Characterization of III-V Semiconductors.
1981-04-01
Conversion Photoluminescence InP Hall Effect Mass Spectroscopy Ion Implantation Photoconductivity Donor-Acceptor 20. ABSTRACT (Continue on reverse side If...Characteristiss .. 72 10.0 FAR INFRARED STUDIES IN GaAs. ....................... 76I11.0 SPARK-SOURCE MASS SPECTROSCOPY IN GaAs...concen- tration, as measured by spark-source mass spectroscopy (SSMS), and the Hall 7 mobility. However, we found that, unfortunately, commercially
Single-electron detection and spectroscopy via relativistic cyclotron radiation
Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...
2015-04-20
Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less
NASA Astrophysics Data System (ADS)
Weimer, Wayne A.; Johnson, Curtis E.
1990-12-01
A microwave plasma enhanced chemical vapor deposition system is characterized using optical emission spectroscopy and mass spectrometry. CH4 CH2 CH4 and CO were used as carbon source gases. The effects of 02 addition to the feed gas is examined. Emission from CH in the plasma is observed and CH4 is a stable reaction product for all carbon source gases used. 02 is fully consumed and converted to H20 and CO. Emission from C is observed for all hydrocarbon gases when 02 is added but is absent when CO is the carbon source gas. Addition of 02 also dramatically affects the relative amount of reaction products as the carbon in the system is converted to CO. 1.
Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.
Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L
2015-04-24
It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.
Optical signatures of molecular particles via mass-selected cluster spectroscopy
NASA Technical Reports Server (NTRS)
Duncan, Michael A.
1990-01-01
A new molecular beam apparatus was developed to study optical absorption in cold (less than 100 K) atomic clusters and complexes produced by their condensation with simple molecular gases. In this instrument, ionized clusters produced in a laser vaporization nozzle source are mass selected and studied with photodissociation spectroscopy at visible and ultraviolet wavelengths. This new approach can be applied to synthesize and characterize numerous particulates and weakly bound complexes expected in planetary atmospheres and in comets.
General Chemistry Division. Quarterly report, July--September 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrar, J.E.
1978-11-17
Status of the following studies is given: nonaqueous titrimetry; molar absorbance of 1,3,5,-triamine-2,4,6,-trinitrobenzene in dimethylsulfoxide, potentiometric microdetermination of pentaerythritol tetranitrate (PETN) in PETN-containing composites; potentiometric semimicrodetermination of some tetrazoles with silver nitrate; applications of a mode-locked krypton ion laser; time-resolved spectroscopy; photoelectrochemistry; evaluation of a prototype atomic emission source system; laser spectroscopy of neptunium; high-performance liquid chromatography of polyphenyl ether; acquisition of a portable, computerized mass spectrometer; improved inlet for quantitative mass spectrometry; a computer data system for the UTI gas analyzers; analysis of perfluorobutene-2; examination of iridium coatings; source of high-intensity, polarized x rays for fluorescence analysis; mass spectrometermore » for the coal gasification field test; materials protection measurement guides; the LOG system of sample file control; and methylation of platinum compounds by methylcobalamin. (LK)« less
Material quality frontiers of MOVPE grown AlGaAs for minority carrier devices
NASA Astrophysics Data System (ADS)
Heckelmann, S.; Lackner, D.; Dimroth, F.; Bett, A. W.
2017-04-01
In this study, secondary ion mass spectroscopy of oxygen, deep level transient spectroscopy and power dependent relative photoluminescence are compared regarding their ability to resolve differences in AlxGa1-xAs material quality. AlxGa1-xAs samples grown with two different trimethylaluminum sources showing low and high levels of oxygen contamination are compared. As tested in the growth of minority carrier devices, i.e. AlxGa1-xAs solar cells, the two precursors clearly lead to different device characteristics. It is shown that secondary ion mass spectroscopy could not resolve the difference in oxygen concentration, whereas deep level transient spectroscopy and photoluminescence based measurements indicate the influence of the precursor oxygen level on the material quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odedra, R.; Smith, L.M.; Rushworth, S.A.
2000-01-01
Hydrazine derivatives are attractive low temperature nitrogen sources for use in MOVPE due to their low thermal stability. However their purification and subsequent analysis has not previously been investigated in depth for this application. A detailed study on 1,1-dimethylhydrazine {l{underscore}brace}(CH{sub 3}){sub 2}N-NH{sub 2}{r{underscore}brace} purified by eight different methods and the subsequent quantitative measurements of water present in the samples obtained is reported here. A correlation between {sup 1}H nuclear magnetic resonance spectroscopy (NMR), gas chromatography-atomic emission detection (GC-AED) and cryogenic mass spectroscopy (Cryogenic-MS) has been performed. All three analysis techniques can be used to measure water in the samples andmore » with the best purification the water content can be lowered well below 100 ppm. The high purity of this material has been demonstrated by growth results and the state-of-the-art performance of laser diodes.« less
Vapor phase diamond growth technology
NASA Technical Reports Server (NTRS)
Angus, J. C.
1981-01-01
Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulyuz, Kerim; Stedwell, Corey N.; Wang Da
2011-05-15
We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarilymore » increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.« less
NASA Astrophysics Data System (ADS)
Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki
2012-12-01
A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.
Emission of ammonia from concentrated animal feeding operations represents an increasingly important environmental issue. Determination of total ammonia mass emission flux from extended area sources such as waste lagoons and waste effluent spraying operations can be evaluated usi...
NASA Astrophysics Data System (ADS)
Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Wang, X.; Brammer, G. B.; Broussard, A.; Amorin, R.; Castellano, M.; Fontana, A.; Merlin, E.; Schrabback, T.; Trenti, M.; Vulcani, B.
2016-11-01
We present a model using both strong and weak gravitational lensing of the galaxy cluster MACS J0416.1-2403, constrained using spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) and Hubble Frontier Fields (HFF) imaging data. We search for emission lines in known multiply imaged sources in the GLASS spectra, obtaining secure spectroscopic redshifts of 30 multiple images belonging to 15 distinct source galaxies. The GLASS spectra provide the first spectroscopic measurements for five of the source galaxies. The weak lensing signal is acquired from 884 galaxies in the F606W HFF image. By combining the weak lensing constraints with 15 multiple image systems with spectroscopic redshifts and nine multiple image systems with photometric redshifts, we reconstruct the gravitational potential of the cluster on an adaptive grid. The resulting map of total mass density is compared with a map of stellar mass density obtained from the deep Spitzer Frontier Fields imaging data to study the relative distribution of stellar and total mass in the cluster. We find that the projected stellar mass to total mass ratio, f ⋆, varies considerably with the stellar surface mass density. The mean projected stellar mass to total mass ratio is < {f}\\star > =0.009+/- 0.003 (stat.), but with a systematic error as large as 0.004-0.005, dominated by the choice of the initial mass function. We find agreement with several recent measurements of f ⋆ in massive cluster environments. The lensing maps of convergence, shear, and magnification are made available to the broader community in the standard HFF format.
NASA Astrophysics Data System (ADS)
Renois-Predelus, G.; Schindler, B.; Compagnon, I.
2018-04-01
We report distinctive spectroscopic fingerprints of the monosaccharide standards GalNAc4S and GalNAc6S by coupling mass spectrometry and ion spectroscopy in the 3-μm range. The disaccharide standards CSA and CSC are used to demonstrate the applicability of a novel approach for the analysis of sulfate position in GalNAc-containing glycosaminoglycans. This approach was then used for the analysis of a sample containing CSA and CSC disaccharides. Finally, we discuss the generalization of the coupling of mass spectrometry with ion spectroscopy for the structural analysis of glycosaminoglycans on a tetrasaccharide from dermatan sulfate source. [Figure not available: see fulltext.
Studies on the primary structure of short polysaccharides using SEC MALDI mass spectroscopy.
Garozzo, D; Spina, E; Cozzolino, R; Cescutti, P; Fett, W F
2000-01-12
The introduction of size-exclusion chromatography (SEC) analysis of polysaccharides prior to MALDI mass spectroscopy accounts for the determination of the molecular mass of the repeating unit when neutral homopolymers are investigated. In the case of natural polysaccharides characterised by more complicated structural features (presence of non-carbohydrate substituents, charged groups, etc.), this mass value usually is in agreement with more than one sugar composition. Therefore, it is not sufficient to give the correct monosaccharidic composition of the polysaccharide investigated. To solve this problem, MALDI spectra were recorded on the permethylated sample and post-source decay experiments were performed on precursor ions. In this way, the composition (in terms of Hex, HexNAc, etc.), size and sequence of the repeating unit were determined.
Photodissociation spectroscopy of the Mg + -CO2 complex and its isotopic analogs
NASA Astrophysics Data System (ADS)
Yeh, C. S.; Willey, K. F.; Robbins, D. L.; Pilgrim, J. S.; Duncan, M. A.
1993-02-01
Mg+-CO2 ion-molecule cluster complexes are produced by laser vaporization in a pulsed nozzle cluster source. The vibronic spectroscopy in these complexes is studied with mass-selected photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer. Two excited electronic states are observed (2) 2Σ+ and 2Π. The 2Π state has a vibrational progression in the metal-CO2 stretching mode (ωe'=381.8 cm-1). The complexes are linear (Mg+-OCO) and are bound by the charge-quadrupole interaction. The dissociation energy (D0`) is 14.7 kcal/mol. Corresponding spectra are measured for each of the 24, 25, and 26 isotopes of magnesium. These results are compared to theoretical predictions made by Bauschlicher and co-workers.
An evaluation: The potential of discarded tires as a source of fuel
NASA Technical Reports Server (NTRS)
Collins, L. W.; Downs, W. R.; Gibson, E. K.; Moore, G. W.
1974-01-01
The destructive distillation of rubber tire samples was studied by thermogravimetry, differential scanning calorimetry, combustion calorimetry, and mass spectroscopy. The decomposition reaction was found to be exothermic and produced a mass loss of 65 percent. The gas evolution curves that were obtained indicate that a variety of organic materials are evolved simultaneously during the decomposition of the rubber polymer.
Fourier transform ion cyclotron resonance mass spectrometry
NASA Astrophysics Data System (ADS)
Marshall, Alan G.
1998-06-01
As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.
NASA Astrophysics Data System (ADS)
Hansen, Christopher S.; Kirk, Benjamin B.; Blanksby, Stephen J.; O'Hair, Richard. A. J.; Trevitt, Adam J.
2013-06-01
UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag2 + is compared with a literature spectrum as a further benchmark.
NIR integral field spectroscopy of high mass young stellar objects
NASA Astrophysics Data System (ADS)
Murakawa, K.; Lumsden, S. L.; Oudmaijer, R. D.; Davies, B.; Hoare, M. G.
2013-03-01
We present K-band Integral Field Spectroscopy of six high mass young stellar objects (IRAS~18151-1208, AFGL~2136, S106~IRS4, V645 Cyg, IRAS~19065+0526, and G082.5682+ 00.4040) obtained using the adaptive optics assisted NIFS instrument mounted on the Gemini North telescope. The targets are chosen from the Red MSX Source survey led by University of Leeds. The data show the spectral features of Brγ, H2, and gas phase CO emissions and absorptions with a spectral resolution of R ≈ 5500, which allow a three-dimensional spectro-astrometric analysis of the line emissions. We discuss the results of the ionized jets and winds, and rotating CO torus.
2016-06-01
used in both CTMFD and Beckman LS 6500 Scintillation System. Actinide Mass of Nalgene (g) Mass of Cap (g) Mass of Nalgene, Cap, 50 mL...both CTMFD and Beckman LS 6500 Scintillation System. Actinide Mass of Nalgene and Cap (g) Mass of Nalgene, Cap, 50 mL Acetone (g) Mass of...testing comparing the CTMFD’s capabilities of actinide spectroscopy and neutron detection against other detection systems with similar capabilities. The
NASA Astrophysics Data System (ADS)
Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.
2012-07-01
Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.
GLASS: spatially resolved spectroscopy of lensed galaxies in the Frontier Fields
NASA Astrophysics Data System (ADS)
Jones, Tucker; Treu, Tommaso; Brammer, Gabriel; Borello Schmidt, Kasper; Malkan, Matthew A.
2015-08-01
The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and H alpha at z=1-3. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z>1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching unprecedented stellar masses as low as ~10^7 Msun at z=2. I will discuss precise measurements of these physical properties and implications for galaxy evolution.
Spatially resolved spectroscopy of lensed galaxies in the Frontier Fields
NASA Astrophysics Data System (ADS)
Jones, Tucker; Aff004
The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-infrared spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O ii], [O iii], and Hα at z=1-3. The combination of strong gravitational lensing and Hubble's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z > 1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching stellar masses as low as ~107 M⊙ at z=2. I discuss precise measurements of these physical properties and implications for galaxy evolution.
NASA Astrophysics Data System (ADS)
Georgakakis, A.; Mountrichas, G.; Salvato, M.; Rosario, D.; Pérez-González, P. G.; Lutz, D.; Nandra, K.; Coil, A.; Cooper, M. C.; Newman, J. A.; Berta, S.; Magnelli, B.; Popesso, P.; Pozzi, F.
2014-10-01
We combine multi-wavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected active galactic nuclei (AGN) [LX(2-10 keV) > 1042 erg s- 1] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; LIR > 1011 L⊙) and quiescent systems at z ≈ 1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift probability distribution functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6 < z < 1.4 are found in haloes of similar mass, log MDMH/(M⊙ h-1) ≈ 13.0. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore, all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of log MDMH/(M⊙ h-1) ≈ 13.0 independent of their star formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large-scale environment may be related to differences in the stellar mass of the host galaxies.
NASA Astrophysics Data System (ADS)
Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi
1999-07-01
Soot containing fullerenes, such as C60 and C70, was synthesized with He plasmas generated in a quartz tube by microwave-glow discharge. A reticulated vitreous carbon (RVC) heated by the microwave He plasmas with an electric field of TE10 mode was used as the carbon source. Swan bands of C2 molecules were observed during the synthesis by optical emission spectroscopy (OES) in order to investigate the effect of the vibrational temperature of C2 molecules on the formation of the fullerenes. The soot deposited on the quartz tube was analyzed by laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). The intensities of the mass spectra of fullerenes were confirmed to be maximum for the conditions as follows: the absorbed microwave power Pab=200 W and the He gas pressure P=100 Torr, while the C2 vibrational temperature was approximately 7000 K.
Size-Resolved Composition of Organic Aerosol on the California Central Coast
NASA Astrophysics Data System (ADS)
Babila, J. E.; Depew, C. J.; Heinrich, S. E.; Zoerb, M.
2016-12-01
Organic compounds represent a significant mass fraction of submicrometer aerosol and can influence properties such as radiative forcing and cloud formation. Despite their broad importance, a complete description of particle sources and composition is lacking. Here we present measurements of solvent-extracted organic compounds in ambient aerosol in San Luis Obispo, CA. Ambient particles were sampled and size segregated with a micro-orifice uniform deposit impactor (MOUDI). Water and methanol soluble organic carbon was characterized with electrospray ionization mass spectrometry (ESI-MS) and UV/Vis spectroscopy. Particle composition and influences from local and regional sources on the organic fraction will be discussed.
NASA Technical Reports Server (NTRS)
Bradford, C. M.; Bock, J. J.; Dragovan, M.; Earle, L.; Glenn, J.; Naylor, B.; Nguyen, H.; Zmuidzinas, J.
2004-01-01
The discovery of galaxies beyond z approximately equal to 1 which emit the bulk of their luminosity at long wavelengths has demonstrated the need for high sensitivity, broadband spectroscopy in the far-IR/submm/mm bands. Because many of these sources are not detectable in the optical, long wavelength spectroscopy is key to measuring their redshifts and ISM conditions. The continuum source list will increase in the next decade with new ground-based instruments (SCUBA2, Bolocam, MAMBO) and the surveys of HSO and SIRTF. Yet the planned spectroscopic capabilities lag behind, primarily due to the difficulty in scaling existing IR spectrograph designs to longer wavelengths. To overcome these limitations, we are developing WaFIRS, a novel concept for long-wavelength spectroscopy which utilizes a parallel-plate waveguide and a curved diffraction grating. WaFIRS provides the large (approximately 60%) instantaneous bandwidth and high throughput of a conventional grating system, but offers a dramatic reduction in volume and mass. WaFIRS requires no space overheads for extra optical elements beyond the diffraction grating itself, and is two-dimensional because the propagation is confined between two parallel plates. Thus several modules could be stacked to multiplex either spatially or in different frequency bands. The size and mass savings provide opportunities for spectroscopy from space-borne observatories which would be impractical with conventional spectrographs. With background-limited detectors and a cooled 3.5 telescope, the line sensitivity would be better than that of ALMA, with instantaneous broad-band coverage. We have built and tested a WaFIRS prototype for 1-1.6 mm, and are currently constructing Z-Spec, a 100 mK model to be used as a ground-based lambda/DELTAlambda approximately equal to 350 submillimeter galaxy redshift machine.
Roy, Bappaditya; Banerjee, Rajat; Chatterjee, Sumana
2009-04-01
Staphylococcus sp. strain BP/SU1, capable of degrading the biopolymer and utilize it as a source of carbon and energy, was isolated from activated sludge using METABOLIX (MBX D411G). It was found that this strain was capable of accumulating poly(3-hydroxybutyric acid) P(3-HB), as granule poly (3-hydroxybutyric acid), p(3-HB), inclusion bodies when grown under suitable nutrient conditions. These strains could sustain cell growth up to a dry mass of 9.24 g/l with a doubling time of 8 to 10 hr and could accumulate P(3-HB) as granular inclusion bodies to a cell dry weight of more than 12%. P(3-HB) accumulated by this organism was isolated and characterized through NMR, FT-IR spectroscopy, UV Spectroscopy, Mass spectroscopy and Differential Scanning Calorimetry. P(3-HB) granules so isolated showed physical and chemical properties that should be possessed by a superior quality thermoplastic biopolymer.
Abatement of Perfluorinated Compounds Using Cylindrical Microwave Plasma Source at Low Pressure
NASA Astrophysics Data System (ADS)
Kim, Seong Bong; Park, S.; Park, Y.; Youn, S.; Yoo, S. J.
2016-10-01
Microwave plasma source with a cylindrical cavity has been proposed to abate the perfluorinated compounds (PFCs). This plasma source was designed to generate microwave plasma with the cylindrical shape and to be easily installed in existing exhaust line. The microwave frequency is 2.45 GHz and the operating pressure range is 0.1 Torr to 0.3 Torr. The plasma characteristic of the cylindrical microwave plasma source was measured using the optical spectrometer, and tunable diode laser absorption spectroscopy (TDLAS). The destruction and removal efficiency (DRE) of CF4 and CHF3 were measured by a quadrupole mass spectroscopy (QMS) with the various operation conditions. The effect of the addition of the oxygen gas were tested and also the correlation between the plasma parameters and the DRE are presented in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.
Laser ion source for multi-nucleon transfer reaction products
NASA Astrophysics Data System (ADS)
Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.
2015-06-01
We have developed a laser ion source for the target-like fragments (TLFs) produced in multi-nucleon transfer (MNT) reactions. The operation principle of the source is based on the in-gas laser ionization and spectroscopy (IGLIS) approach. In the source TLFs are thermalized and neutralized in high pressure and high purity argon gas, and are extracted after being selectively re-ionized in a multi-step laser resonance ionization process. The laser ion source has been implemented at the KEK Isotope Separation System (KISS) for β-decay spectroscopy of neutron-rich isotopes with N = 126 of nuclear astrophysical interest. The simulations of gas flow and ion-beam optics have been performed to optimize the gas cell for efficient thermalization and fast transporting the TLFs, and the mass-separator for efficient transport with high mass-resolving power, respectively. To confirm the performances expected at the design stage, off-line experiments have been performed by using 56Fe atoms evaporated from a filament in the gas cell. The gas-transport time of 230 ms in the argon cell and the measured KISS mass-resolving power of 900 are consistent with the designed values. The high purity of the gas-cell system, which is extremely important for efficient and highly-selective production of laser ions, was achieved and confirmed from the mass distribution of the extracted ions. After the off-line tests, on-line experiments were conducted by directly injecting energetic 56Fe beam into the gas cell. After thermalization of the injected 56Fe beam, laser-produced singly-charged 56Fe+ ions were extracted. The extraction efficiency and selectivity of the gas cell in the presence of plasma induced by 56Fe beam injection as well as the time profile of the extracted ions were investigated; extraction efficiency of 0.25%, a beam purity of >99% and an extraction time of 270 ms. It has been confirmed that the performance of the KISS laser ion source is satisfactory to start the measurements of lifetimes of the β-decayed nuclei with N = 126 .
NASA Astrophysics Data System (ADS)
Nowak-Lovato, K.
2014-12-01
Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.
Mapping Compound Cosmic Telescopes Containing Multiple Projected Cluster-scale Halos
NASA Astrophysics Data System (ADS)
Ammons, S. Mark; Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R.
2014-01-01
Lines of sight with multiple projected cluster-scale gravitational lenses have high total masses and complex lens plane interactions that can boost the area of magnification, or étendue, making detection of faint background sources more likely than elsewhere. To identify these new "compound" cosmic telescopes, we have found directions in the sky with the highest integrated mass densities, as traced by the projected concentrations of luminous red galaxies (LRGs). We use new galaxy spectroscopy to derive preliminary magnification maps for two such lines of sight with total mass exceeding ~3 × 1015 M ⊙. From 1151 MMT Hectospec spectra of galaxies down to i AB = 21.2, we identify two to three group- and cluster-scale halos in each beam. These are well traced by LRGs. The majority of the mass in beam J085007.6+360428 (0850) is contributed by Zwicky 1953, a massive cluster at z = 0.3774, whereas beam J130657.5+463219 (1306) is composed of three halos with virial masses of 6 × 1014-2 × 1015 M ⊙, one of which is A1682. The magnification maps derived from our mass models based on spectroscopy and Sloan Digital Sky Survey photometry alone display substantial étendue: the 68% confidence bands on the lens plane area with magnification exceeding 10 for a source plane of zs = 10 are [1.2, 3.8] arcmin2 for 0850 and [2.3, 6.7] arcmin2 for 1306. In deep Subaru Suprime-Cam imaging of beam 0850, we serendipitously discover a candidate multiply imaged V-dropout source at z phot = 5.03. The location of the candidate multiply imaged arcs is consistent with the critical curves for a source plane of z = 5.03 predicted by our mass model. Incorporating the position of the candidate multiply imaged galaxy as a constraint on the critical curve location in 0850 narrows the 68% confidence band on the lens plane area with μ > 10 and zs = 10 to [1.8, 4.2] arcmin2, an étendue range comparable to that of MACS 0717+3745 and El Gordo, two of the most powerful single cluster lenses known. The significant lensing power of our beams makes them powerful probes of reionization and galaxy formation in the early universe.
NASA Technical Reports Server (NTRS)
Alexander, D. M.; Stern, D.; DelMoro, A.; Lansbury, G. B.; Assef, R. J.; Aird, J.; Ajello, M.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.;
2013-01-01
We report on the first 10 identifications of sources serendipitously detected by the Nuclear Spectroscopic Telescope Array (NuSTAR) to provide the first sensitive census of the cosmic X-ray background source population at approximately greater than 10 keV. We find that these NuSTAR-detected sources are approximately 100 times fainter than those previously detected at approximately greater than 10 keV and have a broad range in redshift and luminosity (z = 0.020-2.923 and L(sub 10-40 keV) approximately equals 4 × 10(exp 41) - 5 × 10(exp 45) erg per second; the median redshift and luminosity are z approximately equal to 0.7 and L(sub 10-40 keV) approximately equal to 3 × 10(exp 44) erg per second, respectively. We characterize these sources on the basis of broad-band approximately equal to 0.5 - 32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared spectral energy distribution analyses. We find that the dominant source population is quasars with L(sub 10-40 keV) greater than 10(exp 44) erg per second, of which approximately 50% are obscured with N(sub H) approximately greater than 10(exp 22) per square centimeters. However, none of the 10 NuSTAR sources are Compton thick (N(sub H) approximately greater than 10(exp 24) per square centimeters) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L(sub 10-40 keV) greater than 10(exp 44) erg per second) selected at approximately greater than 10 keV of approximately less than 33% over the redshift range z = 0.5 - 1.1. We jointly fitted the rest-frame approximately equal to 10-40 keV data for all of the non-beamed sources with L(sub 10-40 keV) greater than 10(exp 43) erg per second to constrain the average strength of reflection; we find R less than 1.4 for gamma = 1.8, broadly consistent with that found for local active galactic nuclei (AGNs) observed at approximately greater than 10 keV. We also constrain the host-galaxy masses and find a median stellar mass of approximately 10(exp 11) solar mass, a factor approximately 5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass.
Information Measures for Multisensor Systems
2013-12-11
permuted to generate spectra that were non- physical but preserved the entropy of the source spectra. Another 1000 spectra were constructed to mimic co...Research Laboratory (NRL) has yielded probabilistic models for spectral data that enable the computation of information measures such as entropy and...22308 Chemical sensing Information theory Spectral data Information entropy Information divergence Mass spectrometry Infrared spectroscopy Multisensor
NASA Astrophysics Data System (ADS)
Joyce, S. R. G.; Barstow, M. A.; Casewell, S. L.; Burleigh, M. R.; Holberg, J. B.; Bond, H. E.
2018-05-01
Observational tests of the white dwarf mass-radius relationship have always been limited by the uncertainty in the available distance measurements. Most studies have focused on Balmer line spectroscopy because these spectra can be obtained from ground based observatories, while the Lyman lines are only accessible to space based UV telescopes. We present results using parallax data from Gaia DR2 combined with space based spectroscopy from HST and FUSE covering the Balmer and Lyman lines. We find that our sample supports the theoretical relation, although there is at least one star which is shown to be inconsistent. Comparison of results between Balmer and Lyman line spectra shows they are in agreement when the latest broadening tables are used. We also assess the factors which contribute to the error in the mass-radius calculations and confirm the findings of other studies which show that the spread in results for targets where multiple spectra are available is larger than the statistical error. The uncertainty in the spectroscopically derived log g parameter is now the main source of error rather than the parallax. Finally, we present new results for the radius and spectroscopic mass of Sirius B which agree with the dynamical mass and mass-radius relation within 1σ.
Lin, Ying-Hsuan; Budisulistiorini, Sri Hapsari; Chu, Kevin; Siejack, Richard A; Zhang, Haofei; Riva, Matthieu; Zhang, Zhenfa; Gold, Avram; Kautzman, Kathryn E; Surratt, Jason D
2014-10-21
Secondary organic aerosol (SOA) produced from reactive uptake and multiphase chemistry of isoprene epoxydiols (IEPOX) has been found to contribute substantially (upward of 33%) to the fine organic aerosol mass over the Southeastern U.S. Brown carbon (BrC) in rural areas of this region has been linked to secondary sources in the summer when the influence of biomass burning is low. We demonstrate the formation of light-absorbing (290 < λ < 700 nm) SOA constituents from reactive uptake of trans-β-IEPOX onto preexisting sulfate aerosols as a potential source of secondary BrC. IEPOX-derived BrC generated in controlled chamber experiments under dry, acidic conditions has an average mass absorption coefficient of ∼ 300 cm(2) g(-1). Chemical analyses of SOA constituents using UV-visible spectroscopy and high-resolution mass spectrometry indicate the presence of highly unsaturated oligomeric species with molecular weights separated by mass units of 100 (C5H8O2) and 82 (C5H6O) coincident with the observations of enhanced light absorption, suggesting such oligomers as chromophores, and potentially explaining one source of humic-like substances (HULIS) ubiquitously present in atmospheric aerosol. Similar light-absorbing oligomers were identified in fine aerosol collected in the rural Southeastern U.S., supporting their atmospheric relevance and revealing a previously unrecognized source of oligomers derived from isoprene that contributes to ambient fine aerosol mass.
Sharma, Ramesh C; Koshi, Mitsuo
2006-11-01
The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.
Shamp, Donald D.
2001-01-01
Over the past several decades investigators have extensively examined the 238U-234U- 230Th systematics of a variety of geologic materials using alpha spectroscopy. Analytical uncertainty for 230Th by alpha spectroscopy has been limited to about 2% (2σ). The advantage of thermal ionization mass spectroscopy (TIMS), introduced by Edwards and co-workers in the late 1980’s is the increased detectability of these isotopes by a factor of ~200, and decreases in the uncertainty for 230Th to about 5‰ (2σ) error. This report is a procedural manual for using the USGS-Stanford Finnegan-Mat 262 TIMS to collect and isolate Uranium and Thorium isotopic ratio data. Chemical separation of Uranium and Thorium from the sample media is accomplished using acid dissolution and then processed using anion exchange resins. The Finnegan-Mat262 Thermal Ionization Mass Spectrometer (TIMS) utilizes a surface ionization technique in which nitrates of Uranium and Thorium are placed on a source filament. Upon heating, positive ion emission occurs. The ions are then accelerated and focused into a beam which passes through a curved magnetic field dispersing the ions by mass. Faraday cups and/or an ion counter capture the ions and allow for quantitative analysis of the various isotopes.
NASA Astrophysics Data System (ADS)
Delle Donne, Dario; Tamburello, Giancarlo; Ripepe, Maurizio; Aiuppa, Alessandro
2014-05-01
According to the linear theory of sound, acoustic pressure propagating in a homogeneous atmosphere can be modelled in terms of the rate of change of a volumetric source. At open-vent volcanoes, this acoustic source process is commonly related to the explosive dynamics triggered by the rise, expansion and bursting of a gas slug at the magma free surface with the conduit. Just before an explosion, the magma surface will undergo deformation by the expanding gas slug. The deformation of the magma surface will then produce an equivalent displacement of the atmosphere, inducing a volumetric compression and generating an excess pressure that scales to the rate of volumetric change of the atmosphere displaced. Linear theory of sound thus predicts that pressure amplitude of infrasonic waves associated to volcanic explosions should be generated by the first time-derivative of the gas mass flux during the burst. In some cases a correlation between the first time-derivative and the SO2 mass flux has been found. However no clear correlation has yet been established between infrasonic amplitude and total ejected gas mass; therefore, the origin of infrasound in volcanic systems remains matter of debate. In the framework of the FP7-ERC BRIDGE Project, we tested different possible hypotheses on the acoustic source model, by correlating infrasound with the total gas mass retrieved from high-resolution UV spectroscopy techniques (UV camera). Experiments were conducted at Stromboli volcano (Italy), where we also employed a thermal camera to measure the total fragments/gas mass. Both techniques allowed independent estimation of total mass flux of gas and fragments within the volcanic plume. During the experiments, explosions detected by the UV camera emitted between 2 and 55 kg SO2, corresponding to SO2 peak fluxes of 0.1-0.8 kg/s. SO2 mass was converted into a total (maximum) erupted gas of 1310 kg, which is generating a peak pressure of ~8 Pa recorded at ~450 m from the source vent. Mass fluxes derived by infrasound using different methods show weak correlation with the SO2 mass measured by UV camera, and the total volume measured by thermal imagery. This correlation increases when acoustic energy is considered, supporting thus the idea that total mass is not the only parameter controlling infrasound amplitude and waveform. However, more experiments need to be done in order to better understand how infrasound is related to mass of the erupted gas and/or fragments. These include a synchronized acquisition of infrasound and gas flux using high frame rate UV and thermal imaging, allowing us to better investigate the first phase of volcanic explosions.
Classification of smoke tainted wines using mid-infrared spectroscopy and chemometrics.
Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel
2012-01-11
In this study, the suitability of mid-infrared (MIR) spectroscopy, combined with principal component analysis (PCA) and linear discriminant analysis (LDA), was evaluated as a rapid analytical technique to identify smoke tainted wines. Control (i.e., unsmoked) and smoke-affected wines (260 in total) from experimental and commercial sources were analyzed by MIR spectroscopy and chemometrics. The concentrations of guaiacol and 4-methylguaiacol were also determined using gas chromatography-mass spectrometry (GC-MS), as markers of smoke taint. LDA models correctly classified 61% of control wines and 70% of smoke-affected wines. Classification rates were found to be influenced by the extent of smoke taint (based on GC-MS and informal sensory assessment), as well as qualitative differences in wine composition due to grape variety and oak maturation. Overall, the potential application of MIR spectroscopy combined with chemometrics as a rapid analytical technique for screening smoke-affected wines was demonstrated.
GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.
2011-03-15
We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamicalmore » masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.« less
2015-06-01
OF A CONTINUOUS WAVE LASER FOR RESONANCE IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS by Sunny G. Lau June 2015 Thesis...IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS 5. FUNDING NUMBERS 6. AUTHOR(S) Sunny G. Lau 7. PERFORMING ORGANIZATION NAME(S) AND...200 words) The application of resonance ionization mass spectroscopy (RIMS) to nuclear forensics involves the use of lasers to selectively ionize
Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
A high flux source of swift oxygen atoms
NASA Technical Reports Server (NTRS)
Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.
1987-01-01
A source of swift oxygen atoms is described which has several unique features. A high current ion beam is produced by a microwave discharge, accelerated to 10 keV and the mass selected by a modified Du Pont 21-110 mass spectrometer. The O(+) beam exciting the mass spectrometer is focused into a rectangular shape with an energy spread of less than 1 eV. The next section of the machine decelerates the ion beam into a counterpropagating electron beam in order to minimize space charge effects. After deceleration, the ion beam intersects at 90 deg, a neutral oxygen atom beam, which via resonant charge exchange produces a mixture of O(+) and O. Any remaining O(+) are swept out of the beam by an electric field and differentially pumped away while the desired O beam, collimated by slits, impinges on the target. In situ monitoring of the target surface is done by X-ray photoelectron or Auger spectroscopy. Faraday cups provide flux measurements in the ion sections while the neutral flux is determined by a special torsion balance or by a quadrupole mass spectrometer specially adapted for swift atoms. While the vacuum from the source through the mass spectrometer is maintained by diffusion pumps, the rest of the machine is UHV.
NASA Astrophysics Data System (ADS)
Witjaksono, Gunawan; Saputra, Irwan; Latief, Marsad; Jaswir, Irwandi; Akmeliawati, Rini; Abdelkreem Saeed Rabih, Almur
2017-11-01
Consumption of meat from halal (lawful) sources is essential for Muslims. The identification of non-halal meat is one of the main issues that face consumers in meat markets, especially in non-Islamic countries. Pig is one of the non-halal sources of meat, and hence pig meat and its derivatives are forbidden for Muslims to consume. Although several studies have been conducted to identify the biomarkers for nonhalal meats like pig meat, these studies are still in their infancy stages, and as a result there is no universal biomarker which could be used for clear cut identification. The purpose of this paper is to use Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques to study fat of pig, cow, lamb and chicken to find possible biomarkers for pig fat (lard) identification. FTIR results showed that lard and chicken fat have unique peaks at wavenumbers 1159.6 cm-1, 1743.4 cm-1, 2853.1 cm-1 and 2922.5 cm-1 compared to lamb and beef fats which did not show peaks at these wavenumbers. On the other hand, GC/MS-TOF results showed that the concentration of 1,2,3-trimethyl-Benzene, Indane, and Undecane in lard are 250, 14.5 and 1.28 times higher than their concentrations in chicken fat, respectively, and 91.4, 2.3 and 1.24 times higher than their concentrations in cow fat, respectively. These initial results clearly indicate that there is a possibility to find biomarkers for non-halal identification.
NASA Astrophysics Data System (ADS)
Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko
2009-06-01
We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.
Plasma Radiation Source Development Program
2006-03-01
shell mass distributions perform belter than thin shells. The dual plenum, double shell load has unique diagnostic features that enhance our...as implosion time increases. 13. SUBJECT TERMS Zpinch x-ray diagnostics Rayleigh-Taylor instability pulsed-power x-ray spectroscopy supersonic...feature permits some very useful diagnostics that shed light on critical details of the implosion process. See Section 3 for details. We have
NASA Astrophysics Data System (ADS)
Cunge, G.; Bodart, P.; Brihoum, M.; Boulard, F.; Chevolleau, T.; Sadeghi, N.
2012-04-01
This paper reviews recent progress in the development of time-resolved diagnostics to probe high-density pulsed plasma sources. We focus on time-resolved measurements of radicals' densities in the afterglow of pulsed discharges to provide useful information on production and loss mechanisms of free radicals. We show that broad-band absorption spectroscopy in the ultraviolet and vacuum ultraviolet spectral domain and threshold ionization modulated beam mass spectrometry are powerful techniques for the determination of the time variation of the radicals' densities in pulsed plasmas. The combination of these complementary techniques allows detection of most of the reactive species present in industrial etching plasmas, giving insights into the physico-chemistry reactions involving these species. As an example, we discuss briefly the radicals' kinetics in the afterglow of a SiCl4/Cl2/Ar discharge.
Recent trends in the impurity profile of pharmaceuticals
Pilaniya, Kavita; Chandrawanshi, Harish K.; Pilaniya, Urmila; Manchandani, Pooja; Jain, Pratishtha; Singh, Nitin
2010-01-01
Various regulatory authorities such as the International Conference on Harmonization (ICH), the United States Food and Drug administration (FDA), and the Canadian Drug and Health Agency (CDHA) are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs). The various sources of impurity in pharmaceutical products are — reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas–liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid–liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR) spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC)-Mass Spectroscopy (MS), LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research. PMID:22247862
Photodissociation dynamics and spectroscopy of free radical combustion intermediates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, David Lewis
1996-12-01
The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(E T), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculationsmore » are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.« less
Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verst, C.
2015-10-12
The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a functionmore » of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.« less
NASA Astrophysics Data System (ADS)
Zepf, Stephen
2014-10-01
We propose to obtain COS ultraviolet spectroscopy of the black-hole X-ray source in the NGC 4472 globular cluster RZ2109. This object was the first unambiguous black hole X-ray source in a globular cluster. It is clearly identified as a black hole through its high X-ray luminosity and short-term variability. The optical spectrum of RZ2109 shows strong and extraordinarily broad [OIII]4959, 5007 emission, and our recent STIS spectrum demonstrates that this comes from an outflow extended across most of the globular cluster. The optical spectrum also remarkably shows no emission lines other than [OIII] to sensitive limits, indicating that the material is very hydrogen-poor. One way to account for these observations is if RZ2109 hosts a CO white dwarf accreting onto a stellar mass black hole. In this case, CIV 1549 emission is expected and no nitrogren lines will be seen. However, if nitrogen lines such as NIV 1486 and NV 1239, 1243 are observed, then a different source for the accreting material such as a nova shell or a horizontal branch star would be required, and a re-evaluation of all aspects of our understanding of the dynamics and accretion in RZ2109 would be needed. Determining which of these is the case is a major step for understanding how accreting black holes form and grow in dense stellar systems, whether they make intermediate mass black holes, and what accretion and feedback processes lead to strong outflows rich in elements such as oxygen.
NASA Astrophysics Data System (ADS)
Wang, X.; Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Jones, T. A.; Ryan, R. E., Jr.; Amorín, R.; Castellano, M.; Fontana, A.; Merlin, E.; Trenti, M.
2015-09-01
We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometric redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.; Schmidt, K. B.; Jones, T. A.
2015-09-20
We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometricmore » redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.« less
Meson and baryon spectrum for QCD with two light dynamical quarks
NASA Astrophysics Data System (ADS)
Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas
2010-08-01
We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 163×32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4), and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results for ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular, at small pion masses. We discuss the possible appearance of scattering states, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action.
IRMPD Spectroscopy Sheds New (Infrared) Light on the Sulfate Pattern of Carbohydrates.
Schindler, B; Barnes, L; Gray, C J; Chambert, S; Flitsch, S L; Oomens, J; Daniel, R; Allouche, A R; Compagnon, I
2017-03-16
IR spectroscopy of gas-phase ions is proposed to resolve positional isomers of sulfated carbohydrates. Mass spectrometric fingerprints and gas-phase vibrational spectra in the near and mid-IR regions were obtained for sulfated monosaccharides, yielding unambiguous signatures of sulfated isomers. We report the first systematic exploration of the biologically relevant but notoriously challenging deprotonated state in the near IR region. Remarkably, anions displayed very atypical vibrational profiles, which challenge the well-established DFT (Density Functionnal Theory) modeling. The proposed approach was used to elucidate the sulfate patterns in glycosaminoglycans, a ubiquitous class of mammalian carbohydrates, which is regarded as a major challenge in carbohydrate structural analysis. Isomeric glycosaminoglycan disaccharides from heparin and chondroitin sources were resolved, highlighting the potential of infrared multiple photon dissociation spectroscopy as a novel structural tool for carbohydrates.
Array-based photoacoustic spectroscopy
Autrey, S. Thomas; Posakony, Gerald J.; Chen, Yu
2005-03-22
Methods and apparatus for simultaneous or sequential, rapid analysis of multiple samples by photoacoustic spectroscopy are disclosed. A photoacoustic spectroscopy sample array including a body having at least three recesses or affinity masses connected thereto is used in conjunction with a photoacoustic spectroscopy system. At least one acoustic detector is positioned near the recesses or affinity masses for detection of acoustic waves emitted from species of interest within the recesses or affinity masses.
Dieckmann, Ralf; Hammerl, Jens Andre; Hahmann, Hartmut; Wicke, Amal; Kleta, Sylvia; Dabrowski, Piotr Wojciech; Nitsche, Andreas; Stämmler, Maren; Al Dahouk, Sascha; Lasch, Peter
2016-06-23
Microbiological monitoring of consumer products and the efficiency of early warning systems and outbreak investigations depend on the rapid identification and strain characterisation of pathogens posing risks to the health and safety of consumers. This study evaluates the potential of three rapid analytical techniques for identification and subtyping of bacterial isolates obtained from a liquid hand soap product, which has been recalled and reported through the EU RAPEX system due to its severe bacterial contamination. Ten isolates recovered from two bottles of the product were identified as Klebsiella oxytoca and subtyped using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS), near-infrared Fourier transform (NIR FT) Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Comparison of the classification results obtained by these phenotype-based techniques with outcomes of the DNA-based methods pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis of whole-genome sequencing (WGS) data revealed a high level of concordance. In conclusion, a set of analytical techniques might be useful for rapid, reliable and cost-effective microbial typing to ensure safe consumer products and allow source tracking.
IGR J19294+1816: a new Be-X-ray binary revealed through infrared spectroscopy
NASA Astrophysics Data System (ADS)
Rodes-Roca, J. J.; Bernabeu, G.; Magazzù, A.; Torrejón, J. M.; Solano, E.
2018-05-01
The aim of this work is to characterize the counterpart to the INTErnational Gamma-Ray Astrophysics Laboratory high-mass X-ray binary candidate IGR J19294+1816 so as to establish its true nature. We obtained H-band spectra of the selected counterpart acquired with the Near Infrared Camera and Spectrograph instrument mounted on the Telescopio Nazionale Galileo 3.5-m telescope which represents the first infrared spectrum ever taken of this source. We complement the spectral analysis with infrared photometry from UKIDSS, 2MASS, WISE, and NEOWISE data bases. We classify the mass donor as a Be star. Subsequently, we compute its distance by properly taking into account the contamination produced by the circumstellar envelope. The findings indicate that IGR J19294+1816 is a transient source with a B1Ve donor at a distance of d = 11 ± 1 kpc, and luminosities of the order of 1036-37 erg s-1, displaying the typical behaviour of a Be-X-ray binary.
Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; ...
2016-02-18
This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.
Light Source Effects on Aerosol Photoacoustic Spectroscopy Measurements
Radney, James G.; Zangmeister, Christopher D.
2016-01-01
Photoacoustic spectroscopy measurements of flame-generated soot aerosol coated with small amounts of water yielded absorption enhancements that were dependent on the laser used: quasi-continuous wave (Q-CW, ≈ 650 ps pulse duration and 78 MHz repetition rate) versus continuous wave (CW). Water coating thickness was controlled by exposing the aerosol to a set relative humidity (RH). At ≈ 85 % RH, the mass of the soot particles increased by an amount comparable to a monolayer of water being deposited and enhanced the measured absorption by 36 % and 15 % for the Q-CW and CW lasers, respectively. Extinction measurements were also performed using a cavity ring-down spectrometer (extinction equals the sum of absorption and scattering) with a CW laser and negligible enhancement was observed at all RH. These findings demonstrate that source choice can impact measurements of aerosols with volatile coatings and that the absorption enhancements at high RH previously measured by Radney and Zangmeister (2015) [1] are the result of laser source used (Q-CW) and not from an increase in the particle absorption cross section. PMID:28066027
Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei
2016-01-01
The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation. PMID:27658444
Chandra, NuSTAR and NICER Observations of MAXI J1535-571
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Cackett, Ed; Fabian, Andy; Gendreau, Keith C.; Miller, Jon M.; Pasham, Dheeraj; Remillard, Ron; Steiner, Jack; Uttley, Phil
2018-01-01
In September 2017, MAXI detected an outburst of a previously-unknown transient, MAXI J1535-571. Subsequent radio and X-ray monitoring indicated that the source is a strong black hole candidate. We began a series of monitoring observations with Chandra HETGS, NuSTAR, and NICER to track the evolution of the outburst. Together, these three observatories represent an incredible opportunity to study the geometry of the accretion flow (via continuum spectroscopy), its variation with accretion state (via spectral variability), and any associated outflows or mass ejections (via line spectroscopy). We will present our analysis of this bright outburst and discuss the physics of accretion and ejection in this new black hole candidate.
Highly charged ion secondary ion mass spectroscopy
Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.
2001-01-01
A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.
Olive Tree Branches Burning: A major pollution source in the Mediterranean
NASA Astrophysics Data System (ADS)
Kostenidou, Evangelia; Kaltsonoudis, Christos; Tsiflikiotou, Maria; Louvaris, Evangelos; Russell, Lynn; Pandis, Spyros
2013-04-01
Olive tree branches burning is a common agricultural waste management practice after the annual pruning of olive trees from November to February. Almost 1 billion (90%) of the olive trees in our planet are located around the Mediterranean, so the corresponding emissions of olive tree branches burning can be a significant source of fine aerosols during the cold months. Organic aerosol produced during the burning of olive tree branches (otBB-OA) was characterized with both direct source-sampling (using a mobile smog chamber) and ambient measurements during the burning season in the area of Patras, Greece. The aerosol emitted consists of organics, black carbon (BC), potassium, chloride, nitrate and sulfate. In addition to NOx, O3, CO and CO2, Volatile Organic Compounds (VOCs) such as methanol, acetonitrile, benzene and toluene were also produced. The Aerosol Mass Spectrometry (AMS) mass spectrum of otBB-OA is characterized by the m-z's27, 29, 39, 41, 43, 44, 55, 57, 67, 69 and 91 and changes as the emissions react with OH and O3. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that otBB-OA was composed of 48% alkane groups, 27% organic hydroxyl groups, 11% carboxylic acid groups, 11% primary amine groups and 4% carbonyl groups. The oxygen to carbon (O:C) ratio is 0.29±0.04. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra. The m-z60, used as levoglucosan tracer, is lower than in most biomass burning sources. This is confirmed by Gas Chromatography Mass Spectroscopy (GC-MS) analysis on filters where the levoglucosan to OC mass ratio was between 0.034 and 0.043, close to the lower limit of the reported values for most fuel types. This may lead to an underestimation of the otBB-OA contribution in Southern Europe if levoglucosan is being used as a wood burning tracer. During the olive tree branches burning season, 20 days of ambient measurements were performed. Applying positive matrix factorization (PMF) to the ambient organic data 3 factors could be identified: OOA (oxygenated organic aerosol), HOA (hydrocarbon-like organic aerosol) and otBB-OA. The chamber organic AMS spectrum resembles the ambient mass spectrum during olive tree branches burning events. We estimated an otBB-OA emission factor of 3.45±0.2 g kg-1. Assuming that half of the olive trees branches are burned 2,300 tons of otBB-OA are emitted in Greece each winter. This is one of the most important fine aerosol emission sources during the winter months in the Mediterranean countries in which this activity is prevalent.
Laser absorption spectroscopy applied to monitoring of short-lived climate pollutants (SLCPs)
NASA Astrophysics Data System (ADS)
Wang, Gaoxuan; Shen, Fengjiao; Yi, Hongming; Hubert, Patrice; Deguine, Alexandre; Petitprez, Denis; Maamary, Rabih; Augustin, Patrick; Fourmentin, Marc; Fertein, Eric; Sigrist, Markus W.; Ba, Tong-Nguyen; Chen, Weidong
2018-06-01
Enhanced mitigation of short-lived climate pollutants (SLCPs) has been recently paid more attention in order to provide more sizeable short-term reductions of global warming effects over the next several decades. We overview in this article our recent progress in the development of spectroscopic instruments for optical monitoring of major SLCPs based on laser absorption spectroscopy. Methane (CH4) and black carbon (BC) are the most important SLCPs contributing to the human enhancement of the global greenhouse effect after CO2. We present optical sensing of these two climate-change related atmospheric species to illustrate how "classical" spectroscopy can help to address today's challenging issues: (1) Photoacoustic measurements of BC optical absorption coefficient in order to determine its radiative-forcing related optical parameters (such as mass absorption coefficient, absorption Ångström coefficient) with higher precision (∼7.4% compared to 12-30% for filter-based methods routinely used nowadays). The 1σ (SNR = 1) minimum measurable volumetric mass density of 21 ng/m3 (in 60 s) for black carbon. (2) Direct absorption spectroscopy-based monitoring of methane (CH4) in field campaign to identify pollution source in conjunction with air mass back-trajectory modeling. Using a White-type multipass cell (an effective path-length of 175 m), a 1σ detection limit of 33.3 ppb in 218 s was achieved with a relative measurement precision of 1.1% and an overall measurement uncertainty of about 5.1%. Performance of the custom, lab-based instruments (in terms of detection limits, measurement precision, temporal response, etc.), spectroscopic measurement aspects, experimental details, spectral data processing, analysis and modeling of the observed environmental episode will be presented and discussed.
Inner-shell excitation and ionic fragmentation of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchcock, A.P.; Tyliszczak, T.; Cavell, R.G.
1997-04-01
Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can revealmore » cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.« less
Plasma surface cleaning using microwave plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C.C.; Haselton, H.H.; Nelson, W.D.
1993-11-01
In a microwave electron cyclotron resonance (ECR) plasma source, reactive plasmas of oxygen and its mixture with argon are used for plasma-cleaning experiments. Aluminum test samples (0.95 {times} 1.9 cm) were coated with thin films ({le} 20 {mu}m in thickness) of Shell Vitrea oil and cleaned by using such reactive plasmas. The plasma cleaning was done in various discharge conditions with fixed microwave power, rf power, biased potential, gas pressures (0.5 and 5 mtorr), and operating time up to 35 min. The status of plasma cleaning has been monitored by using mass spectroscopy. Mass loss of the samples after plasmamore » cleaning was measured to estimate cleaning rates. Measured clean rates of low pressure (0.5 mtorr) argon/oxygen plasmas were as high as 2.7 {mu}/min. X-ray photoelectron spectroscopy was used to determine cleanliness of the sample surfaces and confirm the effectiveness of plasma cleaning in achieving atomic levels of surface cleanliness. In this paper, significant results are reported and discussed.« less
Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue
2012-01-01
Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter < 0.1 microm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.
Femtogram-scale photothermal spectroscopy of explosive molecules on nanostrings.
Biswas, T S; Miriyala, N; Doolin, C; Liu, X; Thundat, T; Davis, J P
2014-11-18
We demonstrate detection of femtogram-scale quantities of the explosive molecule 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) via combined nanomechanical photothermal spectroscopy and mass desorption. Photothermal spectroscopy provides a spectroscopic fingerprint of the molecule, which is unavailable using mass adsorption/desorption alone. Our measurement, based on thermomechanical measurement of silicon nitride nanostrings, represents the highest mass resolution ever demonstrated via nanomechanical photothermal spectroscopy. This detection scheme is quick, label-free, and is compatible with parallelized molecular analysis of multicomponent targets.
Glow discharge sources for atomic and molecular analyses
NASA Astrophysics Data System (ADS)
Storey, Andrew Patrick
Two types of glow discharges were used and characterized for chemical analysis. The flowing atmospheric pressure afterglow (FAPA) source, based on a helium glow discharge (GD), was utilized to analyze samples with molecular mass spectrometry. A second GD, operated at reduced pressure in argon, was employed to map the elemental composition of a solid surface with novel optical detection systems, enabling new applications and perspectives for GD emission spectrometry. Like many plasma-based ambient desorption-ionization sources being used around the world, the FAPA requires a supply of helium to operate effectively. With increased pressures on global helium supply and pricing, the use of an interrupted stream of helium for analysis was explored for vapor and solid samples. In addition to the mass spectra generated by the FAPA source, schlieren imaging and infrared thermography were employed to map the behavior of the source and its surroundings under the altered conditions. Additionally, a new annular microplasma variation of the FAPA source was developed and characterized. A spectroscopic imaging system that utilized an adjustable-tilt interference filter was used to map the elemental composition of a sample surface by glow discharge emission spectroscopy. This apparatus was compared to other GD imaging techniques for mapping elemental surface composition. The wide bandpass filter resulted in significant spectral interferences that could be partially overcome with chemometric data processing. Because time-resolved GD emission spectroscopy can provide fine depth-profiling measurements, a natural extension of GD imaging would be its application to three-dimensional characterization of samples. However, the simultaneous cathodic sputtering that occur across the sample results in a sampling process that is not completely predictable. These issues are frequently encountered when laterally varied samples are explored with glow discharge imaging techniques. These insights are described with respect to their consequences for both imaging and conventional GD spectroscopic techniques.
McIntyre, Catherine A.; Arthur, Christopher J.
