Alternative Fuels Data Center: Benefits and Considerations of Electricity
tailpipe emissions when in all-electric mode. The life cycle emissions of an EV or PHEV depend on the low-polluting energy sources for electricity production, plug-in vehicles typically have a life cycle strong life cycle emissions benefit. Use the Vehicle Cost Calculator to compare life cycle emissions of
An ideal sealed source life-cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tompkins, Joseph Andrew
2009-01-01
In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources domore » not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they we have today. This regulation created a new regulatory framework seen as promising at the time. However, now they recognize that, despite the good intentions, the NIJWP/85 has not solved any source disposition problems. The answer to these sealed source disposition problems is to adopt a philosophy to correct these regulatory issues, determine an interim solution, execute that solution until there is a minimal backlog of sources to deal with, and then let the mechanisms they have created solve this problem into the foreseeable future. The primary philosophical tenet of the ideal sealed source life cycle follows. You do not allow the creation (or importation) of any source whose use cannot be justified, which cannot be affordably shipped, or that does not have a well-delinated and affordable disposition pathway. The path forward dictates that we fix the problem by embracing the Ideal Source Life cycle. In figure 1, we can see some of the elements of the ideal source life cycle. The life cycle is broken down into four portions, manufacture, use, consolidation, and disposition. These four arbitrary elements allow them to focus on the ideal life cycle phases that every source should go through between manufacture and final disposition. As we examine the various phases of the sealed source life cycle, they pick specific examples and explore the adoption of the ideal life cycle model.« less
Test of US Federal Life Cycle Inventory Data Interoperability
Life cycle assessment practitioners must gather data from a variety of sources. For modeling activities in the US, practitioners may wish to use life cycle inventory data from public databases and libraries provided by US government entities. An exercise was conducted to test if ...
Exploring the life cycle management of industrial solid waste in the case of copper slag.
Song, Xiaolong; Yang, Jianxin; Lu, Bin; Li, Bo
2013-06-01
Industrial solid waste has potential impacts on soil, water and air quality, as well as human health, during its whole life stages. A framework for the life cycle management of industrial solid waste, which integrates the source reduction process, is presented and applied to copper slag management. Three management scenarios of copper slag are developed: (i) production of cement after electric furnace treatment, (ii) production of cement after flotation, and (iii) source reduction before the recycling process. A life cycle assessment is carried out to estimate the environmental burdens of these three scenarios. Life cycle assessment results showed that the environmental burdens of the three scenarios are 2710.09, 2061.19 and 2145.02 Pt respectively. In consideration of the closed-loop recycling process, the environmental performance of the flotation approach excelled that of the electric furnace approach. Additionally, although flash smelting promotes the source reduction of copper slag compared with bath smelting, it did not reduce the overall environmental burdens resulting from the complete copper slag management process. Moreover, it led to the shifting of environmental burdens from ecosystem quality damage and resources depletion to human health damage. The case study shows that it is necessary to integrate the generation process into the whole life cycle of industrial solid waste, and to make an integrated assessment for quantifying the contribution of source reduction, rather than to simply follow the priority of source reduction and the hierarchy of waste management.
LCACCESS: A GLOBAL DIRECTORY OF LIFE CYCLE ASSESSMENT RESOURCES
LCAccess is an EPA-sponsored website intended to promote the use of Life Cycle Assessment (LCA) in business decision-making by faciliatating access to data sources that are useful in developing a life cycle inventory (LCI). While LCAccess does not itself contain data, it is a sea...
Life-cycle energy impacts for adapting an urban water supply system to droughts.
Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A
2017-12-15
In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply systems should consider i) climate variability and, therefore, infrastructure utilisation rate, ii) potential under-utilisation for both installed centralised and decentralised sources, and iii) the potential energy penalty for operating infrastructure well below its design capacity (e.g., the operational energy intensity of the desalination system is three times higher at low utilisation rates). This study illustrates that evaluating the life-cycle energy use and intensity of these type of supply sources without considering their realistic long-term operating scenario(s) can potentially distort and overemphasise their energy implications. To other water stressed regions, this work shows that managing long-term water demand is also important, in addition to acknowledging the energy-intensive nature of some alternative water sources. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Life cycle assessment of the infrastructure for hydrogen sources of fuel cell vehicles].
Feng, Wen; Wang, Shujuan; Ni, Weidou; Chen, Changhe
2003-05-01
In order to promote the application of life cycle assessment and provide references for China to make the project of infrastructure for hydrogen sources of fuel cell vehicles in the near future, 10 feasible plans of infrastructure for hydrogen sources of fuel cell vehicles were designed according to the current technologies of producing, storing and transporting hydrogen. Then life cycle assessment was used as a tool to evaluate the environmental performances of the 10 plans. The standard indexes of classified environmental impacts of every plan were gotten and sensitivity analysis for several parameters were carried out. The results showed that the best plan was that hydrogen will be produced by natural gas steam reforming in central factory, then transported to refuelling stations through pipelines, and filled to fuel cell vehicles using hydrogen gas at last.
Pawlak, J; Nadolna-Ałtyn, K; Szostakowska, B; Pachur, M; Podolska, M
2017-10-12
The parasite fauna of cod (Gadus morhus) is well described, but the life cycles of Baltic cod parasites are known only in general terms. Invertebrates commonly found in the stomach of cod are recognized as intermediate hosts in the life cycles of nematodes or acanthocephalans. The aim of this study was to determine the source of infection of Baltic cod with parasites found in situ in invertebrates present in the cod stomach. Our results indicate that Saduria entomon is both a source of infection of Baltic cod with parasites and an intermediate host in the life cycle of Hysterothylacium aduncum in the Baltic Sea.
Life Cycle Assessment of III-V Precursors for Photovoltaic and Semiconductor Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Kelsey A; Smith, Brittany L.; Babbitt, Callie W.
This study provides detailed information on the manufacture of III-V metal organic vapor phase epitaxy precursors through extensive literature and patent research. This data informed a cradle-to-gate life cycle assessment of these chemicals. Reported impacts include cumulative energy demand and greenhouse gas emissions. The results were interpreted to identify sources of environmental burden within the life cycle and were compared to energy demand reported in previous studies.
An Analysis of the President’s Budgetary Proposals for Fiscal Year 2006
2005-03-01
Domestic Product (Average percentage change from CBO’s baseline) Source: Congressional Budget Office. Notes: The “textbook” growth model is an...Global Insight Closed-Economy Life-Cycle Model Open-Economy Life-Cycle Model Textbook Model Memorandum: Gross National Product Open-Economy Life-Cycle...domestic product in the models . 2. Over time, however, increased investment will enlarge the capital stock, in turn reducing the pretax rate of return and
Critical Review of Elementary Flows in LCA data
Purpose Elementary flows are essential components of data used for life cycle assessment. A standard list is not used across all sources, as data providers now manage these flows independently. Elementary flows must be consistent across a life cycle inventory for accurate invent...
Sourcing Life Cycle Inventory Data
The collection and validation of quality lifecycle inventory (LCI) data can be the most difficult and time-consuming aspect of developing a life cycle assessment (LCA). Large amounts of process and production data are needed to complete the LCI. For many studies, the LCA analyst ...
EVALUATION OF PUBLIC DATABASES AS SOURCES OF DATA FOR LIFE CYCLE ASSESSMENTS
Methods to determine the environmental effects of production systems must encourage a comprehensive evaluation of all "upstream" and "downstream" effects and their interrelationships. This cradle-to-grave approach, called Life Cycle Assessment (LCA), has led to the development...
Luk, Jason M; Saville, Bradley A; MacLean, Heather L
2015-04-21
This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.
WWW.LCACCESS -- GLOBAL DIRECTORY OF LCI RESOURCES
LCAccess is a USEPA sponsored web-site intended to promote the use of Life Cycle Assessments in business decision-making by facilitating access to data sources useful in developing a life cycle inventory (LCI). While LCAccess will not itself contain data, it will be a searchable...
Application of Life Cycle Assessment on Electronic Waste Management: A Review.
Xue, Mianqiang; Xu, Zhenming
2017-04-01
Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.
Application of Life Cycle Assessment on Electronic Waste Management: A Review
NASA Astrophysics Data System (ADS)
Xue, Mianqiang; Xu, Zhenming
2017-04-01
Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.
Planning for sustainable community water systems requires a comprehensive understanding and assessment of the integrated source-drinking-wastewater systems over their life-cycles. Although traditional life cycle assessment and similar tools (e.g. footprints and emergy) have been ...
LCACCESS - GLOBAL DIRECTORY OF LCI RESOURCES
LCAccess is an EPA-sponsored web-site intended to promote the use of Life Cycle Assessment (LCA) in business decision-making by facilitating accesss to data sources that are useful in developing a life cycle inventory (LCI). While LCAccess does not itself contain data, it is a s...
WWW.LCACCESS - GLOBAL DIRECTORY OF LCI RESOURCES
LCAccess is a USEPA sponsored web-site intended to promote the use of Life Cycle Assessment in business decision-making by facilitating access to data sources useful in developing a life cycle inventory (OCI). While LCAccess will not itself contain data, it will be a searchable g...
NASA Astrophysics Data System (ADS)
Bell, Eric M.; Stokes-Draut, Jennifer R.; Horvath, Arpad
2018-02-01
Meeting agricultural demand in the face of a changing climate will be one of the major challenges of the 21st century. California is the single largest agricultural producer in the United States but is prone to extreme hydrologic events, including multi-year droughts. Ventura County is one of California’s most productive growing regions but faces water shortages and deteriorating water quality. The future of California’s agriculture is dependent on our ability to identify and implement alternative irrigation water sources and technologies. Two such alternative water sources are recycled and desalinated water. The proximity of high-value crops in Ventura County to both dense population centers and the Pacific Ocean makes it a prime candidate for alternative water sources. This study uses highly localized spatial and temporal data to assess life-cycle energy use, life-cycle greenhouse gas emissions, operational costs, applied water demand, and on-farm labor requirements for four high-value crops. A complete switch from conventional irrigation with groundwater and surface water to recycled water would increase the life-cycle greenhouse gas emissions associated with strawberry, lemon, celery, and avocado production by approximately 14%, 7%, 59%, and 9%, respectively. Switching from groundwater and surface water to desalinated water would increase life-cycle greenhouse gas emissions by 33%, 210%, 140%, and 270%, respectively. The use of recycled or desalinated water for irrigation is most financially tenable for strawberries due to their relatively high value and close proximity to water treatment facilities. However, changing strawberry packaging has a greater potential impact on life-cycle energy use and greenhouse gas emissions than switching the water source. While this analysis does not consider the impact of water quality on crop yields, previous studies suggest that switching to recycled water could result in significant yield increases due to its lower salinity.
TWRS configuration management requirement source document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, J.M.
The TWRS Configuration Management (CM) Requirement Source document prescribes CM as a basic product life-cycle function by which work and activities are conducted or accomplished. This document serves as the requirements basis for the TWRS CM program. The objective of the TWRS CM program is to establish consistency among requirements, physical/functional configuration, information, and documentation for TWRS and TWRS products, and to maintain this consistency throughout the life-cycle of TWRS and the product, particularly as changes are being made.
ENERGY AND OUR ENVIRONMENT: A SYSTEMS AND LIFE ...
This is a presentation to the North Carolina BREATE Conference on March 28, 2017. This presentation provides an overview of energy modeling capabilities in ORD, and includes examples related to scenario development, water-energy nexus, bioenergy, etc. The focus is on system approaches as well as life cycle assessment data and tools. Provide an overview of system and life cycle approaches to modeling medium to long-term changes in drivers of changes in emissions sources.
Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J
2009-08-15
Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.
Evaluation of The Operational Benefits Versus Costs of An Automated Cargo Mover
2016-12-01
logistics footprint and life-cycle cost are presented as part of this report. Analysis of modeling and simulation results identified statistically...life-cycle cost are presented as part of this report. Analysis of modeling and simulation results identified statistically significant differences...Error of Estimation. Source: Eskew and Lawler (1994). ...........................75 Figure 24. Load Results (100 Runs per Scenario
Future of lignite resources: a life cycle analysis.
Wang, Qingsong; Liu, Wei; Yuan, Xueliang; Zheng, Xiaoning; Zuo, Jian
2016-12-01
Lignite is a low-quality energy source which accounts for 13 % of China's coal reserves. It is imperative to improve the quality of lignite for large-scale utilization. To further explore and analyze the influence of various key processes on the environment and economic costs, a lignite drying and compression technology is evaluated using an integrated approach of life cycle assessment and life cycle costs. Results showed that lignite mining, direct air emissions, and electricity consumption have most significant impacts on the environment. An integrated evaluation of life cycle assessment and life cycle costs showed that the most significant contributor to the environmental impacts and economic costs was the lignite mining process. The impact of transportation and wastewater treatment process on the environment and economic costs was small enough to be ignored. Critical factors were identified for reducing the environmental and economic impacts of lignite drying and compression technology. These findings provide useful inputs for both industrial practice and policy making for exploitation, processing, and utilization of lignite resources.
Life cycle design metrics for energy generation technologies: Method, data, and case study
NASA Astrophysics Data System (ADS)
Cooper, Joyce; Lee, Seung-Jin; Elter, John; Boussu, Jeff; Boman, Sarah
A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.
Luk, Jason M; Pourbafrani, Mohammad; Saville, Bradley A; MacLean, Heather L
2013-09-17
Our study evaluates life cycle energy use and GHG emissions of lignocellulosic ethanol and bioelectricity use in U.S. light-duty vehicles. The well-to-pump, pump-to-wheel, and vehicle cycle stages are modeled. All ethanol (E85) and bioelectricity pathways have similar life cycle fossil energy use (~ 100 MJ/100 vehicle kilometers traveled (VKT)) and net GHG emissions (~5 kg CO2eq./100 VKT), considerably lower (65-85%) than those of reference gasoline and U.S. grid-electricity pathways. E85 use in a hybrid vehicle and bioelectricity use in a fully electric vehicle also have similar life cycle biomass and total energy use (~ 350 and ~450 MJ/100 VKT, respectively); differences in well-to-pump and pump-to-wheel efficiencies can largely offset each other. Our energy use and net GHG emissions results contrast with findings in literature, which report better performance on these metrics for bioelectricity compared to ethanol. The primary source of differences in the studies is related to our development of pathways with comparable vehicle characteristics. Ethanol or vehicle electrification can reduce petroleum use, while bioelectricity may displace nonpetroleum energy sources. Regional characteristics may create conditions under which either ethanol or bioelectricity may be the superior option; however, neither has a clear advantage in terms of GHG emissions or energy use.
Meta-analysis and Harmonization of Life Cycle Assessment Studies for Algae Biofuels.
Tu, Qingshi; Eckelman, Matthew; Zimmerman, Julie
2017-09-05
Algae biodiesel (BioD) and renewable diesel (RD) have been recognized as potential solutions to mitigating fossil-fuel consumption and the associated environmental issues. Life cycle assessment (LCA) has been used by many researchers to evaluate the potential environmental impacts of these algae-derived fuels, yielding a wide range of results and, in some cases, even differing on indicating whether these fuels are preferred to petroleum-derived fuels or not. This meta-analysis reviews the methodological preferences and results for energy consumption, greenhouse gas emissions, and water consumption for 54 LCA studies that considered algae BioD and RD. The significant variation in reported results can be primarily attributed to the difference in scope, assumptions, and data sources. To minimize the variation in life cycle inventory calculations, a harmonized inventory data set including both nominal and uncertainty data is calculated for each stage of the algae-derived fuel life cycle.
SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARCOT, R.A.
This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is notmore » considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.« less
Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources
NASA Astrophysics Data System (ADS)
Wilcox, J.; Kirchofer, A.
2014-12-01
Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency of 85%. The total CO2 storage potential for the alkalinity sources considered in the U.S. ranges from 1.3% to 23.7% of U.S. CO2 emissions, depending on the assumed availability of natural alkalinity sources and efficiency of the mineral carbonation processes.
Comparing the Life Cycle Energy Consumption, Global ...
Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability
KOH concentration effect on the cycle life of nickel-hydrogen cells. 4: Results of failure analyse
NASA Technical Reports Server (NTRS)
Lim, H. S.; Verzwyvelt, S. A.
1989-01-01
Effects of KOH concentrations on failure modes and mechanisms of nickel-hydrogen cells were studied using long cycled boiler plate cells containing electrolytes of various KOH concentrations ranging 21 to 36 percent. Life of these cells were up to 40,000 cycles in an accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. An interim life test results were reported earlier in J. Power Sources, 22, 213-220, 1988. The results of final life test, end-of-life cell performance, and teardown analyses are discussed. These teardown analyses included visual observations, measurements of nickel electrode capacity in an electrolyte-flooded cell, dimensional changes of cell components, SEM studies on cell cross section, BET surface area and pore volume distribution in cycled nickel electrodes, and chemical analyses. Cycle life of a nickel-hydrogen cell was improved tremendously as KOH concentration was decreased from 36 to 31 percent and from 31 to 26 percent while effect of further concentration decrease was complicated as described in our earlier report. Failure mode of high concentration (31 to 36 percent) cells was gradual capacity decrease, while that of low concentration (21 to 26 percent) cells was mainly formation of a soft short. Long cycled (25,000 to 40,000 cycles) nickel electrodes were expanded more than 50 percent of the initial value, but no correlation was found between this expansion and measured capacity. All electrodes cycled in low concentration (21 to 26 percent) cells had higher capacity than those cycled in high concentration (31 to 36 percent) cells.
EPA'S LIFE CYCLE METHODOLOGY: GUIDELINES FOR USE IN DEVELOPMENT OF PACKAGING
Approaches to reducing environmental effects of products and processes have moved steadily upstream over the years from end-of-pipe controls to source reduction and recycling of hazardous waste, and more recently, toward multimedia pollution prevention. ife Cycle Assessment (LCA)...
Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.
Spatari, Sabrina; MacLean, Heather L
2010-11-15
Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO₂ flux from land use change and N₂O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.
Life cycle water use for electricity generation: a review and harmonization of literature estimates
NASA Astrophysics Data System (ADS)
Meldrum, J.; Nettles-Anderson, S.; Heath, G.; Macknick, J.
2013-03-01
This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.
Radioisotope Power System Pool Concept
NASA Technical Reports Server (NTRS)
Rusick, Jeffrey J.; Bolotin, Gary S.
2015-01-01
Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.
Tzanidakis, Konstantinos; Oxley, Tim; Cockerill, Tim; ApSimon, Helen
2013-06-01
Integrated Assessment, and the development of strategies to reduce the impacts of air pollution, has tended to focus only upon the direct emissions from different sources, with the indirect emissions associated with the full life-cycle of a technology often overlooked. Carbon Capture and Storage (CCS) reflects a number of new technologies designed to reduce CO2 emissions, but which may have much broader environmental implications than greenhouse gas emissions. This paper considers a wider range of pollutants from a full life-cycle perspective, illustrating a methodology for assessing environmental impacts using source-apportioned effects based impact factors calculated by the national scale UK Integrated Assessment Model (UKIAM). Contrasting illustrative scenarios for the deployment of CCS towards 2050 are presented which compare the life-cycle effects of air pollutant emissions upon human health and ecosystems of business-as-usual, deployment of CCS and widespread uptake of IGCC for power generation. Together with estimation of the transboundary impacts we discuss the benefits of an effects based approach to such assessments in relation to emissions based techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.
Life Cycle Water Consumption for Shale Gas and Conventional Natural Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Corrie E.; Horner, Robert M.; Harto, Christopher B.
2013-10-15
Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13–37 L/GJ) than conventional natural gas consumes (9.3–9.6 L/GJ). However, when used as a transportation fuel, shale gasmore » consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.« less
Life cycle water consumption for shale gas and conventional natural gas.
Clark, Corrie E; Horner, Robert M; Harto, Christopher B
2013-10-15
Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.
DoD Life Cycle Management (LCM) and Product Support Manager (PSM) Rapid Deployment Training
2010-10-01
fielding, sustainment, and disposal of a DOD system across its life cycle.” (JCIDS Operation Manual) • “The PM shall be the single point of...devote more funds to development and procurement in order to modernize weapon systems . But, in fact, growth in operating and support costs has limited the...Requirements Differently could Reduce Weapon Systems ’ Total Ownership Costs The DoD “Death Spiral” (Source: Dr. Jacques S. Gansler, USD(A&T
An IMS Station life cycle from a sustainment point of view
NASA Astrophysics Data System (ADS)
Brely, Natalie; Gautier, Jean-Pierre; Foster, Daniel
2014-05-01
The International Monitoring System (IMS) is to consist of 321 monitoring facilities, composed of four different technologies with a variety of designs and equipment types, deployed in a range of environments around the globe. The International Monitoring System is conceived to operate in perpetuity through maintenance, replacement and recapitalization of IMS facilities' infrastructure and equipment when the end of service life is reached [CTBT/PTS/INF.1163]. Life Cycle techniques and modellization are being used by the PTS to plan and forecast life cycle sustainment requirements of IMS facilities. Through historical data analysis, Engineering inputs and Feedback from experienced Station Operators, the PTS currently works towards increasing the level of confidence on these forecasts and sustainment requirements planning. Continued validation, feedback and improvement of source data from scientific community and experienced users is sought and essential in order to ensure limited effect on data availability and optimal costs (human and financial).
NASA Astrophysics Data System (ADS)
Osman, Ayat E.
Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a year. A Pareto-optimal frontier is also derived, which defines the minimum cost required to achieve any level of environmental emission or primary energy usage value or inversely the minimum environmental indicator and primary energy usage value that can be achieved and the cost required to achieve that value.
Fazio, Simone; Garraín, Daniel; Mathieux, Fabrice; De la Rúa, Cristina; Recchioni, Marco; Lechón, Yolanda
2015-01-01
Under the framework of the European Platform on Life Cycle Assessment, the European Reference Life-Cycle Database (ELCD - developed by the Joint Research Centre of the European Commission), provides core Life Cycle Inventory (LCI) data from front-running EU-level business associations and other sources. The ELCD contains energy-related data on power and fuels. This study describes the methods to be used for the quality analysis of energy data for European markets (available in third-party LC databases and from authoritative sources) that are, or could be, used in the context of the ELCD. The methodology was developed and tested on the energy datasets most relevant for the EU context, derived from GaBi (the reference database used to derive datasets for the ELCD), Ecoinvent, E3 and Gemis. The criteria for the database selection were based on the availability of EU-related data, the inclusion of comprehensive datasets on energy products and services, and the general approval of the LCA community. The proposed approach was based on the quality indicators developed within the International Reference Life Cycle Data System (ILCD) Handbook, further refined to facilitate their use in the analysis of energy systems. The overall Data Quality Rating (DQR) of the energy datasets can be calculated by summing up the quality rating (ranging from 1 to 5, where 1 represents very good, and 5 very poor quality) of each of the quality criteria indicators, divided by the total number of indicators considered. The quality of each dataset can be estimated for each indicator, and then compared with the different databases/sources. The results can be used to highlight the weaknesses of each dataset and can be used to guide further improvements to enhance the data quality with regard to the established criteria. This paper describes the application of the methodology to two exemplary datasets, in order to show the potential of the methodological approach. The analysis helps LCA practitioners to evaluate the usefulness of the ELCD datasets for their purposes, and dataset developers and reviewers to derive information that will help improve the overall DQR of databases.
18 CFR 4.51 - Contents of application.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the total project as proposed specifying any projected changes in the costs (life-cycle costs) over the estimated financing or licensing period if the applicant takes such changes into account... lowest cost alternative source, specifying any projected changes in the cost of power from that source...
18 CFR 4.51 - Contents of application.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the total project as proposed specifying any projected changes in the costs (life-cycle costs) over the estimated financing or licensing period if the applicant takes such changes into account... lowest cost alternative source, specifying any projected changes in the cost of power from that source...
18 CFR 4.51 - Contents of application.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the total project as proposed specifying any projected changes in the costs (life-cycle costs) over the estimated financing or licensing period if the applicant takes such changes into account... lowest cost alternative source, specifying any projected changes in the cost of power from that source...
18 CFR 4.51 - Contents of application.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the total project as proposed specifying any projected changes in the costs (life-cycle costs) over the estimated financing or licensing period if the applicant takes such changes into account... lowest cost alternative source, specifying any projected changes in the cost of power from that source...
18 CFR 4.51 - Contents of application.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the total project as proposed specifying any projected changes in the costs (life-cycle costs) over the estimated financing or licensing period if the applicant takes such changes into account... lowest cost alternative source, specifying any projected changes in the cost of power from that source...
Life cycle assessment of biomethane use in Argentina.
Morero, Betzabet; Groppelli, Eduardo; Campanella, Enrique A
2015-04-01
Renewable substitutes for natural gas, such as biogas, require adequate treatment to remove impurities. This paper presents the life cycle and environmental impact of upgrading biogas using absorption-desorption process with three different solvents: water, diglycolamine and polyethylene glycol dimethyl ether. The results showed that water produces a minor impact in most of the considered categories, and an economic analysis showed that water is the most feasible solvent for obtaining the lowest payback period. This analysis includes three different sources for biogas production and two end uses for biomethane. The use of different wastes as sources results in different environmental impacts depending on the type of energy used in the anaerobic digestion. The same situation occurs when considering the use of biomethane as a domestic fuel or for power generation. Using energy from biogas to replace conventional energy sources in production and upgrading biogas significantly reduce the environmental impacts of processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Jiang, Li; Wang, Chunru
2015-07-01
A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e
Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems
NASA Astrophysics Data System (ADS)
Fortier, M. O. P.
2017-12-01
Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.
Al-Ghamdi, Sami G; Bilec, Melissa M
2015-04-07
This research investigates the relationship between energy use, geographic location, life cycle environmental impacts, and Leadership in Energy and Environmental Design (LEED). The researchers studied worldwide variations in building energy use and associated life cycle impacts in relation to the LEED rating systems. A Building Information Modeling (BIM) of a reference 43,000 ft(2) office building was developed and situated in 400 locations worldwide while making relevant changes to the energy model to meet reference codes, such as ASHRAE 90.1. Then life cycle environmental and human health impacts from the buildings' energy consumption were calculated. The results revealed considerable variations between sites in the U.S. and international locations (ranging from 394 ton CO2 equiv to 911 ton CO2 equiv, respectively). The variations indicate that location specific results, when paired with life cycle assessment, can be an effective means to achieve a better understanding of possible adverse environmental impacts as a result of building energy consumption in the context of green building rating systems. Looking at these factors in combination and using a systems approach may allow rating systems like LEED to continue to drive market transformation toward sustainable development, while taking into consideration both energy sources and building efficiency.
Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott
2007-09-01
The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/ LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG.
Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production.
Cerri, Carlos Eduardo Pellegrino; You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente
2017-01-01
Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42-51%) for B100 produced in integrated systems and the production stage (46-52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this study would be taken as references for accounting the environmental sustainability of soybean biodiesel within a domestic and global level.
Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production
You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente
2017-01-01
Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42–51%) for B100 produced in integrated systems and the production stage (46–52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this study would be taken as references for accounting the environmental sustainability of soybean biodiesel within a domestic and global level. PMID:28493965
NASA Astrophysics Data System (ADS)
Venkatesh, Aranya
Increasing concerns about the environmental impacts of fossil fuels used in the U.S. transportation and electricity sectors have spurred interest in alternate energy sources, such as natural gas and biofuels. Life cycle assessment (LCA) methods can be used to estimate the environmental impacts of incumbent energy sources and potential impact reductions achievable through the use of alternate energy sources. Some recent U.S. climate policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S. However, the LCA methods used to estimate potential reductions in environmental impact have some drawbacks. First, the LCAs are predominantly based on deterministic approaches that do not account for any uncertainty inherent in life cycle data and methods. Such methods overstate the accuracy of the point estimate results, which could in turn lead to incorrect and (consequent) expensive decision-making. Second, system boundaries considered by most LCA studies tend to be limited (considered a manifestation of uncertainty in LCA). Although LCAs can estimate the benefits of transitioning to energy systems of lower environmental impact, they may not be able to characterize real world systems perfectly. Improved modeling of energy systems mechanisms can provide more accurate representations of reality and define more likely limits on potential environmental impact reductions. This dissertation quantitatively and qualitatively examines the limitations in LCA studies outlined previously. The first three research chapters address the uncertainty in life cycle greenhouse gas (GHG) emissions associated with petroleum-based fuels, natural gas and coal consumed in the U.S. The uncertainty in life cycle GHG emissions from fossil fuels was found to range between 13 and 18% of their respective mean values. For instance, the 90% confidence interval of the life cycle GHG emissions of average natural gas consumed in the U.S was found to range between -8 to 9% (17%) of the mean value of 66 g CO2e/MJ. Results indicate that uncertainty affects the conclusions of comparative life cycle assessments, especially when differences in average environmental impacts between two competing fuels/products are small. In the final two research chapters of this thesis, system boundary limitations in LCA are addressed. Simplified economic dispatch models for are developed to examine changes in regional power plant dispatch that occur when coal power plants are retired and when natural gas prices drop. These models better reflect reality by estimating the order in which existing power plants are dispatched to meet electricity demand based on short-run marginal costs. Results indicate that the reduction in air emissions are lower than suggested by LCA studies, since they generally do not include the complexity of regional electricity grids, predominantly driven by comparative fuel prices. For instance, comparison, this study estimates 7-15% reductions in emissions with low natural gas prices. Although this is a significant reduction in itself, it is still lower than the benefits reported in traditional life cycle comparisons of coal and natural gas-based power (close to 50%), mainly due to the effects of plant dispatch.
Life cycle analysis of switchgrass converted via pyrolysis, gasification, and fermentation
USDA-ARS?s Scientific Manuscript database
The US is promoting and developing low carbon fuel sources. Perennial bioenergy crops such as switchgrass (Panicum virgatum L.) are one viable source for low carbon transportation fuels. The objective is to determine the net greenhouse gas (GHG) emissions from different conversion methods (pyrolysi...
Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment
NASA Astrophysics Data System (ADS)
Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.
2018-05-01
Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.
NASA Technical Reports Server (NTRS)
Macelroy, R. D. (Editor); Tibbitts, T. W. (Editor); Thompson, B. G. (Editor); Volk, T. (Editor)
1989-01-01
The present conference discusses topics in the fields of higher plant growth under controlled environmental conditions, waste oxidation, carbon cycling, and biofermentor design and operation. Attention is given to CO2 and O2 effects on the development and fructification of wheat in closed systems, transpiration during life cycle in controlled wheat growth, sources and processing of CELSS wastes, waste-recycling in bioregenerative life support, and the effect of iodine disinfection products on higher plants. Also discussed are carbon cycling by cellulose-fermenting nitrogen-fixing bacteria, a bioreactor design with sunlight supply and operations systems for use in the space environment, gas bubble coalescence in reduced gravity conditions, and model system studies of a phase-separated membrane bioreactor.
Ishii, Stephanie K L; Boyer, Treavor H
2015-08-01
Alternative approaches to wastewater management including urine source separation have the potential to simultaneously improve multiple aspects of wastewater treatment, including reduced use of potable water for waste conveyance and improved contaminant removal, especially nutrients. In order to pursue such radical changes, system-level evaluations of urine source separation in community contexts are required. The focus of this life cycle assessment (LCA) is managing nutrients from urine produced in a residential setting with urine source separation and struvite precipitation, as compared with a centralized wastewater treatment approach. The life cycle impacts evaluated in this study pertain to construction of the urine source separation system and operation of drinking water treatment, decentralized urine treatment, and centralized wastewater treatment. System boundaries include fertilizer offsets resulting from the production of urine based struvite fertilizer. As calculated by the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), urine source separation with MgO addition for subsequent struvite precipitation with high P recovery (Scenario B) has the smallest environmental cost relative to existing centralized wastewater treatment (Scenario A) and urine source separation with MgO and Na3PO4 addition for subsequent struvite precipitation with concurrent high P and N recovery (Scenario C). Preliminary economic evaluations show that the three urine management scenarios are relatively equal on a monetary basis (<13% difference). The impacts of each urine management scenario are most sensitive to the assumed urine composition, the selected urine storage time, and the assumed electricity required to treat influent urine and toilet water used to convey urine at the centralized wastewater treatment plant. The importance of full nutrient recovery from urine in combination with the substantial chemical inputs required for N recovery via struvite precipitation indicate the need for alternative methods of N recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.
Pasta, Mauro; Wessells, Colin D; Huggins, Robert A; Cui, Yi
2012-01-01
New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... a conventional simulation tool, of the Proposed Design. A life cycle cost analysis shall be used to select the fuel source for the HVAC systems, service hot water, and process loads from available...
Guidance on Data Quality Assessment for Life Cycle Inventory ...
Data quality within Life Cycle Assessment (LCA) is a significant issue for the future support and development of LCA as a decision support tool and its wider adoption within industry. In response to current data quality standards such as the ISO 14000 series, various entities within the LCA community have developed different methodologies to address and communicate the data quality of Life Cycle Inventory (LCI) data. Despite advances in this field, the LCA community is still plagued by the lack of reproducible data quality results and documentation. To address these issues, US EPA has created this guidance in order to further support reproducible life cycle inventory data quality results and to inform users of the proper application of the US EPA supported data quality system. The work for this report was begun in December 2014 and completed as of April 2016.The updated data quality system includes a novel approach to the pedigree matrix by addressing data quality at the flow and the process level. Flow level indicators address source reliability, temporal correlation, geographic correlation, technological correlation and data sampling methods. The process level indicators address the level of review the unit process has undergone and its completeness. This guidance is designed to be updatable as part of the LCA Research Center’s continuing commitment to data quality advancements. Life cycle assessment is increasingly being used as a tool to identify areas of
Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.
Tiwary, Abhishek; Colls, Jeremy
2010-01-01
This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems.
Life cycle greenhouse gas emissions of sugar cane renewable jet fuel.
Moreira, Marcelo; Gurgel, Angelo C; Seabra, Joaquim E A
2014-12-16
This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.
Patterns of Genetic Variation among Populations of the Asian Longhorned Beetle in China and Korea
USDA-ARS?s Scientific Manuscript database
Central to the study of invasive species is identifying source populations in their native ranges. Source populations of invasive species can provide important information about species life cycles, host use and species-specific predators and parasites which could be deployed in a pest control prog...
Growth phenology of coast Douglas-fir seed sources planted in diverse environments
Peter J. Gould; Constance A. Harrington; J. Bradley St. Clair
2012-01-01
The timing of periodic life cycle events in plants (phenology) is an important factor determining how species and populations will react to climate change. We evaluated annual patterns of basal-area and height growth of coast Douglas-fir (Pseudotusuga menziesii var. menziesii (Mirb.) Franco) seedlings from four seed sources...
"ATLAS" Advanced Technology Life-cycle Analysis System
NASA Technical Reports Server (NTRS)
Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.
2004-01-01
Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL
Use of Life Cycle Assessment in Environmental Management
NASA Astrophysics Data System (ADS)
Ross, Stuart; Evans, David
2002-01-01
The aim of this paper is to demonstrate how life cycle assessment (LCA) can be used to develop strategic policies that can lead to a minimization of the environmental burden resulting from the provision of services or the manufacture, use, and disposal of products within the economy. We accomplish this aim by presenting a case study that evaluates the greenhouse gas contributions of each stage in the life cycle of containerboard packaging and the potential impact on emissions of various policy options available to decision-makers. Our analysis showed that, in general, the most useful strategy was to recycle the used packaging. However, our analysis also indicated that when measures are taken to eliminate sources of methane emissions, then recycling is no longer beneficial from a greenhouse perspective. This is because the process energy required in the form of gas and electricity is substantially greater for containerboard manufactured from recycled material than it is for virgin fiber.
NASA Astrophysics Data System (ADS)
Romagnoli, Francesco; Blumberga, Dagnija; Gigli, Emanuele
2010-01-01
The main goal of this paper is to analyze the innovative process of production of biogas (via fermentation processes) using marine macroalgae as feedstock in a pilot project plant in Augusta (Sicily, Italy). Algae, during their growth, have the capacity to assimilate nutrients and thus subsequent harvesting of the algal biomass recovers the nutrients from biowaste sources giving the possibility to transform negative environmental externalities in positive mainly in terms of eutrophication and climate change impact categories. The paper presents a novel environmental technology for the production of biogas and 2nd generation biofuel (liquid biomethane) after an upgrading process through the use of a cryogenic technology. The paper would also like to make the first attempt at understanding the possibility to implement this innovative technology in the Latvian context. The first calculations and assumptions for the Life Cycle Inventory for a further Life Cycle Assessment are presented.
