression pattern in 8-week-old Hsf4-/- mice compared with their wild-type counterparts, including the loss of some alpha A-crystallin modifications and reduced expression of gamma-crystallin proteins. Our results indicate that HSF4 is sufficiently important to lens development and disruption of the Hsf4 gene leads to cataracts via at least three pathways: 1) down-regulation of gamma-crystallin, particularly gamma S-crystallin; 2) decreased lens beaded filament expression; and 3) loss of post-translational modification of alpha A-crystallin.
Oscillating fluid lens in coherent retinal projection displays for extending depth of focus
NASA Astrophysics Data System (ADS)
von Waldkirch, extending depth of focus M.; Lukowicz, P.; Troster, G.
2005-09-01
See-through head-mounted displays, which allow to overlay virtual information over the user's real view, suffer normally from a limited depth of focus (DOF). To overcome this problem we discuss in this paper the use of a fast oscillating, variable-focus lens in a retinal projection display. The evaluation is based on a schematic eye model and on the partial coherence simulation tool SPLAT which allows us to calculate the projected retinal images of a text target. Objective image quality criteria demonstrate that the use of an oscillating lens is promising provided that partially coherent illumination light is used. In this case, psychometric measurements reveal that the depth of focus for reading text can be extended by a factor of up to 2.2. For fully coherent and incoherent illumination, however, the retinal images suffer from structural and contrast degradation effects, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Derek; Sabondjian, Eric; Lawrence, Kailin
Purpose: To apply surface collimation for superficial flap HDR skin brachytherapy utilizing common clinical resources and to demonstrate the potential for OAR dose reduction within a clinically relevant setting. Methods: Two phantom setups were used. 3 mm lead collimation was applied to a solid slab phantom to determine appropriate geometries relating to collimation and dwell activation. The same collimation was applied to the temple of an anthropomorphic head phantom to demonstrate lens dose reduction. Each setup was simulated and planned to deliver 400 cGy to a 3 cm circular target to 3 mm depth. The control and collimated irradiations weremore » sequentially measured using calibrated radiochromic films. Results: Collimation for the slab phantom attenuated the dose beyond the collimator opening, decreasing the fall-off distances by half and reducing the area of healthy skin irradiated. Target coverage can be negatively impacted by a tight collimation margin, with the required margin approximated by the primary beam geometric penumbra. Surface collimation applied to the head phantom similarly attenuated the surrounding normal tissue dose while reducing the lens dose from 84 to 68 cGy. To ensure consistent setup between simulation and treatment, additional QA was performed including collimator markup, accounting for collimator placement uncertainties, standoff distance verification, and in vivo dosimetry. Conclusions: Surface collimation was shown to reduce normal tissue dose without compromising target coverage. Lens dose reduction was demonstrated on an anthropomorphic phantom within a clinical setting. Additional QA is proposed to ensure treatment fidelity.« less
Discovery of a Strong Lensing Galaxy Embedded in a Cluster at z = 1.62
NASA Astrophysics Data System (ADS)
Wong, Kenneth C.; Tran, Kim-Vy H.; Suyu, Sherry H.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Brodwin, Mark; Gonzalez, Anthony H.; Halkola, Aleksi; Kacprzak, Glenn G.; Koekemoer, Anton M.; Papovich, Casey J.; Rudnick, Gregory H.
2014-07-01
We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182-05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z S = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ _E=0.38+0.02-0.01 arcsec (3.2-0.1+0.2 kpc) and the total enclosed mass is M _tot (< θ _E)=1.8+0.2-0.1× 1011 M⊙ . We estimate that the cluster environment contributes ~10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θE is f_DMChab = 0.3-0.3+0.1, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f_DMSalp = -0.3-0.5+0.2). The total magnification of the source is μ _tot=2.1-0.3+0.4. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12590.
The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity
NASA Astrophysics Data System (ADS)
Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.
2009-08-01
The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA and Onboard Processing. The DEA incorpo-rates the circuit elements required for data processing, compression, and buffering. It also includes all power conversion and regulation capabilities for both the DEA and the camera head. The DEA has an 8 GB non-volatile flash memory plus 128 MB volatile storage. Images can be commanded as full-frame or sub-frame and the camera has autofocus and autoexposure capa-bilities. MAHLI can also acquire 720p, ~7 Hz high definition video. Onboard processing includes options for Bayer pattern filter interpolation, JPEG-based compression, and focus stack merging (z-stacking). Malin Space Science Systems (MSSS) built and will operate the MAHLI. Alliance Spacesystems, LLC, designed and built the lens mechanical assembly. MAHLI shares common electronics, detector, and software designs with the MSL Mars Descent Imager (MARDI) and the 2 MSL Mast Cameras (Mastcam). Pre-launch images of geologic materials imaged by MAHLI are online at: http://www.msss.com/msl/mahli/prelaunch_images/.
Probing cluster potentials through gravitational lensing of background X-ray sources
NASA Technical Reports Server (NTRS)
Refregier, A.; Loeb, A.
1996-01-01
The gravitational lensing effect of a foreground galaxy cluster, on the number count statistics of background X-ray sources, was examined. The lensing produces a deficit in the number of resolved sources in a ring close to the critical radius of the cluster. The cluster lens can be used as a natural telescope to study the faint end of the (log N)-(log S) relation for the sources which account for the X-ray background.
Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng
2012-09-01
One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.
Spider Silk: Mother Nature's Bio-Superlens
NASA Astrophysics Data System (ADS)
Monks, James N.; Yan, Bing; Hawkins, Nicholas; Vollrath, Fritz; Wang, Zengbo
2016-09-01
This paper demonstrates a possible new microfiber bio near field lens that uses minor ampullate spider silk,spun from the Nephila edulis spider, to create a real time image of a surface using near field optical techniques. The microfiber bio lens is the world's first natural superlens created by exploring biological materials. The resolution of the surface image overcomes the diffraction limit, with the ability to resolve patterns at 100 nm under a standard white light source in reflection mode. This resolution offers further developments in superlens technology and paves the way for new bio optics.