2017-01-01
Rationale The phosphorus storage compound in grains, phytic acid, or myo‐inositol hexakisphosphate (IP6), is important for nutrition and human health, and is reportedly the most abundant organic phosphorus compound in soils. Methods for its determination have traditionally relied on complexation with iron and precipitation, acid digestion and measurement of phosphate concentration, or 31P NMR spectroscopy. Direct determination of phytic acid (and its homologues) using mass spectrometry has, as yet, found limited application to environmental or other complex matrices. The behaviour of phytic acid in electrospray ionisation high‐resolution mass spectrometry (ESI‐HRMS) and its fragmentation, both in‐source and via collision‐induced dissociation, have not been studied so far. Methods The negative ion mass spectrometry and tandem mass spectrometry (MS/MS) of IP6, and the lower inositol pentakisphosphate (IP5), using an ESI‐Orbitrap mass spectrometer is described. The purity of the compounds was investigated using anion‐exchange chromatography. Results IP6 is highly anionic, forming multiply charged ions and sodium adduct ions, which readily undergo dissociation in the ESI source. MS/MS analysis of the phytic acid [M−2H]2− ion and fragment ions and comparison with the full MS of the IP5 reference standard, and the MS/MS spectrum of the pentakisphosphate [M−2H]2− ion, confirm the fragmentation pattern of inositol phosphates in ESI. Further evidence for dissociation in the ion source is shown by the effect of increasing the source voltage on the mass spectrum of phytic acid. Conclusions The ESI‐HRMS of inositol phosphates is unusual and highly characteristic. The study of the full mass spectrum of IP6 in ESI‐HRMS mode indicates the detection of the compound in environmental matrices using this technique is preferable to the use of multiple reaction monitoring (MRM). PMID:28696018
Laser Induced Breakdown Spectroscopy (LIBS)
2010-03-31
mass spectrometry and laser induced breakdown spectroscopy, Spe T Trejos, A Flores and JR. Almirall, Micro-spectrochemical analysis of document paper...and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy, Spectrochimica Acta Part B...abstracts): 1. *Schenk, E.R. “Elemental analysis of unprocessed cotton by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser
Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.;
2014-01-01
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally released from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we report on various chlorinated hydrocarbons (chloromethanes, chlorobenzene and dichloroalkanes) detected at elevated levels above instrument background at the Cumberland (CB) drill site, and discuss their possible sources.
NASA Astrophysics Data System (ADS)
Streicher, Michael; Brown, Steven; Zhu, Yuefeng; Goodman, David; He, Zhong
2016-10-01
To accurately characterize shielded special nuclear materials (SNM) using passive gamma-ray spectroscopy measurement techniques, the effective atomic number and the thickness of shielding materials must be measured. Intervening materials between the source and detector may affect the estimated source isotopics (uranium enrichment and plutonium grade) for techniques which rely on raw count rates or photopeak ratios of gamma-ray lines separated in energy. Furthermore, knowledge of the surrounding materials can provide insight regarding the configuration of a device containing SNM. The described method was developed using spectra recorded using high energy resolution CdZnTe detectors, but can be expanded to any gamma-ray spectrometers with energy resolution of better than 1% FWHM at 662 keV. The effective atomic number, Z, and mass thickness of the intervening shielding material are identified by comparing the relative attenuation of different gamma-ray lines and estimating the proportion of Compton scattering interactions to photoelectric absorptions within the shield. While characteristic Kα x-rays can be used to identify shielding materials made of high Z elements, this method can be applied to all shielding materials. This algorithm has adequately estimated the effective atomic number for shields made of iron, aluminum, and polyethylene surrounding uranium samples using experimental data. The mass thicknesses of shielding materials have been estimated with a standard error of less than 1.3 g/cm2 for iron shields up to 2.5 cm thick. The effective atomic number was accurately estimated to 26 ± 5 for all iron thicknesses.
A surprising dynamical mass for V773 Tau B
Boden, Andrew F.; Torres, Guillermo; Duchene, Gaspard; ...
2012-02-10
Here, we report on new high-resolution imaging and spectroscopy on the multiple T Tauri star system V773 Tau over the 2003-2009 period. With these data we derive relative astrometry, photometry between the A and B components, and radial velocity (RV) of the A-subsystem components. Combining these new data with previously published astrometry and RVs, we update the relative A-B orbit model. This updated orbit model, the known system distance, and A-subsystem parameters yield a dynamical mass for the B component for the first time. Remarkably, the derived B dynamical mass is in the range 1.7-3.0 M⊙. This is much highermore » than previous estimates and suggests that like A, B is also a multiple stellar system. Among these data, spatially resolved spectroscopy provides new insight into the nature of the B component. Similar to A, these near-IR spectra indicate that the dominant source in B is of mid-K spectral type. If B is in fact a multiple star system as suggested by the dynamical mass estimate, the simplest assumption is that B is composed of similar ~1.2 M ⊙ pre-main-sequence stars in a close (<1 AU) binary system. This inference is supported by line-shape changes in near-IR spectroscopy of B, tentatively interpreted as changing RV among components in V773 Tau B. Relative photometry indicates that B is highly variable in the near-IR. The most likely explanation for this variability is circum-B material resulting in variable line-of-sight extinction. The distribution of this material must be significantly affected by both the putative B multiplicity and the A-B orbit.« less
Gu, Yu; Wang, Yanlin; Ma, Xiaoping; Wang, Chengdong; Yue, Guizhou; Zhang, Yuetian; Zhang, Yunyan; Li, Shanshan; Ling, Shanshan; Liu, Xiaomin; Wen, Xintian; Cao, Sanjie; Huang, Xiaobo; Deng, Junliang; Zuo, Zhicai; Yu, Shumin; Shen, Liuhong; Wu, Rui
2015-01-01
While taxol yields of fungi from non-animal sources are still low, whether Pestalotiopsis hainanensis isolated from the scurf of a dermatitic giant panda, Ailuropoda melanoleuca, provides a greater taxol yield remains unknown. The objective of the study was to determine the corresponding taxol yield. The structure of the taxol produced by the fungus was evaluated by thin layer chromatography (TLC), ultraviolet (UV) spectroscopy, high-performance liquid chromatography (HPLC), (1)H and (13)C nuclear magnetic resonance spectroscopy ((1)H-NMR and (13)C-NMR), and time-of-flight mass spectrometry (TOF-MS), with standard taxol as a control. The results demonstrated that the P. hainanensis fungus produced taxol, which had the same structure as the standard taxol and yield of 1,466.87 μg/L. This fungal taxol yield from the dermatitic giant panda was significantly greater than those of fungus from non-animal sources. The taxol-producing fungus may be a potential candidate for the production of taxol on an industrial scale.
Discovery of a Strong Lensing Galaxy Embedded in a Cluster at z = 1.62
NASA Astrophysics Data System (ADS)
Wong, Kenneth C.; Tran, Kim-Vy H.; Suyu, Sherry H.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Brodwin, Mark; Gonzalez, Anthony H.; Halkola, Aleksi; Kacprzak, Glenn G.; Koekemoer, Anton M.; Papovich, Casey J.; Rudnick, Gregory H.
2014-07-01
We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182-05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z S = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ _E=0.38+0.02-0.01 arcsec (3.2-0.1+0.2 kpc) and the total enclosed mass is M _tot (< θ _E)=1.8+0.2-0.1× 1011 M⊙ . We estimate that the cluster environment contributes ~10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θE is f_DMChab = 0.3-0.3+0.1, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f_DMSalp = -0.3-0.5+0.2). The total magnification of the source is μ _tot=2.1-0.3+0.4. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12590.
Ito, Shihomi; Chikasou, Masato; Inohana, Shuichi; Fujita, Kazuhiro
2016-01-01
Discriminating vegetable oils and animal and milk fats by infrared absorption spectroscopy is difficult due to similarities in their spectral patterns. Therefore, a rapid and simple method for analyzing vegetable oils, animal fats, and milk fats using TOF/MS with an APCI direct probe ion source was developed. This method enabled discrimination of these oils and fats based on mass spectra and detailed analyses of the ions derived from sterols, even in samples consisting of only a few milligrams. Analyses of the mass spectra of processed foods containing oils and milk fats, such as butter, cheese, and chocolate, enabled confirmation of the raw material origin based on specific ions derived from the oils and fats used to produce the final product.
VizieR Online Data Catalog: The ELM survey. VI. 11 new ELM WD binaries (Gianninas+, 2015)
NASA Astrophysics Data System (ADS)
Gianninas, A.; Kilic, M.; Brown, W. R.; Canton, P.; Kenyon, S. J.
2016-02-01
We used the 6.5m MMT telescope equipped with the Blue Channel spectrograph, the 200 inch Hale telescope equipped with the Double spectrograph, the Kitt Peak National Observatory 4m telescope equipped with the R-C spectrograph, and more recently with Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS), to obtain spectroscopy of our 11 targets in several observing runs. We have also been obtaining radial-velocity measurements for candidates from other sources including the Large Sky Area Multi-Object Spectroscopy Telescope (LAMOST). Those 11 new Extremely low-mass white dwarf (ELM WD) binaries bring the total of ELM WDs identified by the ELM Survey up to 73. (4 data files).
Roberts, F Sloan; Anderson, Scott L
2013-12-01
The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.
Investigating the Evolution of the Dual AGN System ESO 509-IG066
NASA Astrophysics Data System (ADS)
Kosec, P.; Brightman, M.; Stern, D.; Müller-Sánchez, F.; Koss, M.; Oh, K.; Assef, R. J.; Gandhi, P.; Harrison, F. A.; Jun, H.; Masini, A.; Ricci, C.; Walton, D. J.; Treister, E.; Comerford, J.; Privon, G.
2017-12-01
We analyze the evolution of the dual active galactic nucleus (AGN) in ESO 509-IG066, a galaxy pair located at z = 0.034 whose nuclei are separated by 11 kpc. Previous observations with XMM-Newton on this dual AGN found evidence for two moderately obscured ({N}{{H}} ˜ 1022 cm-2) X-ray luminous ({L}{{X}} ˜ 1043 erg s-1) nuclear sources. We present an analysis of subsequent Chandra, NuSTAR, and Swift/XRT observations that show one source has dropped in flux by a factor of 10 between 2004 and 2011, which could be explained by either an increase in the absorbing column or an intrinsic fading of the central engine, possibly due to a decrease in mass accretion. Both of these scenarios are predicted by galaxy merger simulations. The source that has dropped in flux is not detected by NuSTAR, which argues against absorption, unless it is extreme. However, new Keck/LRIS optical spectroscopy reveals a previously unreported broad Hα line that is highly unlikely to be visible under the extreme absorption scenario. We therefore conclude that the black hole in this nucleus has undergone a dramatic drop in its accretion rate. From AO-assisted near-infrared integral-field spectroscopy of the other nucleus, we find evidence that the galaxy merger is having a direct effect on the kinematics of the gas close to the nucleus of the galaxy, providing a direct observational link between the galaxy merger and the mass accretion rate onto the black hole.
New developments of the in-source spectroscopy method at RILIS/ISOLDE
NASA Astrophysics Data System (ADS)
Marsh, B. A.; Andel, B.; Andreyev, A. N.; Antalic, S.; Atanasov, D.; Barzakh, A. E.; Bastin, B.; Borgmann, Ch.; Capponi, L.; Cocolios, T. E.; Day Goodacre, T.; Dehairs, M.; Derkx, X.; De Witte, H.; Fedorov, D. V.; Fedosseev, V. N.; Focker, G. J.; Fink, D. A.; Flanagan, K. T.; Franchoo, S.; Ghys, L.; Huyse, M.; Imai, N.; Kalaninova, Z.; Köster, U.; Kreim, S.; Kesteloot, N.; Kudryavtsev, Yu.; Lane, J.; Lecesne, N.; Liberati, V.; Lunney, D.; Lynch, K. M.; Manea, V.; Molkanov, P. L.; Nicol, T.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Schweikhard, L.; Seliverstov, M. D.; Sels, S.; Sjödin, A. M.; Truesdale, V.; Van Beveren, C.; Van Duppen, P.; Wendt, K.; Wienholtz, F.; Wolf, R. N.; Zemlyanoy, S. G.
2013-12-01
At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi, Tl and Po) has been extended to include the gold and astatine isotope chains. Several developments were specifically required for the feasibility of the most recent measurements: new ionization schemes (Po, At); a remote controlled narrow line-width mode of operation for the RILIS Ti:sapphire laser (At, Au, Po); isobar free ionization using the Laser Ion Source Trap, LIST (Po); isobar selective particle identification using the multi-reflection time-of-flight mass separator (MR-ToF MS) of ISOLTRAP (Au, At). These are summarized as part of an overview of the current status of the in-source resonance ionization spectroscopy setup at ISOLDE.
NASA Astrophysics Data System (ADS)
Jose, Jessy; Pandey, A. K.; Ogura, K.; Samal, M. R.; Ojha, D. K.; Bhatt, B. C.; Chauhan, N.; Eswaraiah, C.; Mito, H.; Kobayashi, N.; Yadav, R. K.
2012-08-01
We present the analyses of the stellar contents associated with the extended H II region Sh2-252 using deep optical UBVRI photometry, slit and slitless spectroscopy along with the near-infrared (NIR) data from Two-Micron All-Sky Survey (2MASS) for an area ˜ 1 × 1 deg2. We have studied the sub-regions of Sh2-252, which includes four compact-H II (CH II ) regions, namely A, B, C and E, and two clusters, NGC 2175s and Teutsch 136 (Teu 136). Of the 15 spectroscopically observed bright stars, eight have been identified as massive members of spectral class earlier than B3. From the spectrophotometric analyses, we derived the average distance of the region as 2.4 ± 0.2 kpc, and the reddening E(B - V) of the massive members is found to vary between 0.35 and 2.1 mag. We found that NGC 2175s and Teu 136, located towards the eastern edge of the complex, are the sub-clusters of Sh2-252. The stellar surface density distribution in K band shows clustering associated with the regions A, C, E, NGC 2175s and Teu 136. We have also identified the candidate ionizing sources of the CH II regions. 61 Hα emission sources are identified using slitless spectroscopy. The distribution of the Hα emission sources and candidate young stellar objects (YSOs) with IR excess on the V/(V - I) colour-magnitude diagram (CMD) shows that a majority of them have approximate ages between 0.1 and 5 Myr and masses in the range of 0.3-2.5 M⊙. The optical CMDs of the candidate pre-main-sequence (PMS) sources in the individual regions also show an age spread of 0.1-5 Myr for each of them. We calculated the K-band luminosity functions (KLFs) for the sub-regions A, C, E, NGC 2175s and Teu 136. Within errors, the KLFs for all the sub-regions are found to be similar and comparable to that of young clusters of age <5 Myr. We also estimated the mass function of the PMS sample of the individual regions in the mass range of 0.3-2.5 M⊙. In general, the slopes of the MFs of all the sub-regions are found comparable to the Salpeter value.
Status of the neutrino mass experiment KATRIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornschein, L.; Bornschein, B.; Sturm, M.
The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its kinematic end-point. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay and simple atomic structure. Within an international collaboration the Karlsruhe Tritium Neutrino experiment (KATRIN) is currently being built up at KIT. KATRIN will allow a model-independent measurement of the neutrino mass scale with an expected sensitivity of 0.2 eV/c{sup 2} (90% CL). KATRIN will use a source of ultrapure molecular tritium. This contribution presents the status of the KATRINmore » experiment, thereby focusing on its Calibration and Monitoring System (CMS), which is the last component being subject to research/development. After a brief overview of the KATRIN experiment in Section II the CMS is introduced in Section III. In Section IV the Beta Induced X-Ray Spectroscopy (BIXS) as method of choice to monitor the tritium activity of the KATRIN source is described and first results are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.; Waterland, L.R.
1986-02-01
This report is a compendium of detailed test sampling and analysis data obtained in field tests of a watertube industrial boiler burning a coal/water slurry (CWS). Test data reported include preliminary stack test data, boiler operating data, and complete flue-gas emission results. Flue-gas emission measurements included continuous monitoring for criteria pollutants; onsite gas chromatography (GC) for volatile hydrocarbons (Cl-C6); Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR), liquidmore » column (LC) chromatography separation, and low-resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), and trace-element emissions using spark-source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS); N/sub 2/O emissions by gas chromatography/electron-capture detector (GC/ECD); and biological assay testing of SASS and ash-stream samples.« less
Moderate Resolution Spectroscopy of Substellar Companion Kappa Andromeda B
NASA Astrophysics Data System (ADS)
Wilcomb, Kielan; Konopacky, Quinn; Barman, Travis; Brown, Jessie; Brock, Laci; Macintosh, Bruce; Ruffio, Jean-Baptiste; Marois, Christian
2018-01-01
Recent direct imaging of exoplanets has revealed a population of Jupiter-like objects that orbit at large separations (~10-100 AU) from their host stars. These planets, with masses of ~2-14 MJup and temperatures of ~500-2000 K, remain a problem for the two main planet formation models—core accretion and gravitational instability. OSIRIS observations of directly imaged planets have expanded our understanding of their atmospheres, alluded to their formation, and uncovered individual molecular lines. Here, we present OSIRIS K band spectra of the “super-Jupiter,” Kappa Andromeda b. Kappa Andromeda b has a lower mass limit at the deuterium burning limit, but also has an uncertain age which may indicate the source is a higher mass brown dwarf. The spectra reveal resolved molecular lines from water and CO. We will present atmospheric properties of this object derived from comparison to PHOENIX atmosphere models, and measure a best fit C/O ratio for the source. We will compare our results to atmospheric properties of other brown dwarfs and gas giant planets in an effort to improve our knowledge of intricate atmospheres of young, substellar objects.
NASA Astrophysics Data System (ADS)
Karl, T.; Jobson, T.; William, K.; Williams, E.; Stutz, J.; Goldan, P.; Fall, R.; Fehsenfeld, F.; Lindinger, W.
2002-12-01
We used Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Anthropogenic aromatics, alkenes, methanol, acetaldehyde, formaldehyde, acetone/propanal, a C7-Ketone, HCN and acrylonitrile were the most prominent compounds observed. Propene was the most abundant light-weight hydrocarbon detected by this technique, and was highly correlated with its oxidation products, formaldehyde and acetaldehyde, with typical propene-acetaldehyde ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained dataset helped in identifying different anthropogenic sources (e.g. industrial from urban emissions) and testing current emission inventories. In addition, a comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by `soft' chemical ionization using proton-transfer via H3O+.
Structure of rhenium-containing sodium borosilicate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goel, Ashutosh; McCloy, John S.; Windisch, Charles F.
2013-03-01
A series of sodium borosilicate glasses were synthesized with increasing fractions of KReO4 or Re2O7, to 10000 ppm (1 mass%) target Re in glass, to assess the effects of large concentrations of rhenium on glass structure and to estimate the solubility of technetium, a radioactive component in typical low active waste nuclear waste glasses. Magic angle spinning nuclear magnetic resonance (MAS-NMR), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy were performed to characterize the glasses as a function of Re source additions. In general, silicon was found coordinated in a mixture of Q2 and Q3 structural units, while Al wasmore » 4-coordinated and B was largely 3-coordinate and partially 4-coordinated. The rhenium source did not appear to have significant effects on the glass structure. Thus, at the up to the concentrations that remain in dissolved in glass, ~3000 ppm Re by mass maximum. , the Re appeared to be neither a glass-former nor a strong glass modifier., Rhenium likely exists in isolated ReO4- anions in the interstices of the glass network, as evidenced by the polarized Raman spectrum of the Re glass in the absence of sulfate. Analogous to SO42-¬ in similar glasses, ReO4- is likely a network modifier and forms alkali salt phases on the surface and in the bulk glass above solubility.« less
Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy
2007-01-01
positron source for positron annihilation lifetime spectroscopy Final Report Report Title...Development of an Electron- Positron Source for Position Annihilation Lifetime Spectroscopy DAAD19-03-1-0287 Final Report 2/17/2007... annihilation lifetime spectroscopy REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION ON THIS PAGE UNCLASSIFIED 2. REPORT DATE: 12b. DISTRIBUTION
Collins, Michael; Heagney, Aaron; Cordaro, Frank; Odgers, David; Tarrant, Gregory; Stewart, Samantha
2007-07-01
Five 44 gallon drums labeled as glycidyl methacrylate were seized by the Australian Customs Service and the Australian Federal Police at Port Botany, Sydney, Australia, in December 2004. Each drum contained a white, semisolid substance that was initially suspected to be 3,4-methylenedioxymethylamphetamine (MDMA). Gas chromatography-mass spectroscopy (GC/MS) analysis demonstrated that the material was neither glycidyl methacrylate nor MDMA. Because intelligence sources employed by federal agents indicated that this material was in some way connected to MDMA production, suspicion fell on the various MDMA precursor chemicals. Using a number of techniques including proton nuclear magnetic resonance spectroscopy ((1)H NMR), carbon nuclear magnetic resonance spectroscopy ((13)C NMR), GC/MS, infrared spectroscopy, and total synthesis, the unknown substance was eventually identified as methyl 3-[3',4'(methylenedioxy)phenyl]-2-methyl glycidate. The substance was also subjected to a published hydrolysis and decarboxylation procedure and gave a high yield of the MDMA precursor chemical, 3,4-methylenedioxyphenyl-2-propanone, thereby establishing this material as a "precursor to a precursor."
Synthesis of N-doped potassium tantalate perovskite material for environmental applications
NASA Astrophysics Data System (ADS)
Rao, Martha Purnachander; Nandhini, Vellangattupalayam Ponnusamy; Wu, Jerry J.; Syed, Asad; Ameen, Fuad; Anandan, Sambandam
2018-02-01
Nitrogen containing potassium tantalate perovskite material has been synthesized by the solvothermal method using urea (CH4N2O) as a nitrogen source. The as-prepared sample was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The particle size of nitrogen containing KTaO3 observed from SEM images was found to be 100-150 nm. Doping KTaO3 with nitrogen causes reduction of band gap from 3.5 to 2.54 eV. The incorporation of Nitrogen into the crystal lattice of KTaO3 not only extended the absorption of light from UV (ultraviolet) region to visible region and also enhanced the photocatalytic activity. As prepared nitrogen containing KTaO3 samples exhibit cubic-like morphology and noticed efficient photocatalytic activity towards methylene blue dye degradation under visible light illumination. The intermediates formed during photodegradation were identified by mass spectrometry (GC-MS) and proposed suitable degradation pathway.
The infrared imaging spectrograph (IRIS) for TMT: overview of innovative science programs
NASA Astrophysics Data System (ADS)
Wright, Shelley A.; Larkin, James E.; Moore, Anna M.; Do, Tuan; Simard, Luc; Adamkovics, Maté; Armus, Lee; Barth, Aaron J.; Barton, Elizabeth; Boyce, Hope; Cooke, Jeffrey; Cote, Patrick; Davidge, Timothy; Ellerbroek, Brent; Ghez, Andrea M.; Liu, Michael C.; Lu, Jessica R.; Macintosh, Bruce A.; Mao, Shude; Marois, Christian; Schoeck, Matthias; Suzuki, Ryuji; Tan, Jonathan C.; Treu, Tommaso; Wang, Lianqi; Weiss, Jason
2014-07-01
IRIS (InfraRed Imaging Spectrograph) is a first light near-infrared diffraction limited imager and integral field spectrograph being designed for the future Thirty Meter Telescope (TMT). IRIS is optimized to perform astronomical studies across a significant fraction of cosmic time, from our Solar System to distant newly formed galaxies (Barton et al. [1]). We present a selection of the innovative science cases that are unique to IRIS in the era of upcoming space and ground-based telescopes. We focus on integral field spectroscopy of directly imaged exoplanet atmospheres, probing fundamental physics in the Galactic Center, measuring 104 to 1010 M supermassive black hole masses, resolved spectroscopy of young star-forming galaxies (1 < z < 5) and first light galaxies (6 < z < 12), and resolved spectroscopy of strong gravitational lensed sources to measure dark matter substructure. For each of these science cases we use the IRIS simulator (Wright et al. [2], Do et al. [3]) to explore IRIS capabilities. To highlight the unique IRIS capabilities, we also update the point and resolved source sensitivities for the integral field spectrograph (IFS) in all five broadband filters (Z, Y, J, H, K) for the finest spatial scale of 0.004" per spaxel. We briefly discuss future development plans for the data reduction pipeline and quicklook software for the IRIS instrument suite.
Leonardis, Irene; Chiaberge, Stefano; Fiorani, Tiziana; Spera, Silvia; Battistel, Ezio; Bosetti, Aldo; Cesti, Pietro; Reale, Samantha; De Angelis, Francesco
2013-01-01
Solid wastes of organic origins are potential feedstocks for the production of liquid biofuels, which could be suitable alternatives to fossil fuels for the transport and heating sectors, as well as for industrial use. By hydrothermal liquefaction, the wet biomass is partially transformed into a water-immiscible, oil-like organic matter called bio-oil. In this study, an integrated NMR spectroscopy/mass spectrometry approach has been developed for the characterization of the hydrothermal liquefaction of bio-oil at the molecular level. (1)H and (13)C NMR spectroscopy were used for the identification of functional groups and gauging the aromatic carbon content in the mixture. GC-MS analysis revealed that the volatile fraction was rich in fatty acids, as well as in amides and esters. High-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been applied in a systematic way to fully categorize the bio-oil in terms of different classes of components, according to their molecular formulas. Most importantly, for the first time, by using this technique, and for the liquefaction bio-oil characterization in particular, FT-MS data have been used to develop a methodology for the determination of the aromatic versus aliphatic carbon and nitrogen content. It is well known that, because they resist hydrogenation and represent sources of polluting species, both aromatic molecules and nitrogen-containing species raise concerns for subsequent upgrading of bio-oil into a diesel-like fuel. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8
NASA Astrophysics Data System (ADS)
Ashtari Esfahani, Ali; Asner, David M.; Böser, Sebastian; Cervantes, Raphael; Claessens, Christine; de Viveiros, Luiz; Doe, Peter J.; Doeleman, Shepard; Fernandes, Justin L.; Fertl, Martin; Finn, Erin C.; Formaggio, Joseph A.; Furse, Daniel; Guigue, Mathieu; Heeger, Karsten M.; Jones, A. Mark; Kazkaz, Kareem; Kofron, Jared A.; Lamb, Callum; LaRoque, Benjamin H.; Machado, Eric; McBride, Elizabeth L.; Miller, Michael L.; Monreal, Benjamin; Mohanmurthy, Prajwal; Nikkel, James A.; Oblath, Noah S.; Pettus, Walter C.; Hamish Robertson, R. G.; Rosenberg, Leslie J.; Rybka, Gray; Rysewyk, Devyn; Saldaña, Luis; Slocum, Penny L.; Sternberg, Matthew G.; Tedeschi, Jonathan R.; Thümmler, Thomas; VanDevender, Brent A.; E Vertatschitsch, Laura; Wachtendonk, Megan; Weintroub, Jonathan; Woods, Natasha L.; Young, André; Zayas, Evan M.
2017-05-01
The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with { O }({eV}) resolution. A lower bound of m({ν }e)≳ 9(0.1) {meV} is set by observations of neutrino oscillations, while the KATRIN experiment—the current-generation tritium beta-decay experiment that is based on magnetic adiabatic collimation with an electrostatic (MAC-E) filter—will achieve a sensitivity of m({ν }e)≲ 0.2 {eV}. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to m({ν }e)≲ 40 {meV} using an atomic tritium source.
NASA Astrophysics Data System (ADS)
Daskalova, A.; Kasperski, G.; Rousseau, P.; Domaracka, A.; Lawicki, A.
2014-05-01
TOF-SIMS mass spectroscopy data are presented on ion irradiation of hard dental tissue using a beam of 129Xe20+ (15 kV) ions delivered in the ARIBE facility by an ECR source. The investigation was focused on the mass distribution of the fragment ions. A comparison is made between the mass spectra from hard dental tissue treated by olaflur-(C27H60F2N2O3) and untreated hard dental tissue obtained under irradiation by low-energy highly-charged ions (HCIs). We found significant differences between the mass spectra of enamel after introducing amine fluoride (olaflur) and the mass spectra of pure untreated enamel. Further, we separated out the effects caused by radiation induced in the tooth enamel from those induced in dentin, which has not been performed before. In order to conduct a further detailed analysis, it is necessary to extend the research scope to include the influence of fluorine compounds on enamel and dentin.
Malhi, Sarandeep; Stesco, Nicholas; Alrushaid, Samaa; Lakowski, Ted M; Davies, Neal M; Gu, Xiaochen
2017-03-01
A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) assay was developed and validated to simultaneously quantify anticancer drugs reparixin and paclitaxel in this study. The compounds were extracted from plasma and urine samples by protein precipitation with acetone (supplemented with 0.1% formic acid). Chromatographic separation was achieved using a C18 column, and drug molecules were ionized using dual ion source electrospray and atmospheric pressure chemical ionization (DUIS: ESI-APCI). Reparixin and paclitaxel were quantified using negative and positive multiple reaction monitoring (MRM) mode, respectively. Stable isotope palcitaxel-D5 was used as the internal standard (IS). The assay was validated for specificity, recovery, carryover and sample stability under various storage conditions; it was also successfully applied to measure drug concentrations collected from a pharmacokinetic study in rats. The results confirmed that the assay was accurate and simple in quantifying both reparixin and paclitaxel in plasma and urine with minimal sample pretreatment. Copyright © 2016 Elsevier B.V. All rights reserved.
MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR
NASA Astrophysics Data System (ADS)
Rodríguez, D.; Blaum, K.; Nörtershäuser, W.; Ahammed, M.; Algora, A.; Audi, G.; Äystö, J.; Beck, D.; Bender, M.; Billowes, J.; Block, M.; Böhm, C.; Bollen, G.; Brodeur, M.; Brunner, T.; Bushaw, B. A.; Cakirli, R. B.; Campbell, P.; Cano-Ott, D.; Cortés, G.; Crespo López-Urrutia, J. R.; Das, P.; Dax, A.; de, A.; Delheij, P.; Dickel, T.; Dilling, J.; Eberhardt, K.; Eliseev, S.; Ettenauer, S.; Flanagan, K. T.; Ferrer, R.; García-Ramos, J.-E.; Gartzke, E.; Geissel, H.; George, S.; Geppert, C.; Gómez-Hornillos, M. B.; Gusev, Y.; Habs, D.; Heenen, P.-H.; Heinz, S.; Herfurth, F.; Herlert, A.; Hobein, M.; Huber, G.; Huyse, M.; Jesch, C.; Jokinen, A.; Kester, O.; Ketelaer, J.; Kolhinen, V.; Koudriavtsev, I.; Kowalska, M.; Krämer, J.; Kreim, S.; Krieger, A.; Kühl, T.; Lallena, A. M.; Lapierre, A.; Le Blanc, F.; Litvinov, Y. A.; Lunney, D.; Martínez, T.; Marx, G.; Matos, M.; Minaya-Ramirez, E.; Moore, I.; Nagy, S.; Naimi, S.; Neidherr, D.; Nesterenko, D.; Neyens, G.; Novikov, Y. N.; Petrick, M.; Plaß, W. R.; Popov, A.; Quint, W.; Ray, A.; Reinhard, P.-G.; Repp, J.; Roux, C.; Rubio, B.; Sánchez, R.; Schabinger, B.; Scheidenberger, C.; Schneider, D.; Schuch, R.; Schwarz, S.; Schweikhard, L.; Seliverstov, M.; Solders, A.; Suhonen, M.; Szerypo, J.; Taín, J. L.; Thirolf, P. G.; Ullrich, J.; van Duppen, P.; Vasiliev, A.; Vorobjev, G.; Weber, C.; Wendt, K.; Winkler, M.; Yordanov, D.; Ziegler, F.
2010-05-01
Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10-5 to below 10-8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10-9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e.g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility.Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner.The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with β-delayed neutron detection) has been achieved with rates of only a few atoms per second.This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.
CLASH: NEW MULTIPLE IMAGES CONSTRAINING THE INNER MASS PROFILE OF MACS J1206.2-0847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitrin, A.; Rosati, P.; Nonino, M.
2012-04-20
We present a strong-lensing analysis of the galaxy cluster MACS J1206.2-0847 (z = 0.44) using UV, Optical, and IR, HST/ACS/WFC3 data taken as part of the CLASH multi-cycle treasury program, with VLT/VIMOS spectroscopy for some of the multiply lensed arcs. The CLASH observations, combined with our mass model, allow us to identify 47 new multiply lensed images of 12 distant sources. These images, along with the previously known arc, span the redshift range 1 {approx}< z {approx}< 5.5, and thus enable us to derive a detailed mass distribution and to accurately constrain, for the first time, the inner mass profilemore » of this cluster. We find an inner profile slope of dlog {Sigma}/dlog {theta} {approx_equal} -0.55 {+-} 0.1 (in the range [1'', 53''], or 5 kpc {approx}< r {approx}< 300 kpc), as commonly found for relaxed and well-concentrated clusters. Using the many systems uncovered here we derive credible critical curves and Einstein radii for different source redshifts. For a source at z{sub s} {approx_equal} 2.5, the critical curve encloses a large area with an effective Einstein radius of {theta}{sub E} = 28'' {+-} 3'', and a projected mass of (1.34 {+-} 0.15) Multiplication-Sign 10{sup 14} M{sub Sun }. From the current understanding of structure formation in concordance cosmology, these values are relatively high for clusters at z {approx} 0.5, so that detailed studies of the inner mass distribution of clusters such as MACS J1206.2-0847 can provide stringent tests of the {Lambda}CDM paradigm.« less
NASA Astrophysics Data System (ADS)
Khan, M. F.; Latif, M. T.; Saw, W. H.; Amil, N.; Nadzir, M. S. M.; Sahani, M.; Tahir, N. M.; Chung, J. X.
2016-01-01
The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here are strongly influenced by changes in the monsoon regime from the south-west quadrant to the north-east quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban area using a high-volume air sampler at different seasons on 24 h basis. Analysis of trace elements and water-soluble ions was performed using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. Apportionment analysis of PM2.5 was carried out using the United States Environmental Protection Agency (US EPA) positive matrix factorization (PMF) 5.0 and a mass closure model. We quantitatively characterized the health risks posed to human populations through the inhalation of selected heavy metals in PM2.5. 48 % of the samples collected exceeded the World Health Organization (WHO) 24 h PM2.5 guideline but only 19 % of the samples exceeded 24 h US EPA National Ambient Air Quality Standard (NAAQS). The PM2.5 concentration was slightly higher during the north-east monsoon compared to south-west monsoon. The main trace metals identified were As, Pb, Cd, Ni, Mn, V, and Cr while the main ions were SO42-, NO3-, NH4+, and Na. The mass closure model identified four major sources of PM2.5 that account for 55 % of total mass balance. The four sources are mineral matter (MIN) (35 %), secondary inorganic aerosol (SIA) (11 %), sea salt (SS) (7 %), and trace elements (TE) (2 %). PMF 5.0 elucidated five potential sources: motor vehicle emissions coupled with biomass burning (31 %) were the most dominant, followed by marine/sulfate aerosol (20 %), coal burning (19 %), nitrate aerosol (17 %), and mineral/road dust (13 %). The hazard quotient (HQ) for four selected metals (Pb, As, Cd, and Ni) in PM2.5 mass was highest in PM2.5 mass from the coal burning source and least in PM2.5 mass originating from the mineral/road dust source. The main carcinogenic heavy metal of concern to health at the current location was As; the other heavy metals (Ni, Pb, and Cd) did not pose a significant cancer risk in PM2.5 mass concentration. Overall, the associated lifetime cancer risk posed by the exposure of hazardous metals in PM2.5 is 3-4 per 1 000 000 people at this location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimura, Satoru, E-mail: yosimura@ppl.eng.osaka-u.ac.jp; Sugimoto, Satoshi; Kiuchi, Masato
2016-03-14
We have proposed an experimental methodology which makes it possible to deposit silicon carbide (SiC) films on Si substrates with a low-energy mass-selected ion beam system using hexamethyldisilane (HMD) as a gas source. In this study, one of the fragment ions produced from HMD, SiCH{sub 4}{sup +}, was mass-selected. The ion energy was approximately 100 eV. Then, the SiCH{sub 4}{sup +} ions were irradiated to a Si(100) substrate. When the temperature of the Si substrate was set at 800 °C during the ion irradiation, the X-ray diffraction and Raman spectroscopy of the substrate following the completion of ion irradiation experiment demonstrated themore » occurrence of 3C-SiC deposition.« less
Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K.
Melgaard, Seth; Seletskiy, Denis; Polyak, Victor; Asmerom, Yemane; Sheik-Bahae, Mansoor
2014-04-07
Systematic study of Yb doping concentration in the Yb:YLF cryocoolers by means of optical and mass spectroscopies has identified iron ions as the main source of the background absorption. Parasitic absorption was observed to decrease with Yb doping, resulting in optical cooling of a 10% Yb:YLF sample to 114K ± 1K, with room temperature cooling power of 750 mW and calculated minimum achievable temperature of 93 K.
NASA Astrophysics Data System (ADS)
Harrington, James A.; Bledt, Carlos M.; Kriesel, Jason M.
2011-03-01
Spectroscopy in the long-wave infrared (LWIR) wavelength region (8 to 12 μm) is useful for detecting trace chemical compounds, such as those indicative of weapons of mass destruction (WMD). To enable the development of field portable systems for anti-proliferation efforts, current spectroscopy systems need to be made more robust, convenient, and practical (e.g., miniaturized). Hollow glass waveguides have been used with a Quantum Cascade Laser source for the delivery of single-mode laser radiation from 9 to 10 μm. The lowest loss measured for a straight, 484 μm-bore guide was 0.44 dB/m at 10 μm. The smallest 300 μm-bore waveguide transmitted singlemode radiation even while bent to radii less than 30 cm.
Chemical signatures of fossilized resins and recent plant exudates.
Lambert, Joseph B; Santiago-Blay, Jorge A; Anderson, Ken B
2008-01-01
Amber is one of the few gemstones based on an organic structure. Found over most of the world, it is the fossil form of sticky plant exudates called resins. Investigation of amber by modern analytical techniques provides structural information and insight into the identity of the ancient plants that produced the source resin. Mass spectrometric analysis of materials separated by gas chromatography has identified specific compounds that are the basis of a reliable classification of the different types of amber. NMR spectroscopy of bulk, solid amber provides a complementary classification. NMR spectroscopy also can be used to characterize modern resins as well as other types of plant exudates such as gums, gum resins, and kinos, which strongly resemble resins in appearance but have very different molecular constitutions.
Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy.
McCartt, A Daniel; Ognibene, Ted J; Bench, Graham; Turteltaub, Kenneth W
2016-09-06
A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels. Sources of inaccuracies are presented and discussed, and the capability to measure carbon-14 in biological samples is demonstrated by comparing pharmacokinetics from carbon-14 dosed guinea pigs analyzed by both CRDS and accelerator mass spectrometry. The CRDS approach presented affords easy access to powerful carbon-14 tracer techniques that can characterize complex biochemical systems.
The First Brown Dwarf/Planetary-mass Object in the 32 Orionis Group
NASA Astrophysics Data System (ADS)
Burgasser, Adam J.; Lopez, Mike A.; Mamajek, Eric E.; Gagné, Jonathan; Faherty, Jacqueline K.; Tallis, Melisa; Choban, Caleb; Tamiya, Tomoki; Escala, Ivanna; Aganze, Christian
2016-03-01
The 32 Orionis group is a co-moving group of roughly 20 young (24 Myr) M3-B5 stars 100 pc from the Sun. Here we report the discovery of its first substellar member, WISE J052857.69+090104.2. This source was previously reported to be an M giant star based on its unusual near-infrared spectrum and lack of measureable proper motion. We re-analyze previous data and new moderate-resolution spectroscopy from Magellan/Folded-port InfraRed Echellette to demonstrate that this source is a young near-infrared L1 brown dwarf with very low surface gravity features. Spectral model fits indicate Teff = 1880{}-70+150 K and {log}g = 3.8{}-0.2+0.2, consistent with a 15-22 Myr object with a mass near the deuterium-burning limit. Its sky position, estimated distance, kinematics (both proper motion and radial velocity), and spectral characteristics are all consistent with membership in 32 Orionis, and its temperature and age imply a mass (M = {14}-3+4 MJ) that straddles the brown dwarf/planetary-mass object boundary. The source has a somewhat red J-W2 color compared to other L1 dwarfs, but this is likely a low-gravity-related temperature offset; we find no evidence of significant excess reddening from a disk or cool companion in the 3-5 μm waveband. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE
NASA Astrophysics Data System (ADS)
Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo
2018-06-01
2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.
Electrospray ionizer for mass spectrometry of aerosol particles
He, Siqin; Hogan, Chris; Li, Lin; Liu, Benjamin Y. H.; Naqwi, Amir; Romay, Francisco
2017-09-19
A device and method are disclosed to apply ESI-based mass spectroscopy to submicrometer and nanometer scale aerosol particles. Unipolar ionization is utilized to charge the particles in order to collect them electrostatically on the tip of a tungsten rod. Subsequently, the species composing the collected particles are dissolved by making a liquid flow over the tungsten rod. This liquid with dissolved aerosol contents is formed into highly charged droplets, which release unfragmented ions for mass spectroscopy, such as time-of-flight mass spectroscopy. The device is configured to operate in a switching mode, wherein aerosol deposition occurs while solvent delivery is turned off and vice versa.
NASA Astrophysics Data System (ADS)
Gordon, Michael Scott; Humphreys, Roberta; Jones, Terry J.; Gehrz, Robert D.
2018-01-01
To what extent mass loss and periods of enhanced stellar outflow can influence the terminal state of the most massive stars remains an outstanding question in the fields of stellar physics, chemical enrichment of the Local Universe, andsupernova research. For my dissertation, I focus on characterizing the stellar ejecta around supergiants through a combination of observing techniques. Using the LBT, MMT, IRTF, VLT, and SOFIA observatories, I have performed high-resolution imaging, spectroscopy, and polarimetry—methods that provide us with keen insight on mass-loss histories and 3D morphology of the Local Group's most fascinating stars.Based on spectroscopic evidence for mass loss in the optical and the presence ofcircumstellar (CS) dust in infrared SEDs, we find that 30%–40% of observed yellow supergiants in M31 and M33 are likely in a post-RSG state. We also presentnear-IR spectra from IRTF/SPeX of optically-obscured RSGs in M33. These IR-bright sources likely have some of the highest mass-loss rates and are self-obscured in the optical by their own CS ejecta. For Galactic red supergiants (RSGs), we are able to observe the gas and CS dust ejecta both close in to the central star and at larger distances. The resulting radial profiles are valuable probes on timescale for the ejecta when combined with radiative-transfer models. We find evidence for both variable/high mass-loss events and constant mass loss over the last few thousand years. Finally, we discuss the use of high-resolution imaging polarimetry with VLT/NACO of two co-eval RSG clusters toward the Galactic center. The resulting polarized intensity images in the near-infrared provide unprecedented spatial and contrast resolution of the scattered light from extended nebular material.
GLASS: detailed structure of high redshift galaxies from HST grism spectroscopy
NASA Astrophysics Data System (ADS)
Jones, Tucker; Treu, Tommaso; Schmidt, Kasper B.; Wang, Xin; Brammer, Gabriel; Glass
2015-01-01
The Grism Lens-Amplified Survey from Space (GLASS) is obtaining slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. The GLASS survey will have gathered more than ten thousand spectra upon completion in early 2015. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and Hα at z=1-3 as well as Lyα at z>6. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity (~1e-18 erg/s/cm2 RMS) with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. This enables precise measurements of metallicity gradients, the distribution of star formation, and other details of the physical structure of high redshift galaxies with masses as low as ~107 M⊙ at z=2. I will discuss measurements of these physical properties and implications for galaxy evolution based on the largest sample available to date with such high resolution at z>1.
Nitrous acid measurements in urban Los Angeles using novel techniques
NASA Astrophysics Data System (ADS)
Young, C. J.; Washenfelder, R. A.; Brown, S. S.; Veres, P. R.; Cochran, A. K.; Roberts, J. M.; Pikelnaya, O.; Tsai, C.; Stutz, J.; Afif, C.; Michoud, V.; Borbon, A.
2010-12-01
Nitrous acid (HONO) is an important player in tropospheric photochemistry, as it is a source of hydroxyl radicals. Thus, accurate measurements of HONO and its sources and sinks are critical to fully understand tropospheric oxidation processes. Differential optical absorption spectroscopy (DOAS) has been used to measure HONO in the field over the past two decades, yielding much of the current knowledge about the molecule and its sources. In situ measurements with high sensitivity, time resolution and minimal interferences can provide further information about HONO sources and sinks. One method that could satisfy these criteria is incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). IBBCEAS combines the sensitivity of cavity-enhanced techniques with the specificity of spectral resolution. The application of IBBCEAS to laboratory HONO measurements has been demonstrated, but the technique has not yet been used to detect HONO in the field. A two-channel instrument was custom-built for field measurements of HONO, with the first channel a 365 nm-centred IBBCEAS to measure HONO and NO2 and the second channel a 403 nm cavity ring-down spectrometer for an independent measure of NO2. The instrument was successfully deployed at the CalNex Pasadena ground site in May and June, 2010. Measurements compared well with previously validated HONO instrumentation, including DOAS, negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) and a wet-chemical, derivitization system with HPLC detection (NitroMAC).
The determination of elements in herbal teas and medicinal plant formulations and their tisanes.
Pohl, Pawel; Dzimitrowicz, Anna; Jedryczko, Dominika; Szymczycha-Madeja, Anna; Welna, Maja; Jamroz, Piotr
2016-10-25
Elemental analysis of herbal teas and their tisanes is aimed at assessing their quality and safety in reference to specific food safety regulations and evaluating their nutritional value. This survey is dedicated to atomic spectroscopy and mass spectrometry element detection methods and sample preparation procedures used in elemental analysis of herbal teas and medicinal plant formulations. Referring to original works from the last 15 years, particular attention has been paid to tisane preparation, sample matrix decomposition, calibration and quality assurance of results in elemental analysis of herbal teas by different atomic and mass spectrometry methods. In addition, possible sources of elements in herbal teas and medicinal plant formulations have been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
The DTIC Review: Volume 2, Number 4, Surviving Chemical and Biological Warfare
1996-12-01
CHROMATOGRAPHIC ANALYSIS, NUCLEAR MAGNETIC RESONANCE, INFRARED SPECTROSCOPY , ARMY RESEARCH, DEGRADATION, VERIFICATION, MASS SPECTROSCOPY , LIQUID... mycotoxins . Such materials are not attractive as weapons of mass destruction however, as large amounts are required to produce lethal effects. In...VERIFICATION, ATOMIC ABSORPTION SPECTROSCOPY , ATOMIC ABSORPTION. AL The DTIC Review Defense Technical Information Center AD-A285 242 AD-A283 754 EDGEWOOO
Photoelectron photoion molecular beam spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevor, D.J.
1980-12-01
The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.
NASA Astrophysics Data System (ADS)
Masetti, N.; Mason, E.; Morelli, L.; Cellone, S. A.; McBride, V. A.; Palazzi, E.; Bassani, L.; Bazzano, A.; Bird, A. J.; Charles, P. A.; Dean, A. J.; Galaz, G.; Gehrels, N.; Landi, R.; Malizia, A.; Minniti, D.; Panessa, F.; Romero, G. E.; Stephen, J. B.; Ubertini, P.; Walter, R.
2008-04-01
Using 8 telescopes in the northern and southern hemispheres, plus archival data from two on-line sky surveys, we performed a systematic optical spectroscopic study of 39 putative counterparts of unidentified or poorly studied INTEGRAL sources in order to determine or at least better assess their nature. This was implemented within the framework of our campaign to reveal the nature of newly-discovered and/or unidentified sources detected by INTEGRAL. Our results show that 29 of these objects are active galactic nuclei (13 of which are of Seyfert 1 type, 15 are Seyfert 2 galaxies and one is possibly a BL Lac object) with redshifts between 0.011 and 0.316, 7 are X-ray binaries (5 with high-mass companions and 2 with low-mass secondaries), one is a magnetic cataclysmic variable, one is a symbiotic star and one is possibly an active star. Thus, the large majority (74%) of the identifications in this sample belongs to the AGN class. When possible, the main physical parameters for these hard X-ray sources were also computed using the multiwavelength information available in the literature. These identifications further underscore the importance of INTEGRAL in studying the hard X-ray spectra of all classes of X-ray emitting objects, and the effectiveness of a strategy of multi-catalogue cross-correlation plus optical spectroscopy to securely pinpoint the actual nature of still unidentified hard X-ray sources. Based on observations collected at the following observatories: ESO (La Silla, Chile), partly under program 079.A-0171(A); Astronomical Observatory of Bologna in Loiano (Italy); Astronomical Observatory of Asiago (Italy); Cerro Tololo Interamerican Observatory (Chile); Complejo Astronómico El Leoncito (San Juan, Argentina); South African Astronomical Observatory (Sutherland, South Africa); Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain); Anglo-Australian Observatory (Siding Spring, Australia); Apache Point Observatory (New Mexico, USA).
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Chatterjee, Amarnath; Khedkar, Anand P.; Kusumanchi, Mutyalasetty; Adhikary, Laxmi
2013-02-01
Formation of cyclic intermediates involving water or ammonia loss is a common occurrence in any reaction involving terminal amines or hydroxyl group containing species. Proteins that have both these functional groups in abundance are no exception, and presence of amino acids such as asparagine, glutamines, aspartic acids, and glutamic acids aid in formation of such intermediates. In the biopharma scenario, such intermediates lead to product- or process-related impurities that might be immunogenic. Mass spectroscopy is a powerful technique that is used to decipher the presence and physicochemical characteristics of such impurities. However, such intermediates can also form in situ during mass spectrometric analysis. We present here the detection of in-source and in-solution formation of succinimide and pyroglutamate in the protein granulocyte colony stimulating factor. We also propose an approach for quick differentiation of such in-situ species from the tangible impurities. We believe that this will not only reduce the time spent in unambiguous identification of succinimide- and/or pyroglutamate-related impurity in bio-pharmaceutics but also provide a platform for similar studies on other impurities that may form due to stabilized intermediates.
NASA Astrophysics Data System (ADS)
Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Petron, G.; Shorter, J. H.; Jervis, D.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Kolb, C. E., Jr.
2015-12-01
Instrumental developments in the measurement of multiple isotopes of methane (12CH4, 13CH4 and 12CH3D) are presented. A first generation 8-micron instrument quantifies 12CH4 and 13CH4 at a 1-second rate via tunable infrared direct absorption spectroscopy (TILDAS). A second generation instrument uses two 3-micron intraband cascade lasers in an Aerodyne dual laser chassis for simultaneous measurement of 12CH4, 13CH4 and 12CH3D. Sensitivity and noise performance improvements are examined. The isotopic signature of methane provides valuable information for emission source identification of this greenhouse gas. A first generation spectrometer has been deployed in the field on a mobile laboratory along with a sophisticated 4-tank calibration system. Calibrations are done on an agressive schedule, allowing for the correction of measured isotope ratios to an absolute isotope scale. Distinct isotopic signatures are found for a number of emission sources in the Denver-Julesburg Basin: oil and gas gathering stations, compressor stations and processing plants; a municipal landfill, and dairy/cattle operations. The isotopic signatures are compared with measured ethane/methane ratios. These direct absorption measurements have larger uncertainties than samples measured via gas chromatography-mass spectrometry, but have several advantages over canister sampling methods: individual sources of short duration are easier to isolate; calibrated isotope ratio results are available immediately; replicate measurements on a single source are easily performed; and the number of sources sampled is not limited by canister availability and processing time.
NASA Astrophysics Data System (ADS)
Hatada, R.; Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C.; Baba, K.; Sawase, T.; Watamoto, T.; Matsutani, T.
2014-08-01
Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C2H4 plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C2H4 was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.
A Multiwavelength Characterization of Proto-brown-dwarf Candidates in Serpens
NASA Astrophysics Data System (ADS)
Riaz, B.; Vorobyov, E.; Harsono, D.; Caselli, P.; Tikare, K.; Gonzalez-Martin, O.
2016-11-01
We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3-G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source has an L bol ˜ 0.05 L ⊙. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ˜20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.
A MULTIWAVELENGTH CHARACTERIZATION OF PROTO-BROWN-DWARF CANDIDATES IN SERPENS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riaz, B.; Caselli, P.; Vorobyov, E.
2016-11-10
We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3–G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source hasmore » an L {sub bol} ∼ 0.05 L {sub ☉}. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ∼20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.« less
Li, Yan; Harir, Mourad; Lucio, Marianna; Gonsior, Michael; Koch, Boris P; Schmitt-Kopplin, Philippe; Hertkorn, Norbert
2016-12-01
Deciphering the molecular codes of dissolved organic matter (DOM) improves our understanding of its role in the global element cycles and its active involvement in ecosystem services. This study demonstrates comprehensive characterization of DOM by an initial polarity-based stepwise solid phase extraction (SPE) with single methanol elution of the cartridges, but separate collection of equal aliquots of eluate. The reduction of molecular complexity in the individual DOM fractions attenuates intermolecular interactions and substantially increases the disposable resolution of any structure selective characterization. Suwannee River DOM (SR DOM) was used to collect five distinct SPE fractions with overall 91% DOC recovery. Optical spectroscopy (UV and fluorescence spectroscopy), high-field Fourier transform ion cyclotron mass spectrometry (FTICR MS) and nuclear magnetic resonance (NMR) spectroscopy showed analogous hierarchical clustering among the five eluates corroborating the robustness of this approach. Two abundant moderately hydrophobic fractions contained most of the SR DOM compounds, with substantial proportions of aliphatics, carboxylic-rich alicyclic molecules, carbohydrates and aromatics. A minor early eluting hydrophilic fraction was highly aliphatic and presented a large diversity of alicyclic carboxylic acids, whereas the two late eluting, minor hydrophobic fractions appeared as a largely defunctionalized mixture of aliphatic molecules. Comparative mass analysis showed that fractionation of SR DOM was governed by multiple molecular interactions depending on O/C ratio, molecular weight and aromaticity. The traditional optical indices SUVA 254 and fluorescence index (FI) indicated the relative aromaticity in agreement with FTICR mass and NMR spectra; the classical fluorescent peaks A and C were observed in all four latter eluates. This versatile approach can be easily expanded to preparative scale under field conditions, and transferred to different DOM sources and SPE conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of Impurity Profiling Methods Using Modern Analytical Techniques.
Ramachandra, Bondigalla
2017-01-02
This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.
Nuclear spectroscopy of r-process nuclei around N = 126 using KISS
NASA Astrophysics Data System (ADS)
Hirayama, Y.; Watanabe, Y. X.; Miyatake, H.; Schury, P.; Wada, M.; Oyaizu, M.; Kakiguchi, Y.; Mukai, M.; Kimura, S.; Ahmed, M.; Jeong, S. C.; Moon, J. Y.; Park, J. H.
