A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2005-01-01
Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.
General Purpose Heat Source Simulator
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2008-01-01
The General Purpose Heat Source (GPHS) project seeks to combine the development of an electrically heated, single GPHS module simulator with the evaluation of potential nuclear surface power systems. The simulator is designed to match the form, fit, and function of actual GPHS modules which normally generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of the subsystems and systems without sacrificing the quantity and quality of the test data gathered. Current GPHS activities are centered on developing robust heater designs with sizes and weights which closely match those of actual Pu238 fueled GPHS blocks. Designs are being pursued which will allow operation up to 1100 C.
General-Purpose Heat Source Safety Verification Test Program: Edge-on flyer plate tests
NASA Astrophysics Data System (ADS)
George, T. G.
1987-03-01
The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of Pu-238 alpha-decay to an array of thermoelectric elements. Each module contains four Pu-238O2-fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-TO) plate is approximately 140 m/s.
Lunar Surface Stirling Power Systems Using Isotope Heat Sources
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2010-01-01
For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.
Thermal analysis of conceptual designs for GPHS/FPSE power systems of 250 We and 500 We
NASA Technical Reports Server (NTRS)
Mccomas, Thomas J.; Dugan, Edward T.
1991-01-01
Thermal analyses were performed for two distinct configurations of a proposed space nuclear power system which combines General Purpose Heat Source (GPHS) modules with the state of the art Free-Piston Stirling Engines (FPSEs). The two configurations correspond to systems with power levels of 250 and 500 W(sub e). The 250 W(sub e) GPHS/FPSE power system utilizes four GPHS modules and one FPSE, and the 500 W(sub e) contains eight GPHS modules and two FPSEs. The configurations of the systems and the bases for selecting the configurations are described. Brief introductory sections are included to describe the GPHS modules and free piston Stirling engines. The primary focus of the thermal analyses is on the temperature of the iridium fuel clad within the GPHS modules. A design goal temperature of 1573 K was selected as the upper limit for the fuel clad during normal operating conditions. The basis for selecting this temperature limit is discussed in detail. Results obtained from thermal analysis of the 250 W(sub e) GPHS/FPSE power system indicate fuel clad temperatures which slightly exceed the design goal temperature of 1573 K. The results are considered favorable due to the numerous conservative assumptions used in developing the thermal model and performing the thermal analysis. To demonstrate the effects of the conservatism, a brief sensitivity analysis is performed in which a few of the key system parameters are varied to determine their effect on the fuel clad temperatures. It is concluded that thermal analysis of a more detailed thermal model would be expected to yield fuel clad temperatures below the design foal temperature limiy 1573 K.
Lunar Surface Stirling Power Systems Using Am-241
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2009-01-01
For many years NASA has used the decay of Pu-238 (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTG), which have provided electrical power for many NASA missions. While RTG's have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency (-5% efficiency) and the scarcity of Plutoinium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14 earth days) isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 watts with 2 GPHS modules at the beginning of life (BOL) (-30% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a 4-fold reduction in the number of GPHS modules. This study considers the use of Americium 241 (Am-241) as a substitute for the Pu-238 in Stirling convertor based Radioisotope Power Systems (RPS) for power levels from 1 O's of watts to 5 kWe. The Am-241 is used as a replacement for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about 1/5 while maintaining approximately the same system mass. In order to obtain the nominal 160 watts electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.
Thermal stress response of General Purpose Heat Source (GPHS) aeroshell material
NASA Technical Reports Server (NTRS)
Grinberg, I. M.; Hulbert, L. E.; Luce, R. G.
1980-01-01
A thermal stress test was conducted to determine the ability of the GPHS aeroshell 3 D FWPF material to maintain physical integrity when exposed to a severe heat flux such as would occur from prompt reentry of GPHS modules. The test was performed in the Giant Planetary Facility at NASA's Ames Research Center. Good agreement was obtained between the theoretical and experimental results for both temperature and strain time histories. No physical damage was observed in the test specimen. These results provide initial corroboration both of the analysis techniques and that the GPHS reentry member will survive the reentry thermal stress levels expected.
Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions
NASA Astrophysics Data System (ADS)
Pantano, David R.; Hill, Dennis H.
2005-02-01
The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo, Ulysses, and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources, such as the Stirling Radioisotope Generator (SRG110) and the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1-inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition, the Step 2 thermal model is investigated under typical SRG110 boundary conditions, with cover gas and gravity environments included where applicable, to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.
Conceptual Trade Study of General Purpose Heat Source Powered Stirling Converter Configurations
NASA Technical Reports Server (NTRS)
Turpin, J. B.
2007-01-01
This Technical Manual describes a parametric study of general purpose heat source (GPHS) powered Stirling converter configurations. This study was performed in support of MSFC s efforts to establish the capability to perform non-nuclear system level testing and integration of radioisotope power systems. Six different GPHS stack configurations at a total of three different power levels (80, 250, and 500 W(sub e) were analyzed. The thermal profiles of the integrated GPHS modules (for each configuration) were calculated to determine maximum temperatures for comparison to allowable material limits. Temperature profiles for off-nominal power conditions were also assessed in order to better understand how power demands from the Stirling engine impact the performance of a given configuration.
Thermal analysis of a conceptual design for a 250 We GPHS/FPSE space power system
NASA Technical Reports Server (NTRS)
Mccomas, Thomas J.; Dugan, Edward T.
1991-01-01
A thermal analysis has been performed for a 250-We space nuclear power system which combines the US Department of Energy's general purpose heat source (GPHS) modules with a state-of-the-art free-piston Stirling engine (FPSE). The focus of the analysis is on the temperature of the indium fuel clad within the GPHS modules. The thermal analysis results indicate fuel clad temperatures slightly higher than the design goal temperature of 1573 K. The results are considered favorable due to numerous conservative assumptions used. To demonstrate the effects of the conservatism, a brief sensitivity analysis is performed in which a few of the key system parameters are varied to determine their effect on the fuel clad temperatures. It is shown that thermal analysis of a more detailed thermal mode should yield fuel clad temperatures below 1573 K.
Modular Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.
2016-01-01
High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and similar to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). However, the reliability should be significantly increased compared to ASRG.
Modular Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.
2015-01-01
High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and similar to the MMRTG. However, the reliability should be significantly increased compared to ASRG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1997-12-31
This paper extends the analytical procedure described in another paper in these proceedings to analyze a variety of compact and light-weight OSC-designed radioisotope-heated generators. Those generators employed General Purpose Heat Source (GPHS) modules and a converter containing sixteen AMTEC cells of OSC`s revised five-tube design with enhanced cell wall reflectivity described in a companion paper in these proceedings. OSC found that the performance of the generator is primarily a function of the thermal insulation between the outside of the generator`s 16 cells and the inside of its wall. After examining a variety of insulation options, it was found that themore » generator`s performance is optimized by employing a hybrid insulation system, in which the space between the cells is filled with fibrous Min-K insulation, and the generator walls are lined with tapered (i.e., graded-length) multifoil insulation. The OSC design results in a very compact generator, with eight AMTEC cells on each end of the heat source stack. The choice of the five-tube cells makes it possible to expand the BASE tube diameter without increasing the cell diameter. This is important because the eight cells mate well with the stacked GPHS modules. The OSC generator design includes a compliant heat source support and preload arrangement, to hold the heat source modules together during launch, and to maintain thermal contact conductance at the generator`s interfaces despite creep relaxation of its housing. The BOM and EOM (up to 15 years) performances of the revised generators were analyzed for two and three GPHS modules, both for fresh fuel and for aged fuel left over from a spare RTG (Radioisotope Thermoelectric Generator) fueled in 1982. The resulting power outputs were compared with JPL`s latest EOM power demand goals for the Pluto Express and Europa Orbiter missions, and with the generic goals of DOE`s Advanced Radioisotope Power System (ARPS) study. The OSC AMTEC designs yielded system efficiencies three to four times as high as present-generation RTGs.« less
Ultrasonic technique for inspection of GPHS capsule girth weld integrity
NASA Astrophysics Data System (ADS)
Placr, Arnost
1993-05-01
An innovative nondestructive examination (NDE) technique for the inspection of integrity of General Purpose Heat Source (GPHS) capsule girth welds was developed employing a Lamb wave as the mode of the sound propagation. Reliability of the Lamb wave technique was tested on GPHS capsules using plutonium pallet simulators. All ten capsules, which were previously rejected, passed ultrasonic (UT) inspection using the Lamb wave technique.