Multi-image acquisition-based distance sensor using agile laser spot beam.
Riza, Nabeel A; Amin, M Junaid
2014-09-01
We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.
Entrepreneurship as a Source of Economic, Political, and Social Improvement in Sub-Saharan Africa
2015-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited ENTREPRENEURSHIP AS A SOURCE OF...COVERED Master’s Thesis 4. TITLE AND SUBTITLE ENTREPRENEURSHIP AS A SOURCE OF ECONOMIC, POLITICAL, AND SOCIAL IMPROVEMENT IN SUB-SAHARAN AFRICA 5...economic, political, and social impacts of entrepreneurship , and the development of entrepreneurship in Sub-Saharan Africa was studied through the lens of
Functionalised Polysiloxanes as Injectable, In Situ Curable Accommodating Intraocular Lenses
Hao, Xiaojuan; Jeffery, Justine L.; Wilkie, John S.; Meijs, Gordon; Clayton, Anthony; Watling, Jason; Ho, Arthur; Fernandez, Viviana; Acosta, Carolina; Yamamoto, Hideo; Aly, Mohamed G. M.; Parel, Jean-Marie; Hughes, Timothy C.
2010-01-01
The aged eye’s ability to change focus (accommodation) may be restored by replacing the hardened natural lens with a soft gel. Functionalised polysiloxane macromonomers, designed for application as an injectable, in situ curable accommodating intraocular lens (A-IOL), were prepared via a two-step synthesis. Prepolymers were synthesised via ring opening polymerisation (ROP) of octamethylcyclotetrasiloxane (D4) and 2,4,6,8-tetramethylcyclotetrasiloxane (D4H) in toluene using trifluoromethanesulfonic acid (TfOH) as catalyst. Hexaethyldisiloxane (HEDS) was used as the end group to control the molecular weight of the prepolymers, which were then converted to macromonomers by hydrosilylation of the SiH groups with allyl methacrylate (AM) to introduce polymerisable groups. The resulting macromonomers had an injectable consistency and thus, were able to be injected into and refill the empty lens capsular bag. The macromonomers also contained a low ratio of polymerisable groups so that they may be cured on demand, in situ, under irradiation of blue light, in the presence of a photo-initiator, to form a soft polysiloxane gel (an intraocular lens) in the eye. The pre-cure viscosity and post-cure modulus of the polysiloxanes, which are crucial factors for an injectable, in situ curable A-IOL application, were controlled by adjusting the end group and D4H concentrations, respectively, in the ROP. The macromonomers were fully cured within 5 minutes under light irradiation, as shown by the rapid change in modulus monitored by photorheology. Ex vivo primate lens stretching experiments on an Ex Vivo Accommodation Simulator (EVAS) showed that the polysiloxane gel refilled lenses achieved over 60% of the accommodation amplitude of the natural lens. An in vivo biocompatibility study in rabbits using the lens refilling (Phaco-Ersatz) procedure demonstrated that the soft gels were biocompatible with the ocular tissue. The polysiloxane macromonomers meet the targeted optical and mechanical properties of a young natural crystalline lens and show promise as candidate materials for use as injectable, in situ curable A-IOLs for lens refilling procedures. PMID:20692702
Galaxy mergers and gravitational lens statistics
NASA Technical Reports Server (NTRS)
Rix, Hans-Walter; Maoz, Dan; Turner, Edwin L.; Fukugita, Masataka
1994-01-01
We investigate the impact of hierarchical galaxy merging on the statistics of gravitational lensing of distant sources. Since no definite theoretical predictions for the merging history of luminous galaxies exist, we adopt a parameterized prescription, which allows us to adjust the expected number of pieces comprising a typical present galaxy at z approximately 0.65. The existence of global parameter relations for elliptical galaxies and constraints on the evolution of the phase space density in dissipationless mergers, allow us to limit the possible evolution of galaxy lens properties under merging. We draw two lessons from implementing this lens evolution into statistical lens calculations: (1) The total optical depth to multiple imaging (e.g., of quasars) is quite insensitive to merging. (2) Merging leads to a smaller mean separation of observed multiple images. Because merging does not reduce drastically the expected lensing frequency, it cannot make lambda-dominated cosmologies compatible with the existing lensing observations. A comparison with the data from the Hubble Space Telescope (HST) Snapshot Survey shows that models with little or no evolution of the lens population are statistically favored over strong merging scenarios. A specific merging scenario proposed to Toomre can be rejected (95% level) by such a comparison. Some versions of the scenario proposed by Broadhurst, Ellis, & Glazebrook are statistically acceptable.
Earth Observations taken by the Expedition 15 Crew
2007-05-30
ISS015-E-10118 (30 May 2007) --- A close-up view of an area of an iceberg in the South Atlantic Ocean is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. This iceberg illustrates the remains of a giant iceberg -- designated A22A that broke off Antarctica in 2002. This is one of the largest icebergs to drift as far north as 50 degrees south latitude, bringing it beneath the daylight path of the station. Crewmembers aboard the orbital complex were able to locate the ice mass and photograph it, despite great cloud masses of winter storms in the Southern Ocean. Dimensions of A22A in early June were 49.9 x 23.4 kilometers, giving it an area of 622 square kilometers, or seven times the area of Manhattan Island. Once the station crew had located the iceberg, they managed to image it successfully with the "long" 800-mm lens. Handling the longer lens requires practice: with the speed of movement of the spacecraft and the length of the lens, it is necessary to "track" the target, which is, swinging the camera slowly to keep the target in the middle of the view finder. If you track too slowly or too fast, the image looks smeared. As in this image, the long lens only shows a small part of the iceberg. A series of parallel lines, termed "hummocks", can be seen. These hummocks are probably dunes of snow that have become solidified, and date back to the time when the iceberg was connected to Antarctica. A developing fracture in the ice is also visible at upper left.
Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.