2017-09-01
The beta-decay properties and atomic mass of nuclei with neutron magic number of N = 126 are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We will produce and measure the half-lives and masses of the nuclei with Z = 74-77 around N = 126 by using the multinucleon transfer (MNT) reaction of ^{136} Xe/ ^{238} U beams and ^{198} Pt target system. For this purpose, we have constructed the KEK Isotope Separation System (KISS) at RIKEN RIBF facility. KISS consists of an argon gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 . We performed the on-line tests to study the basic properties of the KISS and, successfully extracted laser-ionized nuclei around N = 126.
On the Nature of the Enigmatic Object IRAS 19312+1950: A Rare Phase of Massive Star Formation?
NASA Technical Reports Server (NTRS)
Cordiner, M. A.; Boogert, A. C. A.; Charnley, S. B.; Justtanont, K.; Cox, N. L. J.; Smith, R. G.; Tielens, A. G. G. M.; Wirstrom, E. S.; Milam, S. N.; Keane, J. V.
2016-01-01
IRAS?19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS?19312+1950 in the range 5-550 microns using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 microns, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: approx. = 0.22 Stellar Mass of material at 280+/-18 K, and ˜1.6 Me of material at 157+/-3 K. The OI 63 micron line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km/s along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H2O at 5.8 microns and CO2 at 15 microns. The spectral energy distribution is consistent with a massive, luminous (approx. 2 × 10(exp 4) Stellar Luminosity) central source surrounded by a dense, warm circumstellar disk and envelope of total mass approx. 500-700 Stellar Mass with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.
Frank, Richard A; Roy, James W; Bickerton, Greg; Rowland, Steve J; Headley, John V; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Parrott, Joanne L; Conly, F Malcolm; Hewitt, L Mark
2014-01-01
The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.
Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCartt, A. Daniel; Ognibene, Ted J.; Bench, Graham
A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels. Sources of inaccuracies are presented and discussed, and the capability to measure carbon-14 in biological samples is demonstrated by comparing pharmacokinetics from carbon-14 dosed guinea pigs analyzed by both CRDS and accelerator mass spectrometry. Here,more » the CRDS approach presented affords easy access to powerful carbon-14 tracer techniques that can characterize complex biochemical systems.« less
Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy
McCartt, A. Daniel; Ognibene, Ted J.; Bench, Graham; ...
2016-07-26
A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels. Sources of inaccuracies are presented and discussed, and the capability to measure carbon-14 in biological samples is demonstrated by comparing pharmacokinetics from carbon-14 dosed guinea pigs analyzed by both CRDS and accelerator mass spectrometry. Here,more » the CRDS approach presented affords easy access to powerful carbon-14 tracer techniques that can characterize complex biochemical systems.« less
Deuterium sputtering of Li and Li-O films
NASA Astrophysics Data System (ADS)
Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce
2017-10-01
Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.
Zinc Vacancy Formation and its Effect on the Conductivity of ZnO
NASA Astrophysics Data System (ADS)
Khan, Enamul; Weber, Marc; Langford, Steve; Dickinson, Tom
2010-03-01
Exposing single crystal ZnO to 193-nm ArF excimer laser radiation can produce metallic zinc nanoparticles along the surface. The particle production mechanism appears to involve interstitial-vacancy pair formation in the near-surface bulk. Conductivity measurements made with one probe inside the laser spot and the other outside show evidence for rectifying behavior. Positron annihilation spectroscopy confirms the presence of Zn vacancies. We suggest that Zn vacancies are a possible source of p-type behavior in irradiated ZnO. Quadrupole mass spectroscopy shows that both oxygen and zinc are emitted during irradiation. Electron-hole pair production has previously been invoked to account for particle desorption from ZnO during UV illumination. Our results suggest that preexisting and laser-generated defects play a critical role in particle desorption and Zn vacancy formation.
Stephen S. Kelley; Roger M. Rowell; Mark Davis; Cheryl K. Jurich; Rebecca Ibach
2004-01-01
The chemical composition of a variety of agricultural biomass samples was analyzed with near infrared spectroscopy and pyrolysis molecular beam mass spectroscopy. These samples were selected from a wide array of agricultural residue samples and included residues that had been subjected to a variety of di2erent treatments including solvent extractions and chemical...
catsHTM: A Tool for Fast Accessing and Cross-matching Large Astronomical Catalogs
NASA Astrophysics Data System (ADS)
Soumagnac, Maayane T.; Ofek, Eran O.
2018-07-01
Fast access to large catalogs is required for some astronomical applications. Here we introduce the catsHTM tool, consisting of several large catalogs reformatted into HDF5-based file format, which can be downloaded and used locally. To allow fast access, the catalogs are partitioned into hierarchical triangular meshes and stored in HDF5 files. Several tools are provided to perform efficient cone searches at resolutions spanning from a few arc-seconds to degrees, within a few milliseconds time. The first released version includes the following catalogs (by alphabetical order): 2MASS, 2MASS extended sources, AKARI, APASS, Cosmos, DECaLS/DR5, FIRST, GAIA/DR1, GAIA/DR2, GALEX/DR6Plus7, HSC/v2, IPHAS/DR2, NED redshifts, NVSS, Pan-STARRS1/DR1, PTF photometric catalog, ROSAT faint source, SDSS sources, SDSS/DR14 spectroscopy, SkyMapper, Spitzer/SAGE, Spitzer/IRAC galactic center, UCAC4, UKIDSS/DR10, VST/ATLAS/DR3, VST/KiDS/DR3, WISE and XMM. We provide Python code that allows to perform cone searches, as well as MATLAB code for performing cone searches, catalog cross-matching, general searches, as well as load and create these catalogs.
Mass Measurement of 80Y by β-γ Coincidence Spectroscopy
NASA Astrophysics Data System (ADS)
Brenner, D. S.; Barton, C. J.; Zamfir, N. V.; Caprio, M. A.; Aprahamian, A.; Beausang, C. W.; Berant, Z.; Casten, R. F.; Cooper, J. R.; Gill, R. L.; Kruecken, R.; Novak, J. R.; Pietralla, N.; Shawcross, M.; Teymurazyan, A.; Wolf, A.; Wiescher, M.
2003-06-01
The QEC value of 80Y has been measured by β-γ coincidence spectroscopy to be ≥8929(83) keV. Combing this result with the adopted mass excess of the daughter 80Sr gives a mass excess for 80Y of ≥ -61376(83) keV. Results are compared with other measurements, with Audi-Wapstra systematics, and with predictions of mass formulas. Implications for rp-process simulations are considered.
Probing the use of spectroscopy to determine the meteoritic analogues of meteors
NASA Astrophysics Data System (ADS)
Drouard, A.; Vernazza, P.; Loehle, S.; Gattacceca, J.; Vaubaillon, J.; Zanda, B.; Birlan, M.; Bouley, S.; Colas, F.; Eberhart, M.; Hermann, T.; Jorda, L.; Marmo, C.; Meindl, A.; Oefele, R.; Zamkotsian, F.; Zander, F.
2018-05-01
Context. Determining the source regions of meteorites is one of the major goals of current research in planetary science. Whereas asteroid observations are currently unable to pinpoint the source regions of most meteorite classes, observations of meteors with camera networks and the subsequent recovery of the meteorite may help make progress on this question. The main caveat of such an approach, however, is that the recovery rate of meteorite falls is low (<20%), implying that the meteoritic analogues of at least 80% of the observed falls remain unknown. Aims: Spectroscopic observations of incoming bolides may have the potential to mitigate this problem by classifying the incoming meteoritic material. Methods: To probe the use of spectroscopy to determine the meteoritic analogues of incoming bolides, we collected emission spectra in the visible range (320-880 nm) of five meteorite types (H, L, LL, CM, and eucrite) acquired in atmospheric entry-like conditions in a plasma wind tunnel at the Institute of Space Systems (IRS) at the University of Stuttgart (Germany). A detailed spectral analysis including a systematic line identification and mass ratio determinations (Mg/Fe, Na/Fe) was subsequently performed on all spectra. Results: It appears that spectroscopy, via a simple line identification, allows us to distinguish the three main meteorite classes (chondrites, achondrites and irons) but it does not have the potential to distinguish for example an H chondrite from a CM chondrite. Conclusions: The source location within the main belt of the different meteorite classes (H, L, LL, CM, CI, etc.) should continue to be investigated via fireball observation networks. Spectroscopy of incoming bolides only marginally helps precisely classify the incoming material (iron meteorites only). To reach a statistically significant sample of recovered meteorites along with accurate orbits (>100) within a reasonable time frame (10-20 years), the optimal solution may be the spatial extension of existing fireball observation networks. The movie associated to this article is available at http://www.aanda.org
A Remote Laser Mass Spectrometer for Lunar Resource Assessment
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Williams, M. D.
1992-01-01
The use of lasers as a source of excitation for surface mass spectroscopy has been investigated for some time. Since the laser can be focused to a small spot with intensity, it can vaporize and accelerate atoms of material. Using this phenomenon with a time-of-flight mass spectrometer allows a surface elemental mass analysis of a small region with each laser pulse. While the technique has been well developed for Earth applications, space applications are less developed. NASA Langley recently began a research program to investigate the use of a laser to create ions from the lunar surface and to analyze the ions at an orbiting spacecraft. A multijoule, Q-switched Nd:YAG laser would be focused to a small spot on the lunar surface, creating a dense plasma. This plasma would eject high-energy ions, as well as neutrals, electrons, and photons. An experiment is being set up to determine the characteristics of such a laser mass spectrometer at long flight distances. This experiment will determine the character of a future flight instrument for lunar resource assessment.
p-type zinc-blende GaN on GaAs substrates
NASA Astrophysics Data System (ADS)
Lin, M. E.; Xue, G.; Zhou, G. L.; Greene, J. E.; Morkoç, H.
1993-08-01
We report p-type cubic GaN. The Mg-doped layers were grown on vicinal (100) GaAs substrates by plasma-enhanced molecular beam epitaxy. Thermally sublimed Mg was, with N2 carrier gas, fed into an electron-cyclotron resonance source. p-type zinc-blende-structure GaN films were achieved with hole mobilities as high as 39 cm2/V s at room temperature. The cubic nature of the films were confirmed by x-ray diffractometry. The depth profile of Mg was investigated by secondary ions mass spectroscopy.
Evaluation of biochars by temperature programmed oxidation/mass spectroscopy
USDA-ARS?s Scientific Manuscript database
Biochar from the thermochemical conversion of biomass was evaluated by Temperature Programmed Oxidation (TPO) coupled with mass spectroscopy. This technique can be used to assess the oxidative reactivity of carbonaceous solids where higher temperature reactivity indicates greater structural order. ...
A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404
NASA Astrophysics Data System (ADS)
Nyland, Kristina; Davis, Timothy A.; Nguyen, Dieu D.; Seth, Anil; Wrobel, Joan M.; Kamble, Atish; Lacy, Mark; Alatalo, Katherine; Karovska, Margarita; Maksym, W. Peter; Mukherjee, Dipanjan; Young, Lisa M.
2017-08-01
The nearby dwarf galaxy NGC 404 harbors a low-luminosity active galactic nucleus powered by the lowest-mass (<150,000 M ⊙) central massive black hole (MBH), with a dynamical mass constraint, currently known, thus providing a rare low-redshift analog to the MBH “seeds” that formed in the early universe. Here, we present new imaging of the nucleus of NGC 404 at 12-18 GHz with the Karl G. Jansky Very Large Array (VLA) and observations of the CO(2-1) line with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we have successfully resolved the nuclear radio emission, revealing a centrally peaked, extended source spanning 17 pc. Combined with previous VLA observations, our new data place a tight constraint on the radio spectral index and indicate an optically thin synchrotron origin for the emission. The peak of the resolved radio source coincides with the dynamical center of NGC 404, the center of a rotating disk of molecular gas, and the position of a compact, hard X-ray source. We also present evidence for shocks in the NGC 404 nucleus from archival narrowband HST imaging, Chandra X-ray data, and Spitzer mid-infrared spectroscopy, and discuss possible origins for the shock excitation. Given the morphology, location, and steep spectral index of the resolved radio source, as well as constraints on nuclear star formation from the ALMA CO(2-1) data, we find the most likely scenario for the origin of the radio source in the center of NGC 404 to be a radio outflow associated with a confined jet driven by the active nucleus.
A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyland, Kristina; Lacy, Mark; Davis, Timothy A.
The nearby dwarf galaxy NGC 404 harbors a low-luminosity active galactic nucleus powered by the lowest-mass (<150,000 M {sub ⊙}) central massive black hole (MBH), with a dynamical mass constraint, currently known, thus providing a rare low-redshift analog to the MBH “seeds” that formed in the early universe. Here, we present new imaging of the nucleus of NGC 404 at 12–18 GHz with the Karl G. Jansky Very Large Array (VLA) and observations of the CO(2–1) line with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we have successfully resolved the nuclear radio emission, revealing a centrally peaked,more » extended source spanning 17 pc. Combined with previous VLA observations, our new data place a tight constraint on the radio spectral index and indicate an optically thin synchrotron origin for the emission. The peak of the resolved radio source coincides with the dynamical center of NGC 404, the center of a rotating disk of molecular gas, and the position of a compact, hard X-ray source. We also present evidence for shocks in the NGC 404 nucleus from archival narrowband HST imaging, Chandra X-ray data, and Spitzer mid-infrared spectroscopy, and discuss possible origins for the shock excitation. Given the morphology, location, and steep spectral index of the resolved radio source, as well as constraints on nuclear star formation from the ALMA CO(2–1) data, we find the most likely scenario for the origin of the radio source in the center of NGC 404 to be a radio outflow associated with a confined jet driven by the active nucleus.« less
Multicharged Ion Promoted Desorption (MIPD) of Reaction Co-Products
2015-02-13
measurements of surface modifications using mass spectrometry, Raman spectroscopy and XPS were made to 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...desorption and ex-situ measurements of surface modifications using mass spectrometry, Raman spectroscopy and XPS were made to determine ion-induced...irradiations were made with the samples at normal incidence to the incoming beams and post-analysis of these samples was achieved using Raman spectroscopy. It
When galaxies collide: understanding the broad absorption-line radio galaxy 4C +72.26
NASA Astrophysics Data System (ADS)
Smith, D. J. B.; Simpson, C.; Swinbank, A. M.; Rawlings, S.; Jarvis, M. J.
2010-05-01
We present a range of new observations of the `broad absorption-line radio galaxy' 4C +72.26 (z ~ 3.5), including sensitive rest-frame ultraviolet integral field spectroscopy using the Gemini/GMOS-N instrument and Subaru/CISCO K-band imaging and spectroscopy. We show that 4C +72.26 is a system of two vigorously star-forming galaxies superimposed along the line of sight separated by ~1300 +/- 200 km s-1 in velocity, with each demonstrating spectroscopically resolved absorption lines. The most active star-forming galaxy also hosts the accreting supermassive black hole which powers the extended radio source. We conclude that the star formation is unlikely to have been induced by a shock caused by the passage of the radio jet, and instead propose that a collision is a more probable trigger for the star formation. Despite the massive starburst, the ultraviolet-mid-infrared spectral energy distribution suggests that the pre-existing stellar population comprises ~1012Msolar of stellar mass, with the current burst only contributing a further ~2 per cent, suggesting that 4C +72.26 has already assembled most of its final stellar mass.
Mass measurement of 80Y by β-γ coincidence spectroscopy
NASA Astrophysics Data System (ADS)
Barton, C. J.; Brenner, D. S.; Zamfir, N. V.; Caprio, M. A.; Aprahamian, A.; Wiescher, M. C.; Beausang, C. W.; Berant, Z.; Casten, R. F.; Cooper, J. R.; Gill, R. L.; Krücken, R.; Novak, J. R.; Pietralla, N.; Shawcross, M.; Teymurazyan, A.; Wolf, A.
2003-03-01
The QEC value of 80Y has been measured by β-γ coincidence spectroscopy to be ⩾8929(83) keV. Combining this result with the adopted mass excess of the daughter 80Sr gives a mass excess for 80Y of ⩾-61 376(83) keV. Results are compared with other measurements, with Audi-Wapstra systematics, and with predictions of mass formulas. Implications of this measurement are considered for the rp process.
NASA Astrophysics Data System (ADS)
Pendergraft, M.; Grimes, D. J.; Giddings, S. N.; Feddersen, F.; Prather, K. A.; Santander, M.; Lee, C.; Beall, C.
2016-12-01
During September and October of 2015 the Cross Surfzone/Inner-shelf Dye Exchange (CSIDE) project released rhodamine WT dye to study nearshore water movement and exchange offshore along a Southern California sandy beach. We utilized this opportunity to investigate ocean-atmosphere mass transfer via sea spray aerosol and linkage to source waters. Aerosol-concentrating sampling equipment was deployed at beachside and inland locations during three dye releases. Concentrated aerosol samples were analyzed for dye content using fluorescence spectroscopy. Here we present the ocean and atmosphere conditions associated with the presence and absence of dye in aerosol samples. Dye was identified in aerosol samples collected 0.1-0.3 km from the shoreline for 6 hs during the first and third dye releases of the CSIDE project. During these releases the dye persisted in the waters upwind of the sampling equipment. Dye was not detected in aerosol samples collected during the second release during which dye was moved away from waters upwind of the sampling equipment. Recovery of a chemical tracer in sea spray aerosol allows direct linkage to a known source area in the ocean that is independent of, but supported by, wind data. Our observations demonstrate: a tight ocean-atmosphere spatial coupling; a short residence time of coastal marine constituents before transfer to the atmosphere; that the ocean is both a sink for and a source of atmospheric and terrestrial material; and that human inputs to the ocean can return to us in sea spray aerosol.
NASA Astrophysics Data System (ADS)
Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-02-01
We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.
Nyadong, Leonard; Harris, Glenn A.; Balayssac, Stéphane; Galhena, Asiri S.; Malet-Martino, Myriam; Martino, Robert; Parry, R. Mitchell; Wang, May Dongmei; Fernández, Facundo M.; Gilard, Véronique
2016-01-01
During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered 1H nuclear magnetic resonance spectroscopy (2D DOSY 1H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY 1H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug “chemotyping”. In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY 1H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials. PMID:19453162
Nyadong, Leonard; Harris, Glenn A; Balayssac, Stéphane; Galhena, Asiri S; Malet-Martino, Myriam; Martino, Robert; Parry, R Mitchell; Wang, May Dongmei; Fernández, Facundo M; Gilard, Véronique
2009-06-15
During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered (1)H nuclear magnetic resonance spectroscopy (2D DOSY (1)H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY (1)H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug "chemotyping". In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY (1)H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials.
Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description
NASA Astrophysics Data System (ADS)
Balogh, Michael L.; Gilbank, David G.; Muzzin, Adam; Rudnick, Gregory; Cooper, Michael C.; Lidman, Chris; Biviano, Andrea; Demarco, Ricardo; McGee, Sean L.; Nantais, Julie B.; Noble, Allison; Old, Lyndsay; Wilson, Gillian; Yee, Howard K. C.; Bellhouse, Callum; Cerulo, Pierluigi; Chan, Jeffrey; Pintos-Castro, Irene; Simpson, Rane; van der Burg, Remco F. J.; Zaritsky, Dennis; Ziparo, Felicia; Alonso, María Victoria; Bower, Richard G.; De Lucia, Gabriella; Finoguenov, Alexis; Lambas, Diego Garcia; Muriel, Hernan; Parker, Laura C.; Rettura, Alessandro; Valotto, Carlos; Wetzel, Andrew
2017-10-01
We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 < z < 1.5, selected to span a factor >10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ˜ 0.6-1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z΄ < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3 M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ˜50 per cent complete as of semester 17A, and we anticipate a final sample of ˜500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.
ERIC Educational Resources Information Center
Hill, Devon W.; And Others
1988-01-01
Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)
Richa; Sinha, Rajeshwar P
2015-01-01
We have screened two Nostoc species inhabiting diverse habitats for the presence of sunscreening mycosporine-like amino acid (MAA) compounds. The identification and characterization of one MAA (RT 3.1-3.8 min, λmax -334 nm) from both Nostoc species were performed using absorption spectroscopy, high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Shinorine and porphyra-334 were commonly present in both Nostoc sp. strain HKAR-2 and Nostoc sp. strain HKAR-6. Nostoc sp. strain HKAR-2 also showed the presence of an unknown MAAs with retention time of 6.9 min and a corresponding λmax of 334 nm. Present investigation clearly demonstrated the presence of diverse profile of MAAs in the hot spring cyanobacterium in comparison to the rice field isolate. Thus, Nostoc sp. strain HKAR-2 would be a better source for the production of MAAs that can be used as a potent natural sunscreen against UV-B irradiation.
Characterization of Jamaican Delonix regia and Cassia fistula Seed Extracts
Reid, Raymond; Rattray, Vaughn; Williams, Ruth; Denny, Marcel
2016-01-01
Delonix regia and Cassia fistula seed extracts were evaluated for their antioxidant activity, total phenolics, ash, zinc and fatty acid content. Fourier Transform Infrared Spectroscopy (FTIR) was utilized to assess the chemical functionalities present within the seeds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Trolox equivalent antioxidant capacity (TEAC) assays. Total phenolics were determined by the Folin-Ciocalteu assay. Lipid extracts were characterized by nuclear magnetic resonance spectroscopy and gas chromatography/mass spectrometry. Zinc concentration was determined by atomic absorption spectroscopy. Extracts from the seeds of C. fistula had a higher antioxidant activity, free radical scavenging activity, and phenolic content than D. regia. FTIR revealed that the seeds are a rich source of protein with small quantities of fat. C. fistula extracts contained a higher percentage of total fat than D. regia. Palmitic acid was identified as the predominant saturated fatty acid in both extracts. Oleic acid and linoleic acid were identified in smaller quantities. Seed extracts may be considered for use in food and nutraceutical applications. PMID:27034834
Al Hasan, Naila M; Johnson, Grant E; Laskin, Julia
2013-09-01
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy(n-) and VxOyCl(n-) ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N(+), tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCl(n-) and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl((1-2)-) and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.
NASA Astrophysics Data System (ADS)
Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia
2013-09-01
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.
Gas-phase broadband spectroscopy using active sources: progress, status, and applications
Cossel, Kevin C.; Waxman, Eleanor M.; Finneran, Ian A.; Blake, Geoffrey A.; Ye, Jun; Newbury, Nathan R.
2017-01-01
Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broad-band spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly-used techniques. We finish this review by discussing potential future advances in techniques and applications of broad-band spectroscopy. PMID:28630530
NASA Astrophysics Data System (ADS)
Gorlova, Olga; Wolke, Conrad T.; Fournier, Joseph; Colvin, Sean; Johnson, Mark; Miller, Scott
2015-06-01
Comprehensive FTIR, MS/MS and NMR of pharmaceuticals are generally readily available but characterization of their metabolites has been an obstacle. Atorvastatin is a statin drug responsible for the maintenance of cholesterol in the body. Diovan is an angiostensin receptor antagonist used to treat high blood pressure and congestive heart failure. The field of metabolomics, however, is struggling to obtain the identity of their structures. We implement mass spectrometry with cryogenic ion spectroscopy to study gaseous ions of the desired metabolites which, in combination, not only identify the mass of the metabolite but also elucidate their structures through isotope-specific infrared spectroscopy.
Raman structural studies of the nickel electrode
NASA Technical Reports Server (NTRS)
Cornilsen, Bahne C.
1994-01-01
The objectives of this investigation have been to define the structures of charged active mass, discharged active mass, and related precursor materials (alpha-phases), with the purpose of better understanding the chemical and electrochemical reactions, including failure mechanisms and cobalt incorporation, so that the nickel electrode may be improved. Although our primary tool has been Raman spectroscopy, the structural conclusions drawn from the Raman data have been supported and augmented by three other analysis methods: infrared spectroscopy, powder X-ray Diffraction (XRD), and x-ray absorption spectroscopy (in particular EXAFS, Extended X-ray Absorption Fine Structure spectroscopy).
Presence, segregation and reactivity of H, C and N dissolved in some refractory oxides
NASA Technical Reports Server (NTRS)
Freund, F.
1986-01-01
The sources of impurities, particularly carbon, in high melting oxides and silicates are discussed, along with detection and quantification methods. The impurities are important for their effects on bulk material properties through the media of, e.g., surface or grain boundary characteristics. The impurities are usually encountered by the contact of the oxide (refractory) material with volatiles such as H2O and CO2, which become incorporated in the material and form anion complexes with oxygen acting as a covalent bonded ligand. The specific processes undergone by MgO in assimilating C impurities are delineated, using data obtained with X-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry and nuclear reaction profiling. Finally, maintenance of a supersaturated solid solution with C impurities by space charge control is described as a means of offset impurity effects.
Anjum, Tehmina; Bajwa, Rukhsana
2010-11-01
Plants are rich source of biologically active allelochemicals. However, natural product discovery is not an easy task. Many problems encountered during this laborious practice can be overcome through the modification of preliminary trials. Bioassay-directed isolation of active plant compounds can increase efficiency by eliminating many of the problems encountered. This strategy avoids unnecessary compounds, concentrating on potential components and thus reducing the cost and time required. In this study, a crude aqueous extract of sunflower leaves was fractionated through high performance liquid chromatography. The isolated fractions were checked against Chenopodium album and Rumex dentatus. The fraction found active against two selected weeds was re-fractionated, and the active components were checked for their composition. Thin layer chromatography isolated a range of phenolics, whereas the presence of bioactive terpenoids was confirmed through mass spectroscopy and nuclear magnetic resonance spectroscopy.
Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.
2016-02-11
In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.
In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less
Görlach, E; Richmond, R; Lewis, I
1998-08-01
For the last two years, the mass spectroscopy section of the Novartis Pharma Research Core Technology group has analyzed tens of thousands of multiple parallel synthesis samples from the Novartis Pharma Combinatorial Chemistry program, using an in-house developed automated high-throughput flow injection analysis electrospray ionization mass spectroscopy system. The electrospray spectra of these samples reflect the many structures present after the cleavage step from the solid support. The overall success of the sequential synthesis is mirrored in the purity of the expected end product, but the partial success of individual synthesis steps is evident in the impurities in the mass spectrum. However this latter reaction information, which is of considerable utility to the combinatorial chemist, is effectively hidden from view by the very large number of analyzed samples. This information is now revealed at the workbench of the combinatorial chemist by a novel three-dimensional display of each rack's complete mass spectral ion current using the in-house RackViewer Visual Basic application. Colorization of "forbidden loss" and "forbidden gas-adduct" zones, normalization to expected monoisotopic molecular weight, colorization of ionization intensity, and sorting by row or column were used in combination to highlight systematic patterns in the mass spectroscopy data.
Studies of neutron star X-ray binaries
NASA Astrophysics Data System (ADS)
Thompson, Thomas W. J.
Neutron stars represent the endpoint in stellar evolution for stars with initial masses between ~3 and 8 solar masses. They are the densest non- singularities in the universe, cramming more than a solar mass of matter into a sphere with a radius of about 10 km. Such a large mass-to-radius ratio implies deep potential wells, so that when mass transfer is taking place ~10% of the rest-mass is liberated as gravitational binding energy, resulting in prodigious amounts of X-ray emission that contains valuable information on the physical characteristics in accreting binary systems. Much of my research in this dissertation focuses on the spectroscopic and timing properties of the canonical thermonuclear bursting source GS 1826-238. By measuring the relationship between the X-ray flux (which is assumed to trace the accretion rate onto the stellar surface) and the time intervals between subsequent bursts, I find that although the intervals usually decreased proportionately as the persistent flux increased, a few measurements of the flux-recurrence time relationship were significant outliers. Accompanying spectral and timing changes strongly suggest that the accretion disk extends down to smaller radial distances from the source during these atypical episodes. This result is important for understanding the nature of accretion flows around neutron stars because it indicates that accretion disks probably evaporate at some distance from the neutron star surface at lower accretion rates. I also contribute to our understanding of two newly discovered and heavily- absorbed pulsars (neutron stars with strong magnetic fields) by determining the orbital parameters of the systems through pulse timing analysis. Orbital phase- resolved spectroscopy of one source revealed evidence for an "accretion wake" trailing the pulsar through its orbit, showing that X-rays emanating from the surface can ionize the stellar wind in its vicinity. Finally, I develop an innovative application of dust scattering halos (diffuse emission surrounding X-ray sources, resulting from photons scattering from dust grains) to geometrically determine the distance and the distribution of dust along the line of sight to X-ray sources. The distance is clearly important for inferring the absolute luminosities of systems from measured fluxes, and knowledge of the distribution of dust can further understanding of the interstellar medium.
NASA Astrophysics Data System (ADS)
Gopi, D.; Bhuvaneshwari, N.; Indira, J.; Kavitha, L.
2013-03-01
Hydroxyapatite [Ca10(PO4)6(OH)2, HAP] particles have been successfully synthesized by a cost-effective, eco-friendly green template method using natural and commercially available sucrose as a chelating agent. The sucrose used in this method has been extracted from various sources, three from natural and one from commercially available sources are exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology. Spectral characterizations involving Fourier transform infrared spectroscopy (FT-IR) for the functional group analysis of sucrose and HAP; carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) for the identification of the carbon atoms in sucrose and in HAP; liquid chromatography/mass spectrometry (LC-MS) for the determination of the hydrolyzed products of sucrose; and X-ray diffraction (XRD) techniques for the phase identification of the HAP particles were performed. The morphology of the HAP particles were assessed thoroughly using a scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis (EDAX). The experimental results indicate that the obtained HAP using the natural sucrose as a chelating agent is of phase pure, with a well defined morphology having discrete particles without any agglomeration than the HAP from commercially available sucrose. Further, the reduced particle size can be achieved from the stem sugarcane extract as the source of the chelating agent.
Gopi, D; Bhuvaneshwari, N; Indira, J; Kavitha, L
2013-03-01
Hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2), HAP] particles have been successfully synthesized by a cost-effective, eco-friendly green template method using natural and commercially available sucrose as a chelating agent. The sucrose used in this method has been extracted from various sources, three from natural and one from commercially available sources are exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology. Spectral characterizations involving Fourier transform infrared spectroscopy (FT-IR) for the functional group analysis of sucrose and HAP; carbon-13 nuclear magnetic resonance spectroscopy ((13)C NMR) for the identification of the carbon atoms in sucrose and in HAP; liquid chromatography/mass spectrometry (LC-MS) for the determination of the hydrolyzed products of sucrose; and X-ray diffraction (XRD) techniques for the phase identification of the HAP particles were performed. The morphology of the HAP particles were assessed thoroughly using a scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis (EDAX). The experimental results indicate that the obtained HAP using the natural sucrose as a chelating agent is of phase pure, with a well defined morphology having discrete particles without any agglomeration than the HAP from commercially available sucrose. Further, the reduced particle size can be achieved from the stem sugarcane extract as the source of the chelating agent. Copyright © 2012 Elsevier B.V. All rights reserved.
What is the study?
An invited review article. Measurement of oxidative stress parameters using liquid chromatography-tandem mass spectroscopy (LC-MS/MS)
Why was it done?
Although oxidative stress is frequently cited as a cause of various adverse biological eff...
A 15.7-Minute AM CVn Binary Discovered in K2
NASA Astrophysics Data System (ADS)
Green, M. J.; Hermes, J. J.; Marsh, T. R.; Steeghs, D. T. H.; Bell, Keaton J.; Littlefair, S. P.; Parsons, S. G.; Dennihy, E.; Fuchs, J. T.; Reding, J. S.; Kaiser, B. C.; Ashley, R. P.; Breedt, E.; Dhillon, V. S.; Gentile Fusillo, N. P.; Kerry, P.; Sahman, D. I.
2018-04-01
We present the discovery of SDSS J135154.46-064309.0, a short-period variable observed using 30-minute cadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 minutes makes this system the fourth-shortest period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 minutes, 16.1121 ± 0.0004 minutes and 664.82 ± 0.06 minutes, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1 = 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by LISA, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components.
A 15.7-minAM CVn binary discovered in K2
NASA Astrophysics Data System (ADS)
Green, M. J.; Hermes, J. J.; Marsh, T. R.; Steeghs, D. T. H.; Bell, Keaton J.; Littlefair, S. P.; Parsons, S. G.; Dennihy, E.; Fuchs, J. T.; Reding, J. S.; Kaiser, B. C.; Ashley, R. P.; Breedt, E.; Dhillon, V. S.; Gentile Fusillo, N. P.; Kerry, P.; Sahman, D. I.
2018-07-01
We present the discovery of SDSS J135154.46-064309.0, a short-period variable observed using 30-mincadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 min makes this system the fourth-shortest-period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 min, 16.1121 ± 0.0004 min, and 664.82 ± 0.06 min, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1= 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by Laser Interferometer Space Antenna, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components.
Herschel Shines Light on the Episodic Evolutionary Sequence of Protostars
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT; FOOSH; COPS Teams
2014-01-01
New far-infrared and submillimeter spectroscopic capabilities, along with moderate spatial and spectral resolution, provide the opportunity to study the diversity of shocks, accretion processes, and compositions of the envelopes of developing protostellar objects in nearby molecular clouds. We present the "COPS" (CO in Protostars) sample; a statistical analysis of the full sample of 30 Class 0/I protostars from the "DIGIT" Key project using Herschel-PACS/SPIRE 50-700 micron spectroscopy. We consider the sample as a whole in characteristic spectral lines, using a standardized data reduction procedure for all targets, and analyze the differences in the continuum and gas over the full sample, presenting an overview of trends. We compare the sources in evolutionary state, envelope mass, and gas properties to more evolved sources from the"FOOSH'' (FUor) samples.
NASA Astrophysics Data System (ADS)
Oskar Jaehnig, Karl; Stassun, Keivan; Tan, Jonathan C.; Covey, Kevin R.; Da Rio, Nicola
2016-01-01
We study the nature of stellar multiplicity in young stellar systems using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC2264, NGC1333 and IC348 have been carried out, yielding H-band spectra with R=22,500 for sources with H<12 mag. Radial velocity sensitivities ~0.3 km/s can be achieved, depending on the spectral type of the star. We search the IN-SYNC radial velocity catalog to identify sources with radial velocity variations indicative of spectroscopically undetected companions, analyze their spectral properties and discuss the implications for the overall multiplicity of stellar populations in young, embedded star clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bost, Phillip C.
Perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are persistent, globally distributed, anthropogenic compounds. The primary source(s) for human exposure are not well understood although within home exposure is likely important since many consumer products have been treated with different PFAS, and people spend much of their lives indoors. Herein, domestic cats were used as sentinels to investigate potential exposure and health linkages. PFAS in serum samples of 72 pet and feral cats, including 11 healthy and 61 with one or more primary disease diagnoses, were quantitated using high-resolution time-of-flight mass spectroscopy. All but one samplemore » had detectable PFAS, with PFOS and perfluorohexane sulfonate (PFHxS) ranging from« less
NASA Astrophysics Data System (ADS)
Kraiem, M.; Mayer, K.; Gouder, T.; Seibert, A.; Wiss, T.; Thiele, H.; Hiernaut, J.-P.
2010-01-01
Thermal ionization mass spectrometry (TIMS) is a well established instrumental technique for providing accurate and precise isotope ratio measurements of elements with reasonably low first ionization potential. In nuclear safeguards and in environmental research, it is often required to measure the isotope ratios in small samples of uranium. Empirical studies had shown that the ionization yield of uranium and plutonium in a TIMS ion source can be significantly increased in the presence of a carbon source. But, even though carbon appeared crucial in providing high ionization yields, processes taking place on the ionization surface were still not well understood. This paper describes the experimental results obtained from an extended study on the evaporation and ionization mechanisms of uranium occurring on a rhenium mass spectrometry filament in the presence of carbon. Solid state reactions were investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, vaporization measurements were performed with a modified-Knudsen cell mass spectrometer for providing information on the neutral uranium species in the vapor phase. Upon heating, under vacuum, the uranyl nitrate sample was found to turn into a uranium carbide compound, independent of the type of carbon used as ionization enhancer. With further heating, uranium carbide leads to formation of single charged uranium metal ions and a small amount of uranium carbide ions. The results are relevant for a thorough understanding of the ion source chemistry of a uranyl nitrate sample under reducing conditions. The significant increase in ionization yield described by many authors on the basis of empirical results can be now fully explained and understood.
Dark spectroscopy at lepton colliders
NASA Astrophysics Data System (ADS)
Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi
2018-03-01
Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.
Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C
2013-01-01
Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.
Impacts of PM concentrations on visibility impairment
NASA Astrophysics Data System (ADS)
Jie, Guo; Wang, Mei-mei; Han, Ye-Xing; Yu, Zhi-Wei; Tang, Huai-Wu
2016-11-01
In the paper, an accurate and sensitive cavity attenuated phase shift spectroscopy (CAPS) sensor was used to monitor the atmospheric visibility. The CAPS system mainly includes a LED light source, a band-pass filter, an optical resonant cavity (composed of two high mirror, reflectivity is greater than 99.99%), a photoelectric detector and a lock-in amplifier. The 2L/min flow rate, the optical sensor rise and fall response time is about 15 s, so as to realize the fast measurement of visibility. An Allan variance analysis was carried out evaluating the optical system stability (and hence the maximum averaging time for the minimum detection limit) of the CAPS system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. During this period, the extinction coefficient was correlated with PM2.5 mass (0.88), the extinction coefficient was correlated with PM10 mass (0.85). The atmospheric visibility was correlated with PM2.5 mass (0.74). The atmospheric visibility was correlated with PM10 mass (0.66).
Shelley, Jacob T; Chan, George C-Y; Hieftje, Gary M
2012-02-01
The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H(2)O vapor, N(2), and O(2) diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (T(rot)) and electron number density (n(e)), were also measured in the APGD. Maximum values for T(rot) and n(e) were found to be ~1100 K and ~4×10(19) m(-3), respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N(2)(+) yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N(2)(+) temperature is believed to be caused by charge-transfer ionization of N(2) by He(2)(+). These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source. © American Society for Mass Spectrometry, 2011
NASA Astrophysics Data System (ADS)
Melwani Daswani, M.; Kite, E. S.
2017-09-01
Chloride-bearing deposits on Mars record high-elevation lakes during the waning stages of Mars' wet era (mid-Noachian to late Hesperian). The water source pathways, seasonality, salinity, depth, lifetime, and paleoclimatic drivers of these widespread lakes are all unknown. Here we combine reaction-transport modeling, orbital spectroscopy, and new volume estimates from high-resolution digital terrain models, in order to constrain the hydrologic boundary conditions for forming the chlorides. Considering a T = 0°C system, we find that (1) individual lakes were >100 m deep and lasted decades or longer; (2) if volcanic degassing was the source of chlorine, then the water-to-rock ratio or the total water volume were probably low, consistent with brief excursions above the melting point and/or arid climate; (3) if the chlorine source was igneous chlorapatite, then Cl-leaching events would require a (cumulative) time of >10 years at the melting point; and (4) Cl masses, divided by catchment area, give column densities 0.1-50 kg Cl/m2, and these column densities bracket the expected chlorapatite-Cl content for a seasonally warm active layer. Deep groundwater was not required. Taken together, our results are consistent with Mars having a usually cold, horizontally segregated hydrosphere by the time chlorides formed.
NASA Astrophysics Data System (ADS)
Corrigan, A. L.; Russell, L. M.; Takahama, S.; Äijälä, M.; Ehn, M.; Junninen, H.; Rinne, J.; Petäjä, T.; Kulmala, M.; Vogel, A. L.; Hoffmann, T.; Ebben, C. J.; Geiger, F. M.; Chhabra, P.; Seinfeld, J. H.; Worsnop, D. R.; Song, W.; Auld, J.; Williams, J.
2013-06-01
Submicron aerosol particles were collected during July and August 2010 in Hyytiälä, Finland, to determine the composition and sources of aerosol at that Boreal forest site. Submicron particles were collected on Teflon filters and analyzed by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFG). Positive matrix factorization (PMF) was applied to aerosol mass spectrometry (AMS) measurements and FTIR spectra to identify summertime sources of submicron aerosol mass at the sampling site. The two largest sources of organic mass (OM) in particles identified at Hyytiälä were (1) biogenic aerosol from surrounding local forest and (2) biomass burning aerosol, transported 4-5 days from large wildfires burning near Moscow, Russia, and northern Ukraine. The robustness of this apportionment is supported by the agreement of two independent analytical methods for organic measurements with three statistical techniques. FTIR factor analysis was more sensitive to the chemical differences between biogenic and biomass burning organic components, while AMS factor analysis had a higher time resolution that more clearly linked the temporal behavior of separate OM factors to that of different source tracers even though their fragment mass spectrum were similar. The greater chemical sensitivity of the FTIR is attributed to the nondestructive preparation and the functional group specificity of spectroscopy. The FTIR spectra show strong similarities among biogenic and biomass burning factors from different regions as well as with reference OM (namely olive tree burning BBOA and α-pinene chamber secondary organic aerosol (SOA)). The biogenic factor correlated strongly with temperature and oxidation products of biogenic volatile organic compounds (BVOCs), included more than half oxygenated OFGs (carbonyl groups at 29% and carboxylic acid groups at 22%), and represented 35% of the submicron OM. Compared to previous studies at Hyytiälä, the summertime biogenic OM is 1.5 to 3 times larger than springtime biogenic OM (0.64 μg m-3 and 0.4 μg m-3, measured in 2005 and 2007, respectively), even though it contributed only 35% of OM. The biomass burning factor contributed 25% OM on average and up to 62% OM during three periods of transported biomass burning emissions: 26-28 July, 29-30 July, and 8-9 August, with OFG consisting mostly of carbonyl (41%) and alcohol (25%) groups. The high summertime terrestrial biogenic OM (1.7 μg m-3) and the high biomass burning contributions (1.2 μg m-3) were likely due to the abnormally high temperatures that resulted in both stressed boreal forest conditions with high regional BVOC emissions and numerous wildfires in upwind regions.
NASA Astrophysics Data System (ADS)
Corrigan, A. L.; Russell, L. M.; Takahama, S.; Äijälä, M.; Ehn, M.; Junninen, H.; Rinne, J.; Petäjä, T.; Kulmala, M.; Vogel, A. L.; Hoffmann, T.; Ebben, C. J.; Geiger, F. M.; Chhabra, P.; Seinfeld, J. H.; Worsnop, D. R.; Song, W.; Auld, J.; Williams, J.
2013-12-01
Submicron aerosol particles were collected during July and August 2010 in Hyytiälä, Finland, to determine the composition and sources of aerosol at that boreal forest site. Submicron particles were collected on Teflon filters and analyzed by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFGs). Positive matrix factorization (PMF) was applied to aerosol mass spectrometry (AMS) measurements and FTIR spectra to identify summertime sources of submicron aerosol mass at the sampling site. The two largest sources of organic mass (OM) in particles identified at Hyytiälä were (1) biogenic aerosol from surrounding local forest and (2) biomass burning aerosol, transported 4-5 days from large wildfires burning near Moscow, Russia, and northern Ukraine. The robustness of this apportionment is supported by the agreement of two independent analytical methods for organic measurements with three statistical techniques. FTIR factor analysis was more sensitive to the chemical differences between biogenic and biomass burning organic components, while AMS factor analysis had a higher time resolution that more clearly linked the temporal behavior of separate OM factors to that of different source tracers even though their fragment mass spectrum were similar. The greater chemical sensitivity of the FTIR is attributed to the nondestructive preparation and the functional group specificity of spectroscopy. The FTIR spectra show strong similarities among biogenic and biomass burning factors from different regions as well as with reference OM (namely olive tree burning organic aerosol and α-pinene chamber secondary organic aerosol (SOA)). The biogenic factor correlated strongly with temperature and oxidation products of biogenic volatile organic compounds (BVOCs), included more than half of the oxygenated OFGs (carbonyl groups at 29% and carboxylic acid groups at 22%), and represented 35% of the submicron OM. Compared to previous studies at Hyytiälä, the summertime biogenic OM is 1.5 to 3 times larger than springtime biogenic OM (0.64 μg m-3 and 0.4 μg m-3, measured in 2005 and 2007, respectively), even though it contributed only 35% of OM. The biomass burning factor contributed 25% of OM on average and up to 62% of OM during three periods of transported biomass burning emissions: 26-28 July, 29-30 July, and 8-9 August, with OFG consisting mostly of carbonyl (41%) and alcohol (25%) groups. The high summertime terrestrial biogenic OM (1.7 μg m-3) and the high biomass burning contributions (1.2 μg m-3) were likely due to the abnormally high temperatures that resulted in both stressed boreal forest conditions with high regional BVOC emissions and numerous wildfires in upwind regions.
Composition of Atmospheric Dust from Qatar in the Arabian Gulf
NASA Astrophysics Data System (ADS)
Yigiterhan, O.; Al-Ansari, I. S.; Abdel-Moati, M.; Al-Ansi, M.; Paul, B.; Nelson, A.; Turner, J.; Murray, J. W.; Alfoldy, B. Z.; Mahfouz, M. M. K.; Giamberini, M.
2015-12-01
Samples of atmospheric dust from Qatar have been collected and analyzed for major and trace elemental composition. Twenty-one samples were collected in 2014 and 2015 from Doha, Al Khor, Katara, Sealine, and Al Waab by a variety of techniques. Some samples were collected during the megastorms that occurred in April 2015. Back trajectories were determined for each sample using the NOAA HYSPLIT model over a 50 hour time interval. Our samples were about equally divided between northerly (n=12; northern Saudi Arabia, Kuwait or Iraq) and southerly (n=8; SE Saudi Arabia, United Arab Emirates and Oman) sources. One sample originated directly westward, in Saudi Arabia. Samples were microwave-assisted total acid digested (HF+HCl+HNO3) and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES). There are only 12 out of 23 elements for which the Qatari dust was enriched relative to upper continental crust (UCC). Calcium was especially enriched at 400% relative to UCC. About 33% of the total sample mass was CaCO3, reflecting the composition of surface rocks in the source areas. Of the elements typically associated with anthropogenic activity, Ag, Ni and Zn were the most enriched relative to UCC, with enrichment factors of 182%, 233% and 209%, respectively. Others like Pb and V were not significantly enriched, with enrichment factors of 25% and 3%, respectively. The major elements Al, Mn and Fe were depleted relative to UCC because of the strong enrichment in CaCO3, with enrichment factors of -58%, -35% and -45% respectively. We separately averaged the samples with northern and southern origins to see if composition could be used to identify source. Only three elements had a statistical difference. Pb and Na were higher in the samples from the Se while Cr was higher in those from the north.
The RMS survey: near-IR spectroscopy of massive young stellar objects
NASA Astrophysics Data System (ADS)
Cooper, H. D. B.; Lumsden, S. L.; Oudmaijer, R. D.; Hoare, M. G.; Clarke, A. J.; Urquhart, J. S.; Mottram, J. C.; Moore, T. J. T.; Davies, B.
2013-04-01
Near-infrared H- and K-band spectra are presented for 247 objects, selected from the Red MSX Source (RMS) survey as potential young stellar objects (YSOs). 195 (˜80 per cent) of the targets are YSOs, of which 131 are massive YSOs (LBOL > 5 × 103 L⊙, M > 8 M⊙). This is the largest spectroscopic study of massive YSOs to date, providing a valuable resource for the study of massive star formation. In this paper, we present our exploratory analysis of the data. The YSOs observed have a wide range of embeddedness (2.7 < AV < 114), demonstrating that this study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties. The most commonly detected lines are Brγ, H2, fluorescent Fe II, CO bandhead, [Fe II] and He I 2-1 1S-1P, in order of frequency of occurrence. In total, ˜40 per cent of the YSOs display either fluorescent Fe II 1.6878 μm or CO bandhead emission (or both), indicative of a circumstellar disc; however, no correlation of the strength of these lines with bolometric luminosity was found. We also find that ˜60 per cent of the sources exhibit [Fe II] or H2 emission, indicating the presence of an outflow. Three quarters of all sources have Brγ in emission. A good correlation with bolometric luminosity was observed for both the Brγ and H2 emission line strengths, covering 1 < LBOL < 3.5 × 105 L⊙. This suggests that the emission mechanism for these lines is the same for low-, intermediate- and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs.
Infrared Micro-Spectroscopy of Organic and Hydrous Components in Some Antarctic Micrometeorites
NASA Technical Reports Server (NTRS)
Suzuki, A.; Kebukawa, Y.; Nakashima, S.; Keller, L. P.; Zolensky, M. E.; Nakamura, T.
2005-01-01
Micrometeorites extracted from Antarctic ice are a major source of extraterrestrial materials available for study in the laboratory. Materials in this size range are important because the peak in the mass flux distribution of extraterrestrial particles accreted by the Earth occurs for particles approximately 200 microns in diameter with a mass accretion rate estimated at approximately 40 x 10(exp 6) kilograms per year. It has been suggested that micrometeorites may have contributed much pre-biotic organic matter to the early Earth, but the types and abundances of organic material in micrometeorites are poorly known. We have conducted infrared (IR) micro-spectrocopy of small micrometeorites (about 100 microns in size) in order to characterize organic matter that is present in the particles. The obtained results were compared with IR signatures of representative carbonaceous chondrites.
NASA Astrophysics Data System (ADS)
Barrena, R.; Rubiño-Martín, J. A.; Streblyanska, A.; Ferragamo, A.
2016-10-01
La Palma Observatory offers four multi-object spectrographs installed on 4 and 10 m class telescopes. We present an overview of these four instruments. As a scientific case for two of them, we present the optical follow-up of Sunyaev-Zeldovich (SZ) sources undertaken by the Planck collaboration, focused on the detection, redshifts determination and mass estimation of the (SZ) galaxies cluster candidates. After three years of observations we have found optical counterparts for 120 candidates confirmed spectroscopically. We have determined dynamical masses for more than 30 systems with redshifts of z<0.85. Our experience demonstrates that DOLORES (TNG) and OSIRIS (GTC) are the ideal multi-object spectroscopy (MOS) instruments to investigate galaxy clusters at z<0.45 and 0.45
Broadband near-field infrared spectroscopy with a high temperature plasma light source.
Lahneman, D J; Huffman, T J; Xu, Peng; Wang, S L; Grogan, T; Qazilbash, M M
2017-08-21
Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm -1 to 2,500 cm -1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO 2 and SrTiO 3 .
NASA Technical Reports Server (NTRS)
Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.;
2013-01-01
We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate < 0.01 G/yr(exp -1) galaxies at zeta approx 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be <43%.We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at zeta > 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.
Plant Origin of Green Propolis: Bee Behavior, Plant Anatomy and Chemistry
2005-01-01
Propolis, a honeybee product, has gained popularity as a food and alternative medicine. Its constituents have been shown to exert pharmacological effects, such as anti-microbial, anti-inflammatory and anticancer. Shoot apices of Baccharis dracunculifolia (alecrim plant, Asteraceae) have been pointed out as sources of resin for green propolis. The present work aimed (i) to observe the collecting behavior of bees, (ii) to test the efficacy of histological analysis in studies of propolis botanical origin and (iii) to compare the chemistries of alecrim apices, resin masses and green propolis. Bee behavior was observed, and resin and propolis were microscopically analyzed by inclusion in methacrylate. Ethanol extracts of shoot apices, resin and propolis were analyzed by gas chromatography/mass spectroscopy. Bees cut small fragments from alecrim apices, manipulate and place the resulting mass in the corbiculae. Fragments were detected in propolis and identified as alecrim vestiges by detection of alecrim structures. Prenylated and non-prenylated phenylpropanoids, terpenoids and compounds from other classes were identified. Compounds so far unreported for propolis were identified, including anthracene derivatives. Some compounds were found in propolis and resin mass, but not in shoot apices. Differences were detected between male and female apices and, among apices, resin and propolis. Alecrim apices are resin sources for green propolis. Chemical composition of alecrim apices seems to vary independently of season and phenology. Probably, green propolis composition is more complex and unpredictable than previously assumed. PMID:15841282
Singh, Gagandeep; Gollapalli, Ramarao; Blinder, Alejandro; Patel, Milan
2018-04-15
Pharmaceutical packaging employs a wide variety of polymers owing to their desirable features, but the compounds that could leach from the polymers into the drug products can pose serious health risks. Therefore, it is extremely important to identify such compounds so that they can be adequately quantified and evaluated for toxicological impact/safety assessments. Not only the polymer components and the additives should be considered as sources for leachable impurities, their reaction/degradation products should also be evaluated. Irganox 1010 is a common commercial antioxidant (polymer additive) used in the manufacturing of polyolefin materials for container closure systems. In our study, we identified two Irganox1010 related leachable impurities in an ophthalmic drug product using rapid and straightforward orthogonal mass spectroscopy (LC-MS and GC-MS) methods The identified impurities were 7,9-Di-tert-butyl-1 oxaspiro[4.5]deca-6,9-diene-2,8-dione and 3-[3,5-bis(tert-butyl)-1-hydroxy-4-oxocyclohexa-2,5-dienyl]propanoic acid which leached into the ophthalmic drug solution during storage. The analytical methods employed could potentially be used to identify the similar class of compounds as is or in drug products. Copyright © 2018 Elsevier B.V. All rights reserved.
El-Deftar, Moteaa M; Robertson, James; Foster, Simon; Lennard, Chris
2015-06-01
Laser-induced breakdown spectroscopy (LIBS) is an emerging atomic emission based solid sampling technique that has many potential forensic applications. In this study, the analytical performance of LIBS, as well as that of inductively coupled plasma mass spectrometry (ICP-MS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray microfluorescence (μXRF), was evaluated for the ability to conduct elemental analyses on Cannabis plant material, with a specific investigation of the possible links between hydroponic nutrients and elemental profiles from associated plant material. No such study has been previously published in the literature. Good correlation among the four techniques was observed when the concentrations or peak areas of the elements of interest were monitored. For Cannabis samples collected at the same growth time, the elemental profiles could be related to the use of particular commercial nutrients. In addition, the study demonstrated that ICP-MS, LA-ICP-MS and LIBS are suitable techniques for the comparison of Cannabis samples from different sources, with high discriminating powers being achieved. On the other hand, μXRF method was not suitable for the discrimination of Cannabis samples originating from different growth nutrients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel
2014-10-01
A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1. Electronic supplementary information (ESI) available: Raman spectroscopy characterization of the SiHfCN-based ceramics. See DOI: 10.1039/c4nr03376k
NASA Astrophysics Data System (ADS)
Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team
2012-01-01
AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI Instrumentation Development Fund.