Digital control and data acquisition for high-value GTA welding
NASA Astrophysics Data System (ADS)
George, T. G.; Franco-Ferreira, E. A.
Electric power for the Cassini space probe will be provided by radioisotope thermoelectric generators (RTG's) thermally driven by General-Purpose Heat Source (GPHS) modules. Each GPHS module contains four, 150-g, pellets of Pu-238O2, and each of the four pellets is encapsulated within a thin-wall iridium-alloy shell. GTA girth welding of these capsules is performed at Los Alamos National Laboratory (LANL) on an automated, digitally-controlled welding system. Baseline design considerations for system automation and strategies employed to maximize process yield, improve process consistency, and generate required quality assurance information are discussed. Design of the automated girth welding system was driven by a number of factors which militated for precise parametric control and data acquisition. Foremost among these factors was the extraordinary value of the capsule components. In addition, DOE order 5700.6B, which took effect on 23 Sep. 1986, required that all operations adhere to strict levels of process quality assurance. A detailed technical specification for the GPHS welding system was developed on the basis of a joint LANL/Westinghouse Savannah River Company (WSRC) design effort. After a competitive bidding process, Jetline Engineering, Inc., of Irvine, California, was selected as the system manufacturer. During the period over which four identical welding systems were fabricated, very close liason was maintained between the LANL/WSRC technical representatives and the vendor. The level of rapport was outstanding, and the end result was the 1990 delivery of four systems that met or exceeded all specification requirements.
Digital control and data acquisition for high-value GTA welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, T.G.; Franco-Ferreira, E.A.
1993-10-01
Electric power for the Cassini space probe wig be provided by radioisotope thermoelectric generators (RTGs) thermally driven by General-Purpose Heat Source (GPHS) modules. Each GPHS module contains four, 150-g, pellets of {sup 238}PuO{sub 2}, and each of the four pellets is encapsulated within a thin-wall iridium-alloy shell. GTA girth welding of these capsules is performed at Los Alamos National Laboratory (LANL) on an automated, digitally-controlled welding system. This paper discusses baseline design considerations for system automation and strategies employed to maximize process yield, improve process consistency, and generate required quality assurance information. Design of the automated girth welding system wasmore » driven by a number of factors which militated for precise parametric control and data acquisition. Foremost among these factors was the extraordinary value of the capsule components. In addition, DOE order 5700.6B, which took effect on 23 September 1986, required that all operations adhere to strict levels of process quality assurance. A detailed technical specification for the GPHS welding system was developed on the basis of a joint Lanl/Westinghouse Savannah River Company (WSRC) design effort. After a competitive bidding process, Jetline Engineering, Inc., of Irvine, California, was selected as the system manufacturer. During the period over which four identical welding systems were fabricated, very close liason was maintained between the LANL/WSRC technical representatives and the vendor. The level of rapport was outstanding, and the end result was the 1990 delivery of four systems that met or exceeded all specification requirements.« less
Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source
NASA Technical Reports Server (NTRS)
Tarau, Calin; Schwendeman, Carl; Anderson William G.; Cornell, Peggy A.; Schifer, Nicholas A.
2013-01-01
In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental results from integrating the VCHP with an operating Stirling convertor and describes the methodology used to achieve their successful combined operation.
Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study
NASA Technical Reports Server (NTRS)
Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram
2009-01-01
We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.
Development and Use of the Galileo and Ulysses Power Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Gary L; Hemler, Richard J; Schock, Alfred
Paper presented at the 45th Congress of the International Astronautical Federation, October 1994. The Galileo mission to Jupiter and the Ulysses mission to explore the polar regions of the Sun required a new power source: the general-purpose heat source radioisotope thermoelectric generator (GPHS-RTG), the most powerful RTG yet flow. Four flight-qualified GPHS-RTGs were fabricated with one that is being used on Ulysses, two that are being used on Galileo and one that was a common spare (and is now available for the Cassini mission to Saturn). In addition, and Engineering Unit and a Qualification Unit were fabricated to qualify themore » design for space through rigorous ground tests. This paper summarizes the ground testing and performance predictions showing that the GPHS-RTGs have met and will continue to meet or exceed the performance requirements of the ongoing Galileo and Ulysses missions. There are two copies in the file.« less
Sodium VCHP with Carbon-Carbon Radiator for Radioisotope Stirling Systems
NASA Astrophysics Data System (ADS)
Tarau, Calin; Anderson, William G.; Miller, William O.; Ramirez, Rogelio
2010-01-01
In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling converter normally provides this cooling. If the Stirling convertor stops in the current system the insulation is designed to spoil, preventing damage to the GPHS at the cost of an earlier termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to allow multiple stops and restarts of the Stirling convertor. A sodium VCHP with a Haynes 230 envelope was designed and fabricated for the Advanced Stirling Radioisotope Generator (ASRG), with a baseline 850° C heater head temperature. When the Stirling convertor is stopped, the heat from the GPHS is rejected to the Cold Side Adapter Flange using a low-mass, carbon-carbon radiator. The VCHP is designed to activate with a AT of 30° C. The 880° C temperature when the Stirling convertor is stopped is high enough to avoid risking standard ASRG operation, but low enough to save most of the heater head life. The VCHP has low mass and low thermal losses for normal operation. The design has been modified from an earlier, stainless steel prototype with a nickel radiator. In addition to replacing the nickel radiator with a low mass carbon-carbon radiator, the radiator location has been moved from the ASRG case to the cold side adapter flange. This flange already removes two-thirds of the heat during normal operation, so it is optimized to transfer heat to the case. The VCHP was successfully tested with a turn-on ΔT of 30° C in three orientations: horizontal, gravity-aided, and against gravity.
System design impacts on optimization of the advanced radioisotope power system (ARPS) AMTEC cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Huang, C.
1998-07-01
Several NASA deep space missions require Advanced Radioisotope Power Systems (ARPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, next- generation RPS to power these spacecraft. Advanced Modular Power Systems, Inc. (AMPS) has begun investigating the design of an AMTEC-based ARPS using the General Purpose Heat Source (GPHS) and the latest PX-5 AMTEC cell technology with refractory materials in critical components. This paper presents and discusses the system design methodology, and results of important system design tradeoffs and system design impacts onmore » the ARPS AMTEC cell design. This work investigated dual 2-GPHS system configurations and 4-GPHS system configurations with 16 side-mounted AMTEC cells operating at beginning-of-mission (BOM) and end-of-mission (EOM) GPHS heat dissipation conditions. Current design studies indicate using a refractory material AMTEC cell with 8-BASE tubes, 5.0 inches long, and 1.75 inches diameter in the 4-GPHS system configuration is the strongest design candidate to satisfy system performance requirements.« less
Alkali Metal Backup Cooling for Stirling Systems - Experimental Results
NASA Technical Reports Server (NTRS)
Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.
2013-01-01
In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 C temperature increase from the nominal vapor temperature. The 19 C temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental results from integrating the VCHP with an operating Stirling convertor and describes the methodology used to achieve their successful combined operation.
Alkali Metal Backup Cooling for Stirling Systems - Experimental Results
NASA Technical Reports Server (NTRS)
Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.
2013-01-01
In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental results from integrating the VCHP with an operating Stirling convertor and describes the methodology used to achieve their successful combined operation.