Wang, Zhen; Schey, Kevin L
2015-12-01
Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.
Electro-optically actuated liquid-lens zoom
NASA Astrophysics Data System (ADS)
Pütsch, O.; Loosen, P.
2012-06-01
Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.
Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.
Brauers, Johannes; Aach, Til
2011-02-01
High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.
SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Rensselaer Polytechnic Inst., Troy, NY; Liu, T
Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, andmore » the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)« less
Common path ball lens probe for optical coherence tomography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo J.
2016-02-01
Background: Common path probes are highly desirable for optical coherence tomography (OCT) as they reduce system complexity and cost. In this work we report an all-fiber common path side viewing monolithic probe for coronary artery imaging. Methods: Our common path probe was designed for spectrometer based Fourier domain OCT at 1310 nm wavelength. Light from the fiber expands in the coreless fiber region and then focussed by the ball lens. Reflection from ball lens-air interface served as reference signal. The monolithic ball lens probe was assembled within a 560 µmouter diameter drive shaft which was attached to a rotary junction. The drive shaft was placed inside an outer, transparent sheath of 800 µm diameter. Results: With a source input power of 25 mW, we could achieve sensitivity of 100.5 dB. The axial resolution of the system was found to be 15.6 µm in air and the lateral resolution (full width half maximum) was approximately 49 µm. As proof of principal, images of skin acquired using this probe demonstrated clear visualization of the stratum corneum, epidermis, and papillary dermis, along with sweat ducts. Conclusion: In this work we have demonstrated a monolithic, ball lens common, path probe for OCT imaging. The designed ball lens probe is easy to fabricate using a laser splicer. Based on the features and capability of common path probes to provide a simpler solution for OCT, we believe that this development will be an important enhancement for certain types of catheters.
The performance of magnetic lens for focusing VCN-SANS
NASA Astrophysics Data System (ADS)
Nop Collaboration; Yamada, M.; Iwashita, Y.; Kanaya, T.; Ichikawa, M.; Tongu, H.; Kennedy, S. J.; Shimizu, H. M.; Mishima, K.; Yamada, N. L.; Hirota, K.; Carpenter, J. M.; Lal, J.; Andersen, K.; Geltenbort, P.; Guerard, B.; Manzin, G.; Hino, M.; Kitaguchi, M.; Bleuel, M.; NOP Collaboration
2011-04-01
We have developed a prototype rotating-permanent magnet sextupole lens (named rot-PMSx) for more efficient experiments with neutron beams in time of flight (ToF) mode. This lens can modulate the focusing strength over range 1.5×104T/m2⩽g‧⩽5.9×104T/m2. Synchronization between the modulation and the beam pulse produces a focused beam without significant chromatic aberration. We anticipate that this lens could be utilized in focusing small angle neutron scattering (SANS) instruments for novel approach to high resolution SANS.We carried out experiments testing the principle of this lens at the very cold neutron (VCN) beamline (PF2) at Institut Laue-Langevin (ILL), France. The focused beam image size at the detector was kept constant at the same beam size as the source (≈3mm) over a wavelength range of 30Å⩽λ⩽48Å in focal length of ≈1.14m. The flux gain was about 12 relative to a beam without focusing, and the depth of focus was quite large. These results show the good performance of this lens and the system. Thereupon we have demonstrated the performance of this test bed for high resolution focusing of VCN-SANS for a well-studied softmatter sample; a deuterium oxide solution of Pluronic F127, an (PEO)100(PPO)65(PEO)100 tri-block copolymer in deuterium oxide. The results of the focusing experiment and the focusing VCN-SANS are presented.
Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes.
Schaeffel, Frank
2008-05-01
Tilt and decentration of the natural crystalline lens affect optical quality of the foveal image. However, little is known about the distributions of these variables in healthy subjects with phakic eyes and about their correlations in both eyes. A simple, portable, easy-to-use, and partially automated device was developed to study lens tilt and decentration in both eyes of 11 healthy subjects with phakic eyes. The first, third, and fourth Purkinje images (P1, P3, P4) were visualized using a single infrared (IR) light-emitting diode (LED), a planar lens (F = 85 mm; f/number of 1.4), and an infrared sensitive analog video camera. Software was developed to mark pupil edges and positions of P1, P4, and P3 with the cursor of the computer mouse, for three different gaze positions, and an automated regression analysis determined the gaze position that superimposed the third and fourth Purkinje images, the gaze direction for which the lens was oriented perpendicularly to the axis of the IR LED. In this position, lens decentration was determined as the linear distance of the superimposed P3/P4 positions from the pupil center. Contrary to previous approaches, a short initial fixation of a green LED with known angular position calibrated the device as a gaze tracker, and no further positional information was necessary on fixation targets. Horizontal and vertical kappa, horizontal and vertical lens tilt, and vertical lens decentration were highly correlated in both eyes of the subjects, whereas horizontal decentration of the lens was not. There was a large variability of kappa (average horizontal kappa -1.63 degrees +/- 1.77 degrees [left eyes] and +2.07 degrees +/- 2.68 degrees [right eyes]; average vertical kappa +2.52 degrees +/- 1.30 degrees [left eyes] and +2.77 degrees +/- 1.65 degrees [right eyes]). Standard deviation from three repeated measurements ranged from 0.28 degrees to 0.51 degrees for kappa, 0.36 degrees to 0.91 degrees for horizontal lens tilt, and 0.36 degrees to 0.48 degrees for vertical lens tilt. Decentration was measured with standard deviations ranging from 0.02 mm to 0.05 mm. All lenses were found tilted to the temporal side with respect to the fixation axis (on average by 4.6 degrees ). They were also decentered downward with respect to the pupil center by approximately 0.3 mm. Lens tilts and positions could be conveniently measured with the described portable device, a video camera with a large lens. That the lenses were tilted to the temporal side in both eyes, even if corrected for kappa, was unexpected. That they were displaced downward with respect to the pupil center could be related to gravity.