Kucherenko, Y U; Moiseev, V A
2000-01-01
Comparative analysis of 1H NMR spectroscopy and refractometry with respect to their application for investigating the distribution of nonelectrolytes of n-alcohol series (ethanol, 1,2-propanediol, glycerol) and polyethylene glycols (PEGs) with molecular masses of 400, 600, 1500 between human erythrocytes and extracellular medium was performed. The distribution coefficients (Q) for solutions of ethanol, 1,2-propanediol, glycerol, PEG-400, PEG-600 and PEG-1500 were obtained. The Q values decreased with the increase in the nonelectrolyte molecular mass from 1.23+/-0.12 for ethanol to 0.40+/-0.08 for PEG-1500 (1H NMR spectroscopy) and from 2.6+/-0.12 for ethanol to 0.23+/-0.03 for PEG-1500 (refractometry). It was shown that 1H-NMR high-resolution spectroscopy ensures more precise determination of Q values for nonelectrolytes with low molecular masses; for PEGs with high molecular masses, the accuracy of Q value calculation by this method was about 20%. On the contrary, refractometry can be used for investigating substances with high molecular masses; the error of Q value determination for solution of low-refractive substances, such as ethanol, may be more than 50%.
NASA Astrophysics Data System (ADS)
Stegehuis, Paulien L.; Boogerd, Leonora S. F.; Inderson, Akin; Veenendaal, Roeland A.; van Gerven, P.; Bonsing, Bert A.; Sven Mieog, J.; Amelink, Arjen; Veselic, Maud; Morreau, Hans; van de Velde, Cornelis J. H.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Robinson, Dominic J.; Vahrmeijer, Alexander L.
2017-02-01
Endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) of pancreatic masses suffer from sample errors and low-negative predictive values. Fiber-optic spectroscopy in the visible to near-infrared wavelength spectrum can noninvasively extract physiological parameters from tissue and has the potential to guide the sampling process and reduce sample errors. We assessed the feasibility of single fiber (SF) reflectance spectroscopy measurements during EUS-FNA of pancreatic masses and its ability to distinguish benign from malignant pancreatic tissue. A single optical fiber was placed inside a 19-gauge biopsy needle during EUS-FNA and at least three reflectance measurements were taken prior to FNA. Spectroscopy measurements did not cause any related adverse events and prolonged procedure time with ˜5 min. An accurate correlation between spectroscopy measurements and cytology could be made in nine patients (three benign and six malignant). The oxygen saturation and bilirubin concentration were significantly higher in benign tissue compared with malignant tissue (55% versus 21%, p=0.038; 166 μmol/L versus 17 μmol/L, p=0.039, respectively). To conclude, incorporation of SF spectroscopy during EUS-FNA was feasible, safe, and relatively quick to perform. The optical properties of benign and malignant pancreatic tissue are different, implying that SF spectroscopy can potentially guide the FNA sampling.
Application of supercontinuum radiation for mid-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Kilgus, Jakob; Müller, Petra; Moselund, Peter M.; Brandstetter, Markus
2016-04-01
The emergence of new laser-based mid-infrared (MIR) sources, such as quantum cascade lasers (QCL), led to substantial developments in the field of MIR spectroscopy in the last decade. Recently, also MIR supercontinuum (SC) sources became available. They combine broadband spectral emission known from thermal sources emission with coherent properties known from laser sources like QCLs. Nevertheless, while the latter already find practical application in the field of optical sensing, SC sources have yet to prove their applicability. In this contribution we present the development, characterization and application of a measurement concept consisting of a fiber-coupled broadband MIR SC source (1.75 μm-4.2 μm, 75 mW optical power) and a fully-integrated MOEMS-based Fabry-Pérot microspectrometer (FPMS) for MIR spectroscopy. The main hindrance for the use of SC sources in spectroscopy so far, are the significant pulse-to-pulse fluctuations arising from the non-linear nature of the SC generation process. We show to what extent spectral averaging makes sense and evaluate the noise performance. By combining a SC source and a FPMS it was possible to significantly reduce noise in spectral, time and polarization domain, resulting in a set-up suitable for MIR spectroscopy. The performance of the set-up was characterized both in transmission and reflection geometry. Low-noise absorption spectra of oils, polymers and aqueous solutions of acetic acid were acquired . Furthermore, time-resolved measurements of the curing process of ethyl-2-cyanoacrylate and results of the chemical mapping of a painted metal surface are reported. The obtained results prove the concept of SC-FPMS promising for MIR spectroscopy, characterized by its simplicity and versatility.
Microlocalization and Quantitation of Risk Associated Elements in Gleason Graded Prostate Tissue
2006-03-01
with NADC and NADH as studied by electrospray ionization mass spectrometry and 11B NMR spectroscopy , J. Mass Spectrom. 38 (2003) 632–640. [19] D.H. Kim...spectrometry and 11B NMR spectroscopy . J Mass Spectrom 38: 632 – 640 Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta...232 – 235 Semmelhack MF, Campagna SR, Hwa C, Federle MJ, Bassler BL (2004) Boron binding with the quorum sensing signal AI-2 and analogues . Org Lett 6
The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)
NASA Astrophysics Data System (ADS)
Feigelson, Eric; Guedel, M.
2007-12-01
The XMM-Newton Extended Survey of the Taurus Molecular Cloud is an exceptionally large and growing X-ray survey of the Taurus Molecular Cloud (TMC). Now comprising 31 1/2-degree diameter fields, observed with the three XMM-Newton EPIC cameras. High-resolution spectroscopy has been obtained for about ten T Tauri stars (TTS) with the RGS instruments, and the Optical Monitor secured an optical/UV survey. XEST detects essentially the entire surveyed TTS population of the TMC in X-rays including about half of the observed (8/16) brown dwarfs and Class I protostars (8/20). Several new candidate members are identified. The X-ray luminosity (LX) of TTS shows related correlations with both stellar bolometric luminosity and mass. Classical TTS show suppressed X-ray output in the CCD band by a factor of about 2. These statistical results confirm results from other star formation regions. Different from previous reports on TMC, XEST identifies no activity-rotation relation. Brown dwarfs are found to follow trends set by TTS, both for accreting and non-accreting objects. But a decrease of the fractional luminosity, LX/Lbol, is seen with decreasing mass indicating weakened heating efficiency in the substellar domain. XEST reports five members of the class of "Two-Absorber X-Ray" (TAX) sources which reveal a double-peaked spectrum originating from two unrelated sources with different absorption column densities. The softer emission is thought to be related to jets, as explicitly seen in DG Tau. RGS spectroscopy shows a systematic "X-ray soft excess" in classical TTS, suggesting excessive cool (1-2 MK) plasma due to accretion, although the excess seems to correlate with magnetic activity as well. XEST has been supported by the Space Science Institute (Bern/Switz.).
NASA Astrophysics Data System (ADS)
Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-06-01
A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.
Spectral Properties and Variability of BIS objects
NASA Astrophysics Data System (ADS)
Gaudenzi, S.; Nesci, R.; Rossi, C.; Sclavi, S.; Gigoyan, K. S.; Mickaelian, A. M.
2017-10-01
Through the analysis and interpretation of newly obtained and of literature data we have clarified the nature of poorly investigated IRAS point sources classified as late type stars, belonging to the Byurakan IRAS Stars catalog. From medium resolution spectroscopy of 95 stars we have strongly revised 47 spectral types and newly classified 31 sources. Nine stars are of G or K types, four are N carbon stars in the Asymptotic Giant Branch, the others being M-type stars. From literature and new photometric observations we have studied their variability behaviour. For the regular variables we determined distances, absolute magnitudes and mass loss rates. For the other stars we estimated the distances, ranging between 1.3 and 10 kpc with a median of 2.8 kpc from the galactic plane, indicating that BIS stars mostly belong to the halo population.
Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz.
Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Ikemoto, Yuka; Okamura, Hidekazu
2012-05-07
Infrared (IR) spectroscopy is a versatile analytical method and nano-scale spatial resolution could be achieved by scattering type near-field optical microscopy (s-SNOM). The spectral bandwidth was, however, limited to approximately 300 cm(-1) with a laser light source. In the present study, the development of a broadband mid-IR near-field spectroscopy with a ceramic light source is demonstrated. A much wider bandwidth (at least 3000 to 1000 cm(-1)) is achieved with a ceramic light source. The experimental data on quartz Si-O phonon resonance bands are well reproduced by theoretical simulations indicating the validity of the present broadband near-field IR spectroscopy.
NASA Astrophysics Data System (ADS)
Iwagoshi, Joel A.
Research on alternative energies has become an area of increased interest due to economic and environmental concerns. Green energy sources, such as ocean, wind, and solar power, are subject to predictable and unpredictable generation intermittencies which cause instability in the electrical grid. This problem could be solved through the use of short term energy storage devices. Capacitors made from composite polymer:nanoparticle thin films have been shown to be an economically viable option. Through thermal vapor deposition, we fabricated dielectric thin films composed of the polymer polyvinylidine fluoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2). Fully understanding the deposition process required an investigation of electrode and dielectric film deposition. Film composition can be controlled by the mass ratio of PVDF:TiO2 prior to deposition. An analysis of the relationship between the ratio of PVDF:TiO2 before and after deposition will improve our understanding of this novel deposition method. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy were used to analyze film atomic concentrations. The results indicate a broad distribution of deposited TiO2 concentrations with the highest deposited amount at an initial mass concentration of 17% TiO2. The nanoparticle dispersion throughout the film is analyzed through atomic force microscopy and energy dispersive x-ray spectroscopy. Images from these two techniques confirm uniform TiO2 dispersion with cluster size less than 300 nm. These results, combined with spectroscopic analysis, verify control over the deposition process. Capacitors were fabricated using gold parallel plates with PVDF:TiO 2 dielectrics. These capacitors were analyzed using the atomic force microscope and a capacohmeter. Atomic force microscope images confirm that our gold films are acceptably smooth. Preliminary capacohmeter measurements indicate capacitance values of 6 nF and break down voltages of 2.4 V. Our research on the deposition process will contribute to the understanding of PVDF/TiO2 composite thin films. These results will lead to further investigation of PVDF/TiO2 high density energy storage capacitors. These capacitors can potentially increase the efficiency of alternative energy sources already in use.
NASA Astrophysics Data System (ADS)
Šuhada, R.; Fassbender, R.; Nastasi, A.; Böhringer, H.; de Hoon, A.; Pierini, D.; Santos, J. S.; Rosati, P.; Mühlegger, M.; Quintana, H.; Schwope, A. D.; Lamer, G.; Kohnert, J.; Pratt, G. W.
2011-06-01
Context. Multi-wavelength surveys for clusters of galaxies are opening a window on the elusive high-redshift (z > 1) cluster population. Well controlled statistical samples of distant clusters will enable us to answer questions about their cosmological context, early assembly phases and the thermodynamical evolution of the intracluster medium. Aims: We report on the detection of two z > 1 systems, XMMU J0302.2-0001 and XMMU J1532.2-0836, as part of the XMM-Newton Distant Cluster Project (XDCP) sample. We investigate the nature of the sources, measure their spectroscopic redshift and determine their basic physical parameters. Methods: The results of the present paper are based on the analysis of XMM-Newton archival data, optical/near-infrared imaging and deep optical follow-up spectroscopy of the clusters. Results: We confirm the X-ray source XMMU J0302.2-0001 as a gravitationally bound, bona fide cluster of galaxies at spectroscopic redshift z = 1.185. We estimate its M500 mass to (1.6 ± 0.3) × 1014 M⊙ from its measured X-ray luminosity. This ranks the cluster among intermediate mass system. In the case of XMMU J1532.2-0836 we find the X-ray detection to be coincident with a dynamically bound system of galaxies at z = 1.358. Optical spectroscopy reveals the presence of a central active galactic nucleus, which can be a dominant source of the detected X-ray emission from this system. We provide upper limits of X-ray parameters for the system and discuss cluster identification challenges in the high-redshift low-mass cluster regime. A third, intermediate redshift (z = 0.647) cluster, XMMU J0302.1-0000, is serendipitously detected in the same field as XMMU J0302.2-0001. We provide its analysis as well. Based on observations obtained with ESO Telescopes at the Paranal Observatory under program ID 080.A-0659 and 081.A-0312, observations collected at the Centro Astrnómico Hispano Alemán (CAHA) at Calar Alto, Spain operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). X-ray observations were obtained by XMM-Newton.
Identification and properties of host galaxies of RCR radio sources
NASA Astrophysics Data System (ADS)
Zhelenkova, O. P.; Soboleva, N. S.; Majorova, E. K.; Temirova, A. V.
2013-01-01
FIRST and NVSS radio maps are used to cross identify the radio sources of the RCR catalog, which is based on observational data obtained in several runs of the "Cold" survey, with the SDSS and DPOSS digital optical sky surveys and the 2MASS, LAS UKIDSS, and WISE infrared surveys. Digital images in various filters and the coadded gri-band SDSS images, red and infrared DPOSS images, JHK-band UKIDSS images, and JHK-band 2MASS images are analyzed for the sources with no optical candidates found in the above catalogs. Our choice of optical candidates was based on the data on the structure of the radio source, its photometry, and spectroscopy (where available). We found reliable identifications for 86% of the radio sources; possible counterparts for 8% of the sources, and failed to find any optical counterparts for 6% of the sources because their host objects proved to be fainter than the limiting magnitude of the corresponding surveys. A little over half of all the identifications proved to be galaxies; about one quarter were quasars, and the types of the remaining objects were difficult to determine because of their faintness. A relation between the luminosity and the radioloudness index was derived and used to estimate the 1.4 and 3.94 GHz luminosities for the sources with unknown redshifts. We found 3% and 60% of all the RCR radio sources to be FRI-type objects ( L ≲ 1024 W/Hz at 1.4 GHz) and powerful FRII-type galaxies ( L ≳ 1026.5 W/Hz), respectively, whereas the rest are sources including objects of the FRI, FRII, and mixed FRI-FRII types. Unlike quasars, galaxies show a trend of decreasing luminosity with decreasing flux density. Note that identification would be quite problematic without the software and resources of the virtual observatory.
NASA Astrophysics Data System (ADS)
Takahama, S.; Johnson, A.; Guzman Morales, J.; Russell, L. M.; Duran, R.; Rodriguez, G.; Zheng, J.; Zhang, R.; Toom-Sauntry, D.; Leaitch, W. R.
2013-05-01
The CalMex campaign was conducted from May 15 to June 30 of 2010 to study the properties and sources of air pollution in Tijuana, Mexico. In this study, submicron organic aerosol mass (OM) composition measured by Fourier Transform Infrared Spectroscopy (FTIR), Aerosol Chemical Speciation Monitor (ACSM), and X-ray spectromicroscopy are combined with statistical analysis and measurements of other atmospheric constituents. The average (±one standard deviation) OM concentration was 3.3 ± 1.7 μg m-3. A large source of submicron aerosol mass at this location was determined to be vehicular sources, which contributed approximately 40% to the submicron OM; largely during weekday mornings. The O/C ratio estimated from ACSM measurements was 0.64 ± 0.19; diurnal variations in this value and the more oxygenated fraction of OM as determined from Positive Matrix Factorization and classification analyses suggest the high degree of oxygenation originates from aged OM, rather than locally-produced secondary organic aerosol. A large contribution of this oxygenated aerosol to Tijuana from various source classes was observed; some fraction of this aerosol mass may be associated with non-refractory components, such as dust or BC. Backtrajectory simulations using the HYSPLIT model suggest that the mean wind vector consistently originated from the northwest region, over the Pacific Ocean and near the Southern California coast, which suggests that the origin of much of the oxygenated organic aerosol observed in Tijuana (as much as 60% of OM) may have been the Southern California Air Basin. The marine aerosol contribution to OM during the period was on average 23 ± 24%, though its contribution varied over synoptic rather than diurnal timescales. BB aerosol contributed 20 ± 20% of the OM during the campaign period, with notable BB events occurring during several weekend evenings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haase, Christa; Agner, Josef A.; Merkt, Frederic
2013-06-28
A laser-based, pulsed, narrow-band source of submillimeter-wave radiation has been developed that is continuously tunable from 0.1 THz to 14.3 THz. The source is based on difference-frequency mixing in the nonlinear crystal trans-4{sup Prime }-(dimethylamino)-N-methyl-4-stilbazolium tosylate. By varying the pulse length, the bandwidth of the submillimeter-wave radiation can be adjusted between 85 MHz and 2.8 MHz. This new radiation source has been integrated in a vacuum-ultraviolet-submillimeter-ware double-resonance spectrometer, with which low-frequency transitions of atoms and molecules in supersonic beams can be detected mass-selectively by photoionization and time-of-flight mass spectrometry. The properties of the radiation source and spectrometer are demonstrated inmore » a study of 33f Leftwards-Arrow nd Rydberg-Rydberg transitions in Xe with n in the range 16-31. The frequency calibration of the submillimeter-wave radiation was performed with an accuracy of 2.8 MHz. The narrowest lines observed experimentally have a full-width at half-maximum of {approx}3 MHz, which is sufficient to fully resolve the hyperfine structure of the Rydberg-Rydberg transitions of {sup 129}Xe and {sup 131}Xe. A total of 72 transitions were measured in the range between 0.937 THz and 14.245 THz and their frequencies are compared with frequencies calculated by multichannel quantum defect theory.« less
Was-Gubala, Jolanta; Starczak, Roza
2015-01-01
Presented in this paper is an assessment of the applicability of Raman spectroscopy and microspectrophotometry (MSP) in visible and ultraviolet light (UV-Vis) in the examination of textile fibers dyed with mixtures of synthetic dyes. Fragments of single polyester fibers, stained with ternary mixtures of disperse dyes in small mass concentrations, and fragments of single cotton fibers, dyed with binary or ternary mixtures of reactive dyes, were subjected to the study. Three types of excitation sources, 514, 633, and 785 nm, were used during Raman examinations, while the MSP study was conducted in the 200 to 800 nm range. The results indicate that the capabilities for discernment of dye mixtures are similar in the spectroscopic methods that were employed. Both methods have a limited capacity to distinguish slightly dyed polyester fiber; additionally, it was found that Raman spectroscopy enables identification of primarily the major components in dye mixtures. The best results, in terms of the quality of Raman spectra, were obtained using an excitation source from the near infrared. MSP studies led to the conclusion that polyester testing should be carried out in the range above 310 nm, while for cotton fibers there is no limitation or restriction of the applied range. Also, MSP UV-Vis showed limited possibilities for discriminatory analysis of cotton fibers dyed with a mixture of reactive dyes, where the ratio of the concentration of the main dye used in the dyeing process to minor dye was higher than four. The results presented have practical applications in forensic studies, inter alia.
Frost, Ray L; Adebajo, Moses; Weier, Matt L
2004-02-01
Raman spectroscopy has been used to study the thermal transformations of natural magnesium oxalate dihydrate known in mineralogy as glushinskite. The data obtained by Raman spectroscopy was supplemented with that of infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG-MS identified two mass loss steps at 146 and 397 degrees C. In the first mass loss step water is evolved only, in the second step carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Glushinskite is the dihydrate phase in the temperature range up to the pre-dehydration temperature of 146 degrees C. Above 397 degrees C, magnesium oxide is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 400 degrees C. Changes in the position and intensity of the CO and CC stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.
Practical Problems in the Cement Industry Solved by Modern Research Techniques
ERIC Educational Resources Information Center
Daugherty, Kenneth E.; Robertson, Les D.
1972-01-01
Practical chemical problems in the cement industry are being solved by such techniques as infrared spectroscopy, gas chromatography-mass spectrometry, X-ray diffraction, atomic absorption and arc spectroscopy, thermally evolved gas analysis, Mossbauer spectroscopy, transmission and scanning electron microscopy. (CP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia
2013-07-02
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including V xO y n– and V xO yCl n– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V 14O 36Cl(L) 5 (L = Et 4N +, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged V xO yCl n– and V xOmore » yCl(L) (n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller V xO yCl (1–2)– and V xO y (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged V xO yCl and V xO y species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of V xO yCl and V xO y anions through low-energy CID. Finally and furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.« less
Spectral classification of selected ISOGAL sources using Himalayan Chandra Telescope
NASA Astrophysics Data System (ADS)
Joshi, U. C.; Ganesh, S.; Baliyan, K. S.; Parthasarathy, M.; Schultheis, M.; Rajpurohit, A.; Simon, G.; Omont, A.
The ISOGAL survey (Omont et al. 1999) is devoted to the observation of selected regions of the Galactic plane in the mid-infrared with ISOCAM. More than 240 fields were observed at 7 and 15 micron wave-bands with ISOCAM at an angular resolution of 6'' which has provided a complete census, in the areas surveyed, of the stars in the late stages (RGB/AGB phases) of stellar evolution. Optical counterparts are detected for some of the ISOGAL sources in the directions where the extinction is relatively lower. We obtained optical spectra of ˜100 such sources with the Himalayan Chandra Telescope (HCT), India and estimated their spectral classes. Optical spectroscopy together with mid-IR data is expected to allow us to obtain the spectral-type vs mass-loss relation which are important parameters to understand the late stages of stellar evolution. In this paper, we present a set of spectra taken in the field FC97 for which ISOGAL survey is complete.
Extended and Point Defects in Diamond Studied with the Aid of Various Forms of Microscopy.
Steeds; Charles; Gilmore; Butler
2000-07-01
It is shown that star disclinations can be a significant source of stress in chemical vapor deposited (CVD) diamond. This purely geometrical origin contrasts with other sources of stress that have been proposed previously. The effectiveness is demonstrated of the use of electron irradiation using a transmission electron microscope (TEM) to displace atoms from their equilibrium sites to investigate intrinsic defects and impurities in CVD diamond. After irradiation, the samples are studied by low temperature photoluminescence microscopy using UV or blue laser illumination. Results are given that are interpreted as arising from isolated <100> split self-interstitials and positively charged single vacancies. Negatively charged single vacancies can also be revealed by this technique. Nitrogen and boron impurities may also be studied similarly. In addition, a newly developed liquid gallium source scanned ion beam mass spectrometry (SIMS) instrument has been used to map out the B distribution in B doped CVD diamond specimens. The results are supported by micro-Raman spectroscopy.
The near-infrared broad emission line region of active galactic nuclei - II. The 1-μm continuum
NASA Astrophysics Data System (ADS)
Landt, Hermine; Elvis, Martin; Ward, Martin J.; Bentz, Misty C.; Korista, Kirk T.; Karovska, Margarita
2011-06-01
We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 μm in 23 well-known broad emission line active galactic nuclei (AGN). We show that, after correcting the optical spectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ˜ 1 μm, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ˜1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ˜7 per cent. Our preliminary variability studies indicate that in most sources, the hot dust emission responds to changes in the accretion disc flux with the expected time lag; however, a few sources show a behaviour that can be attributed to dust destruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikukawa, Daisuke; Hori, Masaru; Honma, Koichiro
2006-11-15
Microwave excited plasma source operating at a low pressure of 1.5 Pa was newly developed. This plasma source was successfully applied to the formation of hydrogenated microcrystalline silicon films in a glass substrate with a mixture gas of silane (SiH{sub 4}), hydrogen (H{sub 2}), and xenon (Xe). It was found that the crystallinity of films was dramatically improved with decreasing pressure. The crystalline fraction was evaluated to be 82% at a substrate temperature of 400 deg. C, a mixture gas of SiH{sub 4}/H{sub 2}/Xe: 5/200/30 SCCM, and a total pressure of 1.5 Pa by Raman spectroscopy. The absolute density ofmore » hydrogen atoms and the behavior of higher radicals and molecules in the mixture gas were evaluated using vacuum ultraviolet absorption spectroscopy and quadrupole mass spectrometer, respectively. H atom densities were of the order of 10{sup 11} cm{sup -3}. The fraction of H atom density increased, while higher radicals and molecules decreased with decrease in the total pressure. The increase in H atom density and decrease in higher radicals and molecules improved the crystallinity of films in low pressures below 10 Pa.« less
Infrared spectroscopy of the methanol cation and its methylene-oxonium isomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosley, J. D.; Young, J. W.; Duncan, M. A., E-mail: mccoy@chemistry.ohio-state.edu, E-mail: maduncan@uga.edu
2015-03-21
The carbenium ion with nominal formula [C,H{sub 4},O]{sup +} is produced from methanol or ethylene glycol in a pulsed-discharge supersonic expansion source. The ion is mass selected, and its infrared spectrum is measured from 2000 to 4000 cm{sup −1} using laser photodissociation spectroscopy and the method of rare gas atom tagging. Computational chemistry predicts two isomers, the methanol and methylene-oxonium cations. Predicted vibrational spectra based on scaled harmonic and reduced dimensional treatments are compared to the experimental spectra. The methanol cation is the only isomer produced when methanol is used as a precursor. When ethylene glycol is used as themore » precursor, methylene-oxonium is produced in addition to the methanol cation. Theoretical results at the CCSD(T)/cc-pVTZ level show that methylene-oxonium is lower in energy than methanol cation by 6.4 kcal/mol, and is in fact the global minimum isomer on the [C,H{sub 4},O]{sup +} potential surface. Methanol cation is trapped behind an isomerization barrier in our source, providing a convenient method to produce and characterize this transient species. Analysis of the spectrum of the methanol cation provides evidence for strong CH stretch vibration/torsion coupling in this molecular ion.« less
NASA Astrophysics Data System (ADS)
Masetti, N.; Parisi, P.; Jiménez-Bailón, E.; Palazzi, E.; Chavushyan, V.; Bassani, L.; Bazzano, A.; Bird, A. J.; Dean, A. J.; Galaz, G.; Landi, R.; Malizia, A.; Minniti, D.; Morelli, L.; Schiavone, F.; Stephen, J. B.; Ubertini, P.
2012-02-01
Since its launch in October 2002, the INTEGRAL satellite has revolutionized our knowledge of the hard X-ray sky thanks to its unprecedented imaging capabilities and source detection positional accuracy above 20 keV. Nevertheless, many of the newly-detected sources in the INTEGRAL sky surveys are of unknown nature. The combined use of available information at longer wavelengths (mainly soft X-rays and radio) and of optical spectroscopy on the putative counterparts of these new hard X-ray objects allows us to pinpoint their exact nature. Continuing our long-standing program that has been running since 2004, and using 6 different telescopes of various sizes together with data from an online spectroscopic survey, here we report the classification through optical spectroscopy of 22 more unidentified or poorly studied high-energy sources detected with the IBIS instrument onboard INTEGRAL. We found that 16 of them are active galactic nuclei (AGNs), while the remaining 6 objects are within our Galaxy. Among the identified extragalactic sources, the large majority (14) is made up of type 1 AGNs (i.e. with broad emission lines); of these, 6 lie at redshift larger than 0.5 and one (IGR J12319-0749) has z = 3.12, which makes it the second farthest object detected in the INTEGRAL surveys up to now. The remaining AGNs are of type 2 (that is, with narrow emission lines only), and one of the two cases is confirmed as a pair of interacting Seyfert 2 galaxies. The Galactic objects are identified as two cataclysmic variables, one high-mass X-ray binary, one symbiotic binary and two chromospherically active stars, possibly of RS CVn type. The main physical parameters of these hard X-ray sources were also determined using the multiwavelength information available in the literature. We thus still find that AGNs are the most abundant population among hard X-ray objects identified through optical spectroscopy. Moreover, we note that the higher sensitivity of the more recent INTEGRAL surveys is now enabling the detection of high-redshift AGNs, thus allowing the exploration of the most distant hard X-ray emitting sources and possibly of the most extreme blazars. Based on observations collected at the following observatories: Cerro Tololo Interamerican Observatory (Chile); Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain); Astronomical Observatory of Bologna in Loiano (Italy); Astronomical Observatory of Asiago (Italy); Observatorio Astronómico Nacional (San Pedro Mártir, Mexico); Anglo-Australian Observatory (Siding Spring, Australia).
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.
1984-09-01
This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO/sub 2/ sorbent. The test data include: preliminary equipment calibration data, boiler operating data for both tests, fuel analysis results, and complete flue gas emission measurement and laboratory analysis results. Flue gas emission measurements included: continuous monitoring for criteria gas pollutants; gas chromatography (GC) of gas grab samples for volatile organics (C1-C6); EPA Method 5 for particulate;more » controlled condensation system for SO2 emissions; and source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR) and low resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), liquid chromatography (LC) separation of organic extracts into seven polarity fractions with total organic and IR analyses of eluted fractions, flue gas concentrations of trace elements by spark source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS), and biological assays of organic extracts.« less
Ongoing Massive Star Formation in NGC 604
NASA Astrophysics Data System (ADS)
Martínez-Galarza, J. R.; Hunter, D.; Groves, B.; Brandl, B.
2012-12-01
NGC 604 is the second most massive H II region in the Local Group, thus an important laboratory for massive star formation. Using a combination of observational and analytical tools that include Spitzer spectroscopy, Herschel photometry, Chandra imaging, and Bayesian spectral energy distribution fitting, we investigate the physical conditions in NGC 604 and quantify the amount of massive star formation currently taking place. We derive an average age of 4 ± 1 Myr and a total stellar mass of 1.6+1.6 - 1.0 × 105 M ⊙ for the entire region, in agreement with previous optical studies. Across the region, we find an effect of the X-ray field on both the abundance of aromatic molecules and the [Si II] emission. Within NGC 604, we identify several individual bright infrared sources with diameters of about 15 pc and luminosity-weighted masses between 103 M ⊙ and 104 M ⊙. Their spectral properties indicate that some of these sources are embedded clusters in process of formation, which together account for ~8% of the total stellar mass in the NGC 604 system. The variations of the radiation field strength across NGC 604 are consistent with a sequential star formation scenario, with at least two bursts in the last few million years. Our results indicate that massive star formation in NGC 604 is still ongoing, likely triggered by the earlier bursts.
Cismesia, Adam P.; Bailey, Laura S.; Bell, Matthew R.; Tesler, Larry F.; Polfer, Nicolas C.
2016-01-01
The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors? opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation. PMID:26975370
Laser patterning of transparent polymers assisted by plasmon excitation.
Elashnikov, R; Trelin, A; Otta, J; Fitl, P; Mares, D; Jerabek, V; Svorcik, V; Lyutakov, O
2018-06-13
Plasmon-assisted lithography of thin transparent polymer films, based on polymer mass-redistribution under plasmon excitation, is presented. The plasmon-supported structures were prepared by thermal annealing of thin Ag films sputtered on glass or glass/graphene substrates. Thin films of polymethylmethacrylate, polystyrene and polylactic acid were then spin-coated on the created plasmon-supported structures. Subsequent laser beam writing, at the wavelength corresponding to the position of plasmon absorption, leads to mass redistribution and patterning of the thin polymer films. The prepared structures were characterized using UV-Vis spectroscopy and confocal and AFM microscopy. The shape of the prepared structures was found to be strongly dependent on the substrate type. The mechanism leading to polymer patterning was examined and attributed to the plasmon-heating. The proposed method makes it possible to create different patterns in polymer films without the need for wet technological stages, powerful light sources or a change in the polymer optical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.
1984-07-01
This volume of the report gives emission results from field tests of a crude-oil process heater burning a combination of oil and refinery gas. The heater had been modified by adding a system for injecting secondary air to reduce NOx emissions. One test was conducted with the staged air system (low NOx), and the other, without (baseline). Tests included continuous monitoring of flue gas emissions and source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of the samples utilizing gas chromatography (GC), infrared spectrometry (IR), gas chromatography/mass spectroscopy (GC/MS), and low resolution mass spectrometry (SSMS)more » for trace metals. LRMS analysis suggested the presence of eight compound categories in the organic emissions during the baseline test and four in the low-NOx test.« less
Duong, Vu Thi Thuy; Duong, Vu; Lien, Nghiem Thi Ha; Imasaka, Tomoko; Tang, Yuanyuan; Shibuta, Shinpei; Hamachi, Akifumi; Hoa, Do Quang; Imasaka, Totaro
2016-03-01
Polychlorinated biphenyls (PCBs) in transformer and food oils were measured using gas chromatography combined with multiphoton ionization mass spectroscopy. An ultrashort laser pulse emitting in the far-ultraviolet region was utilized for efficient ionization of the analytes. Numerous signal peaks were clearly observed for a standard sample mixture of PCBs when the third and fourth harmonic emissions (267 and 200nm) of a femtosecond Ti:sapphire laser (800nm) were employed. The signal intensities were found to be greater when measured at 200nm compared with those measured at 267nm, providing lower detection limits especially for highly chlorinated PCBs at shorter wavelengths. After simple pretreatment using disposable columns, PCB congeners were measured and found to be present in the transformer oils used in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.
Application of the mass-spectrometer MASHA for mass-spectrometry and laser-spectroscopy
NASA Astrophysics Data System (ADS)
Rodin, A. M.; Belozerov, A. V.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Sagaidak, R. N.; Salamatin, V. S.; Stepantsov, S. V.; Vanin, D. V.
2010-02-01
We report the present status of the mass-spectrometer MASHA (Mass-Analyzer of Supper Heavy Atoms) designed for determination of the masses of superheavy elements. The mass-spectrometer is connected to the U-400M cyclotron of the Flerov Laboratory for Nuclear Reactions (FLNR) JINR, Dubna. The first experiments on mass-measurements for 112 and 114 elements will be performed in the upcoming 2010. For this purpose a hot catcher, based on a graphite stopper, is constructed. The α-decay of the superheavy nuclides or spontaneous fission products will be detected with a silicon 192 strips detector. The experimental program of future investigations using the technique of a gas catcher is discussed. It should be regarded as an alternative of the classical ISOL technique. The possibilities are considered for using this mass-spectrometer for laser spectroscopy of nuclei far off-stability.
Ring resonant cavities for spectroscopy
Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.
1999-06-15
Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.
Ring resonant cavities for spectroscopy
Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun
1999-01-01
Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).
X-ray astronomical spectroscopy
NASA Technical Reports Server (NTRS)
Holt, S. S.
1980-01-01
The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.
VizieR Online Data Catalog: X-Shooter spectroscopy of YSOs in Lupus (Frasca+, 2017)
NASA Astrophysics Data System (ADS)
Frasca, A.; Biazzo, K.; Alcala, J. M.; Manara, C. F.; Stelzer, B.; Covino, E.; Antoniucci, S.
2017-03-01
Membership, atmospheric parameters (Teff, logg, and [Fe/H]), radial velocity (RV), projected rotational velocity (vsini) and veiling at five wavelengths are listed for 102 Lupus YSO candidates in Table 1. Mass and age are also reported in Table 1 for the members, with the exception of subluminous sources. Table 2 reports the full width at 10% maximum of the Hα line and the fluxes in the Hα, Hβ, CaII-IRT, CaII-K, and NaI,D1,2 lines. Table 3 reports the fluxes for Paγ, Paβ, and Brγ measured in the NIR X-Shooter spectra. (3 data files).
Extraction and Characterization of Lipids from Salicornia virginica and Salicornia europaea
NASA Technical Reports Server (NTRS)
Kulis,Michael J.; Hepp, Aloysius F.; Pham, Phong X.; Ribita, Daniela; Bomani, Bilal M. M.; Duraj, Stan A.
2010-01-01
The lipid content from Salicornia virginica and Salicornia europaea is investigated. The plants are leafless halophytes with seeds contained in terminal nodes. The lipids, in the form of cell membranes and oil bodies that come directly from the node cells, are observed using fluorescence microscopy. Two extraction methods as well as the results of extracting from the seeds and from the entire nodes are described. Characterization of the fatty acid components of the lipids using Gas Chromatography in tandem with Mass Spectroscopy is also described. Comparisons are made between the two methods and between the two plant materials as lipid sources.
Infrared imaging spectroscopy of the Galactic center - Distribution and motions of the ionized gas
NASA Technical Reports Server (NTRS)
Herbst, T. M.; Beckwith, S. V. W.; Forrest, W. J.; Pipher, J. L.
1993-01-01
High spatial spectral resolution IR images of the Galactic center in the Br-gamma recombination line of hydrogen were taken. A coherent filament of gas extending from north of IRS 1, curving around IRS 16/Sgr A complex, and continuing to the southwest, is seen. Nine stellar sources have associated Br-gamma emission. The total Br-gamma line flux in the filament is approximately 3 x 10 exp -15 W/sq m. The distribution and kinematics of the northern arm suggest orbital motion; the observations are accordingly fit with elliptical orbits in the field of a central point of mass.
Applications of absorption spectroscopy using quantum cascade lasers.
Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli
2014-01-01
Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.
NASA Astrophysics Data System (ADS)
Aumaille, K.; Granier, A.; Schmidt, M.; Grolleau, B.; Vallée, C.; Turban, G.
2000-08-01
Oxygen/tetraethoxysilane (O2/TEOS) plasmas created in a low-pressure (2 mTorr) rf helicon reactor have been studied by optical emission spectroscopy and mass spectrometry as a function of the rf (13.56 MHz) power injected into the plasma, which is varied from 25 to 300 W. Complementary measurements for the interpretation of the mass spectrometric data have also been carried out using the threshold ionization mass spectrometry technique. It is shown that valuable information on the parent molecules is obtained by both optical emission spectroscopy and threshold ionization mass spectrometry techniques. At low rf power TEOS molecules and organic compounds like hydrocarbons (CH4, C2H2) and alcohols (CH3CH2OH) as well as H2, H2O, CO, O2, CO2 are observed. At high rf power TEOS and O2 molecules are totally or mostly depleted, the share of hydrocarbons decreases and carbon monoxide, carbon dioxide, water and hydrogen become the essential parts of the gas phase.
Optical Measurement of Radiocarbon below Unity Fraction Modern by Linear Absorption Spectroscopy.
Fleisher, Adam J; Long, David A; Liu, Qingnan; Gameson, Lyn; Hodges, Joseph T
2017-09-21
High-precision measurements of radiocarbon ( 14 C) near or below a fraction modern 14 C of 1 (F 14 C ≤ 1) are challenging and costly. An accurate, ultrasensitive linear absorption approach to detecting 14 C would provide a simple and robust benchtop alternative to off-site accelerator mass spectrometry facilities. Here we report the quantitative measurement of 14 C in gas-phase samples of CO 2 with F 14 C < 1 using cavity ring-down spectroscopy in the linear absorption regime. Repeated analysis of CO 2 derived from the combustion of either biogenic or petrogenic sources revealed a robust ability to differentiate samples with F 14 C < 1. With a combined uncertainty of 14 C/ 12 C = 130 fmol/mol (F 14 C = 0.11), initial performance of the calibration-free instrument is sufficient to investigate a variety of applications in radiocarbon measurement science including the study of biofuels and bioplastics, illicitly traded specimens, bomb dating, and atmospheric transport.
Supergiant fast X-ray transients with Swift: Spectroscopic and temporal properties
NASA Astrophysics Data System (ADS)
Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Farinelli, R.; Ceccobello, C.; Vercellone, S.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.
2012-12-01
Supergiant fast X-ray transients (SFXTs) are a class of high-mass X-ray binaries with possible counterparts in the high energy gamma rays. The Swift SFXT Project1 has conducted a systematic investigation of the properties of SFTXs on timescales ranging from minutes to years and in several intensity states (from bright flares, to intermediate intensity states, and down to almost quiescence). We also performed broad-band spectroscopy of outbursts, and intensity-selected spectroscopy outside of outbursts. We demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we assessed the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present the most recent results from our investigation. The spectroscopic and, most importantly, timing properties of SFXTs we have uncovered with Swift will serve as a guide in search for the high energy emission from these enigmatic objects.
ERIC Educational Resources Information Center
Clennan, Malgorzata M.; Clennan, Edward L.
2011-01-01
Dehydrations of "cis"- and "trans"-2-methylcyclohexanol mixtures were carried out with 60% sulfuric acid at 78-80 [degrees]C as a function of time and the products were identified by gas chromatography-mass spectroscopy (GC-MS) analysis. The compounds identified in the reaction mixtures include alkenes, 1-, 3-, and 4-methylcyclohexenes and…
2005-12-01
purification scheme that appears most advantageous. The purest product obtained will be subjected to NMR analysis by Josh Kurutz and mass spectroscopy by...Phosphoenolpyruvate carboxykinase 2 Phosphomevalonate kinase Protein phosphatase 1A, magnesium dependent, alpha isoform Uridine- cytidine kinase 1-like 1...more purified preparation should permit structural analysis of the molecules responsible for the activity using mass spectroscopy and nuclear
Vacuum-ultraviolet lasers and spectroscopy
NASA Astrophysics Data System (ADS)
Hollenstein, U.
2012-01-01
Single-photon ionisation of most atoms and molecules requires short-wavelength radiation, typically in the vacuum-ultraviolet (VUV, λ < 200 nm) or extreme ultraviolet (XUV, λ < 105 nm) region of the electromagnetic spectrum. The first VUV and XUV radiation sources used to study molecular photoabsorption and photoionisation spectra were light sources emitting a broad continuous spectrum, such as high pressure lamps or synchrotrons. Monochromatic VUV and XUV radiation was obtained using diffraction gratings in evacuated monochromators, which resulted in a resolving power ν/Δv of at best 106 (i. e. 0.1 cm-1 at 100 000 cm-1), but more typically in the range 104-105 . The invention of the laser and the development of nonlinear optical frequency-upconversion techniques enabled the development of table-top narrow-bandwidth, coherent VUV and XUV laser sources with which VUV photoabsorption, photoionisation and photoelectron spectra of molecules can be recorded at much higher resolution, the best sources having bandwidths better than 50 MHz. Such laser sources are ideally suited to study the structure and dynamics of electronically excited states of atoms and molecules and molecular photoionisation using photoabsorption, photoionisation and photoelectron spectroscopy. This chapter presents the general principles that are exploited to generate tunable narrow-band laser radiation below 200 nm and describes spectroscopic methods such as photoabsorption spectroscopy, photoionisation spectroscopy and threshold photoelectron spectroscopy that relay on the broad tunability and narrow-bandwidth of VUV radiation sources.
Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel
2014-11-21
A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OTKP Team
2010-01-01
The DIGIT (Dust, Ice, and Gas In Time) Open Time Key Project utilizes the PACS spectrometer (57-210 um) onboard the Herschel Space Observatory to study the colder regions of young stellar objects and protostellar cores, complementary to recent observations from Spitzer and ground-based observatories. DIGIT focuses on 30 embedded sources and 64 disk sources, and includes supporting photometry from PACS and SPIRE, as well as spectroscopy from HIFI, selected from nearby molecular clouds. For the embedded sources, PACS spectroscopy will allow us to address the origin of [CI] and high-J CO lines observed with ISO-LWS. Our observations are sensitive to the presence of cold crystalline water ice, diopside, and carbonates. Additionally, PACS scans are 5x5 maps of the embedded sources and their outflows. Observations of more evolved disk sources will sample low and intermediate mass objects as well as a variety of spectral types from A to M. Many of these sources are extremely rich in mid-IR crystalline dust features, enabling us to test whether similar features can be detected at larger radii, via colder dust emission at longer wavelengths. If processed grains are present only in the inner disk (in the case of full disks) or from the emitting wall surface which marks the outer edge of the gap (in the case of transitional disks), there must be short timescales for dust processing; if processed grains are detected in the outer disk, radial transport must be rapid and efficient. Weak bands of forsterite and clino- and ortho-enstatite in the 60-75 um range provide information about the conditions under which these materials were formed. For the Science Demonstration Phase we are observing an embedded protostar (DK Cha) and a Herbig Ae/Be star (HD 100546), exemplars of the kind of science that DIGIT will achieve over the full program.
Primeval very low-mass stars and brown dwarfs - III. The halo transitional brown dwarfs
NASA Astrophysics Data System (ADS)
Zhang, Z. H.; Pinfield, D. J.; Gálvez-Ortiz, M. C.; Homeier, D.; Burgasser, A. J.; Lodieu, N.; Martín, E. L.; Osorio, M. R. Zapatero; Allard, F.; Jones, H. R. A.; Smart, R. L.; Martí, B. López; Burningham, B.; Rebolo, R.
2018-05-01
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0 and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical to near infrared spectroscopy with the Very Large Telescope. We also obtained an optical to near infrared spectrum of a previously known L subdwarf, ULAS J135058.85+081506.8, and re-classified it as a usdL3 subdwarf. These three objects all have typical halo kinematics. They have Teff around 2050-2250 K, -1.8 ≤ [Fe/H] ≤-1.5, and mass around 0.0822-0.0833 M⊙, according to model spectral fitting and evolutionary models. These sources are likely halo transitional brown dwarfs with unsteady hydrogen fusions, as their masses are just below the hydrogen-burning minimum mass, which is ˜ 0.0845 M⊙ at [Fe/H] = -1.6 and ˜ 0.0855 M⊙ at [Fe/H] = -1.8. Including these, there are now nine objects in the `halo brown dwarf transition zone', which is a `substellar subdwarf gap' spans a wide temperature range within a narrow mass range of the substellar population.
Discarded candidate companions to low-mass members of Chamaeleon I
NASA Astrophysics Data System (ADS)
Comerón, F.
2012-01-01
Context. Direct detections of brown dwarfs and planetary-mass companions to members of nearby star-forming regions provide important clues about the process of star formation, core fragmentation, and protoplanetary disk evolution. Aims: We study two faint objects at a very small angular distance from the low-mass star ESO-Hα-558 and the possible massive brown dwarf ESO-Hα-566, both of which are members of the Chamaeleon I star-forming region, to establish whether they are physical companions to those sources. If they are, their low luminosities should imply L or T spectral types, which have clearly detectable spectral features. Methods: Adaptive optics-assisted imaging and spectroscopy of both faint candidate companions has been obtained with the NACO instrument at the Very Large Telescope (VLT). Results: Photometry shows that the colors of both objects are compatible with them being moderately reddened, normal stars in the background of the Chamaeleon I clouds. This interpretation is confirmed spectroscopically, as the spectrum between 1.4 and 2.4 μm of both objects has a featureless, monotonic slope lacking the strong H2O absorption features that dominate cool stellar and substellar spectra in that domain. Conclusions: We demonstrate that the two faint sources seen very close to ESO-Hα-558 and ESO-Hα-566 are unrelated background stars, instead of giant planetary-mass companions as might be expected based on their faintness and angular proximity. Based on observations collected with the Very Large Telescope (VLT) at the European Southern Observatory, Paranal, Chile, under observing programmes 075.C-0809(B) and 078.C-0429(C).
NASA Astrophysics Data System (ADS)
Krzempek, K.; Abramski, K. M.; Nikodem, M.
2017-09-01
A widely tunable, fully monolithic, mid-infrared difference frequency generation source and its application in the dispersion-spectroscopy-based laser trace gas detection of methane and ethane, near 2938 and 2998 cm-1, is presented. Utilizing a fiber pigtailed nonlinear crystal module radically simplified the optical setup, while maintaining a superb conversion efficiency of 20% W-1. Seeded directly from two laser diodes, the source delivered ~0.5 mW of tunable radiation, which was used in a chirped laser dispersion spectroscopy setup, enabling the highly sensitive detection of hydrocarbons.
NASA Technical Reports Server (NTRS)
Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.
1986-01-01
The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.
Production of intensive negative lithium beam with caesium sputter-type ion source
NASA Astrophysics Data System (ADS)
Lobanov, Nikolai R.
2018-01-01
Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.
NASA Technical Reports Server (NTRS)
Glavin, D.; Freissnet, C.; Eigenbrode, J.; Miller, K.; Martin, M.; Summons, R. E.; Steele, A.; Archer, D.; Brunner, A.; Buch, A.;
2014-01-01
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stranak, Vitezslav; University of South Bohemia, Institute of Physics and Biophysics, Branisovska 31, 370 05 Ceske Budejovice; Herrendorf, Ann-Pierra
2012-11-01
This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a highmore » concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.« less
NASA Technical Reports Server (NTRS)
Miller, M. D.
1980-01-01
Lead salt diode lasers are being used increasingly as tunable sources of monochromatic infrared radiation in a variety of spectroscopic systems. These devices are particularly useful, both in the laboratory and in the field, because of their high spectral brightness (compared to thermal sources) and wide spectral coverage (compared to line-tunable gas lasers). While the primary commercial application of these lasers has been for ultrahigh resolution laboratory spectroscopy, there are numerous systems applications, including laser absorbtion pollution monitors and laser heterodyne radiometers, for which diode lasers have great potential utility. Problem areas related to the wider use of these components are identified. Among these are total tuning range, mode control, and high fabrication cost. A fabrication technique which specifically addresses the problems of tuning range and cost, and which also has potential application for mode control, is reported.
2017-04-24
Spectroscopy * R. L. Aggarwal1, S. Di Cecca, L. W. Farrar, Shabshelowitz, A...Public Release A compact Raman spectroscopy system with high sensitivity to chemical aerosols has been developed. This system has been used to...this represents the lowest chemical aerosol concentration and signal integration period product ever reported for a Raman spectroscopy system.
Benning, C; Huang, Z H; Gage, D A
1995-02-20
Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells.
Katsivela, Eleftheria; Wray, Victor; Pieper, Dietmar H.; Wittich, Rolf-Michael
1999-01-01
Bacterial strain LW1, which belongs to the family Comamonadaceae, utilizes 1-chloro-4-nitrobenzene (1C4NB) as a sole source of carbon, nitrogen, and energy. Suspensions of 1C4NB-grown cells removed 1C4NB from culture fluids, and there was a concomitant release of ammonia and chloride. Under anaerobic conditions LW1 transformed 1C4NB into a product which was identified as 2-amino-5-chlorophenol by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. This transformation indicated that there was partial reduction of the nitro group to the hydroxylamino substituent, followed by Bamberger rearrangement. In the presence of oxygen but in the absence of NAD, fast transformation of 2-amino-5-chlorophenol into a transiently stable yellow product was observed with resting cells and cell extracts. This compound exhibited an absorption maximum at 395 nm and was further converted to a dead-end product with maxima at 226 and 272 nm. The compound formed was subsequently identified by 1H and 13C NMR spectroscopy and mass spectrometry as 5-chloropicolinic acid. In contrast, when NAD was added in the presence of oxygen, only minor amounts of 5-chloropicolinic acid were formed, and a new product, which exhibited an absorption maximum at 306 nm, accumulated. PMID:10103229
Low-Cost, Single-Frequency Sources for Spectroscopy using Conventional Fabry-Perot Diode Lasers
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.
Low-Cost, Single-Frequency Sources for Spectroscopy Using Conventional Fabry-Perot Diode Lasers
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Duerksen, Gary L.
1999-01-01
Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.
Recent Results for the ECHo Experiment
NASA Astrophysics Data System (ADS)
Hassel, C.; Blaum, K.; Goodacre, T. Day; Dorrer, H.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Filianin, P.; Fäßler, A.; Fleischmann, A.; Gastaldo, L.; Goncharov, M.; Hengstler, D.; Jochum, J.; Johnston, K.; Keller, M.; Kempf, S.; Kieck, T.; Köster, U.; Krantz, M.; Marsh, B.; Mokry, C.; Novikov, Yu. N.; Ranitzsch, P. C. O.; Rothe, S.; Rischka, A.; Runke, J.; Saenz, A.; Schneider, F.; Scholl, S.; Schüssler, R. X.; Simkovic, F.; Stora, T.; Thörle-Pospiech, P.; Türler, A.; Veinhard, M.; Wegner, M.; Wendt, K.; Zuber, K.
2016-08-01
The Electron Capture in ^{163}Ho experiment, ECHo, is designed to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured spectrum following the electron capture (EC) in ^{163}Ho. Arrays of low-temperature metallic magnetic calorimeters (MMCs), read-out by microwave SQUID multiplexing, will be used in this experiment. With a first MMC prototype having the ^{163}Ho source ion-implanted into the absorber, we performed the first high energy resolution measurement of the EC spectrum, which demonstrated the feasibility of such an experiment. In addition to the technological challenges for the development of MMC arrays, which preserve the single pixel performance in terms of energy resolution and bandwidth, the success of the experiment relies on the availability of large ultra-pure ^{163}Ho samples, on the precise description of the expected spectrum, and on the identification and reduction of background. We present preliminary results obtained with standard MMCs developed for soft X-ray spectroscopy, maXs-20, where the ^{163}Ho ion-implantation was performed using a high-purity ^{163}Ho source produced by advanced chemical and mass separation. With these measurements, we aim at determining an upper limit for the background level due to source contamination and provide a refined description of the calorimetrically measured spectrum. We discuss the plan for a medium scale experiment, ECHo-1k, in which about 1000 mathrm {Bq} of high-purity ^{163}Ho will be ion-implanted into detector arrays. With one year of measuring time, we will be able to achieve a sensitivity on the electron neutrino mass below 20 eV/c^2 (90 % C.L.), improving the present limit by more than one order of magnitude. This experiment will guide the necessary developments to reach the sub-eV sensitivity.
Glaser, Paul H.; Volin, John C.; Givnish, Thomas J.; Hansen, Barbara C. S.; Stricker, Craig A.
2012-01-01
Tropical and sub-tropical wetlands are considered to be globally important sources for greenhouse gases but their capacity to store carbon is presumably limited by warm soil temperatures and high rates of decomposition. Unfortunately, these assumptions can be difficult to test across long timescales because the chronology, cumulative mass, and completeness of a sedimentary profile are often difficult to establish. We therefore made a detailed analysis of a core from the principal drainage outlet of the Everglades of South Florida, to assess these problems and determine the factors that could govern carbon accumulation in this large sub-tropical wetland. Accelerator mass spectroscopy dating provided direct evidence for both hard-water and open-system sources of dating errors, whereas cumulative mass varied depending upon the type of method used. Radiocarbon dates of gastropod shells, nevertheless, seemed to provide a reliable chronology for this core once the hard-water error was quantified and subtracted. Long-term accumulation rates were then calculated to be 12.1 g m-2 yr-1 for carbon, which is less than half the average rate reported for northern and tropical peatlands. Moreover, accumulation rates remained slow and relatively steady for both organic and inorganic strata, and the slow rate of sediment accretion ( 0.2 mm yr-1) tracked the correspondingly slow rise in sea level (0.35 mm yr-1 ) reported for South Florida over the past 4000 years. These results suggest that sea level and the local geologic setting may impose long-term constraints on rates of sediment and carbon accumulation in the Everglades and other wetlands.