Nanotechnology for environmentally sustainable electromobility
NASA Astrophysics Data System (ADS)
Ellingsen, Linda Ager-Wick; Hung, Christine Roxanne; Majeau-Bettez, Guillaume; Singh, Bhawna; Chen, Zhongwei; Whittingham, M. Stanley; Strømman, Anders Hammer
2016-12-01
Electric vehicles (EVs) powered by lithium-ion batteries (LIBs) or proton exchange membrane hydrogen fuel cells (PEMFCs) offer important potential climate change mitigation effects when combined with clean energy sources. The development of novel nanomaterials may bring about the next wave of technical improvements for LIBs and PEMFCs. If the next generation of EVs is to lead to not only reduced emissions during use but also environmentally sustainable production chains, the research on nanomaterials for LIBs and PEMFCs should be guided by a life-cycle perspective. In this Analysis, we describe an environmental life-cycle screening framework tailored to assess nanomaterials for electromobility. By applying this framework, we offer an early evaluation of the most promising nanomaterials for LIBs and PEMFCs and their potential contributions to the environmental sustainability of EV life cycles. Potential environmental trade-offs and gaps in nanomaterials research are identified to provide guidance for future nanomaterial developments for electromobility.
Well-to-refinery emissions and net-energy analysis of China's crude-oil supply
NASA Astrophysics Data System (ADS)
Masnadi, Mohammad S.; El-Houjeiri, Hassan M.; Schunack, Dominik; Li, Yunpo; Roberts, Samori O.; Przesmitzki, Steven; Brandt, Adam R.; Wang, Michael
2018-03-01
Oil is China's second-largest energy source, so it is essential to understand the country's greenhouse gas emissions from crude-oil production. Chinese crude supply is sourced from numerous major global petroleum producers. Here, we use a per-barrel well-to-refinery life-cycle analysis model with data derived from hundreds of public and commercial sources to model the Chinese crude mix and the upstream carbon intensities and energetic productivity of China's crude supply. We generate a carbon-denominated supply curve representing Chinese crude-oil supply from 146 oilfields in 20 countries. The selected fields are estimated to emit between 1.5 and 46.9 g CO2eq MJ-1 of oil, with volume-weighted average emissions of 8.4 g CO2eq MJ-1. These estimates are higher than some existing databases, illustrating the importance of bottom-up models to support life-cycle analysis databases. This study provides quantitative insight into China's energy policy and the economic and environmental implications of China's oil consumption.
NASA Astrophysics Data System (ADS)
Archambault, B.; Rivot, E.; Savina, M.; Le Pape, O.
2018-02-01
Exploited coastal-nursery-dependent fish species are subject to various stressors occurring at specific stages of the life cycle: climate-driven variability in hydrography determines the success of the first eggs/larvae stages; coastal nursery habitat suitability controls juvenile growth and survival; and fisheries target mostly adults. A life cycle approach was used to quantify the relative influence of these stressors on the Eastern English Channel (EEC) population of the common sole (Solea solea), a coastal-nursery-dependent flatfish population which sustains important fisheries. The common sole has a complex life cycle: after eggs hatch, larvae spend several weeks drifting in open water. Survivors go on to metamorphose into benthic fish. Juveniles spend the first two years of their life in coastal and estuarine nurseries. Close to maturation, they migrate to deeper areas, where different subpopulations supplied by different nurseries reproduce and are exploited by fisheries. A spatially structured age-and stage-based hierarchical Bayesian model integrating various aspects of ecological knowledge, data sources and expert knowledge was built to quantitatively describe this complex life cycle. The model included the low connectivity among three subpopulations in the EEC, the influence of hydrographic variability, the availability of suitable juvenile habitat and fisheries. Scenarios were designed to quantify the effects of interacting stressors on population renewal. Results emphasized the importance of coastal nursery habitat availability and quality for the population renewal. Realistic restoration scenarios of the highly degraded Seine estuary produced a two-third increase in catch potential for the adjacent subpopulation. Fisheries, however, remained the main source of population depletion. Setting fishing mortality to the maximum sustainable yield led to substantial increases in biomass (+100%) and catch (+33%) at the EEC scale. The approach also showed how climate-driven variability in hydrography is likely to interact with human pressures, e.g., overfishing increased the sensitivity to unfavourable conditions. Our results provided insights into the dynamics of numerous exploited coastal-nursery-dependent species while paving the way toward more robust advice for sustainable management of these resources.
Resurreccion, Eleazer P; Colosi, Lisa M; White, Mark A; Clarens, Andres F
2012-12-01
Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results. Copyright © 2012 Elsevier Ltd. All rights reserved.
2015-01-01
The healthcare sector is a driver of economic growth in the U.S., with spending on healthcare in 2012 reaching $2.8 trillion, or 17% of the U.S. gross domestic product, but it is also a significant source of emissions that adversely impact environmental and public health. The current state of the healthcare industry offers significant opportunities for environmental efficiency improvements, potentially leading to reductions in costs, resource use, and waste without compromising patient care. However, limited research exists that can provide quantitative, sustainable solutions. The operating room is the most resource-intensive area of a hospital, and surgery is therefore an important focal point to understand healthcare-related emissions. Hybrid life cycle assessment (LCA) was used to quantify environmental emissions from four different surgical approaches (abdominal, vaginal, laparoscopic, and robotic) used in the second most common major procedure for women in the U.S., the hysterectomy. Data were collected from 62 cases of hysterectomy. Life cycle assessment results show that major sources of environmental emissions include the production of disposable materials and single-use surgical devices, energy used for heating, ventilation, and air conditioning, and anesthetic gases. By scientifically evaluating emissions, the healthcare industry can strategically optimize its transition to a more sustainable system. PMID:25517602
Million Trees Los Angeles: Carbon dioxide sink or source?
E.G. McPherson; A. Kendall; S. Albers
2015-01-01
This study seeks to answer the question, 'Will the Million Trees LA (MTLA) programme be a CO2 sink or source?' Using surveys, interviews, field sampling and computer simulation of tree growth and survival over a 40-year period, we developed the first process-based life cycle inventory of CO2 for a large tree...
Modeling atmospheric effects - an assessment of the problems
Douglas G. Fox
1976-01-01
Our ability to simulate atmospheric processes that affect the life cycle of pollution is reviewed. The transport process is considered on three scales (a) the near-source or single-plume dispersion problem, (b) the multiple-source dispersion problem, and (c) the long-range transport. Modeling the first of these is shown to be well within the capability of generally...
R. D. Bergman; D. L. Reed; A. M. Taylor; D. P. Harper; D. G. Hodges
2015-01-01
Developing renewable energy sources with low environmental impacts is becoming increasingly important as concerns about consuming fossil fuel sources grow. Cultivating, harvesting, drying, and densifying raw biomass feedstocks into pellets for easy handling and transport is one step forward in this endeavor. However, the corresponding environmental performances must be...
Life cycle assessment of a household solid waste source separation programme: a Swedish case study.
Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik
2011-10-01
The environmental impact of an extended property close source-separation system for solid household waste (i.e., a systems for collection of recyclables from domestic properties) is investigated in a residential area in southern Sweden. Since 2001, households have been able to source-separate waste into six fractions of dry recyclables and food waste sorting. The current system was evaluated using the EASEWASTE life cycle assessment tool. Current status is compared with an ideal scenario in which households display perfect source-separation behaviour and a scenario without any material recycling. Results show that current recycling provides substantial environmental benefits compared to a non-recycling alternative. The environmental benefit varies greatly between recyclable fractions, and the recyclables currently most frequently source-separated by households are often not the most beneficial from an environmental perspective. With optimal source-separation of all recyclables, the current net contribution to global warming could be changed to a net-avoidance while current avoidance of nutrient enrichment, acidification and photochemical ozone formation could be doubled. Sensitivity analyses show that the type of energy substituted by incineration of non-recycled waste, as well as energy used in recycling processes and in the production of materials substituted by waste recycling, is of high relevance for the attained results.
NASA Astrophysics Data System (ADS)
Rao, D.; Meredith, L. K.; Bosak, T.; Hansel, C. M.; Ono, S.; Prinn, R. G.
2012-12-01
Atmospheric hydrogen (H2) is a secondary greenhouse gas because it attenuates the removal of methane (CH4) from the atmosphere. The largest and most uncertain term in the H2 biogeochemical cycle, microbe-mediated soil uptake, is responsible for about 80% of Earth's tropospheric H2 sink. Recently, the first H2-oxidizing soil microorganisms were discovered (genus Streptomyces) whose low-threshold, high-affinity NiFe-hydrogenase functions at ambient H2 levels (approx. 530 ppb). To better understand the ecological function of this hydrogenase, we conducted a controlled laboratory study of the H2 uptake behavior in accordance with the complex life cycle development of the streptomycetes. Several strains of the genus Streptomyces containing a high-affinity NiFe- hydrogenase were isolated from soil at the Harvard Forest. The presence of this hydrogenase, detected by PCR amplification of the hydrogenase large subunit, predicted H2 uptake behavior in wild-type streptomycetes and in phylogenetically different organisms containing more distantly related versions of the gene. H2 uptake depended on the streptomyces' life cycle, reaching a maximum during spore formation. These findings reveal connections between environmental conditions, organismal life cycle, and H2 uptake. With the rise of H2-based energy sources and a potential change in the tropospheric concentration of H2, understanding the sources and sinks of this trace gas is important for the future.
Ma, Jie; Deng, Ye; Yuan, Tong; Zhou, Jizhong; Alvarez, Pedro J J
2015-03-01
GeoChip, a comprehensive gene microarray, was used to examine changes in microbial functional gene structure throughout the 4-year life cycle of a pilot-scale ethanol blend plume, including 2-year continuous released followed by plume disappearance after source removal. Canonical correlation analysis (CCA) and Mantel tests showed that dissolved O2 (which was depleted within 5 days of initiating the release and rebounded 194 days after source removal) was the most influential environmental factor on community structure. Initially, the abundance of anaerobic BTEX degradation genes increased significantly while that of aerobic BTEX degradation genes decreased. Gene abundance for N fixation, nitrification, P utilization, sulfate reduction and S oxidation also increased, potentially changing associated biogeochemical cycle dynamics. After plume disappearance, most genes returned to pre-release abundance levels, but the final functional structure significantly differed from pre-release conditions. Overall, observed successions of functional structure reflected adaptive responses that were conducive to biodegradation of ethanol-blend releases. Copyright © 2015. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampert, David J.; Cai, Hao; Wang, Zhichao
The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of amore » fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.« less
PLANNING QUALITY IN GEOSPATIAL PROJECTS
This presentation will briefly review some legal drivers and present a structure for the writing of geospatial Quality Assurance Projects Plans. In addition, the Geospatial Quality Council geospatial information life-cycle and sources of error flowchart will be reviewed.
Smetana, Sergiy; Sandmann, Michael; Rohn, Sascha; Pleissner, Daniel; Heinz, Volker
2017-12-01
The lack of protein sources in Europe could be reduced with onsite production of microalgae with autotrophic and heterotrophic systems, owing the confirmation of economic and environmental benefits. This study aimed at the life cycle assessment (LCA) of microalgae and cyanobacteria cultivation (Chlorella vulgaris and Arthrospira platensis) in autotrophic and heterotrophic conditions on a pilot industrial scale (in model conditions of Berlin, Germany) with further biomass processing for food and feed products. The comparison of analysis results with traditional benchmarks (protein concentrates) indicated higher environmental impact of microalgae protein powders. However high-moisture extrusion of heterotrophic cultivated C. vulgaris resulted in more environmentally sustainable product than pork and beef. Further optimization of production with Chlorella pyrenoidosa on hydrolyzed food waste could reduce environmental impact in 4.5 times and create one of the most sustainable sources of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Myxococcus xanthus Growth, Development, and Isolation.
Vaksman, Zalman; Kaplan, Heidi B
2015-11-03
Myxobacteria are a highly social group among the delta proteobacteria that display unique multicellular behaviors during their complex life cycle and provide a rare opportunity to study the boundary between single cells and multicellularity. These organisms are also unusual as their entire life cycle is surface associated and includes a number of social behaviors: social gliding and rippling motility, 'wolf-pack'-like predation, and self-organizing complex biostructures, termed fruiting bodies, which are filled with differentiated environmentally resistant spores. Here we present methods for the growth, maintenance, and storage of Myxococcus xanthus, the most commonly studied of the myxobacteria. We also include methods to examine various developmental and social behaviors (fruiting body and spore formation, predation, and rippling motility). As the myxobacteria, similar to the streptomycetes, are excellent sources of many characterized and uncharacterized antibiotics and other natural products, we have provided a protocol for obtaining natural isolates from a variety of environmental sources. Copyright © 2015 John Wiley & Sons, Inc.
Designing a Clinical Data Warehouse Architecture to Support Quality Improvement Initiatives.
Chelico, John D; Wilcox, Adam B; Vawdrey, David K; Kuperman, Gilad J
2016-01-01
Clinical data warehouses, initially directed towards clinical research or financial analyses, are evolving to support quality improvement efforts, and must now address the quality improvement life cycle. In addition, data that are needed for quality improvement often do not reside in a single database, requiring easier methods to query data across multiple disparate sources. We created a virtual data warehouse at NewYork Presbyterian Hospital that allowed us to bring together data from several source systems throughout the organization. We also created a framework to match the maturity of a data request in the quality improvement life cycle to proper tools needed for each request. As projects progress in the Define, Measure, Analyze, Improve, Control stages of quality improvement, there is a proper matching of resources the data needs at each step. We describe the analysis and design creating a robust model for applying clinical data warehousing to quality improvement.
Designing a Clinical Data Warehouse Architecture to Support Quality Improvement Initiatives
Chelico, John D.; Wilcox, Adam B.; Vawdrey, David K.; Kuperman, Gilad J.
2016-01-01
Clinical data warehouses, initially directed towards clinical research or financial analyses, are evolving to support quality improvement efforts, and must now address the quality improvement life cycle. In addition, data that are needed for quality improvement often do not reside in a single database, requiring easier methods to query data across multiple disparate sources. We created a virtual data warehouse at NewYork Presbyterian Hospital that allowed us to bring together data from several source systems throughout the organization. We also created a framework to match the maturity of a data request in the quality improvement life cycle to proper tools needed for each request. As projects progress in the Define, Measure, Analyze, Improve, Control stages of quality improvement, there is a proper matching of resources the data needs at each step. We describe the analysis and design creating a robust model for applying clinical data warehousing to quality improvement. PMID:28269833
Rigamonti, L; Grosso, M; Giugliano, M
2009-02-01
This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.
Changing expressions: a hypothesis for the origin of the vascular plant life cycle.
Kenrick, Paul
2018-02-05
Plant life cycles underwent fundamental changes during the initial colonization of the land in the Early Palaeozoic, shaping the direction of evolution. Fossils reveal unanticipated diversity, including new variants of meiotic cell division and leafless gametophytes with mycorrhizal-like symbioses, rhizoids, vascular tissues and stomata. Exceptional fossils from the 407-Ma Rhynie chert (Scotland) play a key role in unlocking this diversity. These fossils are reviewed against progress in our understanding of the plant tree of life and recent advances in developmental genetics. Combining data from different sources sheds light on a switch in life cycle that gave rise to the vascular plants. One crucial step was the establishment of a free-living sporophyte from one that was an obligate matrotroph borne on the gametophyte. It is proposed that this difficult evolutionary transition was achieved through expansion of gene expression primarily from the gametophyte to the sporophyte, establishing a now extinct life cycle variant that was more isomorphic than heteromorphic. These changes also linked for the first time in one developmental system rhizoids, vascular tissues and stomata, putting in place the critical components that regulate transpiration and forming a physiological platform of primary importance to the diversification of vascular plants.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Author(s).
POLLUTION PREVENTION AND LIFE CYCLE ASSESSMENT (CHAPTER 15)
Much has been accomplished internationally to establish industrial Pollution Prevention as an important component in environmental management. It includes approaches that reduce or eliminate the creation of pollutants or wastes at the source. However, the growing recognition th...
Polymorphism of Malassezia furfur.
Salkin, I F; Gordon, M A
1977-04-01
Alterations in the morphologic and physiologic characters of 11 isolates of Pityrosporum orbiculare were noted upon prolonged maintenance in pure culture. Successive subculturing of each isolate resulted in its progressive conversion from globose (P. orbiculare) through ovoid to cylindrical (P. ovale) form. Globose forms utilized neither olive oil nor Tween 20 as a sole carbon source, nor KNO3 as a sole source of nitrogen, while ovoid and cylindrical forms utilized both of these carbon sources, and one of four strains of the cylindrical form assimilated KNO3. These results suggest that P. orbiculare and P. ovale are stages in the complex developmental cycle of a single species (Malassezia furfur), but the three names should be preserved until the life cycle is more fully understood.
Field-scale forward and back diffusion through low-permeability zones
NASA Astrophysics Data System (ADS)
Yang, Minjune; Annable, Michael D.; Jawitz, James W.
2017-07-01
Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle.
Field-scale forward and back diffusion through low-permeability zones.
Yang, Minjune; Annable, Michael D; Jawitz, James W
2017-07-01
Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.
Singh, Anoop; Pant, Deepak; Korres, Nicholas E; Nizami, Abdul-Sattar; Prasad, Shiv; Murphy, Jerry D
2010-07-01
Progressive depletion of conventional fossil fuels with increasing energy consumption and greenhouse gas (GHG) emissions have led to a move towards renewable and sustainable energy sources. Lignocellulosic biomass is available in massive quantities and provides enormous potential for bioethanol production. However, to ascertain optimal biofuel strategies, it is necessary to take into account environmental impacts from cradle to grave. Life cycle assessment (LCA) techniques allow detailed analysis of material and energy fluxes on regional and global scales. This includes indirect inputs to the production process and associated wastes and emissions, and the downstream fate of products in the future. At the same time if not used properly, LCA can lead to incorrect and inappropriate actions on the part of industry and/or policy makers. This paper aims to list key issues for quantifying the use of resources and releases to the environment associated with the entire life cycle of lignocellulosic bioethanol production. Copyright 2009 Elsevier Ltd. All rights reserved.
Samaras, Constantine; Meisterling, Kyle
2008-05-01
Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.
Air Force Space Command. Space and Missile Systems Center Standard. Configuration Management
2008-06-13
Aerospace Corporation report number TOR-2006( 8583 )-1. 3. Beneficial comments (recommendations, additions, deletions) and any pertinent data that...Engineering Drawing Practices IEEE STD 610.12 Glossary of Software Engineering Terminology, September 28,1990 ISO /IEC 12207 Software Life...item, regardless of media, formally designated and fixed at a specific time during the configuration item’s life cycle. (Source: ISO /IEC 12207
Sampling and monitoring for the mine life cycle
McLemore, Virginia T.; Smith, Kathleen S.; Russell, Carol C.
2014-01-01
Sampling and Monitoring for the Mine Life Cycle provides an overview of sampling for environmental purposes and monitoring of environmentally relevant variables at mining sites. It focuses on environmental sampling and monitoring of surface water, and also considers groundwater, process water streams, rock, soil, and other media including air and biological organisms. The handbook includes an appendix of technical summaries written by subject-matter experts that describe field measurements, collection methods, and analytical techniques and procedures relevant to environmental sampling and monitoring.The sixth of a series of handbooks on technologies for management of metal mine and metallurgical process drainage, this handbook supplements and enhances current literature and provides an awareness of the critical components and complexities involved in environmental sampling and monitoring at the mine site. It differs from most information sources by providing an approach to address all types of mining influenced water and other sampling media throughout the mine life cycle.Sampling and Monitoring for the Mine Life Cycle is organized into a main text and six appendices that are an integral part of the handbook. Sidebars and illustrations are included to provide additional detail about important concepts, to present examples and brief case studies, and to suggest resources for further information. Extensive references are included.
Conceptual Framework To Extend Life Cycle Assessment ...
Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools
Life-Cycle Evaluation of Domestic Energy Systems
NASA Astrophysics Data System (ADS)
Bando, Shigeru; Hihara, Eiji
Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.
What does it mean to be an oncology nurse? Reexamining the life cycle concepts.
Cohen, Marlene Z; Ferrell, Betty R; Vrabel, Mark; Visovsky, Constance; Schaefer, Brandi
2010-09-01
To summarize the current research pertaining to the concepts initially examined by the Oncology Nursing Society Life Cycle of the Oncology Nurse Task Force and related projects completed in 1994. Published articles on the 21 concepts from the Oncology Nursing Society Life Cycle of the Oncology Nurse Task Force work. Research published in English from 1995-2009 was obtained from PubMed, CINAHL(R), PsycINFO, ISI Science, and EBSCO Health Source(R): Nursing/Academic Edition databases. Most of the concepts identified from the Oncology Nursing Society Life Cycle of the Oncology Nurse Task Force have been examined in the literature. Relationships and witnessing suffering were common concepts among studies of the meaning of oncology nursing. Nurses provide holistic care, and not surprisingly, holistic interventions have been found useful to support nurses. Interventions included storytelling, clinical support of nurses, workshops to find balance in lives, and dream work. Additional support comes from mentoring. The research identified was primarily descriptive, with very few interventions reported. Findings have been consistent over time in diverse countries. This review indicates that although the healthcare system has changed significantly in 15 years, nurses' experiences of providing care to patients with cancer have remained consistent. The need for interventions to support nurses remains.
NASA Astrophysics Data System (ADS)
Li, Mo
Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition, results suggest that the regional electricity fuel mix and volatile energy prices significantly influence the benefits of employing GSHP technologies in Minnesota from both environmental and economic perspectives. It is worthy noting that with the historically low natural gas price in 2012, the conventional system's energy bill reduction would be large enough to bring its life-cycle cost below those of the GSHPs. As a result, the environmentally favorable GSHP technologies would become economically unfavorable, unless they are additionally subsidized. Improved understanding these effects, along with design and performance characteristics of GSGP technologies specific to Minnesota's cold climate, allows better decision making among homeowners considering these technologies and policy makers providing incentives for alternative energy solutions.
Adopting Open Source Software to Address Software Risks during the Scientific Data Life Cycle
NASA Astrophysics Data System (ADS)
Vinay, S.; Downs, R. R.
2012-12-01
Software enables the creation, management, storage, distribution, discovery, and use of scientific data throughout the data lifecycle. However, the capabilities offered by software also present risks for the stewardship of scientific data, since future access to digital data is dependent on the use of software. From operating systems to applications for analyzing data, the dependence of data on software presents challenges for the stewardship of scientific data. Adopting open source software provides opportunities to address some of the proprietary risks of data dependence on software. For example, in some cases, open source software can be deployed to avoid licensing restrictions for using, modifying, and transferring proprietary software. The availability of the source code of open source software also enables the inclusion of modifications, which may be contributed by various community members who are addressing similar issues. Likewise, an active community that is maintaining open source software can be a valuable source of help, providing an opportunity to collaborate to address common issues facing adopters. As part of the effort to meet the challenges of software dependence for scientific data stewardship, risks from software dependence have been identified that exist during various times of the data lifecycle. The identification of these risks should enable the development of plans for mitigating software dependencies, where applicable, using open source software, and to improve understanding of software dependency risks for scientific data and how they can be reduced during the data life cycle.
Cooney, Gregory; Jamieson, Matthew; Marriott, Joe; Bergerson, Joule; Brandt, Adam; Skone, Timothy J
2017-01-17
The National Energy Technology Laboratory produced a well-to-wheels (WTW) life cycle greenhouse gas analysis of petroleum-based fuels consumed in the U.S. in 2005, known as the NETL 2005 Petroleum Baseline. This study uses a set of engineering-based, open-source models combined with publicly available data to calculate baseline results for 2014. An increase between the 2005 baseline and the 2014 results presented here (e.g., 92.4 vs 96.2 g CO 2 e/MJ gasoline, + 4.1%) are due to changes both in modeling platform and in the U.S. petroleum sector. An updated result for 2005 was calculated to minimize the effect of the change in modeling platform, and emissions for gasoline in 2014 were about 2% lower than in 2005 (98.1 vs 96.2 g CO 2 e/MJ gasoline). The same methods were utilized to forecast emissions from fuels out to 2040, indicating maximum changes from the 2014 gasoline result between +2.1% and -1.4%. The changing baseline values lead to potential compliance challenges with frameworks such as the Energy Independence and Security Act (EISA) Section 526, which states that Federal agencies should not purchase alternative fuels unless their life cycle GHG emissions are less than those of conventionally produced, petroleum-derived fuels.
A modular Human Exposure Model (HEM) framework to ...
Life Cycle Impact Analysis (LCIA) has proven to be a valuable tool for systematically comparing processes and products, and has been proposed for use in Chemical Alternatives Analysis (CAA). The exposure assessment portion of the human health impact scores of LCIA has historically focused on far-field sources (environmentally mediated exposures) while research has shown that use related exposures, (near-field exposures) typically dominate population exposure. Characterizing the human health impacts of chemicals in consumer products over the life cycle of these products requires an evaluation of both near-field as well far-field sources. Assessing the impacts of the near-field exposures requires bridging the scientific and technical gaps that currently prevent the harmonious use of the best available methods and tools from the fields of LCIA and human health exposure and risk assessment. The U.S. EPA’s Chemical Safety and Sustainability LC-HEM project is developing the Human Exposure Model (HEM) to assess near-field exposures to chemicals that occur to various populations over the life cycle of a commercial product. The HEM will be a publically available, web-based, modular system which will allow for the evaluation of chemical/product impacts in a LCIA framework to support CAA. We present here an overview of the framework for the modular HEM system. The framework includes a data flow diagram of in-progress and future planned modules, the definition of each mod
Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan
2014-08-05
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.
Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan
2014-01-01
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378
Checks and balances? DNA replication and the cell cycle in Plasmodium.
Matthews, Holly; Duffy, Craig W; Merrick, Catherine J
2018-03-27
It is over 100 years since the life-cycle of the malaria parasite Plasmodium was discovered, yet its intricacies remain incompletely understood - a knowledge gap that may prove crucial for our efforts to control the disease. Phenotypic screens have partially filled the void in the antimalarial drug market, but as compound libraries eventually become exhausted, new medicines will only come from directed drug development based on a better understanding of fundamental parasite biology. This review focusses on the unusual cell cycles of Plasmodium, which may present a rich source of novel drug targets as well as a topic of fundamental biological interest. Plasmodium does not grow by conventional binary fission, but rather by several syncytial modes of replication including schizogony and sporogony. Here, we collate what is known about the various cell cycle events and their regulators throughout the Plasmodium life-cycle, highlighting the differences between Plasmodium, model organisms and other apicomplexan parasites and identifying areas where further study is required. The possibility of DNA replication and the cell cycle as a drug target is also explored. Finally the use of existing tools, emerging technologies, their limitations and future directions to elucidate the peculiarities of the Plasmodium cell cycle are discussed.
Life Cycle Analysis for the Feasibility of Photovoltaic System Application in Indonesia
NASA Astrophysics Data System (ADS)
Yudha, H. M.; Dewi, T.; Risma, P.; Oktarina, Y.
2018-03-01
Electricity has become the basic need for everyone, from industry to domestic. Today electricity source still depends heavily on fossil fuels that soon will be diminished from the earth in around 50 years. This condition demands us to find the renewable energy to support our everyday life. One of the famous renewable energy sources is from solar, harnessed by energy conversion device named solar cells. Countries like Indonesia are gifted with an abundance of sunlight all the yearlong. The application of solar cells with its photovoltaic (PV) technology harnesses the sunlight and converts it into electricity. Although this technology is emerging very fast, it still has some limitation due to the current PV technology, economic feasibility, and its environmental impacts. Life cycle assessment is the method to analyze and evaluate the sustainability of PV system and its environmental impact. This paper presents literature study of PV system from the cradle to grave, it begins with the material choices (from the first generation and the possibility of the fourth generation), manufacturing process, implementation, and ends it with the after-life effect of PV modules. The result of this study will be the insights look of the PV system application in Indonesia, from the best option of material choice, the best method of application, the energy payback time, and finally the possible after life recycle of PV materials.
Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.
Burnley, Stephen; Coleman, Terry; Peirce, Adam
2015-05-01
A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (hardware). Jet fuel means fuels for use, generally in aircraft turbine engines. Life cycle cost means the... plant, or a field facility. Maintenance means activities undertaken to assure that equipment and energy... out the responsibilities assigned to it. Renewable energy sources means sunlight, wind, geothermal...
Code of Federal Regulations, 2014 CFR
2014-01-01
... (hardware). Jet fuel means fuels for use, generally in aircraft turbine engines. Life cycle cost means the... plant, or a field facility. Maintenance means activities undertaken to assure that equipment and energy... out the responsibilities assigned to it. Renewable energy sources means sunlight, wind, geothermal...
Code of Federal Regulations, 2013 CFR
2013-01-01
... (hardware). Jet fuel means fuels for use, generally in aircraft turbine engines. Life cycle cost means the... plant, or a field facility. Maintenance means activities undertaken to assure that equipment and energy... out the responsibilities assigned to it. Renewable energy sources means sunlight, wind, geothermal...
Code of Federal Regulations, 2011 CFR
2011-01-01
... (hardware). Jet fuel means fuels for use, generally in aircraft turbine engines. Life cycle cost means the... plant, or a field facility. Maintenance means activities undertaken to assure that equipment and energy... out the responsibilities assigned to it. Renewable energy sources means sunlight, wind, geothermal...
Code of Federal Regulations, 2010 CFR
2010-01-01
... (hardware). Jet fuel means fuels for use, generally in aircraft turbine engines. Life cycle cost means the... plant, or a field facility. Maintenance means activities undertaken to assure that equipment and energy... out the responsibilities assigned to it. Renewable energy sources means sunlight, wind, geothermal...
Preliminary design study of an alternate heat source assembly for a Brayton isotope power system
NASA Technical Reports Server (NTRS)
Strumpf, H. J.
1978-01-01
Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthonissen, Joke, E-mail: joke.anthonissen@uantwerpen.be; Van den bergh, Wim, E-mail: wim.vandenbergh@uantwerpen.be; Braet, Johan, E-mail: johan.braet@uantwerpen.be
This paper provides a critical review of different approaches applied in the Belgian asphalt sector in order to reduce the environmental impact of bituminous road construction works. The focus is on (1) reusing reclaimed asphalt pavement, (2) reducing the asphalt production temperature, and (3) prolonging the service life of the pavement. Environmental impact assessment of these methods is necessary to be able to compare these approaches and understand better the ability to reduce the environmental impact during the life cycle of the road pavement. Attention should be drawn to the possible shift in environmental impact between various life cycle stages,more » e.g., raw material production, asphalt production, or waste treatment. Life cycle assessment is necessary to adequately assess the environmental impact of these approaches over the entire service life of the bituminous pavement. The three approaches and their implementation in the road sector in Flanders (region in Belgium) are described and the main findings from life cycle assessment studies on these subjects are discussed. It was found from the review that using reclaimed asphalt pavement in new bituminous mixtures might yield significant environmental gains. The environmental impact of the application of warm mix asphalt technologies, on the other hand, depends on the technique used. - Highlights: • Recycling, lower production temperature and durability of asphalt are investigated. • The use of RAP in new asphalt mixtures yields significant environmental advantages. • It would be beneficial to allow RAP in asphalt mixtures for wearing courses. • The use of particular additives might counteract the environmental gain from WMA. • The service life and the environmental data source influence the LCA results.« less
NASA Technical Reports Server (NTRS)
Davis, B. K.
1974-01-01
System utilizes Freon cycle and includes boiler turbogenerator with heat exchanger, regenerator and thermal-control heat exchangers, low-pressure and boiler-feed pumps, and condenser. Exchanger may be of interest to engineers and scientists investigating new energy sources.
Life Cycle Assessment of Diesel and Electric Public Transportation Buses
The Clean Air Act identifies diesel powered motor vehicles, including transit buses, as significant sources of several criteria pollutants which contribute to ground level ozone formation or smog. The effects of air pollution in urban areas are often more significant due to con...
NASA Technical Reports Server (NTRS)
Jones, Harry
2001-01-01
Exobiochemistry is the putative biochemistry of extraterrestrial life. It suggests the possible energy and material bases of extraterrestrial life and could help detect it. The diverse biochemistry of Earth indicates that a wide range of exobiochemistry is possible on other planets. An exobiochemistry will probably use the same energy sources as Earths ecology, light, biological organic material, and more rarely abiotic chemicals. Extraterrestrial life will be based on familiar chemical principles and probably capture, store, and release energy using oxidation-reduction reactions. Extraterrestrial life will give chemical indications of its existence. Key elements will be concentrated, stored, and recycled, altering their availability and isotopic composition. Any significant departure from chemical equilibrium would be good evidence for exobiochemistry, but an integrated system of departures from the expected equilibrium would be better. Exobiochemistry can be expected to include closed biogeochemical cycles of the major life supporting elements and may well show the complex dynamic close-coupled interactions that characterize the terrestrial biosphere. Terrestrial biochemistry provides a basis for generalization and extrapolation but it does not set bounds on exobiochemistry. In exobiochemistry we can expect: 1. closed chemical cycles that recycle materials, nutrients, and catalysts, 2. organisms with complementary metabolisms that cooperate to close the chemical cycles, 3. a high probability of a carbon and water chemistry, but some possibility of a non-carbon or non-water chemistry in extreme environments, and, 4. life similar to bacteria more prevalent than higher plants and animals.
Archaea in metazoan diets: implications for food webs and biogeochemical cycling
Thurber, Andrew R; Levin, Lisa A; Orphan, Victoria J; Marlow, Jeffrey J
2012-01-01
Although the importance of trophic linkages, including ‘top-down forcing', on energy flow and ecosystem productivity is recognized, the influence of metazoan grazing on Archaea and the biogeochemical processes that they mediate is unknown. Here, we test if: (1) Archaea provide a food source sufficient to allow metazoan fauna to complete their life cycle; (2) neutral lipid biomarkers (including crocetane) can be used to identify Archaea consumers; and (3) archaeal aggregates are a dietary source for methane seep metazoans. In the laboratory, we demonstrated that a dorvilleid polychaete, Ophryotrocha labronica, can complete its life cycle on two strains of Euryarchaeota with the same growth rate as when fed bacterial and eukaryotic food. Archaea were therefore confirmed as a digestible and nutritious food source sufficient to sustain metazoan populations. Both strains of Euryarchaeota used as food sources had unique lipids that were not incorporated into O. labronica tissues. At methane seeps, sulfate-reducing bacteria that form aggregations and live syntrophically with anaerobic-methane oxidizing Archaea contain isotopically and structurally unique fatty acids (FAs). These biomarkers were incorporated into tissues of an endolithofaunal dorvilleid polychaete species from Costa Rica (mean bulk δ13C=−92±4‰ polar lipids −116‰) documenting consumption of archaeal-bacterial aggregates. FA composition of additional soft-sediment methane seep species from Oregon and California provided evidence that consumption of archaeal-bacterial aggregates is widespread at methane seeps. This work is the first to show that Archaea are consumed by heterotrophic metazoans, a trophic process we coin as ‘archivory'. PMID:22402398
Archaea in metazoan diets: implications for food webs and biogeochemical cycling.
Thurber, Andrew R; Levin, Lisa A; Orphan, Victoria J; Marlow, Jeffrey J
2012-08-01
Although the importance of trophic linkages, including 'top-down forcing', on energy flow and ecosystem productivity is recognized, the influence of metazoan grazing on Archaea and the biogeochemical processes that they mediate is unknown. Here, we test if: (1) Archaea provide a food source sufficient to allow metazoan fauna to complete their life cycle; (2) neutral lipid biomarkers (including crocetane) can be used to identify Archaea consumers; and (3) archaeal aggregates are a dietary source for methane seep metazoans. In the laboratory, we demonstrated that a dorvilleid polychaete, Ophryotrocha labronica, can complete its life cycle on two strains of Euryarchaeota with the same growth rate as when fed bacterial and eukaryotic food. Archaea were therefore confirmed as a digestible and nutritious food source sufficient to sustain metazoan populations. Both strains of Euryarchaeota used as food sources had unique lipids that were not incorporated into O. labronica tissues. At methane seeps, sulfate-reducing bacteria that form aggregations and live syntrophically with anaerobic-methane oxidizing Archaea contain isotopically and structurally unique fatty acids (FAs). These biomarkers were incorporated into tissues of an endolithofaunal dorvilleid polychaete species from Costa Rica (mean bulk δ(13)C=-92±4‰; polar lipids -116‰) documenting consumption of archaeal-bacterial aggregates. FA composition of additional soft-sediment methane seep species from Oregon and California provided evidence that consumption of archaeal-bacterial aggregates is widespread at methane seeps. This work is the first to show that Archaea are consumed by heterotrophic metazoans, a trophic process we coin as 'archivory'.