Broadband and flexible acoustic focusing by metafiber bundles
NASA Astrophysics Data System (ADS)
Sun, Hong-Xiang; Chen, Jia-He; Ge, Yong; Yuan, Shou-Qi; Liu, Xiao-Jun
2018-06-01
We report a broadband and flexible acoustic focusing through metafiber bundles in air, in which each metafiber consists of eight circular and narrow rectangular cavities. The fractional bandwidth of the acoustic focusing could reach about 0.2, which arises from the eigenmodes of the metafiber structure. Besides, owing to the flexible characteristic of the metafibers, the focus position can be manipulated by bending the metafiber bundles, and the metafiber bundles could bypass rigid scatterers inside the lens structure. More interestingly, the acoustic propagation and focusing directions can be changed by using a designed right-angled direction converter fabricated by the metafibers, and a waveform converter and a focusing lens of the cylindrical acoustic source are realized based on the metafiber bundles. The proposed focusing lens has the advantages of broad bandwidth, flexible structure, and high focusing performance, showing great potentials in versatile applications.
Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.
2016-03-21
We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused withmore » a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.« less
Learning and Best Practices for Learning in Open-Source Software Communities
ERIC Educational Resources Information Center
Singh, Vandana; Holt, Lila
2013-01-01
This research is about participants who use open-source software (OSS) discussion forums for learning. Learning in online communities of education as well as non-education-related online communities has been studied under the lens of social learning theory and situated learning for a long time. In this research, we draw parallels among these two…
Method and apparatus for calibrating a particle emissions monitor
Flower, W.L.; Renzi, R.F.
1998-07-07
The invention discloses a method and apparatus for calibrating particulate emissions monitors, in particular, sampling probes, and in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream. 6 figs.
Method and apparatus for calibrating a particle emissions monitor
Flower, William L.; Renzi, Ronald F.
1998-07-07
The instant invention discloses method and apparatus for calibrating particulate emissions monitors, in particular, and sampling probes, in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream.
Design and experimental evidence of a flat graded-index photonic crystal lens
NASA Astrophysics Data System (ADS)
Gaufillet, F.; Akmansoy, É.
2013-08-01
We report on the design and the experimental evidence of a flat graded index photonic crystal lens. The gradient has been designed so that the flat slab focuses a plane wave and so that it converts the wave issued from a point source into a plane wave. This graded-index photonic crystal lens operates as a convex lens. The gradient of index results from varying the filling factor of the photonic crystal in the direction perpendicular to that of the propagation of the electromagnetic field. The shape of the gradient of index has been designed by engineering the iso-frequency curves of the photonic crystal. As only a few layers were necessary and as graded photonic crystals may be fabricated by a variety of processes, this shows the ability of graded photonic crystals to efficiently apply for various photonic devices, from microwave range to the optical domain. 42.70.Qs Photonic bandgap materials, 78.67.Pt Optical properties of photonic structures, 41.20.Jb Electromagnetic wave propagation; radiowave propagation 84.40.Ba Antennas.
Design of compact freeform lens for application specific Light-Emitting Diode packaging.
Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng
2010-01-18
Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering.
Liu, Peng; Zhang, Yaqin; Zheng, Zhenrong; Li, Haifeng; Liu, Xu
2014-06-01
Although the ventilation system is widely employed in the operating theater, a strictly sterile surgical environment still cannot be ensured because of laminar disturbance, which is mainly caused by the surgical lighting system. Abandoning traditional products, we propose an LED surgical lighting system, which can alleviate the laminar disturbance and provide an appropriate lighting condition for surgery. It contains a certain amount of LED lens units, which are embedded in the ceiling and arranged around the air supply smallpox. The LED lens unit integrated with an LED light source and a free-form lens is required to produce a uniform circular illumination with a large tolerance to the change of lighting distance. To achieve such a dedicated lens, two free-form refractive surfaces, which are converted into two ordinary differential equations by the design method presented in this paper, are used to deflect the rays. The results show that the LED surgical lighting system can provide an excellent illumination environment for surgery, and, apparently, the laminar disturbance also can be relieved.
Principi, S; Farah, J; Ferrari, P; Carinou, E; Clairand, I; Ginjaume, M
2016-09-01
This paper aims to provide some practical recommendations to reduce eye lens dose for workers exposed to X-rays in interventional cardiology and radiology and also to propose an eye lens correction factor when lead glasses are used. Monte Carlo simulations are used to study the variation of eye lens exposure with operator position, height and body orientation with respect to the patient and the X-ray tube. The paper also looks into the efficiency of wraparound lead glasses using simulations. Computation results are compared with experimental measurements performed in Spanish hospitals using eye lens dosemeters as well as with data from available literature. Simulations showed that left eye exposure is generally higher than the right eye, when the operator stands on the right side of the patient. Operator height can induce a strong dose decrease by up to a factor of 2 for the left eye for 10-cm-taller operators. Body rotation of the operator away from the tube by 45°-60° reduces eye exposure by a factor of 2. The calculation-based correction factor of 0.3 for wraparound type lead glasses was found to agree reasonably well with experimental data. Simple precautions, such as the positioning of the image screen away from the X-ray source, lead to a significant reduction of the eye lens dose. Measurements and simulations performed in this work also show that a general eye lens correction factor of 0.5 can be used when lead glasses are worn regardless of operator position, height and body orientation. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, C.; Udalski, A.; Szymański, M. K.