Contributions of Organic Sources to Atmospheric Aerosol Particle Concentrations and Growth
NASA Astrophysics Data System (ADS)
Russell, L. M.
2017-12-01
Organic molecules are important contributors to aerosol particle mass and number concentrations through primary emissions as well as secondary growth in the atmosphere. New techniques for measuring organic aerosol components in atmospheric particles have improved measurements of this contribution in the last 20 years, including Scanning Transmission X-ray Microscopy Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS), Fourier Transform Infrared spectroscopy (FTIR), and High-Resolution Aerosol Mass Spectrometry (AMS). STXM-NEXAFS individual aerosol particle composition illustrated the variety of morphology of organic components in marine aerosols, the inherent relationships between organic composition and shape, and the links between atmospheric aerosol composition and particles produced in smog chambers. This type of single particle microscopy has also added to size distribution measurements by providing evidence of how surface-controlled and bulk-controlled processes contribute to the growth of particles in the atmosphere. FTIR analysis of organic functional groups are sufficient to distinguish combustion, marine, and terrestrial organic particle sources and to show that each of those types of sources has a surprisingly similar organic functional group composition over four different oceans and four different continents. Augmenting the limited sampling of these off-line techniques with side-by-side inter-comparisons to online AMS provides complementary composition information and consistent quantitative attribution to sources (despite some clear method differences). Single-particle AMS techniques using light scattering and event trigger modes have now also characterized the types of particles found in urban, marine, and ship emission aerosols. Most recently, by combining with off-line techniques, single particle composition measurements have separated and quantified the contributions of organic, sulfate and salt components from ocean biogenic and sea spray emissions to particles, addressing the persistent question of the sources of cloud condensation nuclei in clean marine conditions.
APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS
Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...
Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Martin, Madhavi Z.; Fox, Robert V.; Miziolek, Andrzej W.; DeLucia, Frank C.; André, Nicolas
2015-06-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.
Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W
2015-01-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less
Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W
2015-01-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less
Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek
2001-05-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less
The BALDER Beamline at the MAX IV Laboratory
NASA Astrophysics Data System (ADS)
Klementiev, K.; Norén, K.; Carlson, S.; Sigfridsson Clauss, K. G. V.; Persson, I.
2016-05-01
X-ray absorption spectroscopy (XAS) includes well-established methods to study the local structure around the absorbing element - extended X-ray absorption fine structure (EXAFS), and the effective oxidation number or to quantitatively determine the speciation of an element in a complex matrix - X-ray absorption near-edge structure (XANES). The increased brilliance and intensities available at the new generation of synchrotron light sources makes it possible to study, in-situ and in-operando, much more dilute systems with relevance for natural systems, as well as the micro-scale variability and dynamics of chemical reactions on the millisecond time-scale. The design of the BALDER beamline at the MAX IV Laboratory 3 GeV ring has focused on a high flux of photons in a wide energy range, 2.4-40 keV, where the K-edge is covered for the elements S to La, and the L 3-edge for all elements heavier than Sb. The overall design of the beamline will allow large flexibility in energy range, beam size and data collection time. The other focus of the beamline design is the possibility to perform multi-technique analyses on samples. Development of sample environment requires focus on implementation of auxiliary methods in such a way that techniques like Fourier transform infrared (FTIR) spectroscopy, UV-Raman spectroscopy, X-ray diffraction and/or mass spectrometry can be performed simultaneously as the XAS study. It will be a flexible system where different instruments can be plugged in and out depending on the needs for the particular investigation. Many research areas will benefit from the properties of the wiggler based light source and the capabilities to perform in-situ and in-operando measurements, for example environmental and geochemical sciences, nuclear chemistry, catalysis, materials sciences, and cultural heritage.
Nebular Line Emission and Stellar Mass of Bright z 8 Galaxies "Super-Eights"
NASA Astrophysics Data System (ADS)
Holwerda, Benne; Bouwens, Rychard; Trenti, Michele; Oesch, Pascal; Labbe, Ivo; Smit, Renske; Roberts-Borsani, Guido; Bernard, Stephanie; Bridge, Joanna
2018-05-01
Searches for the Lyman-alpha emission from the very first galaxies ionizing the Universe have proved to be extremely difficult with limited success beyond z 7 (<3% detections). However, a search of all CANDELS yielded four bright z 8 sources with associated strong Lyman-alpha lines, despite the Universe expected to be 70% neutral at this time. The key to their selection is an extremely red IRAC color ([3.6]-[4.5]> 0.5, Roberts-Borsani+ 2016), indicative of very strong nebular line emission. Do such extreme line emitting galaxies produce most of the photons to reionize the Universe? We propose to expand the sample of bright z 8 galaxies with reliable IRAC colors with seven more Y-band dropouts found with HST and confirmed through HST/Spitzer. The Spitzer observations will test how many of bright z 8 galaxies are IRAC-red and measure both their stellar mass and [OIII]+Hbeta line strength. Together with Keck/VLT spectroscopy, they will address these questions: I) Do all luminous z 8 galaxies show such red IRAC colors ([OIII] emission / hard spectra)? II) Is luminosity or a red IRAC color the dominant predictor for Lyman-alpha emission? III) Or are these sources found along exceptionally transparent sightlines into the early Universe? With 11 bright z 8 sources along different lines-of-sight, all prime targets for JWST, we will aim to determine which of the considered factors (luminosity, color, sight-line) drives the high Lyman-alpha prevalence (100%) and insight into the sources reionizing the Universe.
NASA Astrophysics Data System (ADS)
Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.
2005-01-01
We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03
Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R
1998-03-01
Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.
A technique for phase correction in Fourier transform spectroscopy
NASA Astrophysics Data System (ADS)
Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.
2018-03-01
Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.
Majchrzak, Milena; Rojkiewicz, Marcin; Celiński, Rafał; Kuś, Piotr; Sajewicz, Mieczysław
In this study, we present identification and physicochemical characterization of new cathinone derivatives, 4-fluoro-PV9 and already known α-PHP in seized materials. Although the disclosure of α-PHP from an illegal product had been reported and characterized to some extent, the data on α-PHP are also presented together with those of 4-fluoro-PV9. The data of characterization for the two compounds were obtained by high-performance liquid chromatography (HPLC)-mass spectrometry and HPLC-diode array detection, electrospray ionization/ion trap mass spectrometry in MS 2 and MS 3 modes, gas chromatography-mass spectrometry, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and nuclear magnetic resonance spectroscopy. To our knowledge, this is the first report for identification and detailed characterization of 4-fluoro-PV9 circulated on the illegal drug market.
Chen, Yanting; Du, Wenjiao; Chen, Jinsheng; Hong, Youwei; Zhao, Jinping; Xu, Lingling; Xiao, Hang
2017-02-01
Particulate matter (PM 10 ) associated with the fractions of organic macromolecules, including humic acid (HA), kerogen + black carbon (KB), and black carbon (BC), was determined during summer and winter at urban and suburban sites in a coastal city of southeast China. The organic macromolecules were characterized by elemental analysis (EA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR), and their sources were identified by using stable carbon/nitrogen isotope (δ 13 C/δ 15 N) and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model. The results showed that HA, kerogen (K), and BC accounted for the range of 3.89 to 4.55 % in PM 10 , while they were the dominant fractions of total organic carbon (TOC), ranging from 64.70 to 84.99 %. SEM analysis indicated that BC particles were porous/nonporous and consisted of spherical and non-spherical (i.e., cylindrical and elongate) structures. The FTIR spectra of HA, KB, and BC exhibited similar functional groups, but the difference of various sites and seasons was observed. HA in PM 10 contained a higher fraction of aliphatic structures, such as long-chain fatty and carbohydrates with a carboxylic extremity. The C/N ratio, SEM, and δ 13 C/δ 15 N values provided reliable indicators of the sources of HA, K, and BC in PM 10 . The results suggested that HA and K majorly originated from terrestrial plants, and BC came from the mixture of combustion of terrestrial plants, fossil fuel, and charcoal. The air masses in winter originated from Mongolia (4 %), the northern area of China (48 %), and northern adjacent cities (48 %), suggesting the influence of anthropogenic sources through long-range transport, while the air masses for the summer period came from South China Sea (34 %) and Western Pacific Sea (66 %), representing clean marine air masses with low concentrations of organic macromolecules.
Laser-based sensors on UAVs for quantifying local emissions of greenhouse gases
NASA Astrophysics Data System (ADS)
Zondlo, Mark; Tao, Lei; O'Brien, Anthony; Ross, Kevin; Khan, Amir; Pan, Da; Golston, Levi; Sun, Kang; DiGangi, Josh
2015-04-01
Small unmanned aerial systems (UAS) provide an ideal platform to sample both locally near an emission source as well as within the atmospheric boundary layer. However, small UAS (those with wingspans or rotors on the order of a meter) place severe constraints on sensor size (~ liter volume), mass (~ kg), and power (10s W). Laser-based sensors employing absorption techniques are ideally suited for such platforms due to their high sensitivity, high selectivity, and compact footprint. We have developed and flown compact sensors for water vapor, carbon dioxide and methane using new advances in open-path, laser-based spectroscopy on a variety of platforms ranging from remote control helicopters to long-duration UAS. Open-path spectroscopy allows for high frequency sampling (10-25 Hz) while avoiding the size/mass/power of sample delays, inlet lines, and pumps. To address the challenges of in-flight stability in changing environmental conditions and any associated flight artifacts on the measurement itself (e.g. vibrations), we use an in-line reference cell at a reduced pressure (10 hPa) to account for systematic drift continuously while in flight. Wavelength modulation spectroscopy is used at different harmonics to isolate the narrow linewidth of the in-line reference signal from the ambient, pressure-broadened absorption lineshape of the trace gas of interest. As a result, a metric of in-flight performance is achieved in real-time on the same optical pathlength as the ambient signal. To demonstrate the great potential of laser-based sensors on UAS, we deployed a 1.65 micron-based methane sensor (4 kg, 50 W, 100 ppbv precision at 10 Hz) on a UT-Dallas remote control aircraft for two weeks around gas/oil extraction activities as part of the EDF Barnett Coordinated Campaign in October 2013. We conducted thirty-four flights around a compressor station to examine the spatial and temporal characteristics of its emissions. Leaks of methane were typically lofted to altitudes well above the surface (up to 100 m). In addition, plumes were very narrow horizontally (10-30 m width) within 200 m of the emission origin. By using a mass balance approach of upwind versus downwind CH4 concentrations, coupled to meteorological wind data, the CH4 emission rate from the compressor station averaged 13 ± 5 g CH4 s-1, consistent with individual, leak surveys measured within the compressor station itself. More recently, we developed a mid-infrared version of the same sensor using an antimonide laser at 3.3 microns. This sensor has a precision of 2 ppbv CH4 at 10 Hz, a mass of 1.3 kg, and consumes 10 W of power. Flight tests show the improved precision is capable of detecting methane leaks from landfills and cattle feedlots at higher altitudes (500 m) and greater distances downwind (several km) than the near infrared CH4 sensor. Sampling strategy is particularly important for not only UAS-based flight patterns but also sensor design. Many tradeoffs exist between the sampling density of the flight pattern, sensor precision, accuracy of wind data, and geographic isolation of the source of interest, and these will be discussed in the context of airborne-based CH4 measurements in the field. The development of compact yet robust trace gas sensors to be deployed on small UAS opens new capabilities for atmospheric sensing such as quantifying local source emissions (e.g. farms, well pads), vertical profiling of trace gases in a forest canopy, and trace gas distributions in complex areas (mountains, urban canyons).
NASA Astrophysics Data System (ADS)
Stegehuis, Paulien L.; Boogerd, Leonora S. F.; Inderson, Akin; Veenendaal, Roeland A.; Bonsing, Bert A.; Amelink, Arjen; Vahrmeijer, Alexander L.; Dijkstra, Jouke; Robinson, Dominic J.
2016-03-01
EUS-FNA can be used for pathological confirmation of a suspicious pancreatic mass. However, performance depends on an on-site cytologist and time between punction and final pathology results can be long. SFR spectroscopy is capable of extracting biologically relevant parameters (e.g. oxygenation and blood volume) in real-time from a very small tissue volume at difficult locations. In this study we determined feasibility of the integration of SFR spectroscopy during EUSFNA procedures in pancreatic masses. Patients with benign and malignant pancreatic masses who were scheduled for an EUS-FNA were included. The working guide wire inside the 19 gauge endoscopic biopsy needle was removed and the sterile single fiber (300 μm core and 700 μm outer diameter, wide-angle beam, NA 0.22) inserted through the needle. Spectroscopy measurements in the visiblenear infrared wavelength region (400-900 nm) and autofluorescence measurements (excitation at 405 nm) were taken three times, and subsequently cytology was obtained. Wavelength dependent optical properties were compared to cytology results. We took measurements in 13 patients with corresponding cytology results (including mucinous tumor, ductal adenocarcinoma, neuroendocrine tumor, and pancreatitis). In this paper we show the first analyzed results comparing normal pancreatic tissue with cancerous tissue in the same patient. We found a large difference in blood volume fraction, and blood oxygenation was higher in normal tissue. Integration of SFR spectroscopy is feasible in EUS-FNA procedures, the workflow hardly requires changes and it takes little time. The first results differentiating normal from tumor tissue are promising.
Mass spectrometric measurements of the isotopic anatomies of molecules (Invited)
NASA Astrophysics Data System (ADS)
Eiler, J. M.; Krumwiede, D.; Schlueter, H.
2013-12-01
Site-specific and multiple isotopic substitutions in molecular structures potentially provide an extraordinarily rich set of constraints on their sources, conditions of formation, reaction and transport histories, and perhaps other issues. Examples include carbonate ';clumped isotope' thermometry, clumped isotope measurements of CO2, O2, and, recently, methane, ethane and N2O; site-specific 15N measurements in N2O and 13C and D analyses of fatty acids, sugars, cellulose, food products, and, recently, n-alkanes. Extension of the principles behind these tools to the very large number of isotopologues of complex molecules could potentially lead to new uses of isotope chemistry, similar to proteomics, metabolomics and genomics in their complexity and depth of detail (';isotomics'?). Several technologies are potentially useful for this field, including ';SNIF-NMR', gas source mass spectrometry and IR absorption spectroscopy. However, all well established methods have restrictive limits in the sizes of samples, types of analyzes, and the sorts of isotopologues that can be measured with useful precision. We will present an overview of several emerging instruments and techniques of high-resolution gas source mass spectrometry that may enable study of a large proportion of the isotopologues of a wide range of volatile and semi-volatile compounds, including many organics, with precisions and sample sizes suitable for a range of applications. A variety of isotopologues can be measured by combining information from the Thermo 253 Ultra (a new high resolution, multi-collector gas source mass spectrometer) and the Thermo DFS (a very high resolution single collector, but used here on a novel mode to achieve ~per mil precision ratio measurements), sometimes supplemented by conventional bulk isotopic measurements. It is possible to design methods in which no one of these sources of data meaningfully constrain abundances of specific isotopologues, but their combination fully and precisely constrains a large number. We have assembled a suite of instruments (including the prototype of the Ultra, and a modified version of the DFS that is capable of dual inlet analyses) that make it logistically straightforward to perform such multi-instrument analyses. Examples will be presented documenting the accuracy of these techniques for systems that are independently well known (e.g., isotopologues of methane), and the precision and internal consistency of results for larger, more complex molecules (e.g., a suite of singly and doubly substituted isotopologues of hexane and other moderate-molecular-weight organics).
Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition
NASA Astrophysics Data System (ADS)
Spadaro, M. C.; Luches, P.; Benedetti, F.; Valeri, S.; Turchini, S.; Bertoni, G.; Ferretti, A. M.; Capetti, E.; Ponti, A.; D'Addato, S.
2017-02-01
Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiOx and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L2,3 absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.
Detailed α -decay study of 180Tl
NASA Astrophysics Data System (ADS)
Andel, B.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Bree, N.; Cocolios, T. E.; Comas, V. F.; Diriken, J.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Franchoo, S.; Ghys, L.; Heredia, J. A.; Huyse, M.; Ivanov, O.; Köster, U.; Liberati, V.; Marsh, B. A.; Nishio, K.; Page, R. D.; Patronis, N.; Seliverstov, M. D.; Tsekhanovich, I.; Van den Bergh, P.; Van De Walle, J.; Van Duppen, P.; Venhart, M.; Vermote, S.; Veselský, M.; Wagemans, C.
2017-11-01
A detailed α -decay spectroscopy study of 180Tl has been performed at ISOLDE (CERN). Z -selective ionization by the Resonance Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl. Fine-structure α decays to excited levels in the daughter 176Au were identified and an α -decay scheme of 180Tl was constructed based on an analysis of α -γ and α -γ -γ coincidences. Multipolarities of several γ -ray transitions deexciting levels in 176Au were determined. Based on the analysis of reduced α -decay widths, it was found that all α decays are hindered, which signifies a change of configuration between the parent and all daughter states.
Naziri, Davood; Hamidi, Masoud; Hassanzadeh, Salar; Tarhriz, Vahideh; Maleki Zanjani, Bahram; Nazemyieh, Hossein; Hejazi, Mohammd Amin; Hejazi, Mohammad Saeid
2014-01-01
Purpose: Carotenoids are of great interest in many scientific disciplines because of their wide distribution, diverse functions and interesting properties. The present report describes a new natural source for carotenoid production. Methods: Halorubrum sp., TBZ126, an extremely halophilic archaeon, was isolated from Urmia Lack following culture of water sample on marine agar medium and incubation at 30 °C. Then single colonies were cultivated in broth media. After that the cells were collected and carotenoids were extracted with acetone-methanol (7:3 v/v). The identification of carotenoids was performed by UV-VIS spectroscopy and confirmed by thin layer chromatography (TLC) in the presence of antimony pentachloride (SbCl5). The production profile was analyzed using liquid-chromatography mass spectroscopy (LC-MS) techniques. Phenotypic characteristics of the isolate were carried out and the 16S rRNA gene was amplified using polymerase chain reaction (PCR). Results: LC-MS analytical results revealed that produced carotenoids are bacterioruberin, lycopene and β-carotene. Bacterioruberin was found to be the predominant produced carotenoid. 16S rRNA analysis showed that TBZ126 has 100% similarity with Halorubrum chaoviator Halo-G*T (AM048786). Conclusion: Halorubrum sp. TBZ126, isolated from Urmia Lake has high capacity in the production of carotenoids. This extremely halophilic archaeon could be considered as a prokaryotic candidate for carotenoid production source for future studies. PMID:24409411
Spatially Resolved Spectroscopy of Narrow-line Seyfert 1 Host Galaxies
NASA Astrophysics Data System (ADS)
Scharwächter, J.; Husemann, B.; Busch, G.; Komossa, S.; Dopita, M. A.
2017-10-01
We present optical integral field spectroscopy for five z< 0.062 narrow-line Seyfert 1 (NLS1) galaxies, probing their host galaxies at ≳ 2{--}3 {kpc} scales. Emission lines from the active galactic nucleus (AGN) and the large-scale host galaxy are analyzed separately, based on an AGN-host decomposition technique. The host galaxy gas kinematics indicates large-scale gas rotation in all five sources. At the probed scales of ≳ 2{--}3 {kpc}, the host galaxy gas is found to be predominantly ionized by star formation without any evidence of a strong AGN contribution. None of the five objects shows specific star formation rates (SFRs) exceeding the main sequence of low-redshift star-forming galaxies. The specific SFRs for MCG-05-01-013 and WPVS 007 are roughly consistent with the main sequence, while ESO 399-IG20, MS 22549-3712, and TON S180 show lower specific SFRs, intermediate to the main sequence and the red quiescent galaxies. The host galaxy metallicities, derived for the two sources with sufficient data quality (ESO 399-IG20 and MCG-05-01-013), indicate central oxygen abundances just below the low-redshift mass-metallicity relation. Based on this initial case study, we outline a comparison of AGN and host galaxy parameters as a starting point for future extended NLS1 studies with similar methods.
NASA Astrophysics Data System (ADS)
Abodunrin, T.; Boyo, A.; Usikalu, M.; Obafemi, L.; Oladapo, O.; Kotsedi, L.; Yenus, Z.; Maaza, M.
2017-03-01
A.cepa peels are obtained from mature onion bulbs. Because of the continuous need for energy, alternative avenues for producing energy are gaining importance. The motivation for this work is based on an urgent need to source energy from readily available waste materials like domestic onion peels. Dye sensitized solar cells (DSSCs) fabricated via doctor blade method and high temperature sintering from waste (onion peels) are investigated for their ability to convert solar to electrical energy. The charge carriers were revealed under phytochemical screening. Functional groups of compounds present in A.cepa peel were analyzed with Fourier transform in infrared (FTIR). The influence of different electrolyte sensitizer is observed on the DSSCs under standard air mass conditions of 1.5 AM. The microstructure properties of these A.cepa DSSCs were explored using scanning electron microscope with energy dispersive spectroscopy (SEM/EDS), x-ray diffraction and Fluorecence spectroscopy (XRF). The interfacial boundary between A.cepa dye, TiO2 framework of TiO2 and indium doped tin oxide (ITO) reveals several prominent anatase and rutile peaks. Photoelectric results, revealed dye-sensitized solar cells with a maximum power output of 126 W and incident photon to conversion energy (IPCE) of 0.13%.This work has established that A.cepa peels can be used as a source of micro-energy generation.
NASA Astrophysics Data System (ADS)
Xing, Yanlong; Fuss, Harald; Lademann, Jürgen; Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora; Esser, Norbert
2018-04-01
In this study, a new therapeutic drug monitoring approach has been tested based on the combination of CaF molecular absorption using high-resolution continuum source absorption spectrometry (HR-CSAS) and surface enhanced Raman spectroscopy (SERS). HR-CSAS with mini graphite tube was successfully tested for clinical therapeutic drug monitoring of the fluorine-containing drug capecitabine in sweat samples of cancer patients: It showed advantageous features of high selectivity (no interference from Cl), high sensitivity (characteristic mass of 0.1 ng at CaF 583.069 nm), low sample consumption (down to 30 nL) and fast measurement (no sample pretreatment and less than 1 min of responding time) in tracing the fluorine signal out of capecitabine. However, this technique has the disadvantage of the total loss of the drug's structure information after burning the sample at very high temperature. Therefore, a new concept of combining HR-CSAS with a non-destructive spectroscopic method (SERS) was proposed for the sensitive sensing and specific identification of capecitabine. We tested and succeed in obtaining the molecular characteristics of the metabolite of capecitabine (named 5-fluorouracil) by the non-destructive SERS technique. With the results shown in this work, it is demonstrated that the combined spectroscopic technique of HR-CSAS and SERS will be very useful in efficient therapeutic drug monitoring in the future.
Extended X-ray Absorption Fine Structure Study of Bond Constraints in Ge-Sb-Te Alloys
2011-02-07
Ray Absorption Spectroscopy, or EXAFS. Using the spectroscopic capabilities provided by the MCAT line at the Advanced Photon Source at Argonne...Absorption Spectroscopy, or EXAFS. Using the spectroscopic capabilities provided by the MCAT line at the Advanced Photon Source at Argonne National
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedregal, A. G.; Scarlata, C.; Rutkowski, M. J.
We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3-UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 μm] photometry to assemble a sample of massive (log (M {sub star}/M {sub ☉}) ∼ 11.0) and quenched (specific star formation rate <0.01 Gyr{sup –1}) galaxies at z ∼ 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, z ∼ 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are wellmore » fitted with exponentially decreasing star formation histories and short star formation timescales (τ ≤ 100 Myr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 Gyr. In the (u – r){sub 0}-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the z ∼ 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 Gyr) than the quenched galaxies off the RS (1.5 Gyr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at z ∼ 1.5 to be <43%. We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at z > 2 and the z ∼ 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z ∼ 1.5 RS is of the order of ∼1 Gyr.« less
Application of Computer-Assisted Learning Methods in the Teaching of Chemical Spectroscopy.
ERIC Educational Resources Information Center
Ayscough, P. B.; And Others
1979-01-01
Discusses the application of computer-assisted learning methods to the interpretation of infrared, nuclear magnetic resonance, and mass spectra; and outlines extensions into the area of integrated spectroscopy. (Author/CMV)
Regional Instrumentation Centers.
ERIC Educational Resources Information Center
Cromie, William J.
1980-01-01
Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)
A Developmental History of Polymer Mass Spectrometry
ERIC Educational Resources Information Center
Vergne, Matthew J.; Hercules, David M.; Lattimer, Robert P.
2007-01-01
The history of the development of mass spectroscopic methods used to characterize polymers is discussed. The continued improvements in methods and instrumentation will offer new and better ways for the mass spectral characterization of polymers and mass spectroscopy (MS) should be recognized as a complementary polymer characterization method along…
Mass Spectrometry of Large, Fragile, and Involatile Molecules.
ERIC Educational Resources Information Center
Busch, Kenneth L.; Cooks, R. Graham
1982-01-01
Desorption ionization (DI) is used to obtain mass spectra of molecules whose vaporization by heating may lead to thermal degradation. Discusses DI techniques, characteristics of DI mass spectra, ion production, current applications of DI in mass spectroscopy, developments in DI, and prospects for future evolution of new DI techniques. (Author/JN)
Billian; Hock; Doetzer; Stan; Dreher
2000-10-15
The identification of n-decyl alpha(1-->6)isomaltoside as a main component of technical alkyl polyglucoside (APG) mixtures by the parallel use of liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy is described. Following enrichment on a styrene-divinylbenzene-based solid-phase extraction material, unknown components were separated by reversed-phase liquid chromatography (LC). Chemical characterization was achieved by both mass spectrometry and NMR spectroscopy. It is demonstrated that the combination of LC-MS with various NMR techniques is very suitable for stereochemical assignment of unknown components in technical APG mixtures.
An Accreting White Dwarf near the Chandrasekhar Limit in the Andromeda Galaxy
NASA Technical Reports Server (NTRS)
Tang, Sumin; Bildsten, Lars; Wolf, William M.; Li, K. L.; Kong, Albert K. H.; Cao, Yi; Cenko, S. Bradley; De Cia, Annalisa; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.;
2014-01-01
The iPTF (Intermediate Palomar Transient Factory) detection of the most recent outburst of the recurrent nova system RX J0045.4+4154 in the Andromeda Galaxy has enabled the unprecedented study of a massive (mass is greater than 1.3 solar masses) accreting white dwarf (WD). We detected this nova as part of the near daily iPTF monitoring of M31 to a depth of R (red band-pass filter) approximately equal to magnitude 21 and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of MR (red, mid-infrared band-pass filter) equals magnitude -6.6, and with a decay time of 1 magnitude per day, it is a faint and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900 to 2600 kilometers per second 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT (energy: Boltzmann constant times temperature) (sub eff (effective)) approximately equal to 90-110 electronvolts that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is a recurrent nova with a time between outbursts of approximately 1 year, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a mass greater than 1.3 solar masses WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to mass greater than 1.7x10 (sup -7) solar masses per year and WD mass greater than 1.30 solar masses. If the WD keeps 30 percent of the accreted material, it will take less than a million years to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution.
Particle growth in an isoprene-rich forest: Influences of urban, wildfire, and biogenic air masses
NASA Astrophysics Data System (ADS)
Gunsch, Matthew J.; Schmidt, Stephanie A.; Gardner, Daniel J.; Bondy, Amy L.; May, Nathaniel W.; Bertman, Steven B.; Pratt, Kerri A.; Ault, Andrew P.
2018-04-01
Growth of freshly nucleated particles is an important source of cloud condensation nuclei (CCN) and has been studied within a variety of environments around the world. However, there remains uncertainty regarding the sources of the precursor gases leading to particle growth, particularly in isoprene-rich forests. In this study, particle growth events were observed from the 14 total events (31% of days) during summer measurements (June 24 - August 2, 2014) at the Program for Research on Oxidants PHotochemistry, Emissions, and Transport (PROPHET) tower within the forested University of Michigan Biological Station located in northern Michigan. Growth events were observed within long-range transported air masses from urban areas, air masses impacted by wildfires, as well as stagnant, forested/regional air masses. Growth events observed during urban-influenced air masses were prevalent, with presumably high oxidant levels, and began midday during periods of high solar radiation. This suggests that increased oxidation of biogenic volatile organic compounds (BVOCs) likely contributed to the highest observed particle growth in this study (8 ± 2 nm h-1). Growth events during wildfire-influenced air masses were observed primarily at night and had slower growth rates (3 ± 1 nm h-1). These events were likely influenced by increased SO2, O3, and NO2 transported within the smoke plumes, suggesting a role of NO3 oxidation in the production of semi-volatile compounds. Forested/regional air mass growth events likely occurred due to the oxidation of regionally emitted BVOCs, including isoprene, monoterpenes, and sesquiterpenes, which facilitated multiday growth events also with slower rates (3 ± 2 nm h-1). Intense sulfur, carbon, and oxygen signals in individual particles down to 20 nm, analyzed by transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX), suggest that H2SO4 and secondary organic aerosol contributed to particle growth. Overall, aerosol growth was frequently observed in a range of air masses (urban, wildfire, forested) and oxidant conditions (day vs. night), with rates ranging from 0.8 to 10.2 nm h-1.
Application of Laser Mass Spectrometry to Art and Archaeology
NASA Technical Reports Server (NTRS)
Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.
2011-01-01
REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.
Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution.
Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon
2016-10-25
Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO 4 ). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO 4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.
Environmental lead pollution threatens the children living in the Pearl River Delta region, China.
Chen, Jianmin; Tong, Yongpeng; Xu, Jiazhang; Liu, Xiaoli; Li, Yulan; Tan, Mingguang; Li, Yan
2012-09-01
The objective of this study is to determine children's blood lead levels and identify sources of lead exposure. Childhood lead exposure constitutes a major pediatric health problem today in China. A blood lead screening survey program for children in the age group of 2-12 years residing in Pearl River Delta region, south of China, was carried out from Dec 2007 to Jan 2008. Blood lead levels and lead isotope ratios of a total of 761 participants were assessed by inductively coupled plasma mass spectroscopy. Measurements of urban environmental samples for source identification of children lead exposure were also performed. The geometric mean value of the children's blood lead levels was 57.05 μg/L, and 9.6% of them were higher than 100 μg/L. The blood lead levels were still much higher than those in developed countries. Based on the data of environmental lead source inventories, lead isotopic tracing revealed that there is about 6.7% past used gasoline Pb embedded in Shenzhen residential dust and about 15.6% in Guangzhou dust, respectively.
Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution
NASA Astrophysics Data System (ADS)
Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon
2016-10-01
Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.
Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution
Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon
2016-01-01
Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity. PMID:27779222
Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation
O’Callahan, Brian T.; Lewis, William E.; Möbius, Silke; ...
2015-12-03
Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy.With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainablemore » near-field signal levels in s-SNOM in general. As a result, the use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.« less
Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Callahan, Brian T.; Lewis, William E.; Möbius, Silke
Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy.With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainablemore » near-field signal levels in s-SNOM in general. As a result, the use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.« less
Infrared Ion Spectroscopy at Felix: Applications in Peptide Dissociation and Analytical Chemistry
NASA Astrophysics Data System (ADS)
Oomens, Jos
2016-06-01
Infrared free electron lasers such as those in Paris, Berlin and Nijmegen have been at the forefront of the development of infrared ion spectroscopy. In this contribution, I will give an overview of new developments in IR spectroscopy of stored ions at the FELIX Laboratory. In particular, I will focus on recent developments made possible by the coupling of a new commercial ion trap mass spectrometer to the FELIX beamline. The possibility to record IR spectra of mass-selected molecular ions and their reaction products has in recent years shed new light on our understanding of collision induced dissociation (CID) reactions of protonated peptides in mass spectrometry (MS). We now show that it is possible to record IR spectra for the products of electron transfer dissociation (ETD) reactions [M + nH]n+ + A- → [M + nH](n-1)+ + A → {dissociation of analyte} These reactions are now widely used in novel MS-based protein sequencing strategies, but involve complex radical chemistry. The spectroscopic results allow stringent verification of computationally predicted product structures and hence reaction mechanisms and H-atom migration. The sensitivity and high dynamic range of a commercial mass spectrometer also allows us to apply infrared ion spectroscopy to analytes in complex "real-life" mixtures. The ability to record IR spectra with the sensitivity of mass-spectrometric detection is unrivalled in analytical sciences and is particularly useful in the identification of small (biological) molecules, such as in metabolomics. We report preliminary results of a pilot study on the spectroscopic identification of small metabolites in urine and plasma samples.
MULTISPECTRAL IDENTIFICATION OF ALKYL AND CHLOROALKYL PHOSPHATES FROM AN INDUSTRIAL EFFLUENT
Multispectral techniques (gas chromatography combined with low and high resolution electron-impact mass spectrometry, low and high resolution chemical ionization mass spectrometry, and Fourier transform infrared mass spectroscopy) were used to identify 13 alkyl and chloralkyl pho...
NASA Astrophysics Data System (ADS)
Gonsior, Michael; Luek, Jenna; Schmitt-Kopplin, Philippe; Grebmeier, Jacqueline M.; Cooper, Lee W.
2017-10-01
Changes in the molecular composition of dissolved organic matter (DOM) and its light absorbing chromophoric component (CDOM) are of particular interest in the Arctic region because of climate change effects that lead to warmer sea surface temperatures and longer exposure to sunlight. We used continuous UV-vis (UV-vis) spectroscopy, excitation emission matrix fluorescence and ultrahigh resolution mass spectrometry during a transect from the Aleutian Islands in the Bering Sea to the Chukchi Sea ice edge through Bering Strait to determine the variability of DOM and CDOM. These data were combined with discrete sampling for stable oxygen isotopes of seawater, in order to evaluate the contributions of melted sea ice versus runoff to the DOM and CDOM components. This study demonstrated that high geographical resolution of optical properties in conjunction with stable oxygen ratios and non-targeted ultrahigh resolution mass spectrometry was able to distinguish between different DOM sources in the Arctic, including identification of labile DOM sources in Bering Strait associated with high algal blooms and sampling locations influenced by terrestrially-derived DOM, such as the terrestrial DOM signal originating from Arctic rivers and dirty/anchor sea ice. Results of this study also revealed the overall variability and chemodiversity of Arctic DOM present in the Bering and Chukchi Seas.
X-ray Weekly Monitoring of the Galactic Center Sgr A* with Suzaku
NASA Astrophysics Data System (ADS)
Maeda, Yoshitomo; Nobukawa, Masayoshi; Hayashi, Takayuki; Iizuka, Ryo; Saitoh, Takayuki; Murakami, Hiroshi
A small gas cloud, G2, is on an orbit almost straight into the supermassive blackhole Sgr A* by spring 2014. This event gives us a rare opportunity to test the mass feeding onto the blackhole by a gas. To catch a possible rise of the mass accretion from the cloud, we have been performing the bi-week monitoring of Sgr A* in autumn and spring in the 2013 fiscal year. The key feature of Suzaku is the high-sensitivity wide-band X-ray spectroscopy all in one observatory. It is characterized by a large effective area combined with low background and good energy resolution, in particular a good line spread function in the low-energy range. Since the desired flare events associated with the G2 approach is a transient event, the large effective area is critical and powerful tools to hunt them. The first monitoring in 2013 autumn was successfully made. The X-rays from Sgr A* and its nearby emission were clearly resolved from the bright transient source AX J1745.6-2901. No very large flare from Sgr A*was found during the monitoring. We also may report the X-ray properties of two serendipitous sources, the neutron star binary AX J1745.6-2901 and a magnetar SGR J1745-29.
Discovery of Antimalarial Drugs from Streptomycetes Metabolites Using a Metabolomic Approach
Baba, Mohd Shukri
2017-01-01
Natural products continue to play an important role as a source of biologically active substances for the development of new drug. Streptomyces, Gram-positive bacteria which are widely distributed in nature, are one of the most popular sources of natural antibiotics. Recently, by using a bioassay-guided fractionation, an antimalarial compound, Gancidin-W, has been discovered from these bacteria. However, this classical method in identifying potentially novel bioactive compounds from the natural products requires considerable effort and is a time-consuming process. Metabolomics is an emerging “omics” technology in systems biology study which integrated in process of discovering drug from natural products. Metabolomics approach in finding novel therapeutics agent for malaria offers dereplication step in screening phase to shorten the process. The highly sensitive instruments, such as Liquid Chromatography-Mass Spectrophotometry (LC-MS), Gas Chromatography-Mass Spectrophotometry (GC-MS), and Nuclear Magnetic Resonance (1H-NMR) spectroscopy, provide a wide range of information in the identification of potentially bioactive compounds. The current paper reviews concepts of metabolomics and its application in drug discovery of malaria treatment as well as assessing the antimalarial activity from natural products. Metabolomics approach in malaria drug discovery is still new and needs to be initiated, especially for drug research in Malaysia. PMID:29123551
Kenny, O; Brunton, N P; Walsh, D; Hewage, C M; McLoughlin, P; Smyth, T J
2015-04-01
Plant extracts have traditionally been used as sources of natural antimicrobial compounds, although in many cases, the compounds responsible for their antimicrobial efficacy have not been identified. In this study, crude and dialysed extracts from dandelion root (Taraxacum officinale) were evaluated for their antimicrobial properties against Gram positive and Gram negative bacterial strains. The methanol hydrophobic crude extract (DRE3) demonstrated the strongest inhibition of microbial growth against Staphylococcus aureus, methicillin-resistant S. aureus and Bacillus cereus strains. Normal phase (NP) fractionation of DRE3 resulted in two fractions (NPF4 and NPF5) with enhanced antimicrobial activity. Further NP fractionation of NPF4 resulted in two fractions (NPF403 and NPF406) with increased antimicrobial activity. Further isolation and characterisation of compounds in NPF406 using liquid chromatography solid phase extraction nuclear magnetic resonance LC-SPE-NMR resulted in the identification of 9-hydroxyoctadecatrienoic acid and 9-hydroxyoctadecadienoic acid, while the phenolic compounds vanillin, coniferaldehyde and p-methoxyphenylglyoxylic acid were also identified respectively. The molecular mass of these compounds was confirmed by LC mass spectroscopy (MS)/MS. In summary, the antimicrobial efficacy of dandelion root extracts demonstrated in this study support the use of dandelion root as a source of natural antimicrobial compounds. Copyright © 2015 John Wiley & Sons, Ltd.
Recent progress of laser spectroscopy experiments on antiprotonic helium
NASA Astrophysics Data System (ADS)
Hori, Masaki
2018-03-01
The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration is currently carrying out laser spectroscopy experiments on antiprotonic helium ? atoms at CERN's Antiproton Decelerator facility. Two-photon spectroscopic techniques have been employed to reduce the Doppler width of the measured ? resonance lines, and determine the atomic transition frequencies to a fractional precision of 2.3-5 parts in 109. More recently, single-photon spectroscopy of buffer-gas cooled ? has reached a similar precision. By comparing the results with three-body quantum electrodynamics calculations, the antiproton-to-electron mass ratio was determined as ?, which agrees with the known proton-to-electron mass ratio with a precision of 8×10-10. The high-quality antiproton beam provided by the future Extra Low Energy Antiproton Ring (ELENA) facility should enable further improvements in the experimental precision. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses
NASA Astrophysics Data System (ADS)
Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.
2012-03-01
Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and therefore the normalization of the surface mass density) to within 2 and 4 per cent, respectively.
2012-02-09
different sources [12,13], but the analytical techniques needed for such analysis (XRD, INAA , & ICP-MS) are time consuming and require expensive...partial least-squares discriminant analysis (PLSDA) that used the SIMPLS solving method [33]. In the experi- ment design, a leave-one-sample-out (LOSO) para...REPORT Advanced signal processing analysis of laser-induced breakdown spectroscopy data for the discrimination of obsidian sources 14. ABSTRACT 16
Wadekar, S D; Kale, S B; Lali, A M; Bhowmick, D N; Pratap, A P
2012-01-01
Vegetable edible oils and fats are mainly used for frying purposes in households and the food industry. The oil undergoes degradation during frying and hence has to be replaced from time to time. Rhamnolipids are produced by microbial cultivation using refined vegetable oils as a carbon source and Pseudomonas aeruginosa (ATCC 10145). The raw material cost accounts for 10-30% of the overall cost of biosurfactant production and can be reduced by using low-cost substrates. In this research, attention was focused on the preparation of rhamnolipids, which are biosurfactants, using potential frying edible oils as a carbon source via a microbial fermentation technique. The use of low-cost substrates as a carbon source was emphasized to tilt the cost of production for rhamnolipids. The yield was 2.8 g/L and 7.5 g/L from waste frying oil before and after activated earth treatment, respectively. The crude product contained mainly dirhamnolipids, confirmed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectroscopy (LC-MS), and (1)H-nuclear magnetic resonance (NMR). Hence, the treatment can be used to convert waste frying oil as a low-cost substrate into a cost-effective carbon source.
NASA Astrophysics Data System (ADS)
Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.
2014-11-01
The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in residual layers but still originating in northern Italy, while a substantial fraction (41%) was due to the most aged aerosols imported from transalpine areas. The different meteorological regimes also affected the BC mixing state: in periods of enhanced stagnation and recirculation of pollutants, the number fraction of the BC-containing particles determined by ATOFMS was 75% of the total, while in the days of enhanced ventilation of the planetary boundary layer (PBL), such fraction was significantly lower (50%) because of the relative greater influence of non-BC-containing aerosol local sources in the Po Valley. Overall, a full internal mixing between BC and the non-refractory aerosol chemical components was not observed during the experiment in this environment.
Cochran, Kristin H.; Barry, Jeremy A.; Muddiman, David C.; Hinks, David
2012-01-01
The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then post-ionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard. PMID:23237031
NASA Astrophysics Data System (ADS)
Shu, Jinian; Wilson, Kevin R.; Ahmed, Musahid; Leone, Stephen R.
2006-04-01
An aerosol apparatus has been coupled to the Chemical Dynamics Beamline of the Advanced Light Source at Lawrence Berkeley National Laboratory. This apparatus has multiple capabilities for aerosol studies, including vacuum ultraviolet (VUV) light scattering, photoelectron imaging, and mass spectroscopy of aerosols. By utilizing an inlet system consisting of a 200μm orifice nozzle and aerodynamic lenses, aerosol particles of ˜50nm-˜1μm in diameter can be sampled directly from atmospheric pressure. The machine is versatile and can probe carbonaceous aerosols generated by a laboratory flame, nebulized solutions of biological molecules, hydrocarbon aerosol reaction products, and synthesized inorganic nanoparticles. The sensitivity of this apparatus is demonstrated by the detection of nanoparticles with VUV light scattering, photoelectron imaging, and charged particle detection. In addition to the detection of nanoparticles, the thermal vaporization of aerosols on a heater tip leads to the generation of intact gas phase molecules. This phenomenon coupled to threshold single photon ionization, accessible with tunable VUV light, allows for fragment-free mass spectrometry of complex molecules. The initial experiments with light scattering, photoelectron imaging, and aerosol mass spectrometry reported here serve as a demonstration of the design philosophy and multiple capabilities of the apparatus.
The Black Hole in the Most Massive Ultracompact Dwarf Galaxy M59-UCD3
NASA Astrophysics Data System (ADS)
Ahn, Christopher P.; Seth, Anil C.; Cappellari, Michele; Krajnović, Davor; Strader, Jay; Voggel, Karina T.; Walsh, Jonelle L.; Bahramian, Arash; Baumgardt, Holger; Brodie, Jean; Chilingarian, Igor; Chomiuk, Laura; den Brok, Mark; Frank, Matthias; Hilker, Michael; McDermid, Richard M.; Mieske, Steffen; Neumayer, Nadine; Nguyen, Dieu D.; Pechetti, Renuka; Romanowsky, Aaron J.; Spitler, Lee
2018-05-01
We examine the internal properties of the most massive ultracompact dwarf galaxy (UCD), M59-UCD3, by combining adaptive-optics-assisted near-IR integral field spectroscopy from Gemini/NIFS and Hubble Space Telescope (HST) imaging. We use the multiband HST imaging to create a mass model that suggests and accounts for the presence of multiple stellar populations and structural components. We combine these mass models with kinematics measurements from Gemini/NIFS to find a best-fit stellar mass-to-light ratio (M/L) and black hole (BH) mass using Jeans anisotropic models (JAMs), axisymmetric Schwarzschild models, and triaxial Schwarzschild models. The best-fit parameters in the JAM and axisymmetric Schwarzschild models have BHs between 2.5 and 5.9 million solar masses. The triaxial Schwarzschild models point toward a similar BH mass but show a minimum χ 2 at a BH mass of ∼0. Models with a BH in all three techniques provide better fits to the central V rms profiles, and thus we estimate the BH mass to be {4.2}-1.7+2.1× {10}6 M ⊙ (estimated 1σ uncertainties). We also present deep radio imaging of M59-UCD3 and two other UCDs in Virgo with dynamical BH mass measurements, and we compare these to X-ray measurements to check for consistency with the fundamental plane of BH accretion. We detect faint radio emission in M59cO but find only upper limits for M60-UCD1 and M59-UCD3 despite X-ray detections in both these sources. The BH mass and nuclear light profile of M59-UCD3 suggest that it is the tidally stripped remnant of a ∼109–1010 M ⊙ galaxy.
Molecular composition and paleobotanical origin of Eocene resin from northeast India
NASA Astrophysics Data System (ADS)
Rudra, Arka; Dutta, Suryendu; Raju, Srinivasan V.
2014-06-01
The molecular composition of fossil resins from early to middle Eocene coal from northeast India, has been analyzed for the first time to infer their paleobotanical source. The soluble component of fossil resin was analyzed using gas chromatography-mass spectrometry (GC-MS). The resin extracts are composed of cadalene-based C15 sesquiterpenoids and diagenetically altered triterpenoids. The macromolecular composition was investigated using pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and Fourier transform infrared (FTIR) spectroscopy. The major pyrolysis products are C15 bicyclic sesquiterpenoids, alkylated naphthalenes, benzenes and a series of C17-C34 n-alkene- n-alkane pairs. Spectroscopic analysis revealed the dominance of aliphatic components. The presence of cadalene-based sequiterpenoids confirms the resin to be Class II or dammar resin, derived from angiosperms of Dipterocarpaceae family. These sesquiterpenoids are often detected in many SE Asian fluvio-deltaic oils. Dipterocarpaceae are characteristic of warm tropical climate suggesting the prevalence of such climate during early Eocene in northeast India.
Identification of high-mass X-ray binaries selected from XMM-Newton observations of the LMC★
NASA Astrophysics Data System (ADS)
van Jaarsveld, N.; Buckley, D. A. H.; McBride, V. A.; Haberl, F.; Vasilopoulos, G.; Maitra, C.; Udalski, A.; Miszalski, B.
2018-04-01
The Large Magellanic Cloud (LMC) currently hosts around 23 high-mass X-ray binaries (HMXBs) of which most are Be/X-ray binaries. The LMC XMM-Newton survey provided follow-up observations of previously known X-ray sources that were likely HMXBs, as well as identifying new HMXB candidates. In total, 19 candidate HMXBs were selected based on their X-ray hardness ratios. In this paper we present red and blue optical spectroscopy, obtained with Southern African Large Telescope and the South African Astronomical Observatory 1.9-m telescope, plus a timing analysis of the long-term optical light curves from OGLE to confirm the nature of these candidates. We find that nine of the candidates are new Be/X-ray binaries, substantially increasing the LMC Be/X-ray binary population. Furthermore, we present the optical properties of these new systems, both individually and as a group of all the BeXBs identified by the XMM-Newton survey of the LMC.
NASA Astrophysics Data System (ADS)
Carroy, Glenn; Lemaur, Vincent; Henoumont, Céline; Laurent, Sophie; De Winter, Julien; De Pauw, Edwin; Cornil, Jérôme; Gerbaux, Pascal
2018-01-01
Supramolecular mass spectrometry has emerged in the last decade as an orthogonal method to access, at the molecular level, the structures of noncovalent complexes extracted from the condensed phase to the rarefied gas phase using electrospray ionization. It is often considered that the soft nature of the ESI source confers to the method the capability to generate structural data comparable to those in the condensed phase. In the present paper, using the ammonium ion/cucurbituril combination as a model system, we investigate using ion mobility and computational chemistry the influence of the instrumental parameters on the topology, i.e., internal versus external association, of gaseous host/guest complex ions. MS and theoretical data are confronted to condensed phase data derived from nuclear magnetic resonance spectroscopy to assess whether the instrumental parameters can play an insidious role when trying to derive condensed phase data from mass spectrometry results. [Figure not available: see fulltext.
Spectroscopy of the Stellar Wind in the Cygnus X-1 System
NASA Technical Reports Server (NTRS)
Miskovicova, Ivica; Hanke, Manfred; Wilms, Joern; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert
2010-01-01
The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sights towards the source, allowing us to probe the structure and the dynamics of the wind.
NASA Technical Reports Server (NTRS)
Pasek, Matthew A.; Dworkin, Jason P.; Lauretta, Dante S.
2007-01-01
Phosphorylated compounds (e.g. DNA, RNA, phospholipids, and many coenzymes) are critical to biochemistry. Thus, their origin is of prime interest to origin of life studies. The corrosion of the meteoritic mineral schreibersite ((Fe,Ni)3P) may have significantly contributed to the origin of phosphorylated biomolecules. Corrosion of synthetic schreibersite in a variety of solutions was analyzed by nuclear magnetic resonance spectroscopy, mass spectrometry, and electron paramagnetic resonance spectroscopy. These methods suggest a radical reaction pathway for the corrosion of schreibersite to form phosphite radicals (raised dot PO3 sup 2-)) aqueous solution. These radicals can form activated polyphosphates and can phosphorylate organic compounds such as acetate (3% yield). Phosphonates (O3P-C) are found in the organic P inventory of the carbonaceous meteorite Murchison. While phosphonates are rare in biochemistry, the ubiquity of corroding iron meteorites on the early Earth could have provided an accessible source of organophosphorous for the origin of life allowing the invention of the organophosphates in modern biology as a product of early evolution.
NASA Astrophysics Data System (ADS)
Cao, Wenjin; Hewage, Dilrukshi; Yang, Dong-Sheng
2018-05-01
La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C—C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2H2) and La(C3H4) are three-membered rings. All three metallacycles prefer a doublet ground state with a La 6s1-based valence electron configuration and a singlet ion. The five-membered metallacycle is formed through La addition and isoprene isomerization, whereas the two three-membered rings are produced by La addition and insertion, hydrogen migration, and carbon-carbon bond cleavage.
Structural characterization of a novel glucan from Achatina fulica and its antioxidant activity.
Liao, Ningbo; Chen, Shiguo; Ye, Xingqian; Zhong, Jianjun; Ye, Xuan; Yin, Xinzi; Tian, Jenny; Liu, Donghong
2014-03-19
A novel glucan designated AFPS-IB was purified from Achatina fulica (China white jade snail) by anion-exchange and gel-permeation chromatography. Chemical composition analysis indicated AFPS-IB was composed of glucose, fucose, rhamnose, mannose, and galactose in a molar ratio of 189:2:1:1:2 and with an average molecular weight of 128 kDa. Its structural characteristics were investigated by Fourier transform infrared spectroscopy (FTIR), high performance liquid chromatography (HPLC), gas chromatography mass spectrometry (GC-MS), methylation analysis, nuclear magnetic resonance (NMR) spectroscopy ((1)H,( 13)C, H-H COSY, HSQC, TOCSY, and NOESY), and atomic force microscopy (AFM). The glucan mainly consisted of a backbone of repeating (1→4)-α-d-glucose residues with (1→6)-β-d glucosyl branches at random points on the backbone glucose. Antioxidant studies revealed AFPS-IB showed significant DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, superoxide anion (O2(-)) scavenging activities and high reduction potential. This study suggested that AFPS-IB could be a new source of dietary antioxidants.
Vijayabharathi, Rajendran; Bruheim, Per; Andreassen, Trygve; Raja, Duraisamy Senthil; Devi, Palanisamy Bruntha; Sathyabama, Sathyaseelan; Priyadarisini, Venkatesan Brindha
2011-12-01
A new actinomycete strain, isolated from humus soils in the Western Ghats, was found to be an efficient pigment producer. The strain, designated AAA5, was identified as a putative Streptomyces aurantiacus strain based on cultural properties, morphology, carbon source utilization, and analysis of the 16S rRNA gene. The strain produced a reddish-brown pigmented compound during the secondary metabolites phase. A yellow compound was derived from the extracted pigment and was identified as the quinone-related antibiotic resistomycin based on ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, liquid chromatography and mass spectroscopy, and nuclear magnetic resonance analyses. The AAA5 strain was found to produce large quantities of resistomycin (52.5 mg/L). It showed potent cytotoxic activity against cell lines viz. HepG2 (hepatic carcinoma) and HeLa (cervical carcinoma) in vitro, with growth inhibition (GI(50)) of 0.006 and 0.005 μg/ml, respectively. The strain also exhibited broad antimicrobial activities against both Gram-positive and Gram-negative bacteria. Therefore, AAA5 may have great potential as an industrial resistomycin-producing strain.
Molecular Beam Mass Spectrometry With Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation
Golan, Amir; Ahmed, Musahid
2012-01-01
Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics1-4. Fundamental studies of photoionization processes of biomolecules provide information about the electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water1, 5-9. We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-dimethyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline10 located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds1. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations11, 12. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in detail the electronic structure and dynamics of the investigated species 1, 3. PMID:23149375
Two-colour dip spectroscopy of jet-cooled molecules
NASA Astrophysics Data System (ADS)
Ito, Mitsuo
In optical-optical double resonance spectroscopy, the resonance transition from an intermediate state to a final state can be detected by a dip of the signal (fluorescence or ion) associated with the intermediate state. This method probing the signal of the intermediate state may be called `two-colour dip spectroscopy'. Various kinds of two-colour dip spectroscopy such as two-colour fluorescence/ion dip spectroscopy, two-colour ionization dip spectroscopy employing stimulated emission, population labelling spectroscopy and mass-selected ion dip spectroscopy with dissociation were briefly described, paying special attention to their characteristics in excitation, detection and application. They were extensively and successfully applied to jet-cooled large molecules and provided us with new useful information on the energy and dynamics of excited molecules.