Sreekumar, Sanil; Balakrishnan, Madhesan; Goulas, Konstantinos; Gunbas, Gorkem; Gokhale, Amit A; Louie, Lin; Grippo, Adam; Scown, Corinne D; Bell, Alexis T; Toste, F Dean
2015-08-24
Life-cycle analysis (LCA) allows the scientific community to identify the sources of greenhouse gas (GHG) emissions of novel routes to produce renewable fuels. Herein, we integrate LCA into our investigations of a new route to produce drop-in diesel/jet fuel by combining furfural, obtained from the catalytic dehydration of lignocellulosic pentose sugars, with alcohols that can be derived from a variety of bio- or petroleum-based feedstocks. As a key innovation, we developed recyclable transition-metal-free hydrotalcite catalysts to promote the dehydrogenative cross-coupling reaction of furfural and alcohols to give high molecular weight adducts via a transfer hydrogenation-aldol condensation pathway. Subsequent hydrodeoxygenation of adducts over Pt/NbOPO4 yields alkanes. Implemented in a Brazilian sugarcane biorefinery such a process could result in a 53-79% reduction in life-cycle GHG emissions relative to conventional petroleum fuels and provide a sustainable source of low carbon diesel/jet fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lithium-Ion Batteries for Aerospace Applications
NASA Technical Reports Server (NTRS)
Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.
1999-01-01
This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.
Comparative life cycle assessment of disposable and reusable laryngeal mask airways.
Eckelman, Matthew; Mosher, Margo; Gonzalez, Andres; Sherman, Jodi
2012-05-01
Growing awareness of the negative impacts from the practice of health care on the environment and public health calls for the routine inclusion of life cycle criteria into the decision-making process of device selection. Here we present a life cycle assessment of 2 laryngeal mask airways (LMAs), a one-time-use disposable Unique™ LMA and a 40-time-use reusable Classic™ LMA. In life cycle assessment, the basis of comparison is called the "functional unit." For this report, the functional unit of the disposable and reusable LMAs was taken to be maintenance of airway patency by 40 disposable LMAs or 40 uses of 1 reusable LMA. This was a cradle-to-grave study that included inputs and outputs for the manufacture, transport, use, and waste phases of the LMAs. The environmental impacts of the 2 LMAs were estimated using SimaPro life cycle assessment software and the Building for Environmental and Economic Sustainability impact assessment method. Sensitivity and simple life cycle cost analyses were conducted to aid in interpretation of the results. The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital. The most important sources of impacts for the disposable LMA were the production of polymers, packaging, and waste management, whereas for the reusable LMA, washing and sterilization dominated for most impact categories. The differences in environmental impacts between these devices strongly favor reusable devices. These benefits must be weighed against concerns regarding transmission of infection. Health care facilities can decrease their environmental impacts by using reusable LMAs, to a lesser extent by selecting disposable LMA models that are not made of certain plastics, and by ordering in bulk from local distributors. Certain practices would further reduce the environmental impacts of reusable LMAs, such as increasing the number of devices autoclaved in a single cycle to 10 (-25% GHG emissions) and improving the energy efficiency of the autoclaving machines by 10% (-8% GHG emissions). For both environmental and cost considerations, management and operating procedures should be put in place to ensure that reusable LMAs are not discarded prematurely.
Golsteijn, Laura; Lessard, Lindsay; Campion, Jean-Florent; Capelli, Alexandre; D'Enfert, Virginie; King, Henry; Kremer, Joachim; Krugman, Michael; Orliac, Hélène; Furnemont, Severine Roullet; Schuh, Werner; Stalmans, Mark; O'Hanlon, Natasha Williams; Coroama, Manuela
2018-06-05
In 2013, the European Commission launched the Environmental Footprint Rules pilot phase. This initiative aims at setting specific rules for life cycle assessment (LCA: raw material sourcing, production, logistics, use- and disposal phase) studies within one product category, so called product environmental footprint category rules (PEFCR), as well as for organisations, so called organisational environmental footprint sector rules (OEFSR). Such specific rules for measuring environmental performance throughout the life cycle should facilitate the comparability between LCA studies, and provide principles for communicating the environmental performance, such as transparency, reliability, completeness, and clarity. Cosmetics Europe, the association representing the cosmetics industry in the EU, completed a voluntary study into the development of PEFCR for shampoo, generally following the guidelines and methodology developed by the European Commission for its own pilot projects. The study assessed the feasibility and relevance of establishing PEFCR for shampoo. Specifically, the study defines a large number of modelling assumptions and default values relevant for shampoo (e.g. for the functional unit, the system boundaries, default transport distances, rinsing water volumes, temperature differences, life cycle inventory data sources etc) that can be modified as appropriate, according to specificities of individual products, manufacturing companies and countries. The results of the study may be used to support internal decision-making (e.g. to identify 'hotspots' with high environmental impact and opportunities for improvement) or to meet information requests from commercial partners, consumers, media or authorities on product environmental characteristics. In addition, the shampoo study also highlighted many of the challenges and limitations of the current PEF methodology, namely its complexity and resource intensiveness. It highlighted two areas where improvements are much needed: (1) data quality and availability, and (2) impact assessment methodologies and robustness. Many of the learnings are applicable to other rinse-off cosmetic products such as shower gels, liquid soaps, bath products and hair conditioners. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Shi, Xiao-Qing; Sun, Zhao-Xin; Li, Xiao-Nuo; Li, Jin-Xiang; Yang, Jian-Xin
2015-03-01
Tailpipe emission of internal combustion engine vehicle (ICEV) is one of the main sources leading to atmospheric environmental problems such as haze. Substituting electric vehicles for conventional gasoline vehicles is an important solution for reducing urban air pollution. In 2011, as a pilot city of electric vehicle, Beijing launched a promotion plan of electric vehicle. In order to compare the environmental impacts between Midi electric vehicle (Midi EV) and Hyundai gasoline taxi (ICEV), this study created an inventory with local data and well-reasoned assumptions, and contributed a life cycle assessment (LCA) model with GaBi4.4 software and comparative life cycle environmental assessment by Life cycle impact analysis models of CML2001(Problem oriented) and EI99 (Damage oriented), which included the environmental impacts of full life cycle, manufacture phase, use phase and end of life. The sensitivity analysis of lifetime mileage and power structure was also provided. The results indicated that the full life cycle environmental impact of Midi EV was smaller than Hyundai ICEV, which was mainly due to the lower fossil fuel consumption. On the contrary, Midi EV exhibited the potential of increasing the environmental impacts of ecosystem quality influence and Human health influence. By CML2001 model, the results indicated that Midi EV might decrease the impact of Abiotic Depletion Potential, Global Warming Potential, Ozone Layer Depletion Potential and so on. However, in the production phase, the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Ozone Layer Depletion Potential, Marine Aquatic Ecotoxicity Potential, Terrestric Ecotoxicity Potential, Human Toxicity Potential of Midi EV were increased relative to Hyundai ICEV because of emissions impacts from its power system especially the battery production. Besides, in the use phase, electricity production was the main process leading to the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Marine Aquatic Ecotoxicity Potential, Freshwater Aquatic Ecotoxicity Potential, Human Toxicity Potential. While for Hyundai ICEV, gasoline production and tailpipe emission were the primary sources of environmental impact in the use phase. Tailpipe emission was a significant cause for increase in Eutrophication Potential and Global Warming Potential, and so forth. On the basis of inventory data analysis and 2010 Beijing electricity mix, the comparative results of haze-induced pollutants emissions showed that the full life cycle emissions of PM2.5, NO(x), SO(x), VOCs of Midi EV were higher than those of Hyundai ICEV, but the emission of NH3 was lower than that of Hyundai ICEV. Different emissions in use phase were the chief reason leading to this trend. In addition, by sensitivity analysis the results indicated that with the increase of lifetime mileage and proportion of cleaning energy, the rate of GHG( Green House Gas) emission reduction per kilometer of Midi EV became higher with respect to Hyundai ICEV. Haze-induced pollutants emission from EV could be significantly reduced using cleaner power energy. According to the assessment results, some management strategies aiming at electric car promotion were proposed.
Vázquez-Rowe, Ian; Villanueva-Rey, Pedro; Hospido, Almudena; Moreira, María Teresa; Feijoo, Gumersindo
2014-03-15
European pilchard or sardines (Sardina pilchardus) are an attractive raw material to extract from Iberian waters, since they constitute a cheap source of protein and they are a popular product among consumers. This has led to a wide range of final products available for consumers to purchase based on this single raw material. Therefore, this study presents a cross-product environmental assessment using life cycle assessment of three different final products based on sardine landings: canned sardines, fresh sardines and European hake caught by using sardine as bait. In addition, the products were followed throughout their entire life cycle, considering different cooking methods for each final product. Results showed high variability in environmental impacts, not only between the three final products, but also when one single product was cooked in different ways, highlighting the importance that the consumption phase and other post-landing stages may have on the final environmental profile of seafood. Results are then analysed regarding relevant limitations and uncertainties, as well as in terms of the consumer and policy implications. Copyright © 2013 Elsevier B.V. All rights reserved.
Martín-Gamboa, Mario; Iribarren, Diego; Susmozas, Ana; Dufour, Javier
2016-08-01
A novel approach is developed to evaluate quantitatively the influence of operational inefficiency in biomass production on the life-cycle performance of hydrogen from biomass gasification. Vine-growers and process simulation are used as key sources of inventory data. The life cycle assessment of biohydrogen according to current agricultural practices for biomass production is performed, as well as that of target biohydrogen according to agricultural practices optimised through data envelopment analysis. Only 20% of the vineyards assessed operate efficiently, and the benchmarked reduction percentages of operational inputs range from 45% to 73% in the average vineyard. The fulfilment of operational benchmarks avoiding irregular agricultural practices is concluded to improve significantly the environmental profile of biohydrogen (e.g., impact reductions above 40% for eco-toxicity and global warming). Finally, it is shown that this type of bioenergy system can be an excellent replacement for conventional hydrogen in terms of global warming and non-renewable energy demand. Copyright © 2016 Elsevier Ltd. All rights reserved.
Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.
Jones, Christopher H; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri M
2018-03-06
Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (<10 000 people) water systems. The objective of this study was to identify environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m 3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From a life cycle assessment perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.
Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.
Pikoń, Krzysztof; Gaska, Krzysztof
2010-07-01
Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.
NASA Astrophysics Data System (ADS)
Dolan, F.; Blaine, A. C.; Hogue, T. S.
2016-12-01
To combat the need for new sources of water in Colorado, the current research looks to produced water as a potential source. Produced water, the water produced alongside oil and gas in a well, is currently viewed as a high-volume waste product; however, this water can potentially be used to irrigate food or non-food crops after treatment. Kern County in California has been using produced water for this purpose for over 20 years and a town in Colorado has followed suit. Our research seeks to determine how Wellington, CO overcame economic, legal, social, and technological barriers in order to put produced water to beneficial use. Life cycle cost analyses of produced water in three counties in Colorado are conducted to determine the economic feasibility of using produced water for irrigation on a broad scale. The current study is chosen based on the quality and quantity of the region's produced water as well as the need for new sources of water within the county. The results of this research will help in the transition between viewing produced water as a waste product and using it as a tool to help secure Colorado's water future.
Dong, Jun; Ni, Mingjiang; Chi, Yong; Zou, Daoan; Fu, Chao
2013-08-01
In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and -86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.
Seeing Ourselves in the Global Picture: Guideposts for a Sustainable Future.
ERIC Educational Resources Information Center
Nickerson, Mike
1992-01-01
Activities are sustainable when they use materials in cycles, use reliable energy sources, and derive from human potential. Nonsustainable activities require nonrenewable resources, cause environmental degradation, require quantities of resources not available to all, and lead to extinction of other life forms. (SK)
Life cycle assessment of cellulosic and advanced biofuel crops
USDA-ARS?s Scientific Manuscript database
Estimating the carbon intensity of biofuel production is important in order to meet greenhouse gas (GHG) targets set by government policy. Nitrous oxide emissions are the largest source and soil carbon the largest sink of GHGs for determining the carbon intensity of biofuels during their production ...
Assessment and modification of an ion source grid design in KSTAR neutral beam system.
Lee, Dong Won; Shin, Kyu In; Jin, Hyung Gon; Choi, Bo Guen; Kim, Tae-Seong; Jeong, Seung Ho
2014-02-01
A new 2 MW NB (Neutral Beam) ion source for supplying 3.5 MW NB heating for the KSTAR campaign was developed in 2012 and its grid was made from OFHC (Oxygen Free High Conductivity) copper with rectangular cooling channels. However, the plastic deformation such as a bulging in the plasma grid of the ion source was found during the overhaul period after the 2012 campaign. A thermal-hydraulic and a thermo-mechanical analysis using the conventional code, ANSYS, were carried out and the thermal fatigue life assessment was evaluated. It was found that the thermal fatigue life of the OFHC copper grid was about 335 cycles in case of 0.165 MW/m(2) heat flux and it gave too short fatigue life to be used as a KSTAR NB ion source grid. To overcome the limited fatigue life of the current design, the following methods were proposed in the present study: (1) changing the OHFC copper to CuCrZr, copper-alloy or (2) adopting a new design with a pure Mo metal grid and CuCrZr tubes. It is confirmed that the proposed methods meet the requirements by performing the same assessment.
Nemo: an evolutionary and population genetics programming framework.
Guillaume, Frédéric; Rougemont, Jacques
2006-10-15
Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrissey, Elmer; O'Donnell, James; Keane, Marcus
2004-03-29
Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offeringmore » an accurate method of quantitatively assessing building performance.« less
Evolution and regulation of complex life cycles: a brown algal perspective.
Cock, J Mark; Godfroy, Olivier; Macaisne, Nicolas; Peters, Akira F; Coelho, Susana M
2014-02-01
The life cycle of an organism is one of its fundamental features, influencing many aspects of its biology. The brown algae exhibit a diverse range of life cycles indicating that transitions between life cycle types may have been key adaptive events in the evolution of this group. Life cycle mutants, identified in the model organism Ectocarpus, are providing information about how life cycle progression is regulated at the molecular level in brown algae. We explore some of the implications of the phenotypes of the life cycle mutants described to date and draw comparisons with recent insights into life cycle regulation in the green lineage. Given the importance of coordinating growth and development with life cycle progression, we suggest that the co-option of ancient life cycle regulators to control key developmental events may be a common feature in diverse groups of multicellular eukaryotes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Specialty and Systems Engineering Supplement to IEEE 15288.1
2017-08-28
requirements with a space-specific recommended practice. (8) Added Section 3.2.21, Systems Engineering Data Item Descriptions (DIDs...Systems Engineering Data Item Descriptions ........................................................ 17 4. Applicable Documents...and life cycle cost analyses. d. Alternative designs and capabilities of manufacturing are evaluated . e. Long-lead-time items, material source
Most studies of animal responses to CO2-induced ocean acidification focus on isolated individuals or uniformly aged and conditioned cohorts that lack the complexities typical of wild populations. These studies have become the primary data source for meta-analytic predictions abo...
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2017-01-01
This review brings rigorous life cycle cost (LCC) analysis into discussions about COTS program costs. We gather publicly available cost data, review the data for credibility, check for consistency among sources, and rigorously define and analyze specific cost metrics.
The Carbon Footprint of Dairy Production Systems through Partial Life Cycle Assessment
USDA-ARS?s Scientific Manuscript database
Greenhouse gas (GHG) emissions and their potential impact on the environment has become an important national and international concern. Dairy production, along with all other types of animal agriculture, is a recognized source of GHG emissions, but little information exists on the net emissions fro...
Carbon footprint and ammonia emissions of California beef production systems
USDA-ARS?s Scientific Manuscript database
Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH3) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH3 ...
Recyclable organic solar cells on cellulose nanocrystal substrates
Yinhua Zhou; Canek Fuentes-Hernandez; Talha M. Khan; Jen-Chieh Liu; James Hsu; Jae Won Shim; Amir Dindar; Jeffrey P. Youngblood; Robert J. Moon; Bernard Kippelen
2013-01-01
Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant,...
Yeast: A Research Organism for Teaching Genetics.
ERIC Educational Resources Information Center
Manney, Thomas R.; Manney, Monta L.
1992-01-01
Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)
Life cycle water footprint analysis for rapeseed derived jet fuel in North Dakota
USDA-ARS?s Scientific Manuscript database
Rapeseed is a promising feedstock source for hydroprocessed esters and fatty acids (HEFA) jet fuel production to address energy security and climate change mitigation. However, concerns have been raised about its impact on water as large scale biofuels production may place pressure on fresh water su...
Paskaleva, Elena E; Lin, Xudong; Li, Wen; Cotter, Robin; Klein, Michael T; Roberge, Emily; Yu, Er K; Clark, Bruce; Veille, Jean-Claude; Liu, Yanze; Lee, David Y-W; Canki, Mario
2006-01-01
Background The high rate of HIV-1 mutation and increasing resistance to currently available antiretroviral (ART) therapies highlight the need for new antiviral agents. Products derived from natural sources have been shown to inhibit HIV-1 replication during various stages of the virus life cycle, and therefore represent a potential source of novel therapeutic agents. To expand our arsenal of therapeutics against HIV-1 infection, we investigated aqueous extract from Sargassum fusiforme (S. fusiforme) for ability to inhibit HIV-1 infection in the periphery, in T cells and human macrophages, and for ability to inhibit in the central nervous system (CNS), in microglia and astrocytes. Results S. fusiforme extract blocked HIV-1 infection and replication by over 90% in T cells, human macrophages and microglia, and it also inhibited pseudotyped HIV-1 (VSV/NL4-3) infection in human astrocytes by over 70%. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5)-tropic HIV-1, was dose dependant and long lasting, did not inhibit cell growth or viability, was not toxic to cells, and was comparable to inhibition by the nucleoside analogue 2', 3'-didoxycytidine (ddC). S. fusiforme treatment blocked direct cell-to-cell infection spread. To investigate at which point of the virus life cycle this inhibition occurs, we infected T cells and CD4-negative primary human astrocytes with HIV-1 pseudotyped with envelope glycoprotein of vesicular stomatitis virus (VSV), which bypasses the HIV receptor requirements. Infection by pseudotyped HIV-1 (VSV/NL4-3) was also inhibited in a dose dependant manner, although up to 57% less, as compared to inhibition of native NL4-3, indicating post-entry interferences. Conclusion This is the first report demonstrating S. fusiforme to be a potent inhibitor of highly productive HIV-1 infection and replication in T cells, in primary human macrophages, microglia, and astrocytes. Results with VSV/NL4-3 infection, suggest inhibition of both entry and post-entry events of the virus life cycle. Absence of cytotoxicity and high viability of treated cells also suggest that S. fusiforme is a potential source of novel naturally occurring antiretroviral compounds that inhibit HIV-1 infection and replication at more than one site of the virus life cycle. PMID:16725040
Springsteen, Greg; Yerabolu, Jayasudhan Reddy; Nelson, Julia; Rhea, Chandler Joel; Krishnamurthy, Ramanarayanan
2018-01-08
The development of metabolic approaches towards understanding the origins of life, which have focused mainly on the citric acid (TCA) cycle, have languished-primarily due to a lack of experimentally demonstrable and sustainable cycle(s) of reactions. We show here the existence of a protometabolic analog of the TCA involving two linked cycles, which convert glyoxylate into CO 2 and produce aspartic acid in the presence of ammonia. The reactions proceed from either pyruvate, oxaloacetate or malonate in the presence of glyoxylate as the carbon source and hydrogen peroxide as the oxidant under neutral aqueous conditions and at mild temperatures. The reaction pathway demonstrates turnover under controlled conditions. These results indicate that simpler versions of metabolic cycles could have emerged under potential prebiotic conditions, laying the foundation for the appearance of more sophisticated metabolic pathways once control by (polymeric) catalysts became available.
Waste-to-energy: A review of life cycle assessment and its extension methods.
Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons
2018-01-01
This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.
10 CFR 436.12 - Life cycle cost methodology.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost methodology...
10 CFR 436.12 - Life cycle cost methodology.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost methodology...
10 CFR 436.12 - Life cycle cost methodology.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost methodology...
10 CFR 436.12 - Life cycle cost methodology.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost methodology...
10 CFR 436.19 - Life cycle costs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the...
10 CFR 436.12 - Life cycle cost methodology.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost methodology...
10 CFR 436.19 - Life cycle costs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the...
The evolution of life cycle complexity in aphids: Ecological optimization or historical constraint?
Hardy, Nate B; Peterson, Daniel A; von Dohlen, Carol D
2015-06-01
For decades, biologists have debated why many parasites have obligate multihost life cycles. Here, we use comparative phylogenetic analyses of aphids to evaluate the roles of ecological optimization and historical constraint in the evolution of life cycle complexity. If life cycle complexity is adaptive, it should be evolutionarily labile, that is, change in response to selection. We provide evidence that this is true in some aphids (aphidines), but not others (nonaphidines)-groups that differ in the intensity of their relationships with primary hosts. Next, we test specific mechanisms by which life cycle complexity could be adaptive or a constraint. We find that among aphidines there is a strong association between complex life cycles and polyphagy but only a weak correlation between life cycle complexity and reproductive mode. In contrast, among nonaphidines the relationship between life cycle complexity and host breadth is weak but the association between complex life cycles and sexual reproduction is strong. Thus, although the adaptiveness of life cycle complexity appears to be lineage specific, across aphids, life cycle evolution appears to be tightly linked with the evolution of other important natural history traits. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Educated Parents, Educated Children: Toward a Multiple Life Cycles Education Policy
ERIC Educational Resources Information Center
Sticht, Thomas G.
2012-01-01
Philanthropists and policymakers sometimes opt to fund childhood education to "stop illiteracy at the source" at the expense of funding for adult literacy education. In 2000, "The New York Times" published an article about a gift of $100 million being given to schools in Mississippi to promote the teaching of reading to…
Insects and Spiders. Environmental Education Curriculum.
ERIC Educational Resources Information Center
Topeka Public Schools, KS.
This unit is designed to provide information on insects and spiders that special education students are capable of understanding. The activities are aimed at level 2 and level 3 educable mentally retarded classes. There are four topics: (1) Characteristics and Life Cycles of Insects; (2) Characteristics of Spiders; (3) Habitats and Food Sources of…
The US EPA is developing an open and publically available software program called the Human Exposure Model (HEM) to provide near-field exposure information for Life Cycle Impact Assessments (LCIAs). Historically, LCIAs have often omitted impacts from near-field sources of exposur...
Becoming a Teacher: Stories of the First Few Years
ERIC Educational Resources Information Center
Conway, Colleen; Hansen, Erin; Schulz, Andrew; Stimson, Jeff; Wozniak-Reese, Jill
2004-01-01
The need for understanding the issues facing beginning teachers is well documented in the education literature. Within music education, there is also growing interest in the challenges of the first years and the overall life cycle of a music teacher. However, few sources have used the stories of beginning teachers themselves to illustrate the…
USDA-ARS?s Scientific Manuscript database
Manure from beef cattle feedyards is a valuable source of nutrients for crops and assists with maintaining soil fertility and quality. However, the humification and decomposition processes that occur during feedyard manure’s on-farm life cycle will influence the forms, concentrations, and availabil...
USDA-ARS?s Scientific Manuscript database
The manure from beef cattle feedyards is a valuable source of nutrients for crops and assists with maintaining soil quality. However, the humification and decomposition processes that occur during feedyard manure's on-farm life cycle will influence the forms, concentrations, and availability of carb...
There is no simple answer to the question “are materials from bio-based feedstocks environmentally preferable?” Bioenergy, as an alternative energy source, might be effective in reducing fossil fuel use and dependence, slowing or reducing global warming effects, and providing inc...
Why are there so many molecular markers tagging the Ms locus of onion
USDA-ARS?s Scientific Manuscript database
The primary source of male sterility used to produce hybrid-onion cultivars is conditioned by the interaction of the cytoplasm (N versus S) and alleles at one nuclear male-fertility restoration (Ms) locus Due to the biennial life cycle of onion and the necessity to score testcross progenies, the de...
The School Desk: From Concept to Object
ERIC Educational Resources Information Center
Herman, Frederik; Van Gorp, Angelo; Simon, Frank; Depaepe, Marc
2011-01-01
In the authors' aim to go beyond the "silent" school desk they returned to sources such as public contracts, photographs, advertising leaflets and (the often neglected) patents kept in the municipal archives of Brussels. In this article, they focus on the first half of the twentieth century and two phases of the "life-cycle" of…
Lithium Ion Testing at NSWC Crane in Support of NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Brown, Harry; Jung, David; Lee, Leonine
2010-01-01
This viewgraph presentation reviews Lithium Ion Cell testing at the Naval Surface Warfare Center in Crane, India. The contents include: 1) Quallion 15 Ahr Lithium-Ion Cells, LEO Life Cycle Test; 2) Lithion 50 Ahr Lithium-Ion Cells, LEO Life Cycle Test; 3) ABSL 5 Ahr Lithium-Ion Battery, LRO-LLO Life Cycle Test, SDO-GEO Life Cycle Test; and 4) A123 40 Ahr Lithium-Ion Battery, GPM Life Cycle Test, MMS Life Cycle Test.
2012-01-01
Food production and consumption is known to have significant environmental impacts. In the present work, the life cycle assessment methodology is used for the environmental assessment of an assortment of 34 fruits and vegetables of a large Swiss retailer, with the aim of providing environmental decision-support to the retailer and establishing life cycle inventories (LCI) also applicable to other case studies. The LCI includes, among others, seedling production, farm machinery use, fuels for the heating of greenhouses, irrigation, fertilizers, pesticides, storage and transport to and within Switzerland. The results show that the largest reduction of environmental impacts can be achieved by consuming seasonal fruits and vegetables, followed by reduction of transport by airplane. Sourcing fruits and vegetables locally is only a good strategy to reduce the carbon footprint if no greenhouse heating with fossil fuels is involved. The impact of water consumption depends on the location of agricultural production. For some crops a trade-off between the carbon footprint and the induced water stress is observed. The results were used by the retailer to support the purchasing decisions and improve the supply chain management. PMID:22309056
Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C
2016-11-01
Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.
Eisenberg, Daniel A; Yu, Mengjing; Lam, Carl W; Ogunseitan, Oladele A; Schoenung, Julie M
2013-09-15
Copper-indium-gallium-selenium-sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS₂ p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane. Copyright © 2013 Elsevier B.V. All rights reserved.
Stoessel, Franziska; Juraske, Ronnie; Pfister, Stephan; Hellweg, Stefanie
2012-03-20
Food production and consumption is known to have significant environmental impacts. In the present work, the life cycle assessment methodology is used for the environmental assessment of an assortment of 34 fruits and vegetables of a large Swiss retailer, with the aim of providing environmental decision-support to the retailer and establishing life cycle inventories (LCI) also applicable to other case studies. The LCI includes, among others, seedling production, farm machinery use, fuels for the heating of greenhouses, irrigation, fertilizers, pesticides, storage and transport to and within Switzerland. The results show that the largest reduction of environmental impacts can be achieved by consuming seasonal fruits and vegetables, followed by reduction of transport by airplane. Sourcing fruits and vegetables locally is only a good strategy to reduce the carbon footprint if no greenhouse heating with fossil fuels is involved. The impact of water consumption depends on the location of agricultural production. For some crops a trade-off between the carbon footprint and the induced water stress is observed. The results were used by the retailer to support the purchasing decisions and improve the supply chain management.
Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L
2017-08-01
The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.
NASA Technical Reports Server (NTRS)
Rock, M.; Kunigahalli, V.; Khan, S.; Mcnair, A.
1984-01-01
Nickel-cadmium rechargeable batteries are a vital and reliable energy storage source for aerospace applications. As the demand for longer life and more reliable space batteries increases, the understanding and solving of cell aging factors and mechanisms become essential. Over the years, many cell designs and manufacturing process changes have been developed and implemented. Cells fabricated with various design features were life cycled in a simulated low-Earth orbit regime. Following the test program, a comprehensive electrochemical analysis of cell components was undertaken to study cell degradation mechanisms. Discharge voltage degradation or voltage plateau has been observed during orbit cycling, but, its cause and explanation have been the subject of much discussion. A Hg/HgO reference electrode was used to monitor the reference versus each electrode potential during the discharge of a cycled cell. The results indicate that the negative electrode was responsible for the voltage plateau. Cell analysis revealed large crystals of cadmium hydroxide on the surface of the negative electrode and throughout the separator.
The viability of a nonenzymatic reductive citric acid cycle - Kinetics and thermochemistry
Ross, D.S.
2007-01-01
The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate ??? pyruvate ??? oxaloacetate ??? malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. ?? 2006 Springer Science + Business Media B.V.
The Viability of a Nonenzymatic Reductive Citric Acid Cycle Kinetics and Thermochemistry
NASA Astrophysics Data System (ADS)
Ross, David S.
2007-02-01
The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate → pyruvate → oxaloacetate → malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite magnetite quartz and pyrrhotite pyrite magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life.
Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis.
Cooney, Gregory; Littlefield, James; Marriott, Joe; Skone, Timothy J
2015-06-16
This study uses life cycle analysis (LCA) to evaluate the greenhouse gas (GHG) performance of carbon dioxide (CO2) enhanced oil recovery (EOR) systems. A detailed gate-to-gate LCA model of EOR was developed and incorporated into a cradle-to-grave boundary with a functional unit of 1 MJ of combusted gasoline. The cradle-to-grave model includes two sources of CO2: natural domes and anthropogenic (fossil power equipped with carbon capture). A critical parameter is the crude recovery ratio, which describes how much crude is recovered for a fixed amount of purchased CO2. When CO2 is sourced from a natural dome, increasing the crude recovery ratio decreases emissions, the opposite is true for anthropogenic CO2. When the CO2 is sourced from a power plant, the electricity coproduct is assumed to displace existing power. With anthropogenic CO2, increasing the crude recovery ratio reduces the amount of CO2 required, thereby reducing the amount of power displaced and the corresponding credit. Only the anthropogenic EOR cases result in emissions lower than conventionally produced crude. This is not specific to EOR, rather the fact that carbon-intensive electricity is being displaced with captured electricity, and the fuel produced from that system receives a credit for this displacement.
Concepts associated with a unified life cycle analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, Gene; Peffers, Melissa S.; Tolle, Duane A.
There is a risk associated with most things in the world, and all things have a life cycle unto themselves, even brownfields. Many components can be described by a''cycle of life.'' For example, five such components are life-form, chemical, process, activity, and idea, although many more may exist. Brownfields may touch upon several of these life cycles. Each life cycle can be represented as independent software; therefore, a software technology structure is being formulated to allow for the seamless linkage of software products, representing various life-cycle aspects. Because classes of these life cycles tend to be independent of each other,more » the current research programs and efforts do not have to be revamped; therefore, this unified life-cycle paradigm builds upon current technology and is backward compatible while embracing future technology. Only when two of these life cycles coincide and one impacts the other is there connectivity and a transfer of information at the interface. The current framework approaches (e.g., FRAMES, 3MRA, etc.) have a design that is amenable to capturing (1) many of these underlying philosophical concepts to assure backward compatibility of diverse independent assessment frameworks and (2) linkage communication to help transfer the needed information at the points of intersection. The key effort will be to identify (1) linkage points (i.e., portals) between life cycles, (2) the type and form of data passing between life cycles, and (3) conditions when life cycles interact and communicate. This paper discusses design aspects associated with a unified life-cycle analysis, which can support not only brownfields but also other types of assessments.« less
NREL: U.S. Life Cycle Inventory Database Home Page
U.S. Life-Cycle Inventory Database Buildings Research Photo of a green field with an ocean in the background. U.S. Life Cycle Inventory Database NREL and its partners created the U.S. Life Cycle Inventory (LCI) Database to help life cycle assessment (LCA) practitioners answer questions about environmental
NREL: U.S. Life Cycle Inventory Database - User Poll
User Poll In preparation for the 2009 U.S. Life Cycle Inventory (LCI) Data Stakeholder meeting, the interested in life cycle analysis. The results from that poll and information gathered from the stakeholders polling data and feedback from life cycle analysis supporters helped develop the U.S. Life Cycle Inventory
Linz, Bodo; Rivera, Israel; Ryman, Valerie E.; Dewan, Kalyan K.; Wagner, Shannon M.; Wilson, Emily F.; Hilburger, Lindsay J.; Cuff, Laura E.; West, Christopher M.; Harvill, Eric T.
2017-01-01
Multiple lines of evidence suggest that Bordetella species have a significant life stage outside of the mammalian respiratory tract that has yet to be defined. The Bordetella virulence gene (BvgAS) two-component system, a paradigm for a global virulence regulon, controls the expression of many “virulence factors” expressed in the Bvg positive (Bvg+) phase that are necessary for successful respiratory tract infection. A similarly large set of highly conserved genes are expressed under Bvg negative (Bvg-) phase growth conditions; however, these appear to be primarily expressed outside of the host and are thus hypothesized to be important in an undefined extrahost reservoir. Here, we show that Bvg- phase genes are involved in the ability of Bordetella bronchiseptica to grow and disseminate via the complex life cycle of the amoeba Dictyostelium discoideum. Unlike bacteria that serve as an amoeba food source, B. bronchiseptica evades amoeba predation, survives within the amoeba for extended periods of time, incorporates itself into the amoeba sori, and disseminates along with the amoeba. Remarkably, B. bronchiseptica continues to be transferred with the amoeba for months, through multiple life cycles of amoebae grown on the lawns of other bacteria, thus demonstrating a stable relationship that allows B. bronchiseptica to expand and disperse geographically via the D. discoideum life cycle. Furthermore, B. bronchiseptica within the sori can efficiently infect mice, indicating that amoebae may represent an environmental vector within which pathogenic bordetellae expand and disseminate to encounter new mammalian hosts. These data identify amoebae as potential environmental reservoirs as well as amplifying and disseminating vectors for B. bronchiseptica and reveal an important role for the Bvg- phase in these interactions. PMID:28403138
1986-09-01
source of the module/system. Source options are; battery, gas, cartridge, valve , and miscellaneous costs. NAMELIST OPERAT is used to compile the...hardware costs allocated to transportation for packing. TF1 = Initial transportation factor. WEIGHT = Shipping weight of total system. XSUM = System float...CD(6,I)+CD(9,I). . AROC(7,I) - Replenishment spares by year. CD(4,I) - Valve replacement cost by year. CD(5,I) = Cartridge replacement cost by year
Working Group on Circumstellar/Interstellar Relationships
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
1986-01-01
Stars of various types are believed to be the main source of interstellar (IS) dust grans. The most important confirmed source is evolved giant and supergiant stars. Supernovae also contribute to the mass loss. The differences between circumstellar (CS) and IS dust were reviewed using the following topics: alteration of CS dust grains, size distribution, space observation of CS and IS dust, comparison of infrared spectra, isotopic signatures, Magellanic clouds and nearby galaxies, life cycles of dust grains, and physical and chemical data.
10 CFR 436.19 - Life cycle costs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the... (d) Energy and/or water costs. [55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32651, June 25, 1996] ...
10 CFR 436.19 - Life cycle costs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the... (d) Energy and/or water costs. [55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32651, June 25, 1996] ...
10 CFR 436.19 - Life cycle costs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the... (d) Energy and/or water costs. [55 FR 48220, Nov. 20, 1990, as amended at 61 FR 32651, June 25, 1996] ...