2016-09-01
We present a combined analysis of the observations of the gravitational microlensing event OGLE-2015-BLG-0479 taken both from the ground and by the Spitzer Space Telescope . The light curves seen from the ground and from space exhibit a time offset of ∼13 days between the caustic spikes, indicating that the relative lens-source positions seen from the two places are displaced by parallax effects. From modeling the light curves, we measure the space-based microlens parallax. Combined with the angular Einstein radius measured by analyzing the caustic crossings, we determine the mass and distance of the lens. We find that the lensmore » is a binary composed of two G-type stars with masses of ∼1.0 M {sub ⊙} and ∼0.9 M {sub ⊙} located at a distance of ∼3 kpc. In addition, we are able to constrain the complete orbital parameters of the lens thanks to the precise measurement of the microlens parallax derived from the joint analysis. In contrast to the binary event OGLE-2014-BLG-1050, which was also observed by Spitzer, we find that the interpretation of OGLE-2015-BLG-0479 does not suffer from the degeneracy between (±, ±) and (±, ∓) solutions, confirming that the four-fold parallax degeneracy in single-lens events collapses into the two-fold degeneracy for the general case of binary-lens events. The location of the blend in the color–magnitude diagram is consistent with the lens properties, suggesting that the blend is the lens itself. The blend is bright enough for spectroscopy and thus this possibility can be checked from future follow-up observations.« less
Villegas, Eloy A; Artal, Pablo
2003-02-01
To measure the wavefront aberration at different locations in progressive-power lenses (PPL's) isolated and in situ (PPL's plus eye). A Hartmann-Shack wavefront sensor was used to measure progressive-power lenses and human eyes either independently or in combination. In each selected zone, the lens was placed and tilted accordingly to simulate natural viewing conditions. We measured 21 relevant locations across an isolated PPL (plano lens of power addition of 2 D). In six of the locations, the wavefront aberration of the eye plus PPL were obtained in two ways: (1) by direct measurement of the system and (2) by adding the individual wavefront aberrations of the eye and the lens for each appropriate zone. In every case, we obtained the wavefront aberration as Zernike polynomials expansions, the root mean square error, the point-spread function, and the Strehl ratio. Along the corridor of the PPL, third-order coma and trefoil, and astigmatism were the dominant aberrations. In areas of the PPL outside the corridor, astigmatism increased, whereas other aberrations remained similar to the lens center. Small differences were found between the direct and calculated methods used to obtain the wavefront aberration of the eye with the lens, and the possible sources of errors were discussed. In some lenses zones, the aberrations of the lens may be compensated by the particular aberrations of the eye, yielding improved optical performance over that present in the lens alone. We designed and built a wavefront sensor to perform spatially resolved aberration measurements in ophthalmic lenses, in particular in PPL's, either isolated or in combination with the eye. The aberrations appearing in the PPL were compared with those in normal aged eyes.
Mateo, Tony; Chang, Alexandre; Mofid, Yassine; Pisella, Pierre-Jean; Ossant, Frederic
2014-11-01
In ophthalmic ultrasonography the crystalline lens is known to be the main source of phase aberration, causing a significant decrease in resolution and distortion effects on axial B-scans. This paper proposes a computationally efficient method to correct the phase aberration arising from the crystalline lens, including refraction effects using a bending ray tracing approach based on Fermat's principle. This method is used as a basis to perform eye-adapted beamforming (BF), with appropriate focusing delays for a 128-element 20-MHz linear array in both emission and reception. Implementation was achieved on an in-house developed experimental ultrasound scanning device, the ECODERM. The proposed BF was tested in vitro by imaging a wire phantom through an eye phantom consisting of a synthetic gelatin lens anatomically set up in an appropriate liquid (turpentine) to approach the in vivo velocity ratio. Both extremes of accommodation shapes of the human crystalline lens were investigated. The performance of the developed BF was evaluated in relation to that in homogeneous medium and compared to a conventional delay-and-sum (DAS) BF and a second adapted BF which was simplified to ignore the lens refraction. Global expectations provided by our method with the transducer array are reviewed by an analysis quantifying both image quality and spatial fidelity, as well as the detrimental effects of a crystalline lens in conventional reconstruction. Compared to conventional array imaging, the results indicated a two-fold improvement in the lateral resolution, greater sensitivity and a considerable reduction of spatial distortions that were sufficient to envisage reliable biometry directly in B-mode, especially phakometry.
Modular Bundle Adjustment for Photogrammetric Computations
NASA Astrophysics Data System (ADS)
Börlin, N.; Murtiyoso, A.; Grussenmeyer, P.; Menna, F.; Nocerino, E.
2018-05-01
In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation) of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013) based on the Photogrammetric and Computer Vision interpretations of Brown (1971) lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.
Xu, Guan; Yuan, Jing; Li, Xiaotao; Su, Jian
2017-08-01
Vision measurement on the basis of structured light plays a significant role in the optical inspection research. The 2D target fixed with a line laser projector is designed to realize the transformations among the world coordinate system, the camera coordinate system and the image coordinate system. The laser projective point and five non-collinear points that are randomly selected from the target are adopted to construct a projection invariant. The closed form solutions of the 3D laser points are solved by the homogeneous linear equations generated from the projection invariants. The optimization function is created by the parameterized re-projection errors of the laser points and the target points in the image coordinate system. Furthermore, the nonlinear optimization solutions of the world coordinates of the projection points, the camera parameters and the lens distortion coefficients are contributed by minimizing the optimization function. The accuracy of the 3D reconstruction is evaluated by comparing the displacements of the reconstructed laser points with the actual displacements. The effects of the image quantity, the lens distortion and the noises are investigated in the experiments, which demonstrate that the reconstruction approach is effective to contribute the accurate test in the measurement system.
NASA Astrophysics Data System (ADS)
Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro
2016-03-01
The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.
Modelling the line-of-sight contribution in substructure lensing
NASA Astrophysics Data System (ADS)
Despali, Giulia; Vegetti, Simona; White, Simon D. M.; Giocoli, Carlo; van den Bosch, Frank C.