The Fossil Record of Black Hole Seeds, with Spatially Resolved Spectroscopy
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; CANDELS, 3D-HST
2016-01-01
I will present the first robust measurement of black hole occupation over a wide range of host galaxy mass (8
Tests of Stellar Models Using Four Extremely Massive Spectroscopic Binaries in the R136 Cluster
NASA Astrophysics Data System (ADS)
Massey, Philip
1999-07-01
We are proposing to observe four non-interacting double-lined spectroscopic binaries discovered in the R136 cluster by our Cycle 6 FOS spectroscopy {Massey & Hunter 1998, ApJ, 493, 180}. These binaries are all of very early type {O3-4 + O3-8} and should prove to be of very high mass. These data will allow us to extend the empirical mass-luminosity relation to higher masses, providing crucial checks on stellar interior and atmosphere models. Examination of the WFPC2 archives reveals that at least three of the four systems undergo eclipses. We plan to obtain simultaneous spectroscopy and photometry for all four systems during a single 2-orbit visit. Fourteen such visits, over an interval of a few weeks, should provide direct measurements for the masses of eight of the highest mass stars ever analyzed.
Publications - GMC 150 | Alaska Division of Geological & Geophysical
with gas chromatograms mass spectroscopy data of samples from the following 4 wells: Itkillik River spectroscopy data of samples from the following 4 wells: Itkillik River Unit #1, KRU W. Sak #26, Toolik Fed #2
Johansson, Johannes D; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut
2016-02-01
A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.
NASA Astrophysics Data System (ADS)
de Vita, R.; Trenti, M.; Bianchini, P.; Askar, A.; Giersz, M.; van de Ven, G.
2017-06-01
The detection of intermediate-mass black holes (IMBHs) in Galactic globular clusters (GCs) has so far been controversial. In order to characterize the effectiveness of integrated-light spectroscopy through integral field units, we analyse realistic mock data generated from state-of-the-art Monte Carlo simulations of GCs with a central IMBH, considering different setups and conditions varying IMBH mass, cluster distance and accuracy in determination of the centre. The mock observations are modelled with isotropic Jeans models to assess the success rate in identifying the IMBH presence, which we find to be primarily dependent on IMBH mass. However, even for an IMBH of considerable mass (3 per cent of the total GC mass), the analysis does not yield conclusive results in one out of five cases, because of shot noise due to bright stars close to the IMBH line of sight. This stochastic variability in the modelling outcome grows with decreasing BH mass, with approximately three failures out of four for IMBHs with 0.1 per cent of total GC mass. Finally, we find that our analysis is generally unable to exclude at 68 per cent confidence an IMBH with mass of 103 M⊙ in snapshots without a central BH. Interestingly, our results are not sensitive to GC distance within 5-20 kpc, nor to misidentification of the GC centre by less than 2 arcsec (<20 per cent of the core radius). These findings highlight the value of ground-based integral field spectroscopy for large GC surveys, where systematic failures can be accounted for, but stress the importance of discrete kinematic measurements that are less affected by stochasticity induced by bright stars.
Malek, Mahrooz; Pourashraf, Maryam; Gilani, Mitra Modares; Gity, Masoumeh
2015-01-01
The aim of this study was to assess the role of the presence of a choline peak in 3 Tesla 1H magnetic resonance spectroscopy (MRS) for differentiating benign from malignant adnexal masses. A total of 46 adnexal masses (23 malignant and 23 benign) underwent 1H MRS study prior to surgery to assess the presence of choline peak. A choline peak was detected in 16 malignant masses (69.5%) and was absent in the other 7 (30.5%). A choline peak was only detected in 6 (26%) of the benign adnexal masses. The presence of an MRS choline peak had a sensitivity of 69.5%, a specificity of 74%, a positive predictive value (PPV) of 72.7%, and a negative predictive value (NPV) of 71% for diagnosing malignant adnexal masses. A significant difference between the frequency of mean choline peaks in benign and malignant adnexal masses was observed (P value<0.01). A 1H MRS choline peak is seen in malignant adnexal masses more frequently than the benign masses, and may be helpful for diagnosing malignant adnexal masses.
NASA Astrophysics Data System (ADS)
Wu, Fengcheng; Xie, Pinhua; Li, Ang; Mou, Fusheng; Chen, Hao; Zhu, Yi; Zhu, Tong; Liu, Jianguo; Liu, Wenqing
2018-02-01
Recently, Chinese cities have suffered severe events of haze air pollution, particularly in the North China Plain (NCP). Investigating the temporal and spatial distribution of pollutants, emissions, and pollution transport is necessary to better understand the effect of various sources on air quality. We report on mobile differential optical absorption spectroscopy (mobile DOAS) observations of precursors SO2 and NO2 vertical columns in the NCP in the summer of 2013 (from 11 June to 7 July) in this study. The different temporal and spatial distributions of SO2 and NO2 vertical column density (VCD) over this area are characterized under various wind fields. The results show that transport from the southern NCP strongly affects air quality in Beijing, and the transport route, particularly SO2 transport on the route of Shijiazhuang-Baoding-Beijing, is identified. In addition, the major contributors to SO2 along the route of Shijiazhuang-Baoding-Beijing are elevated sources compared to low area sources for the route of Dezhou-Cangzhou-Tianjin-Beijing; this is found using the interrelated analysis between in situ and mobile DOAS observations during the measurement periods. Furthermore, the discussions on hot spots near the city of JiNan show that average observed width of polluted air mass is 11.83 and 17.23 km associated with air mass diffusion, which is approximately 60 km away from emission sources based on geometrical estimation. Finally, a reasonable agreement exists between the Ozone Monitoring Instrument (OMI) and mobile DOAS observations, with a correlation coefficient (R2) of 0.65 for NO2 VCDs. Both datasets also have a similar spatial pattern. The fitted slope of 0.55 is significantly less than unity, which can reflect the contamination of local sources, and OMI observations are needed to improve the sensitivities to the near-surface emission sources through improvements of the retrieval algorithm or the resolution of satellites.
Coherent sources for mid-infrared laser spectroscopy
NASA Astrophysics Data System (ADS)
Honzátko, Pavel; Baravets, Yauhen; Mondal, Shyamal; Peterka, Pavel; Todorov, Filip
2016-12-01
Mid-infrared laser absorption spectroscopy (LAS) is useful for molecular trace gas concentration measurements in gas mixtures. While the gas chromatography-mass spectrometry is still the gold standard in gas analysis, LAS offers several advantages. It takes tens of minutes for a gas mixture to be separated in the capillary column precluding gas chromatography from real-time control of industrial processes, while LAS can measure the concentration of gas species in seconds. LAS can be used in a wide range of applications such as gas quality screening for regulation, metering and custody transfer,1 purging gas pipes to avoid explosions,1 monitoring combustion processes,2 detection and quantification of gas leaks,3 by-products monitoring to provide feedback for the real-time control of processes in petrochemical industry,4 real-time control of inductively coupled plasma etch reactors,5, 6 and medical diagnostics by means of time-resolved volatile organic compound (VOC) analysis in exhaled breath.7 Apart from the concentration, it also permits us to determine the temperature, pressure, velocity and mass flux of the gas under observation. The selectivity and sensitivity of LAS is linked to a very high spectral resolution given by the linewidth of single-frequency lasers. Measurements are performed at reduced pressure where the collisional and Doppler broadenings are balanced. The sensitivity can be increased to ppb and sometimes to ppt ranges by increasing the interaction length in multi-pass gas cells or resonators and also by adopting modulation techniques.8
MUSE spectroscopy and deep observations of a unique compact JWST target, lensing cluster CLIO
NASA Astrophysics Data System (ADS)
Griffiths, Alex; Conselice, Christopher J.; Alpaslan, Mehmet; Frye, Brenda L.; Diego, Jose M.; Zitrin, Adi; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon P.; Robotham, Aaron S. G.; Windhorst, Rogier A.; Wyithe, J. Stuart B.
2018-04-01
We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow-up observations due to its almost unique combination of high-mass and dark matter halo concentration, as well as having observed lensing arcs from ground-based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of an NFW profile, we measure the total mass of CLIO to be M200 = (4.49 ± 0.25) × 1014 M⊙. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 ± 1.53 per cent through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 h James Webb Space Telescope `Webb Medium-Deep Field' (WMDF) GTO program.
Characterization and Infrared Emission Spectroscopy of Ball Plasmoid Discharges
NASA Astrophysics Data System (ADS)
Dubowsky, Scott E.; McCall, Benjamin J.
2015-06-01
Plasmas at atmospheric pressure serve many purposes, from ionization sources for ambient mass spectrometry (AMS) to plasma-assisted wound healing. Of the many naturally occurring ambient plasmas, ball lightning is one of the least understood; there is currently no solid explanation in the literature for the formation and lifetime of natural ball lightning. With the first measurements of naturally occurring ball lightning being reported last year, we have worked to replicate the natural phenomenon in order to elucidate the physical and chemical processes by which the plasma is sustained at ambient conditions. We are able to generate ball-shaped plasmoids (self-sustaining plasmas) that are analogous to natural ball lightning using a high-voltage, high-current, pulsed DC system. Improvements to the discharge electronics used in our laboratory and characterization of the plasmoids that are generated from this system will be described. Infrared emission spectroscopy of these plasmoids reveals emission from water and hydroxyl radical -- fitting methods for these molecular species in the complex experimental spectra will be presented. Rotational temperatures for the stretching and bending modes of H2O along with that of OH will be presented, and the non-equilibrium nature of the plasmoid will be discussed in this context. Cen, J.; Yuan, P,; Xue, S. Phys. Rev. Lett. 2014, 112, 035001. Dubowsky, S.E.; Friday, D.M.; Peters, K.C.; Zhao, Z.; Perry, R.H.; McCall, B.J. Int. J. Mass Spectrom. 2015, 376, 39-45.
Broadband Rotational Spectroscopy
NASA Astrophysics Data System (ADS)
Pate, Brooks
2014-06-01
The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De Lucia last year at the final meeting in Columbus - is what problems can we solve when real, fully capable spectrometers become essentially free to build?
Enhancement of MS Signal Processing For Improved Cancer Biomarker Discovery
NASA Astrophysics Data System (ADS)
Si, Qian
Technological advances in proteomics have shown great potential in detecting cancer at the earliest stages. One way is to use the time of flight mass spectroscopy to identify biomarkers, or early disease indicators related to the cancer. Pattern analysis of time of flight mass spectra data from blood and tissue samples gives great hope for the identification of potential biomarkers among the complex mixture of biological and chemical samples for the early cancer detection. One of the keys issues is the pre-processing of raw mass spectra data. A lot of challenges need to be addressed: unknown noise character associated with the large volume of data, high variability in the mass spectroscopy measurements, and poorly understood signal background and so on. This dissertation focuses on developing statistical algorithms and creating data mining tools for computationally improved signal processing for mass spectrometry data. I have introduced an advanced accurate estimate of the noise model and a half-supervised method of mass spectrum data processing which requires little knowledge about the data.
Cozzolino, Daniel
2015-03-30
Vibrational spectroscopy encompasses a number of techniques and methods including ultra-violet, visible, Fourier transform infrared or mid infrared, near infrared and Raman spectroscopy. The use and application of spectroscopy generates spectra containing hundreds of variables (absorbances at each wavenumbers or wavelengths), resulting in the production of large data sets representing the chemical and biochemical wine fingerprint. Multivariate data analysis techniques are then required to handle the large amount of data generated in order to interpret the spectra in a meaningful way in order to develop a specific application. This paper focuses on the developments of sample presentation and main sources of error when vibrational spectroscopy methods are applied in wine analysis. Recent and novel applications will be discussed as examples of these developments. © 2014 Society of Chemical Industry.
Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal
NASA Astrophysics Data System (ADS)
Johnston, C. D.; Davis, G. B.; Bastow, T. P.; Woodbury, R. J.; Rao, P. S. C.; Annable, M. D.; Rhodes, S.
2014-08-01
Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L3/L2/T) and mass fluxes (Jc; M/L2/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104 g day- 1 to 24-31 g day- 1 (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site.
Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.
Johnston, C D; Davis, G B; Bastow, T P; Woodbury, R J; Rao, P S C; Annable, M D; Rhodes, S
2014-08-01
Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L(3)/L(2)/T) and mass fluxes (Jc; M/L(2)/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104gday(-1) to 24-31gday(-1) (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site. Copyright © 2013 Elsevier B.V. All rights reserved.
Current progress in isolation and characterization of toxins isolated from Pfiesteria piscicida.
Moeller, P D; Morton, S L; Mitchell, B A; Sivertsen, S K; Fairey, E R; Mikulski, T M; Glasgow, H; Deamer-Melia, N J; Burkholder, J M; Ramsdell, J S
2001-01-01
The isolation and partial purification of toxic substances derived from Pfiesteria piscicida Steidinger & Burkholder extracts is described. Four distinct bioassay systems were used to monitor bioactivity of the P. piscicida extracts, including a high throughput cell cytotoxicity assay and a reporter gene assay as well as assays using brine shrimp and fish. Using these bioassays to guide fractionation, we have isolated two distinct, active fractions from Pfiesteria culture medium and cell mass extracts on the basis of their solubility characteristics. We have identified and characterized a bioactive lipophilic substance from Pfiesteria-derived extracts as di(2-ethylhexyl)phthalate, a commonly used plasticizer. The source of this typically man-made substance has been identified as originating from Instant Ocean (Aquarium Systems, Mentor, OH, USA), a commercially available seawater salt mixture used to prepare our mass culture growth medium. We have developed chromatographic methodology to isolate a bioactive polar compound isolated from extracts of Pfiesteria culture and presently report the characterization of the activity of this substance. The molecular structural analysis of the polar active component(s) using mass spectrometry and nuclear magnetic resonance spectroscopy is currently under way. PMID:11677183
Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3
NASA Astrophysics Data System (ADS)
Koljonen, K. I. I.; Maccarone, T. J.
2017-12-01
The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.
The clumpy absorber in the high-mass X-ray binary Vela X-1
Grinberg, V.; Hell, N.; El Mellah, I.; ...
2017-12-15
Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less
NASA Technical Reports Server (NTRS)
Zhang, Zhengyu; Kuo, Szu-Cherng; Klemm, R. Bruce; Monks, Paul S.; Stief, Louis J.
1994-01-01
Photoionization efficiency spectra of FO were measured over the wavelength range 80.0-100.0 nm and in the ionization threshold region, 94.0-100.0 nm, using a discharge flow-photoionization mass spectrometer apparatus coupled to a synchrotron radiation source. FO was generated by the reaction of F2P atoms with NO3 and via a F2O2 discharge. A value of 12.78 +/- 0.03 eV was obtained for the adiabatic ionization energy of FO from photoion thresholds which corresponds to FO(+)(X 3 Sigma -) from FO(X 2 Pi i). These results, which are the first to be obtained by direct Photo-ionization mass spectrometry (PIMS) measurements, corroborate those of a photoelectron spectroscopy (PES) study; however, the ionization energy determined here is free from interferences due to other species which complicated the PES measurement. A value of 109.5 +/- 8.0 kJ/mol for Delta f H 0 298(FO) is computed from the present value of IE(FO) and a previous appearance energy measurement, and a value for the proton affinity of FO is calculated to be 511.5 +/- 10.0 kJ/mol.
The clumpy absorber in the high-mass X-ray binary Vela X-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinberg, V.; Hell, N.; El Mellah, I.
Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less
Young Low-Mass Stars and Brown Dwarfs in IC 348
NASA Astrophysics Data System (ADS)
Luhman, K. L.
1999-11-01
I present new results from a continuing program to identify and characterize the low-mass stellar and substellar populations in the young cluster IC 348 (0.5-10 Myr). Optical spectroscopy has revealed young objects with spectral types as late as M8.25. The intrinsic J-H and H-K colors of these sources are dwarflike, whereas the R-I and I-J colors appear intermediate between the colors of dwarfs and giants. Furthermore, the spectra from 6500 to 9500 Å are reproduced well with averages of standard dwarf and giant spectra, suggesting that such averages should be used in the classification of young late-type sources. An H-R diagram is constructed for the low-mass population in IC 348 (K6-M8). The presumably coeval components of the young quadruple system GG Tau (White et al.) and the locus of stars in IC 348 are used as empirical isochrones to test the theoretical evolutionary models. The calculations of Burrows et al. do not appear to be consistent with the data at these earliest stages of stellar evolution. There is fair agreement between the data and the model isochrones of D'Antona & Mazzitelli, except near the hydrogen-burning limit. The agreement cannot be improved by changing the conversion between spectral types and effective temperatures. On the other hand, for the models of Baraffe et al., an adjustment of the temperature scale to progressively warmer temperatures at later M types, intermediate between dwarfs and giants, brings all components of GG Tau onto the same model isochrone and gives the population of IC 348 a constant age and age spread as a function of mass. When other observational constraints are considered, such as the dynamical masses of GM Aur, DM Tau, and GG Tau A, the models of Baraffe et al. are the most consistent with observations of young systems. With compatible temperature scales, the models of both D'Antona & Mazzitelli and Baraffe et al. suggest that the hydrogen-burning mass limit occurs near M6 at ages of <~10 Myr. Thus, several likely brown dwarfs are discovered in this study of IC 348, with masses down to ~20-30 MJ.
Attosecond light sources in the water window
NASA Astrophysics Data System (ADS)
Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu
2018-02-01
As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.
NASA Astrophysics Data System (ADS)
Krsjak, Vladimir; Dai, Yong
2015-10-01
This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.
Black manganese-rich crusts on a Gothic cathedral
NASA Astrophysics Data System (ADS)
Macholdt, Dorothea S.; Herrmann, Siegfried; Jochum, Klaus Peter; Kilcoyne, A. L. David; Laubscher, Thomas; Pfisterer, Jonas H. K.; Pöhlker, Christopher; Schwager, Beate; Weber, Bettina; Weigand, Markus; Domke, Katrin F.; Andreae, Meinrat O.
2017-12-01
Black manganese-rich crusts are found worldwide on the façades of historical buildings. In this study, they were studied exemplarily on the façade of the Freiburger Münster (Freiburg Minster), Germany, and measured in-situ by portable X-ray fluorescence (XRF). The XRF was calibrated to allow the conversion from apparent mass fractions to Mn surface density (Mn mass per area), to compensate for the fact that portable XRF mass fraction measurements from thin layers violate the assumption of a homogeneous measurement volume. Additionally, 200-nm femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS) measurements, scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS), Raman spectroscopy, and imaging by light microscopy were conducted to obtain further insight into the crust material, such as potential biogenic contributions, element distributions, trace element compositions, and organic functional groups. While black crusts of various types are present at many places on the minster's facade, crusts rich in Mn (with a Mn surface density >150 μg cm-2) are restricted to a maximum height of about 7 m. The only exceptions are those developed on the Renaissance-Vorhalle (Renaissance Portico) at a height of about 8 m. This part of the façade had been cleaned and treated with a silicon resin as recently as 2003. These crusts thus accumulated over a period of only 12 years. Yet, they are exceptionally Mn-rich with a surface density of 1200 μg cm-2, and therefore require an accumulation rate of about 100 μg cm-2 Mn per year. Trace element analyses support the theory that vehicle emissions are responsible for most of the Mn supply. Lead, barium, and zinc correlate with manganese, indicating that tire material, brake pads, and resuspended road dust are likely to be the element sources. Microscopic investigations show no organisms on or in the Mn-rich crusts. In contrast, Mn-free black crusts sampled at greater heights (>8 m) exhibited fungal and cyanobacterial encrustation. Carbon-rich spots were found by STXM-NEXAFS underneath one of the Mn-rich crusts. However, these carbon occurrences originate from soot and polycyclic aromatic hydrocarbons (PAHs) deposited on top of the crust, rather than from organisms responsible for the crust's formation, as shown by STXM-NEXAFS and Raman spectroscopic measurements. Our results suggest that the crusts develop abiogenically, with vehicle emissions as dominant element sources.
Ruffolo, Silvestro A; Comite, Valeria; La Russa, Mauro F; Belfiore, Cristina M; Barca, Donatella; Bonazza, Alessandra; Crisci, Gino M; Pezzino, Antonino; Sabbioni, Cristina
2015-01-01
The Cathedral of Seville is one of the most important buildings in the whole of southern Spain. It suffers, like most of the historical buildings located in urban environments, from several degradation phenomena related to the high pollution level. Undoubtedly, the formation of black crusts plays a crucial role in the decay of the stone materials belonging to the church. Their formation occurs mainly on carbonate building materials, whose interaction with a sulfur oxide-enriched atmosphere leads to the transformation of calcium carbonate (calcite) into calcium sulfate dihydrate (gypsum) which, together with embedded carbonaceous particles, forms the black crusts on the stone surface. To better understand the composition and the formation dynamics of this degradation product and to identify the pollutant sources and evaluate their impact on the stone material, an analytical study was carried out on the black crust samples collected from different areas of the building. For a complete characterization of the black crusts, several techniques were used, including laser ablation inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy, micro infrared spectroscopy, optical and scanning electron microscopy. This battery of tests provided information about the nature and distribution of the mineralogical phases and the elements within the crusts and the crust-substrate interface, contributing to the identification of the major pollution sources responsible for the deterioration of the monument over time. In addition, the results revealed a relation among the height of sampling, the surface exposure and the concentration of heavy metals. Finally, information has been provided about the origin of the concentration gradients of some metals. Copyright © 2014 Elsevier B.V. All rights reserved.
Diode laser absorption sensors for gas-dynamic and combustion flows
NASA Technical Reports Server (NTRS)
Allen, M. G.
1998-01-01
Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room-temperature mid-IR materials and broadly tunable multisection devices is reviewed to suggest new sensor possibilities.
Nadzir, Mohd Shahrul Mohd; Lin, Chin Yik; Khan, Md Firoz; Latif, Mohd Talib; Dominick, Doreena; Hamid, Haris Hafizal Abdul; Mohamad, Noorlin; Maulud, Khairul Nizam Abdul; Wahab, Muhammad Ikram Abdul; Kamaludin, Nurul Farahana; Lazim, Mohamad Azwani Shah Mat
2017-06-01
Open biomass burning in Peninsula Malaysia, Sumatra, and parts of the Indochinese region is a major source of transboundary haze pollution in the Southeast Asia. To study the influence of haze on rainwater chemistry, a short-term investigation was carried out during the occurrence of a severe haze episode from March to April 2014. Rainwater samples were collected after a prolonged drought and analyzed for heavy metals and major ion concentrations using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. The chemical composition and morphology of the solid particulates suspended in rainwater were examined using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). The dataset was further interpreted using enrichment factors (EF), statistical analysis, and a back trajectory (BT) model to find the possible sources of the particulates and pollutants. The results show a drop in rainwater pH from near neutral (pH 6.54) to acidic (
NASA Astrophysics Data System (ADS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.
1995-11-01
The infrared (IR) spectra of ultraviolet (UV) and thermally processed, methanol-containing interstellar/ cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=-N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to polyoxymethylene {POM, ( CH2O )n}, and (3) ketones {R-C(=O)-R'} and amides {H2NC(=O)-R}. Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and 13C isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the "XCN" band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.
NASA Astrophysics Data System (ADS)
Li, Jun-Sheng; Zhang, Chang-Rui; Li, Bin
2011-06-01
Boron nitride (BN) coatings were deposited on carbon fibers by chemical vapor deposition (CVD) using borazine as single source precursor. The deposited coatings were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The effect of temperatures on growth kinetics, morphology, composition and structure of the coatings was investigated. In the low temperature range of 900 °C-1000 °C, the growth rate increased with increasing temperature complying with Arrhenius law, and an apparent active energy of 72 kJ/mol was calculated. The coating surface was smooth and compact, and the coatings uniformly deposited on individual fibers of carbon fiber bundles. The growth was controlled by surface reaction. At 1000 °C, the deposition rate reached a maximum (2.5 μm/h). At the same time, the limiting step of the growth translated to be mass-transportation. Above 1100 °C, the growth rate decreased drastically due to the occurrence of gas-phase nucleation. Moreover, the coating surface became loose and rough. Composition and structure examinations revealed that stoichiometric BN coatings with turbostratic structure were obtained below 1000 °C, while hexagonal BN coatings were deposited above 1100 °C. A penetration of carbon element from the fibers to the coatings was observed.
Standoff spectroscopy using a conditioned target
Van Neste, Charles W [Kingston, TN; Morales-Rodriguez, Marissa E [Knoxville, TN; Senesac, Lawrence R [Knoxville, TN; Thundat, Thomas G [Knoxville, TN
2011-12-20
A system and method are disclosed for standoff spectroscopy of molecules (e.g. from a residue) on a surface from a distance. A source emits radiation that modifies or conditions the residue, such as through photodecomposition. A spectral generating source measures a spectrum of the residue before and after the residue is exposed to the radiation from that source. The two spectra are compared to produce a distinct identification of the residues on the surface or identify certain properties of the residue.
Photometric Study of Fourteen Low-mass Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korda, D.; Zasche, P.; Wolf, M.
2017-07-01
New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includesmore » 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Haruhiko, E-mail: hohashi@spring8.or.jp; Senba, Yasunori; Yumoto, Hirokatsu
We studied typical forms of contamination on X-ray mirrors that cause degradation of beam quality, investigated techniques to remove the contaminants, and propose methods to eliminate the sources of the contamination. The total amount of carbon-containing substances on various materials in the vicinity of a mirror was measured by thermal desorption-gas chromatography/mass spectrometry and thermal desorption spectroscopy. It was found that cleanliness and ultra-high vacuum techniques are required to produce the contamination-free surfaces that are essential for the propagation of high-quality X-ray beams. The reduction of carbonaceous residue adsorbed on the surfaces, and absorbed into the bulk, of the materialsmore » in the vicinity of the mirrors is a key step toward achieving contamination-free X-ray optics.« less
Shi, Dashuang; Caldovic, Ljubica; Jin, Zhongmin; Yu, Xiaolin; Qu, Qiuhao; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel
2006-01-01
A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6222, with unit-cell parameters a = b = 134.60, c = 192.11 Å, and diffract to about 3.0 Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method. PMID:17142901
Chatzakis, Ioannis; Krishna, Athith; Culbertson, James; Sharac, Nicholas; Giles, Alexander J; Spencer, Michael G; Caldwell, Joshua D
2018-05-01
Phonon polaritons (PhPs) are long-lived electromagnetic modes that originate from the coupling of infrared (IR) photons with the bound ionic lattice of a polar crystal. Cubic-boron nitride (cBN) is such a polar, semiconductor material which, due to the light atomic masses, can support high-frequency optical phonons. Here we report on random arrays of cBN nanostructures fabricated via an unpatterned reactive ion etching process. Fourier-transform infrared reflection spectra suggest the presence of localized surface PhPs within the reststrahlen band, with quality factors in excess of 38 observed. These can provide the basis of next-generation IR optical components such as antennas for communication, improved chemical spectroscopies, and enhanced emitters, sources, and detectors.
Late-Type Membership of the Open Cluster NGC 2232
NASA Technical Reports Server (NTRS)
Orban, Chris; Patten, Brian
2004-01-01
NGC 2232 is one of the nearest open clusters (approx.360 pc) with an age of approx.25 Myr. This places it in the unique position to study the transition from T Tauri activity to the Zero Age Main Sequence. In order for those studies to begin, late-type members must be identified for the cluster. X-ray observations combined with ground-based photometry and spectroscopy offers the best way to accomplish this goal. We present photometry in the VRI bands, 2MASS near-infrared measurements in the J, H , Ks bands and spectra for the suspected optical counterparts to the X-ray sources in the field of NGC 2232. 46 candidate members were identified through these efforts ranging from F5 to M5.
Microwave plasma generation of arsine from hydrogen and solid arsenic
NASA Astrophysics Data System (ADS)
Omstead, Thomas R.; Annapragada, Ananth V.; Jensen, Klavs F.
1990-12-01
The generation of arsine from the reactions of hydrogen and elemental arsenic in a microwave plasma reactor is described. The arsenic is evaporated from a solid source upstream and carried into the microwave plasma region by a mixture of hydrogen and argon. Stable reaction products, arsine and diarsine are observed by molecular beam sampled mass spectroscopy along with partially hydrogenated species (e.g., AsH and AsH2). The effect of composition and flow rate of the argon/hydrogen carrier gas mixture on the amount of arsine generated is investigated. The arsine production reaches a maximum for an argon-to-hydrogen ratio of unity indicating that metastable argon species act as energy transfer intermediates in the overall reaction. The generation of arsine and diarsine from easily handled solid arsenic by this technique makes it attractive as a possible arsenic source for the growth of compound semiconductors by low-pressure metalorganic chemical vapor deposition.
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.
2012-01-01
The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.
2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea.
Chien, Han-Ju; Chu, Yen-Wei; Chen, Chi-Wei; Juang, Yu-Min; Chien, Min-Wei; Liu, Chih-Wei; Wu, Chia-Chang; Tzen, Jason T C; Lai, Chien-Chen
2016-11-15
Taiwan is known for its high quality oolong tea. Because of high consumer demand, some tea manufactures mix lower quality leaves with genuine Taiwan oolong tea in order to increase profits. Robust scientific methods are, therefore, needed to verify the origin and quality of tea leaves. In this study, we investigated whether two-dimensional gel electrophoresis (2-DE) and nanoscale liquid chromatography/tandem mass spectroscopy (nano-LC/MS/MS) coupled with a two-layer feature selection mechanism comprising information gain attribute evaluation (IGAE) and support vector machine feature selection (SVM-FS) are useful in identifying characteristic proteins that can be used as markers of the original source of oolong tea. Samples in this study included oolong tea leaves from 23 different sources. We found that our method had an accuracy of 95.5% in correctly identifying the origin of the leaves. Overall, our method is a novel approach for determining the origin of oolong tea leaves. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dittmar, T.; Cooper, W. T.; Koch, B. P.; Kattner, G.
2006-05-01
Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon- isotopes, ultrahigh-resolution mass spectrometry (FTICRMS), lignin-derived phenols and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC on the shelf off Northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for more than 10 percent of the terrestrially- derived, refractory DOC transported to the ocean, while they cover less than 0.1 percent of the continents' surface.
Photoinduced intermolecular dynamics and subsequent fragmentation in VUV-ionized acetamide clusters
NASA Astrophysics Data System (ADS)
Tarkanovskaja, Marta; Kooser, Kuno; Levola, Helena; Nõmmiste, Ergo; Kukk, Edwin
2016-09-01
Photofragmentation of small gas-phase acetamide clusters (CH3CONH2)n (n ≤ 10) produced by a supersonic expansion source has been studied using time-of-flight ion mass spectroscopy combined with tunable vacuum-ultraviolet (VUV) synchrotron radiation. Fragmentation channels of acetamide clusters under VUV photoionization resulting in protonated and ammoniated clusters formation were identified with the discussion about the preceding intramolecular rearrangements. Acetamide-2,2,2-d3 clusters were also studied in an experiment with a gas discharge lamp as a VUV light source; comparison with the main experiment gave insights into the mechanism of formation of protonated acetamide clusters, indicating that proton transfer from amino group plays a dominant role in that process. Geometry of the acetamide dimer was discussed and the most stable arrangement was concluded to be achieved when subunits of the dimer are connected via two N—H⋯O —C hydrogen bonds. Also, the influence of the photon energy on the stability of the clusters and their fragmentation channels has been examined.
NASA Astrophysics Data System (ADS)
Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an
2016-10-01
Humic-like substances (HULIS) in smoke fine particulate matter (PM2.5) emitted from the combustion of biomass materials (rice straw, corn straw, and pine branch) and fossil fuels (lignite coal and diesel fuel) were comprehensively studied in this work. The HULIS fractions were first isolated with a one-step solid-phase extraction method, and were then investigated with a series of analytical techniques: elemental analysis, total organic carbon analysis, UV-vis (ultraviolet-visible) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy. The results show that HULIS account for 11.2-23.4 and 5.3 % of PM2.5 emitted from biomass burning (BB) and coal combustion, respectively. In addition, contributions of HULIS-C to total carbon and water-soluble carbon in smoke PM2.5 emitted from BB are 8.0-21.7 and 56.9-66.1 %, respectively. The corresponding contributions in smoke PM2.5 from coal combustion are 5.2 and 45.5 %, respectively. These results suggest that BB and coal combustion are both important sources of HULIS in atmospheric aerosols. However, HULIS in diesel soot only accounted for ˜ 0.8 % of the soot particles, suggesting that vehicular exhaust may not be a significant primary source of HULIS. Primary HULIS and atmospheric HULIS display many similar chemical characteristics, as indicated by the instrumental analytical characterization, while some distinct features were also apparent. A high spectral absorbance in the UV-vis spectra, a distinct band at λex/λem ≈ 280/350 nm in EEM spectra, lower H / C and O / C molar ratios, and a high content of [Ar-H] were observed for primary HULIS. These results suggest that primary HULIS contain more aromatic structures, and have a lower content of aliphatic and oxygen-containing groups than atmospheric HULIS. Among the four primary sources of HULIS, HULIS from BB had the highest O / C molar ratios (0.43-0.54) and [H-C-O] content (10-19 %), indicating that HULIS from this source mainly consisted of carbohydrate- and phenolic-like structures. HULIS from coal combustion had a lower O / C molar ratio (0.27) and a higher content of [Ar-H] (31 %), suggesting that aromatic compounds were extremely abundant in HULIS from this source. Moreover, the absorption Ångström exponents of primary HULIS from BB and coal combustion were 6.7-8.2 and 13.6, respectively. The mass absorption efficiencies of primary HULIS from BB and coal combustion at 365 nm (MAE365) were 0.97-2.09 and 0.63 m2 gC-1, respectively. Noticeably higher MAE365 values for primary HULIS from BB than coal combustion indicate that the former has a stronger contribution to the light-absorbing properties of aerosols in the atmospheric environment.
Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy
2009-12-19
REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE
ERIC Educational Resources Information Center
Solow, Mike
2004-01-01
Quantification of a contaminant in water provides the first-year general chemistry students with a tangible application of mass spectrometry. The relevance of chemistry to assessing and solving environmental problems is highlighted for students when they perform mass spectroscopy experiments.
Thermal lens spectroscopy for the differentiation of biodiesel-diesel blends
NASA Astrophysics Data System (ADS)
Ventura, M.; Simionatto, E.; Andrade, L. H. C.; Lima, S. M.
2012-04-01
Thermal lens (TL) spectroscopy was applied to biofuels to test its potential to distinguish diesel from biodiesel in blended fuels. Both the heat and mass diffusion effects observed using a TL procedure provide significant information about biodiesel concentrations in blended fuels. The results indicate that the mass diffusivity decreases 32% between diesel and the blend with 10% biodiesel added to the diesel. This simple TL procedure has the potential to be used for in loco analyses to certify the mixture and quality of biodiesel-diesel blends.
Identification of the major tamoxifen-DNA adducts in rat liver by mass spectroscopy.
Rajaniemi, H; Rasanen, I; Koivisto, P; Peltonen, K; Hemminki, K
1999-02-01
We present here the first mass spectroscopic (MS) identification of the main tamoxifen-induced DNA adducts in rat liver. The two main adducts were isolated by high-performance liquid chromatography (HPLC) and identified by MS, MS-MS and ultraviolet spectroscopy. Adduct 1 was the N-desmethyltamoxifen-deoxyguanosine adduct in which the alpha-position of the metabolite N-desmethyltamoxifen is linked covalently to the amino group of deoxyguanosine. Adduct 2 was confirmed to be the trans isomer of alpha-(N2-deoxyguanosinyl)tamoxifen, as previously suggested by co-chromatography.
Ringsted, Tine; Dupont, Sune; Ramsay, Jacob; Jespersen, Birthe Møller; Sørensen, Klavs Martin; Keiding, Søren Rud; Engelsen, Søren Balling
2016-07-01
The supercontinuum laser is a new type of light source, which combines the collimation and intensity of a laser with the broad spectral region of a lamp. Using such a source therefore makes it possible to focus the light onto small sample areas without losing intensity and thus facilitate either rapid or high-intensity measurements. Single seed transmission analysis in the long wavelength (LW) near-infrared (NIR) region is one area that might benefit from a brighter light source such as the supercontinuum laser. This study is aimed at building an experimental spectrometer consisting of a supercontinuum laser source and a dispersive monochromator in order to investigate its capability to measure the barley endosperm using transmission experiments in the LW NIR region. So far, barley and wheat seeds have only been studied using NIR transmission in the short wavelength region up to 1100 nm. However, the region in the range of 2260-2380 nm has previously shown to be particularly useful in differentiating barley phenotypes using NIR spectroscopy in reflectance mode. In the present study, 350 seeds (consisting of 70 seeds from each of five barley genotypes) in 1 mm slices were measured by NIR transmission in the range of 2235-2381 nm and oils from the same five barley genotypes were measured in a cuvette with a 1 mm path length in the range of 2003-2497 nm. The spectra of the barley seeds could be classified according to genotypes by principal component analysis; and spectral covariances with reference analysis of moisture, β-glucan, starch, protein and lipid were established. The spectral variations of the barley oils were compared to the fatty acid compositions as measured using gas chromotography-mass spectrometry (GC-MS). © The Author(s) 2016.
High-Resolution Integrated Optical System
NASA Astrophysics Data System (ADS)
Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.
2017-12-01
Raman and optical spectroscopy in-situ at extreme high pressure and temperature conditions relevant to the planets' deep interior is a versatile tool for characterization of wide range of properties of minerals essential for understanding the structure, composition, and evolution of terrestrial and giant planets. Optical methods, greatly complementing X-ray diffraction and spectroscopy techniques, become crucial when dealing with light elements. Study of vibrational and optical properties of minerals and volatiles, was a topic of many research efforts in past decades. A great deal of information on the materials properties under extreme pressure and temperature has been acquired including that related to structural phase changes, electronic transitions, and chemical transformations. These provide an important insight into physical and chemical states of planetary interiors (e.g. nature of deep reservoirs) and their dynamics including heat and mass transport (e.g. deep carbon cycle). Optical and vibrational spectroscopy can be also very instrumental for elucidating the nature of the materials molten states such as those related to the Earth's volatiles (CO2, CH4, H2O), aqueous fluids and silicate melts, planetary ices (H2O, CH4, NH3), noble gases, and H2. The optical spectroscopy study performed concomitantly with X-ray diffraction and spectroscopy measurements at the GSECARS beamlines on the same sample and at the same P-T conditions would greatly enhance the quality of this research and, moreover, will provide unique new information on chemical state of matter. The advanced high-resolution user-friendly integrated optical system is currently under construction and expected to be completed by 2018. In our conceptual design we have implemented Raman spectroscopy with five excitation wavelengths (266, 473, 532, 660, 946 nm), confocal imaging, double sided IR laser heating combined with high temperature Raman (including coherent anti-Stokes Raman scattering) and transient (based on a bright supercontinuum light source) spectroscopies in a wide spectral range (200-1600 nm). Details and future combination of this innovative system with high-resolution synchrotron micro-diffraction at GSECARS for full characterization of materials in-situ at extreme conditions will be discussed.
The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source
Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; ...
2015-03-03
The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.
Diagnostics of the ITER neutral beam test facility.
Pasqualotto, R; Serianni, G; Sonato, P; Agostini, M; Brombin, M; Croci, G; Dalla Palma, M; De Muri, M; Gazza, E; Gorini, G; Pomaro, N; Rizzolo, A; Spolaore, M; Zaniol, B
2012-02-01
The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H(-)∕D(-) production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.
Effects of surface preparation on quality of aluminum alloy weldments
NASA Technical Reports Server (NTRS)
Kizer, D.; Saperstein, Z.
1968-01-01
Study of surface preparations and surface contamination effects on the welding of 2014 aluminum involves several methods of surface analysis to identify surface properties conducive to weld defects. These methods are radioactive evaporation, spectral reflectance mass spectroscopy, gas chromatography and spark emission spectroscopy.
IDENTIFICATION OF BIS(2-CHLOROETHYL) ETHER HYDROLYSIS PRODUCTS BY DIRECT AQUEOUS INJECTION GC/FT-IR
Gas chromatography coupled to Fourier-transform infrared spectroscopy (GC/FT-IR) is rapidly becoming an accepted analytical technique complementary to GC/mass spectroscopy for identifying organic compounds in mixtures at low to moderate concentrations. irect aqueous injection (DA...
Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy.
Yang, Haoqi; Jiang, Shaohua; Fang, Hong; Hu, Xiaowu; Duan, Gaigai; Hou, Haoqing
2018-07-05
Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.
ALTERNATIVE DISINFECTANTS FOR DRINKING WATER
Using a combination of spectral identification techniques - gas chromatography coupled with low-and high-resolution electron-impact mass spectrometry (GC/EI-MS), low-and high-resolution chemical ionization mass spectrometry (GC/CI-MS), and Fourier transform infrared spectroscopy ...
[A review of mixed gas detection system based on infrared spectroscopic technique].
Dang, Jing-Min; Fu, Li; Yan, Zi-Hui; Zheng, Chuan-Tao; Chang, Yu-Chun; Chen, Chen; Wang, Yi-Din
2014-10-01
In order to provide the experiences and references to the researchers who are working on infrared (IR) mixed gas detection field. The proposed manuscript reviews two sections of the aforementioned field, including optical multiplexing structure and detection method. At present, the coherent light sources whose representative are quantum cascade laser (QCL) and inter-band cascade laser(ICL) become the mainstream light source in IR mixed gas detection, which replace the traditional non-coherent light source, such as IR radiation source and IR light emitting diode. In addition, the photon detector which has a super high detectivity and very short response time is gradually beyond thermal infrared detector, dominant in the field of infrared detector. The optical multiplexing structure is the key factor of IR mixed gas detection system, which consists of single light source multi-plexing detection structure and multi light source multiplexing detection structure. Particularly, single light source multiplexing detection structure is advantages of small volume and high integration, which make it a plausible candidate for the portable mixed gas detection system; Meanwhile, multi light source multiplexing detection structure is embodiment of time division multiplex, frequency division multiplexing and wavelength division multiplexing, and become the leading structure of the mixed gas detection system because of its wider spectral range, higher spectral resolution, etc. The detection method applied to IR mixed gas detection includes non-dispersive infrared (NDIR) spectroscopy, wavelength and frequency-modulation spectroscopy, cavity-enhanced spectroscopy and photoacoustic spectroscopy, etc. The IR mixed gas detection system designed by researchers after recognizing the whole sections of the proposed system, which play a significant role in industrial and agricultural production, environmental monitoring, and life science, etc.
Jašíková, Lucie; Roithová, Jana
2018-03-07
Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discovery of two eclipsing X-ray binaries in M 51
NASA Astrophysics Data System (ADS)
Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng
2018-04-01
We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 hr) and eclipse fraction (22% ± 0.1%) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35M⊙). By combining the X-ray lightcurve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18, and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.
Discovery of two eclipsing X-ray binaries in M 51
NASA Astrophysics Data System (ADS)
Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng
2018-07-01
We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039 erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 h) and eclipse fraction (22 ± 0.1 per cent) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35 M⊙). By combining the X-ray light-curve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18 and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.
The masses of retired A stars with asteroseismology: Kepler and K2 observations of exoplanet hosts
NASA Astrophysics Data System (ADS)
North, Thomas S. H.; Campante, Tiago L.; Miglio, Andxsrea; Davies, Guy R.; Grunblatt, Samuel K.; Huber, Daniel; Kuszlewicz, James S.; Lund, Mikkel N.; Cooke, Benjamin F.; Chaplin, William J.
2017-12-01
We investigate the masses of 'retired A stars' using asteroseismic detections on seven low-luminosity red-giant and sub-giant stars observed by the NASA Kepler and K2 missions. Our aim is to explore whether masses derived from spectroscopy and isochrone fitting may have been systematically overestimated. Our targets have all previously been subject to long-term radial velocity observations to detect orbiting bodies, and satisfy the criteria used by Johnson et al. to select survey stars which may have had A-type (or early F-type) main-sequence progenitors. The sample actually spans a somewhat wider range in mass, from ≈ 1 M⊙ up to ≈ 1.7 M⊙. Whilst for five of the seven stars the reported discovery mass from spectroscopy exceeds the mass estimated using asteroseismology, there is no strong evidence for a significant, systematic bias across the sample. Moreover, comparisons with other masses from the literature show that the absolute scale of any differences is highly sensitive to the chosen reference literature mass, with the scatter between different literature masses significantly larger than reported error bars. We find that any mass difference can be explained through use of different constraints during the recovery process. We also conclude that underestimated uncertainties on the input parameters can significantly bias the recovered stellar masses, which may have contributed to the controversy on the mass scale for retired A stars.
NASA Technical Reports Server (NTRS)
Crespi, H. L.; Harkness, L.; Katz, J. J.; Norman, G.; Saur, W.
1969-01-01
Method allows qualitative and quantitative analysis of mixtures of partially deuterated compounds. Nuclear magnetic resonance spectroscopy determines location and amount of deuterium in organic compounds but not fully deuterated compounds. Mass spectroscopy can detect fully deuterated species but not the location.
A source of antihydrogen for in-flight hyperfine spectroscopy
Kuroda, N.; Ulmer, S.; Murtagh, D. J.; Van Gorp, S.; Nagata, Y.; Diermaier, M.; Federmann, S.; Leali, M.; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Michishio, K.; Mizutani, T.; Mohri, A.; Nagahama, H.; Ohtsuka, M.; Radics, B.; Sakurai, S.; Sauerzopf, C.; Suzuki, K.; Tajima, M.; Torii, H. A.; Venturelli, L.; Wu¨nschek, B.; Zmeskal, J.; Zurlo, N.; Higaki, H.; Kanai, Y.; Lodi Rizzini, E.; Nagashima, Y.; Matsuda, Y.; Widmann, E.; Yamazaki, Y.
2014-01-01
Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy. PMID:24448273
NASA Astrophysics Data System (ADS)
Chandrasekhar, Ngangbam; Singh, Nungleppam Monorajan; Gartia, R. K.
2018-04-01
Luminescent techniques require one or the other source of excitations which may vary from high cost X-rays, γ-rays, β-rays etc. to low cost LED. Persistent luminescent materials or Glow-in-the-Dark phosphors are the optical harvesters which store the optical energy from day light illuminating a whole night. They are so sensitive that they can be excited even with the low light of firefly. Therefore, instead of using a high cost excitation source authors have developed a low cost functioning of excitation source controlling short pulses of LED to excite persistent phosphors with the aid of ExpEYES Junior (Hardware/software framework developed by IUAC, New Delhi). Using this, the authors have excited the sample under investigation upto 10 ms. Trap spectroscopy of the pre-excited sample with LED is studied using Thermoluminescence (TL) technique. In this communication, development of the excitation source is discussed and demonstrate the its usefulness in the study of trap spectroscopy of commercially available CaS:Eu2+, Sm3+. Trapping parameters are also evaluated using Computerized Glow Curve Deconvolution (CGCD) technique.
ON THE NATURE OF THE ENIGMATIC OBJECT IRAS 19312+1950: A RARE PHASE OF MASSIVE STAR FORMATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordiner, M. A.; Charnley, S. B.; Milam, S. N.
IRAS 19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS 19312+1950 in the range 5–550 μ m using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 μ m, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: ≈0.22 M {sub ⊙} of material at 280 ± 18 K, andmore » ≈1.6 M {sub ⊙} of material at 157 ± 3 K. The O i 63 μ m line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km s{sup −1} along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H{sub 2}O at 5.8 μ m and CO{sub 2} at 15 μ m. The spectral energy distribution is consistent with a massive, luminous (∼2 × 10{sup 4} L {sub ⊙}) central source surrounded by a dense, warm circumstellar disk and envelope of total mass ∼500–700 M {sub ⊙}, with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS 19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS 19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.« less
NASA Astrophysics Data System (ADS)
Ryan, James M.; Bancroft, Christopher; Bloser, Peter; Bravar, Ulisse; Fourguette, Dominique; Frost, Colin; Larocque, Liane; McConnell, Mark L.; Legere, Jason; Pavlich, Jane; Ritter, Greg; Wassick, Greg; Wood, Joshua; Woolf, Richard
2010-08-01
We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument.
REEXAMINING THE LITHIUM DEPLETION BOUNDARY IN THE PLEIADES AND THE INFERRED AGE OF THE CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahm, S. E.
2015-11-10
Moderate-dispersion (R ∼ 5400), optical spectroscopy of seven brown dwarf candidate members of the Pleiades was obtained using the Echellette Spectrograph and Imager on the Keck II telescope. The proper motion and photometrically selected sample lies on the single-star main sequence of the cluster and effectively brackets the established lithium depletion boundary. The brown dwarf candidates range in spectral type from M6 to M7, implying effective temperatures between ∼2800 and 2650 K. All sources exhibit Hα emission, consistent with enhanced chromospheric activity that is expected for young, very low-mass stars and brown dwarfs. Li i λ6708 absorption is confidently detected inmore » the photospheres of two of the seven sources. A revised lithium depletion boundary is established in the near-infrared where the effects of extinction and variability are minimized. This lithium depletion edge occurs near K{sub o} = 14.45 or M{sub K} = 8.78 mag (UKIRT Infrared Deep Sky Survey), assuming the most accurate and precise distance estimate for the cluster of 136.2 pc. From recent theoretical evolutionary models, a revised age of τ = 112 ± 5 Myr is determined for the Pleiades. Accounting for the effects of magnetic activity on the photospheres of these very low-mass stars and brown dwarfs, however, would imply an even younger age for the cluster of ∼100 Myr.« less
ERIC Educational Resources Information Center
Sein, Lawrence T., Jr.
2006-01-01
The isotopic distribution in mass spectroscopy is described for identifying pure compounds, being able to distinguish molecular fragments by masses. Punnett squares are familiar, easy to compute, and often graphical which makes helpful to students and the relative distribution of isotopic combination is easily generated for even isotopic…
Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.; ...
2016-06-23
Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.
Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less
Evolution of the brightest and most massive galaxies since z~5
NASA Astrophysics Data System (ADS)
Tasca, Lidia A. M.
2015-08-01
The VIMOS Ultra Deep Survey (VUDS) is a large ESO programme which just completed the observation of ~10000 galaxies up to z~6 with the VIMOS spectrograph on the VLT. This is the largest and most uniform sample of spectroscopically confirmed high redshift galaxies ever assembled to date.By studying the spectroscopic and SED-fitting derived properties of these sources we have been able to study the evolution of the star formation rate (SFR)-stellar mass (M*) relation and specific star formation rate (sSFR) of star forming galaxies (SFGs) since a redshift z~5 (Tasca et al. 2014, arXiv1411.5687). We observe a turn-off in the SFR-M* relation at the highest mass-end, up to a redshift z~3.5, that we interpret as the signature of a strong on-going quenching mechanism and rapid mass growth.We find that the sSFR increases strongly up to z~2 and it significantly flattens in 2< z <5.In addition, by combining VUDS spectroscopy, HST/WCF3 and ACS photometry and multi-wavelength data we are able to probe the evolutionary sequence of the progenitors of massive, compact, quiescent early type galaxies observed at later epochs in a statistically robust context (Tasca et al. in preparation).Particular consideration will be given to the role of mergers in the galaxy mass assembly (Tasca et al. 2014, A&A, 565, 10).
Speciated Elemental and Isotopic Characterization of Atmospheric Aerosols - Recent Advances
NASA Astrophysics Data System (ADS)
Shafer, M.; Majestic, B.; Schauer, J.
2007-12-01
Detailed elemental, isotopic, and chemical speciation analysis of aerosol particulate matter (PM) can provide valuable information on PM sources, atmospheric processing, and climate forcing. Certain PM sources may best be resolved using trace metal signatures, and elemental and isotopic fingerprints can supplement and enhance molecular maker analysis of PM for source apportionment modeling. In the search for toxicologically relevant components of PM, health studies are increasingly demanding more comprehensive characterization schemes. It is also clear that total metal analysis is at best a poor surrogate for the bioavailable component, and analytical techniques that address the labile component or specific chemical species are needed. Recent sampling and analytical developments advanced by the project team have facilitated comprehensive characterization of even very small masses of atmospheric PM. Historically; this level of detail was rarely achieved due to limitations in analytical sensitivity and a lack of awareness concerning the potential for contamination. These advances have enabled the coupling of advanced chemical characterization to vital field sampling approaches that typically supply only very limited PM mass; e.g. (1) particle size-resolved sampling; (2) personal sampler collections; and (3) fine temporal scale sampling. The analytical tools that our research group is applying include: (1) sector field (high-resolution-HR) ICP-MS, (2) liquid waveguide long-path spectrophotometry (LWG-LPS), and (3) synchrotron x-ray absorption spectroscopy (sXAS). When coupled with an efficient and validated solubilization method, the HR-ICP-MS can provide quantitative elemental information on over 50 elements in microgram quantities of PM. The high mass resolution and enhanced signal-to-noise of HR-ICP-MS significantly advance data quality and quantity over that possible with traditional quadrupole ICP-MS. The LWG-LPS system enables an assessment of the soluble/labile components of PM, while simultaneously providing critical oxidation state speciation data. Importantly, the LWG- LPS can be deployed in a semi-real-time configuration to probe fine temporal scale variations in atmospheric processing or sources of PM. The sXAS is providing complementary oxidation state speciation of bulk PM. Using examples from our research; we will illustrate the capabilities and applications of these new methods.
Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures
NASA Astrophysics Data System (ADS)
Smith, Robin S.; Wiederhold, Jan G.; Jew, Adam D.; Brown, Gordon E.; Bourdon, Bernard; Kretzschmar, Ruben
2014-07-01
Active and closed Hg mines are significant sources of Hg contamination to the environment, mainly due to large volumes of mine waste material disposed of on-site. The application of Hg isotopes as source tracer from such contaminated sites requires knowledge of the Hg isotope signatures of different materials potentially released to the environment. Previous work has shown that calcine, the waste residue of the on-site ore roasting process, can exhibit distinct Hg isotope signatures compared with the primary ore. Here, we report results from a detailed small-scale study of Hg isotope variations in calcine collected from the closed New Idria Hg mine, San Benito County, CA, USA. The calcine samples exhibited different internal layering features which were investigated using optical microscopy, micro X-ray fluorescence, micro X-ray absorption spectroscopy (μ-XAS), and stable Hg isotope analysis. Significant Fe, S, and Hg concentration gradients were found across the different internal layers. Isotopic analyses revealed an extreme variation with pronounced isotopic gradients across the internal layered features. Overall, δ202Hg (±0.10‰, 2 SD) describing mass-dependent fractionation (MDF) ranged from -5.96 to 14.49‰, which is by far the largest range of δ202Hg values reported for any environmental sample. In addition, Δ199Hg (±0.06‰, 2 SD) describing mass-independent fractionation (MIF) ranged from -0.17 to 0.21‰. The μ-XAS analyses suggested that cinnabar and metacinnabar are the dominant Hg-bearing phases in the calcine. Our results demonstrate that the incomplete roasting of HgS ores in Hg mines can cause extreme mass-dependent Hg isotope fractionations at the scale of individual calcine pieces with enrichments in both light and heavy Hg isotopes relative to the primary ore signatures. This finding has important implications for the application of Hg isotopes as potential source tracers for Hg released to the environment from closed Hg mines and highlights the need for detailed source signature identification.