Lemming, Gitte; Chambon, Julie C; Binning, Philip J; Bjerg, Poul L
2012-12-15
A comparative life cycle assessment is presented for four different management options for a trichloroethene-contaminated site with a contaminant source zone located in a fractured clay till. The compared options are (i) long-term monitoring (ii) in-situ enhanced reductive dechlorination (ERD), (iii) in-situ chemical oxidation (ISCO) with permanganate and (iv) long-term monitoring combined with treatment by activated carbon at the nearby waterworks. The life cycle assessment included evaluation of both primary and secondary environmental impacts. The primary impacts are the local human toxic impacts due to contaminant leaching into groundwater that is used for drinking water, whereas the secondary environmental impacts are related to remediation activities such as monitoring, drilling and construction of wells and use of remedial amendments. The primary impacts for the compared scenarios were determined by a numerical risk assessment and remedial performance model, which predicted the contaminant mass discharge over time at a point of compliance in the aquifer and at the waterworks. The combined assessment of risk reduction and life cycle impacts showed that all management options result in higher environmental impacts than they remediate, in terms of person equivalents and assuming equal weighting of all impacts. The ERD and long-term monitoring were the scenarios with the lowest secondary life cycle impacts and are therefore the preferred alternatives. However, if activated carbon treatment at the waterworks is required in the long-term monitoring scenario, then it becomes unfavorable because of large secondary impacts. ERD is favorable due to its low secondary impacts, but only if leaching of vinyl chloride to the groundwater aquifer can be avoided. Remediation with ISCO caused the highest secondary impacts and cannot be recommended for the site. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bekker, Cindy; Kuijpers, Eelco; Brouwer, Derk H; Vermeulen, Roel; Fransman, Wouter
2015-07-01
Occupational exposure to manufactured nano-objects and their agglomerates, and aggregates (NOAA) has been described in several workplace air monitoring studies. However, data pooling for general conclusions and exposure estimates are hampered by limited exposure data across the occupational life cycle of NOAA and a lack in comparability between the methods of collecting and analysing the data. By applying a consistent method of collecting and analysing the workplace exposure data, this study aimed to provide information about the occupational NOAA exposure levels across various life cycle stages of NOAA in the Netherlands which can also be used for multi-purpose use. Personal/near field task-based exposure data was collected using a multi-source exposure assessment method collecting real time particle number concentration, particle size distribution (PSD), filter-based samples for morphological, and elemental analysis and detailed contextual information. A decision logic was followed allowing a consistent and objective way of analysing the exposure data. In total, 46 measurement surveys were conducted at 15 companies covering 18 different exposure situations across various occupational life cycle stages of NOAA. Highest activity-effect levels were found during replacement of big bags (<1000-76000 # cm(-3)), mixing/dumping of powders manually (<1000-52000 # cm(-3)) and mechanically (<1000-100000 # cm(-3)), and spraying of liquid (2000-800000 # cm(-3)) showing a high variability between and within the various exposure situations. In general, a limited change in PSD was found during the activity compared to the background. This broad-scale exposure study gives a comprehensive overview of the NOAA exposure situations in the Netherlands and an indication of the levels of occupational exposure to NOAA across various life cycle of NOAA. The collected workplace exposure data and contextual information will serve as basis for future pooling of data and modelling of worker exposure. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Rothenbacher, Dietrich; Capkun, Gorana; Uenal, Hatice; Tumani, Hayrettin; Geissbühler, Yvonne; Tilson, Hugh
2015-05-01
The assessment and demonstration of a positive benefit-risk balance of a drug is a life-long process and includes specific data from preclinical, clinical development and post-launch experience. However, new integrative approaches are needed to enrich evidence from clinical trials and sponsor-initiated observational studies with information from multiple additional sources, including registry information and other existing observational data and, more recently, health-related administrative claims and medical records databases. To illustrate the value of this approach, this paper exemplifies such a cross-package approach to the area of multiple sclerosis, exploring also possible analytic strategies when using these multiple sources of information.
10 CFR 435.8 - Life-cycle costing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT...-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures..., including lower life-cycle costs, positive net savings, savings-to-investment ratio that is estimated to be...
10 CFR 435.8 - Life-cycle costing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT...-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures..., including lower life-cycle costs, positive net savings, savings-to-investment ratio that is estimated to be...
10 CFR 435.8 - Life-cycle costing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT...-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures..., including lower life-cycle costs, positive net savings, savings-to-investment ratio that is estimated to be...
A comparison of production system life cycle models
NASA Astrophysics Data System (ADS)
Attri, Rajesh; Grover, Sandeep
2012-09-01
Companies today need to keep up with the rapidly changing market conditions to stay competitive. The main issues in this paper are related to a company's market and its competitors. The prediction of market behavior is helpful for a manufacturing enterprise to build efficient production systems. However, these predictions are usually not reliable. A production system is required to adapt to changing markets, but such requirement entails higher cost. Hence, analyzing different life cycle models of the production system is necessary. In this paper, different life cycle models of the production system are compared to evaluate the distinctive features and the limitations of each model. Furthermore, the difference between product life cycle and production life cycle is summarized, and the effect of product life cycle on production life cycle is explained. Finally, a production system life cycle model, along with key activities to be performed in each stage, is proposed specifically for the manufacturing sector.
A life cycle database for parasitic acanthocephalans, cestodes, and nematodes
Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand
2017-01-01
Parasitologists have worked out many complex life cycles over the last ~150 years, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2313 development time measurements and 7660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.
Impact of Life-Cycle Stage and Gender on the Ability to Balance Work and Family Responsibilities.
ERIC Educational Resources Information Center
Higgins, Christopher; And Others
1994-01-01
Examined impact of gender and life-cycle stage on three components of work-family conflict using sample of 3,616 respondents. For men, levels of work-family conflict were moderately lower in each successive life-cycle stage. For women, levels were similar in two early life-cycle stages but were significantly lower in later life-cycle stage.…
A POM–organic framework anode for Li-ion battery
Yue, Yanfeng; Li, Yunchao; Bi, Zhonghe; ...
2015-10-12
Rechargeable Li-ion batteries (LIBs) are currently the dominant power source for portable electronic devices and electric vehicles, and for small-scale stationary energy storage. However, one bottleneck of the anode materials for LIBs is the poor cycling performance caused by the fact that the anodes cannot maintain their integrity over several charge–discharge cycles. In this work, we demonstrate an approach to improving the cycling performance of lithium-ion battery anodes by constructing an extended 3D network of flexible redox active polyoxometalate (POM) clusters with redox active organic linkers, herein described as POMOF. In addition, this architecture enables the accommodation of large volumemore » changes during cycling at relatively high current rates. For example, the POMOF anode exhibits a high reversible capacity of 540 mA h g –1 after 360 cycles at a current rate of 0.25C and a long cycle life at a current rate of 1.25C (>500 cycles).« less
The Global Enery and Water Cycle Experiment Science Strategy
NASA Technical Reports Server (NTRS)
Chahine, M. T.
1997-01-01
The distribution of water in the atmosphere and at the surface of the Earth is the most influential factor regulating our environment, not only because water is essential for life but also because through phase transitions it is the main energy source that control clouds and radiation and drives the global circulation of the atmosphere.
10 CFR Appendix D to Subpart D of... - Classes of Actions That Normally Require EISs
Code of Federal Regulations, 2011 CFR
2011-01-01
.../operation/decommissioning of reactors D5. Main transmission system additions D6. Integrating transmission... waste) D1Strategic Systems, as defined in DOE Order 430.1, “Life-Cycle Asset Management,” and designated... facilities (that is, transmission system additions for integrating major new sources of generation into a...
Technology strategy and the balance sheet: 3 points to consider.
Waldron, David J
2005-05-01
Most hospitals use technology strategically to differentiate themselves from their competition. The rapid rate of change in healthcare technologies necessitates development of a technology life-cycle management program. Having access to flexible sources of capital appropriate to each category of technology assets allows liabilities and assets to be matched on a "balanced" balance sheet.
The Lived Experiences of Professional Engineers over the Life-Cycle of a Technological Device
ERIC Educational Resources Information Center
Gandara, Guillermo F.
2012-01-01
One of the goals of this study was to pose the engineering role in a way that allows engineers to understand the impact that professional requirements have on their career. For engineers making medical devices, requirements come from three principal sources, professional engineering, regulatory agencies, and their own organization. Engineering…
NASA Astrophysics Data System (ADS)
McTigue, Erin M.
The present study examined the combined effect of diagram design and text directives on the comprehension of explanatory science texts for middle school readers. Three types of diagram designs were compared. Each design contained the same graphical representation of a cycle but differed in the labels. The labels indicated either the (a) parts of the, cycle, (b) steps of the cycle, or (c) both the parts and steps. Additionally, there were two conditions of text, both with and without embedded directives. The directives guided the reader to the diagram to help readers integrate the two sources of information. Finally, each of the 189 sixth grade participants read two texts---a life-science text and a physical-science text. Results indicated that for the life-science text both the parts diagrams and the steps diagrams facilitated the readers' comprehension, but that the parts & steps diagram did not. Overall, the directives assisted readers in the life-science text, when they were viewing the complex diagrams: the steps diagram, and the parts & steps diagrams, but not the parts diagram. Directives also helped girls who were reading at the below- and on-grade level, but not the girls reading above-grade level. Neither the diagrams nor directives facilitated comprehension of the physical science text. There was a gender difference favoring boys on the physical science but no gender difference on the life-science text.
NASA Astrophysics Data System (ADS)
Samaras, Constantine
In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life cycle assessment to evaluate options and opportunities for large GHG reductions from plug-in hybrids. After the options and uncertainties are framed, engineering economic analysis is used to evaluate the policy actions required for adoption of PHEVs at scale and the implications for low-carbon electricity investments. A logistic PHEV adoption model is constructed to parameterize implications for low-carbon electricity infrastructure investments and climate policy. This thesis concludes with an examination of what lessons can be learned for climate, innovation, and low-carbon energy policies from the evolution of wind power from an emerging alternative energy technology to a utility-scale power source. Policies to promote PHEVs and other emerging energy technologies can take lessons learned from the successes and challenges of wind power's development to optimize low-carbon energy policy and R&D programs going forward. The need for integrated climate policy, energy policy, sustainability, and urban mobility solutions will accelerate in the next two decades as concerns regarding GHG emissions and petroleum resources continue to be environmental and economic priorities. To assist in informing the discussions on climate policy and low-carbon energy R&D, this research and its methods will provide stakeholders in government and industry with plug-in hybrid and energy policy choices based on life cycle assessment, engineering economics, and systems analysis.
von Dohlen, C D; Gill, D E
1989-02-01
Two divergent life cycles associated with different elevations and latitudes have been documented for the witch-hazel leaf gall aphid, Hormaphis hamamelidis. At low elevation in northern Virginia, the aphid had seven distinct generations alternating between the primary host, witchhazel (Hamamelis virginiana), and a secondary host, river birch (Betula nigra). These findings confirm the original published life cycle description for the same locality. A second, abbreviated life cycle consisting of only three generations restricted to witch-hazel was discovered at high elevation (1000 m) in north central and northwestern Virginia. Aphids of both life cycles were sympatric at a middle elevation site. The life cycles and morphology suggest that the two forms are separate species. Although monoecious life cycles on primary hosts in aphids generally are thought to be ancestral to complex host-alternating ones, it is certainly possible that monoecious cycles are sometimes secondarily derived from complex cycles. By constructing a preliminary phylogeny of the described species in the tribe Hormaphidini, we propose that the abbreviated life cycle is derived from the complex one in the case of these witchhazel gall aphids. Our findings are discussed in the context of current theory regarding the evolutionary stability of complex life cycles.
Generalized fish life-cycle poplulation model and computer program
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, D. L.; Van Winkle, W.; Christensen, S. W.
1978-03-01
A generalized fish life-cycle population model and computer program have been prepared to evaluate the long-term effect of changes in mortality in age class 0. The general question concerns what happens to a fishery when density-independent sources of mortality are introduced that act on age class 0, particularly entrainment and impingement at power plants. This paper discusses the model formulation and computer program, including sample results. The population model consists of a system of difference equations involving age-dependent fecundity and survival. The fecundity for each age class is assumed to be a function of both the fraction of females sexuallymore » mature and the weight of females as they enter each age class. Natural mortality for age classes 1 and older is assumed to be independent of population size. Fishing mortality is assumed to vary with the number and weight of fish available to the fishery. Age class 0 is divided into six life stages. The probability of survival for age class 0 is estimated considering both density-independent mortality (natural and power plant) and density-dependent mortality for each life stage. Two types of density-dependent mortality are included. These are cannibalism of each life stage by older age classes and intra-life-stage competition.« less
32 CFR Appendix to Part 162 - Reporting Procedures
Code of Federal Regulations, 2014 CFR
2014-07-01
... generated. e. Projected Life-Cycle Savings. For each PIF project provide the estimated amount of savings the project is projected to earn over the project's economic life. f. Projected Life-Cycle Cost Avoidance. For... Projected Life-Cycle Savings. e. Total Projected Life-Cycle Cost Avoidance. 3. CSI. Each DoD Component that...
10 CFR 433.8 - Life-cycle costing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life... choose to use any of four methods, including lower life-cycle costs, positive net savings, savings-to...
19 CFR 207.27 - Short life cycle products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 3 2013-04-01 2013-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative dumping...
10 CFR 433.8 - Life-cycle costing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life... choose to use any of four methods, including lower life-cycle costs, positive net savings, savings-to...
19 CFR 207.27 - Short life cycle products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 3 2014-04-01 2014-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative dumping...
10 CFR 433.8 - Life-cycle costing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life... choose to use any of four methods, including lower life-cycle costs, positive net savings, savings-to...
19 CFR 207.27 - Short life cycle products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 3 2012-04-01 2012-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative dumping...
19 CFR 207.27 - Short life cycle products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 3 2010-04-01 2010-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative dumping...
19 CFR 207.27 - Short life cycle products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 3 2011-04-01 2011-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative dumping...
ERIC Educational Resources Information Center
Keeley, Page
2010-01-01
If life continues from generation to generation, then all plants and animals must go through a life cycle, even though it may be different from organism to organism. Is this what students have "learned," or do they have their own private conceptions about life cycles? The formative assessment probe "Does It Have a Life Cycle?" reveals some…
Exploring REACH as a potential data source for characterizing ecotoxicity in life cycle assessment.
Müller, Nienke; de Zwart, Dick; Hauschild, Michael; Kijko, Gaël; Fantke, Peter
2017-02-01
Toxicity models in life cycle impact assessment (LCIA) currently only characterize a small fraction of marketed substances, mostly because of limitations in the underlying ecotoxicity data. One approach to improve the current data situation in LCIA is to identify new data sources, such as the European Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) database. The present study explored REACH as a potential data source for LCIA based on matching reported ecotoxicity data for substances that are currently also included in the United Nations Environment Programme/Society for Environmental Toxicology and Chemistry (UNEP/SETAC) scientific consensus model USEtox for characterizing toxicity impacts. Data are evaluated with respect to number of data points, reported reliability, and test duration, and are compared with data listed in USEtox at the level of hazardous concentration for 50% of the covered species per substance. The results emphasize differences between data available via REACH and in USEtox. The comparison of ecotoxicity data from REACH and USEtox shows potential for using REACH ecotoxicity data in LCIA toxicity characterization, but also highlights issues related to compliance of submitted data with REACH requirements as well as different assumptions underlying regulatory risk assessment under REACH versus data needed for LCIA. Thus, further research is required to address data quality, pre-processing, and applicability, before considering data submitted under REACH as a data source for use in LCIA, and also to explore additionally available data sources, published studies, and reports. Environ Toxicol Chem 2017;36:492-500. © 2016 SETAC. © 2016 SETAC.
Flexible lithium–oxygen battery based on a recoverable cathode
Liu, Qing-Chao; Xu, Ji-Jing; Xu, Dan; Zhang, Xin-Bo
2015-01-01
Although flexible power sources are crucial for the realization next-generation flexible electronics, their application in such devices is hindered by their low theoretical energy density. Rechargeable lithium–oxygen (Li–O2) batteries can provide extremely high specific energies, while the conventional Li–O2 battery is bulky, inflexible and limited by the absence of effective components and an adjustable cell configuration. Here we show that a flexible Li–O2 battery can be fabricated using unique TiO2 nanowire arrays grown onto carbon textiles (NAs/CT) as a free-standing cathode and that superior electrochemical performances can be obtained even under stringent bending and twisting conditions. Furthermore, the TiO2 NAs/CT cathode features excellent recoverability, which significantly extends the cycle life of the Li–O2 battery and lowers its life cycle cost. PMID:26235205
Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.
DOT National Transportation Integrated Search
2015-03-12
The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...
Burghardt, Liana T; Metcalf, C Jessica E; Wilczek, Amity M; Schmitt, Johanna; Donohue, Kathleen
2015-02-01
Organisms develop through multiple life stages that differ in environmental tolerances. The seasonal timing, or phenology, of life-stage transitions determines the environmental conditions to which each life stage is exposed and the length of time required to complete a generation. Both environmental and genetic factors contribute to phenological variation, yet predicting their combined effect on life cycles across a geographic range remains a challenge. We linked submodels of the plasticity of individual life stages to create an integrated model that predicts life-cycle phenology in complex environments. We parameterized the model for Arabidopsis thaliana and simulated life cycles in four locations. We compared multiple "genotypes" by varying two parameters associated with natural genetic variation in phenology: seed dormancy and floral repression. The model predicted variation in life cycles across locations that qualitatively matches observed natural phenology. Seed dormancy had larger effects on life-cycle length than floral repression, and results suggest that a genetic cline in dormancy maintains a life-cycle length of 1 year across the geographic range of this species. By integrating across life stages, this approach demonstrates how genetic variation in one transition can influence subsequent transitions and the geographic distribution of life cycles more generally.
Engineering sustainable development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prendergast, J.
1993-10-01
This article discusses sustainable development, a policy which attempts to balance environmental preservation and economic growth, and promises a way to provide a decent life for Earth's human inhabitants without destroying the global ecosystem. Sustainable development is an effort to use technology to help clean up the mess it helped make, and engineers will be central players in its success or failure. Key aspects include more efficient energy use through conservation measures and switching to renewable sources, waste minimization, much greater recycling and reuse of materials, more comprehensive economic/environmental assessments employing life-cycle analyses, and better management of resources.
Life cycle and population growth rate of Caenorhabditis elegans studied by a new method.
Muschiol, Daniel; Schroeder, Fabian; Traunspurger, Walter
2009-05-16
The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK) and MY6 (Münster, Germany) were compared at 20 degrees C with 5 x 10(9) Escherichia coli ml-1 as food source. High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69), the intrinsic rate of natural increase (r m d(-1)), calculated according to the Lotka equation, was 1.375, the net reproductive rate (R 0) 291, the mean generation time (T) 90 h, and the minimum generation time (T min) 73.0 h. The corresponding values for strain MY6 (n = 72) were r m = 1.460, R0 = 289, T = 84 h, and T min = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d(-1). Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days earlier; however, differences in survivorship curves were statistically non-significant. We found no evidence that adaptation to the laboratory altered the life history traits of C. elegans strain N2. Our results, discussed in the light of earlier studies on C. elegans, demonstrate certain advantages of the hanging drop method in investigations of nematode life cycles. Assuming that its reproducibility is validated in further studies, the method will reduce the inter-laboratory variability of life-history estimates and may ultimately prove to be more convenient than the current standard methods used by C. elegans researchers.
Life cycle and population growth rate of Caenorhabditis elegans studied by a new method
Muschiol, Daniel; Schroeder, Fabian; Traunspurger, Walter
2009-01-01
Background The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK) and MY6 (Münster, Germany) were compared at 20°C with 5 × 109 Escherichia coli ml-1 as food source. Results High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69), the intrinsic rate of natural increase (rmd-1), calculated according to the Lotka equation, was 1.375, the net reproductive rate (R0) 291, the mean generation time (T) 90 h, and the minimum generation time (Tmin) 73.0 h. The corresponding values for strain MY6 (n = 72) were rm = 1.460, R0 = 289, T = 84 h, and Tmin = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d-1. Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days earlier; however, differences in survivorship curves were statistically non-significant. Conclusion We found no evidence that adaptation to the laboratory altered the life history traits of C. elegans strain N2. Our results, discussed in the light of earlier studies on C. elegans, demonstrate certain advantages of the hanging drop method in investigations of nematode life cycles. Assuming that its reproducibility is validated in further studies, the method will reduce the inter-laboratory variability of life-history estimates and may ultimately prove to be more convenient than the current standard methods used by C. elegans researchers. PMID:19445697
Cashman, Sarah A; Meyer, David E; Edelen, Ashley N; Ingwersen, Wesley W; Abraham, John P; Barrett, William M; Gonzalez, Michael A; Randall, Paul M; Ruiz-Mercado, Gerardo; Smith, Raymond L
2016-09-06
Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically applied to LCIs on a case-by-case basis. As linked open data becomes more prevalent, it may be possible to automate LCI using data mining by establishing a reproducible approach for identifying, extracting, and processing the data. This work proposes a method for standardizing and eventually automating the discovery and use of publicly available data at the United States Environmental Protection Agency for chemical-manufacturing LCI. The method is developed using a case study of acetic acid. The data quality and gap analyses for the generated inventory found that the selected data sources can provide information with equal or better reliability and representativeness on air, water, hazardous waste, on-site energy usage, and production volumes but with key data gaps including material inputs, water usage, purchased electricity, and transportation requirements. A comparison of the generated LCI with existing data revealed that the data mining inventory is in reasonable agreement with existing data and may provide a more-comprehensive inventory of air emissions and water discharges. The case study highlighted challenges for current data management practices that must be overcome to successfully automate the method using semantic technology. Benefits of the method are that the openly available data can be compiled in a standardized and transparent approach that supports potential automation with flexibility to incorporate new data sources as needed.
LIFE CYCLE DESIGN FRAMEWORK AND DEMONSTRATION PROJECTS PROFILES OF AT&T AND ALLIED SIGNAL
Life cycle design seeks to minimize the environmental burden associated with a product life cycle from raw materials acquisition through manufacturing, use, and end-of-life management. ife cycle design emphasizes integrating environmental requirements into the earliest phases of ...
Development of Approach for Long-Term Management of Disused Sealed Radioactive Sources - 13630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinker, M.; Reber, E.; Mansoux, H.
Radioactive sources are used widely throughout the world in a variety of medical, industrial, research and military applications. When such radioactive sources are no longer used and are not intended to be used for the practice for which an authorization was granted, they are designated as 'disused sources'. Whether appropriate controls are in place during the useful life of a source or not, the end of this useful life is often a turning point after which it is more difficult to ensure the safety and security of the source over time. For various reasons, many disused sources cannot be returnedmore » to the manufacturer or the supplier for reuse or recycling. When these attempts fail, disused sources should be declared as radioactive waste and should be managed as such, in compliance with relevant international legal instruments and safety standards. However, disposal remains an unresolved issue in many counties, due to in part to limited public acceptance, insufficient funding, and a lack of practical examples of strategies for determining suitable disposal options. As a result, disused sources are often stored indefinitely at the facilities where they were once used. In order to prevent disused sources from becoming orphan sources, each country must develop and implement a comprehensive waste management strategy that includes disposal of disused sources. The International Atomic Energy Agency (IAEA) fosters international cooperation between countries and encourages the development of a harmonized 'cradle to grave' approach to managing sources consistent with international legal instruments, IAEA safety standards, and international good practices. This 'cradle to grave' approach requires the development of a national policy and implementing strategy, an adequate legal and regulatory framework, and adequate resources and infrastructure that cover the entire life cycle, from production and use of radioactive sources to disposal. (authors)« less
Life cycles of dominant mayflies (Ephemeroptera) on a torrent of the high Bolivian Andes
Molina, Carlos I; Puliafico, Kenneth P
2016-03-01
The mayflies of the temperate and cold zones have well-synchronized life cycles, distinct cohorts, short emergence and flight periods. In contrast, aquatic insects from the tropical zones are characterized by multivoltine life cycles, “non-discernible cohorts” and extended flight periods throughout the year. This report is the first observation of life cycle patterns made of two species of mayflies on a torrent in the high elevation Bolivian Andes. The samples were taken from four sites and four periods during a hydrological season. The life cycle of each species was examined using size-class frequency analysis and a monthly modal progression model (von Bertalanffy’s model) to infer the life cycle synchrony type. These first observations showed a moderately synchronized univoltine life cycle for Andesiops peruvianus (Ulmer, 1920), whereas Meridialaris tintinnabula Pescador and Peters (1987), had an unsynchronized multivoltine life cycle. These results showed that the generalization of all aquatic insects as unsynchronized multivoltine species in the Andean region may not be entirely accurate since there is still a need to further clarify the life cycle patterns of the wide variety of aquatic insects living in this high elevation tropical environment.
NASA Astrophysics Data System (ADS)
Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong
2017-01-01
China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.
Optimizing product life cycle processes in design phase
NASA Astrophysics Data System (ADS)
Faneye, Ola. B.; Anderl, Reiner
2002-02-01
Life cycle concepts do not only serve as basis in assisting product developers understand the dependencies between products and their life cycles, they also help in identifying potential opportunities for improvement in products. Common traditional concepts focus mainly on energy and material flow across life phases, necessitating the availability of metrics derived from a reference product. Knowledge of life cycle processes won from an existing product is directly reused in its redesign. Depending on sales volume nevertheless, the environmental impact before product optimization can be substantial. With modern information technologies today, computer-aided life cycle methodologies can be applied well before product use. On the basis of a virtual prototype, life cycle processes are analyzed and optimized, using simulation techniques. This preventive approach does not only help in minimizing (or even eliminating) environmental burdens caused by product, costs incurred due to changes in real product can also be avoided. The paper highlights the relationship between product and life cycle and presents a computer-based methodology for optimizing the product life cycle during design, as presented by SFB 392: Design for Environment - Methods and Tools at Technical University, Darmstadt.
LCIA framework and cross-cutting issues guidance within the UNEP/SETAC Life Cycle Initiative
Increasing needs for decision support and advances in scientific knowledge within life cycle assessment (LCA) led to substantial efforts to provide global guidance on environmental life cycle impact assessment (LCIA) indicators under the auspices of the UNEP-SETAC Life Cycle Init...
NASA Astrophysics Data System (ADS)
Ozbilen, Ahmet Ziyaettin
The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the four-step Cu-Cl cycle. Keywords: Hydrogen production, nuclear energy, Cu-Cl cycle, environmental impact, LCA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operationalmore » water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.« less
The Model Life-cycle: Training Module
Model Life-Cycle includes identification of problems & the subsequent development, evaluation, & application of the model. Objectives: define ‘model life-cycle’, explore stages of model life-cycle, & strategies for development, evaluation, & applications.
10 CFR 434.607 - Life cycle cost analysis criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Life cycle cost analysis criteria. 434.607 Section 434.607... HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.607 Life cycle cost analysis criteria. 607.1 The following life cycle cost criteria applies to the fuel selection requirements...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... Request; International Client Life-Cycle Multi-Purpose Forms AGENCY: International Trade Administration... aspects of an international organization's life-cycle with CS. CS is mandated by Congress to help U.S... trade events to U.S. organizations. The International Client Life-cycle Multi-Purpose Forms, previously...
10 CFR 435.8 - Life-cycle costing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT... BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
... Request; Domestic Client Life-Cycle Multi-Purpose Forms AGENCY: International Trade Administration. ACTION... life-cycle with CS. CS is mandated by Congress to help U.S. organizations, particularly small and... Client Life-cycle Multi-Purpose Forms, previously titled Export Information Services Order Forms, are...
10 CFR 434.607 - Life cycle cost analysis criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle cost analysis criteria. 434.607 Section 434.607... HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.607 Life cycle cost analysis criteria. 607.1 The following life cycle cost criteria applies to the fuel selection requirements...
10 CFR 435.8 - Life-cycle costing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT... BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures...
US Federal LCA Commons Life Cycle Inventory Unit Process Template
The US Federal LCA Commons Life Cycle Inventory Unit Process Template is a multi-sheet Excel template for life cycle inventory data, metadata and other documentation. The template comes as a package that consistent of three parts: (1) the main template itself for life cycle inven...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-14
... Parts Supply Chain, Global Product Life Cycles Management Unit Including Teleworkers Reporting to... workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit...). Since eligible workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles...
7 CFR 2902.8 - Determining life cycle costs, environmental and health benefits, and performance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Determining life cycle costs, environmental and... DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT General § 2902.8 Determining life cycle costs, environmental and health benefits, and performance. (a) Providing information on life cycle costs and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Developing Software Life Cycle Processes for Digital... Software Life Cycle Processes for Digital Computer Software used in Safety Systems of Nuclear Power Plants... clarifications, the enhanced consensus practices for developing software life-cycle processes for digital...
Life cycle replacement by gene introduction under an allee effect in periodical cicadas.
Nariai, Yukiko; Hayashi, Saki; Morita, Satoru; Umemura, Yoshitaka; Tainaka, Kei-ichi; Sota, Teiji; Cooley, John R; Yoshimura, Jin
2011-04-06
Periodical cicadas (Magicicada spp.) in the USA are divided into three species groups (-decim, -cassini, -decula) of similar but distinct morphology and behavior. Each group contains at least one species with a 17-year life cycle and one with a 13-year cycle; each species is most closely related to one with the other cycle. One explanation for the apparent polyphyly of 13- and 17-year life cycles is that populations switch between the two cycles. Using a numerical model, we test the general feasibility of life cycle switching by the introduction of alleles for one cycle into populations of the other cycle. Our results suggest that fitness reductions at low population densities of mating individuals (the Allee effect) could play a role in life cycle switching. In our model, if the 13-year cycle is genetically dominant, a 17-year cycle population will switch to a 13-year cycle given the introduction of a few 13-year cycle alleles under a moderate Allee effect. We also show that under a weak Allee effect, different year-classes ("broods") with 17-year life cycles can be generated. Remarkably, the outcomes of our models depend only on the dominance relationships of the cycle alleles, irrespective of any fitness advantages.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells. An update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells - An update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.
Molnár, Péter K; Dobson, Andrew P; Kutz, Susan J
2013-11-01
Climate change is expected to alter the dynamics of host-parasite systems globally. One key element in developing predictive models for these impacts is the life cycle of the parasite. It is, for example, commonly assumed that parasites with an indirect life cycle would be more sensitive to changing environmental conditions than parasites with a direct life cycle due to the greater chance that at least one of their obligate host species will go extinct. Here, we challenge this notion by contrasting parasitic nematodes with a direct life cycle against those with an indirect life cycle. Specifically, we suggest that behavioral thermoregulation by the intermediate host may buffer the larvae of indirectly transmitted parasites against temperature extremes, and hence climate warming. We term this the 'shelter effect'. Formalizing each life cycle in a comprehensive model reveals a fitness advantage for the direct life cycle over the indirect life cycle at low temperatures, but the shelter effect reverses this advantage at high temperatures. When examined for seasonal environments, the models suggest that climate warming may in some regions create a temporal niche in mid-summer that excludes parasites with a direct life cycle, but allows parasites with an indirect life cycle to persist. These patterns are amplified if parasite larvae are able to manipulate their intermediate host to increase ingestion probability by definite hosts. Furthermore, our results suggest that exploiting the benefits of host sheltering may have aided the evolution of indirect life cycles. Our modeling framework utilizes the Metabolic Theory of Ecology to synthesize the complexities of host behavioral thermoregulation and its impacts on various temperature-dependent parasite life history components in a single measure of fitness, R0 . It allows quantitative predictions of climate change impacts, and is easily generalized to many host-parasite systems. © 2013 John Wiley & Sons Ltd.
The origin, source, and cycling of methane in deep crystalline rock biosphere.
Kietäväinen, Riikka; Purkamo, Lotta
2015-01-01
The emerging interest in using stable bedrock formations for industrial purposes, e.g., nuclear waste disposal, has increased the need for understanding microbiological and geochemical processes in deep crystalline rock environments, including the carbon cycle. Considering the origin and evolution of life on Earth, these environments may also serve as windows to the past. Various geological, chemical, and biological processes can influence the deep carbon cycle. Conditions of CH4 formation, available substrates and time scales can be drastically different from surface environments. This paper reviews the origin, source, and cycling of methane in deep terrestrial crystalline bedrock with an emphasis on microbiology. In addition to potential formation pathways of CH4, microbial consumption of CH4 is also discussed. Recent studies on the origin of CH4 in continental bedrock environments have shown that the traditional separation of biotic and abiotic CH4 by the isotopic composition can be misleading in substrate-limited environments, such as the deep crystalline bedrock. Despite of similarities between Precambrian continental sites in Fennoscandia, South Africa and North America, where deep methane cycling has been studied, common physicochemical properties which could explain the variation in the amount of CH4 and presence or absence of CH4 cycling microbes were not found. However, based on their preferred carbon metabolism, methanogenic microbes appeared to have similar spatial distribution among the different sites.
The origin, source, and cycling of methane in deep crystalline rock biosphere
Kietäväinen, Riikka; Purkamo, Lotta
2015-01-01
The emerging interest in using stable bedrock formations for industrial purposes, e.g., nuclear waste disposal, has increased the need for understanding microbiological and geochemical processes in deep crystalline rock environments, including the carbon cycle. Considering the origin and evolution of life on Earth, these environments may also serve as windows to the past. Various geological, chemical, and biological processes can influence the deep carbon cycle. Conditions of CH4 formation, available substrates and time scales can be drastically different from surface environments. This paper reviews the origin, source, and cycling of methane in deep terrestrial crystalline bedrock with an emphasis on microbiology. In addition to potential formation pathways of CH4, microbial consumption of CH4 is also discussed. Recent studies on the origin of CH4 in continental bedrock environments have shown that the traditional separation of biotic and abiotic CH4 by the isotopic composition can be misleading in substrate-limited environments, such as the deep crystalline bedrock. Despite of similarities between Precambrian continental sites in Fennoscandia, South Africa and North America, where deep methane cycling has been studied, common physicochemical properties which could explain the variation in the amount of CH4 and presence or absence of CH4 cycling microbes were not found. However, based on their preferred carbon metabolism, methanogenic microbes appeared to have similar spatial distribution among the different sites. PMID:26236303
Wilkins, Rodney; Menefee, Anne H; Clarens, Andres F
2016-12-06
Many of the environmental impacts associated with hydraulic fracturing of unconventional gas wells are tied to the large volumes of water that such operations require. Efforts to develop nonaqueous alternatives have focused on carbon dioxide as a tunable working fluid even though the full environmental and production impacts of a switch away from water have yet to be quantified. Here we report on a life cycle analysis of using either water or CO 2 for gas production in the Marcellus shale. The results show that CO 2 -based fluids, as currently conceived, could reduce greenhouse gas emissions by 400% (with sequestration credit) and water consumption by 80% when compared to conventional water-based fluids. These benefits are offset by a 44% increase in net energy use when compared to slickwater fracturing as well as logistical barriers resulting from the need to move and store large volumes of CO 2 . Scenario analyses explore the outlook for CO 2 , which under best-case conditions could eventually reduce life cycle energy, water, and greenhouse gas (GHG) burdens associated with fracturing. To achieve these benefits, it will be necessary to reduce CO 2 sourcing and transport burdens and to realize opportunities for improved energy recovery, averted water quality impacts, and carbon storage.
Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris
2015-11-01
Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y
2012-10-02
Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.
Primary and secondary use of electric mobility batteries from a life cycle perspective
NASA Astrophysics Data System (ADS)
Faria, Ricardo; Marques, Pedro; Garcia, Rita; Moura, Pedro; Freire, Fausto; Delgado, Joaquim; de Almeida, Aníbal T.
2014-09-01
With age and cycling, batteries used in Electric Vehicles (EVs) will reach a point in which they will no longer be suitable for electric mobility; however, they still can be used in stationary energy storage. This article aims at assessing the Life-Cycle (LC) environmental impacts associated with the use of a battery in an EV and secondly, at assessing the LC environmental impacts/benefits of using a battery, no longer suitable for electric mobility, for energy storage in a household. Three electricity mixes with different shares of renewable, nuclear and fossil energy sources are considered. For the primary battery use, three in-vehicle use scenarios are assessed, addressing three different driving profiles. For the secondary use, two scenarios of energy storage strategies are analyzed: peak shaving and load shifting. Results show that a light use of the battery in the EV has 42-50% less impacts per km than an intensive use. After its use in the vehicle, the battery life can be extended by 1.8-3.3 years; however, this is not always beneficial from an environmental point of view, since the impacts are strongly dependent on the electricity generation mix and on the additional efficiency losses in the battery.
USEEIO: a New and Transparent United States ...
National-scope environmental life cycle models of goods and services may be used for many purposes, not limited to quantifying impacts of production and consumption of nations, assessing organization-wide impacts, identifying purchasing hot spots, analyzing environmental impacts of policies, and performing streamlined life cycle assessment. USEEIO is a new environmentally extended input-output model of the United States fit for such purposes and other sustainable materials management applications. USEEIO melds data on economic transactions between 389 industry sectors with environmental data for these sectors covering land, water, energy and mineral usage and emissions of greenhouse gases, criteria air pollutants, nutrients and toxics, to build a life cycle model of 385 US goods and services. In comparison with existing US input-output models, USEEIO is more current with most data representing year 2013, more extensive in its coverage of resources and emissions, more deliberate and detailed in its interpretation and combination of data sources, and includes formal data quality evaluation and description. USEEIO was assembled with a new Python module called the IO Model Builder capable of assembling and calculating results of user-defined input-output models and exporting the models into LCA software. The model and data quality evaluation capabilities are demonstrated with an analysis of the environmental performance of an average hospital in the US. All USEEIO f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snowden-Swan, Lesley J.; Spies, Kurt A.; Lee, Guo-Shuh J.
Bio-oil from fast pyrolysis of biomass requires multi-stage catalytic hydroprocessing to produce hydrocarbon drop-in fuels. The current proposed process design involves fixed beds of ruthenium-based catalyst and conventional petroleum hydrotreating catalyst. Similar to petroleum processing, the catalyst is spent as a result of coking and other deactivation mechanisms, and must be changed out periodically. Biofuel life cycle greenhouse gas (GHG) assessments typically ignore the impact of catalyst consumed during fuel conversion as a result of limited lifetime, representing a data gap in the analyses. To help fill this data gap, life cycle GHGs were estimated for two representative examples ofmore » fast pyrolysis bio-oil hydrotreating catalyst, NiMo/Al2O3 and Ru/C, and integrated into the conversion-stage GHG analysis. Life cycle GHGs for the NiMo/Al2O3 and Ru/C catalysts are estimated at 5.5 and 81 kg CO2-e/kg catalyst, respectively. Contribution of catalyst consumption to total conversion-stage GHGs is 0.5% for NiMo/Al2O3 and 5% for Ru/C. This analysis does not consider secondary sourcing of metals for catalyst manufacture and therefore these are likely to be conservative estimates compared to applications where a spent catalyst recycler can be used.« less
Pre-existence and emergence of drug resistance in a generalized model of intra-host viral dynamics.