2018-04-01
We investigate how Einstein rings and magnified arcs are affected by small-mass dark-matter haloes placed along the line of sight to gravitational lens systems. By comparing the gravitational signature of line-of-sight haloes with that of substructures within the lensing galaxy, we derive a mass-redshift relation that allows us to rescale the detection threshold (i.e. lowest detectable mass) for substructures to a detection threshold for line-of-sight haloes at any redshift. We then quantify the line-of-sight contribution to the total number density of low-mass objects that can be detected through strong gravitational lensing. Finally, we assess the degeneracy between substructures and line-of-sight haloes of different mass and redshift to provide a statistical interpretation of current and future detections, with the aim of distinguishing between cold dark matter and warm dark matter. We find that line-of-sight haloes statistically dominate with respect to substructures, by an amount that strongly depends on the source and lens redshifts, and on the chosen dark-matter model. Substructures represent about 30 percent of the total number of perturbers for low lens and source redshifts (as for the SLACS lenses), but less than 10 per cent for high-redshift systems. We also find that for data with high enough signal-to-noise ratio and angular resolution, the non-linear effects arising from a double-lens-plane configuration are such that one is able to observationally recover the line-of-sight halo redshift with an absolute error precision of 0.15 at the 68 per cent confidence level.
NASA Astrophysics Data System (ADS)
Nguyen, Vinh Ngoc
Since their introduction by Mercedes Benz in the late 1990s, W-band radars operating at 76-77 GHz have found their way into more and more passenger cars. These automotive radars are typically used in adaptive cruise control, pre-collision sensing, and other driver assistance systems. While these systems are usually only about the size of two stacked cigarette packs, system size, and weight remains a concern for many automotive manufacturers. In this dissertation, I discuss how artificially structured metamaterials can be used to improve lens-based automotive radar systems. Metamaterials allow the fabrication of smaller and lighter systems, while still meeting the frequency, high gain, and cost requirements of this application. In particular, I focus on the development of planar artificial dielectric lenses suitable for use in place of the injection-molded lenses now used in many automotive radar systems. I begin by using analytic and numerical ray-tracing to compare the performance of planar metamaterial GRIN lenses to equivalent aspheric refractive lenses. I do this to determine whether metamaterials are best employed in GRIN or refractive automotive radar lenses. Through this study I find that planar GRIN lenses with the large refractive index ranges enabled by metamaterials have approximately optically equivalent performance to equivalent refractive lenses for fields of view approaching +/-20°. I also find that the uniaxial nature of most planar metamaterials does not negatively impact planar GRIN lens performance. I then turn my attention to implementing these planar GRIN lenses at W-band automotive radar frequencies. I begin by designing uniform sheets of W-band electrically-coupled LC resonator-based metamaterials. These metamaterial samples were fabricated by the Jokerst research group on glass and liquid crystal polymer (LCP) substrates and tested at Toyota Research Institute- North America (TRI-NA). When characterized at W-band frequencies, these metamaterials show material properties closely matching those predicted by full-wave simulations. Due to the high losses associated with resonant metamaterials, I shift my focus to non-resonant metamaterials. I discuss the design, fabrication, and testing of non-resonant metamaterials for fabrication on multilayer LCP printed circuit boards (PCBs). I then use these non-resonant metamaterials in a W-band planar metamaterial GRIN lens. Radiation pattern measurements show that this lens functions as a strong collimating element. Using similar lens design methods, I design a metamaterial GRIN lens from polytetrafluoroethylene-based (PTFE-based) non-resonant metamaterials. This GRIN lens is designed to match a target dielectric lens's radiation characteristics across a +/-6° field of view. Measurements at automotive radar frequencies show that this lens has approximately the same radiation characteristics as the target lens across the desired field of view. Finally, I describe the development of electrically reconfigurable metamaterials using thin-film silicon semiconductors. These silicon-based reconfigurable metamaterials were developed in close collaboration with several other researchers. My major contribution to the development of these reconfigurable metamaterials consisted of the initial metamaterial design. The Jokerst research group fabricated this initial design while TRI-NA characterized the fabricated metamaterial experimentally. Measurements showed approximately 8% variation in transmission under a 5 Volt DC bias. This variation in transmission closely matched the variation in transmission predicted by coupled electronic-electromagnetic simulation run by Yaroslav Urzhumov, one of other contributors to the development of the reconfigurable metamaterial.
NASA Astrophysics Data System (ADS)
Choi, JungHwan
In this project, an eye dosimeter was designed for monitoring occupational lens of the eye exposures targeted to interventional radiologists who are often indirectly exposed to scattered radiation from the patient while performing image-guided procedures. The dosimeter was designed with a computer-aided design software to facilitate additive manufacturing techniques to make the dosimeter. The dosimeter consisted of three separate components that are attached to the hinges and the bridge of the occupational worker's protective eyewear. The produced dosimeter was radiologically calibrated to measure the lens dose on an anthropomorphic phantom of the human head. To supplement the physical design, an algorithm was written that prompts the user to input the element responses of the dosimeter, then estimates the average angle, energy, and resulting lens dose of the exposure by comparing the input with the data acquired during the dosimeter calibration procedure. The performance of the calibrated dosimeter (and the algorithm) was evaluated according to guidelines of the American National Standards Institute, and the dosimeter demonstrated a performance that was in compliance with the standard's performance criteria which suggests that the design of the eye dosimeter is feasible.
A comparison of cosmological models using strong gravitational lensing galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng, E-mail: fmelia@email.arizona.edu, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn
2015-01-01
Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the R{sub h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, thoughmore » the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out R{sub h}=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead R{sub h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the R{sub h}=ct universe eventually emerge as the correct cosmology, its lack of any free parameters for this kind of work will provide a remarkably powerful probe of the mass structure in lensing galaxies, and a means of better understanding the origin of the bulge-halo conspiracy.« less
Cat-eye effect reflected beam profiles of an optical system with sensor array.
Gong, Mali; He, Sifeng; Guo, Rui; Wang, Wei
2016-06-01
In this paper, we propose an applicable propagation model for Gaussian beams passing through any cat-eye target instead of traditional simplification consisting of only a mirror placed at the focal plane of a lens. According to the model, the cat-eye effect of CCD cameras affected by defocus is numerically simulated. An excellent agreement of experiment results with theoretical analysis is obtained. It is found that the reflectivity distribution at the focal plane of the cat-eye optical lens has great influence on the results, while the cat-eye effect reflected beam profiles of CCD cameras show obvious periodicity.