Literature Review: Weldability of Iridium DOP-26 Alloy for General Purpose Heat Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgardt, Paul; Pierce, Stanley W.
The basic purpose of this paper is to provide a literature review relative to fabrication of the General Purpose Heat Source (GPHS) that is used to provide electrical power for deep space missions of NASA. The particular fabrication operation to be addressed here is arc welding of the GPHS encapsulation. A considerable effort was made to optimize the fabrication of the fuel pellets and of other elements of the encapsulation; that work will not be directly addressed in this paper. This report consists of three basic sections: 1) a brief description of the GPHS will be provided as background informationmore » for the reader; 2) mechanical properties and the optimization thereof as relevant to welding will be discussed; 3) a review of the arc welding process development and optimization will be presented. Since the welding equipment must be upgraded for future production, some discussion of the historical establishment of relevant welding variables and possible changes thereto will also be discussed.« less
Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Anderson, William G.; Walker, Kara
2009-01-01
In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.
Radioisotope powered alkali metal thermoelectric converter design for space systems
NASA Technical Reports Server (NTRS)
Sievers, R. K.; Bankston, C. P.
1988-01-01
The design concept of an alkali-metal thermoelectric converter (AMTEC) for 15-30-percent-efficient conversion of heat from the General Purpose (radioisotope) Heat Source (GPHS) on spacecraft is presented. The basic physical principles of the conversion cycle are outlined; a theoretical model is derived; a modular design is described and illustrated with drawings; and the overall AMTEC/GPHS system design is characterized. Predicted performance data are presented in extensive tables and graphs and discussed in detail.
Parametric System Model for a Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.
2015-01-01
A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.
Parametric System Model for a Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.
2014-01-01
A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 watt thermal) modules as the thermal building block around which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component and system level trades.
The Cassini project: Lessons learned through operations
NASA Astrophysics Data System (ADS)
McCormick, Egan D.
1998-01-01
The Cassini space probe requires 180 238Pu Light-weight Radioisotopic Heater Units (LWRHU) and 216 238Pu General Purpose Heat Source (GPHS) pellets. Additional LWRHU and GPHS pellets required for non-destructive (NDA) and destructive assay purposes were fabricated bringing the original pellet requirement to 224 LWRHU and 252 GPHS. Due to rejection of pellets resulting from chemical impurities in the fuel and/or failure to meet dimensional specifications a total of 320 GPHS pellets were fabricated for the mission. Initial plans called for LANL to process a total of 30 kg of oxide powder for pressing into monolithic ceramic pellets. The original 30 kg commitment was processed within the time frame allotted; an additional 8 kg were required to replace fuel lost due to failure to meet Quality Assurance specifications for impurities and dimensions. During the time frame allotted for pellet production, operations were impacted by equipment failure, unacceptable fuel impurities levels, and periods of extended down time, >30 working days during which little or no processing occurred. Throughout the production process, the reality of operations requirements varied from the theory upon which production schedules were based.
Inverted Three-Junction Tandem Thermophotovoltaic Modules
NASA Technical Reports Server (NTRS)
Wojtczuk, Steven
2012-01-01
An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.
Design of multihundredwatt DIPS for robotic space missions
NASA Technical Reports Server (NTRS)
Bents, D. J.; Geng, S. M.; Schreiber, J. G.; Withrow, C. A.; Schmitz, P. C.; Mccomas, Thomas J.
1991-01-01
Design of a dynamic isotope power system (DIPS) general purpose heat source (GPHS) and small free piston Stirling engine (FPSE) is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to SEI precursor missions. These are multihundredwatt missions. The incentive for any dynamic system is that it can save fuel which reduces cost and radiological hazard. However, unlike a conventional DIPS based on turbomachinery converions, the small Stirling DIPS can be advantageously scaled to multihundred watt unit size while preserving size and weight competitiveness with RTG's. Stirling conversion extends the range where dynamic systems are competitive to hundreds of watts (a power range not previously considered for dynamic systems). The challenge of course is to demonstrate reliability similar to RTG experience. Since the competative potential of FPSE as an isotope converter was first identified, work has focused on the feasibility of directly integrating GPHS with the Stirling heater head. Extensive thermal modeling of various radiatively coupled heat source/heater head geometries were performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within safe operating limits under all conditions including shutdown of one engine. Based on these results, preliminary characterizations of multihundred watt units were established.
DOE R&D Accomplishments Database
1998-08-01
As noted in the historical summary, this program encountered a number of changes in direction, schedule, and scope over the period 11 January 1991 to 31 December 1998. The report provides a comprehensive summary of all the varied aspects of the program over its seven and a quarter years, and highlights those aspects that provide information beneficial to future radioisotope programs. In addition to summarizing the scope of the Cassini GPHS RTG Program provided as background, the introduction includes a discussion of the scope of the final report and offers reference sources for information on those topics not covered. Much of the design heritage of the GPHS RTG comes from the Multi Hundred Watt (MHW) RTGs used on the Lincoln Experimental Satellites (LES) 8/9 and Voyager spacecraft. The design utilized for the Cassini program was developed, in large part, under the GPHS RTG program which produced the Galileo and Ulysses RTGs. Reports from those programs included detailed documentation of the design, development, and testing of converter components and full converters that were identical to, or similar to, components used in the Cassini program.
Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor
NASA Technical Reports Server (NTRS)
Tarau, Calin; Schwendeman, Carl L.; Schifer, Nicholas A.; Anderson, William G.
2016-01-01
Advanced Stirling Radioisotope Generator (ASRG) is an attractive energy system for select space missions, and with the addition of a VCHP, it becomes even more versatile. The ASRG is powered through thermal energy from decaying radioisotopes acting as General Purpose Heat Sources (GPHS). A Stirling engine converts the thermal energy to electrical energy and cools the GPHS [2]. The Stirling convertor must operate continuously to maintain acceptable temperatures of the GPHS and protect their cladding. The addition of alkali metal VCHP allows the Stirling to cycle on and off during a mission and can be used as a backup cooling system. The benefits of being able to turn the Stirling off are: allowing for a restart of the Stirling and reducing vibrations for sensitive measurements. The VCHP addition should also increase the efficiency of the Stirling by providing a uniform temperature distribution at the heat transfer interface into the heater head.
High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Walker, Kara L.; Anderson, William G.
2009-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.
Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Anderson, William G.; Tarau, Calin
2008-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.
Small Stirling dynamic isotope power system for robotic space missions
NASA Technical Reports Server (NTRS)
Bents, D. J.
1992-01-01
The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.
Stirling Isotope Power Systems for Stationary and Mobile Lunar Applications
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2007-01-01
The NASA Exploration Systems Architecture Study (ESAS) places a significant emphasis on the development of a wide range of capabilities on the lunar surface as a stepping-stone to further space exploration. An important aspect of developing these capabilities will be the availability of reliable, efficient, and low-mass power systems to support both stationary and mobile applications. One candidate system to provide electrical power is made by coupling the General Purpose Heat Source (GPHS) with a high-performance Stirling convertor. In this paper we explore the practical power range of GPHS/Stirling convertor systems all with conductively coupled hot-end designs for use on the lunar surface. Design and off-design operations during the life of the convertor are studied in addition to considering these varying conditions on system. Unique issues concerning Stirling convertor configurations, integration of the GPHS with the Stirling convertor, controller operation, waste heat rejection, and thermal protection are explored. Of particular importance in the evaluation process is a thorough understanding of the interactions between the wide range of unique lunar environments and the selection of key systems operating characteristics and the power systems design. Additionally, as power levels rise the interface between the GPHS and Stirling and the Stirling and the radiator begins to dominate system mass and material selection becomes more important.