Alexander, Helen K; Bonhoeffer, Sebastian
2012-12-01
Understanding the source of drug resistance emerging within a treated patient is an important problem, from both clinical and basic evolutionary perspectives. Resistant mutants may arise de novo either before or after treatment is initiated, with different implications for prevention. Here we investigate this problem in the context of chronic viral diseases, such as human immunodeficiency virus (HIV) and hepatitis B and C viruses (HBV and HCV). We present a unified model of viral population dynamics within a host, which can capture a variety of viral life cycles. This allows us to identify which results generalize across various viral diseases, and which are sensitive to the particular virus's life cycle. Accurate analytical approximations are derived that allow for a solid understanding of the parameter dependencies in the system. We find that the mutation-selection balance attained prior to treatment depends on the step at which mutations occur and the viral trait that incurs the cost of resistance. Life cycle effects and key parameters, including mutation rate, infected cell death rate, cost of resistance, and drug efficacy, play a role in determining when mutations arising during treatment are important relative to those pre-existing. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Jiucun; Liu, Yinqin; Li, Wenjun; Xu, Liqun; Yang, Huan; Li, Chang Ming
2015-08-01
Nitrogen-enriched carbon sheets were synthesized using egg white as a unique carbon source and expanded perlite as a novel template. The as-prepared material was further used as an electrode material for supercapacitor applications, demonstrating excellent supercapacitance with a maximum gravimetric specific capacitance of 302 F g-1 at 0.5 A g-1 in a 3-electrode setup for a sample carbonized at 850 °C and activated for 6 h. Moreover, the carbon sheet-based capacitor with 2-symmetric electrodes showed an excellent cycle life (2% loss at 0.1 A g-1 after 10 000 cycles). The excellent performance may be attributed to the combination of the 3D carbon structure and the highly concentrated doped nitrogen component from the natural egg source for superior pseudocapacitance.
The Sphinx's Riddle: Life and Career Cycles.
ERIC Educational Resources Information Center
Burack, Elmer H.
1984-01-01
Career cycles should be considered apart from life cycles, even though the two are interrelated. This essay examines five theories about life and career cycles, and offers insights into their limitations and potential uses. (JB)
IRIS: Supporting & Managing the Research Life-Cycle
ERIC Educational Resources Information Center
Bollini, Andrea; Mennielli, Michele; Mornati, Susanna; Palmer, David T.
2016-01-01
IRIS is a new Current Research Information System (CRIS) developed by Cineca to upgrade and replace two previous solutions that have been used by Italian universities in the last 10 years. At the end of 2015, sixty-three Italian institutions are using IRIS. One of the main components of IRIS is DSpace-CRIS, an open source solution that can also be…
An Incremental Life-cycle Assurance Strategy for Critical System Certification
2014-11-04
for Safe Aircraft Operation Embedded software systems introduce a new class of problems not addressed by traditional system modeling & analysis...Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency jitter affects control behavior...do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software system as major source of
Evaluating Data Clustering Approach for Life-Cycle Facility Control
2013-04-01
produce 90% matching accuracy with noise/variations up to 55%. KEYWORDS: Building Information Modelling ( BIM ), machine learning, pattern detection...reconciled to building information model elements and ultimately to an expected resource utilization schedule. The motivation for this integration is to...by interoperable data sources and building information models . Building performance modelling and simulation efforts such as those by Maile et al
Lunardi, Rosaline Rocha; Gomes, Letícia Pinho; Peres Câmara, Thaís; Arrais-Silva, Wagner Welber
2015-09-01
Triatoma williami is naturally infected by Trypanosoma cruzi, the ethiological agent of Chagas disease, the most significant cause of morbidity and mortality in South and Central America.The possibility of domiciliation of T. williami increases the risk of human T. cruzi vetorial transmission. Despite this, there is a lack of data demonstrating the bionomic aspects, the vectorial competence or the natural ecotope and the wild hosts of T. williami. This study describes for the first time the life cycle of T. williami under the influence of two blood meal sources and also evaluates the vectorial potential of the species. The development of two groups of hundred triatomines was followed over the nymphal stages and adulthood. Each group was exposed to a sole blood meal source, mammalian or bird. The average egg-to-adult development time in both groups was similar, except by shorter stages of N3 and N4 in triatomines fed on mammals. The group fed on birds needed more blood feedings to suffer the ecdysis and had higher cumulative mortality in the nymphal stages. Although the observed delay at defecation of adults after feeding, our results suggest that T. williami in the third and fifth nymphal stages may be good vectors. Copyright © 2015 Elsevier B.V. All rights reserved.
Brandt, Adam R
2012-01-17
Because of interest in greenhouse gas (GHG) emissions from transportation fuels production, a number of recent life cycle assessment (LCA) studies have calculated GHG emissions from oil sands extraction, upgrading, and refining pathways. The results from these studies vary considerably. This paper reviews factors affecting energy consumption and GHG emissions from oil sands extraction. It then uses publicly available data to analyze the assumptions made in the LCA models to better understand the causes of variability in emissions estimates. It is found that the variation in oil sands GHG estimates is due to a variety of causes. In approximate order of importance, these are scope of modeling and choice of projects analyzed (e.g., specific projects vs industry averages); differences in assumed energy intensities of extraction and upgrading; differences in the fuel mix assumptions; treatment of secondary noncombustion emissions sources, such as venting, flaring, and fugitive emissions; and treatment of ecological emissions sources, such as land-use change-associated emissions. The GHGenius model is recommended as the LCA model that is most congruent with reported industry average data. GHGenius also has the most comprehensive system boundaries. Last, remaining uncertainties and future research needs are discussed.
Life cycle assessment study on polishing units for use of treated wastewater in agricultural reuse.
Büyükkamacı, Nurdan; Karaca, Gökçe
2017-12-01
A life cycle assessment (LCA) approach was used in the assessment of environmental impacts of some polishing units for reuse of wastewater treatment plant effluents in agricultural irrigation. These alternative polishing units were assessed: (1) microfiltration and ultraviolet (UV) disinfection, (2) cartridge filter and ultrafiltration (UF), and (3) just UV disinfection. Two different energy sources, electric grid mix and natural gas, were considered to assess the environmental impacts of them. Afterwards, the effluent of each case was evaluated against the criteria required for irrigation of sensitive crops corresponding to Turkey regulations. Evaluation of environmental impacts was carried out with GaBi 6.1 LCA software. The overall conclusion of this study is that higher electricity consumption causes higher environmental effects. The results of the study revealed that cartridge filter and UF in combination with electric grid mix has the largest impact on the environment for almost all impact categories. In general, the most environmentally friendly solution is UV disinfection. The study revealed environmental impacts for three alternatives drawing attention to the importance of the choice of the most appropriate polishing processes and energy sources for reuse applications.
2015-04-30
team from the Naval Postgraduate School conducted a trade -off analysis of in-sourcing (i.e., make) versus outsourcing (i.e., buy) the production of... outsourced , fabricating parts involves an extensive acquisition process in addition to reverse engineering and manufacturing legacy replacement parts...upper left in Figure 1) is outsourcing to the original equipment manufacturer , “Organic” (upper right in Figure 1) is in-sourcing by the U.S
Capital finance and ownership conversions in health care.
Robinson, J C
2000-01-01
This paper analyzes the for-profit transformation of health care, with emphasis on Internet start-ups, physician practice management firms, insurance plans, and hospitals at various stages in the industry life cycle. Venture capital, conglomerate diversification, publicly traded equity, convertible bonds, retained earnings, and taxable corporate debt come with forms of financial accountability that are distinct from those inherent in the capital sources available to nonprofit organizations. The pattern of for-profit conversions varies across health sectors, parallel with the relative advantages and disadvantages of for-profit and nonprofit capital sources in those sectors.
Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.
Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng
2018-01-01
To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative...
10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...
10 CFR 435.306 - Selecting a life cycle effective proposed building design.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Selecting a life cycle effective proposed building design... Residential Buildings § 435.306 Selecting a life cycle effective proposed building design. In selecting... prototype, has the highest Net Savings or lowest total life cycle costs calculated in compliance with...
10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...
10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...
10 CFR 435.306 - Selecting a life cycle effective proposed building design.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Selecting a life cycle effective proposed building design... Residential Buildings § 435.306 Selecting a life cycle effective proposed building design. In selecting... prototype, has the highest Net Savings or lowest total life cycle costs calculated in compliance with...
10 CFR 435.306 - Selecting a life cycle effective proposed building design.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Selecting a life cycle effective proposed building design... Residential Buildings § 435.306 Selecting a life cycle effective proposed building design. In selecting... prototype, has the highest Net Savings or lowest total life cycle costs calculated in compliance with...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative...
10 CFR 433.8 - Life-cycle costing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures set out in subpart A...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Developing Software Life Cycle Processes Used in... revised regulatory guide (RG), revision 1 of RG 1.173, ``Developing Software Life Cycle Processes for... Developing a Software Project Life Cycle Process,'' issued 2006, with the clarifications and exceptions as...
10 CFR 433.8 - Life-cycle costing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures set out in subpart A...
Normalization is an optional step within Life Cycle Impact Assessment (LCIA) that may be used to assist in the interpretation of life cycle inventory data as well as, life cycle impact assessment results. Normalization transforms the magnitude of LCI and LCIA results into relati...
10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...
10 CFR 435.306 - Selecting a life cycle effective proposed building design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Selecting a life cycle effective proposed building design... Residential Buildings § 435.306 Selecting a life cycle effective proposed building design. In selecting... prototype, has the highest Net Savings or lowest total life cycle costs calculated in compliance with...
Residential Preferences and Moving Behavior: A Family Life Cycle Analysis.
ERIC Educational Resources Information Center
McAuley, William J.; Nutty, Cheri L.
The relationship of family life cycle changes to housing preferences and residential mobility is examined. Two residential decision-making issues are explored in detail--how family life cycle stages influence what people view as important to their choice of residential setting and what individuals at different family life cycle stages view as the…
Code of Federal Regulations, 2010 CFR
2010-01-01
... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative...
10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the life-cycle cost analysis method in part 436, subpart A, of title 10 of the Code of Federal... 10 Energy 3 2011-01-01 2011-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...
Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle
NASA Astrophysics Data System (ADS)
Jeong, Kwi Seong; Oh, Byeong Soo
The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.
Life-cycle assessment of corn-based butanol as a potential transportation fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.; Wang, M.; Liu, J.
2007-12-31
Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel.more » The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.« less
Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage
NASA Astrophysics Data System (ADS)
Manthiram, Arumugam
2011-03-01
Electrical energy storage has emerged as a topic of national and global importance with respect to establishing a cleaner environment and reducing the dependence on foreign oil. Batteries are the prime candidates for electrical energy storage. They are the most viable near-term option for vehicle applications and the efficient utilization of intermittent energy sources like solar and wind. Lithium-ion batteries are attractive for these applications as they offer much higher energy density than other rechargeable battery systems. However, the adoption of lithium-ion battery technology for vehicle and stationary storage applications is hampered by high cost, safety concerns, and limitations in energy, power, and cycle life, which are in turn linked to severe materials challenges. This presentation, after providing an overview of the current status, will focus on the physics and chemistry of new materials that can address these challenges. Specifically, it will focus on the design and development of (i) high-capacity, high-voltage layered oxide cathodes, (ii) high-voltage, high-power spinel oxide cathodes, (iii) high-capacity silicate cathodes, and (iv) nano-engineered, high-capacity alloy anodes. With high-voltage cathodes, a critical issue is the instability of the electrolyte in contact with the highly oxidized cathode surface and the formation of solid-electrolyte interfacial (SEI) layers that degrade the performance. Accordingly, surface modification of cathodes with nanostructured materials and self-surface segregation during the synthesis process to suppress SEI layer formation and enhance the energy, power, and cycle life will be emphasized. With the high-capacity alloy anodes, a critical issue is the huge volume change occurring during the charge-discharge process and the consequent poor cycle life. Dispersion of the active alloy nanoparticles in an inactive metal oxide-carbon matrix to mitigate this problem and realize long cycle life will be presented.
A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance.
Song, Min-Kyu; Zhang, Yuegang; Cairns, Elton J
2013-01-01
Lithium/sulfur (Li/S) cells are receiving significant attention as an alternative power source for zero-emission vehicles and advanced electronic devices due to the very high theoretical specific capacity (1675 mA·h/g) of the sulfur cathode. However, the poor cycle life and rate capability have remained a grand challenge, preventing the practical application of this attractive technology. Here, we report that a Li/S cell employing a cetyltrimethyl ammonium bromide (CTAB)-modified sulfur-graphene oxide (S-GO) nanocomposite cathode can be discharged at rates as high as 6C (1C = 1.675 A/g of sulfur) and charged at rates as high as 3C while still maintaining high specific capacity (~ 800 mA·h/g of sulfur at 6C), with a long cycle life exceeding 1500 cycles and an extremely low decay rate (0.039% per cycle), perhaps the best performance demonstrated so far for a Li/S cell. The initial estimated cell-level specific energy of our cell was ~ 500 W·h/kg, which is much higher than that of current Li-ion cells (~ 200 W·h/kg). Even after 1500 cycles, we demonstrate a very high specific capacity (~ 740 mA·h/g of sulfur), which corresponds to ~ 414 mA·h/g of electrode: still higher than state-of-the-art Li-ion cells. Moreover, these Li/S cells with lithium metal electrodes can be cycled with an excellent Coulombic efficiency of 96.3% after 1500 cycles, which was enabled by our new formulation of the ionic liquid-based electrolyte. The performance we demonstrate herein suggests that Li/S cells may already be suitable for high-power applications such as power tools. Li/S cells may now provide a substantial opportunity for the development of zero-emission vehicles with a driving range similar to that of gasoline vehicles.
Insights into Seasonal Variations in Phosphorus Concentrations and Cycling in Monterey Bay
NASA Astrophysics Data System (ADS)
Kong, M.; Defforey, D.; Paytan, A.; Roberts, K.
2014-12-01
Phosphorus (P) is an essential nutrient for life as it is a structural constituent in many cell components and a key player in cellular energy metabolism. Therefore, P availability can impact primary productivity. Here we quantify dissolved and particulate P compounds and trace P sources and cycling in Monterey Bay over the course of a year. This time series gives insights into monthly and seasonal variations in the surface water chemistry of this region. Preliminary characterization of seawater samples involves measuring total P and soluble reactive P (SRP) concentrations. 31P nuclear magnetic resonance spectroscopy (31P NMR) is used to determine the chemical structure of organic phosphorus compounds present in surface seawater. The isotopic signature of phosphatic oxygen (δ18Op) is used as a proxy for studying P cycling and sources. Oxygen isotope ratios in phosphate are determined by continuous-flow isotope mass ratio spectrometry (CF-IRMS) following purification of dissolved P from seawater samples and precipitation as silver phosphate. We expect to observe seasonal changes in P concentrations, as well as differences in organic P composition and P sources. The chemical structure of organic P compounds will affect their bioavailability and thus the extent to which they can fuel primary productivity in Monterey Bay. δ18Op will reflect source signatures and provide information on turnover rates of P in surface waters. Results from this work will provide valuable insights into seasonal changes in P cycling in surface waters and have important implications for understanding primary productivity in the Monterey Bay ecosystem.
Prospective time-resolved LCA of fully electric supercap vehicles in Germany.
Zimmermann, Benedikt M; Dura, Hanna; Baumann, Manuel J; Weil, Marcel R
2015-07-01
The ongoing transition of the German electricity supply toward a higher share of renewable and sustainable energy sources, called Energiewende in German, has led to dynamic changes in the environmental impact of electricity over the last few years. Prominent scenario studies predict that comparable dynamics will continue in the coming decades, which will further improve the environmental performance of Germany's electricity supply. Life cycle assessment (LCA) is the methodology commonly used to evaluate environmental performance. Previous LCA studies on electric vehicles have shown that the electricity supply for the vehicles' operation is responsible for the major part of their environmental impact. The core question of this study is how the prospective dynamic development of the German electricity mix will affect the impact of electric vehicles operated in Germany and how LCA can be adapted to analyze this impact in a more robust manner. The previously suggested approach of time-resolved LCA, which is located between static and dynamic LCA, is used in this study and compared with several static approaches. Furthermore, the uncertainty issue associated with scenario studies is addressed in general and in relation to time-resolved LCA. Two scenario studies relevant to policy making have been selected, but a moderate number of modifications have been necessary to adapt the data to the requirements of a life cycle inventory. A potential, fully electric vehicle powered by a supercapacitor energy storage system is used as a generic example. The results show that substantial improvements in the environmental repercussions of the electricity supply and, consequentially, of electric vehicles will be achieved between 2020 and 2031 on the basis of the energy mixes predicted in both studies. This study concludes that although scenarios might not be able to predict the future, they should nonetheless be used as data sources in prospective LCA studies, because in many cases historic data appears to be unsuitable for providing realistic information on the future. The time-resolved LCA approach improves the assessment's robustness substantially, especially when nonlinear developments are foreseen in the future scenarios. This allows for a reduction of bias in LCA-based decision making. However, a deeper integration of time-resolved data in the life cycle inventory and the implementation of a more suitable software framework are desirable. The study describes how life cycle assessment's (LCA) robustness can be improved by respecting prospective fluctuations, like the transition of the German electricity mix, in the modeling of the life cycle inventory. It presents a feasible and rather simple process to add time-resolved data to LCA. The study selects 2 different future scenarios from important German studies and processes their data systematically to make them compatible with the requirements of a life cycle inventory. The use of external scenarios as basis for future-oriented LCA is reflected critically. A case study on electric mobility is presented and used to compare historic, prospective static, and prospective time-resolved electricity mix modeling approaches. The case study emphasizes the benefits of time-resolved LCA in direct comparison with the currently used approaches. © 2015 SETAC.
Life Cycle Assessment of Coal-fired Power Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spath, P. L.; Mann, M. K.; Kerr, D. R.
1999-09-01
Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (thismore » tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).« less
NASA Astrophysics Data System (ADS)
Wu, Guan; Liu, Na; Gao, Xuguang; Tian, Xiaohui; Zhu, Yanbin; Zhou, Yingke; Zhu, Qingyou
2018-03-01
The LiFePO4/C composites have been successfully synthesized by a hydrothermal process, with the combined carbon sources of fructose and calcium lignosulfonate. The morphology and microstructure of LiFePO4/C were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The electrochemical properties were evaluated by the constant-current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The uniform carbon coating layer derived from calcium lignosulfonate can effectively improve the electronic conductivity, lithium-ion diffusivity and surface stability of the LiFePO4/C composites and prevent the side reactions between the LiFePO4 particles and electrolytes. The LiFePO4/C composites display excellent rate capability, superior cycle life and outstanding low temperature performance, which are promising for lithium-ion battery applications in electrical vehicles and electrical energy storage systems.
Fischer, Michael G; Hua, Xiao; Wilts, Bodo D; Castillo-Martínez, Elizabeth; Steiner, Ullrich
2018-01-17
Lithium iron phosphate (LFP) is currently one of the main cathode materials used in lithium-ion batteries due to its safety, relatively low cost, and exceptional cycle life. To overcome its poor ionic and electrical conductivities, LFP is often nanostructured, and its surface is coated with conductive carbon (LFP/C). Here, we demonstrate a sol-gel based synthesis procedure that utilizes a block copolymer (BCP) as a templating agent and a homopolymer as an additional carbon source. The high-molecular-weight BCP produces self-assembled aggregates with the precursor-sol on the 10 nm scale, stabilizing the LFP structure during crystallization at high temperatures. This results in a LFP nanonetwork consisting of interconnected ∼10 nm-sized particles covered by a uniform carbon coating that displays a high rate performance and an excellent cycle life. Our "one-pot" method is facile and scalable for use in established battery production methodologies.
Software life cycle dynamic simulation model: The organizational performance submodel
NASA Technical Reports Server (NTRS)
Tausworthe, Robert C.
1985-01-01
The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.
The Hyperspectral Infrared Imager (HyspIRI) Public Health and Air Quality Applications
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Hook, Simon J.
2014-01-01
The neglected tropical diseases (NTDs), a group of chronic, debilitating, and poverty-promoting parasitic, bacterial, and some viral and fungal infections, are among the most common causes of illness of the poorest people living in developing countries. Abiotic environmental factors are important in determining the distribution of disease-causing vectors and their life-cycles. HyspIRI observations can be merged through a Land Data Assimilation System (LDAS) be used to drive spatially-explicit ecological models of NTD vectors distribution and life cycles. Assimilations will be driven by observational data LDAS and satellite-derived meteorological forcing data, parameter datasets, and assimilation observations. HyspIRI hyperspectral measurements would provide global measurements of surface mineralogy and biotic crusts important in accessing the impact of dust in human health. HyspIRI surface thermal measurements would also help identify the variability of dust sources due to surface moisture conditions and map mineralogy.
The role of latent heat in kinetic energy conversions of South Pacific cyclones
NASA Technical Reports Server (NTRS)
Kann, Deirdre M.; Vincent, Dayton G.
1986-01-01
The four-dimensional behavior of cyclone systems in the South Pacific Convergence Zone (SPCZ) is analyzed. Three cyclone systems, which occurred during the period from January 10-16, 1979, are examined using the data collected during the first special observing period of the FGGE. The effects of latent heating on the life cycles of the cyclones are investigated. Particular attention is given to the conversions of eddy available potential energy to eddy kinetic energy and of mean kinetic energy to eddy kinetic energy. The net radiation profile, sensible heat flux, total field of vertical motion, and latent heat component were computed. The life cycles of the cyclones are described. It is observed that the latent heating component accounts for nearly all the conversion in the three cyclones, and latent heating within the SPCZ is the major source of eddy kinetic energy for the cyclones.
Life Cycle Assessment of high ligno-cellulosic biomass pyrolysis coupled with anaerobic digestion.
Righi, Serena; Bandini, Vittoria; Marazza, Diego; Baioli, Filippo; Torri, Cristian; Contin, Andrea
2016-07-01
A Life Cycle Assessment is conducted on pyrolysis coupled to anaerobic digestion to treat corn stovers and to obtain bioenergy and biochar. The analysis takes into account the feedstock treatment process, the fate of products and the indirect effects due to crop residue removal. The biochar is considered to be used as solid fuel for coal power plants or as soil conditioner. All results are compared with a corresponding fossil-fuel-based scenario. It is shown that the proposed system always enables relevant primary energy savings of non-renewable sources and a strong reduction of greenhouse gases emissions without worsening the abiotic resources depletion. Conversely, the study points out that the use of corn stovers for mulch is critical when considering acidification and eutrophication impacts. Therefore, removal of corn stovers from the fields must be planned carefully. Copyright © 2016. Published by Elsevier Ltd.
Forced Fusion in the Excited State of dtμ Muonic-Molecule and its Possible Drivers
NASA Astrophysics Data System (ADS)
Eskandari, M. R.; Faghihi, F.
It is shown that the cycling rate in the optimum tritium concentration in μCF and in the n=2, J=1, ν=0 state is 2.35 times higher than in n=1, J=ν=0 state. The methods to explore forced μCF of the n=2 state is discussed. Although the n=2 state shows to be more efficient in terms of its cycling rate, all suggested drivers seems to be useless with respect to the input energy requirement and short life-time of resonance states. It is shown that even using x-ray sources as a driver, and designing hybrid system, the suggested forced hybrid system energy gain is 13 and very good gain enhancement but still is far away to be of interest for practical applications with respect to very short life-time of resonance states.
The Hyperspectral Infrared Imager (HyspIRI) Public Health and Air Quality Applications
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Hook, Simon J.
2013-01-01
The neglected tropical diseases (NTDs), a group of chronic, debilitating, and poverty-promoting parasitic, bacterial, and some viral and fungal infections, are among the most common causes of illness of the poorest people living in developing countries. Abiotic environmental factors are important in determining the distribution of disease-causing vectors and their life-cycles. HyspIRI observations can be merged through a Land Data Assimilation System (LDAS) be used to drive spatially-explicit ecological models of NTD vectors distribution & life cycles. Assimilations will be driven by observational data LDAS and satellite-derived meteorological forcing data, parameter datasets, and assimilation observations. HyspIRI hyperspectral measurements would provide global measurements of surface mineralogy and biotic crusts important in accessing the impact of dust in human health. HyspIRI surface thermal measurements would also help identify the variability of dust sources due to surface moisture conditions and map mineralogy.
The Hyperspectral Infrared Imager (HyspIRI) Public Health & Air Quality Applications
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Hook, Simon J.
2013-01-01
The neglected tropical diseases (NTDs), a group of chronic, debilitating, and poverty-promoting parasitic, bacterial, and some viral and fungal infections, are among the most common causes of illness of the poorest people living in developing countries. Abiotic environmental factors are important in determining the distribution of disease-causing vectors and their life-cycles. HyspIRI observations can be merged through a Land Data Assimilation System (LDAS) be used to drive spatially-explicit ecological models of NTD vectors distribution & life cycles. Assimilations will be driven by observational data LDAS and satellite-derived meteorological forcing data, parameter datasets, and assimilation observations. HyspIRI hyperspectral measurements would provide global measurements of surface mineralogy and biotic crusts important in accessing the impact of dust in human health. HyspIRI surface thermal measurements would also help identify the variability of dust sources due to surface moisture conditions and map mineralogy.
KOH concentration effect on cycle life of nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Lim, Hong S.; Verzwyvelt, S. A.
1987-01-01
A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low Earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.
Combined use of semantics and metadata to manage Research Data Life Cycle in Environmental Sciences
NASA Astrophysics Data System (ADS)
Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Pertinez, Esther; Palacio, Aida
2017-04-01
The use of metadata to contextualize datasets is quite extended in Earth System Sciences. There are some initiatives and available tools to help data managers to choose the best metadata standard that fit their use cases, like the DCC Metadata Directory (http://www.dcc.ac.uk/resources/metadata-standards). In our use case, we have been gathering physical, chemical and biological data from a water reservoir since 2010. A well metadata definition is crucial not only to contextualize our own data but also to integrate datasets from other sources like satellites or meteorological agencies. That is why we have chosen EML (Ecological Metadata Language), which integrates many different elements to define a dataset, including the project context, instrumentation and parameters definition, and the software used to process, provide quality controls and include the publication details. Those metadata elements can contribute to help both human and machines to understand and process the dataset. However, the use of metadata is not enough to fully support the data life cycle, from the Data Management Plan definition to the Publication and Re-use. To do so, we need to define not only metadata and attributes but also the relationships between them, so semantics are needed. Ontologies, being a knowledge representation, can contribute to define the elements of a research data life cycle, including DMP, datasets, software, etc. They also can define how the different elements are related between them and how they interact. The first advantage of developing an ontology of a knowledge domain is that they provide a common vocabulary hierarchy (i.e. a conceptual schema) that can be used and standardized by all the agents interested in the domain (either humans or machines). This way of using ontologies is one of the basis of the Semantic Web, where ontologies are set to play a key role in establishing a common terminology between agents. To develop an ontology we are using a graphical tool Protégé, which is a graphical ontology-development tool that supports a rich knowledge model and it is open-source and freely available. To process and manage the ontology, we are using Semantic MediaWiki, which is able to process queries. Semantic MediaWiki is an extension of MediaWiki where we can do semantic search and export data in RDF. Our final goal is integrating our data repository portal and semantic processing engine in order to have a complete system to manage the data life cycle stages and their relationships, including machine-actionable DMP solution, datasets and software management, computing resources for processing and analysis and publication features (DOI mint). This way we will be able to reproduce the full data life cycle chain warranting the FAIR+R principles.
10 CFR 455.64 - Life-cycle cost methodology.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle cost methodology. 455.64 Section 455.64 Energy..., Hospitals, Units of Local Government, and Public Care Institutions § 455.64 Life-cycle cost methodology. (a) The life-cycle cost methodology under § 455.63(b) of this part is a systematic comparison of the...
NREL: U.S. Life Cycle Inventory Database - About the LCI Database Project
About the LCI Database Project The U.S. Life Cycle Inventory (LCI) Database is a publicly available data collection and analysis methods. Finding consistent and transparent LCI data for life cycle and maintain the database. The 2009 U.S. Life Cycle Inventory (LCI) Data Stakeholder meeting was an
10 CFR 455.64 - Life-cycle cost methodology.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle cost methodology. 455.64 Section 455.64 Energy..., Hospitals, Units of Local Government, and Public Care Institutions § 455.64 Life-cycle cost methodology. (a) The life-cycle cost methodology under § 455.63(b) of this part is a systematic comparison of the...
We compared a 21 day full life-cycle bioassay with an existing 14 day partial life-cycle bioassay for two species of meiobenthic copepods, Microarthridion littorale and Amphiascus tenuiremis. We hypothesized that full life-cycle tests would bette...
The Early Years: "Life" Science
ERIC Educational Resources Information Center
Ashbrook, Peggy
2013-01-01
Talking about death as part of a life cycle is often ignored or spoken about in hushed tones in early childhood. Books with "life cycle" in the title often do not include the death of the living organism in the information about the cycle. The concept of a complete life cycle does not appear in "A Framework for K-12 Science…
Projecting LED product life based on application
NASA Astrophysics Data System (ADS)
Narendran, Nadarajah; Liu, Yi-wei; Mou, Xi; Thotagamuwa, Dinusha R.; Eshwarage, Oshadhi V. Madihe
2016-09-01
LED products have started to displace traditional light sources in many lighting applications. One of the commonly claimed benefits for LED lighting products is their long useful lifetime in applications. Today there are many replacement lamp products using LEDs in the marketplace. Typically, lifetime claims of these replacement lamps are in the 25,000-hour range. According to current industry practice, the time for the LED light output to reach the 70% value is estimated according to IESNA LM-80 and TM-21 procedures and the resulting value is reported as the whole system life. LED products generally experience different thermal environments and switching (on-off cycling) patterns when used in applications. Current industry test methods often do not produce accurate lifetime estimates for LED systems because only one component of the system, namely the LED, is tested under a continuous-on burning condition without switching on and off, and because they estimate for only one failure type, lumen depreciation. The objective of the study presented in this manuscript was to develop a test method that could help predict LED system life in any application by testing the whole LED system, including on-off power cycling with sufficient dwell time, and considering both failure types, catastrophic and parametric. The study results showed for the LED A-lamps tested in this study, both failure types, catastrophic and parametric, exist. The on-off cycling encourages catastrophic failure, and maximum operating temperature influences the lumen depreciation rate and parametric failure time. It was also clear that LED system life is negatively affected by on-off switching, contrary to commonly held belief. In addition, the study results showed that most of the LED systems failed catastrophically much ahead of the LED light output reaching the 70% value. This emphasizes the fact that life testing of LED systems must consider catastrophic failure in addition to lumen depreciation, and the shorter of the two failure modes must be selected as the system life. The results of this study show a shorter time test procedure can be developed to accurately predict LED system life in any application by knowing the LED temperature and the switching cycle.
NASA Astrophysics Data System (ADS)
Kutsch, W. L.
2015-12-01
Environmental research infrastructures and big data integration networks require common data policies, standardized workflows and sophisticated e-infrastructure to optimise the data life cycle. This presentation summarizes the experiences in developing the data life cycle for the Integrated Carbon Observation System (ICOS), a European Research Infrastructure. It will also outline challenges that still exist and visions for future development. As many other environmental research infrastructures ICOS RI built on a large number of distributed observational or experimental sites. Data from these sites are transferred to Thematic Centres and quality checked, processed and integrated there. Dissemination will be managed by the ICOS Carbon Portal. This complex data life cycle has been defined in detail by developing protocols and assigning responsibilities. Since data will be shared under an open access policy there is a strong need for common data citation tracking systems that allow data providers to identify downstream usage of their data so as to prove their importance and show the impact to stakeholders and the public. More challenges arise from interoperating with other infrastructures or providing data for global integration projects as done e.g. in the framework of GEOSS or in global integration approaches such as fluxnet or SOCAt. Here, common metadata systems are the key solutions for data detection and harvesting. The metadata characterises data, services, users and ICT resources (including sensors and detectors). Risks may arise when data of high and low quality are mixed during this process or unexperienced data scientists without detailed knowledge on the data aquisition derive scientific theories through statistical analyses. The vision of fully open data availability is expressed in a recent GEO flagship initiative that will address important issues needed to build a connected and interoperable global network for carbon cycle and greenhouse gas observations and aims to meet the most urgent needs for integration between different information sources and methodologies, between different regional networks and from data providers to users.
cycle assessment in industrial by-product management, waste management, biofuels and manufacturing technologies Life cycle inventory database management Research Interests Life cycle assessment Life cycle inventory management Biofuels Advanced manufacturing Supply chain analysis Education Ph.D in environmental
How drug life-cycle management patent strategies may impact formulary management.
Berger, Jan; Dunn, Jeffrey D; Johnson, Margaret M; Karst, Kurt R; Shear, W Chad
2016-10-01
Drug manufacturers may employ various life-cycle management patent strategies, which may impact managed care decision making regarding formulary planning and management strategies when single-source, branded oral pharmaceutical products move to generic status. Passage of the Hatch-Waxman Act enabled more rapid access to generic medications through the abbreviated new drug application process. Patent expirations of small-molecule medications and approvals of generic versions have led to substantial cost savings for health plans, government programs, insurers, pharmacy benefits managers, and their customers. However, considering that the cost of developing a single medication is estimated at $2.6 billion (2013 dollars), pharmaceutical patent protection enables companies to recoup investments, creating an incentive for innovation. Under current law, patent protection holds for 20 years from time of patent filing, although much of this time is spent in product development and regulatory review, leaving an effective remaining patent life of 7 to 10 years at the time of approval. To extend the product life cycle, drug manufacturers may develop variations of originator products and file for patents on isomers, metabolites, prodrugs, new drug formulations (eg, extended-release versions), and fixed-dose combinations. These additional patents and the complexities surrounding the timing of generic availability create challenges for managed care stakeholders attempting to gauge when generics may enter the market. An understanding of pharmaceutical patents and how intellectual property protection may be extended would benefit managed care stakeholders and help inform decisions regarding benefit management.
NREL: U.S. Life Cycle Inventory Database - Publications
Publications Planning Documents U.S. Life Cycle Inventory Database Roadmap, February 2009 U.S. Life Cycle Inventory User Survey, February 2009 U.S. LCI Database Factsheet, March 2005 User's Guide for Life
Autonomy and integration in complex parasite life cycles.
Benesh, Daniel P
2016-12-01
Complex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.
This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summarymore » of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected models were generally found to be below thresholds for Federally regulated elements; • All CFLs and LED lamps and most incandescent lamps exceeded California thresholds for Copper; • Most CFL samples exceeded California thresholds for Antimony and Nickel, and half of the LED samples exceeded California thresholds for Zinc; • The greatest contributors were the screw bases, drivers, ballasts, and wires or filaments; • Overall concentrations in LED lamps were comparable to cell phones and other types of electronic devices, and were generally attributable to components other than the internal LED light sources; • Although the life-cycle environmental impact of the LED lamps is favorable when compared to CFLs and incandescent lamps, recycling will likely gain importance as consumer adoption increases. This study was exploratory in nature and was not intended to provide a definitive indication of regulatory compliance for any specific lamp model or technology. Further study would be needed to more broadly characterize the various light source technologies; to more accurately and precisely characterize a specific model; or to determine whether product redesign would be appropriate.« less
NASA Astrophysics Data System (ADS)
Kim, Jongsoon; Kim, Hyungsub; Myung, Seung-Taek; Yoo, Jung-Keun; Lee, Seongsu
2018-01-01
Mn-rich olivine LiFe0.3Mn0.7PO4 is homogenously encapsulated by an ∼3-nm-thick conductive nanolayer composed of the glassy lithium fluorophosphate through simple non-stoichiometric synthesis using additives of small amounts of LiF and a phosphorus source. The coating of the glassy lithium fluorophosphate nanolayer is clearly verified using transmission electron microscopy and X-ray photoelectron spectroscopy. It enables significant decrease in charge transfer resistance of LiFe0.3Mn0.7PO4 and improvement of its sluggish Li diffusion. At a rate of 10C, the LiFe0.3Mn0.7PO4 encapsulated by conductive glassy lithium fluorophosphate (LiFe0.3Mn0.7PO4-GLFP) electrode delivers a capacity of ∼130 mAh g-1, which is ∼77% of its theoretical capacity (∼170 mAh g-1) and ∼1.5 times higher than that of the pristine counterpart at 10C. Furthermore, LiFe0.3Mn0.7PO4-GLFP achieves outstanding cycle stability (∼75% retention of its initial capacity over 500 cycles at 1C). The proposed olivine LiFe0.3Mn0.7PO4-GLFP battery is thus expected to be a promising candidate for large-scale energy storage applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Cycle Cost Analyses § 436.10 Purpose. This subpart establishes a methodology and procedures for estimating and comparing the life cycle costs of Federal buildings, for determining the life cycle cost effectiveness of energy conservation measures and water conservation measures, and for rank ordering life cycle...