Assessment of knowledge transfer in the context of biomechanics
NASA Astrophysics Data System (ADS)
Hutchison, Randolph E.
The dynamic act of knowledge transfer, or the connection of a student's prior knowledge to features of a new problem, could be considered one of the primary goals of education. Yet studies highlight more instances of failure than success. This dissertation focuses on how knowledge transfer takes place during individual problem solving, in classroom settings and during group work. Through the lens of dynamic transfer, or how students connect prior knowledge to problem features, this qualitative study focuses on a methodology to assess transfer in the context of biomechanics. The first phase of this work investigates how a pedagogical technique based on situated cognition theory affects students' ability to transfer knowledge gained in a biomechanics class to later experiences both in and out of the classroom. A post-class focus group examined events the students remembered from the class, what they learned from them, and how they connected them to later relevant experiences inside and outside the classroom. These results were triangulated with conceptual gains evaluated through concept inventories and pre- and post- content tests. Based on these results, the next two phases of the project take a more in-depth look at dynamic knowledge transfer during independent problem-solving and group project interactions, respectively. By categorizing prior knowledge (Source Tools), problem features (Target Tools) and the connections between them, results from the second phase of this study showed that within individual problem solving, source tools were almost exclusively derived from "propagated sources," i.e. those based on an authoritative source. This differs from findings in the third phase of the project, in which a mixture of "propagated" sources and "fabricated" sources, i.e. those based on student experiences, were identified within the group project work. This methodology is effective at assessing knowledge transfer in the context of biomechanics through evidence of the ability to identify differing patterns of how different students apply prior knowledge and make new connections between prior knowledge and current problem features in different learning situations. Implications for the use of this methodology include providing insight into not only students' prior knowledge, but also how they connect this prior knowledge to problem features (i.e. dynamic knowledge transfer). It also allows the identification of instances in which external input from other students or the instructor prompted knowledge transfer to take place. The use of this dynamic knowledge transfer lens allows the addressing of gaps in student understanding, and permits further investigations of techniques that increase instances of successful knowledge transfer.
Camera Test on Curiosity During Flight to Mars
2012-05-07
An in-flight camera check produced this out-of-focus image when NASA Mars Science Laboratory spacecraft turned on illumination sources that are part of the Curiosity rover Mars Hand Lens Imager MAHLI instrument.
Compensation of Corneal Oblique Astigmatism by Internal Optics: a Theoretical Analysis
Liu, Tao; Thibos, Larry N.
2017-01-01
Purpose Oblique astigmatism is a prominent optical aberration of peripheral vision caused by oblique incidence of rays striking the refracting surfaces of the cornea and crystalline lens. We inquired whether oblique astigmatism from these two sources should be expected, theoretically, to have the same or opposite signs across the visual field at various states of accommodation. Methods Oblique astigmatism was computed across the central visual field for a rotationally-symmetric schematic-eye using optical design software. Accommodative state was varied by altering the apical radius of curvature and separation of the biconvex lens’s two aspheric surfaces in a manner consistent with published biometry. Oblique astigmatism was evaluated separately for the whole eye, the cornea, and the isolated lens over a wide range of surface curvatures and asphericity values associated with the accommodating lens. We also computed internal oblique astigmatism by subtracting corneal oblique astigmatism from whole-eye oblique astigmatism. Results A visual field map of oblique astigmatism for the cornea in the Navarro model follows the classic, textbook description of radially-oriented axes everywhere in the field. Despite large changes in surface properties during accommodation, intrinsic astigmatism of the isolated human lens for collimated light is also radially oriented and nearly independent of accommodation both in theory and in real eyes. However, the magnitude of ocular oblique astigmatism is smaller than that of the cornea alone, indicating partial compensation by the internal optics. This implies internal oblique astigmatism (which includes wavefront propagation from the posterior surface of the cornea to the anterior surface of the lens and intrinsic lens astigmatism) must have tangentially-oriented axes. This non-classical pattern of tangential axes for internal astigmatism was traced to the influence of corneal power on the angles of incidence of rays striking the internal lens. Conclusions Partial compensation of corneal astigmatism by internal optics is due mainly to the highly converging nature of wavefronts incident upon the lens resulting from corneal refraction. The degree of compensation is quadratically dependent on eccentricity but is expected to diminish as the eye accommodates. Neutralising the cornea by index-matching defeats internal compensation, revealing classical, radially-oriented oblique astigmatism in the isolated lens. PMID:28281302
Modeling of a Variable Focal Length Flat Lens Using Left Handed Metamaterials
NASA Technical Reports Server (NTRS)
Reinert, Jason
2004-01-01
Left Handed Metamaterials (LHM) were originally purposed by Victor Veselago in1968. These substances would allow a flat structure to focus electromagnetic (EM) waves because they have a negative index of refraction. A similar structure made from conventional materials, those with a positive index of refraction, would disperse the waves. But until recently, these structures have been purely theoretical because substances with both a negative permittivity and negative permeability, material properties necessary for a negative index of refraction, do not naturally exist, Recent developments have produced a structure composed of an array of thin wires and split ring resonators that shows a negative index of refraction. area smaller than a square wavelength. How small the area is can be determined by how perfectly the lens is polished and how pure the substance is that composes the lens. These lenses must also be curved for focusing to occur. The focal length is determined by the curvature of the lens and the material. On the other hand, a flat structure made from LHM would focus light because of the effect of a negative index of refraction in Snell s law. The focal length could also be varied by simply adjusting the distance of the lens from the source of radiation. This could create many devices that are adjustable to different situations in fields such as biomedical imaging and communication. the software package XFDTD which solves Maxwell s equations in the frequency domain as well as the time domain. The program used Drude models of materials to simulate the effect of negative permittivity and negative permeability. Because of this, a LHM can be simulated as a solid block of material instead of an array of wires and split ring resonators. After a flat lens is formed, I am to examine the focusing effect of the lens and determine if a higher resolution flat lens can be developed. Traditional lenses made from conventional materials cannot focus an EM wave onto an My goal was to model LHMs and create a flat lens from them. This was to be done using
The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses
NASA Astrophysics Data System (ADS)
Shu, Yiping; Brownstein, Joel R.; Bolton, Adam S.; Koopmans, Léon V. E.; Treu, Tommaso; Montero-Dorta, Antonio D.; Auger, Matthew W.; Czoske, Oliver; Gavazzi, Raphaël; Marshall, Philip J.; Moustakas, Leonidas A.