Emissivity Tuned Emitter for RTPV Power Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl M. Stoots; Robert C. O'Brien; Troy M. Howe
Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heatmore » to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size and shape to optimize temperature and emission spectra.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-06-01
This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluationmore » with input from four national laboratories experienced in Pu-238 handling.« less
Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Astrophysics Data System (ADS)
Anderson, William G.; Tarau, Calin
2008-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.
Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor
NASA Technical Reports Server (NTRS)
Schwendeman, Carl L.; Tarau, Calin; Schifer, Nicholas A.; Anderson, William G.; Garner, Scott
2016-01-01
In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal variable conductance heat pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor by bypassing the heat during stops. In a previous NASA Small Business Innovation Research (SBIR) Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for the Stirling RPS. In 2012, one of these VCHPs was successfully tested at NASA Glenn Research Center with a Stirling convertor as an Advanced Stirling Radioisotope Generator (ASRG) backup cooling system. The prototype; however, was not optimized and did not reflect the final heat rejection path. ACT through further funding has developed a semioptimized prototype with the finalized heat path for testing at Glenn with a Stirling convertor. The semioptimized system features a two-phase radiator and is significantly smaller and lighter than the prior prototype to reflect a higher level of flight readiness. The VCHP is designed to activate and remove heat from the GPHS during stoppage with a small temperature increase from the nominal vapor temperature. This small temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the multilayer insulation (MLI). The VCHP passively allows the Stirling convertor to be turned off multiple times during a mission with potentially unlimited off durations. Having the ability to turn the Stirling off allows for the Stirling to be reset and reduces vibrations on the platform during sensitive measurements or procedures. This paper presents the design of the VCHP and its test results with a Stirling convertor at Glenn. Tests were carried for multiple on and off cycles to demonstrate repeatability. The impacts associated with the addition of the VCHP to the system are also addressed in terms of mass and additional heat losses due to the presence of the VCHP.
Inadvertent Earth Reentry Breakup Analysis for the New Horizons Mission
NASA Technical Reports Server (NTRS)
Ling, Lisa M.; Salama, Ahmed; Ivanov, Mark; McRonald, Angus
2007-01-01
The New Horizons (NH) spacecraft was launched in January 2006 aboard an Atlas V launch vehicle, in a mission to explore Pluto, its moons, and other bodies in the Kuiper Belt. The NH spacecraft is powered by a Radioisotope Thermoelectric Generator (RTG) which encases multiple General Purpose Heat Source (GPHS) modules. Thus, a pre-launch vehicle breakup analysis for an inadvertent atmospheric reentry in the event of a launch failure was required to assess aerospace nuclear safety and for launch contingency planning. This paper addresses potential accidental Earth reentries analyzed at the Jet Propulsion Laboratory (JPL) which may arise during the ascent to parking orbit, resulting in a suborbital reentry, as well as a departure from parking orbit, resulting in an orbital reentry.
Recommended design and fabrication sequence of AMTEC test assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Kumar, V.; Noravian, H.
1998-01-01
A series of previous OSC papers described: 1) a novel methodology for the coupled thermal, fluid flow, and electrical analysis of multitube AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells; 2) the application of that methodology to determine the effect of numerous design variations on the cell{close_quote}s performance, leading to selection and performance characterization of an OSC-recommended cell design; and 3) the design, analysis, and characterization of an OSC-generated power system design combining sixteen of the above AMTEC cells with two or three GPHS (General Purpose Heat Source) radioisotope heat source modules, and the applicability of those power systems to future spacemore » missions ({ital e.g.} Pluto Express and Europa Orbiter) under consideration by NASA. The OSC system design studies demonstrated the critical importance of the thermal insulation subsystem, and culminated in a design in which the eight AMTEC cells on each end of the heat source stack are embedded in Min-K fibrous insulation, and the Min-K and the GPHS modules are surrounded by graded-length Mo multifoil insulation. The present paper depicts the OSC-recommended AMTEC cell and generator designs, and identifies the need for an electrically heated (scaled-down but otherwise prototypic) test assembly for the experimental validation of the generator{close_quote}s system performance predictions. It then describes the design of an OSC-recommended test assembly consisting of an electrical heater enclosed in a graphite box to simulate the radioisotope heat source, four series-connected prototypic AMTEC cells of the OSC-recommended configuration, and a prototypic hybrid insulation package consisting of Min-K and graded-length Mo multifoils. Finally, the paper describes and illustrates an OSC-recommended detailed fabrication sequence and procedure for the above cell and test assembly. That fabrication procedure is being implemented by AMPS, Inc. with the support of DOE{close_quote}s Oak Ridge and Mound Laboratories, and the Air Force Phillips Laboratory (AFPL) will test the performance of the assembly over a range of input thermal powers and output voltages. The experimentally measured performance will be compared with the results of OSC analyses of the same insulated test assembly over the same range of operating parameters. {copyright} {ital 1998 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, James Elmer; Johnson, Stephen Guy; Dwight, Carla Chelan
Radioisotope power systems (RPSs) have enabled missions requiring reliable, long-lasting power in remote, harsh environments such as space since the early 1960s. Costs for RPSs are high, but are often misrepresented due to the complexity of space missions and inconsistent charging practices among the many and changing participant organizations over the years. This paper examines historical documentation associated with two past successful flight missions, each with a different RPS design, to provide a realistic cost basis for RPS production and deployment. The missions and their respective RPSs are Cassini, launched in 1997, that uses the general purpose heat source (GPHS)more » radioisotope thermoelectric generator (RTG), and Mars Science Laboratory (MSL), launched in 2011, that uses the multi-mission RTG (MMRTG). Actual costs in their respective years are discussed for each of the two RTG designs and the missions they enabled, and then present day values to 2015 are computed to compare the costs. Costs for this analysis were categorized into two areas: development of the specific RTG technology, and production and deployment of an RTG. This latter category includes material costs for the flight components (including Pu-238 and fine weave pierced fabric (FWPF)); manufacturing of flight components; assembly, testing, and transport of the flight RTG(s); ground operations involving the RTG(s) through launch; nuclear safety analyses for the launch and for the facilities housing the RTG(s) during all phases of ground operations; DOE’s support for NEPA analyses; and radiological contingency planning. This analysis results in a fairly similar 2015 normalized cost for the production and deployment of an RTG—approximately $118M for the GPHS-RTG and $109M for the MMRTG. In addition to these two successful flight missions, the costs for development of the MMRTG are included to serve as a future reference. Note that development costs included herein for the MMRTG do not include costs from NASA staff or facilities for their development efforts—they only include the amounts costed by DOE and DOE contractors. The 2015 value for MMRTG development is $83M. Both of the RPS types analyzed herein use the general purpose heat source (GPHS) module as the “heart of the RPS.” The estimates presented herein do not include development costs for the GPHS. These estimates also do not include the RPS infrastructure cost to maintain the facilities, equipment, and personnel necessary to enable the production of RPSs, except to the extent that the infrastructure is utilized during the production campaigns to provide RPSs for missions. It was not until after the Cassini mission that an RPS infrastructure funding structure was defined and funded separately from mission-specific elements. The information presented herein could allow for more accurate budget planning estimates for space missions being considered over the next decade and beyond.« less
Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission
NASA Technical Reports Server (NTRS)
Bents, D. J.
1989-01-01
Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near-term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for LEO applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated s
Final safety analysis report for the Galileo Mission: Volume 2: Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) will be used as the prime source of electric power for the spacecraft on the Galileo mission. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel and by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The purpose of the Final Safety Analysis Report (FSAR) is to present the analyses and results of the latest evaluation of the nuclear safety potential of the GPHS-RTG as employed in the Galileo mission. Thismore » evaluation is an extension of earlier work that addressed the planned 1986 launch using the Space Shuttle Vehicle with the Centaur as the upper stage. This extended evaluation represents the launch by the Space Shuttle/IUS vehicle. The IUS stage has been selected as the vehicle to be used to boost the Galileo spacecraft into the Earth escape trajectory after the parking orbit is attained.« less
GPHS-RTG performance on the Galileo mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemler, R.J.; Cockfield, R.D.