Shortening tobacco life cycle accelerates functional gene identification in genomic research.
Ning, G; Xiao, X; Lv, H; Li, X; Zuo, Y; Bao, M
2012-11-01
Definitive allocation of function requires the introduction of genetic mutations and analysis of their phenotypic consequences. Novel, rapid and convenient techniques or materials are very important and useful to accelerate gene identification in functional genomics research. Here, over-expression of PmFT (Prunus mume), a novel FT orthologue, and PtFT (Populus tremula) lead to shortening of the tobacco life cycle. A series of novel short life cycle stable tobacco lines (30-50 days) were developed through repeated self-crossing selection breeding. Based on the second transformation via a gusA reporter gene, the promoter from BpFULL1 in silver birch (Betula pendula) and the gene (CPC) from Arabidopsis thaliana were effectively tested using short life cycle tobacco lines. Comparative analysis among wild type, short life cycle tobacco and Arabidopsis transformation system verified that it is optional to accelerate functional gene studies by shortening host plant material life cycle, at least in these short life cycle tobacco lines. The results verified that the novel short life cycle transgenic tobacco lines not only combine the advantages of economic nursery requirements and a simple transformation system, but also provide a robust, effective and stable host system to accelerate gene analysis. Thus, shortening tobacco life cycle strategy is feasible to accelerate heterologous or homologous functional gene identification in genomic research. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
NREL, Johns Hopkins SAIS Develop Method to Quantify Life Cycle Land Use of
Life Cycle Land Use of Electricity from Natural Gas News Release: NREL, Johns Hopkins SAIS Develop Method to Quantify Life Cycle Land Use of Electricity from Natural Gas October 2, 2017 A case study of time provides quantifiable information on the life cycle land use of generating electricity from
This paper presents a summary of the findings of a report prepared by Task Force 1 of the UNEP/SETAC Life Cycle Initiative on the available Life Cycle Inventory (LCI) databases around the world. An update of a previous summary prepared in May 2002 by Norris and Notten, the repor...
NASA Astrophysics Data System (ADS)
Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar
2017-12-01
Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.
Zhang, Q H; Wang, X C; Xiong, J Q; Chen, R; Cao, B
2010-03-01
In order to illuminate the benefit of a wastewater treatment and reuse project, a life cycle assessment (LCA) model was proposed by combining the process-based LCA and the input-output based LCA in one framework and using energy consumption as the sole parameter for quantitative evaluation of the project. The life cycle consumption was evaluated mainly by life cycle inventory (LCI) analysis taking into account the construction phase, operation phase and demolishment phase of the project. For evaluating the life cycle benefit of treated water reuse, attention was paid to the decrease of secondary effluent discharge and water saving. As a result of comprehensive LCA analysis of a case project in Xi'an, China, it was understood that the life cycle benefit gained from treated wastewater reuse much surpassed the life cycle energy consumption. The advantage of wastewater treatment and reuse was well shown by LCA analysis using the proposed model. 2009 Elsevier Ltd. All rights reserved.
A case study by life cycle assessment
NASA Astrophysics Data System (ADS)
Li, Shuyun
2017-05-01
This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.
Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons.
Bazaka, Kateryna; Jacob, Mohan V; Ostrikov, Kostya Ken
2016-01-13
Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on nonequilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This review discusses the distinctive effects of nonequilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed-from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially reusable byproducts.
NASA Astrophysics Data System (ADS)
Penning de Vries, Marloes; Beirle, Steffen; Brühl, Christoph; Hörmann, Christoph; Wagner, Thomas
2015-04-01
The Kilauea volcano (Hawaii), currently perhaps the most active volcano on Earth, has been continuously erupting since the beginning of 1983. A pronounced degassing phase in March-November 2008 caused the formation of an extensive SO2 plume, which in turn led to the formation of sulfate aerosols. The steady trade winds and lack of interfering sources previously allowed us to determine the life time of SO2 using only satellite-based measurements (no a priori or model information). The current investigation is focused on improving our understanding of the processes contributing to sulfate aerosol formation, processing, and loss. We use space-based aerosol measurements by MODIS, MISR, and CALIOP to characterize the aerosols (amount, size, altitude) and study the evolution of aerosol optical depth as a function of distance from the volcano to determine formation and loss rates. The outcome is compared to results from calculations using the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to test the state of understanding of the sulfate aerosol life cycle.
Development of service-oriented products based on the inverse manufacturing concept.
Fujimoto, Jun; Umeda, Yasushi; Tamura, Tetsuya; Tomiyama, Tetsuo; Kimura, Fumihiko
2003-12-01
To achieve sustainability, resource consumption and waste generation must be drastically decreased. For societal acceptance, preservation of both quality of life and corporate profits are essential. One promising approach is to shift the source of value from the amount of product sold to the quality of services the product provides. This paper describes the need for redesigning recycling systems from a manufacturing perspective and then discusses the possibility of this "servicification" of products, describing our experience with prototype development. We discuss development of product prototypes and their business, using consumer facsimile machines as an example of "service-oriented products". Traditional thought presumes that only products comprising new materials and components are valuable. Consideration of a service-oriented product can serve as a stimulus to revise this mode of thought and to control delivery and quality of disposed products. This paper also provides a life cycle simulation of the developed service-oriented business. Simulation results indicate that service-oriented business can potentially reduce environmental impact while extending business opportunities from the viewpoint of whole product life cycles.
Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
Loutzenhiser, Peter G.; Meier, Anton; Steinfeld, Aldo
2010-01-01
This article provides a comprehensive overview of the work to date on the two‑step solar H2O and/or CO2 splitting thermochemical cycles with Zn/ZnO redox reactions to produce H2 and/or CO, i.e., synthesis gas—the precursor to renewable liquid hydrocarbon fuels. The two-step cycle encompasses: (1) The endothermic dissociation of ZnO to Zn and O2 using concentrated solar energy as the source for high-temperature process heat; and (2) the non-solar exothermic oxidation of Zn with H2O/CO2 to generate H2/CO, respectively; the resulting ZnO is then recycled to the first step. An outline of the underlying science and the technological advances in solar reactor engineering is provided along with life cycle and economic analyses. PMID:28883361
Solar dynamic power module design
NASA Technical Reports Server (NTRS)
Secunde, Richard R.; Labus, Thomas L.; Lovely, Ronald G.
1989-01-01
Studies have shown that use of solar dynamic (SD) power for the growth eras of the Space Station Freedom program will result in life cycle cost savings when compared to power supplied by photovoltaic sources. In the SD power module, a concentrator collects and focuses solar energy into a heat receiver which has integral thermal energy storage. A power conversion unit (PCU) based on the closed Brayton thermodynamic cycle removes thermal energy from the receiver and converts that energy to electrical energy. Since the closed Brayton cycle is a single phase gas cycle, the conversion hardware (heat exchangers, turbine, compressor, etc.) can be designed for operation in low earth orbit, and tested with confidence in test facilities on earth before launch into space. The concentrator subassemblies will be aligned and the receiver/PCU/radiator combination completely assembled and charged with gas and cooling liquid on earth before launch to, and assembly on orbit.
A life cycle carbon dioxide inventory of the Million Trees Los Angeles Program
E. Gregory McPherson; Alissa Kendall
2014-01-01
PurposeThis study seeks to answer the question, âWill the Million Trees LA (Million Trees Los Angeles, MTLA) program be a carbon dioxide (CO2) sink or source?â Because there has never been a full accounting of CO2 emissions, it is unclear if urban tree planting initiatives (TPIs) are likely to be...
Analysis of the JSF Engine Competition
2012-09-01
even 25 Competition for Support Services Support costs are typically more than half of life-cycle costs and normally incurred in a sole-source...Strike Fighter), Aircraft Engines, Competition, Military Procurement, Defense Industry, Cost Analysis Analysis of the JSF Engine Competition James...different designs to meet the same functional requirements. Such a case was examined by the Institute for Defense Analyses in a forward-looking cost and
Life Cycle Assessment for PC Blend 2 Aircraft Radome Depainter
1996-09-01
Trivalent chromium compounds are considerably less toxic than hexavalent forms and are neither irritating nor corrosive. 25. IRON (W) Ecosystem: Visibility...acquisition and combustion is a source of waterborne acid, ammonia, BOD, chromium , COD, dissolved solids, iron, lead, metal ion, oil, phenol...intermediates for DBE. Chromium , phenol, zinc, and COD process emissions come from petroleum refinery operations. The production of ammonia also produces
Development and Application of an Approach to Optimize Renewable Energy Systems in Afghanistan
2012-06-01
upon renewable energy sources for power production , the more desirable the system design. Total operations and maintenance cost has the third...Engineers (USACE) practices for implementing energy systems for ANSF infrastructure are limited to diesel generators, and, thus, preclude alternative...system attribute values: total O&M cost, renewable fraction, generator production , wind production , solar production , battery quantity, life cycle
Acquiring Technical Data With Renewable Real Options
2016-04-30
Development, and Engineering Center, 2009). Faced with diminishing sources for M2 .50 caliber machine gun parts , an Army engineering center entered the...data needed for life cycle sustainment functions such as maintenance or competitive spare parts procurement, but this expectation is more complicated...than it seems (DoD, 2015). The needs and timing for competitive spare parts procurement are uncertain, and changes in system configuration or
Life cycle GHG evaluation of organic rice production in northern Thailand.
Yodkhum, Sanwasan; Gheewala, Shabbir H; Sampattagul, Sate
2017-07-01
Greenhouse gas (GHG) emission is one of the serious international environmental issues that can lead to severe damages such as climate change, sea level rise, emerging disease and many other impacts. Rice cultivation is associated with emissions of potent GHGs such as methane and nitrous oxide. Thai rice has been massively exported worldwide however the markets are becoming more competitive than ever since the green market has been hugely promoted. In order to maintain the same level or enhance of competitiveness, Thai rice needs to be considered for environmentally conscious products to meet the international environmental standards. Therefore, it is necessary to evaluate the greenhouse gas emissions throughout the life cycle of rice production in order to identify the major emission sources and possible reduction strategies. In this research, the rice variety considered is Khao Dawk Mali 105 (KDML 105) cultivated by organic practices. The data sources were Don-Chiang Organic Agricultural Cooperative (DCOAC), Mae-teang district, Chiang Mai province, Thailand and the Office of Agricultural Economics (OAE) of Thailand with onsite records and interviews of farmers in 2013. The GHG emissions were calculated from cradle-to-farm by using the Life Cycle Assessment (LCA) approach and the 2006 IPCC Guideline for National Greenhouse Gas Inventories. The functional unit is defined as 1 kg of paddy rice at farm gate. Results showed that the total GHG emissions of organic rice production were 0.58 kg CO 2 -eq per kg of paddy rice. The major source of GHG emission was from the field emissions accounting for 0.48 kg CO 2 -eq per kg of paddy rice, about 83% of total, followed by land preparation, harvesting and other stages (planting, cultivation and transport of raw materials) were 9, 5 and 3% of total, respectively. The comparative results clearly showed that the GHG emissions of organic paddy rice were considerably lower than conventional rice production due to the advantages of using organic fertilisers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hybrid Power Management-Based Vehicle Architecture
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be replaced and disposed of. The environmentally safe ultracapacitor components reduce disposal concerns, and their recyclable nature reduces the environmental impact. High ultracapacitor power density provides high power during surges, and the ability to absorb high power during recharging. Ultracapacitors are extremely efficient in capturing recharging energy, are rugged, reliable, maintenance-free, have excellent lowtemperature characteristic, provide consistent performance over time, and promote safety as they can be left indefinitely in a safe, discharged state whereas batteries cannot.
The circle of life: A cross-cultural comparison of children's attribution of life-cycle traits.
Burdett, Emily R R; Barrett, Justin L
2016-06-01
Do children attribute mortality and other life-cycle traits to all minded beings? The present study examined whether culture influences young children's ability to conceptualize and differentiate human beings from supernatural beings (such as God) in terms of life-cycle traits. Three-to-5-year-old Israeli and British children were questioned whether their mother, a friend, and God would be subject to various life-cycle processes: Birth, death, ageing, existence/longevity, and parentage. Children did not anthropomorphize but differentiated among human and supernatural beings, attributing life-cycle traits to humans, but not to God. Although 3-year-olds differentiated significantly among agents, 5-year-olds attributed correct life-cycle traits more consistently than younger children. The results also indicated some cross-cultural variation in these attributions. Implications for biological conceptual development are discussed. © 2015 The British Psychological Society.
Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests
NASA Technical Reports Server (NTRS)
Lim, H. S.; Verzwyvelt, S. A.
1985-01-01
In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.
An analysis of innovation in materials and energy
NASA Astrophysics Data System (ADS)
Connelly, Michael
This dissertation presents an analysis of innovation in engineering materials and energy sources. More than fifty engineering materials and fourteen energy sources were selected for an evaluation of the relationship between the yearly production activity and yearly patent counts, which may be considered as a measure of innovation, for each. Through the employment of correlation theory, best-fit and origin shift analyses, it has been determined here that engineering materials and energy sources display similar life cycle and innovative activity behaviors. Correlation theory revealed a relationship between the yearly production and yearly patent counts indicating the extent that production and innovation affect each other. Best-fit analysis determined that four-stage life cycles exist for both engineering materials (metals and non-metals) and energy sources. Correlation and best-fit indicators of an estimated Stage III are confirmed by the presence of an origin shift of the patent data when compared to the production data which indicates that patents, or innovation, are driving, or being driven by, production. This driving force could represent the constructive or destructive side of the innovative process, with such sides being delineated by a possible universal constant above which there is destructive innovative behavior and below which exists constructive innovation. The driving force may also illustrate the manner in which an engineering material or energy source transitions into an innovatively less active state, enter Stage IV and possibly become a commodity. A possible Stage V, indicating "Final Death", is introduced in which production is on a steep decline with no signs of recovery. Additionally, innovatively active energy sources are often found to utilize or be supported by innovatively active engineering materials. A model is presented that can be used for the evaluation of innovation and production that can be applied to both engineering materials and energy sources that may be used to predict the innovative behavior of these resources in order that they can be more effectively allocated and utilized.
Increase Return on Investment of Software Development Life Cycle by Managing the Risk - A Case Study
2015-04-01
for increasing the return on investment during the Software Development Life Cycle ( SDLC ) through selected quantitative analyses employing both the...defect rate, return on investment (ROI), software development life cycle ( SDLC ) DE FE N SE A C Q U IS IT IO N UN IVERSITY ALU M N I A SSO C IATIO N R...becomes comfortable due to its intricacies and learning cycle. The same may be said with respect to software development life cycle ( SDLC ) management
Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates
NASA Astrophysics Data System (ADS)
van der Klis, Michiel
Resubmission accepted Cycle 2&3 proposal. - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our Cycle 1-3 work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 100,000 c/s levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.
Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates
NASA Astrophysics Data System (ADS)
van der Klis, Michiel
Resubmission accepted Cycle 2,3&4 proposal. - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our Cycle 1-3 work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 100,000 c/s levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.
Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates
NASA Astrophysics Data System (ADS)
van der Klis, Michiel
RESUBMISSION ACCEPTED CYCLE 2 PROPOSAL - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our Cycle 1&2 work on Sco X-1 and 1744-28 has shown that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 100,000 c/s levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.
LIFE CYCLE ASSESSMENT FOR PC BLEND 2 AIRCRAFT RADOME DEPAINTER
This report describes the life cycle assessment on a potential replacement solvent blend for aircraft radome depainting at the Oklahoma City Air Logistics Center at Tinker Air Force Base. The life cycle assessment is composed of three separate but interrelated components: life cy...
Examining Menstrual Tracking to Inform the Design of Personal Informatics Tools
Epstein, Daniel A.; Lee, Nicole B.; Kang, Jennifer H.; Agapie, Elena; Schroeder, Jessica; Pina, Laura R.; Fogarty, James; Kientz, Julie A.; Munson, Sean A.
2017-01-01
We consider why and how women track their menstrual cycles, examining their experiences to uncover design opportunities and extend the field's understanding of personal informatics tools. To understand menstrual cycle tracking practices, we collected and analyzed data from three sources: 2,000 reviews of popular menstrual tracking apps, a survey of 687 people, and follow-up interviews with 12 survey respondents. We find that women track their menstrual cycle for varied reasons that include remembering and predicting their period as well as informing conversations with healthcare providers. Participants described six methods of tracking their menstrual cycles, including use of technology, awareness of their premenstrual physiological states, and simply remembering. Although women find apps and calendars helpful, these methods are ineffective when predictions of future menstrual cycles are inaccurate. Designs can create feelings of exclusion for gender and sexual minorities. Existing apps also generally fail to consider life stages that women experience, including young adulthood, pregnancy, and menopause. Our findings encourage expanding the field's conceptions of personal informatics. PMID:28516176
SDTM - SYSTEM DESIGN TRADEOFF MODEL FOR SPACE STATION FREEDOM RELEASE 1.1
NASA Technical Reports Server (NTRS)
Chamberlin, R. G.
1994-01-01
Although extensive knowledge of space station design exists, the information is widely dispersed. The Space Station Freedom Program (SSFP) needs policies and procedures that ensure the use of consistent design objectives throughout its organizational hierarchy. The System Design Tradeoff Model (SDTM) produces information that can be used for this purpose. SDTM is a mathematical model of a set of possible designs for Space Station Freedom. Using the SDTM program, one can find the particular design which provides specified amounts of resources to Freedom's users at the lowest total (or life cycle) cost. One can also compare alternative design concepts by changing the set of possible designs, while holding the specified user services constant, and then comparing costs. Finally, both costs and user services can be varied simultaneously when comparing different designs. SDTM selects its solution from a set of feasible designs. Feasibility constraints include safety considerations, minimum levels of resources required for station users, budget allocation requirements, time limitations, and Congressional mandates. The total, or life cycle, cost includes all of the U.S. costs of the station: design and development, purchase of hardware and software, assembly, and operations throughout its lifetime. The SDTM development team has identified, for a variety of possible space station designs, the subsystems that produce the resources to be modeled. The team has also developed formulas for the cross consumption of resources by other resources, as functions of the amounts of resources produced. SDTM can find the values of station resources, so that subsystem designers can choose new design concepts that further reduce the station's life cycle cost. The fundamental input to SDTM is a set of formulas that describe the subsystems which make up a reference design. Most of the formulas identify how the resources required by each subsystem depend upon the size of the subsystem. Some of the formulas describe how the subsystem costs depend on size. The formulas can be complicated and nonlinear (if nonlinearity is needed to describe how designs change with size). SDTM's outputs are amounts of resources, life-cycle costs, and marginal costs. SDTM will run on IBM PC/XTs, ATs, and 100% compatibles with 640K of RAM and at least 3Mb of fixed-disk storage. A printer which can print in 132-column mode is also required, and a mathematics co-processor chip is highly recommended. This code is written in Turbo C 2.0. However, since the developers used a modified version of the proprietary Vitamin C source code library, the complete source code is not available. The executable is provided, along with all non-proprietary source code. This program was developed in 1989.
NREL: U.S. Life Cycle Inventory Database - Related Links
) information, LCA tools, research institutes utilizing LCA, labeling initiatives and organizations , international LCA initiatives, LCA online forums. Life Cycle Inventory Data Ecoinvent: Swiss Centre for Life Institute for Environmental Research and Education): The American Center for Life Cycle Assessment SETAC
Bessho, Kazuhiro; Iwasa, Yoh
2010-11-21
Marine macroalgae (seaweed) show diverse life cycles. Species with a heteromorphic life cycle have a large multicellular algal body in one generation but have a very small body in the second generation of the same year. In contrast, the diploid and haploid life forms of isomorphic species have similar morphology, and these species often have more than two generations in a year. Here, we first study the optimal life cycle schedule of marine macroalgae when daily mortality changes seasonally, and then we discuss the conditions for coexistence and relative dominance of different life cycles. According to the optimal life cycle schedule, heteromorphic species tend to have a generation with a large algal body when mortality is low, and a microscopic-sized generation when mortality is high. In contrast, isomorphic species tend to mature when body size reaches a threshold value that is the same for different generations. We then examine the coexistence of the two life cycles when growth rate decreases with biomass. The model predicts that (1) at high latitudes (i.e., in strongly seasonal environments), heteromorphic species are likely to dominate over isomorphic species, and (2) species with a heteromorphic life cycle should dominate in the supratidal and upper intertidal zones where macroalgae tend to suffer high mortality, and also in the subtidal zone, where mortality is low, whereas isomorphic species are likely to be more successful when mortality is intermediate. These predictions are consistent with the observed distribution patterns of the two life cycles in macroalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tian, Wang; Liao, Cuiping; Li, Li; Zhao, Daiqing
2011-03-01
Life Cycle Assessment (LCA) is the only standardized tool currently used to assess environmental loads of products and processes. The life cycle analysis, as a part of LCA, is a useful and powerful methodology for studying life cycle energy efficiency and life cycle GHG emission. To quantitatively explain the potential of energy saving and greenhouse gas (GHG) emissions reduction of corn stover-based ethanol, we analyzed life cycle energy consumption and GHG emissions of corn stover-based ethanol by the method of life cycle analysis. The processes are dilute acid prehydrolysis and enzymatic hydrolysis. The functional unit was defined as 1 km distance driven by the vehicle. Results indicated: compared with gasoline, the corn stover-based E100 (100% ethanol) and E10 (a blend of 10% ethanol and 90% gasoline by volume) could reduce life cycle fossil energy consumption by 79.63% and 6.25% respectively, as well as GHG emissions by 53.98% and 6.69%; the fossil energy consumed by biomass stage was 68.3% of total fossil energy input, N-fertilizer and diesel were the main factors which contributed 45.78% and 33.26% to biomass stage; electricity production process contributed 42.06% to the net GHG emissions, the improvement of technology might reduce emissions markedly.
The biogeochemical iron cycle and astrobiology
NASA Astrophysics Data System (ADS)
Schröder, Christian; Köhler, Inga; Muller, Francois L. L.; Chumakov, Aleksandr I.; Kupenko, Ilya; Rüffer, Rudolf; Kappler, Andreas
2016-12-01
Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO2. This corresponds to observations of a `rusty carbon sink' in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the environment and are therefore difficult to study with standard mineralogical tools. Sequential extraction techniques are commonly used as proxies. We provide an example where Mössbauer spectroscopy can replace sequential extraction techniques where mineralogical information is sought. Where mineral separation is needed, for example in the investigation of Fe or S isotope fractionation, Mössbauer spectroscopy can help to optimize sequential extraction procedures. This can be employed in a large number of investigations of soils and sediments, potentially even for mineral separation to study Fe and S isotope fractionation in samples returned from Mars, which might reveal signatures of biological activity. When looking for the possibility of life outside Earth, Jupiter's icy moon Europa is one of the most exciting places. It may be just in reach for a Mössbauer spectrometer deployed by a future lander to study the red streak mineral deposits on its surface to look for clues about the composition of the ocean hidden under the moon's icy surface.
KOH concentration effect on the cycle life of nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Lim, H. S.; Verzwyvelt, S. A.
1985-01-01
Effects of KOH concentration on the cycle life of a sintered-type nickel electrode were studied in a boiler plate nickel-hydrogen cell at 23 C using an accelerated 45-min cycle regime at 80 percent depth of discharge. The cycle life improved greatly as the KOH concentration decreased, although the initial capacity of the cell decreased slightly. The cycle life improved by a factor of two or more when the KOH concentration was reduced from 36 to 31 percent and by a similar factor from reductions of 31 to 26 percent. For many applications, this life improvement may outweigh the initial capacity decrease.
Voss, Maren Wright; Birmingham, Wendy Church; Wadsworth, Lori; Chen, Wei; Bounsanga, Jerry; Gu, Yushan; Hung, Man
2017-02-01
Unemployment among older adults during recessionary cycles has been tied to early retirement decisions and negative health outcomes. This study explored episodes of unemployment experienced between age 50 and retirement as predictors of retirement age and health outcomes. A total of 1540 participants from the U.S. Health and Retirement Study aged 50 years and older who transitioned from workforce to retirement were analyzed with descriptive statistics and multiple regression controlling for unemployment, demographics, and health status. Late-life unemployment significantly related to earlier retirement age and lowered life satisfaction, independent of income effects. We found no main effect for late-life unemployment on physical health status. Potential improvements in future life satisfaction might be gained if job search obstacles are removed for older unemployed adults, reducing reliance on involuntary early retirement as an income source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasser, Thomas; Hertes, Uwe; Meyer, Thorsten
2013-07-01
Within the scope of 'Nuclear Security of Radioactive Sources', the German government implemented the modernization of Ukrainian State Production Company's transport and storage facility for radioactive sources (TSF) in Kiev. The overall management of optimizing the physical protection of the storage facility (including the construction of a hot cell for handling the radioactive sources) is currently carried out by the German Federal Foreign Office (AA). AA jointly have assigned Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Germany's leading expert institution in the area of nuclear safety and waste management, to implement the project and to ensure transparency by financial andmore » technical monitoring. Sealed radioactive sources are widely used in industry, medicine and research. Their life cycle starts with the production and finally ends with the interim/long-term storage of the disused sources. In Ukraine, IZOTOP is responsible for all radioactive sources throughout their life cycle. IZOTOP's transport and storage facility (TSF) is the only Ukrainian storage facility for factory-fresh radioactive sources up to an activity of about 1 million Ci (3.7 1016 Bq). The TSF is specially designed for the storage and handling of radioactive sources. Storage began in 1968, and is licensed by the Ukrainian state authorities. Beside the outdated state of TSF's physical protection and the vulnerability of the facility linked with it, the lack of a hot cell for handling and repacking radioactive sources on the site itself represents an additional potential hazard. The project, financed by the German Federal Foreign Office, aims to significantly improve the security of radioactive sources during their storage and handling at the TSF site. Main tasks of the project are a) the modernization of the physical protection of the TSF itself in order to prevent any unauthorized access to radioactive sources as well as b) the construction of a hot cell to reduce the number of transports of radioactive sources within the city of Kiev. In future, the new established hot cell at IZOTOP's transport and storage facility will be useful for identification and characterization of orphan/disused radioactive sources. The projects implemented are performed in accordance with international recommendations (e. g. IAEA) and national normative documents and will make a crucial contribution towards an improved safety and security management of radioactive sources in Ukraine. (authors)« less
Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M
2018-02-20
In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.
Ghaheri, Matin; Adibrad, Elaheh; Safavi, Seyed Mehdi; Kahrizi, Danial; Soroush, Ali; Muhammadi, Saare; Ghorbani, Tayebeh; Sabzevari, Ali; Ansarypour, Zahra; Rahmanian, Elham
2018-02-10
Stevia rebaudiana Bertoni is One of the most important biologically sourced and low-calorie sweeteners that known as "Sweet Weed". It contains steviol glycosides that they are about 200-300 times sweeter than sucrose. Tissue culture is the best method with high efficiency that can overcome to problems of traditional methods, and it is the most useful tools for studying stress tolerance mechanisms under in vitro conditions to obtain drought tolerance. In the present research, we investigated the impact of life cycle, leaves location and the harvesting time on expression of UGT74G1 and UGT76G1 as well as steviol glycosides accumulation. The highest gene expression of both UGT74G1 and UGT76G1 (207.677 and 208.396 Total Lab unit, respectively) was observed in young leaves in the second vegetative year. Also, the highest amount of stevioside accumulation (13.04) was due to the old leaves in vegetative stage which had significant differences with other effects whereas the lowest accumulation (7.47) was seen at young leaves at vegetative stage. Interestingly, the highest level of rebaudioside a production (15.74) was occurred at the young leaves at vegetative stage. There was significant differences between life cycle and leaves location on steviol glycoside production in stevia.
Dewulf, J; Bösch, M E; De Meester, B; Van der Vorst, G; Van Langenhove, H; Hellweg, S; Huijbregts, M A J
2007-12-15
The objective of the paper is to establish a comprehensive resource-based life cycle impact assessment (LCIA) method which is scientifically sound and that enables to assess all kinds of resources that are deprived from the natural ecosystem, all quantified on one single scale, free of weighting factors. The method is based on the exergy concept. Consistent exergy data on fossils, nuclear and metal ores, minerals, air, water, land occupation, and renewable energy sources were elaborated, with well defined system boundaries. Based on these data, the method quantifies the exergy "taken away" from natural ecosystems, and is thus called the cumulative exergy extraction from the natural environment (CEENE). The acquired data set was coupled with a state-of-the art life cycle inventory database, ecoinvent. In this way, the method is able to quantitatively distinguish eight categories of resources withdrawn from the natural environment: renewable resources, fossil fuels, nuclear energy, metal ores, minerals, water resources, land resources, and atmospheric resources. Third, the CEENE method is illustrated for a number of products that are available in ecoinvent, and results are compared with common resource oriented LCIA methods. The application to the materials in the ecoinvent database showed that fossil resources and land use are of particular importance with regard to the total CEENE score, although the other resource categories may also be significant.
Srivastava, Avinash C.; Dasgupta, Kasturi; Ajieren, Eric; Costilla, Gabriella; McGarry, Roisin C.; Ayre, Brian G.
2009-01-01
Background and Aims AtSUC2 encodes a sucrose/proton symporter that localizes throughout the collection and transport phloem and is necessary for efficient transport of sucrose from source to sink tissues in Arabidopsis thaliana. Plants harbouring homozygous AtSUC2 null alleles accumulate sugar, starch, and anthocyanin in mature leaves, have severely delayed development and stunted growth and, in previous studies, failed to complete their life cycle by producing viable seed. Methods An AtSUC2 allele with a T-DNA insertion in the second intron was analysed. Full-length transcript from this allele is not produced, and a truncated protein translated from sequences upstream of the insertion site did not catalyse sucrose uptake into yeast, supporting the contention that this is a null allele. Mutant plants were grown in a growth chamber with a diurnal light/dark cycle, and growth patterns recorded. Key Results This allele (SALK_038124, designated AtSUC2-4) has the hallmarks of previously described null alleles but, despite compromised carbon partitioning and growth, produces viable seeds. The onset of flowering was chronologically delayed but occurred at the same point in the plastochron index as wild type. Conclusions AtSUC2 is important for phloem loading and is therefore fundamental to phloem transport and plant productivity, but plants can complete their life cycle and produce viable seed in its absence. Arabidopsis appears to have mechanisms for mobilizing reduced carbon from the phloem into developing seeds independent of AtSUC2. PMID:19789176
Srivastava, Avinash C; Dasgupta, Kasturi; Ajieren, Eric; Costilla, Gabriella; McGarry, Roisin C; Ayre, Brian G
2009-11-01
AtSUC2 encodes a sucrose/proton symporter that localizes throughout the collection and transport phloem and is necessary for efficient transport of sucrose from source to sink tissues in Arabidopsis thaliana. Plants harbouring homozygous AtSUC2 null alleles accumulate sugar, starch, and anthocyanin in mature leaves, have severely delayed development and stunted growth and, in previous studies, failed to complete their life cycle by producing viable seed. An AtSUC2 allele with a T-DNA insertion in the second intron was analysed. Full-length transcript from this allele is not produced, and a truncated protein translated from sequences upstream of the insertion site did not catalyse sucrose uptake into yeast, supporting the contention that this is a null allele. Mutant plants were grown in a growth chamber with a diurnal light/dark cycle, and growth patterns recorded. This allele (SALK_038124, designated AtSUC2-4) has the hallmarks of previously described null alleles but, despite compromised carbon partitioning and growth, produces viable seeds. The onset of flowering was chronologically delayed but occurred at the same point in the plastochron index as wild type. AtSUC2 is important for phloem loading and is therefore fundamental to phloem transport and plant productivity, but plants can complete their life cycle and produce viable seed in its absence. Arabidopsis appears to have mechanisms for mobilizing reduced carbon from the phloem into developing seeds independent of AtSUC2.
Effect of LEO cycling on 125 Ah advanced design IPV nickel-hydrogen flight cells - An update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.
Rokitta, Sebastian D; Von Dassow, Peter; Rost, Björn; John, Uwe
2014-12-02
Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen-limitation. Cells grown in batch cultures were harvested at 'early' and 'full' nitrogen-limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses. The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput. The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate:quinone-oxidoreductase is a genomic feature that appears to be absent from diatom genomes, and it is likely to strongly contribute to the uniquely high endurance of E. huxleyi under nutrient limitation.
Evaluation of life-cycle air emission factors of freight transportation.
Facanha, Cristiano; Horvath, Arpad
2007-10-15
Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.
Comparative Life Cycle Assessment between Warm SMA and Conventional SMA
DOT National Transportation Integrated Search
2011-09-01
This report presents the comparative life cycle assessment (LCA) between warm stone mastic asphalt (SMA) and conventional : SMA. Specifically, the study evaluated and compared the life cycle environmental and economic performances of two mixtures: a ...
Schroeder, Jenna N.
2014-06-10
This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.
Long Life Nickel Electrodes for a Nickel-hydrogen Cell: Cycle Life Tests
NASA Technical Reports Server (NTRS)
Lim, H. S.; Verzwyvelt, S. A.
1984-01-01
In order to develop a long life nickel electrode for a Ni/H2 cell, cycle life tests of nickel electrodes were carried out in Hi/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45-minute low earth orbit cycle regime at 80% depth-of-discharge. The results show that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength did not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. The best plaque type appears to be one which is made of INCO nickel powder type 287 and has a median pore size of 13 micron.
2004-03-01
with MySQL . This choice was made because MySQL is open source. Any significant database engine such as Oracle or MS- SQL or even MS Access can be used...10 Figure 6. The DoD vs . Commercial Life Cycle...necessarily be interested in SCADA network security 13. MySQL (Database server) – This station represents a typical data server for a web page
A Course in Information Techniques for Dental Students
Dannenberg, Dena
1972-01-01
A course plan is presented for introducing literature searching and critical skills to dental students. Topics include the “life cycle of information,” reference sources available, search procedure, abstracting and indexing, and personal information systems. Teaching is structured around planned seminars and student projects. The course design is compatible with traditional dental curricula and is based on students' interest in dentistry rather than in information/library science. PMID:5024320
Software Assurance: Five Essential Considerations for Acquisition Officials
2007-05-01
May 2007 www.stsc.hill.af.mil 17 2 • address security concerns in the software development life cycle ( SDLC )? • Are there formal software quality...What threat modeling process, if any, is used when designing the software ? What analysis, design, and construction tools are used by your software design...the-shelf (COTS), government off-the-shelf (GOTS), open- source, embedded, and legacy software . Attackers exploit unintentional vulnerabil- ities or
Plancher, Henry; Petersen, Joseph C.
1982-01-01
Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.
Defense Systems Modernization and Sustainment Initiative
2007-09-18
approach provides the dual benefits of a source of research direction and requirements from military equipment operators, maintainers, and life-cycle...world. RIT is coeducational and the 11h largest private university in the nation. RIT offers 350 programs of study in eight colleges including the...objective of the Asset Health Management research is to assess cost benefit of the deployment of health monitoring technologies to U.S. Marine Corps ground
Fitness and Individuality in Complex Life Cycles.
Herron, Matthew D
2016-12-01
Complex life cycles are common in the eukaryotic world, and they complicate the question of how to define individuality. Using a bottom-up, gene-centric approach, I consider the concept of fitness in the context of complex life cycles. I analyze the fitness effects of an allele (or a trait) on different biological units within a complex life history and how these effects drive evolutionary change within populations. Based on these effects, I attempt to construct a concept of fitness that accurately predicts evolutionary change in the context of complex life cycles.
NASA Astrophysics Data System (ADS)
Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał
2017-11-01
District Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). In the paper a method for optimized selection of design and operating parameters of long distance Heat Transportation System (HTS) is proposed. The method allows for evaluation of feasibility and effectivity of heat transportation from the considered heat sources. The optimized selection is formulated as multicriteria decision-making problem. The constraints for this problem include a static HTS model, allowing considerations of system life cycle, time variability and spatial topology. Thereby, variation of heat demand and ground temperature within the DH area, insulation and pipe aging and/or terrain elevation profile are taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. Inner pipe diameter, insulation thickness, temperatures and pumping stations locations are optimized during the decision-making process. Moreover, the variants of pipe-laying e.g. one pipeline with the larger diameter or two with the smaller might be considered during the optimization. The analyzed optimization problem is multicriteria, hybrid and nonlinear. Because of such problem properties, the genetic solver was applied.