NASA Astrophysics Data System (ADS)
Chen, Shang; Kondo, Hiroki; Ishikawa, Kenji; Takeda, Keigo; Sekine, Makoto; Kano, Hiroyuki; Den, Shoji; Hori, Masaru
2011-01-01
For an innovation of molecular-beam-epitaxial (MBE) growth of gallium nitride (GaN), the measurements of absolute densities of N, H, and NH3 at the remote region of the radical source excited by plasmas have become absolutely imperative. By vacuum ultraviolet absorption spectroscopy (VUVAS) at a relatively low pressure of about 1 Pa, we obtained a N atom density of 9×1012 cm-3 for a pure nitrogen gas used, a H atom density of 7×1012 cm-3 for a gas composition of 80% hydrogen mixed with nitrogen gas were measured. The maximum density 2×1013 cm-3 of NH3 was measured by quadruple mass spectrometry (QMS) at H2/(N2+H2)=60%. Moreover, we found that N atom density was considerably affected by processing history, where the characteristic instability was observed during the pure nitrogen plasma discharge sequentially after the hydrogen-containing plasma discharge. These results indicate imply the importance of establishing radical-based processes to control precisely the absolute densities of N, H, and NH3 at the remote region of the radical source.
NASA Astrophysics Data System (ADS)
Oropeza, D.
2016-12-01
A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.
Electric Propulsion Induced Secondary Mass Spectroscopy
NASA Technical Reports Server (NTRS)
Amini, Rashied; Landis, Geoffrey
2012-01-01
A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.
NASA Astrophysics Data System (ADS)
Omont, A.; Gilmore, G. F.; Alard, C.; Aracil, B.; August, T.; Baliyan, K.; Beaulieu, S.; Bégon, S.; Bertou, X.; Blommaert, J. A. D. L.; Borsenberger, J.; Burgdorf, M.; Caillaud, B.; Cesarsky, C.; Chitre, A.; Copet, E.; de Batz, B.; Egan, M. P.; Egret, D.; Epchtein, N.; Felli, M.; Fouqué, P.; Ganesh, S.; Genzel, R.; Glass, I. S.; Gredel, R.; Groenewegen, M. A. T.; Guglielmo, F.; Habing, H. J.; Hennebelle, P.; Jiang, B.; Joshi, U. C.; Kimeswenger, S.; Messineo, M.; Miville-Deschênes, M. A.; Moneti, A.; Morris, M.; Ojha, D. K.; Ortiz, R.; Ott, S.; Parthasarathy, M.; Pérault, M.; Price, S. D.; Robin, A. C.; Schultheis, M.; Schuller, F.; Simon, G.; Soive, A.; Testi, L.; Teyssier, D.; Tiphène, D.; Unavane, M.; van Loon, J. T.; Wyse, R.
2003-06-01
The ISOGAL project is an infrared survey of specific regions sampling the Galactic Plane selected to provide information on Galactic structure, stellar populations, stellar mass-loss and the recent star formation history of the inner disk and Bulge of the Galaxy. ISOGAL combines 7 and 15 μm ISOCAM observations -- with a resolution of 6 arcsec at worst -- with DENIS IJKs data to determine the nature of the sources and the interstellar extinction. We have observed about 16 square degrees with a sensitivity approaching 10-20 mJy, detecting ˜105 sources, mostly AGB stars, red giants and young stars. The main features of the ISOGAL survey and the observations are summarized in this paper, together with a brief discussion of data processing and quality. The primary ISOGAL products are described briefly (a full desciption is given in Schuller et al. 2003): viz. the images and the ISOGAL-DENIS five-wavelength point source catalogue. The main scientific results already derived or in progress are summarized. These include astrometrically calibrated 7 and 15 μm images, determining structures of resolved sources; identification and properties of interstellar dark clouds; quantification of the infrared extinction law and source dereddening; analysis of red giant and (especially) AGB stellar populations in the central Bulge, determining luminosity, presence of circumstellar dust and mass-loss rate, and source classification, supplemented in some cases by ISO/CVF spectroscopy; detection of young stellar objects of diverse types, especially in the inner Bulge with information about the present and recent star formation rate; identification of foreground sources with mid-IR excess. These results are the subject of about 25 refereed papers published or in preparation. This is paper No. 20 in a refereed journal based on data from the ISOGAL project. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the UK) and with the participation of ISAS and NASA. Based on observations collected at the European Southern Observatory, La Silla, Chile.
Terahertz quantum-cascade lasers as high-power and wideband, gapless sources for spectroscopy.
Röben, Benjamin; Lü, Xiang; Hempel, Martin; Biermann, Klaus; Schrottke, Lutz; Grahn, Holger T
2017-07-10
Terahertz (THz) quantum-cascade lasers (QCLs) are powerful radiation sources for high-resolution and high-sensitivity spectroscopy with a discrete spectrum between 2 and 5 THz as well as a continuous coverage of several GHz. However, for many applications, a radiation source with a continuous coverage of a substantially larger frequency range is required. We employed a multi-mode THz QCL operated with a fast ramped injection current, which leads to a collective tuning of equally-spaced Fabry-Pérot laser modes exceeding their separation. A continuous coverage over 72 GHz at about 4.7 THz was achieved. We demonstrate that the QCL is superior to conventional sources used in Fourier transform infrared spectroscopy in terms of the signal-to-noise ratio as well as the dynamic range by one to two orders of magnitude. Our results pave the way for versatile THz spectroscopic systems with unprecedented resolution and sensitivity across a wide frequency range.
Beppu, Takaaki; Inoue, Takashi; Nishimoto, Hideaki; Nakamura, Shinichi; Nakazato, Yoichi; Ogasawara, Kuniaki; Ogawa, Akira
2007-10-01
Primary granulomatous angiitis of the central nervous system (CNS) is extremely rare. Its preoperative diagnosis is difficult as the condition displays nonspecific features on routine neuroimaging investigations. In this paper, the authors report findings of magnetic resonance (MR) spectroscopy and fractional anisotropy (FA) with diffusion tensor MR imaging in a case of granulomatous angiitis of the CNS. A 30-year-old man presented with morning headaches and grand mal seizures. An MR image revealed a mass resembling glioblastoma in the right temporal lobe. Magnetic resonance spectroscopy showed a high choline/creatine (Cho/Cr) ratio indicative of a malignant neoplasm, accompanied by a slight elevation of glutamate and glutamine. The FA value was very low, which is inconsistent with malignant glioma. The mass was totally removed surgically. Histologically, the peripheral lesion of the mass consisted of a rough accumulation of fat granule cells, infiltration of inflammatory cells, and distribution of capillary vessels. Some vessels within the lesion were replaced by granulomas. The histological diagnosis was granulomatous angiitis of the CNS. The MIB-1-positive rate of the granuloma was approximately 5%. Both MR spectroscopy and FA were unable to accurately diagnose granulomatous angiitis of the CNS prior to surgery; however, elevated Cho/Cr and glutamate and glutamine shown by MR spectroscopy may indicate the moderate proliferation potential of the granuloma and the inflammatory process, respectively, in this condition. Although the low FA value in the present case enabled the authors to rule out a diagnosis of glioblastoma, FA values in inflammatory lesions require careful interpretation.
BATSE spectroscopy analysis system
NASA Technical Reports Server (NTRS)
Schaefer, Bradley E.; Bansal, Sandhia; Basu, Anju; Brisco, Phil; Cline, Thomas L.; Friend, Elliott; Laubenthal, Nancy; Panduranga, E. S.; Parkar, Nuru; Rust, Brad
1992-01-01
The Burst and Transient Source Experiment (BATSE) Spectroscopy Analysis System (BSAS) is the software system which is the primary tool for the analysis of spectral data from BATSE. As such, Guest Investigators and the community as a whole need to know its basic properties and characteristics. Described here are the characteristics of the BATSE spectroscopy detectors and the BSAS.
Emission Spectroscopy of the 4X Source Discharge With and Without N 2 Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Horace Vernon
2016-01-14
This tech note summarizes the December, 1988 emission spectroscopy measurements made on the 4X source discharge with and without N₂ gas added to the H + Cs discharge. This study is motivated by the desire to understand why small amounts of N₂ gas added to the source discharge results in a reduction in the H⁻ beam noise. The beneficial effect of N₂ gas on H⁻ beam noise was first discovered by Bill Ingalls and Stu Orbesen on the ATS SAS source. For the 4X source the observed effect is that when N2 gas is added to the discharge the H⁻more » beam noise is reduced about a factor of 2.« less
The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source
Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric
2015-01-01
The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented. PMID:25931061
Background-Limited Infrared-Submillimeter Spectroscopy (BLISS)
NASA Technical Reports Server (NTRS)
Bradford, Charles Matt
2004-01-01
The bulk of the cosmic far-infrared background light will soon be resolved into its individual sources with Spitzer, Astro-F, Herschel, and submm/mm ground-based cameras. The sources will be dusty galaxies at z approximately equal to 1-4. Their physical conditions and processes in these galaxies are directly probed with moderate-resolution spectroscopy from 20 micrometers to 1 mm. Currently large cold telescopes are being combined with sensitive direct detectors, offering the potential for mid-far-IR spectroscopy at the background limit (BLISS). The capability will allow routine observations of even modest high-redshift galaxies in a variety of lines. The BLISS instrument's capabilities are described in this presentation.
2MASS J20261584-2943124: an Unresolved L0.5 + T6 Spectral Binary
NASA Astrophysics Data System (ADS)
Gelino, Christopher R.; Burgasser, Adam J.
2010-07-01
We identify the L dwarf 2MASS J20261584-2943124 as an unresolved spectral binary, based on low-resolution, near-infrared spectroscopy from IRTF/SpeX. The data reveal a peculiar absorption feature at 1.6 μm, previously noted in the spectra of other very low-mass spectral binaries, which likely arises from overlapping FeH and CH4 absorption bands in the blended light of an L dwarf/T dwarf pair. Spectral template matching analysis indicates component types of L0.5 and T6, with relative brightness ΔH = 4.2 ± 0.6. Laser guide star adaptive optics imaging observations with Keck/NIRC2 fail to resolve the source, indicating a maximum separation at the observing epoch of 0farcs25, or a projected separation of 9 AU assuming a distance of 36 ± 5 pc. With an age that is likely to be relatively older (gsim5 Gyr) based on the system's large V tan and mass ratio arguments, the relative motion of the potentially "massive" (0.06-0.08 M sun) components of 2MASS J2026-2943 may be detectable through radial velocity variations, like its earlier-type counterpart 2MASS J03202839-0446358 (M8+T5), providing dynamical mass measurements that span the hydrogen burning limit. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Detecting Water on Super-Earths Using JAVST
NASA Technical Reports Server (NTRS)
Deming, D.
2010-01-01
Nearby lower train sequence stars host a class of planets known as Super-Earths, that have no analog in our own solar system. Super-Earths are rocky and/or icy planets with masses up to about 10 Earth masses, They are expected to host atmospheres generated by a number of processes including accretion of chondritic material. Water vapor should be a common constituent of super-Earth atmospheres, and may be detectable in transiting super-Earths using transmission spectroscopy during primar y eclipse, and emission spectroscopy at secondary eclipse. I will discuss the prospects for super-Earth atmospheric measurements using JWST.
Spectroscopic Study of L Hypernuclei with Electron Beams at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Satoshi; Gogami, Toshiyuki; Tang, Liguang
The missing mass spectroscopy of L hypernuclei with the (e, e'K^+) reaction was started from 2000 at Jefferson Lab. In this fifteen years, various hypernuclei (A = 7 - 52) including hyperon (L, S^0) productions have been studied with newly developed experimental techniques. The (e, e'K^+) reaction spectroscopy of L hypernuclei features its capability of absolute missing mass calibration and production of new species of hypernuclei which are the isospin partners of well studied hypernuclei by (K^-, pi-) and (pi^+, K^+) reactions. In this paper, we will review how we established the (e, e'K^+) spectroscopic study of hypernuclei.
NASA Technical Reports Server (NTRS)
Shevaleyevskiy, I. D.; Chupakhin, M. S.
1974-01-01
Methodological and analytical capabilities associated with spark mass spectrometry and X-ray spectroscopy are presented for the determination of the elemental composition of samples of lunar regolith returned to the earth by Apollo 11 and Apollo 12. Using X-ray spectroscopy, the main constituents of samples of lunar surface material were determined, and using mass spectrometry -- the main admixtures. The principal difference of Apollo 11 samples from Apollo 12 samples was found for elements contained in microconcentrations. This is especially true of rare earth elements.
A comparative review of optical surface contamination assessment techniques
NASA Technical Reports Server (NTRS)
Heaney, James B.
1987-01-01
This paper will review the relative sensitivities and practicalities of the common surface analytical methods that are used to detect and identify unwelcome adsorbants on optical surfaces. The compared methods include visual inspection, simple reflectometry and transmissiometry, ellipsometry, infrared absorption and attenuated total reflectance spectroscopy (ATR), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and mass accretion determined by quartz crystal microbalance (QCM). The discussion is biased toward those methods that apply optical thin film analytical techniques to spacecraft optical contamination problems. Examples are cited from both ground based and in-orbit experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, W.; Dikin, D.A.; Chen, X.
2005-07-01
Many experiments on the mechanics of nanostructures require the creation of rigid clamps at specific locations. In this work, electron-beam-induced deposition (EBID) has been used to deposit carbon films that are similar to those that have recently been used for clamping nanostructures. The film deposition rate was accelerated by placing a paraffin source of hydrocarbon near the area where the EBID deposits were made. High-resolution transmission electron microscopy, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation were used to characterize the chemical composition and the mechanics of the carbonaceous deposits. The typical EBID deposit was found to be hydrogenated amorphousmore » carbon (a-C:H) having more sp{sup 2}- than sp{sup 3}-bonded carbon. Nanoindentation tests revealed a hardness of {approx}4 GPa and an elastic modulus of 30-60 GPa, depending on the accelerating voltage. This reflects a relatively soft film, which is built out of precursor molecular ions impacting the growing surface layer with low energies. The use of such deposits as clamps for tensile tests of poly(acrylonitrile)-based carbon nanofibers loaded between opposing atomic force microscope cantilevers is presented as an example application.« less
NASA Astrophysics Data System (ADS)
Remya, R. R.; Radhika Rajasree, S. R.; Suman, T. Y.; Aranganathan, L.; Gayathri, S.; Gobalakrishnan, M.; Karthih, M. G.
2018-03-01
Biosynthesis of nanoparticles using isolated compounds from various sources is accepting interest due to their broad array of biological activities and biocompatibility. This paper presents a simple; cost effective and green synthesis of silver nanoparticles (AgNPs) using the polysaccharide, laminarin a storage compound obtained from the brown algae Turbinaria ornata (T. ornata). Initially, the water soluble polysaccharide, laminarin was extracted, purified and analyzed using Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectroscopy (MALDI-TOF MS) and Proton Nuclear Magnetic Resonance (1H NMR). Further, the silver nanoparticles (AgNPs) were synthesized using the isolated laminarin and were characterized by Ultraviolet - visible (UV-vis) spectrophotometer, colour value analysis, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and High Resolution Transmission Electron Microscopy (HR-TEM). The free radical scavenging activities were performed and the effect of cytotoxicity against retinoblastoma Y79 cell lines was also evaluated by in vitro studies. Induction of apoptosis was evident by the percentage of cells arrested in G2/M phase using flow cytometry analysis and was further confirmed by DNA fragmentation study which identified the presence of double strand break.
A Multi-Year Light Curve of Scorpius X-1 Based on CGRO BATSE Spectroscopy Detector Observations
NASA Technical Reports Server (NTRS)
McNamara, B. J.; Harrison, T. E.; Mason, P. A.; Templeton, M.; Heikkila, C. W.; Buckley, T.; Galvan, E.; Silva, A.; Harmon, B. A.
1998-01-01
A multi-year light curve of the low mass X-ray binary, Scorpius X-1, is constructed based on the Compton Gamma-ray Observatory (CGRO) Burst and Transient Source Experiment (BATSE) Spectroscopy Detector (SD) data in the nominal energy range of 10-20 keV. A detailed discussion is given of the reduction process of the BATSE/SD data. Corrections to the SD measurements are made for off-axis pointings, spectral and bandpass changes, and differences in the eight SD sensitivities. The resulting 4.4 year Sco X-1 SD light curve is characterized in terms of the time scales over which various types of emission changes occur. This light curve is then compared with Sco X-1 light curves obtained by Axiel 5, the BATSE Large Area Detectors (LADs), and the RXTE all-sky monitor (ASM). Coincident temporal coverage by the BATSE/SD and RXTE/ASM allows a direct comparison of the behavior of Sco X-1 over a range of high energies to be made. These ASM light curves are then used to discuss model constraints on the Sco X-1 system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahoon, Erica M.; Almirall, Jose R.
Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and themore » mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaHaye, Nicole L.; Phillips, Mark C.; Duffin, Andrew M.
2016-01-01
Both laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are well-established analytical techniques with their own unique advantages and disadvantages. The combination of the two analytical methods is a very promising way to overcome the challenges faced by each method individually. We made a comprehensive comparison of local plasma conditions between nanosecond (ns) and femtosecond (fs) laser ablation (LA) sources in a combined LIBS and LA-ICP-MS system. The optical emission spectra and ICP-MS signal were recorded simultaneously for both ns- and fs-LA and figures of merit of the system were analyzed. Characterization of the plasma was conductedmore » by evaluating temperature and density of the plume under various irradiation conditions using optical emission spectroscopy, and correlations to ns- and fs-LIBS and LA-ICP-MS signal were made. The present study is very useful for providing conditions for a multimodal system as well as giving insight into how laser ablation plume parameters are related to LA-ICP-MS and LIBS results for both ns- and fs-LA.« less
Development of Wien filter for small ion gun of surface analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahng, Jungbae; Busan Center, Korea Basic Science Institute, Busan 609-735; Hong, Jonggi
The gas cluster ion beam (GCIB) and liquid metal ion beam have been studied in the context of ion beam usage for analytical equipment in applications such as X-ray photoelectron spectroscopy and secondary ion mass spectroscopy (SIMS). In particular, small ion sources are used for the secondary ion generation and ion etching. To set the context to this study, the SIMS project has been launched to develop ion-gun based analytical equipment for the Korea Basic Science Institute. The objective of the first stage of the project is the generation of argon beams with a GCIB system [A. Kirkpatrick, Nucl. Instrum.more » Methods Phys. Res., Sect. B 206, 830–837 (2003)] that consists of a nozzle, skimmer, ionizer, acceleration tube, separation system, transport system, and target. The Wien filter directs the selected cluster beam to the target system by exploiting the velocity difference of the generated particles from GCIB. In this paper, we present the theoretical modeling and three-dimensional electromagnetic analysis of the Wien filter, which can separate Ar{sup +}{sub 2500} clusters from Ar{sup +}{sub 2400} to Ar{sup +}{sub 2600} clusters with a 1-mm collimator.« less
NASA Astrophysics Data System (ADS)
Gokul Raj, K.; Manikandan, R.; Arulvasu, C.; Pandi, M.
2015-03-01
Cladosporium oxysporum a new taxol producing endophytic fungus was identified and production of taxol were characterized using UV-visible spectroscopy (UV-vis), high-performance liquid chromatography (HPLC), infrared (IR) nuclear magnetic resonance spectroscopy (NMR (13C and 1H)) and liquid chromatography-mass spectrometry (LC-MS). The taxol biosynthetic gene (dbat) was evaluated for new taxol producing fungus. Antibacterial activity against six different human pathogenic bacteria was done by agar well diffusion method. The anticancer efficacy of isolated fungal taxol were also evaluated in human colon cancer cell HCT 15 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cytotoxicity and nuclear morphology analysis. The isolated fungal taxol showed positive towards biosynthetic gene (dbat) and effective against both Gram positive as well as Gram negative. The fungal taxol suppress growth of cancer cell line HCT 15 with an IC50 value of 3.5 μM concentration by 24 h treatment. Thus, the result reveals that C. oxysporum could be a potential alternative source for production of taxol and have antibacterial as well as anticancer properties with possible clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrdlicka, Ales; Prokes, Lubomir; Stankova, Alice
2010-05-01
The development of a remote laser-induced breakdown spectroscopy (LIBS) setup with an off-axis Newtonian collection optics, Galilean-based focusing telescope, and a 532 nm flattop laser beam source is presented. The device was tested at a 6 m distance on a slice of bone to simulate its possible use in the field, e.g., during archaeological excavations. It is shown that this setup is sufficiently sensitive to both major (P, Mg) and minor elements (Na, Zn, Sr). The measured quantities of Mg, Zn, and Sr correspond to the values obtained by reference laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements within an approximatelymore » 20% range of uncertainty. A single point calibration was performed by use of a bone meal standard . The radial element distribution is almost invariable by use of LA-ICP-MS, whereas the LIBS measurement showed a strong dependence on the sample porosity. Based on these results, this remote LIBS setup with a relatively large (350 mm) collecting mirror is capable of semiquantitative analysis at the level of units of mg kg{sup -1}.« less
HST Imaging of the Eye of Horus, a Double Source Plane Gravitational Lens
NASA Astrophysics Data System (ADS)
Wong, Kenneth
2017-08-01
Double source plane (DSP) gravitational lenses are extremely rare alignments of a massive lens galaxy with two background sources at distinct redshifts. The presence of two source planes provides important constraints on cosmology and galaxy structure beyond that of typical lens systems by breaking degeneracies between parameters that vary with source redshift. While these systems are extremely valuable, only a handful are known. We have discovered the first DSP lens, the Eye of Horus, in the Hyper Suprime-Cam survey and have confirmed both source redshifts with follow-up spectroscopy, making this the only known DSP lens with both source redshifts measured. Furthermore, the brightest image of the most distant source (S2) is split into a pair of images by a mass component that is undetected in our ground-based data, suggesting the presence of a satellite or line-of-sight galaxy causing this splitting. In order to better understand this system and use it for cosmology and galaxy studies, we must construct an accurate lens model, accounting for the lensing effects of both the main lens galaxy and the intermediate source. Only with deep, high-resolution imaging from HST/ACS can we accurately model this system. Our proposed multiband imaging will clearly separate out the two sources by their distinct colors, allowing us to use their extended surface brightness distributions as constraints on our lens model. These data may also reveal the satellite galaxy responsible for the splitting of the brightest image of S2. With these observations, we will be able to take full advantage of the wealth of information provided by this system.
Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex
NASA Astrophysics Data System (ADS)
Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.
2017-09-01
Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A85
NASA Astrophysics Data System (ADS)
Miller, Jon M.
2017-08-01
Across the mass scale, high-resolution X-ray spectroscopy has transformed our view of accretion onto black holes. The ionized disk winds observed from stellar-mass black holes may sometimes eject more mass than is able to accrete onto the black hole. It is possible that these winds can probe the fundamental physics that drive disk accretion. The most powerful winds from accretion onto massive black holes may play a role in feedback, seeding host bulges with hot gas and halting star formation. The lessons and techniques emerging from these efforts can also reveal the accretion flow geometry in tidal disruption events (TDEs), an especially rich discovery space. This talk will review some recent progress enabled by high-resolution X-ray spectroscopy, and look at the potential of gratings spectrometers and microcalorimeters in the years ahead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofstetter, K.J.; Sigg, R.
1990-12-31
A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in eachmore » of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofstetter, K.J.; Sigg, R.
1990-01-01
A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in eachmore » of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.« less
A new screening method for flunitrazepam in vodka and tequila by fluorescence spectroscopy.
Leesakul, Nararak; Pongampai, Sirintip; Kanatharana, Proespichaya; Sudkeaw, Pravit; Tantirungrotechai, Yuthana; Buranachai, Chittanon
2013-01-01
A new screening method for flunitrazepam in colourless alcoholic beverages based on a spectroscopic technique is proposed. Absorption and steady-state fluorescence of flunitrazepam and its protonated form with various acids were investigated. The redshift of the wavelength of maximum absorption was distinctively observed in protonated flunitrazepam. An emissive fluorescence at 472 nm was detected in colourless spirits (vodka and tequila) at room temperature. 2-M perchloric acid was the most appropriated proton source. By using electron ionization mass spectrometry and time-dependent density functional theory calculations, the possible structure of protonated flunitrazepam was identified to be 2-nitro-N-methylacridone, an acridone derivative as opposed to 2-methylamino-5-nitro-2'-fluorobenzophenone, a benzophenone derivative. Copyright © 2012 John Wiley & Sons, Ltd.
Increasing rigor in NMR-based metabolomics through validated and open source tools
Eghbalnia, Hamid R; Romero, Pedro R; Westler, William M; Baskaran, Kumaran; Ulrich, Eldon L; Markley, John L
2016-01-01
The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism’s phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples. Information acquired from nuclear magnetic spectroscopy (NMR), mass spectrometry (MS), and the published literature, as processed by statistical approaches, are driving increasingly wider applications of metabolomics. This review focuses on the role of databases and software tools in advancing the rigor, robustness, reproducibility, and validation of metabolomics studies. PMID:27643760
NASA Astrophysics Data System (ADS)
Goodacre, Royston; Rooney, Paul J.; Kell, Douglas B.
1998-04-01
FTIR spectra were obtained from 15 methicillin-resistant and 22 methicillin-susceptible Staphylococcus aureus strains using our DRASTIC approach. Cluster analysis showed that the major source of variation between the IR spectra was not due to their resistance or susceptibility to methicillin; indeed early studies suing pyrolysis mass spectrometry had shown that this unsupervised analysis gave information on the phage group of the bacteria. By contrast, artificial neural networks, based on a supervised learning, could be trained to recognize those aspects of the IR spectra which differentiated methicillin-resistant from methicillin- susceptible strains. These results give the first demonstration that the combination of FTIR with neural networks can provide a very rapid and accurate antibiotic susceptibility testing technique.
Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Roger W.; Reinot, Tonu; McClelland, John F.
2010-08-03
Pyrolysis of biomass produces both pyrolysis oil and solid char. In this study, poplar has been pyrolyzed in a stepwise fashion over a series of temperatures from 200 to 500°C, and both the primary products contributing to pyrolysis oil and the changes in the pyrolyzing poplar surface leading toward char have been characterized at each step. The primary products were identified by direct analysis in real time (DART) mass spectrometry, and the changes in the poplar surface were monitored using Fourier transform infrared (FTIR) photoacoustic spectroscopy, with a sampling depth of a few micrometers. The primary products from pyrolyzing cellulose,more » xylan, and lignin under similar conditions were also characterized to identify the sources of the poplar products.« less
Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Roger W.; Reinot, Tonu; McClelland, John F.
2010-08-30
Pyrolysis of biomass produces both pyrolysis oil and solid char. In this study, poplar has been pyrolyzed in a stepwise fashion over a series of temperatures from 200 to 500 C, and both the primary products contributing to pyrolysis oil and the changes in the pyrolyzing poplar surface leading toward char have been characterized at each step. The primary products were identified by direct analysis in real time (DART) mass spectrometry, and the changes in the poplar surface were monitored using Fourier transform infrared (FTIR) photoacoustic spectroscopy, with a sampling depth of a few micrometers. The primary products from pyrolyzingmore » cellulose, xylan, and lignin under similar conditions were also characterized to identify the sources of the poplar products.« less
Test of GET Electronics for the CHIMERA and FARCOS multi-detectors
NASA Astrophysics Data System (ADS)
De Luca, S.; Acosta, L.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D'Andrea, M.; De Filippo, E.; Dell'Aquila, D.; Fichera, F.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; Lombardo, I.; Martorana, N. S.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccà, G.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.
2017-11-01
In this paper we present the results of the tests on the new digital electronics GET (General Electronics for Tpc), which will be used for the readout of the CsI(Tl) detectors of CHIMERA (Charged Heavy Ion Mass and Energy Resolving Array) and for the new correlator FARCOS (Femtoscope ARray for COrrelations and Spectroscopy). The new electronics allows us to digitize the full waveform of the signals produced by the detector. Among its features it is worth noticing the compactness and low power consumption (5W for 256 channels). Tests have been performed with pulsers, radioactive sources and ion beams. With such electronics very good results in energy resolution and isotope separation of the detected fragments were obtained, by using both hardware and software filters.
Quantification of Soluble Sugars and Sugar Alcohols by LC-MS/MS.
Feil, Regina; Lunn, John Edward
2018-01-01
Sugars are simple carbohydrates composed primarily of carbon, hydrogen, and oxygen. They play a central role in metabolism as sources of energy and as building blocks for synthesis of structural and nonstructural polymers. Many different techniques have been used to measure sugars, including refractometry, colorimetric and enzymatic assays, gas chromatography, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy. In this chapter we describe a method that combines an initial separation of sugars by high-performance anion-exchange chromatography (HPAEC) with detection and quantification by tandem mass spectrometry (MS/MS). This combination of techniques provides exquisite specificity, allowing measurement of a diverse range of high- and low-abundance sugars in biological samples. This method can also be used for isotopomer analysis in stable-isotope labeling experiments to measure metabolic fluxes.
Increasing rigor in NMR-based metabolomics through validated and open source tools.
Eghbalnia, Hamid R; Romero, Pedro R; Westler, William M; Baskaran, Kumaran; Ulrich, Eldon L; Markley, John L
2017-02-01
The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism's phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples. Information acquired from nuclear magnetic spectroscopy (NMR), mass spectrometry (MS), and the published literature, as processed by statistical approaches, are driving increasingly wider applications of metabolomics. This review focuses on the role of databases and software tools in advancing the rigor, robustness, reproducibility, and validation of metabolomics studies. Copyright © 2016. Published by Elsevier Ltd.
Chlorxanthomycin, a Fluorescent, Chlorinated, Pentacyclic Pyrene from a Bacillus sp.†
Magyarosy, Andrew; Ho, Jonathan Z.; Rapoport, Henry; Dawson, Scott; Hancock, Joe; Keasling, Jay D.
2002-01-01
A gram-positive Bacillus sp. that fluoresces yellow under long-wavelength UV light on several common culture media was isolated from soil samples. On the basis of carbon source utilization studies, fatty acid methyl ester analysis, and 16S ribosomal DNA analysis, this bacterium was most similar to Bacillus megaterium. Chemical extraction yielded a yellow-orange fluorescent pigment, which was characterized by X-ray crystallography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The fluorescent compound, chlorxanthomycin, is a pentacyclic, chlorinated molecule with the molecular formula C22H15O6Cl and a molecular weight of 409.7865. Chlorxanthomycin appears to be located in the cytoplasm, does not diffuse out of the cells into the culture medium, and has selective antibiotic activity. PMID:12147512
New sesquiterpenes from Euonymus europaeus (Celastraceae).
Descoins, Charles; Bazzocchi, Isabel López; Ravelo, Angel Gutiérrez
2002-02-01
A new sesquiterpene evoninate alkaloid (1), and two sesquiterpenes (2, 3) with a dihydro-beta-agarofuran skeleton, along with three known sesquiterpenes (4-6), were isolated from the seeds of Euonymus europaeus. Their structures were elucidated by high resolution mass analysis, and one- and two-dimensional (1D and 2D) NMR spectroscopy, including homonuclear and heteronuclear correlation [correlation spectroscopy (COSY), rotating frame Overhauser enhancement spectroscopy (ROESY), heteronuclear single quantum coherence (HSQC), and heteronuclear multiple bond correlation (HMBC)] experiments.
Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian
The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range withmore » $${ \\mathcal O }(\\mathrm{eV})$$ resolution. A lower bound of $$m({\
Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8
Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian; ...
2017-03-30
The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range withmore » $${ \\mathcal O }(\\mathrm{eV})$$ resolution. A lower bound of $$m({\
Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee
2018-01-01
The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.
2016-12-01
masses collide, they form a supercritical mass . Criticality refers to the neutron population within the system. A critical system is one that can...Spectrometry, no. 242, pp. 161–168, 2005. [9] S. Raeder, “Trace analysis of actinides in the environment by means of resonance ionization mass ...first ionization potential of actinide elements by resonance ionization mass spectrometry.” Spectrochimica Acta part B: Atomic Spectroscopy. vol. 52
Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA
NASA Astrophysics Data System (ADS)
Wurm, Michael; Feilitzsch, F. V.; Göger-Neff, M.; Lewke, T.; Marrodan Undagoitia, T.; Oberauer, L.; Potzel, W.; Todor, S.; Winter, J.
2008-11-01
The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R&D activities.
Centaurus X-3. [early x-ray binary star spectroscopy
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Cowley, A. P.; Crampton, D.; Van Paradus, J.; White, N. E.
1979-01-01
Spectroscopic observations of Krzeminski's star at dispersions 25-60 A/mm are described. The primary is an evolved star of type O6-O8(f) with peculiarities, some of which are attributable to X-ray heating. Broad emission lines at 4640A (N III), 4686 A(He II) and H-alpha show self-absorption and do not originate entirely from the region near the X-ray star. The primary is not highly luminous (bolometric magnitude about -9) and does not show signs of an abnormally strong stellar wind. The X-ray source was 'on' at the time of optical observations. Orbital parameters are presented for the primary, which yield masses of 17 + or - 2 and 1.0 + or - 3 solar masses for the stars. The optical star is undermassive for its luminosity, as are other OB-star X-ray primaries. The rotation is probably synchronized with the orbital motion. The distance to Cen X-3 is estimated to be 10 + or - 1 kpc. Basic data for 12 early-type X-ray primaries are discussed briefly
The quest for inorganic fullerenes
NASA Astrophysics Data System (ADS)
Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Park, Eun Ji; Ganteför, Gerd; Seo, Hyun Ook; Kim, Young Dok; Idrobo, Juan-Carlos; Pennycook, Stephen J.
2015-10-01
Experimental results of the search for inorganic fullerenes are presented. MonSm- and WnSm- clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.
Hydrodynamic instabilities and mix studies on NIF: predictions, observations, and a path forward
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remington, B. A.; Atherton, L. J.; Benedetti, L. R.
The goals of the Mix Campaign are to determine how mix affects performance, locate the "mix cliff", locate the source of the mix, and develop mitigation methods that allow performance to be increased. We have used several different drive pulse shapes and capsule designs in the Mix Campaign, to understand sensitivity to drive peak power, level of coast, rise time to peak power, adiabat, and dopant level in the capsule. Ablator material mixing into the hot spot has been shown conclusively with x-ray spectroscopy. The observed neutron yield drops steeply when the hot spot mix mass becomes too large. Themore » mix appears to be driven by ablation- front Rayleigh-Taylor instabilities. A high foot, higher adiabat drive has a more stable ablation front and has allowed the mix mass in the hot spot to be reduced significantly. We found two recent high foot shots achieved neutron yields > 10 15 and measured neutron yield over clean 1D simulation (YOC) > 50%, which was one of the central goals of the Mix Campaign.« less
Hydrodynamic instabilities and mix studies on NIF: predictions, observations, and a path forward
Remington, B. A.; Atherton, L. J.; Benedetti, L. R.; ...
2016-04-01
The goals of the Mix Campaign are to determine how mix affects performance, locate the "mix cliff", locate the source of the mix, and develop mitigation methods that allow performance to be increased. We have used several different drive pulse shapes and capsule designs in the Mix Campaign, to understand sensitivity to drive peak power, level of coast, rise time to peak power, adiabat, and dopant level in the capsule. Ablator material mixing into the hot spot has been shown conclusively with x-ray spectroscopy. The observed neutron yield drops steeply when the hot spot mix mass becomes too large. Themore » mix appears to be driven by ablation- front Rayleigh-Taylor instabilities. A high foot, higher adiabat drive has a more stable ablation front and has allowed the mix mass in the hot spot to be reduced significantly. We found two recent high foot shots achieved neutron yields > 10 15 and measured neutron yield over clean 1D simulation (YOC) > 50%, which was one of the central goals of the Mix Campaign.« less
PTF12os and iPTF13bvn: Two stripped-envelope supernovae from low-mass progenitors in NGC 5806
Fremling, C.; Sollerman, J.; Taddia, F.; ...
2016-09-22
Context. In this paper, we investigate two stripped-envelope supernovae (SNe) discovered in the nearby galaxy NGC 5806 by the (intermediate) Palomar Transient Factory [(i)PTF]. These SNe, designated PTF12os/SN 2012P and iPTF13bvn, exploded within ~520 days of one another at a similar distance from the host-galaxy center. We classify PTF12os as a Type IIb SN based on our spectral sequence; iPTF13bvn has previously been classified as Type Ib having a likely progenitor with zero age main sequence (ZAMS) mass below ~17 M ⊙. Because of the shared and nearby host, we are presented with a unique opportunity to compare these twomore » SNe. Aims. Our main objective is to constrain the explosion parameters of iPTF12os and iPTF13bvn, and to put constraints on the SN progenitors. We also aim to spatially map the metallicity in the host galaxy, and to investigate the presence of hydrogen in early-time spectra of both SNe. Methods. We present comprehensive datasets collected on PTF12os and iPTF13bvn, and introduce a new automatic reference-subtraction photometry pipeline (FPipe) currently in use by the iPTF. We perform a detailed study of the light curves (LCs) and spectral evolution of the SNe. The bolometric LCs are modeled using the hydrodynamical code hyde. We analyze early spectra of both SNe to investigate the presence of hydrogen; for iPTF13bvn we also investigate the regions of the Paschen lines in infrared spectra. We perform spectral line analysis of helium and iron lines to map the ejecta structure of both SNe. We use nebular models and late-time spectroscopy to constrain the ZAMS mass of the progenitors. We also perform image registration of ground-based images of PTF12os to archival HST images of NGC 5806 to identify a potential progenitor candidate. Results. We find that our nebular spectroscopy of iPTF13bvn remains consistent with a low-mass progenitor, likely having a ZAMS mass of ~12M ⊙. Our late-time spectroscopy of PTF12os is consistent with a ZAMS mass of ~15M ⊙. We successfully identify a source in pre-explosion HST images coincident with PTF12os. The colors and absolute magnitude of this object are consistent between pre-explosion and late-time HST images, implying it is a cluster of massive stars. Our hydrodynamical modeling suggests that the progenitor of PTF12os had a compact He core with a mass of 3.25 + 0.77 -0.56M ⊙ at the time of the explosion, which had a total kinetic energy of 0.54 + 0.41 -0.25 × 10 51 erg and synthesized 0.063 + 0.020 -0.011M ⊙ of strongly mixed 56Ni. Spectral comparisons to the Type IIb SN 2011dh indicate that the progenitor of PTF12os was surrounded by a thin hydrogen envelope with a mass lower than 0.02M ⊙. We also find tentative evidence that the progenitor of iPTF13bvn could have been surrounded by a small amount of hydrogen prior to the explosion. Finally, this result is supported by possible weak signals of hydrogen in both optical and infrared spectra.« less
NASA Astrophysics Data System (ADS)
Theissen, Christopher A.; Burgasser, Adam J.; Bardalez Gagliuffi, Daniella C.; Hardegree-Ullman, Kevin K.; Gagné, Jonathan; Schmidt, Sarah J.; West, Andrew A.
2018-01-01
We present 2MASS J11151597+1937266, a recently identified low-surface-gravity L dwarf, classified as an L2γ based on Sloan Digital Sky Survey optical spectroscopy. We confirm this spectral type with near-infrared spectroscopy, which provides further evidence that 2MASS J11151597+1937266 is a low-surface-gravity L dwarf. This object also shows significant excess mid-infrared flux, indicative of circumstellar material; and its strong Hα emission (EWHα = 560 ± 82 Å) is an indicator of enhanced magnetic activity or weak accretion. Comparison of its spectral energy distribution to model photospheres yields an effective temperature of {1724}-38+184 {{K}}. We also provide a revised distance estimate of 37 ± 6 pc using a spectral type–luminosity relationship for low-surface-gravity objects. The three-dimensional galactic velocities and positions of 2MASS J11151597+1937266 do not match any known young association or moving group. Assuming a probable age in the range of 5–45 Myr, the model-dependent estimated mass of this object is between 7 and 21 M Jup, making it a potentially isolated planetary-mass object. We also identify a candidate co-moving, young stellar companion, 2MASS J11131089+2110086.
High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.
Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang
2015-03-01
In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.
[Research on early fire detection with CO-CO2 FTIR-spectroscopy].
Du, Jian-hua; Zhang, Ren-cheng; Huang, Xiang-ying; Gong, Xue; Zhang, Xiao-hua
2007-05-01
A new fire detection method is put forward based on the theory of FTIR spectroscopy through analyzing all kinds of detection methods, in which CO and CO2 are chosen as early fire detection objects, and an early fire experiment system has been set up. The concentration characters of CO and CO2 were obtained through early fire experiments including real alarm sources and nuisance alarm sources. In real alarm sources there are abundant CO and CO2 which change regularly. In nuisance alarm sources there is almost no CO. So it's feasible to reduce the false alarms and increase the sensitivity of early fire detectors through analyzing the concentration characters of CO and CO2.
NASA Technical Reports Server (NTRS)
Strader, Jay; Chomiuk, Laura; Cheung, C. C.; Sand, David J.; Donato, Davide; Corbet, Robin H. D.; Koeppe, Dana; Edwards, Philip G.; Stevens, Jamie; Petrov, Leonid
2015-01-01
We present multiwavelength observations of the persistent Fermi-Large Area Telescope unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 solar mass) and a approximately 0.35 solar mass giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk-magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma- ray to X-ray luminosity (approximately 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.
An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.
Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A
2004-07-22
Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.
Mass constraints to Sco X-1 from Bowen fluorescence and deep near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Mata Sánchez, D.; Muñoz-Darias, T.; Casares, J.; Steeghs, D.; Ramos Almeida, C.; Acosta Pulido, J. A.
2015-04-01
More than 50 years after the dawn of X-ray astronomy, the dynamical parameters of the prototypical X-ray binary Sco X-1 are still unknown. We combine a Monte Carlo analysis, which includes all the previously known orbital parameters of the system, along with the K-correction to set dynamical constraints to the masses of the compact object (M1 < 1.73 M⊙) and the companion star (0.28 M⊙ < M2 < 0.70 M⊙). For the case of a canonical neutron star mass of M1 ˜ 1.4 M⊙, the orbital inclination is found to be lower than 40°. We also present the best near-infrared spectrum of the source to date. There is no evidence of donor star features on it, but we are able to constrain the veiling factor as a function of the spectral type of the secondary star. The combination of both techniques restricts the spectral type of the donor to be later than K4 and luminosity class IV. It also constrains the contribution of the companion light to the infrared emission of Sco X-1 to be lower than 33 per cent. This implies that the accretion related luminosity of the system in the K band is larger than ˜4 × 1035 erg s-1.
Magnuson, Matthew L; Kelty, Catherine A; Sharpless, Charles M; Linden, Karl G; Fromme, William; Metz, Deborah H; Kashinkunti, Ramesh
2002-12-01
Ohio River water was treated by settling, sand filtration, and granular activated carbon filtration. It was then irradiated by low-pressure (monochromatic) and medium-pressure (polychromatic) UV lamps to investigate the effects of UV irradiation on the extracted organic matter (EOM). When the EOM, collected by solid phase extraction cartridges, was analyzed by conventional UV spectroscopy and size exclusion chromatography (SEC), no significant changes in the EOM were revealed for various UV doses. Positive and negative electrospray ionization mass spectrometry (ESI-MS) of the EOM produced mass spectra that vary significantly with UV dose. The UV dosage conditions also appear to affect the reactivity of the EOM to subsequent chlorination. The magnitude of the spectral changes is generally greater for medium-pressure lamps than for low pressure and increases with UV exposure. Based on the observed MS peaks, the changes may be due to the presence of lignin, resulting perhaps from photooxidation and/or photo rearrangement of macromolecules in the sample. When chlorination is used for secondary disinfection, these results suggest that it may be important to consider the effects of UV irradiation on the organic matter in the water before applying UV disinfection technology to a particular source water.
Aluminum surface modification by a non-mass-analyzed nitrogen ion beam
NASA Astrophysics Data System (ADS)
Ohira, Shigeo; Iwaki, Masaya
Non-mass-analyzed nitrogen ion implantation into polycrystal and single crystal aluminum sheets has been carried out at an accelerating voltage of 90 kV and a dose of 1 × 10 18 N ions/cm 2 using a Zymet implanter model Z-100. The pressure during implantation rose to 10 -3 Pa due to the influence of N gas feeding into the ion source. The characteristics of the surface layers were investigated by means of Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron diffraction (TED), and microscopy (TEM). The AES depth profiling shows a rectangular-like distribution of N atoms and little migration of O atoms near the surface. The high dose N-implantation forms c-axis oriented aluminum nitride (AIN) crystallines, and especially irradiation of Al single crystals with N ions leads to the formation of a hcp AlN single crystal. It is concluded that the high dose N-implantation in Al can result in the formation of AlN at room temperature without any thermal annealing. Furthermore, non-mass-analyzed N-implantation at a pressure of 10 -3 Pa of the nitrogen atmosphere causes the formation of pure AlN single crystals in the Al surface layer and consequently it can be practically used for AlN production.
Escobar Galindo, Ramón; Gago, Raul; Duday, David; Palacio, Carlos
2010-04-01
An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.
Coronal Activity in Low-Mass Pre-Main Sequence Stars: NGC 2264
NASA Technical Reports Server (NTRS)
Tebbe, H. J.; Patten, B. M.
2000-01-01
We present the preliminary results of an analysis of ROSAT images in the region of the populous young (age approx. 3 Myr) star-forming region NGC 2264. The cluster was imaged with the ROSAT HRI in two sets of pointings -- one set near the central region of the cluster, centered on the star LW Mon, and the other set in the southern part of the cluster, centered near the star V428 Mon, just south of the Cone Nebula. In total 113 unique X-ray sources have been identified in the ROSAT images with signal-to-noise ratios greater than 3. The limiting luminosities (log Lx(ergs/sec)) for 3-sigma detections are estimated to be 30.18, 30.23, and 30.08 for the northern field, southern field, and overlap region between the two fields respectively. Extensive optical photometry, classification spectroscopy, and proper motions, obtained from recent ground-based surveys of this region, were used to identify the most likely optical counterpart to each X-ray source. Although most of our X-ray selected sample appears to be associated with NGC 2264 members, we find that the vast majority of the cluster membership was undetected in the ROSAT HRI survey. The X-ray cumulative luminosity function for solar-mass stars in NGC 2264 shows that most of the low-mass members probably have X-ray luminosities similar to those seen for the X-ray brightest members of older clusters such as IC 2391/IC 2602 (age approx. 50 Myr) and the Pleiades (age approx. 100 Myr). This research was funded in part by the SAO Summer Intern Program and NASA grant NAG5-8120.
Physical and chemical characterization of residential oil boiler emissions.
Hays, Michael D; Beck, Lee; Barfield, Pamela; Lavrich, Richard J; Dong, Yuanji; Vander Wal, Randy L
2008-04-01
The toxicity of emissions from the combustion of home heating oil coupled with the regional proximity and seasonal use of residential oil boilers (ROB) is an important public health concern. Yet scant physical and chemical information about the emissions from this source is available for climate and air quality modeling and for improving our understanding of aerosol-related human health effects. The gas- and particle-phase emissions from an active ROB firing distillate fuel oil (commonly known as diesel fuel) were evaluated to address this deficiency. Ion chromatography of impactor samples showed that the ultrafine ROB aerosol emissions were approximately 45% (w/w) sulfate. Gas chromatography-mass spectrometry detected various n-alkanes at trace levels, sometimes in accumulation mode particles, and out of phase with the size distributions of aerosol mass and sulfate. The carbonaceous matter in the ROB aerosol was primarily light-adsorbing elemental carbon. Gas chromatography-atomic emission spectroscopy measured a previously unrecognized organosulfur compound group in the ROB aerosol emissions. High-resolution transmission electron microscopy of ROB soot indicated the presence of a highly ordered primary particle nanostructure embedded in larger aggregates. Organic gas emissions were measured using EPA Methods TO-15 and TO-11A. The ROB emitted volatile oxygenates (8 mg/(kg of oil burned)) and olefins (5 mg/(kg of oil burned)) mostly unrelated to the base fuel composition. In the final analysis, the ROB tested was a source of numerous hazardous air pollutants as defined in the Clean Air Act Amendments. Approximations conducted using emissions data from the ROB tests show relatively low contributions to a regional-level anthropogenic emissions inventory for volitile organic compounds, PM2.5, and SO2 mass.
NASA Astrophysics Data System (ADS)
Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.
2008-11-01
To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting intermediate-mass black holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish as a general property of ULXs that the most X-ray-luminous objects possess the flattest X-ray spectra (in the Chandra bandpass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity >=5 × 1039 erg s-1) and is in line with recent models arguing that ULXs are actually stellar mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs—i.e., the "simple IMBH model"—is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to a large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find that (1) cool-disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) cool-disk components extend below the standard ULX luminosity cutoff of 1039 erg s-1, down to our sample limit of 1038.3 erg s-1. The fact that cool-disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which strong statistical support was never found.
Medium-resolution near-infrared spectroscopy of massive young stellar objects
NASA Astrophysics Data System (ADS)
Pomohaci, R.; Oudmaijer, R. D.; Lumsden, S. L.; Hoare, M. G.; Mendigutía, I.
2017-12-01
We present medium-resolution (R ∼ 7000) near-infrared echelle spectroscopic data for 36 massive young stellar objects (MYSOs) drawn from the Red MSX Source survey. This is the largest sample observed at this resolution at these wavelengths of MYSOs to date. The spectra are characterized mostly by emission from hydrogen recombination lines and accretion diagnostic lines. One MYSO shows photospheric H I absorption, a comparison with spectral standards indicates that the star is an A-type star with a low surface gravity, implying that the MYSOs are probably swollen, as also suggested by evolutionary calculations. An investigation of the Brγ line profiles shows that most are in pure emission, while 13 ± 5 per cent display P Cygni profiles, indicative of outflow, while less than 8 ± 4 per cent have inverse P Cygni profiles, indicative of infall. These values are comparable with investigations into the optically bright Herbig Be stars, but not with those of Herbig Ae and T Tauri stars, consistent with the notion that the more massive stars undergo accretion in a different fashion than lower mass objects that are undergoing magnetospheric accretion. Accretion luminosities and rates as derived from the Br γ line luminosities agree with results for lower mass sources, providing tentative evidence for massive star formation theories based on scaling of low-mass scenarios. We present Br γ/Br12 line profile ratios exploiting the fact that optical depth effects can be traced as a function of Doppler shift across the lines. These show that the winds of MYSOs in this sample are nearly equally split between constant, accelerating and decelerating velocity structures. There are no trends between the types of features we see and bolometric luminosities or near-infrared colours.
The Submillimeter-wave Rotational Spectra of Interstellar Molecules
NASA Technical Reports Server (NTRS)
Herbst, Eric; DeLucia, Frank C.; Butler, R. A. H.; Winnewisser, M.; Winnewisser, G.; Fuchs, U.; Groner, P.; Sastry, K. V. L. N.
2002-01-01
We discuss past and recent progress in our long-term laboratory program concerning the submillimeter-wave rotational spectroscopy of known and likely interstellar molecules, especially those associated with regions of high-mass star formation. Our program on the use of spectroscopy to study rotationally inelastic collisions of interstellar interest is also briefly mentioned.
Characterizing Exoplanet Habitability with Emission Spectroscopy
NASA Astrophysics Data System (ADS)
Robinson, Tyler
2018-01-01
Results from NASA’s Kepler mission and other recent exoplanet surveys have demonstrated that potentially habitable exoplanets are relatively common, especially in the case of low-mass stellar hosts. The next key question that must be addressed for such planets is whether or not these worlds are actually habitable, implying they could sustain surface liquid water. Only through investigations of the potential habitability of exoplanets and through searches for biosignatures from these planets will we be able to understand if the emergence of life is a common phenomenon in our galaxy. Emission spectroscopy for transiting exoplanets (sometimes called secondary eclipse spectroscopy) is a powerful technique that future missions will use to study the atmospheres and surfaces of worlds orbiting in the habitable zones of nearby, low-mass stars. Emission observations that span the mid-infrared wavelength range for potentially habitable exoplanets provide opportunities to detect key habitability and life signatures, and also allow observers to probe atmospheric and surface temperatures. This presentation will outline the case for using emission spectroscopy to understand if an exoplanet can sustain surface liquid water, which is believed to be a critical precursor to the origin of life.
NASA Astrophysics Data System (ADS)
Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto
We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.
NASA Astrophysics Data System (ADS)
Zengin, Gulay; Nafea Al Kawaz, Ali Muayad; Zengin, Huseyin; Mert, Adem; Kucuk, Bedia
2016-01-01
A series of 3-aminoquinoline derivatives were synthesized, where their chemical structures were confirmed by various analytical techniques, such as, Elemental Analysis, Nuclear Magnetic Resonance Spectroscopy (1H and 13C NMR), Liquid Chromatography-Mass-Mass Spectroscopy (LC-MS-MS), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL). The quinoline ring core, typical of aminoquinolines, and a naphthalene group was combined to devise (4-alkyl-1-naphthyl)-quinolin-3-ylamide derivatives. These derivatives were designed and synthesized in light of the chemical and biological profiles of these important subunits. All the compounds were evaluated for their in vitro antibacterial and antifungal activities by the paper disc diffusion method with Gram-positive Bacillus subtilis, Bacillus megaterium and Staphylococcus aureus, Gram-negative Enterobacter aerogenes, Eschericha coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and yeasts Candida albicans, Saccharomyces cerevisiae and Yarrovia lipolytica. These compounds showed antimicrobial activities against Gram-positive and Gram-negative bacteria and several yeasts, and thus their activity was not restricted to any particular type of microorganism.