The Galileo spacecraft, launched in October, 1989, is powered by two General Purpose Heat source-Radioisotope Thermoelectric Generator (GPHS-RTGs). These RTGs were designed, built, and tested by General Electric under contract from the Office of Special Applications of the Department of Energy (DOE). Isotope heat source installation and additional testing of these RTGs were performed at DOE's EG G Mound Facility in Miamisburg, Ohio. This paper provides a report on performance of the RTGs during launch and the early phases of the eight year Galileo mission.The effect of long term storage of the RTGs on power output, since the originally scheduledmore » launch data in May, 1986, will be dicussed, including the effects of helium buildup and subsequent purging with xenon. The RTGs performed as expected during the launch transient, met all specified power requirements for Beginning of Mission (BOM), and continue to follow prediced performance characteristics during the first year of the Galileo mission.« less
NaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Anderson, William G.; Walker, Kara
2008-01-01
In a Stirling radioisotope power system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides most of this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending use of that convertor for the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling convertor. In the design of the VCHP for the Advanced Stirling Radioisotope Generator, the VCHP reservoir temperature can vary between 40 and 120 C. While sodium, potassium, or cesium could be used as the working fluid, their melting temperatures are above the minimum reservoir temperature, allowing working fluid to freeze in the reservoir. In contrast, the melting point of NaK is -12 C, so NaK can't freeze in the reservoir. One potential problem with NaK as a working fluid is that previous tests with NaK heat pipes have shown that NaK heat pipes can develop temperature non-uniformities in the evaporator due to NaK's binary composition. A NaK heat pipe was fabricated to measure the temperature non-uniformities in a scale model of the VCHP for the Stirling Radioisotope system. The temperature profiles in the evaporator and condenser were measured as a function of operating temperature and power. The largest delta T across the condenser was 2S C. However, the condenser delta T decreased to 16 C for the 775 C vapor temperature at the highest heat flux applied, 7.21 W/ square cm. This decrease with increasing heat flux was caused by the increased mixing of the sodium and potassium in the vapor. This temperature differential is similar to the temperature variation in this ASRG heat transfer interface without a heat pipe, so NaK can be used as the VCHP working fluid.
New Horizons Launch Contingency Effort
NASA Astrophysics Data System (ADS)
Chang, Yale; Lear, Matthew H.; McGrath, Brian E.; Heyler, Gene A.; Takashima, Naruhisa; Owings, W. Donald
2007-01-01
On 19 January 2006 at 2:00 PM EST, the NASA New Horizons spacecraft (SC) was launched from the Cape Canaveral Air Force Station (CCAFS), FL, onboard an Atlas V 551/Centaur/STAR™ 48B launch vehicle (LV) on a mission to explore the Pluto Charon planetary system and possibly other Kuiper Belt Objects. It carried a single Radioisotope Thermoelectric Generator (RTG). As part of the joint NASA/US Department of Energy (DOE) safety effort, contingency plans were prepared to address the unlikely events of launch accidents leading to a near-pad impact, a suborbital reentry, an orbital reentry, or a heliocentric orbit. As the implementing organization. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had expanded roles in the New Horizons launch contingency effort over those for the Cassini mission and Mars Exploration Rovers missions. The expanded tasks included participation in the Radiological Control Center (RADCC) at the Kennedy Space Center (KSC), preparation of contingency plans, coordination of space tracking assets, improved aerodynamics characterization of the RTG's 18 General Purpose Heat Source (GPHS) modules, and development of spacecraft and RTG reentry breakup analysis tools. Other JHU/APL tasks were prediction of the Earth impact footprints (ElFs) for the GPHS modules released during the atmospheric reentry (for purposes of notification and recovery), prediction of the time of SC reentry from a potential orbital decay, pre-launch dissemination of ballistic coefficients of various possible reentry configurations, and launch support of an Emergency Operations Center (EOC) on the JHU/APL campus. For the New Horizons launch, JHU/APL personnel at the RADCC and at the EOC were ready to implement any real-time launch contingency activities. A successful New Horizons launch and interplanetary injection precluded any further contingency actions. The New Horizons launch contingency was an interagency effort by several organizations. This paper describes JHU/APL's roles and responsibilities in the launch contingency effort, and the specific tasks to fulfill those responsibilities. The overall effort contributed to mission safety and demonstrated successful cooperation between several agencies.
Thermal Analysis of the Mound One Kilowatt Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Or, Chuen T.
The Mound One Kilowatt (1 KW) package was designed for the shipment of plutonium (Pu-238) with not more than 1 kW total heat dissipation. To comply with regulations, the Mound 1 kW package has to pass all the requirements under Normal Conditions of Transport (NCT; 38 degrees C ambient temperature) and Hypothetical Accident Conditions (HAC; package engulfed in fire for 30 minutes). Analytical and test results were presented in the Safety Analysis Report for Packaging (SARP) for the Mound 1 kW package, revision 1, April 1991. Some issues remained unresolved in that revision. In March 1992, Fairchild Space and Defensemore » Corporation was commissioned by the Department of Energy to perform the thermal analyses. 3-D thermal models were created to perform the NCT and HAC analyses. Four shipping configurations in the SARP revision 3 were analyzed. They were: (1) The GPHS graphite impact shell (GIS) in the threaded product can (1000 W total heat generation); (2) The fueled clads in the welded product can (1000 W total heat generation); (3) The General Purpose Heat Source (GPHS) module (750 W total heat generation); and (4) The Multi-Hundred Watt (MHW) spheres (810 W total heat generation). Results from the four cases show that the GIS or fuel clad in the product can is the worse case. The temperatures predicted under NCT and HAC in all four cases are within the design limits. The use of helium instead of argon as cover gas provides a bigger safety margin. There is a duplicate copy.« less
Development of a Multi-bus, Multi-source Reconfigurable Stirling Radioisotope Power System Test Bed
NASA Technical Reports Server (NTRS)
Coleman, Anthony S.
2004-01-01
The National Aeronautics and Space Administration (NASA) has typically used Radioisotope Thermoelectric Generators (RTG) as their source of electric power for deep space missions. A more efficient and potentially more cost effective alternative to the RTG, the high efficiency 110 watt Stirling Radioisotope Generator 110 (SRG110) is being developed by the Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC) and NASA Glenn Research Center (GRC). The SRG110 consists of two Stirling convertors (Stirling Engine and Linear Alternator) in a dual-opposed configuration, and two General Purpose Heat Source (GPHS) modules. Although Stirling convertors have been successfully operated as a power source for the utility grid and as a stand-alone portable generator, demonstration of the technology required to interconnect two Stirling convertors for a spacecraft power system has not been attempted. NASA GRC is developing a Power System Test Bed (PSTB) to evaluate the performance of a Stirling convertor in an integrated electrical power system application. This paper will describe the status of the PSTB and on-going activities pertaining to the PSTB in the NASA Thermal-Energy Conversion Branch of the Power and On-Board Propulsion Technology Division.
Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission
NASA Technical Reports Server (NTRS)
Bents, David J.
1989-01-01
Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for Low Earth Orbit (LEO) applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated sink temperature. The mass advantage of dynamic systems is significantly reduced for this application due to Mars' elevated background temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, P.C.
This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.