2017-12-01
We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations confirm that 40 candidates are definite strong lenses with multiple lensed images. The foreground-lens galaxies are found to be early-type galaxies (ETGs) at redshifts 0.06–0.44, and background sources are emission-line galaxies at redshifts 0.22–1.29. As an extension of the SLACS Survey, the S4TM Survey is the first attempt to preferentially search for strong-lens systems with relatively lower lens masses than those in the pre-existing strong-lens samples. By fitting HST data with a singular isothermal ellipsoid model, we find that the total projected mass within the Einstein radius of the S4TM strong-lens sample ranges from 3 × 1010 M ⊙ to 2 × 1011 M ⊙. In Shu et al., we have derived the total stellar mass of the S4TM lenses to be 5 × 1010 M ⊙ to 1 × 1012 M ⊙. Both the total enclosed mass and stellar mass of the S4TM lenses are on average almost a factor of 2 smaller than those of the SLACS lenses, which also represent the typical mass scales of the current strong-lens samples. The extended mass coverage provided by the S4TM sample can enable a direct test, with the aid of strong lensing, for transitions in scaling relations, kinematic properties, mass structure, and dark-matter content trends of ETGs at intermediate-mass scales as noted in previous studies. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with HST program #12210.
Quasars Probing Quasars. X. The Quasar Pair Spectral Database
NASA Astrophysics Data System (ADS)
Findlay, Joseph R.; Prochaska, J. Xavier; Hennawi, Joseph F.; Fumagalli, Michele; Myers, Adam D.; Bartle, Stephanie; Chehade, Ben; DiPompeo, Michael A.; Shanks, Tom; Lau, Marie Wingyee; Rubin, Kate H. R.
2018-06-01
The rare close projection of two quasars on the sky provides the opportunity to study the host galaxy environment of a foreground quasar in absorption against the continuum emission of a background quasar. For over a decade the “Quasars probing quasars” series has utilized this technique to further the understanding of galaxy formation and evolution in the presence of a quasar at z > 2, resolving scales as small as a galactic disk and from bound gas in the circumgalactic medium to the diffuse environs of intergalactic space. Presented here is the public release of the quasar pair spectral database utilized in these studies. In addition to projected pairs at z > 2, the database also includes quasar pair members at z < 2, gravitational lens candidates, and quasars closely separated in redshift that are useful for small-scale clustering studies. In total, the database catalogs 5627 distinct objects, with 4083 lying within 5‧ of at least one other source. A spectral library contains 3582 optical and near-infrared spectra for 3028 of the cataloged sources. As well as reporting on 54 newly discovered quasar pairs, we outline the key contributions made by this series over the last 10 years, summarize the imaging and spectroscopic data used for target selection, discuss the target selection methodologies, describe the database content, and explore some avenues for future work. Full documentation for the spectral database, including download instructions, is supplied at http://specdb.readthedocs.io/en/latest/.
Monitoring the Thermal Parameters of Different Edible Oils by Using Thermal Lens Spectrometry
NASA Astrophysics Data System (ADS)
Jiménez-Pérez, J. L.; Cruz-Orea, A.; Lomelí Mejia, P.; Gutierrez-Fuentes, R.
2009-08-01
Several vegetable edible oils (sunflower, canola, soya, and corn) were used to study the thermal diffusivity of edible oils. Thermal lens spectrometry (TLS) was applied to measure the thermal properties. The results showed that the obtained thermal diffusivities with this technique have good agreement when compared with literature values. In this technique an Ar+ laser and intensity stabilized He-Ne laser were used as the heating source and probe beam, respectively. These studies may contribute to a better understanding of the physical properties of edible oils and the quality of these important foodstuffs.
Demonstration of relativistic electron beam focusing by a laser-plasma lens
Thaury, C.; Guillaume, E.; Döpp, A.; Lehe, R.; Lifschitz, A.; Ta Phuoc, K.; Gautier, J.; Goddet, J-P; Tafzi, A.; Flacco, A.; Tissandier, F.; Sebban, S.; Rousse, A.; Malka, V.
2015-01-01
Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line. PMID:25880791
Demonstration of relativistic electron beam focusing by a laser-plasma lens.
Thaury, C; Guillaume, E; Döpp, A; Lehe, R; Lifschitz, A; Ta Phuoc, K; Gautier, J; Goddet, J-P; Tafzi, A; Flacco, A; Tissandier, F; Sebban, S; Rousse, A; Malka, V
2015-04-16
Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.
Scattering of focused ultrasonic beams by cavities in a solid half-space.
Rahni, Ehsan Kabiri; Hajzargarbashi, Talieh; Kundu, Tribikram
2012-08-01
The ultrasonic field generated by a point focused acoustic lens placed in a fluid medium adjacent to a solid half-space, containing one or more spherical cavities, is modeled. The semi-analytical distributed point source method (DPSM) is followed for the modeling. This technique properly takes into account the interaction effect between the cavities placed in the focused ultrasonic field, fluid-solid interface and the lens surface. The approximate analytical solution that is available in the literature for the single cavity geometry is very restrictive and cannot handle multiple cavity problems. Finite element solutions for such problems are also prohibitively time consuming at high frequencies. Solution of this problem is necessary to predict when two cavities placed in close proximity inside a solid can be distinguished by an acoustic lens placed outside the solid medium and when such distinction is not possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.
The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less