Climate change and health costs of air emissions from biofuels and gasoline
Hill, Jason; Polasky, Stephen; Nelson, Erik; Tilman, David; Huo, Hong; Ludwig, Lindsay; Neumann, James; Zheng, Haochi; Bonta, Diego
2009-01-01
Environmental impacts of energy use can impose large costs on society. We quantify and monetize the life-cycle climate-change and health effects of greenhouse gas (GHG) and fine particulate matter (PM2.5) emissions from gasoline, corn ethanol, and cellulosic ethanol. For each billion ethanol-equivalent gallons of fuel produced and combusted in the US, the combined climate-change and health costs are $469 million for gasoline, $472–952 million for corn ethanol depending on biorefinery heat source (natural gas, corn stover, or coal) and technology, but only $123–208 million for cellulosic ethanol depending on feedstock (prairie biomass, Miscanthus, corn stover, or switchgrass). Moreover, a geographically explicit life-cycle analysis that tracks PM2.5 emissions and exposure relative to U.S. population shows regional shifts in health costs dependent on fuel production systems. Because cellulosic ethanol can offer health benefits from PM2.5 reduction that are of comparable importance to its climate-change benefits from GHG reduction, a shift from gasoline to cellulosic ethanol has greater advantages than previously recognized. These advantages are critically dependent on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels. PMID:19188587
NASA Astrophysics Data System (ADS)
Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu
2014-12-01
Now the lithium ion batteries are widely used in electric vehicles (EV). The cycle life is among the most important characteristics of the power battery in EV. In this report, the battery cycle life experiment is designed according to the actual working condition in EV. Five different commercial lithium ion cells are cycled alternatively under 45 °C and 5 °C and the test results are compared. Based on the cycle life experiment results and the identified battery aging mechanism, the battery cycle life models are built and fitted by the genetic algorithm. The capacity loss follows a power law relation with the cycle times and an Arrhenius law relation with the temperature. For automotive application, to save the cost and the testing time, a battery SOH (state of health) estimation method combined the on-line model based capacity estimation and regular calibration is proposed.
A Growth Model for Academic Program Life Cycle (APLC): A Theoretical and Empirical Analysis
ERIC Educational Resources Information Center
Acquah, Edward H. K.
2010-01-01
Academic program life cycle concept states each program's life flows through several stages: introduction, growth, maturity, and decline. A mixed-influence diffusion growth model is fitted to enrolment data on academic programs to analyze the factors determining progress of academic programs through their life cycles. The regression analysis yield…
NASA Astrophysics Data System (ADS)
Nam, Younkyeong
2012-06-01
This review explores Ben-Zvi Assaraf, Eshach, Orion, and Alamour's paper titled "Cultural Differences and Students' Spontaneous Models of the Water Cycle: A Case Study of Jewish and Bedouin Children in Israel" by examining how the authors use the concept of spontaneous mental models to explain cultural knowledge source of Bedouin children's mental model of water compared to Jewish children's mental model of water in nature. My response to Ben-Zvi Assaraf et al.'s work expands upon their explanations of the Bedouin children's cultural knowledge source. Bedouin children's mental model is based on their culture, religion, place of living and everyday life practices related to water. I suggest a different knowledge source for spontaneous mental model of water in nature based on unique history and traditions of South Korea where people think of water in nature in different ways. This forum also addresses how western science dominates South Korean science curriculum and ways of assessing students' conceptual understanding of scientific concepts. Additionally I argue that western science curriculum models could diminish Korean students' understanding of natural world which are based on Korean cultural ways of thinking about the natural world. Finally, I also suggest two different ways of considering this unique knowledge source for a more culturally relevant teaching Earth system education.
Passive longitudes of solar cosmic rays in 19-24 solar cycles
NASA Astrophysics Data System (ADS)
Getselev, Igor; Podzolko, Mikhail; Shatov, Pavel; Tasenko, Sergey; Skorohodov, Ilya; Okhlopkov, Viktor
The distribution of solar proton event sources along the Carrington longitude in 19-24 solar cycles is considered. For this study an extensive database on ≈450 solar proton events have been constructed using various available sources and solar cosmic ray measurements, which included the data about the time of the event, fluences of protons of various energies in it and the coordinates of its source on the Sun. The analysis has shown the significant inhomogeneity of the distribution. In particular a region of “passive longitudes” has been discovered, extensive over the longitude (from ≈90-100° to 170°) and the life time (the whole period of observations). From the 60 most powerful proton events during the 19-24 solar cycles not more than 1 event was originated from the interval of 100-170° Carrington longitude, from another 80 “medium” events only 10 were injected from this interval. The summarized proton fluence of the events, which sources belong to the interval of 90-170° amounts only to 5%, and if not take into account the single “anomalous” powerful event - to just only 1.2% from the total fluence for all the considered events. The existence of the extensive and stable interval of “passive” Carrington longitudes is the remarkable phenomenon in solar physics. It also confirms the physical relevance of the mean synodic period of Sun’s rotation determined by R. C. Carrington.
A Life Cycle Cost Analysis of Rigid Pavements
DOT National Transportation Integrated Search
1999-09-01
The Texas Department of Transportation (TxDOT)commissioned a research project in 1996, summarized here, to promote life cycle cost analysis of rigid pavements throughout the TxDOT districts by developing a uniform methodology for performing life cycl...
Intersection life cycle cost comparison tool user guide version 1.0.
DOT National Transportation Integrated Search
2016-05-01
The Intersection Life Cycle Cost Comparison Tool User Guide was developed as part of North : Carolina Department of Transportation Research Project No. 201411: Evaluation of Life Cycle : Impacts of Intersection Control Type Selection. : This sprea...
Life Cycle Impact Assessment Research Developments and Needs
Life Cycle Impact Assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It ...
Johnson, Nicholas; Twohey, Michael B.; Miehls, Scott M.; Cwalinski, Tim A; Godby, Neal A; Lochet, Aude; Slade, Jeffrey W.; Jubar, Aaron K.; Siefkes, Michael J.
2016-01-01
The sea lamprey (Petromyzon marinus) invaded the upper Laurentian Great Lakes and feeds on valued fish. The Cheboygan River, Michigan, USA, is a large sea lamprey producing tributary to Lake Huron and despite having a renovated dam 2 km from the river mouth that presumably blocks sea lamprey spawning migrations, the watershed upstream of the dam remains infested with larval sea lamprey. A navigational lock near the dam has been hypothesized as the means of escapement of adult sea lampreys from Lake Huron and source of the upper river population (H1). However, an alternative hypothesis (H2) is that some sea lampreys complete their life cycle upstream of the dam, without entering Lake Huron. To evaluate the alternative hypothesis, we gathered angler reports of lamprey wounds on game fishes upstream of the dam, and captured adult sea lampreys downstream and upstream of the dam to contrast abundance, run timing, size, and statolith microchemistry. Results indicate that a small population of adult sea lampreys (n < 200) completed their life cycle upstream of the dam during 2013 and 2014. This is the most comprehensive evidence that sea lampreys complete their life history within a tributary of the upper Great Lakes, and indicates that similar landlocked populations could occur in other watersheds. Because the adult sea lamprey population upstream of the dam is small, complete elimination of the already low adult escapement from Lake Huron might allow multiple control tactics such as lampricides, trapping, and sterile male release to eradicate the population.
Oonincx, Dennis G A B; de Boer, Imke J M
2012-01-01
The demand for animal protein is expected to rise by 70-80% between 2012 and 2050, while the current animal production sector already causes major environmental degradation. Edible insects are suggested as a more sustainable source of animal protein. However, few experimental data regarding environmental impact of insect production are available. Therefore, a lifecycle assessment for mealworm production was conducted, in which greenhouse gas production, energy use and land use were quantified and compared to conventional sources of animal protein. Production of one kg of edible protein from milk, chicken, pork or beef result in higher greenhouse gas emissions, require similar amounts of energy and require much more land. This study demonstrates that mealworms should be considered a more sustainable source of edible protein.
Scanlon, Kelly A; Gray, George M; Francis, Royce A; Lloyd, Shannon M; LaPuma, Peter
2013-03-06
Life cycle assessment (LCA) is a systems-based method used to determine potential impacts to the environment associated with a product throughout its life cycle. Conclusions from LCA studies can be applied to support decisions regarding product design or public policy, therefore, all relevant inputs (e.g., raw materials, energy) and outputs (e.g., emissions, waste) to the product system should be evaluated to estimate impacts. Currently, work-related impacts are not routinely considered in LCA. The objectives of this paper are: 1) introduce the work environment disability-adjusted life year (WE-DALY), one portion of a characterization factor used to express the magnitude of impacts to human health attributable to work-related exposures to workplace hazards; 2) outline the methods for calculating the WE-DALY; 3) demonstrate the calculation; and 4) highlight strengths and weaknesses of the methodological approach. The concept of the WE-DALY and the methodological approach to its calculation is grounded in the World Health Organization's disability-adjusted life year (DALY). Like the DALY, the WE-DALY equation considers the years of life lost due to premature mortality and the years of life lived with disability outcomes to estimate the total number of years of healthy life lost in a population. The equation requires input in the form of the number of fatal and nonfatal injuries and illnesses that occur in the industries relevant to the product system evaluated in the LCA study, the age of the worker at the time of the fatal or nonfatal injury or illness, the severity of the injury or illness, and the duration of time lived with the outcomes of the injury or illness. The methodological approach for the WE-DALY requires data from various sources, multi-step instructions to determine each variable used in the WE-DALY equation, and assumptions based on professional opinion. Results support the use of the WE-DALY in a characterization factor in LCA. Integrating occupational health into LCA studies will provide opportunities to prevent shifting of impacts between the work environment and the environment external to the workplace and co-optimize human health, to include worker health, and environmental health.
Modi, Nishit B
2017-05-01
Increasing costs in discovering and developing new molecular entities and the continuing debate on limited company pipelines mean that pharmaceutical companies are under significant pressure to maximize the value of approved products. Life cycle management in the context of drug development comprises activities to maximize the effective life of a product. Life cycle approaches can involve new formulations, new routes of delivery, new indications or expansion of the population for whom the product is indicated, or development of combination products. Life cycle management may provide an opportunity to improve upon the current product through enhanced efficacy or reduced side effects and could expand the therapeutic market for the product. Successful life cycle management may include the potential for superior efficacy, improved tolerability, or a better prescriber or patient acceptance. Unlike generic products where bioequivalence to an innovator product may be sufficient for drug approval, life cycle management typically requires a series of studies to characterize the value of the product. This review summarizes key considerations in identifying product candidates that may be suitable for life cycle management and discusses the application of pharmacokinetics and pharmacodynamics in developing new products using a life cycle management approach. Examples and a case study to illustrate how pharmacokinetics and pharmacodynamics contributed to the selection of dosing regimens, demonstration of an improved therapeutic effect, or regulatory approval of an improved product label are presented.
Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Electrical Systems.
1991-05-01
Repair Data for Life-Cycle Cost Analyses: Electrical Systems by Edgar S. Neely Robert D. Neathammer James R. Stirn Robert P. Winkler This research...systems have been developed to assist planners in preparing DD Form 1391 documentation, designers in life-cycle cost component selection, and maintainers...Maintenance and Repair Data for Life-Cycle Cost Analyses: RDTE dated 1980 Electrical Systems REIMB 1984 - 1989 6. AUTH4OR(S) Edgar S. Neely, Robert D
2016-09-01
Support Strategies (PBPSS), throughout the system life cycle . Maximizing competition, to include small business participation. Developing...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA JOINT APPLIED PROJECT WHY ARMY PROGRAM MANAGERS STRUGGLE AS LIFE CYCLE MANAGERS...SUBTITLE WHY ARMY PROGRAM MANAGERS STRUGGLE AS LIFE CYCLE MANAGERS: A STUDY OF THE PM’S ROLES, RESPONSIBILITIES, AND BARRIERS IN THE EXECUTION OF
Yi, Jin; Zhou, Haoshen
2016-09-08
In the context of the development of electric vehicle to solve the contemporary energy and environmental issues, the possibility of pushing future application of Li-O2 batteries as a power source for electric vehicles is particularly attractive. However, safety concerns, mainly derived from the use of flammable organic liquid electrolytes, become a major bottleneck for the strategically crucial applications of Li-O2 batteries. To overcome this issue, rechargeable solid-state Li-O2 batteries with enhanced safety is regarded as an appealing candidate. In this study, a hybrid quasi-solid-state electrolyte combing a polymer electrolyte with a ceramic electrolyte is first designed and explored for Li-O2 batteries. The proposed rechargeable solid-state Li-O2 battery delivers improved cycle life (>100 cycles) and safety. The feasibility study demonstrates that the hybrid quasi-solid-state electrolytes could be employed as a promising alternative strategy for the development of rechargeable Li-O2 batteries, hence encouraging more efforts devoted to explore other hybrid solid-state electrolytes for Li-O2 batteries upon future application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikuchi, Ryunosuke
2006-03-15
A hydrogen-based economy seems superficially to be environmentally friendly, and many people have worked toward its realization. Today hydrogen is mainly produced by decarbonizing fossil fuels (e.g. natural gas), and in the future decarbonization of both fossil fuels and biomass will play a leading role in the production of hydrogen. The main purpose of this paper is to suggest the identification of potential environmental risks in terms of 'life cycle thinking' (which considers all aspects from production to utilization) with regard to the hydrogen-based economy to come. Hydrogen production by decarbonization results in CO{sub 2} emissions. The final destination ofmore » the recovered CO{sub 2} is uncertain. Furthermore, there is a possibility that hydrogen molecules will escape to the atmosphere, posing risks that could occasion global environmental changes such as depletion of stratospheric ozone, temperature change in the stratosphere and change of the hydrides cycle through global vaporization. Based on the results of simulation, requirements regarding the following items are proposed to minimize potential risks: hydrogen source, production and storage loss.« less
Investigation of propulsion system for large LNG ships
NASA Astrophysics Data System (ADS)
Sinha, R. P.; Nik, Wan Mohd Norsani Wan
2012-09-01
Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.
Evolutionary lability of a complex life cycle in the aphid genus Brachycaudus.
Emmanuelle, Jousselin; Gwenaelle, Genson; Armelle, Coeur d'acier
2010-09-28
Most aphid species complete their life cycle on the same set of host-plant species, but some (heteroecious species) alternate between different hosts, migrating from primary (woody) to secondary (herbaceous) host plants. The evolutionary processes behind the evolution of this complex life cycle have often been debated. One widely accepted scenario is that heteroecy evolved from monoecy on woody host plants. Several shifts towards monoecy on herbaceous plants have subsequently occurred and resulted in the radiation of aphids. Host alternation would have persisted in some cases due to developmental constraints preventing aphids from shifting their entire life cycle to herbaceous hosts (which are thought to be more favourable). According to this scenario, if aphids lose their primary host during evolution they should not regain it. The genus Brachycaudus includes species with all the types of life cycle (monoecy on woody plants, heteroecy, monoecy on herbs). We used this genus to test hypotheses concerning the evolution of life cycles in aphids. Phylogenetic investigation and character reconstruction suggest that life cycle is evolutionary labile in the genus. Though ancestral character states can be ambiguous depending on optimization methods, all analyses suggest that transitions from monoecy on herbs towards heteroecy have occurred several times. Transitions from heteroecy towards monoecy, are also likely. There have been many shifts in feeding behaviour but we found no significant correlation between life cycle changes and changes in diet. The transitions from monoecy on herbs towards heteroecy observed in this study go against a widely accepted evolutionary scenario: aphids in the genus Brachycaudus seem to be able to recapture their supposedly ancestral woody host. This suggests that the determinants of host alternation are probably not as complicated as previously thought. Definitive proofs of the lability of life cycle in Brachycaudus will necessitate investigation of these determinants. Life cycle changes, whether corresponding to the loss or acquisition of a primary host, necessarily promote speciation, by inducing shifts of the reproductive phase on different plants. We suggest that the evolutionary lability of life cycle may have driven speciation events in the Brachycaudus genus.
5 CFR 930.301 - Information systems security awareness training program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... training in system/application life cycle management, risk management, and contingency planning. (4) Chief... security management, system/application life cycle management, risk management, and contingency planning... management; and management and implementation level training in system/application life cycle management...
Life Cycle Assessment for Biofuels
A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...
Data Base Development of Automobile and Light Truck Maintenance : Volume II. Appendix E.
DOT National Transportation Integrated Search
1978-08-01
The document contains the scheduled maintenance data sheets and total cost summaries--both scheduled and unscheduled maintenance (Life cycle cost for Dealers, life cycle cost for Service Stations, life cycle cost for Independent Repair, and scheduled...
Data Base Development of Automobile and Light Truck Maintenance : Volume III. Appendix F.
DOT National Transportation Integrated Search
1978-08-01
The document contains the scheduled maintenance data sheets and total cost summaries--both scheduled and unscheduled maintenance (Life cycle cost for Dealers, life cycle cost for Service Stations, life cycle cost for Independent Repair, and scheduled...
LIFE CYCLE ASSESSMENT: PRINCIPLES AND PRACTICE
The following document provides an introductory overview of Life Cycle Assessment (LCA) and describes the general uses and major components of LCA. This document is an update and merger of two previous EPA documents on LCA ("Life Cycle Assessment: Inventory Guidelines and Princip...
Knowledge Evolution in Distributed Geoscience Datasets and the Role of Semantic Technologies
NASA Astrophysics Data System (ADS)
Ma, X.
2014-12-01
Knowledge evolves in geoscience, and the evolution is reflected in datasets. In a context with distributed data sources, the evolution of knowledge may cause considerable challenges to data management and re-use. For example, a short news published in 2009 (Mascarelli, 2009) revealed the geoscience community's concern that the International Commission on Stratigraphy's change to the definition of Quaternary may bring heavy reworking of geologic maps. Now we are in the era of the World Wide Web, and geoscience knowledge is increasingly modeled and encoded in the form of ontologies and vocabularies by using semantic technologies. Accordingly, knowledge evolution leads to a consequence called ontology dynamics. Flouris et al. (2008) summarized 10 topics of general ontology changes/dynamics such as: ontology mapping, morphism, evolution, debugging and versioning, etc. Ontology dynamics makes impacts at several stages of a data life cycle and causes challenges, such as: the request for reworking of the extant data in a data center, semantic mismatch among data sources, differentiated understanding of a same piece of dataset between data providers and data users, as well as error propagation in cross-discipline data discovery and re-use (Ma et al., 2014). This presentation will analyze the best practices in the geoscience community so far and summarize a few recommendations to reduce the negative impacts of ontology dynamics in a data life cycle, including: communities of practice and collaboration on ontology and vocabulary building, link data records to standardized terms, and methods for (semi-)automatic reworking of datasets using semantic technologies. References: Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G., 2008. Ontology change: classification and survey. The Knowledge Engineering Review 23 (2), 117-152. Ma, X., Fox, P., Rozell, E., West, P., Zednik, S., 2014. Ontology dynamics in a data life cycle: Challenges and recommendations from a Geoscience Perspective. Journal of Earth Science 25 (2), 407-412. Mascarelli, A.L., 2009. Quaternary geologists win timescale vote. Nature 459, 624.
NASA Technical Reports Server (NTRS)
Vishniac, H. S.
1981-01-01
The multiple stresses temperature, moisture, and for chemoheterotrophs, sources of carbon and energy of the Dry Valley Antarctica soils allow at best depauperate communities, low in species diversity and population density. The nature of community structure, the operation of biogeochemical cycles, the evolution and mechanisms of adaptation to this habitat are of interest in informing speculations upon life on other planets as well as in modeling the limits of gene life. Yeasts of the Cryptococcus vishniacil complex (Basidiobiastomycetes) are investigated, as the only known indigenes of the most hostile, lichen free, parts of the Dry Valleys. Methods were developed for isolating these yeasts (methods which do not exclude the recovery of other microbiota). The definition of the complex was refined and the importance of nitrogen sources was established as well as substrate competition in fitness to the Dry Valley habitats.
Richard D. Bergman; James Salazar; Scott Bowe
2012-01-01
Static life cycle assessment does not fully describe the carbon footprint of construction wood because of carbon changes in the forest and product pools over time. This study developed a dynamic greenhouse gas (GHG) inventory approach using US Forest Service and life-cycle data to estimate GHG emissions on construction wood for two different end-of-life scenarios....
Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G
2015-09-15
Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.
THE COMPONENTS OF KIN COMPETITION
Van Dyken, J. David
2011-01-01
It is well known that competition among kin alters the rate and often the direction of evolution in subdivided populations. Yet much remains unclear about the ecological and demographic causes of kin competition, or what role life cycle plays in promoting or ameliorating its effects. Using the multilevel Price equation, I derive a general equation for evolution in structured populations under an arbitrary intensity of kin competition. This equation partitions the effects of selection and demography, and recovers numerous previous models as special cases. I quantify the degree of kin competition, α, which explicitly depends on life cycle. I show how life cycle and demographic assumptions can be incorporated into kin selection models via α, revealing life cycles that are more or less permissive of altruism. As an example, I give closed-form results for Hamilton’s rule in a three-stage life cycle. Although results are sensitive to life cycle in general, I identify three demographic conditions that give life cycle invariant results. Under the infinite island model, α is a function of the scale of density regulation and dispersal rate, effectively disentangling these two phenomena. Population viscosity per se does not impede kin selection. PMID:20482610
Matalin, A V
2014-01-01
The life cycles of Carabidae are highly diverse, and 25 variants of these cycles are realized In the European part of Russia, from semideserts to continental tundras. The diversity of the life cycle spectrum sharply decreases (by more than half) upon transition from nemoral to boreal forest communities, and its phenological unification takes place at high latitudes. The greatest proportion of species with polyvariant development (25%) is characteristic of temporal latitudes, which may be explained by relatively long growing season and considerable cenotic diversity. In both southern (semidesert and steppe) and northern regions (middle and northern boreal forests), this proportion does not exceed 5%. At low latitudes, the polyvariant pattern of development is often manifested in the form of facultative bivoltine life cycles or as facultative biennial life cycles in species with the initial "spring" breeding type.
USING LIFE CYCLE ASSESSMENT TOOLS FOR INTEGRATED PRODUCT POLICY
The European Union's new Integrated Product Policy directs governments and companies to consider the entire product life cycle, from cradle to grave, in their environmental decision-making process. A life-cycle based approach is intended to lead toward true environmental improvem...
41 CFR 109-1.5304 - Deviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... High Risk Personal Property § 109-1.5304 Deviations. (a) Life cycle control determinations. When the HFO approves a contractor program containing controls, other than life cycle control consistent with... Secretary for Procurement and Assistance Management. A HFO's decision not to provide life-cycle control...
41 CFR 109-1.5304 - Deviations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... High Risk Personal Property § 109-1.5304 Deviations. (a) Life cycle control determinations. When the HFO approves a contractor program containing controls, other than life cycle control consistent with... Secretary for Procurement and Assistance Management. A HFO's decision not to provide life-cycle control...
41 CFR 109-1.5304 - Deviations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... High Risk Personal Property § 109-1.5304 Deviations. (a) Life cycle control determinations. When the HFO approves a contractor program containing controls, other than life cycle control consistent with... Secretary for Procurement and Assistance Management. A HFO's decision not to provide life-cycle control...
41 CFR 109-1.5304 - Deviations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... High Risk Personal Property § 109-1.5304 Deviations. (a) Life cycle control determinations. When the HFO approves a contractor program containing controls, other than life cycle control consistent with... Secretary for Procurement and Assistance Management. A HFO's decision not to provide life-cycle control...
41 CFR 109-1.5304 - Deviations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... High Risk Personal Property § 109-1.5304 Deviations. (a) Life cycle control determinations. When the HFO approves a contractor program containing controls, other than life cycle control consistent with... Secretary for Procurement and Assistance Management. A HFO's decision not to provide life-cycle control...
Development of computer software for pavement life cycle cost analysis.
DOT National Transportation Integrated Search
1988-01-01
The life cycle cost analysis program (LCCA) is designed to automate and standardize life cycle costing in Virginia. It allows the user to input information necessary for the analysis, and it then completes the calculations and produces a printed copy...
EVALUATING THE GREENNESS OF IONIC LIQUIDS VIA LIFE CYCLE ASSESSMENT
Ionic Liquids have been suggested as "greener" replacements to traditional solvents. However, the environmental impacts of the life cycle phases have not been studied. Such a "cradle to gate" Life Cycle Assessment (LCA) for comparing the environmental impact of various solvents...
Crash Attenuator Data Collection and Life Cycle Tool Development
DOT National Transportation Integrated Search
2014-06-14
This research study was aimed at data collection and development of a decision support tool for life cycle cost assessment of crash attenuators. Assessing arrenuator life cycle costs based on in-place expected costs and not just the initial cost enha...
LIFE CYCLE DESIGN FRAMEWORK AND DEMONSTRATION PROJECTS - PROFILES OF AT&T AND ALLIED SIGNAL
This document offers guidance and practical experience for integrating environmental considerations into product system development. Life cycle design seeks to minimize the environmental burden associated with a product's life cycle from raw materials acquisition through manufact...
& Impacts Analysis Group in the Strategic Energy Analysis Center. Areas of Expertise Life cycle environmental impacts of energy technologies, including externalities Life cycle assessment Sustainability ;Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and the Impacts of Key
From life cycle talking to taking action
The series of Life Cycle Management (LCM) conferences has aimed to create a platform for users and developers of life cycle assessment tools to share their experiences as they challenge traditional environmental management practices, which are narrowly confined (“gate-to-gate”) a...
Moving Up the CMMI Capability and Maturity Levels Using Simulation
2008-01-01
Alternative Process Tools, Including NPV and ROI 6 Figure 3: Top-Level View of the Full Life-Cycle Version of the IEEE 12207 PSIM, Including IV&V Layer 19...Figure 4: Screenshot of the Incremental Version Model 19 Figure 5: IEEE 12207 PSIM Showing the Top-Level Life-Cycle Phases 22 Figure 6: IEEE 12207 ...Software Detailed Design for the IEEE 12207 Life- Cycle Process 24 Figure 8: Incremental Life Cycle PSIM Configured for a Specific Project Using SEPG
User’s Guide for Naval Material Command’s Life Cycle Cost (FLEX) Model.
1982-04-01
MATERIAL COMMANDl’S 3 LIFE CYCLE COST (FLEX) MODEL Icc FoIuhrInomto -- -- P ea eCo tc Pleale Cona, ______ _____-Thims document rc~ ofl 5C72 -lot REPORT...Material Command’s Life Cycle Cost (FLEX) Prep. 4/82 ___ Model ______________ ______________ 7. Author(s) S. Performing Organization Rapt. No. R. Dress (ESA...WANG 1I. Abstract (Limit: 200 words) The FLEX-9E life cycle cost comp~uter model is a user-oriented methodology accommodating most cost structures and
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cell - Update II
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1992-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent KOH electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel (IPV) nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles, compared to 3500 cycles for cells containing 31 percent KOH. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2X normal rate). The depth-of-discharge was 80 percent. Six 48-Ah Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells), and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The three 31 percent KOH cells failed (cycles 3729, 4165, and 11355). One of the 26 percent KOH cells failed at cycle 15314. The other two 26 percent KOH cells were cycled for over 16,000 cycles during the continuing test.
Information system life-cycle and documentation standards, volume 1
NASA Technical Reports Server (NTRS)
Callender, E. David; Steinbacher, Jody
1989-01-01
The Software Management and Assurance Program (SMAP) Information System Life-Cycle and Documentation Standards Document describes the Version 4 standard information system life-cycle in terms of processes, products, and reviews. The description of the products includes detailed documentation standards. The standards in this document set can be applied to the life-cycle, i.e., to each phase in the system's development, and to the documentation of all NASA information systems. This provides consistency across the agency as well as visibility into the completeness of the information recorded. An information system is software-intensive, but consists of any combination of software, hardware, and operational procedures required to process, store, or transmit data. This document defines a standard life-cycle model and content for associated documentation.
Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries.
Favors, Zachary; Wang, Wei; Bay, Hamed Hosseini; Mutlu, Zafer; Ahmed, Kazi; Liu, Chueh; Ozkan, Mihrimah; Ozkan, Cengiz S
2014-07-08
Herein, porous nano-silicon has been synthesized via a highly scalable heat scavenger-assisted magnesiothermic reduction of beach sand. This environmentally benign, highly abundant, and low cost SiO₂ source allows for production of nano-silicon at the industry level with excellent electrochemical performance as an anode material for Li-ion batteries. The addition of NaCl, as an effective heat scavenger for the highly exothermic magnesium reduction process, promotes the formation of an interconnected 3D network of nano-silicon with a thickness of 8-10 nm. Carbon coated nano-silicon electrodes achieve remarkable electrochemical performance with a capacity of 1024 mAhg(-1) at 2 Ag(-1) after 1000 cycles.
Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance.
Yang, Jia; Xu, Ming; Zhang, Xuezhi; Hu, Qiang; Sommerfeld, Milton; Chen, Yongsheng
2011-01-01
This research examines the life-cycle water and nutrients usage of microalgae-based biodiesel production. The influence of water types, operation with and without recycling, algal species, geographic distributions are analyzed. The results confirm the competitiveness of microalgae-based biofuels and highlight the necessity of recycling harvested water and using sea/wastewater as water source. To generate 1 kg biodiesel, 3726 kg water, 0.33 kg nitrogen, and 0.71 kg phosphate are required if freshwater used without recycling. Recycling harvest water reduces the water and nutrients usage by 84% and 55%. Using sea/wastewater decreases 90% water requirement and eliminates the need of all the nutrients except phosphate. The variation in microalgae species and geographic distribution are analyzed to reflect microalgae biofuel development in the US. The impacts of current federal and state renewable energy programs are also discussed to suggest suitable microalgae biofuel implementation pathways and identify potential bottlenecks. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Mercury pollution in cricket in different biotopes suffering from pollution by zinc smelting].
Zheng, Dong-Mei; Li, Xin-Xin; Luo, Qing
2012-10-01
Total mercury contents in cricket bodies were studied in different biotopes in the surrounding of Huludao Zinc Plant to discuss the mercury distribution characteristics in cricket and to reveal the effects of environmental mercury accumulation in the short life-cycle insects through comparing cricket with other insect species. The average mercury content in cricket was 0.081 mg x kg(-1) and much higher than those in the control sites (0.012 mg x kg(-1) in average) in different biotopes. Mercury contents were found in the order of cricket head > wing > thorax approximately abdomen > leg. Mercury contents in cricket bodies varied greatly with sample sites. Significant correlation was found between the mercury contents in cricket and the distance from the pollution source as well as the mercury contents in plant stems. No significant correlation was found between the mercury contents in soil and in cricket bodies. Mercury contents in cricket were lower than those in cicadae, similar to those in other insects with shorter life-cycle periods.
Lignin Valorization: Emerging Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckham, Gregg T
Lignin, an aromatic biopolymer found in plant cell walls, is a key component of lignocellulosic biomass and generally utilized for heat and power. However, lignin's chemical composition makes it an attractive source for biological and catalytic conversion to fuels and chemicals. Bringing together experts from biology, catalysis, engineering, analytical chemistry, and techno-economic/life-cycle analysis, Lignin Valorization presents a comprehensive, interdisciplinary picture of how lignocellulosic biorefineries could potentially employ lignin valorization technologies. Chapters will specifically focus on the production of fuels and chemicals from lignin and topics covered include (i) methods for isolating lignin in the context of the lignocellulosic biorefinery, (ii)more » thermal, chemo-catalytic, and biological methods for lignin depolymerization, (iii) chemo-catalytic and biological methods for upgrading lignin, (iv) characterization of lignin, and (v) techno-economic and life-cycle analysis of integrated processes to utilize lignin in an integrated biorefinery. The book provides the latest breakthroughs and challenges in upgrading lignin to fuels and chemicals for graduate students and researchers in academia, governmental laboratories, and industry interested in biomass conversion.« less
Xue, Xiaobo; Schoen, Mary E; Ma, Xin Cissy; Hawkins, Troy R; Ashbolt, Nicholas J; Cashdollar, Jennifer; Garland, Jay
2015-06-15
Planning for sustainable community water systems requires a comprehensive understanding and assessment of the integrated source-drinking-wastewater systems over their life-cycles. Although traditional life cycle assessment and similar tools (e.g. footprints and emergy) have been applied to elements of these water services (i.e. water resources, drinking water, stormwater or wastewater treatment alone), we argue for the importance of developing and combining the system-based tools and metrics in order to holistically evaluate the complete water service system based on the concept of integrated resource management. We analyzed the strengths and weaknesses of key system-based tools and metrics, and discuss future directions to identify more sustainable municipal water services. Such efforts may include the need for novel metrics that address system adaptability to future changes and infrastructure robustness. Caution is also necessary when coupling fundamentally different tools so to avoid misunderstanding and consequently misleading decision-making. Published by Elsevier Ltd.
Zhang, Jian; Wu, Haiming; Hu, Zhen; Liang, Shuang; Fan, Jinlin
2014-01-01
The quantification of oxygen release by plants in different stages of wetland plant life cycle was made in this study. Results obtained from 1 year measurement in subsurface wetland microcosms demonstrated that oxygen release from Phragmites australis varied from 108.89 to 404.44 mg O₂/m(2)/d during the different periods from budding to dormancy. Plant species, substrate types, and culture solutions had a significant effect on the capacity of oxygen release of wetland plants. Oxygen supply by wetland plants was estimated to potentially support a removal of 300.37 mg COD/m(2)/d or 55.87 mg NH₄-N/m(2)/d. According to oxygen balance analysis, oxygen release by plants could provide 0.43-1.12% of biochemical oxygen demand in typical subsurface-flow constructed wetlands (CWs). This demonstrates that oxygen release of plants may be a potential source for pollutants removal especially in low-loaded CWs. The results make it possible to quantify the role of plants in wastewater purification.
Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services
Chaplin-Kramer, Rebecca; Sim, Sarah; Hamel, Perrine; Bryant, Benjamin; Noe, Ryan; Mueller, Carina; Rigarlsford, Giles; Kulak, Michal; Kowal, Virginia; Sharp, Richard; Clavreul, Julie; Price, Edward; Polasky, Stephen; Ruckelshaus, Mary; Daily, Gretchen
2017-01-01
International corporations in an increasingly globalized economy exert a major influence on the planet's land use and resources through their product design and material sourcing decisions. Many companies use life cycle assessment (LCA) to evaluate their sustainability, yet commonly-used LCA methodologies lack the spatial resolution and predictive ecological information to reveal key impacts on climate, water and biodiversity. We present advances for LCA that integrate spatially explicit modelling of land change and ecosystem services in a Land-Use Change Improved (LUCI)-LCA. Comparing increased demand for bioplastics derived from two alternative feedstock-location scenarios for maize and sugarcane, we find that the LUCI-LCA approach yields results opposite to those of standard LCA for greenhouse gas emissions and water consumption, and of different magnitudes for soil erosion and biodiversity. This approach highlights the importance of including information about where and how land-use change and related impacts will occur in supply chain and innovation decisions. PMID:28429710
Ball, Robert; Horne, Dale; Izurieta, Hector; Sutherland, Andrea; Walderhaug, Mark; Hsu, Henry
2011-05-01
The public health community faces increasing demands for improving vaccine safety while simultaneously increasing the number of vaccines available to prevent infectious diseases. The passage of the US Food and Drug Administration (FDA) Amendment Act of 2007 formalized the concept of life-cycle management of the risks and benefits of vaccines, from early clinical development through many years of use in large numbers of people. Harnessing scientific and technologic advances is necessary to improve vaccine-safety evaluation. The Office of Biostatistics and Epidemiology in the Center for Biologics Evaluation and Research is working to improve the FDA's ability to monitor vaccine safety by improving statistical, epidemiologic, and risk-assessment methods, gaining access to new sources of data, and exploring the use of genomics data. In this article we describe the current approaches, new resources, and future directions that the FDA is taking to improve the evaluation of vaccine safety.
Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services
NASA Astrophysics Data System (ADS)
Chaplin-Kramer, Rebecca; Sim, Sarah; Hamel, Perrine; Bryant, Benjamin; Noe, Ryan; Mueller, Carina; Rigarlsford, Giles; Kulak, Michal; Kowal, Virginia; Sharp, Richard; Clavreul, Julie; Price, Edward; Polasky, Stephen; Ruckelshaus, Mary; Daily, Gretchen
2017-04-01
International corporations in an increasingly globalized economy exert a major influence on the planet's land use and resources through their product design and material sourcing decisions. Many companies use life cycle assessment (LCA) to evaluate their sustainability, yet commonly-used LCA methodologies lack the spatial resolution and predictive ecological information to reveal key impacts on climate, water and biodiversity. We present advances for LCA that integrate spatially explicit modelling of land change and ecosystem services in a Land-Use Change Improved (LUCI)-LCA. Comparing increased demand for bioplastics derived from two alternative feedstock-location scenarios for maize and sugarcane, we find that the LUCI-LCA approach yields results opposite to those of standard LCA for greenhouse gas emissions and water consumption, and of different magnitudes for soil erosion and biodiversity. This approach highlights the importance of including information about where and how land-use change and related impacts will occur in supply chain and innovation decisions.
A tank-to-wheel analysis tool for energy and emissions studies in road vehicles.
Silva, C M; Gonçalves, G A; Farias, T L; Mendes-Lopes, J M C
2006-08-15
Currently, oil based fuels are the primary energy source of road transport. The growing need for oil independence and CO(2) mitigation has lead to the increasing importance of alternative fuel usage. CO(2) is produced not only as the fuel is used in the vehicle (tank-to-wheel contribution), but also upstream, from the fuel extraction to the refueling station (well-to-tank contribution), and the life cycle of the fuel production (well-to-wheel contribution) must be considered in order to analyse the global impact of the fuel utilization. A road vehicle tank-to-wheel analysis tool that may be integrated with well-to-tank models was developed in the present study. The integration in a demonstration case study allowed to perform a life cycle assessment concerning the utilization of diesel and natural gas fuels in a specific network line of a bus transit company operating in the city of Porto, Portugal.
Code of Federal Regulations, 2012 CFR
2012-10-01
... on leading practices and embraces open standards, DoD can— (a) Achieve lower life-cycle cost of item management and improve life-cycle property management; (b) Improve operational readiness; (c) Provide reliable accountability of property and asset visibility throughout the life cycle; and (d) Reduce the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... on leading practices and embraces open standards, DoD can— (a) Achieve lower life-cycle cost of item management and improve life-cycle property management; (b) Improve operational readiness; (c) Provide reliable accountability of property and asset visibility throughout the life cycle; and (d) Reduce the...
Code of Federal Regulations, 2013 CFR
2013-10-01
... on leading practices and embraces open standards, DoD can— (a) Achieve lower life-cycle cost of item management and improve life-cycle property management; (b) Improve operational readiness; (c) Provide reliable accountability of property and asset visibility throughout the life cycle; and (d) Reduce the...
ERIC Educational Resources Information Center
Roodvoets, David L.
2003-01-01
Presents factors to consider when determining roofing life-cycle costs, explaining that costs do not tell the whole story; discussing components that should go into the decision (cost, maintenance, energy use, and environmental costs); and concluding that important elements in reducing life-cycle costs include energy savings through increased…
Software security checklist for the software life cycle
NASA Technical Reports Server (NTRS)
Gilliam, D. P.; Wolfe, T. L.; Sherif, J. S.
2002-01-01
A formal approach to security in the software life cycle is essential to protect corporate resources. However, little thought has been given to this aspect of software development. Due to its criticality, security should be integrated as a formal approach in the software life cycle.
EDITORIAL: THE INTERNATIONAL CONFERENCE ON LIFE CYCLE ASSESSMENT
This is a special issue of Journal of Life Cycle Assessment that includes selected papers from the Internatonal Conference and Exhibition on Life Cycle Assessment (InLCA). In April 2000, the EPA, with co-organizer IERE, held the InLCA conferencethat attracted over 265 attendees (...
LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES
The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...
Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale
We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH) systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S.) using life cycle assessment (LCA) and life cycle cost assessment. Life cycle impact assessment (LCIA) categori...
Educational Focuses in Organisational Life Cycles.
ERIC Educational Resources Information Center
Miller, Harry G.
1985-01-01
Presents four stages frequently associated with the stages of an organization's life cycle: experimentation, growth, maturity, and decline or stability. The author also demonstrates that the impact of employment and thus training related to organizational life cycles suggests a need for understanding the technical preparation required for…
PRODUCT LIFE-CYCLE ASSESSMENT: INVENTORY GUIDELINES AND PRINCIPLES
The Life Cycle Assessment (LCA) can be used as an objective technical tool to evaluate the environmental consequences of a product, process, or activity holistically, across its entire life cycle. omplete LCA can be viewed as consisting of three complementary components (1) the i...
1977 Nationwide Personal Transportation Study : a life cycle of travel by the American family
DOT National Transportation Integrated Search
1981-07-01
This report provides information about family trips and travel from the point of view of the family life cycle, using data from the 1977 Nationwide Personal Transportation Study. Daily travel characteristics of families in stages of four life cycles ...
Lead isotopes tracing the life cycle of a catchment: From source rock via weathering to human impact
NASA Astrophysics Data System (ADS)
Negrel, P. J.; Petelet-Giraud, E.; Guerrot, C.; Millot, R.
2015-12-01
Chemical weathering of rocks involves consumption of CO2, a greenhouse gas with a strong influence on climate. Among rocks exposed to weathering, basalt plays a major role in the carbon cycle as it is more easily weathered than other crystalline silicate rocks. This means that basalt weathering acts as a major atmospheric CO2 sink. The present study investigated the lead isotopes in rock, soil and sediment for constraining the life cycle of a catchment, covering source rocks, erosion processes and products, and anthropogenic activities. For this, we investigated the Allanche river drainage basin in the Massif Central, the largest volcanic areas in France, that offers opportunities for selected geochemical studies since it drains a single type of virtually unpolluted volcanic rock, with agricultural activity increasing downstream. Soil and sediment are derived exclusively from basalt weathering, and their chemistry, coupled to isotope tracing, should shed light on the behavior of chemical species during weathering from parental bedrock. Bedrock samples of the basin, compared to regional bedrock of the volcanic province, resulted from a complex history and multiple mantle reservoir sources and mixing. Regarding soils and sediments, comparison of Pb and Zr normalized to mobile K shows a linear evolution of weathering processes, whereby lead enrichment from atmospheric deposition is the other major contributor. Lead-isotope ratios showed that most of the lead budget in sediment and soil results from bedrock weathering with an influence of past mining and mineral processing of ores in the Massif Central, and deposition of lead-rich particles from gasoline combustion, but no lead input from agricultural activity. A classic box model was used to investigate the dynamics of sediment transfer at the catchment scale, the lead behavior in the continuum bedrock-soil-sediment and the historical evolution of anthropogenic aerosol emissions.
A Language Translator for a Computer Aided Rapid Prototyping System.
1988-03-01
PROBLEM ................... S B. THE TRADITIONAL "WATERFALL LIFE CYCLE" .. ............... 14 C. RAPID PROTOTYPING...feature of everyday life for almost the entire industrialized world. Few governments or businesses function without the aid of computer systems. Com...engineering. B. TIE TRADITIONAL "WATERFALL LIFE CYCLE" I. Characteristics The traditional method of software engineering is the "waterfall life cycle
ERIC Educational Resources Information Center
Acquah, Edward H. K.
2012-01-01
The academic program life cycle (APLC) concept states each program's life flows through several stages: introduction, growth, maturity, and decline. A mixed-influence diffusion growth model is fitted to annual enrollment data on academic programs to analyze the factors determining progress of academic programs through their life cycles. The…
Grubert, Emily; Sanders, Kelly T
2018-06-05
The United States (US) energy system is a large water user, but the nature of that use is poorly understood. To support resource comanagement and fill this noted gap in the literature, this work presents detailed estimates for US-based water consumption and withdrawals for the US energy system as of 2014, including both intensity values and the first known estimate of total water consumption and withdrawal by the US energy system. We address 126 unit processes, many of which are new additions to the literature, differentiated among 17 fuel cycles, five life cycle stages, three water source categories, and four levels of water quality. Overall coverage is about 99% of commercially traded US primary energy consumption with detailed energy flows by unit process. Energy-related water consumption, or water removed from its source and not directly returned, accounts for about 10% of both total and freshwater US water consumption. Major consumers include biofuels (via irrigation), oil (via deep well injection, usually of nonfreshwater), and hydropower (via evaporation and seepage). The US energy system also accounts for about 40% of both total and freshwater US water withdrawals, i.e., water removed from its source regardless of fate. About 70% of withdrawals are associated with the once-through cooling systems of approximately 300 steam cycle power plants that produce about 25% of US electricity.
Greiman, Stephen E; Tkach, Vasyl V
2016-07-01
Bacteria of the genus Neorickettsia are obligate intracellular endosymbionts of parasitic flukes (Digenea) and are passed through the entire complex life cycle of the parasite by vertical transmission. Several species of Neorickettsia are known to cause diseases in domestic animals, wildlife, and humans. Quantitative data on the transmission of the bacteria through the digenean life cycle is almost completely lacking. This study quantified for the first time the abundance of Neorickettsia within multiple stages of the life cycle of the digenean Plagiorchis elegans. Snails Lymnaea stagnalis collected from a pond in North Dakota were screened for the presence of digenean cercariae, which were subsequently tested for the presence of Neorickettsia. Three L. stagnalis were found shedding P. elegans cercariae infected with Neorickettsia. These snails were used to initiate three separate laboratory life cycles and obtain all life cycle stages for bacterial quantification. A quantitative real-time PCR assay targeting the GroEL gene was developed to enumerate Neorickettsia sp. within different stages of the digenean life cycle. The number of bacteria significantly increased throughout all stages, from eggs to adults. The two largest increases in number of bacteria occurred during the period from eggs to cercariae and from 6-day metacercariae to 48-h juvenile worms. These two periods seem to be the most important for Neorickettsia propagation through the complex digenean life cycle and maturation in the definitive host.
Markiw, M.E.
1992-01-01
This paper provides the latest scientific and technical advances in the management of salmonid whirling disease caused by the myxosporean Myxobolus cerebralis (Syn. Myxosoma cerebralis). The complete life cycle of the parasite and the biology of the infective agent to fish, the actinosporean Triactinomyxon stage, are reviewed, and suggested procedures for detection, identification, and control of the disease are discussed. The paper offers sources of information and related reference materials of interest to fish culturists, fishery biologists, and students.
Regenerable Iodine Water-Disinfection System
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.
1994-01-01
Iodinated resin bed for disinfecting water regenerated to extend useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle manually controlled readily automated to start and stop according to signals from concentration sensors. Further benefit of regeneration is bed provides highly concentrated biocide source when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.
Energy Savings Analysis of the Proposed Revision of the Washington D.C. Non-Residential Energy Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Michael I.; Athalye, Rahul A.; Hart, Philip R.
This report presents the results of an assessment of savings for the proposed Washington D.C. energy code relative to ASHRAE Standard 90.1-2010. It includes annual and life cycle savings for site energy, source energy, energy cost, and carbon dioxide emissions that would result from adoption and enforcement of the proposed code for newly constructed buildings in Washington D.C. over a five year period.
Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems
NASA Astrophysics Data System (ADS)
Ally, Jamie; Pryor, Trevor
The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.
Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities.
Bilich, Andrew; Langham, Kevin; Geyer, Roland; Goyal, Love; Hansen, James; Krishnan, Anjana; Bergesen, Joseph; Sinha, Parikhit
2017-01-17
Access to a reliable source of electricity creates significant benefits for developing communities. Smaller versions of electricity grids, known as microgrids, have been developed as a solution to energy access problems. Using attributional life cycle assessment, this project evaluates the environmental and energy impacts of three photovoltiac (PV) microgrids compared to other energy options for a model village in Kenya. When normalized per kilowatt hour of electricity consumed, PV microgrids, particularly PV-battery systems, have lower impacts than other energy access solutions in climate change, particulate matter, photochemical oxidants, and terrestrial acidification. When compared to small-scale diesel generators, PV-battery systems save 94-99% in the above categories. When compared to the marginal electricity grid in Kenya, PV-battery systems save 80-88%. Contribution analysis suggests that electricity and primary metal use during component, particularly battery, manufacturing are the largest contributors to overall PV-battery microgrid impacts. Accordingly, additional savings could be seen from changing battery manufacturing location and ensuring end of life recycling. Overall, this project highlights the potential for PV microgrids to be feasible, adaptable, long-term energy access solutions, with health and environmental advantages compared to traditional electrification options.
Comparative muscle development of scyphozoan jellyfish with simple and complex life cycles.
Helm, Rebecca R; Tiozzo, Stefano; Lilley, Martin K S; Lombard, Fabien; Dunn, Casey W
2015-01-01
Simple life cycles arise from complex life cycles when one or more developmental stages are lost. This raises a fundamental question - how can an intermediate stage, such as a larva, be removed, and development still produce a normal adult? To address this question, we examined the development in several species of pelagiid jellyfish. Most members of Pelagiidae have a complex life cycle with a sessile polyp that gives rise to ephyrae (juvenile medusae); but one species within Pelagiidae, Pelagia noctiluca, spends its whole life in the water column, developing from a larva directly into an ephyra. In many complex life cycles, adult features develop from cell populations that remain quiescent in larvae, and this is known as life cycle compartmentalization and may facilitate the evolution of direct life cycles. A second type of metamorphic processes, known as remodeling, occurs when adult features are formed through modification of already differentiated larval structures. We examined muscle morphology to determine which of these alternatives may be present in Pelagiidae. We first examined the structure and development of polyp and ephyra musculature in Chrysaora quinquecirrha, a close relative of P. noctiluca with a complex life cycle. Using phallotoxin staining and confocal microscopy, we verified that polyps have four to six cord muscles that persist in strobilae and discovered that cord muscles is physically separated from ephyra muscle. When cord muscle is removed from ephyra segments, normal ephyra muscle still develops. This suggests that polyp cord muscle is not necessary for ephyra muscle formation. We also found no evidence of polyp-like muscle in P. noctiluca. In both species, we discovered that ephyra muscle arises de novo in a similar manner, regardless of the life cycle. The separate origins of polyp and ephyra muscle in C. quinquecirrha and the absence of polyp-like muscle in P. noctiluca suggest that polyp muscle is not remodeled to form ephyra muscle in Pelagiidae. Life cycle stages in Scyphozoa may instead be compartmentalized. Because polyp muscle is not directly remodeled, this may have facilitated the loss of the polyp stage in the evolution of P. noctiluca.
A Darwinian approach to the origin of life cycles with group properties.
Rashidi, Armin; Shelton, Deborah E; Michod, Richard E
2015-06-01
A selective explanation for the evolution of multicellular organisms from unicellular ones requires knowledge of both selective pressures and factors affecting the response to selection. Understanding the response to selection is particularly challenging in the case of evolutionary transitions in individuality, because these transitions involve a shift in the very units of selection. We develop a conceptual framework in which three fundamental processes (growth, division, and splitting) are the scaffold for unicellular and multicellular life cycles alike. We (i) enumerate the possible ways in which these processes can be linked to create more complex life cycles, (ii) introduce three genes based on growth, division and splitting that, acting in concert, determine the architecture of the life cycles, and finally, (iii) study the evolution of the simplest five life cycles using a heuristic model of coupled ordinary differential equations in which mutations are allowed in the three genes. We demonstrate how changes in the regulation of three fundamental aspects of colonial form (cell size, colony size, and colony cell number) could lead unicellular life cycles to evolve into primitive multicellular life cycles with group properties. One interesting prediction of the model is that selection generally favors cycles with group level properties when intermediate body size is associated with lowest mortality. That is, a universal requirement for the evolution of group cycles in the model is that the size-mortality curve be U-shaped. Furthermore, growth must decelerate with size. Copyright © 2015 Elsevier Inc. All rights reserved.
Santiago-Alarcon, Diego; Palinauskas, Vaidas; Schaefer, Hinrich Martin
2012-11-01
Haemosporida is a large group of vector-borne intracellular parasites that infect amphibians, reptiles, birds, and mammals. This group includes the different malaria parasites (Plasmodium spp.) that infect humans around the world. Our knowledge on the full life cycle of these parasites is most complete for those parasites that infect humans and, to some extent, birds. However, our current knowledge on haemosporidian life cycles is characterized by a paucity of information concerning the vector species responsible for their transmission among vertebrates. Moreover, our taxonomic and systematic knowledge of haemosporidians is far from complete, in particular because of insufficient sampling in wild vertebrates and in tropical regions. Detailed experimental studies to identify avian haemosporidian vectors are uncommon, with only a few published during the last 25 years. As such, little knowledge has accumulated on haemosporidian life cycles during the last three decades, hindering progress in ecology, evolution, and systematic studies of these avian parasites. Nonetheless, recently developed molecular tools have facilitated advances in haemosporidian research. DNA can now be extracted from vectors' blood meals and the vertebrate host identified; if the blood meal is infected by haemosporidians, the parasite's genetic lineage can also be identified. While this molecular tool should help to identify putative vector species, detailed experimental studies on vector competence are still needed. Furthermore, molecular tools have helped to refine our knowledge on Haemosporida taxonomy and systematics. Herein we review studies conducted on Diptera vectors transmitting avian haemosporidians from the late 1800s to the present. We also review work on Haemosporida taxonomy and systematics since the first application of molecular techniques and provide recommendations and suggest future research directions. Because human encroachment on natural environments brings human populations into contact with novel parasite sources, we stress that the best way to avoid emergent and reemergent diseases is through a program encompassing ecological restoration, environmental education, and enhanced understanding of the value of ecosystem services. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Cribb, Thomas H; Crespo-Picazo, Jose L; Cutmore, Scott C; Stacy, Brian A; Chapman, Phoebe A; García-Párraga, Daniel
2017-01-01
Blood flukes of the family Spirorchiidae are significant pathogens of both free-ranging and captive marine turtles. Despite a significant proportion of marine turtle mortality being attributable to spirorchiid infections, details of their life cycles remain almost entirely unknown. Here we report on the molecular elucidation of the complete life cycle of a marine spirorchiid, identified as Amphiorchis sp., infecting vermetid gastropods and captive hatched neonate Caretta caretta in the Oceanogràfic Aquarium, in Valencia, Spain. Specimens of a vermetid gastropod, Thylaeodus cf. rugulosus (Monterosato, 1878), collected from the aquarium filtration system housing diseased C. caretta, were infected with sporocysts and cercariae consistent with the family Spirorchiidae. We generated rDNA sequence data [internal transcribed spacer 2 (ITS2) and partial 28S rDNA] from infections from the vermetid which were identical to sequences generated from eggs from the serosa of the intestine of neonate C. caretta, and an adult spirorchiid from the liver of a C. caretta from Florida, USA. Given the reliability of these markers in the delineation of trematode species, we consider all three stages to represent the same species and tentatively identify it as a species of Amphiorchis Price, 1934. The source of infection at the Oceanogràfic Foundation Rehabilitation Centre, Valencia, Spain, is inferred to be an adult C. caretta from the western Mediterranean being rehabilitated in the same facility. Phylogenetic analysis suggests that this Amphiorchis sp. is closely related to other spirorchiids of marine turtles (species of Carettacola Manter & Larson, 1950, Hapalotrema Looss, 1899 and Learedius Price, 1934). We discuss implications of the present findings for the control of spirorchiidiasis in captivity, for the better understanding of epidemiology in wild individuals, and the elucidation of further life cycles. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Transient compartmentalization of RNA replicators prevents extinction due to parasites.
Matsumura, Shigeyoshi; Kun, Ádám; Ryckelynck, Michael; Coldren, Faith; Szilágyi, András; Jossinet, Fabrice; Rick, Christian; Nghe, Philippe; Szathmáry, Eörs; Griffiths, Andrew D
2016-12-09
The appearance of molecular replicators (molecules that can be copied) was probably a critical step in the origin of life. However, parasitic replicators would take over and would have prevented life from taking off unless the replicators were compartmentalized in reproducing protocells. Paradoxically, control of protocell reproduction would seem to require evolved replicators. We show here that a simpler population structure, based on cycles of transient compartmentalization (TC) and mixing of RNA replicators, is sufficient to prevent takeover by parasitic mutants. TC tends to select for ensembles of replicators that replicate at a similar rate, including a diversity of parasites that could serve as a source of opportunistic functionality. Thus, TC in natural, abiological compartments could have allowed life to take hold. Copyright © 2016, American Association for the Advancement of Science.
Earth Without Life: A Systems Model of a Global Abiotic Nitrogen Cycle
NASA Astrophysics Data System (ADS)
Laneuville, M.; Kameya, M.; Cleaves, H. J.
2017-07-01
N is the major component of the atmosphere and plays important roles in biochemistry. Presently, the surface N-cycle is dominated by biology. However, before the origin of life, abiotic N-cycling would have set the stage for the origin of life.
LIFE CYCLE IMPACT ASSESSMENT AN INTRODUCTION AND INTERNATIONAL UPDATE
Research within the field of Life Cycle Impact Assessment (LCIA) has greatly improved since the work of Heijungs and Guinee in 1992. Within the UNEP / SETAC Life Cycle Initiative an effort is underway to provide recommendations about the direction of research and selection of LC...
An increasing number of people around the world are beginning to realize that a systems approach, such as life cycle thinking, is necessary to truly achieve environmental sustainability. Without the holistic perspective that life cycle thinking provides, our actions risk leading ...
Dealing with Emergy Algebra in the Life Cycle Assessment Framework
The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...
Comparison of energy-based indicators used in life cycle assessment tools for buildings
Traditionally, building rating systems focused on, among others, energy used during operational stage. Recently, there is a strong push by these rating systems to include the life cycle energy use of buildings, particularly using Life Cycle Assessment (LCA), by offering credits t...
10 CFR 436.24 - Uncertainty analyses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...
10 CFR 436.24 - Uncertainty analyses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...
10 CFR 436.24 - Uncertainty analyses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...
10 CFR 436.24 - Uncertainty analyses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle cost...
LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE BGU-24
The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyrotechnic (PEP) materials of interest to the U.S. Department of Defense (DoD)...
A Game to Teach the Life Cycles of Fungi
ERIC Educational Resources Information Center
Blum, Abraham
1976-01-01
Presented is a biological game utilized to teach fungi life cycles to secondary biology students. The game is designed to overcome difficulties of correlating schematic drawings with images seen through the microscope, correlating life cycles of fungi and host, and understanding cyclic development of fungi. (SL)
Code of Federal Regulations, 2010 CFR
2010-01-01
... Life Cycle Cost Analyses § 436.11 Definitions. As used in this subpart— Base Year means the fiscal year in which a life cycle cost analysis is conducted. Building energy system means an energy conservation... building that improve energy efficiency and are life cycle cost effective and that involve energy...
Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability
Life cycle approaches are critical for identifying and managing to reduce burdens in the sustainability of product systems. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA) methods fail to integrate the multiple im...
The Process of Life Cycle Cost Analysis: Projecting Economic Consequences of Design Decisions
ERIC Educational Resources Information Center
AIA Journal, 1976
1976-01-01
Life-cycle cost analysis deals with both present and future costs and attempts to relate the two as a basis for making decisions. This article lays the groundwork for a better understanding of the techniques of life-cycle cost analysis. (Author/MLF)
THE EPA'S EMERGING FOCUS ON LIFE CYCLE ASSESSMENT
EPA has been actively engaged in LCA research since 1990 to help advance the methodology and application of life cycle thinking in decision making. Across the Agency consideration of the life cycle concept is increasing in the development of policies and programs. A major force i...
Closed Brayton Cycle (CBC) Power Generation from an Electric Systems Perspective
NASA Astrophysics Data System (ADS)
Halsey, David G.; Fox, David A.
2006-01-01
Several forms of closed cycle heat engines exist to produce electrical energy suitable for space exploration or planetary surface applications. These engines include Stirling and Closed Brayton Cycle (CBC). Of these two, CBC has often been cited as providing the best balance of mass and efficiency for deep space or planetary power systems. Combined with an alternator on the same shaft, the hermetically sealed system provides the potential for long life and reliable operation. There is also a list of choices for the type of alternator. Choices include wound rotor machines, induction machines, switched reluctance machines, and permanent magnet generators (PMGs). In trades involving size, mass and efficiency the PMG is a favorable solution. This paper will discuss the consequences of using a CBC-PMG source for an electrical power system, and the system parameters that must be defined and controlled to provide a stable, useful power source. Considerations of voltage, frequency (including DC), and power quality will be discussed. Load interactions and constraints for various power types will also be addressed. Control of the CBC-PMG system during steady state operation and startup is also a factor.s
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin; Gross, Daniel; Klosner, Marc; Chan, Gary; Wu, Chunbai; Heller, Donald F.
2015-05-01
Globally, cancer is a major health issue as advances in modern medicine continue to extend the human life span. Breast cancer ranks second as a cause of cancer death in women in the United States. Photoacoustic (PA) imaging (PAI) provides high molecular contrast at greater depths in tissue without the use of ionizing radiation. In this work, we describe the development of a PA tomography (PAT) system and a rapid wavelength-cycling Alexandrite laser designed for clinical PAI applications. The laser produces 450 mJ/pulse at 25 Hz to illuminate the entire breast, which eliminates the need to scan the laser source. Wavelength cycling provides a pulse sequence in which the output wavelength repeatedly alternates between 755 nm and 797 nm rapidly within milliseconds. We present imaging results of breast phantoms with inclusions of different sizes at varying depths, obtained with this laser source, a 5-MHz 128-element transducer and a 128-channel Verasonics system. Results include PA images and 3D reconstruction of the breast phantom at 755 and 797 nm, delineating the inclusions that mimic tumors in the breast.
Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott
2011-10-01
Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a transportation fuel. This likelihood of an increase in GHG emissions is indicative of the potential failure of a climate policy targeting reductions in GHG emissions.
NASA Lewis advanced IPV nickel-hydrogen technology
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Britton, Doris L.
1993-01-01
Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, to modify the state of the art cell design to eliminate identified failure modes and further improve cycle life, and to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10 C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the non-catalyzed wall wick cells failed (cycles 9,588; 13,900; and 20,575). Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80 mil thick, 90 percent porous Fibrex nickel electrode has been cycled for 10,000 cycles at 40 percent DOD.
NASA Technical Reports Server (NTRS)
Oldrieve, R. E.
1978-01-01
Analysis of high temperature low cycle fatigue of AISI 304LC and 316 stainless steels by the method of strainrange partitioning results in four separate strainrange versus life relationships, depending upon the way in which creep-strain and plastic strain are combined within a cycle. Fractography is used in this investigation of the creep-fatigue interaction associated with these cycles. The PP and PC-cycle fractures were transgranular. The PC-cycle resulted in fewer cycles of initiation and shorter total cyclic life for the same applied inelastic strainrange. The CC-cycle had mixed transgranular and intergranular fracture, fewer cycles of initiation and shorter cycle life than PP or PC. The CP-cycle had fully integranular cracking, and failed in fewer cycles than were required for cracks to initate for PP,PC, and CC.
Barclay, Katie
2011-01-01
Traditionally marriage has been treated as one step in the life cycle, between youth and old age, singleness and widowhood. Yet an approach to the life cycle that treats marriage as a single step in a person's life is overly simplistic. During the eighteenth century many marriages were of considerable longevity during which time couples aged together and power dynamics within the home were frequently renegotiated to reflect changing circumstances. This study explores how intimacy developed and changed over the life cycle of marriage and what this meant for power, through a study of the correspondence of two elite Scottish couples.
The Life Cycle of Images: Revisiting the Ethical Treatment of the Art Therapy Image
ERIC Educational Resources Information Center
Hinz, Lisa D.
2013-01-01
Using the metaphor of the human life cycle, the author of this viewpoint suggests that consideration of the birth, life, and death of images made in art therapy may promote a new perspective on their ethical treatment. A developmental view of images encourages art therapists to see art images as living entities that undergo a natural life cycle.…
The Life Cycle of Everyday Stuff.
ERIC Educational Resources Information Center
Reeske, Mike; Ireton, Shirley Watt
Life cycle assessment is an important tool for technology planning as solid waste disposal options dwindle and energy prices continue to increase. This guide investigates the life cycles of products. The activities in this book are suitable for secondary earth science, environmental science, physical science, or integrated science lessons. The…
A life cycle greenhouse gas inventory of a tree production system
Alissa Kendall; E. Gregory McPherson
2012-01-01
PurposeThis study provides a detailed, process-based life cycle greenhouse gas (GHG) inventory of an ornamental tree production system for urban forestry. The success of large-scale tree planting initiatives for climate protection depends on projects being net sinks for CO2 over their entire life cycle....
Sustainability Analysis | Energy Analysis | NREL
environmental, life-cycle, climate, and other impacts of renewable energy technologies. Photo of a man viewing a energy choices within the complex web of connections between energy and water. Life Cycle Assessment Harmonization Our life cycle assessment harmonization provides lenders, utility executives, and lawmakers with
10 CFR 434.607 - Life cycle cost analysis criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Life cycle cost analysis criteria. 434.607 Section 434.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.607 Life cycle cost...
10 CFR 434.607 - Life cycle cost analysis criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Life cycle cost analysis criteria. 434.607 Section 434.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.607 Life cycle cost...
10 CFR 434.607 - Life cycle cost analysis criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Life cycle cost analysis criteria. 434.607 Section 434.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.607 Life cycle cost...
DOT National Transportation Integrated Search
2015-05-01
The research team developed a comprehensive Benefit/Cost (B/C) analysis framework to evaluate existing and anticipated : intelligent transportation system (ITS) strategies, particularly, adaptive traffic control systems and ramp metering systems, : i...
LIFE CYCLE BASED STUDIES ON BIOETHANOL FUEL FOR SUSTAINABLE TRANSPORTATION: A LITERATURE REVIEW
A literature search was conducted and revealed 45 publications (1996-2005) that compare bio-ethanol systems to conventional fuel on a life-cycle basis, or using life cycle assessment. Feedstocks, such as sugar beets, wheat, potato, sugar cane, and corn, have been investigated in...
Building upon previously published life cycle assessment (LCA) methodologies, we conducted an LCA of a commercial rainwater harvesting (RWH) system and compared it to a municipal water supply (MWS) system adapted to Washington, D.C. Eleven life cycle impact assessment (LCIA) indi...
LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE GBU-24
The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyro-technic (PEP) materials of interest to the U.S. Department of Defense (DoD...
DOT National Transportation Integrated Search
2009-05-01
The development of life-cycle energy and emissions factors for passenger transportation modes : is critical for understanding the total environmental costs of travel. Previous life-cycle studies : have focused on the automobile given its dominating s...
LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD
The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...
THE INTERNATIONAL WORKSHOP ON ELECTRICITY DATA FOR LIFE CYCLE INVENTORIES
A three day workshop was held in October 2001 to discuss life cycle inventory data for electricity production. Electricity was selected as the topic for discussion since it features very prominently in the LCA results for most product life cycles, yet there is no consistency in h...
10 CFR 436.13 - Presuming cost-effectiveness results.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Methodology and Procedures for Life Cycle Cost Analyses § 436.13 Presuming cost-effectiveness results. (a) If... life cycle cost-effective without further analysis. (b) A Federal agency may presume that an investment in an energy or water conservation measure retrofit to an existing Federal building is not life cycle...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,671] Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit, Including Teleworkers Reporting to... Supply Chain, Global Product Life Cycles Management Unit, including teleworkers reporting to Houston...
7 CFR 3560.65 - Reserve account.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-year period. The reserve account analysis is based on either a Capital Needs Assessment or life cycle... Assessment or as part of the original life cycle cost analysis. The cost of conducting either a Capital Needs... Needs Assessment or life cycle cost analysis may be included in the loan financing. (b) For ownership...
7 CFR 3560.65 - Reserve account.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-year period. The reserve account analysis is based on either a Capital Needs Assessment or life cycle... Assessment or as part of the original life cycle cost analysis. The cost of conducting either a Capital Needs... Needs Assessment or life cycle cost analysis may be included in the loan financing. (b) For ownership...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... Industry and FDA Staff; Total Product Life Cycle: Infusion Pump--Premarket Notification [510(k... for Industry and FDA Staff; Total Product Life Cycle: Infusion Pump--Premarket Notification [510(k... Staff; Total Product Life Cycle: Infusion Pump--Premarket Notification [510(k)] Submissions--0910-NEW...
The lack of readily available, quality environmental life cycle inventory (LCI) data is often a barrier to manufacturers, among others, for incorporating life cycle considerations into their decision-making process. While much progress has been made on standardizing and improving...
FUNDAMENTALS OF LIFE CYCLE ASSESSMENT AND OFF-THE-SHELF SOFTWARE DEMONSTRATION
As the name implies, Life Cycle Assesssment (LCA) evaluates the entire life cycle of a product, process, activity, or service, not just simple economics at the time of delivery. This course on LCA covers the following issues:
Basic principles of LCA for use in producing, des...
Models of the Organizational Life Cycle: Applications to Higher Education.
ERIC Educational Resources Information Center
Cameron, Kim S.; Whetten, David A.
1983-01-01
A review of models of group and organization life cycle development is provided and the applicability of those models for institutions of higher education are discussed. An understanding of the problems and characteristics present in different life cycle stages can help institutions manage transitions more effectively. (Author/MLW)
ERIC Educational Resources Information Center
Reeske, Mike
2000-01-01
Explains a project called "Life Cycle of a Pencil" which was developed by the National Science Teachers Association (NSTA) and the U.S. Environmental Protection Agency (USEPA). Describes the life cycle of a pencil in stages starting from the first stage of design to the sixth stage of product disposal. (YDS)
Frolov, A O; Malysheva, M N; Kostygov, A Yu
2015-01-01
The review concerns analysis of life cycle macrotransformations in the evolutionary history of trypanosomatids. The term "macrotransformations" stands for evolutionary processes leading to the establishment of heteroxenous and secondary homoxenous life cycles within Trypanosomatidae. There were three direct macrotransformations in the evolution of the group resulting in the rise of heteroxenous genera Leishmania, Trypanosoma and Phytomonas, and one case of reverse macrotransformation in trypanosomes of T. (b.) brucei group. The issues of the origin, diversity and phylogeny of taxa whose emergence resulted from macrotransformations of life cycles of homoxenous trypanosomatids.
2013-10-01
Based Logistics Prophets Using Science or Alchemy to Create Life-Cycle Affordability? Using Theory to Predict the Efficacy of Performance Based...Using Science or Alchemy to Create Life-Cycle Affordability? Using Theory to Predict the Efficacy of Performance Based Logistics 5a. CONTRACT NUMBER 5b...Are the PBL Prophets Using Science or Alchemy to Create Life Cycle Affordability? 328Defense ARJ, October 2013, Vol. 20 No. 3 : 325–348 Defense
Richard Bergman; Scott A. Bowe
2008-01-01
The goal of this study was to find the environmental impact of hardwood lumber production through a gate-to-gate Life-Cycle Inventory (LCI) on hardwood sawmills in the northeast and northcentral (NE/NC) United States. Primary mill data was collected per CORRIM Research Guidelines (CORRIM 2001). Life-cycle analysis is beyond the scope of the study.
Richard D. Bergman; Scott A. Bowe
2010-01-01
The goal of this study was to gain an understanding of the environmental impact of hardwood lumber production through a gate-to-gate life-cycle inventory (LCI) of hardwood sawmills in the Southeastern United States (SE). Primary mill data were collected per Consortium on Research for Renewable Industrial Materials (CORRIM) Research Guidelines. Life-cycle impact...
2015-03-26
INVESTIGATION OF THE HIGH -CYCLE FATIGUE LIFE OF SELECTIVE LASER MELTED AND HOT ISOSTATICALLY PRESSED TI-6AL-4V THESIS Kevin D. Rekedal...ENY-MS-15-M-212 INVESTIGATION OF THE HIGH -CYCLE FATIGUE LIFE OF SELECTIVE LASER MELTED AND HOT ISOSTATICALLY PRESSED TI-6AL-4V THESIS...AFIT-ENY-MS-15-M-212 INVESTIGATION OF THE HIGH -CYCLE FATIGUE LIFE OF SELECTIVE LASER MELTED AND HOT ISOSTATICALLY PRESSED TI-6AL-4V
Making the Mark: The Role of Adenosine Modifications in the Life Cycle of RNA Viruses.
Gonzales-van Horn, Sarah R; Sarnow, Peter
2017-06-14
Viral epitranscriptomics is a newly emerging field that has identified unique roles for RNA modifications in modulating life cycles of RNA viruses. Despite the observation of a handful of modified viral RNAs five decades ago, very little was known about how these modifications regulate viral life cycles, until recently. Here we review the pro- and anti-viral effects of methyl-6-adenosine in distinct viral life cycles, the role of 2' O-methyl modifications in RNA stability and innate immune sensing, and functions of adenosine to inosine modifications in retroviral life cycles. With roles for over 100 modifications in RNA still unknown, this is a rapidly emerging field that is destined to suggest novel antiviral therapies. Copyright © 2017 Elsevier Inc. All rights reserved.