Final safety analysis report for the Galileo Mission: Volume 2: Book 1, Accident model document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Accident Model Document (AMD) is the second volume of the three volume Final Safety Analysis Report (FSAR) for the Galileo outer planetary space science mission. This mission employs Radioisotope Thermoelectric Generators (RTGs) as the prime electrical power sources for the spacecraft. Galileo will be launched into Earth orbit using the Space Shuttle and will use the Inertial Upper Stage (IUS) booster to place the spacecraft into an Earth escape trajectory. The RTG's employ silicon-germanium thermoelectric couples to produce electricity from the heat energy that results from the decay of the radioisotope fuel, Plutonium-238, used in the RTG heat source.more » The heat source configuration used in the RTG's is termed General Purpose Heat Source (GPHS), and the RTG's are designated GPHS-RTGs. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel as well as by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The FSAR presents the results of a rigorous safety assessment, including substantial analyses and testing, of the launch and deployment of the RTGs for the Galileo mission. This AMD is a summary of the potential accident and failure sequences which might result in fuel release, the analysis and testing methods employed, and the predicted source terms. Each source term consists of a quantity of fuel released, the location of release and the physical characteristics of the fuel released. Each source term has an associated probability of occurrence. 27 figs., 11 tabs.« less
Design of small Stirling dynamic isotope power system for robotic space missions
NASA Technical Reports Server (NTRS)
Bents, D. J.; Schreiber, J. G.; Withrow, C. A.; Mckissock, B. I.; Schmitz, P. C.
1992-01-01
Design of a multihundred-watt Dynamic Isotope Power System (DIPS) based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) technology is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. Unlike previous DIPS designs which were based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled down to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Preliminary characterization of units in the output power ranges 200-600 We indicate that on an electrical watt basis the GPHS/small Stirling DIPS will be roughly equivalent to an advanced RTG in size and mass but require less than a third of the isotope inventory.
NASA Technical Reports Server (NTRS)
Eck, M.; Mukunda, M.
1989-01-01
The various analyses described here were aimed at obtaining a more comprehensive understanding and definition of the environments in the vicinity of the Radioisotope Thermal Generator (RTG) during certain Space Transportation System (STS) and Titan IV launch abort accidents. Addressed here are a number of issues covering explosion environments and General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) responses to those environments.
Advanced radioisotope heat source for Stirling Engines
NASA Astrophysics Data System (ADS)
Dobry, T. J.; Walberg, G.
2001-02-01
The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .
Nasri, Rim; Abdelhedi, Ola; Jemil, Ines; Daoued, Ines; Hamden, Khaled; Kallel, Choumous; Elfeki, Abdelfattah; Lamri-Senhadji, Myriem; Boualga, Ahmed; Nasri, Moncef; Karra-Châabouni, Maha
2015-12-05
This study investigated the therapeutic potential of undigested goby fish (Zosterisessor ophiocephalus) muscle proteins (UGP) and their hydrolysates on high-fat-high-fructose diet (HFFD)-fed rats. HFFD induced hyperglycemia, manifested by a significant increase in the levels of glucose and glycogen as well as α-amylase activity when compared to normal rats. The administration of GPHs to HFFD-fed rats significantly decreased α-amylase activity and the contents of blood glucose and hepatic glycogen. By contrast, the UGP increased the glucose metabolic disorders in HFFD-fed rats. Furthermore, HFFD-fed rats showed oxidative stress, as evidenced by decreased antioxidant enzyme activities and glutathione (GSH) levels and increased concentration of the lipid peroxidation product malondialdehyde in liver and kidney. Interestingly, the daily gavage of UGP and GPHs improved the redox status in liver and kidney of HFFD-rats by ameliorating or reversing the above-mentioned changes. Moreover, GPHs exhibited a renal protective role by reversing the HFFD-induced decease of uric acid and increase of creatinine levels in serum and preventing some HFFD-induced changes in kidney architecture. The results demonstrate that GPHs contain bioactive peptides that possess significant hypoglycemic and antioxidant properties, and ameliorate renal damage in rats fed hypercaloric diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Historical flight qualifications of space nuclear systems
NASA Astrophysics Data System (ADS)
Bennett, Gary L.
1997-01-01
An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems.
Science Instrument Sensitivities to Radioisotope Power System Environment
NASA Technical Reports Server (NTRS)
Bairstow, Brian; Lee, Young; Smythe, William; Zakrajsek, June
2016-01-01
Radioisotope Power Systems (RPS) have been and will be enabling or significantly enhancing for many missions, including several concepts identified in the 2011 Planetary Science Decadal Survey. Some mission planners and science investigators might have concerns about possible impacts from RPS-induced conditions upon the scientific capabilities of their mission concepts. To alleviate these concerns, this paper looks at existing and potential future RPS designs, and examines their potential radiation, thermal, vibration, electromagnetic interference (EMI), and magnetic fields impacts on representative science instruments and science measurements. Radiation impacts from RPS on science instruments are of potential concern for instruments with optical detectors and instruments with high-voltage electronics. The two main areas of concern are noise effects on the instrument measurements, and long-term effects of instrument damage. While RPS by their nature will contribute to total radiation dose, their addition for most missions should be relatively small. For example, the gamma dose rate from one Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) would be an order of magnitude lower than the environmental dose rate at Mars, and would have a correspondingly lower contribution to instrument noise and to any permanent damage to payload sensors. Increasing the number of General Purpose Heat Source (GPHS) modules used in an RPS would be expected to increase the generated radiation proportionally; however, the effect of more GPHS modules is mitigated from a strictly linear relationship by self-shielding effects. The radiation field of an RPS is anisotropic due to the deviation of the modules from a point-source-geometry. For particularly sensitive instruments the total radiation dose could be mitigated with separation or application of spot shielding. Though a new, higher-power RPS could generate more heat per unit than current designs, thermal impact to the flight system could be mitigated with shading and pointing if required by the mission. Alternatively, excess heat could prove beneficial in providing needed heat to spacecraft components and instruments in some thermal environments. Vibration for a new higher-power Stirling Radioisotope Generator (SRG) would be expected to be similar to the recent Advanced Stirling Radioisotope Generator (ASRG) design. While vibration should be low, it must be considered and addressed during spacecraft and instrument design. EMI and magnetic fields for new RPS concepts are expected to be low as for the current RPS, but must be considered and addressed if the mission includes sensitive instruments such as magnetometers. The assessment conducted for this paper focused on orbiter instrument payloads for two representative mission concepts- a Titan Saturn System Mission (TSSM) and a Uranus Orbiter and Probe (UOP)-since both of these Decadal Survey concepts would include many diverse instruments on board. Quick-look design studies using notional new RPS concepts were carried out for these two mission concepts, and their specific instrument packages were analyzed for their interactions with new RPS designs. The original Decadal Survey TSSM and UOP concepts did not have complete instrument performance requirements so typical measurement requirements were used where needed. Then, the general RPS environments were evaluated for impacts to various types of instruments. This paper describes how the potential impacts of the RPS on science instruments and measurements were assessed, which impacts were addressed, proposed mitigation strategies against those impacts, and provides an overview of future work.
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2010-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2011-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2010-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC E2 heater head assembly. These mechanical tests were collectively referred to as lateral load tests since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Effect of inert cover gas on performance of radioisotope Stirling space power system
NASA Astrophysics Data System (ADS)
Carpenter, R.; Kumar, V.; Or, C.; Schock, A.
2001-02-01
This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched on missions to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al., 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission. .
The DOE/NASA SRG110 Program Overview
NASA Astrophysics Data System (ADS)
Shaltens, R. K.; Richardson, R. L.
2005-12-01
The Department of Energy is developing the Stirling Radioisotope Generator (SRG110) for NASAs Science Mission Directorate for potential surface and deep space missions. The SRG110 is one of two new radioisotope power systems (RPSs) currently being developed for NASA space missions, and is capable of operating in a range of planetary atmospheres and in deep space environments. It has a mass of approximately 27 kg and produces more than 125We(dc) at beginning of mission (BOM), with a design lifetime of fourteen years. Electrical power is produced by two (2) free-piston Stirlings convertor heated by two General Purpose Heat Source (GPHS) modules. The complete SRG110 system is approximately 38 cm x 36 cm and 76 cm long. The SRG110 generator is being designed in 3 stages: Engineering Model, Qualification Generator, and Flight Generator. Current plans call for the Engineering Model to be fabricated and tested by October 2006. Completion of testing of the Qualification Generator is scheduled for mid-2009. This development is being performed by Lockheed Martin, Valley Forge, PA and Infinia Corporation, Kennewick, WA under contract to the Department of Energy, Germantown, Md. Glenn Research Center, Cleveland, Ohio is providing independent testing and support for the technology transition for the SRG110 Program.