2017-08-20
liquid crystal cell was successfully employed as an active q-switching element in the same type of chip lasers. The short laser pulses that were...switched mode-locked (QML) operation of those chip lasers. Further, a novel nematic liquid crystal cell was successfully employed as an active q... gas spectroscopy and environmental monitoring, areas that hold immense significance and importance. However, laser source development at these
NASA Astrophysics Data System (ADS)
Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Danchi, William; Kendrick, Stephen E.; Purves, Lloyd
2017-09-01
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R 40,000 echelle modes and R 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
NASA Astrophysics Data System (ADS)
Woodruff, Robert; Robert Woodruff, Goddard Space Flight Center, Kendrick Optical Consulting
2018-01-01
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maseda, Michael V.; Van der Wel, Arjen; Rix, Hans-Walter
2014-08-10
We present near-infrared spectroscopy of a sample of 22 Extreme Emission Line Galaxies at redshifts 1.3 < z < 2.3, confirming that these are low-mass (M{sub *} = 10{sup 8}-10{sup 9} M{sub ☉}) galaxies undergoing intense starburst episodes (M{sub *}/SFR ∼ 10-100 Myr). The sample is selected by [O III] or Hα emission line flux and equivalent width using near-infrared grism spectroscopy from the 3D-HST survey. High-resolution NIR spectroscopy is obtained with LBT/LUCI and VLT/X-SHOOTER. The [O III]/Hβ line ratio is high (≳ 5) and [N II]/Hα is always significantly below unity, which suggests a low gas-phase metallicity. We aremore » able to determine gas-phase metallicities for seven of our objects using various strong-line methods, with values in the range 0.05-0.30 Z{sub ☉} and with a median of 0.15 Z{sub ☉}; for three of these objects we detect [O III] λ4363, which allows for a direct constraint on the metallicity. The velocity dispersion, as measured from the nebular emission lines, is typically ∼50 km s{sup –1}. Combined with the observed star-forming activity, the Jeans and Toomre stability criteria imply that the gas fraction must be large (f{sub gas} ≳ 2/3), consistent with the difference between our dynamical and stellar mass estimates. The implied gas depletion timescale (several hundred Myr) is substantially longer than the inferred mass-weighted ages (∼50 Myr), which further supports the emerging picture that most stars in low-mass galaxies form in short, intense bursts of star formation.« less
A Broadband X-Ray Imaging Spectroscopy with High-Angular Resolution: the FORCE Mission
NASA Technical Reports Server (NTRS)
Mori, Koji; Tsuru, Takeshi Go; Nakazawac, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawai, Yasushi; Tsunemi, Hiroshi;
2016-01-01
We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead X-ray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of <15" in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 10(exp 4) Stellar Mass) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (10(exp 2)-(10(exp 4) Stellar Mass) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 10(exp 2) Stellar Mass) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.
IDENTIFICATION OF NEW OZONE DISINFECTION BY PRODUCTS IN DRINKING WATER
Using a combination of spectral identification techniques-gas chromatography coupled with low- and high-resolution electron-impact mass spectrometry (GC/EI-MS), low- and high-resolution chemical ionization mass spectrometry (GC/CI-MS), and infrared spectroscopy (GC/ IR)-we identi...
By using gas chromatography coupled with low- and high-resolution electron impact mass spectrometry, low- and high-resolution chemical ionization mass spectrometry, and Fourier transform infrared spectroscopy, eight straight-chain aldehydes were identified in a water sample taken...
Mass loss from red giants - Infrared spectroscopy
NASA Technical Reports Server (NTRS)
Wannier, P. G.
1985-01-01
A discussion is presented of IR spectroscopy, particularly high-resolution spectroscopy in the approximately 1-20 micron band, as it impacts the study of circumstellar envelopes. The molecular bands within this region contain an enormous amount of information, especially when observed with sufficient resolution to obtain kinematic information. In a single spectrum, it is possible to resolve lines from up to 50 different rotational/vibrational levels of a given molecule and to detect several different isotopic variants. When high resolution techniques are combined with mapping techniques and/or time sequence observations of variable stars, the resulting information can paint a very detailed picture of the mass-loss phenomenon. To date, near-IR observations have been made of 20 molecular species. CO is the most widely observed molecule and useful information has been gleaned from the observed rotational excitation, kinematics, time variability and spatial structure of its lines. Examples of different observing techniques are discussed in the following sections.
Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka
2018-05-30
An ionization-induced multistage reaction of an ionized diethylether (DEE) dimer involving isomerization, proton transfer, and dissociation is investigated by combining infrared (IR) spectroscopy, tandem mass spectrometry, and a theoretical reaction path search. The vertically-ionized DEE dimer isomerizes to a hydrogen-bonded cluster of protonated DEE and the [DEE-H] radical through barrierless intermolecular proton transfer from the CH bond of the ionized moiety. This isomerization process is confirmed by IR spectroscopy and the theoretical reaction path search. The multiple dissociation pathways following the isomerization are analyzed by tandem mass spectrometry. The isomerized cluster dissociates stepwise into a [protonated DEE-acetaldehyde (AA)] cluster, protonated DEE, and protonated AA. The structure of the fragment ion is also analyzed by IR spectroscopy. The reaction map of the multistage processes is revealed through a harmony of these experimental and theoretical methods.
Measurement of sulfur isotope compositions by tunable laser spectroscopy of SO2.
Christensen, Lance E; Brunner, Benjamin; Truong, Kasey N; Mielke, Randall E; Webster, Christopher R; Coleman, Max
2007-12-15
Sulfur isotope measurements offer comprehensive information on the origin and history of natural materials. Tunable laser spectroscopy is a powerful analytical technique for isotope analysis that has proven itself readily adaptable for in situ terrestrial and planetary measurements. Measurements of delta(34)S in SO2 were made using tunable laser spectroscopy of combusted gas samples from six sulfur-bearing solids with delta(34)S ranging from -34 to +22 per thousand (also measured with mass spectrometry). Standard deviation between laser and mass spectrometer measurements was 3.7 per thousand for sample sizes of 200 +/- 75 nmol SO(2). Although SO(2)(g) decreased 9% over 15 min upon entrainment in the analysis cell from wall uptake, observed fractionation was insignificant (+0.2 +/- 0.6 per thousand). We also describe a strong, distinct (33)SO(2) rovibrational transition in the same spectral region, which may enable simultaneous delta(34)S and Delta(33)S measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Ramírez, Pablo, E-mail: rapeitor@ug.uchile.cl; Ruiz, Andrés
The Monte Carlo simulation of the gamma spectroscopy systems is a common practice in these days. The most popular softwares to do this are MCNP and Geant4 codes. The intrinsic spatial efficiency method is a general and absolute method to determine the absolute efficiency of a spectroscopy system for any extended sources, but this was only demonstrated experimentally for cylindrical sources. Due to the difficulty that the preparation of sources with any shape represents, the simplest way to do this is by the simulation of the spectroscopy system and the source. In this work we present the validation of themore » intrinsic spatial efficiency method for sources with different geometries and for photons with an energy of 661.65 keV. In the simulation the matrix effects (the auto-attenuation effect) are not considered, therefore these results are only preliminaries. The MC simulation is carried out using the FLUKA code and the absolute efficiency of the detector is determined using two methods: the statistical count of Full Energy Peak (FEP) area (traditional method) and the intrinsic spatial efficiency method. The obtained results show total agreement between the absolute efficiencies determined by the traditional method and the intrinsic spatial efficiency method. The relative bias is lesser than 1% in all cases.« less
Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions
NASA Astrophysics Data System (ADS)
Thalman, R.; Baeza-Romero, M. T.; Ball, S. M.; Borrás, E.; Daniels, M. J. S.; Goodall, I. C. A.; Henry, S. B.; Karl, T.; Keutsch, F. N.; Kim, S.; Mak, J.; Monks, P. S.; Muñoz, A.; Orlando, J.; Peppe, S.; Rickard, A. R.; Ródenas, M.; Sánchez, P.; Seco, R.; Su, L.; Tyndall, G.; Vázquez, M.; Vera, T.; Waxman, E.; Volkamer, R.
2015-04-01
The α-dicarbonyl compounds glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO) are produced in the atmosphere by the oxidation of hydrocarbons and emitted directly from pyrogenic sources. Measurements of ambient concentrations inform about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation. We present results from a comprehensive instrument comparison effort at two simulation chamber facilities in the US and Europe that included nine instruments, and seven different measurement techniques: broadband cavity enhanced absorption spectroscopy (BBCEAS), cavity-enhanced differential optical absorption spectroscopy (CE-DOAS), white-cell DOAS, Fourier transform infrared spectroscopy (FTIR, two separate instruments), laser-induced phosphorescence (LIP), solid-phase micro extraction (SPME), and proton transfer reaction mass spectrometry (PTR-ToF-MS, two separate instruments; for methyl glyoxal only because no significant response was observed for glyoxal). Experiments at the National Center for Atmospheric Research (NCAR) compare three independent sources of calibration as a function of temperature (293-330 K). Calibrations from absorption cross-section spectra at UV-visible and IR wavelengths are found to agree within 2% for glyoxal, and 4% for methyl glyoxal at all temperatures; further calibrations based on ion-molecule rate constant calculations agreed within 5% for methyl glyoxal at all temperatures. At the European Photoreactor (EUPHORE) all measurements are calibrated from the same UV-visible spectra (either directly or indirectly), thus minimizing potential systematic bias. We find excellent linearity under idealized conditions (pure glyoxal or methyl glyoxal, R2 > 0.96), and in complex gas mixtures characteristic of dry photochemical smog systems (o-xylene/NOx and isoprene/NOx, R2 > 0.95; R2 ∼ 0.65 for offline SPME measurements of methyl glyoxal). The correlations are more variable in humid ambient air mixtures (RH > 45%) for methyl glyoxal (0.58 < R2 < 0.68) than for glyoxal (0.79 < R2 < 0.99). The intercepts of correlations were insignificant for the most part (below the instruments' experimentally determined detection limits); slopes further varied by less than 5% for instruments that could also simultaneously measure NO2. For glyoxal and methyl glyoxal the slopes varied by less than 12 and 17% (both 3-σ) between direct absorption techniques (i.e., calibration from knowledge of the absorption cross section). We find a larger variability among in situ techniques that employ external calibration sources (75-90%, 3-σ), and/or techniques that employ offline analysis. Our intercomparison reveals existing differences in reports about precision and detection limits in the literature, and enables comparison on a common basis by observing a common air mass. Finally, we evaluate the influence of interfering species (e.g., NO2, O3 and H2O) of relevance in field and laboratory applications. Techniques now exist to conduct fast and accurate measurements of glyoxal at ambient concentrations, and methyl glyoxal under simulated conditions. However, techniques to measure methyl glyoxal at ambient concentrations remain a challenge, and would be desirable.
Enhanced saturation of sputtered amorphous SiN film frameworks using He- and Ne-Penning effects
NASA Astrophysics Data System (ADS)
Sugimoto, Iwao; Nakano, Satoko; Kuwano, Hiroki
1994-06-01
Optical emission spectroscopy reveals that helium and neon gases enhance the nitridation reactivity of the nitrogen plasma by Penning effects during magnetron sputtering of the silicon target. These excited nitrogen plasmas promote the saturation of frameworks of the resultant silicon nitride films. X-ray photoelectron spectroscopy, electron spin resonance, and x-ray diffraction analyses provide insight into the structure of these films, and thermal desorption mass spectroscopy reveals the behavior of volatile species in these films.
Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification.
Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z; Clemmer, David E; Rizzo, Thomas R
2017-10-01
The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. Graphical Abstract ᅟ.
Intercomparison of field measurements of nitrous acid (HONO) during the SHARP campaign
NASA Astrophysics Data System (ADS)
Pinto, J. P.; Dibb, J.; Lee, B. H.; Rappenglück, B.; Wood, E. C.; Levy, M.; Zhang, R.-Y.; Lefer, B.; Ren, X.-R.; Stutz, J.; Tsai, C.; Ackermann, L.; Golovko, J.; Herndon, S. C.; Oakes, M.; Meng, Q.-Y.; Munger, J. W.; Zahniser, M.; Zheng, J.
2014-05-01
Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by six different measurement techniques on the roof of the Moody Tower at the University of Houston. Techniques used were long path differential optical absorption spectroscopy (DOAS), stripping coil-visible absorption photometry (SC-AP), long path absorption photometry (LOPAP®), mist chamber/ion chromatography (MC-IC), quantum cascade-tunable infrared laser differential absorption spectroscopy (QC-TILDAS), and ion drift-chemical ionization mass spectrometry (ID-CIMS). Various combinations of techniques were in operation from 15 April through 31 May 2009. All instruments recorded a similar diurnal pattern of HONO concentrations with higher median and mean values during the night than during the day. Highest values were observed in the final 2 weeks of the campaign. Inlets for the MC-IC, SC-AP, and QC-TILDAS were collocated and agreed most closely with each other based on several measures. Largest differences between pairs of measurements were evident during the day for concentrations < 100 parts per trillion (ppt). Above 200 ppt, concentrations from the SC-AP, MC-IC, and QC-TILDAS converged to within about 20%, with slightly larger discrepancies when DOAS was considered. During the first 2 weeks, HONO measured by ID-CIMS agreed with these techniques, but ID-CIMS reported higher values during the afternoon and evening of the final 4 weeks, possibly from interference from unknown sources. A number of factors, including building related sources, likely affected measured concentrations.
Sathiyanarayanan, Ganesan; Bhatia, Shashi Kant; Song, Hun-Suk; Jeon, Jong-Min; Kim, Junyoung; Lee, Yoo Kyung; Kim, Yun-Gon; Yang, Yung-Hun
2017-04-01
Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620 was found to produce a distinctive medium-chain-length polyhydroxyalkanoate (MCL-PHA) copolymer when grown on structurally unrelated carbon sources including glycerol. The maximum MCL-PHA copolymer yield was obtained about 52.18±4.12% from 7.95±0.66g/L of biomass at 144h of fermentation when 3% glycerol was used as sole carbon and energy source during the laboratory-scale bioreactor process. Characterization of the copolymer was carried out using fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS), proton ( 1 H) and carbon ( 13 C) nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC) and thermo-gravimetric analysis (TGA). The copolymer produced by Pseudomonas sp. PAMC 28620 consisting of four PHA monomers and identified as 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD), 3-hydroxydodecanoate (3HDD) and 3-hydroxytetradecanoate (3HTD). An average molecular weight of the copolymer was found approximately 30.244kDa with polydispersity index (PDI) value of 2.05. Thermal analysis showed the produced MCL-PHA copolymer to be low-crystalline (43.73%) polymer with great thermal stability, having the thermal decomposition temperature of 230°C-280°C, endothermic melting temperature (T m ) of 172.84°C, glass transition (T g ) temperature of 3.99°C, and apparent melting enthalpy fusion (ΔH m ) about 63.85Jg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
The II Zw 40 Supernebula: 30 Doradus on Steroids
NASA Astrophysics Data System (ADS)
Leitherer, Claus
2015-10-01
We propose COS G140L spectroscopy of the enigmatic nearby blue compact dwarf galaxy II Zw 40. The galaxy hosts a nuclear super star cluster with a luminosity 10 times that of 30 Doradus, the most powerful giant HII region in the Local Group. The super star cluster has been suggested to be the ionizing source of a supernebula detected via its free-free radiation in the radio. The physical conditions, however, are much more complex, as demonstrated by the detection of the nebular He II and the mid-infrared line of [O IV] 25.9. These lines are unlikely to be related to hot stars and require a different powering source. II Zw 40 shares many similarities with the related blue compact dwarfs NGC 5253 and Henize 2-10, both of which have been studied extensively with HST, yet no ultraviolet spectroscopy has ever been obtained for II Zw 40. This small 4-orbit proposal will provide the necessary UV data to study the massive-star content directly. We will determine reddening, age, and the stellar initial mass function and perform a comparison with the local benchmark 30 Doradus. In particular we will investigate whether the hot stars are able to power the supernebula and the nebular high-excitation lines. Our modeling will utilize the latest generation of stellar evolutionary tracks with and without stellar rotation. If the stars fall short in terms of spectral hardness and luminosity, II Zw 40 may become the second candidate for a central black hole in a young starburst after Henize 2-10.
The nature of 50 Palermo Swift-BAT hard X-ray objects through optical spectroscopy
NASA Astrophysics Data System (ADS)
Rojas, A. F.; Masetti, N.; Minniti, D.; Jiménez-Bailón, E.; Chavushyan, V.; Hau, G.; McBride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiño-Álvarez, V.; Stephen, J. B.; Ubertini, P.
2017-06-01
We present the nature of 50 hard X-ray emitting objects unveiled through an optical spectroscopy campaign performed at seven telescopes in the northern and southern hemispheres. These objects were detected with the Burst Alert Telescope (BAT) instrument onboard the Swift satellite and listed as of unidentified nature in the 54-month Palermo BAT catalogue. In detail, 45 sources in our sample are identified as active galactic nuclei of which, 27 are classified as type 1 (with broad and narrow emission lines) and 18 are classified as type 2 (with only narrow emission lines). Among the broad-line emission objects, one is a type 1 high-redshift quasi-stellar object, and among the narrow-line emission objects, one is a starburst galaxy, one is a X-ray bright optically normal galaxy, and one is a low ionization nuclear emission line region. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary probably with a low mass secondary star, and one is an active star. Based on observations obtained from the following observatories: Cerro Tololo Interamerican Observatory (Chile); Astronomical Observatory of Bologna in Loiano (Italy); Observatorio Astronómico Nacional (San Pedro Mártir, Mexico); Radcliffe telescope of the South African Astronomical Observatory (Sutherland, South Africa); Sloan Digital Sky Survey; Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain) and New Technology Telescope (NTT) of La Silla Observatory, Chile.
Cheng, Yuan-yue; Guo, Wei-dong; Long, Ai-min; Chen, Shao-yong
2010-09-01
The optical characteristics of chromophoric dissolved organic matter (CDOM) were determined in rain samples collected in Xiamen Island, during a rainy season in 2007, using fluorescence excitation-emission matrix spectroscopy associated with UV-Vis absorbance spectra. Results showed that the absorbance spectra of CDOM in rain samples decreased exponentially with wavelength. The absorbance coefficient at 300 nm [a(300)] ranged from 0.27 to 3.45 m(-1), which would be used as an index of CDOM abundance, and the mean value was 1.08 m(-1). The content of earlier stage of precipitation events was higher than that of later stage of precipitation events, which implied that anthropogenic sources or atmospheric pollution or air mass types were important contributors to CDOM levels in precipitation. EEMs spectra showed 4 types of fluorescence signals (2 humic-like fluorescence peaks and 2 protein-like fluorescence peaks) in rainwater samples, and there were significant positive correlations of peak A with C and peak B with S, showing their same sources or some relationship of the two humic-like substance and the two protein-like substance. The strong positive correlations of the two humic-like fluorescence peaks with a(300), suggested that the chromophores responsible for absorbance might be the same as fluorophores responsible for fluorescence. Results showed that the presence of highly absorbing and fluorescing CDOM in rainwater is of significant importance in atmospheric chemistry and might play a previously unrecognized role in the wavelength dependent spectral attenuation of solar radiation by atmospheric waters.
NASA Technical Reports Server (NTRS)
Yan, Lin; Choi, Philip I.; Fadda, D.; Marleau, F. R.; Soifer, B. T.; Im, M.; Armus, L.; Frayer, D. T.; Storrie-Lombardi, L. J.; Thompson, D. J.;
2004-01-01
We carried out direct measurement of the fraction of dusty sources in a sample of extremely red galaxies with (R - Ks) >= 5.3 mag and Ks < 20:2 mag, using 24 micron data from the Spitzer Space Telescope. Combining deep 24 micron Ks- and R-band data over an area of 64 arcmin(sup 2) in ELAIS N1 of the Spitzer First Look Survey (FLS), we find that 50% +/- 6% of our extremely red object (ERO) sample have measurable 24 micron flux above the 3 (sigma) flux limit of 40 (micro)Jy. This flux limit corresponds to a star formation rate (SFR) of 12 solar masses per year 1, much more sensitive than any previous long-wavelength measurement. The 24 micron-detected EROs have 24 micron/2.2 micron and 24 micron/0.7 micron flux ratios consistent with infrared luminous, dusty sources at z >= 1, and are an order of magnitude too red to be explained by an infrared quiescent spiral or a pure old stellar population at any redshift. Some of these 24 micron-detected EROs could be active galactic nuclei; however, the fraction among the whole ERO sample is probably small, 10%-20%, as suggested by deep X-ray observations as well as optical spectroscopy. Keck optical spectroscopy of a sample of similarly selected EROs in the FLS field suggests that most of the EROs in ELAIS N1 are probably at z 1. The mean 24 micron flux (167 (micro)Jy) of the 24 micron-detected ERO sample roughly corresponds to the rest-frame 12 micron luminosity, (nu)L(nu)(12 micron, of 3x10(exp 10)(deg) solar luminosities at z 1. Using the c IRAS (nu)L(nu)(12 (micron) and infrared luminosity LIR(8-1000 (micron), we infer that the (LIR) of the 24 micron- detected EROs is 3 x 10(exp 11) and 1 x 10(exp 12) solar luminosities at z = 1.0 and similar to that of local luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs). The corresponding SFR would be roughly 50-170 solar masses per year. If the timescale of this starbursting phase is on the order of 108 yr as inferred for the local LIRGs and ULIRGs, the lower limit on the masses of these 24 micron-detected EROs is 5 x 10(exp 9) to 2 x 10(exp 10) solar masses. It is plausible that some of the starburst EROs are in the midst of a violent transformation to become massive early type galaxies at the epoch of z 1-2.
Final scientific and technical report: New experiments to measure the neutrino mass scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monreal, Benjamin
In this work, we made material progress towards future measurements of the mass of the neutrino. The neutrino is a fundamental particle, first observed in the 1950s and subjected to particularly intense study over the past 20 years. It is now known to have some, non-zero mass, but we are in an unusual situation of knowing the mass exists but not knowing what value it takes. The mass may be determined by precise measurements of certain radioactive decay distributions, particularly the beta decay of tritium. The KATRIN experiment is an international project which is nearing the beginning of a tritiummore » measurement campaign using a large electrostatic spectrumeter. This research included participation in KATRIN, including construction and delivery of a key calibration subsystem, the ``Rear Section''. To obtain sensitivity beyond KATRIN's, new techniques are required; this work included R&D on a new technique we call CRES (Cyclotron Resonance Electron Spectroscopy) which has promise to enable even more sensitive tritium decay measurements. We successfully carried out CRES spectroscopy in a model system in 2014, making an important step towards the design of a next-generation tritium experiment with new neutrino mass measurement abilities.« less
NASA Astrophysics Data System (ADS)
Crowther, Paul A.; Caballero-Nieves, S. M.; Bostroem, K. A.; Maíz Apellániz, J.; Schneider, F. R. N.; Walborn, N. R.; Angus, C. R.; Brott, I.; Bonanos, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gräfener, G.; Herrero, A.; Howarth, I. D.; Langer, N.; Lennon, D. J.; Puls, J.; Sana, H.; Vink, J. S.
2016-05-01
We introduce a Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) stellar census of R136a, the central ionizing star cluster of 30 Doradus. We present low resolution far-ultraviolet STIS spectroscopy of R136 using 17 contiguous 52 arcsec × 0.2 arcsec slits which together provide complete coverage of the central 0.85 parsec (3.4 arcsec). We provide spectral types of 90 per cent of the 57 sources brighter than mF555W = 16.0 mag within a radius of 0.5 parsec of R136a1, plus 8 additional nearby sources including R136b (O4 If/WN8). We measure wind velocities for 52 early-type stars from C IVλλ1548-51, including 16 O2-3 stars. For the first time, we spectroscopically classify all Weigelt and Baier members of R136a, which comprise three WN5 stars (a1-a3), two O supergiants (a5-a6) and three early O dwarfs (a4, a7, a8). A complete Hertzsprung-Russell diagram for the most massive O stars in R136 is provided, from which we obtain a cluster age of 1.5^{+0.3}_{-0.7} Myr. In addition, we discuss the integrated ultraviolet spectrum of R136, and highlight the central role played by the most luminous stars in producing the prominent He II λ1640 emission line. This emission is totally dominated by very massive stars with initial masses above ˜100 M⊙. The presence of strong He II λ1640 emission in the integrated light of very young star clusters (e.g. A1 in NGC 3125) favours an initial mass function extending well beyond a conventional upper limit of 100 M⊙. We include montages of ultraviolet spectroscopy for Large Magellanic Cloud O stars in the appendix. Future studies in this series will focus on optical STIS medium resolution observations.
The Gaia Investigation of the Solar System
NASA Astrophysics Data System (ADS)
Delbo, Marco; Tanga, Paolo; Mignard, Francois; Cellino, Alberto; Hestroffer, Daniel
2015-08-01
The space mission Gaia of the European Space Agency (ESA) has begun its scientific whole-sky survey of all astrophysical sources with V<=20 in July 2014. The high precision astrometry is the main science driver for the mission, but Gaia will also obtain visible photometry and low-resolution spectroscopy of the observed sources, including solar system small bodies. Preliminary results show a good quality of the data, in general, in line with the expected pre-flight specifications. These data will consist a mine of information for a remote-sensing exploration of the small worlds of our Solar System. Indeed, ~250,000 asteroids will be observed by Gaia throughout its 5-years-long mission. After an update about the status of the mission and the on-going data analysis, including some preliminary results, we are going to present the plans for the data releases, the first foreseen at the end of 2016, and the general data treatment.We will show how Gaia spectroscopy will allow up to map the composition of about 100,000 asteroids throughout the Main Belt, with high signal to noise ratio. Given its advantage position outside the Earth's atmosphere, the blue part of the spectrum (roughly below 0.5 micron) will be observed for an unprecedented number of asteroids.Additionally, precise photometry and astrometry will also be important to reveal the physical nature of these small bodies. In particular, it is estimated that three-dimensional shapes, rotation, period and pole orientation will be derived for 10,000 asteroids. The masses of about 150 of the largest asteroids, will be determined from measurements of the orbital gravitational perturbations that these bodies will exert on small asteroids during mutual close approaches.Moreover, the combination of Gaia data (delivering masses and shapes) with infrared radiometric observations, e.g. from the NASA WISE mission (informing us about the size of the bodies), will allow precise asteroid bulk densities to be determined. The bulk density and the internal structure are among the most important characteristics of asteroids, that are currently some of the least constrained.
Relationship between mass-flux reduction and source-zone mass removal: analysis of field data.
Difilippo, Erica L; Brusseau, Mark L
2008-05-26
The magnitude of contaminant mass-flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass-flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass-flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass-flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. approximately 8%) for similar mass removals ( approximately 40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass-flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass-transfer and displacement). Conversely, a significant degree of mass-flux reduction was observed for a site wherein mass removal was inefficient (non-ideal mass-transfer and displacement). The mass-flux-reduction/mass-removal relationship for the latter site exhibited a multi-step behavior, which cannot be predicted using some of the available simple estimation functions.
Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom
2017-04-01
We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.
NASA Astrophysics Data System (ADS)
Russell, L. M.; Leaitch, W. R.; Liu, J.; Desiree, T. S.; Huang, L.; Sharma, S.; Chivulescu, A.; Veber, D.; Zhang, W.
2016-12-01
Long-term measurements of submicron aerosol particle chemical composition and size distributions are essential for evaluating whether global climate models correctly transport particles from lower latitudes to polar regions, especially in the winter months when satellite retrieval of aerosol properties is limited. In collaboration with ongoing measurements by the Dr. Neil Trivett Global Atmospheric Watch observatory at Alert, Nunavut (82.5°N; elevation 185 m-ASL), we measured the organic functional group composition of submicron aerosol particles sampled from the 10-m inlet from April 2012 to October 2014. The sampling site is approximately 10 km from the Alert station, and vehicle traffic is restricted except when filter sampling is stopped, making the impact of local emissions on submicron particle mass concentrations small. The organic functional group (OFG) composition is measured by Fourier Transform Infrared spectroscopy of samples collected on pre-loaded Teflon filters and stored and shipped frozen to La Jolla, California, for analysis. Samples were collected weekly to complement the twice hourly online measurements of non-refractory organic and inorganic composition by an Aerodyne ACSM. Organic components are shown to contribute a substantial fraction of the measured aerosol submicron mass year round. These measurements illustrate the seasonal contributions to the aerosol size distribution from OFG and illustrate the potential sources of the OFG at this remote site. The three largest OFG sources are transported fossil fuel combustion emissions from lower latitudes, sea spray and other marine particles, and episodic contributions from wildfires, volcanoes, and other high-latitude events. These sources are similar to those identified from earlier OFG measurements at Barrow, Alaska, and during the ICEALOT cruise in the Arctic Ocean.
Spectroscopic Study of NGC 281 West
NASA Astrophysics Data System (ADS)
Hasan, Priya
2018-04-01
NGC 281 is a complex region of star formation at 2.8 kpc. This complex is situated 300 pc above the Galactic plane, and appears to be part of a 270 pc diameter ring of atomic and molecular clouds expanding at 22 km/s (Megeath et al. 2003). It appears that two modes of triggered star formation are at work here: an initial supernova to trigger the ring complex and the initial O stars and the subsequent triggering of low mass star formation by photoevaporation driven molecular core compression. To get a complete census of the young stellar population, we use observations from Chandra ACIS 100 ksec coupled with data from 2MASS and Spitzer. The Master X-ray catalog has 446 sources detected in different bandpasses. We present the spatial distribution of Class I, II and III sources to study the progress of star formation. We also determine the gas to dust ratio NH/AK to be 1.93 ± 0.47 ×1022 cm‑2 mag‑1 for this region. In this article, we present NGC 281 as a good target to study with the 3.6-m Devasthal Optical Telescope (DOT) in spectroscopy. With these spectra, we look for evidence for the pre-main-sequence (PMS) nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed young stellar objects (YSOs). The temperatures implied by the spectral types can be combined with luminosities determined from the near-infrared (NIR) photometry to construct Hertzsprung–Russell (HR) diagrams for the clusters. By comparing the positions of the YSOs in the HR diagrams with the PMS tracks, we can determine the ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks.
Effective coating of titania nanoparticles with alumina via atomic layer deposition
NASA Astrophysics Data System (ADS)
Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.
2017-12-01
Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.
ERIC Educational Resources Information Center
Parobek, David; Shenoy, Ganesh; Zhou, Feng; Peng, Zhenbo; Ward, Michelle; Liu, Haitao
2016-01-01
In this upper-level undergraduate experiment, students utilize micro-Raman spectroscopy to characterize graphene prepared by mechanical exfoliation and chemical vapor deposition (CVD). The mechanically exfoliated samples are prepared by the students while CVD graphene can be purchased or obtained through outside sources. Owing to the intense Raman…
Fast Atom Bombardment Mass Spectrometry.
ERIC Educational Resources Information Center
Rinehart, Kenneth L., Jr.
1982-01-01
Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)
Local optical spectroscopy of opaline photonic crystal films
NASA Astrophysics Data System (ADS)
Bakhia, T.; Baranchikov, A. E.; Gorelik, V. S.; Klimonsky, S. O.
2017-09-01
The homogeneity of opaline films obtained by vertical deposition of colloidal SiO2 microparticles has been studied by scanning electron microscopy (SEM) and local optical spectroscopy. It was found that the particle size distribution is narrowed during the deposition, the microstructure of the films improves, and the reflection peak in the first photonic stop band increases and narrows. These changes may be due to the fact that large microparticles, whose mass significantly exceeds the average mass, leave the solution in the course of time, falling on the bottom of the vessel under gravity. It is established that the microstructure of opaline films is improved with a decrease in thickness.
Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin
2013-01-01
Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985
Carasel, I Alexandru; Yamnitz, Carl R; Winter, Rudolph K; Gokel, George W
2010-12-03
The F(-), Cl(-), and Br(-) binding selectivity of bis(p-nitroanilide)s of dipicolinic and isophthalic acids was studied by using competitive electrospray mass spectrometry and UV-Visible spectroscopy. Both hosts prefer binding Cl(-) over either F(-) or Br(-). Host deprotonation was observed to some extent in all experiments in which the host was exposed to halide ions. When F(-) was present, host deprotonation was often the major process, whereas little deprotonation was observed by Cl(-) or Br(-), which preferred complexation. A solution of either host changed color when mixed with a F(-), H(2)PO(4)(-), di- or triphenylacetate solution.
Structural characterization of sulfated steroids that activate mouse pheromone-sensing neurons.
Hsu, Fong-Fu; Nodari, Francesco; Kao, Lung-Fa; Fu, Xiaoyan; Holekamp, Terrence F; Turk, John; Holy, Timothy E
2008-12-30
In many species, social behavior is organized via chemical signaling. While many of these signals have been identified for insects, the chemical identity of these social cues (often called pheromones) for mammals is largely unknown. We recently isolated these chemical cues that caused firing in the pheromone-sensing neurons of the vomeronasal organ from female mouse urine [Nodari, F., et al. (2008) J. Neurosci. 28, 6407-6418]. Here, we report their structural characterization. Mass spectrometric approaches, including tandem quadrupole, multiple-stage linear ion trap, high-resolution mass spectrometry, and H-D exchange followed by ESI mass spectrometry, along with (1)H and (13)C nuclear magnetic resonance spectroscopy, including two-dimensional correlation spectroscopy, total correlation spectroscopy, heteronuclear multiple-quantum coherence, and NOE, were used to identify two sulfated steroids, 4-pregnene-11beta,20,21-triol-3-one 21-sulfate (I) (the configuration at C20 was not deduced) and 4-pregnene-11beta,21-diol-3,20-dione 21-sulfate (II), whose presence is sex-specific. The identification of this novel class of mammalian social signaling compounds suggests that steroid hormones, upon conjugation, assume a new biological role, conveying information about the organism's identity and physiological state.
NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.
2017-10-01
We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.
New Clues to the Mysterious Origin of Wide-Separation Planetary-Mass Companions
NASA Astrophysics Data System (ADS)
Bryan, Marta
2018-01-01
Over the past decade, direct imaging searches for young gas giant planets have revealed a new population of young planetary-mass companions with extremely wide orbital separations (>50 AU) and masses near or at the deuterium-burning limit. These companions pose significant challenges to standard formation models, including core accretion, disk instability, and turbulent fragmentation. In my talk I will discuss new results from high-contrast imaging and high-resolution infrared spectroscopy of a sample of directly imaged wide-separation companions that can be used to directly test these three competing formation mechanisms. First, I use high-contrast imaging to strongly discount scattering as a hypothesis for the origin of wide-separation companions. Second, I measure rotation rates of a subset of these companions using their near-IR spectra, and place the first constraints on the angular momentum evolution of young planetary-mass objects. Finally, I explore the ability of high-resolution spectroscopy to constrain the atmospheric C/O ratios of these companions, providing a complementary test of competing formation scenarios.
New opportunities in quasi elastic neutron scattering spectroscopy
NASA Astrophysics Data System (ADS)
Mezei, F.; Russina, M.
2001-07-01
The high energy resolution usually required in quasi elastic neutron scattering (QENS) spectroscopy is commonly achieved by the use of cold neutrons. This is one of the important research areas where the majority of current work is done on instruments on continuous reactor sources. One particular reason for this is the capability of continuous source time-of-flight spectrometers to use instrumental parameters optimally adapted for best data collection efficiency in each experiment. These parameters include the pulse repetition rate and the length of the pulses to achieve optimal balance between resolution and intensity. In addition, the disc chopper systems used provide perfect symmetrical line shapes with no tails and low background. Recent development of a set of novel techniques enhance the efficiency of cold neutron spectroscopy on existing and future spallation sources in a dramatic fashion. These techniques involve the use of extended pulse length, high intensity coupled moderators, disc chopper systems and advanced neutron optical beam delivery, and they will enable Lujan center at Los Alamos to surpass the best existing reactor instruments in time-of-flight QENS work by more than on order of magnitude in terms of beam flux on the sample. Other applications of the same techniques will allow us to combine advantages of backscattering spectroscopy on continuous and pulsed sources in order to deliver μeV resolution in a very broad energy transfer range.
Behaviors of beryllium compensation doping in InGaAsP grown by gas source molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ma, Y. J.; Zhang, Y. G.; Gu, Y.; Xi, S. P.; Chen, X. Y.; Liang, Baolai; Juang, Bor-Chau; Huffaker, Diana L.; Du, B.; Shao, X. M.; Fang, J. X.
2017-07-01
We report structural properties as well as electrical and optical behaviors of beryllium (Be)-doped InGaAsP lattice-matched to InP grown by gas source molecular beam epitaxy. P type layers present a high degree of compensation on the order of 1018 cm-3, and for Be densities below 9.5×1017 cm-3, they are found to be n type. Enhanced incorporation of oxygen during Be doping is observed by secondary ion mass spectroscopy. Be in forms of interstitial donors or donor-like Be-O complexes for cell temperatures below 800°C is proposed to account for such anomalous compensation behaviors. A constant photoluminescence energy of 0.98 eV without any Moss-Burstein shift for Be doping levels up to 1018 cm-3 along with increased emission intensity due to passivation effect of Be is also observed. An increasing number of minority carriers tend to relax via Be defect state-related Shockley-Read-Hall recombination with the increase of Be doping density.
Characterization of Printing Inks Using DART-Q-TOF-MS and Attenuated Total Reflectance (ATR) FTIR.
Williamson, Rhett; Raeva, Anna; Almirall, Jose R
2016-05-01
The rise in improved and widely accessible printing technology has resulted in an interest to develop rapid and minimally destructive chemical analytical techniques that can characterize printing inks for forensic document analysis. Chemical characterization of printing inks allows for both discrimination of inks originating from different sources and the association of inks originating from the same source. Direct analysis in real-time mass spectrometry (DART-MS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were used in tandem to analyze four different classes of printing inks: inkjets, toners, offset, and intaglio. A total of 319 samples or ~ 80 samples from each class were analyzed directly on a paper substrate using the two methods. DART-MS was found to characterize the semi-volatile polymeric vehicle components, while ATR-FTIR provided chemical information associated with the bulk components of these inks. Complimentary data results in improved discrimination when both techniques are used in succession resulting in >96% discrimination for all toners, 95% for all inkjets, >92% for all offset, and >54% for all intaglio inks. © 2016 American Academy of Forensic Sciences.
Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production
NASA Technical Reports Server (NTRS)
Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.
2009-01-01
The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.
Microjet burners for molecular-beam sources and combustion studies
NASA Astrophysics Data System (ADS)
Groeger, Wolfgang; Fenn, John B.
1988-09-01
A novel microjet burner is described in which combustion is stabilized by a hot wall. The scale is so small that the entire burner flow can be passed through a nozzle only 0.2 mm or less in diameter into an evacuated chamber to form a supersonic free jet with expansion so rapid that all collisional processes in the jet gas are frozen in a microsecond or less. This burner can be used to provide high-temperature source gas for free jet expansion to produce intense beams of internally hot molecules. A more immediate use would seem to be in the analysis of combustion products and perhaps intermediates by various kinds of spectroscopies without some of the perturbation effects encountered in probe sampling of flames and other types of combustion devices. As an example of the latter application of this new tool, we present infrared emission spectra for jet gas obtained from the combustion of oxygen-hydrocarbon mixtures both fuel-rich and fuel-lean operation. In addition, we show results obtained by mass spectrometric analysis of the combustion products.
Sheidaei, Behnaz; Behnajady, Mohammad A
2016-05-01
In this paper, the removal efficiency of Color Index Acid Orange 7 (AO7) as a model contaminant was investigated in a batch-recirculated photoreactor packed with immobilized titanium dioxide type P25 nanoparticles on glass beads. The effects of different operational parameters such as the initial concentration of AO7, the volume of solution, the volumetric flowrate, and the light source power in the photoreactor were investigated. The results indicate that the removal percent increased with the rise in volumetric flowrate and power of the light source, but decreased with the rise of the initial concentration of AO7 and the volume of solution. The AO7 degradation was followed through total organic carbon, gas chromatography/mass spectroscopy (GC/MS), and mineralization products analysis. The ammonium and sulfate ions were analyzed as mineralization products of nitrogen and sulfur heteroatoms, respectively. The results of GC/MS revealed the production of 1-indanone, 1-phthalanone, and 2-naphthalenol as intermediate products for the removal of AO7 in this process.
Infrared Spectroscopy of Black Hole Candidates
NASA Technical Reports Server (NTRS)
Colgan, Sean W.; Cotera, A. S.; Maloney, P. R.; Hollenbach, D. J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
ISO LWS and SWS observations of the approx. solar mass black hole candidates 1E1740.7-2942 and GRS1758-258 are presented. For 1E1740.7-2942, it has been suggested that the luminosity is provided in whole or part by Bondi-Hoyle accretion from a surrounding black hole (Bally & Leventhal 1991, Nat, 353,234). Maloney et al. (1997, ApJ482, L41) have predicted that detectable far-infrared line emission from [0I] (63 microns), [CII] (158 microns), [SiII] (35 microns) and other lines will arise from black holes which are embedded in molecular clouds. No strong line emission associated with either 1E1740.7-2942 or GRS1758-258 was detected, implying either that 1) these sources are not embedded in dense molecular clouds, or 2) that their average X-ray luminosity over the past 100 years is significantly lower than its current value. The measured upper limits to the line fluxes are compared with the models of Maloney et al.to constrain the properties of the ISM in the vicinity of these X-ray sources.
Heated probe diagnostic inside of the gas aggregation nanocluster source
NASA Astrophysics Data System (ADS)
Kolpakova, Anna; Shelemin, Artem; Kousal, Jaroslav; Kudrna, Pavel; Tichy, Milan; Biederman, Hynek; Surface; Plasma Science Team
2016-09-01
Gas aggregation cluster sources (GAS) usually operate outside common working conditions of most magnetrons and the size of nanoparticles created in GAS is below that commonly studied in dusty plasmas. Therefore, experimental data obtained inside the GAS are important for better understanding of process of nanoparticles formation. In order to study the conditions inside the gas aggregation chamber, special ``diagnostic GAS'' has been constructed. It allows simultaneous monitoring (or spatial profiling) by means of optical emission spectroscopy, mass spectrometry and probe diagnostic. Data obtained from Langmuir and heated probes map the plasma parameters in two dimensions - radial and axial. Titanium has been studied as an example of metal for which the reactive gas in the chamber starts nanoparticles production. Three basic situations were investigated: sputtering from clean titanium target in argon, sputtering from partially pre-oxidized target and sputtering with oxygen introduced into the discharge. It was found that during formation of nanoparticles the plasma parameters differ strongly from the situation without nanoparticles. These experimental data will support the efforts of more realistic modeling of the process. Czech Science Foundation 15-00863S.
Stress corrosion in titanium alloys and other metallic materials
NASA Technical Reports Server (NTRS)
Harkins, C. G. (Editor); Brotzen, F. R.; Hightower, J. W.; Mclellan, R. B.; Roberts, J. M.; Rudee, M. L.; Leith, I. R.; Basu, P. K.; Salama, K.; Parris, D. P.
1971-01-01
Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, D. L.; Bhalerao, V. B.; Van Kerkwijk, M. H.
Most millisecond pulsars with low-mass companions are in systems with either helium-core white dwarfs or non-degenerate (''black widow'' or ''redback'') stars. A candidate counterpart to PSR J1816+4510 was identified by Kaplan et al. whose properties were suggestive of both types of companions although identical to neither. We have assembled optical spectroscopy of the candidate companion and confirm that it is part of the binary system with a radial velocity amplitude of 343 {+-} 7 km s{sup -1}, implying a high pulsar mass, M{sub psr}sin {sup 3} i = 1.84 {+-} 0.11 M{sub Sun }, and a companion mass M{sub c}more » sin {sup 3} i = 0.193 {+-} 0.012 M{sub Sun }, where i is the inclination of the orbit. The companion appears similar to proto-white dwarfs/sdB stars, with a gravity log{sub 10}(g) = 4.9 {+-} 0.3, and effective temperature 16, 000 {+-} 500 K. The strongest lines in the spectrum are from hydrogen, but numerous lines from helium, calcium, silicon, and magnesium are present as well, with implied abundances of roughly 10 times solar (relative to hydrogen). As such, while from the spectrum the companion to PSR J1816+4510 is superficially most similar to a low-mass white dwarf, it has much lower gravity, is substantially larger, and shows substantial metals. Furthermore, it is able to produce ionized gas eclipses, which had previously been seen only for low-mass, non-degenerate companions in redback or black widow systems. We discuss the companion in relation to other sources, but find that we understand neither its nature nor its origins. Thus, the system is interesting for understanding unusual stellar products of binary evolution, as well as, independent of its nature, for determining neutron-star masses.« less
Design of a cavity ring-down spectroscopy diagnostic for negative ion rf source SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasqualotto, R.; Alfier, A.; Lotto, L.
2010-10-15
The rf source test facility SPIDER will test and optimize the source of the 1 MV neutral beam injection systems for ITER. Cavity ring-down spectroscopy (CRDS) will measure the absolute line-of-sight integrated density of negative (H{sup -} and D{sup -}) ions, produced in the extraction region of the source. CRDS takes advantage of the photodetachment process: negative ions are converted to neutral hydrogen atoms by electron stripping through absorption of a photon from a laser. The design of this diagnostic is presented with the corresponding simulation of the expected performance. A prototype operated without plasma has provided CRDS reference signals,more » design validation, and results concerning the signal-to-noise ratio.« less
NASA Astrophysics Data System (ADS)
Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilde, S.; Zhang, Y.; Dall'Osto, M.
2014-04-01
The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterized by a less dense urbanization. We present here the results obtained in San Pietro Capofiume, which is located in a sparsely inhabited sector of the Po Valley, Italy. The experiment was carried out in summer 2009 in the framework of the EUCAARI project ("European Integrated Project on Aerosol, Cloud Climate Aerosol Interaction"). For the first time in Europe, six state-of-the-art techniques were used in parallel: (1) on-line TSI aerosol time-of-flight mass spectrometer (ATOFMS), (2) on-line Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS), (3) soot particle aerosol mass spectrometer (SP-AMS), (4) on-line high resolution time-of-flight mass spectrometer-thermal desorption aerosol gas chromatograph (HR-ToFMS-TAG), (5) off-line twelve-hour resolution proton nuclear magnetic resonance (H-NMR) spectroscopy, and (6) chemical ionization mass spectrometry (CIMS) for the analysis of gas-phase precursors of secondary aerosol. Data from each aerosol spectroscopic method were analysed individually following ad-hoc tools (i.e. PMF for AMS, Art-2a for ATOFMS). The results obtained from each techniques are herein presented and compared. This allows us to clearly link the modifications in aerosol chemical composition to transitions in air mass origin and meteorological regimes. Under stagnant conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), only partly internally mixed with secondary semivolatile compounds such as ammonium nitrate and amines. Other organic components originating from anthropogenic sources at night include monocarboxylic acids which correspond to an AMS factor analogous to the "cooking" organic aerosol (COA) already identified in urban areas. In daytime, enhanced mixing in the planetary boundary layer (PBL) along with increasing temperature determined dramatic changes in aerosol composition caused by the evaporation of semivolatile components and by the entrainment of aged aerosols transported downwards from residual layers. In other words, the entrainment of aged air masses is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOAs) and also for the recycling of primary species such as black carbon. The LV-OOA concentrations were shown to correlate to the simple meteorological tracers of humid PBL air produced by daytime convection over land areas. In particular, both PMF-AMS and PMF-NMR could resolve two components of LV-OOA: one from long-range transport from Central Europe, the second from recirculated PBL air from the Po Valley. According to organic aerosol source apportionment by PMF-AMS, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in residual layers but still originating in North Italy, while a substantial fraction (41%) was due to the most aged aerosols imported from transalpine areas. Overall, the deployment of six state-of-the-art spectrometric techniques provided a comprehensive picture of the nature and source contributions of aerosols and aerosol precursors at a European rural site with unprecedented level of details.
NASA Astrophysics Data System (ADS)
Niwayama, Masatsugu
2018-03-01
We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures.
Statistical Methods Applied to Gamma-ray Spectroscopy Algorithms in Nuclear Security Missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagan, Deborah K.; Robinson, Sean M.; Runkle, Robert C.
2012-10-01
In a wide range of nuclear security missions, gamma-ray spectroscopy is a critical research and development priority. One particularly relevant challenge is the interdiction of special nuclear material for which gamma-ray spectroscopy supports the goals of detecting and identifying gamma-ray sources. This manuscript examines the existing set of spectroscopy methods, attempts to categorize them by the statistical methods on which they rely, and identifies methods that have yet to be considered. Our examination shows that current methods effectively estimate the effect of counting uncertainty but in many cases do not address larger sources of decision uncertainty—ones that are significantly moremore » complex. We thus explore the premise that significantly improving algorithm performance requires greater coupling between the problem physics that drives data acquisition and statistical methods that analyze such data. Untapped statistical methods, such as Bayes Modeling Averaging and hierarchical and empirical Bayes methods have the potential to reduce decision uncertainty by more rigorously and comprehensively incorporating all sources of uncertainty. We expect that application of such methods will demonstrate progress in meeting the needs of nuclear security missions by improving on the existing numerical infrastructure for which these analyses have not been conducted.« less
Zhang, Minmin; Zhao, Hengqiang; Zhao, Zhiguo; Yan, Huijiao; Lv, Ruimin; Cui, Li; Yuan, Jinpeng; Wang, Daijie; Geng, Yanling; Liu, Daicheng; Wang, Xiao
2016-06-01
We put forward an efficient strategy based on bioassay guidance for the rapid screening, identification, and purification of the neuraminidase inhibitors from traditional Chinese medicines, and apply to the discovery of anti-influenza components from Lithospermiun erythrorhizon Sieb.et Zucc. Ultrafiltration with high-performance liquid chromatography and electrospray ionization time-of-flight mass spectrometry was employed for the rapid screening and preliminarily identification of anti-influenza components from Zicao. Semipreparative high-performance liquid chromatography was used for the rapid separation and purification of the target compounds. NMR spectroscopy, mass spectrometry, and UV spectroscopy were used for further structural identification, and the activity of the compounds was verified by in vitro assay. Five compounds were found to have neuraminidase inhibitory activity by this method. Subsequently, the five compounds were separated by semipreparative high-performance liquid chromatography with the purity over 98% for all of them by high-performance liquid chromatography test. Combined with the NMR spectroscopy, mass spectrometry, and UV spectroscopy data, they were identified as alkannin, acetylalkannin, isobutyrylalkannin, β,β-dimethylacryloylalkannin and isovalerylalkannin. The in vitro assay showed that all five compounds had good neuraminidase inhibitory activities. These results suggested that the method is highly efficient, and it can provide platform and methodology supports for the rapid discovery of anti-influenza active ingredients from complex Chinese herbal medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LeBouf, Ryan F; Miller, Arthur L; Stipe, Christopher; Brown, Jonathan; Murphy, Nate; Stefaniak, Aleksandr B
2013-06-01
Laboratory measurements of ultrafine titanium dioxide (TiO2) particulate matter loaded on filters were made using three field portable methods (X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), and Fourier-transform infrared (FTIR) spectroscopy) to assess their potential for determining end-of-shift exposure. Ultrafine TiO2 particles were aerosolized and collected onto 37 mm polycarbonate track-etched (PCTE) filters in the range of 3 to 578 μg titanium (Ti). Limit of detection (LOD), limit of quantification (LOQ), and calibration fit were determined for each measurement method. The LOD's were 11.8, 0.032, and 108 μg Ti per filter, for XRF, LIBS, and FTIR, respectively and the LOQ's were 39.2, 0.11, and 361 μg Ti per filter, respectively. The XRF calibration curve was linear over the widest dynamic range, up to the maximum loading tested (578 μg Ti per filter). LIBS was more sensitive but, due to the sample preparation method, the highest loaded filter measurable was 252 μg Ti per filter. XRF and LIBS had good predictability measured by regressing the predicted mass to the gravimetric mass on the filter. XRF and LIBS produced overestimations of 4% and 2%, respectively, with coefficients of determination (R(2)) of 0.995 and 0.998. FTIR measurements were less dependable due to interference from the PCTE filter media and overestimated mass by 2% with an R(2) of 0.831.
Patel, Dhavalkumar Narendrabhai; Li, Lin; Kee, Chee-Leong; Ge, Xiaowei; Low, Min-Yong; Koh, Hwee-Ling
2014-01-01
The popularity of phosphodiesterase type 5 (PDE-5) enzyme inhibitors for the treatment of erectile dysfunction has led to the increase in prevalence of illicit sexual performance enhancement products. PDE-5 inhibitors, namely sildenafil, tadalafil and vardenafil, and their unapproved designer analogues are being increasingly used as adulterants in the herbal products and health supplements marketed for sexual performance enhancement. To date, more than 50 unapproved analogues of prescription PDE-5 inhibitors were found as adulterants in the literature. To avoid detection of such adulteration by standard screening protocols, the perpetrators of such illegal products are investing time and resources to synthesize exotic analogues and devise novel means for adulteration. A comprehensive review of conventional and advance analytical techniques to detect and characterize the adulterants is presented. The rapid identification and structural elucidation of unknown analogues as adulterants is greatly enhanced by the wide myriad of analytical techniques employed, including high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, vibrational spectroscopy, liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FT-ICR-MS), liquid chromatograph-hybrid triple quadrupole linear ion trap mass spectrometer with information dependent acquisition, ultra high performance liquid chromatography-time of flight-mass spectrometry (UHPLC-TOF-MS), ion mobility spectroscopy (IMS) and immunoassay methods. The many challenges in detecting and characterizing such adulterants, and the need for concerted effort to curb adulteration in order to safe guard public safety and interest are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W
2016-02-16
Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks.
Spectroscopic classification of X-ray sources in the Galactic Bulge Survey
NASA Astrophysics Data System (ADS)
Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Nelemans, G.; Heinke, C.; Mata Sánchez, D.; Johnson, C. B.; Gazer, R.; Steeghs, D. T. H.; Maccarone, T. J.; Hynes, R. I.; Casares, J.; Udalski, A.; Wetuski, J.; Britt, C. T.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.
2017-10-01
We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multiwavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low-mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ± 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an active galactic nucleus or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In four cases we identify the sources as binary stars.