The NASA Next Generation Stirling Technology Program Overview
NASA Astrophysics Data System (ADS)
Schreiber, J. G.; Shaltens, R. K.; Wong, W. A.
2005-12-01
NASAs Science Mission Directorate is developing the next generation Stirling technology for future Radioisotope Power Systems (RPS) for surface and deep space missions. The next generation Stirling convertor is one of two advanced power conversion technologies currently being developed for future NASA missions, and is capable of operating for both planetary atmospheres and deep space environments. The Stirling convertor (free-piston engine integrated with a linear alternator) produces about 90 We(ac) and has a specific power of about 90 We/kg. Operating conditions of Thot at 850 degree C and Trej at 90 degree C results in the Stirling convertor estimated efficiency of about 40 per cent. Using the next generation Stirling convertor in future RPS, the "system" specific power is estimated at 8 We/kg. The design lifetime is three years on the surface of Mars and fourteen years in deep space missions. Electrical power of about 160 We (BOM) is produced by two (2) free-piston Stirling convertors heated by two (2) General Purpose Heat Source (GPHS) modules. This development is being performed by Sunpower, Athens, OH with Pratt & Whitney, Rocketdyne, Canoga Park, CA under contract to Glenn Research Center (GRC), Cleveland, Ohio. GRC is guiding the independent testing and technology development for the next generation Stirling generator.
Lorenz, Ralph D
2012-08-01
Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K.
Performance of OSC's initial Amtec generator design, and comparison with JPL's Europa Orbiter goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1998-07-01
The procedure for the analysis (with overpotential correction) of multitube AMTEC (Alkali Metal Thermal-to-Electrical Conversion) cells described in Paper IECEC 98-243 was applied to a wide range of multicell radioisotope space power systems. System design options consisting of one or two generators, each with 2, 3, or 4 stacked GPHS (General Purpose Heat Source) modules, identical to those used on previous NASA missions, were analyzed and performance-mapped. The initial generators analyzed by OSC had 8 AMTEC cells on each end of the heat source stack, with five beta-alumina solid electrolyte (BASE) tubes per cell. The heat source and converters inmore » the Orbital generator designs are embedded in a thermal insulation system consisting of Min-K fibrous insulation surrounded by graded-length molybdenum multifoils. Detailed analyses in previous Orbital studies found that such an insulation system could reduce extraneous heat losses to about 10%. For the above design options, the present paper presents the system mass and performance (i.e., the EOM system efficiency and power output and the BOM evaporator and clad temperatures) for a wide range of heat inputs and load voltages, and compares the results with JPL's preliminary goals for the Europa Orbiter mission to be launched in November 2003. The analytical results showed that the initial 16-cell generator designs resulted in either excessive evaporator and clad temperatures and/or insufficient power outputs to meet the JPL-specified mission goals. The computed performance of modified OSC generators with different numbers of AMTEC cells, cell diameters, cell lengths, cell materials, BASE tube lengths, and number of tubes per cell are described in Paper IECEC.98.245 in these proceedings.« less
Radioisotope thermal photovoltaic application of the GaSb solar cell
NASA Technical Reports Server (NTRS)
Morgan, M. D.; Horne, W. E.; Day, A. C.
1991-01-01
An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach.
Historical flight qualifications of space nuclear systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, G.L.
1997-01-01
An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems. {copyright} {italmore » 1997 American Institute of Physics.}« less
Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Robert; Kumar, V; Ore, C
2001-01-01
This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Companymore » (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.« less
Improved OSC Amtec generator design to meet goals of JPL's candidate Europa Orbiter mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1998-07-01
The preceding paper (Paper IECEC.98.244) described OSC's initial designs of AMTEC (Alkali Metal Thermal-to-Electrical Conversion) power systems, consisting of one or two generators, each with 2, 3, or 4 General Purpose Heat Source (GPHS) modules and with 16 refractory AMTEC cells containing 5 Beta Alumina Solid Electrolyte (BASE) tubes; and presented the effect of heat input and voltage output on the generator's BOM evaporator and clad temperatures and on its EOM system efficiency and power output. Comparison of the computed results with JPL's goals for the Europa Orbiter mission showed that all of the initial 16-cell design options yielded eithermore » excessive evaporator and clad temperatures or insufficient EOM power to satisfy the JPL-specified mission goals. The present paper describes modified OSC generator designs with different numbers of AMTEC cells, cell diameters, cell lengths, cell materials, BASE tube lengths, and number of tubes per cell. These efforts succeeded in identifying generator designs with only half the number of AMTEC cells which -- for the same assumptions -- can produce EOM power outputs substantially in excess of JPL's goals for NASA's Europa Orbiter mission while operating well below the prescribed BOM limits on evaporator and clad temperature; and revealed that lowering the emissivity of the generator's housing to raise the cells' condenser temperatures can achieve substantial additional performance improvement. Finally, the paper culminates in programmatic recommendations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gangyi, E-mail: gangyi.xu@mail.sitp.ac.cn; Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083; Li, Lianhe
2014-03-03
We demonstrate efficient surface-emitting terahertz frequency quantum cascade lasers with continuous wave output powers of 20–25 mW at 15 K and maximum operating temperatures of 80–85 K. The devices employ a resonant-phonon depopulation active region design with injector, and surface emission is realized using resonators based on graded photonic heterostructures (GPHs). GPHs can be regarded as energy wells for photons and have recently been implemented through grading the period of the photonic structure. In this paper, we show that it is possible to keep the period constant and grade instead the lateral metal coverage across the GPH. This strategy ensures spectrally single-mode operationmore » across the whole laser dynamic range and represents an additional degree of freedom in the design of confining potentials for photons.« less
Gravitational Lens: Deep Space Probe Design
2012-03-01
Lieutenant, USAF Approved: Timothy Lawrence, Col, USAF (Chairman) Date Carl Hartsfield, Lt Col, USAF (Member) Date Marc G. Millis (Member) Date Abstract A...23 RTG Radioisotope Thermoelectric Generators . . . . . . . . . . . . . . . . . 26 EOL End of Life...26 ASRG Advanced Stirling Radioisotope Generator . . . . . . . . . . . . . . . . 26 GPHS
GPHS-RTG's in support of the Cassini mission
NASA Astrophysics Data System (ADS)
1993-10-01
The following tasks were reported: Spacecraft integration and liaison; engineering support; safety; qualified unicouple fabrication; ETG fabrication/assembly/test; ground support equipment; RTG shipping and launch support; designs/reviews/mission applications; and project management/quality assurance/contract changes.
Small Stirling dynamic isotope power system for multihundred-watt robotic missions
NASA Technical Reports Server (NTRS)
Bents, David J.
1991-01-01
Free Piston Stirling Engine (FPSE) and linear alternator (LA) technology is combined with radioisotope heat sources to produce a compact dynamic isotope power system (DIPS) suitable for multihundred watt space application which appears competitive with advance radioisotope thermoelectric generators (RTGs). The small Stirling DIPS is scalable to multihundred watt power levels or lower. The FPSE/LA is a high efficiency convertor in sizes ranging from tens of kilowatts down to only a few watts. At multihundred watt unit size, the FPSE can be directly integrated with the General Purpose Heat Source (GPHS) via radiative coupling; the resulting dynamic isotope power system has a size and weight that compares favorably with the advanced modular (Mod) RTG, but requires less than a third the amount of isotope fuel. Thus the FPSE extends the high efficiency advantage of dynamic systems into a power range never previously considered competitive for DIPS. This results in lower fuel cost and reduced radiological hazard per delivered electrical watt.
Small Stirling dynamic isotope power system for multihundred-watt robotic missions
NASA Technical Reports Server (NTRS)
Bents, David J.
1991-01-01
Free piston Stirling Engine (FPSE) and linear alternator (LA) technology is combined with radioisotope heat sources to produce a compact dynamic isotope power system (DIPS) suitable for multihundred watt space application which appears competitive with advanced radioisotope thermoelectric generators (RTGs). The small Stirling DIPS is scalable to multihundred watt power levels or lower. The FPSE/LA is a high efficiency convertor in sizes ranging from tens of kilowatts down to only a few watts. At multihundred watt unit size, the FPSE can be directly integrated with the General Purpose Heat Source (GPHS) via radiative coupling; the resulting dynamic isotope power system has a size and weight that compares favorably with the advanced modular (Mod) RTG, but requires less than a third the amount of isotope fuel. Thus the FPSE extends the high efficiency advantage of dynamic systems into a power range never previously considered competitive for DIPS. This results in lower fuel cost and reduced radiological hazard per delivered electrical watt.
Validation Database Based Thermal Analysis of an Advanced RPS Concept
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Emis, Nickolas D.
2006-01-01
Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-15
This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in thesemore » appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.« less
The past as prologue - A look at historical flight qualifications for space nuclear systems
NASA Technical Reports Server (NTRS)
Bennett, Gary L.
1992-01-01
Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to 'flight qualify' a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.
The past as prologue - A look at historical flight qualifications for space nuclear systems
NASA Astrophysics Data System (ADS)
Bennett, Gary L.
Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to 'flight qualify' a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.
GPHS-RTGs in support of the Cassini Mission
NASA Astrophysics Data System (ADS)
1994-10-01
The progress on the radioisotope generators and ancillary activities is described. This report is organized by program task as follows: spacecraft integration and liaison; engineering support; safety; qualified unicouple fabrication; ETG fabrication, assembly, and test; ground support equipment; RTG shipping and launch support; design, reviews, and mission applications; project management, quality assurance and reliability, contract changes, non-capital CAGO acquisition, and CAGO maintenance; contractor acquired government owned property (CAGO) acquisition.
GPHS-RTGs in support of the Cassini mission
NASA Astrophysics Data System (ADS)
1992-04-01
The technical progress achieved during the period 30 Mar. - 27 Sep. 1992 is described. Topics covered include: spacecraft integration and liaison; engineering support; safety; qualified unicouple production, ETG fabrication, assembly, and test; ground support equipment; radioisotope thermoelectric generators (RTG) shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, reliability, contract changes, non-capital contractor acquired government owned (CAGO) acquisitions, and CAGO maintenance; and CAGO acquisitions.
Radioisotope powered AMTEC systems
NASA Astrophysics Data System (ADS)
Ivanenok, Joseph F., III; Sievers, Robert K.
1994-11-01
Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and low volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable.
Recommended OSC design and analysis of AMTEC power system for outer-planet missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1999-01-01
The paper describes OSC designs and analyses of AMTEC cells and radioisotope power systems for possible application to NASA{close_quote}s Europa Orbiter and Pluto Kuiper Express missions, and compares their predicted performance with JPL{close_quote}s preliminary mission goals. The latest cell and generator designs presented here were the culmination of studies covering a wide variety of generator configurations and operating parameters. The many steps and rationale leading to OSC{close_quote}s design evolution and materials selection were discussed in earlier publications and will not be repeated here except for a description of OSC{close_quote}s latest design, including a recent heat source support scheme and cellmore » configuration that have not been described in previous publications. As shown, that heat source support scheme eliminates all contact between the heat source and the AMTEC (Alkali Metal Thermal-to-Electrical Conversion) cells, which simplifies the generator{close_quote}s structural design as well as its fabrication and assembly procedure. An additional purpose of the paper is to describe a revised cell design and fabrication procedure which represent a major departure from previous OSC designs. Previous cells had a uniform diameter, but in the revised design the cell wall beyond the BASE tubes has a greatly reduced diameter. The paper presents analytical performance predictions which show that the revised ({open_quotes}chimney{close_quotes}) cell design yields substantially higher efficiencies than the previous (cylindrical) design. This makes it possible to meet and substantially exceed the JPL-stipulated EOM power goal with four instead of six General Purpose Heat Source (GPHS) modules, resulting in a one-third reduction in the heat source mass, cost, and fuel requirements. OSC{close_quote}s performance predictions were based on its techniques for the coupled thermal, electrical, and fluid flow analyses of AMTEC generators. Those analytical techniques have been partially validated by tests of prototypic test assemblies designed by OSC, built by AMPS, and tested by AFRL. The analytical results indicate that the OSC power system design, operating within the stipulated evaporator and clad temperature limits and well within its mass goals, can yield EOM power outputs and system efficiencies that substantially exceed the JPL-specified goals for the Europa and Pluto missions. However, those results only account for radioisotope decay. Other degradation mechanisms are still under study, and their short-and long-term effects must be quantified and understood before final conclusions about the adequacy and competitiveness of the AMTEC system can be drawn. {copyright} {ital 1999 American Institute of Physics.}« less
Front End Analysis of Soldier Individual Power Systems
1993-05-01
in the state-of-the-art MOD-GPHS-RTG, but with the fuel being polonium 210 , with a half life of 13.1.4 days, in the form of a gadolinium polonide (GdPo...allies, and industry to evaluate state-of-the-art technologies and integrate them into a system with synergistic improvement in combat effectiveness . The...Schemes ................................................... 79 Front End Analysis of Soldier Individual Power S LIST OF FIGURES I Effect of Mission
GPHS-RTGs in support of the Cassini mission
NASA Astrophysics Data System (ADS)
1994-04-01
This report is organized by the program task structure as follows: (1) spacecraft integration and liaison; (2) engineering support; (3) safety; (4) qualified unicouple fabrication; (5) ETG fabrication, assembly, and test; (6) ground support equipment (GSE); (7) RTG shipping and launch support; (8) designs, reviews, and mission applications; (9) project management, quality assurance and reliability, contract changes, noncapital contractor acquired government owned property (CAGO) acquisition, and CAGO maintenance; and (10) CAGO acquisition.
Thermal vacuum life test facility for radioisotope thermoelectric generators
NASA Astrophysics Data System (ADS)
Deaton, R. L.; Goebel, C. J.; Amos, W. R.
In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG and G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al., (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met.
Radioisotope powered AMTEC systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.
1994-11-01
Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and lowmore » volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable. 35 refs.« less
Advanced Stirling Convertor (ASC) Technology Maturation
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle
2015-01-01
The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center (GRC) with contractor Sunpower Inc. to develop high efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems. Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or Engineering Units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA Engineering Units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F Pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in FY2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical tests at NASA GRC that demonstrate the capabilities of the ASC.
Advanced Stirling Convertor (ASC) Technology Maturation
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle
2016-01-01
The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical tests at NASA Glenn that demonstrate the capabilities of the ASC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1997-12-31
This paper presents the background and introduction to the OSC AMTEC (Alkali Metal Thermal-to-Electrical Conversion) studies, which were conducted for the Department of energy (DOE) and NASA`s jet Propulsion Laboratory (JPL). After describing the basic principle of AMTEC, the paper describes and explains the operation of multi-tube vapor/vapor cells, which have been under development by AMPS (Advance Modular Power Systems, Inc.) for the Air Force Phillips Laboratory (AFPL) and JPL for possible application to the Europa Orbiter, Pluto Express, and other space missions. It then describes a novel OSC-generated methodology for analyzing the performance of such cells. This methodology consistsmore » of an iterative procedure for the coupled solution of the interdependent thermal, electrical, and fluid flow differential and integral equations governing the performance of AMTEC cells and generators, taking proper account of the non-linear axial variations of temperature, pressure, open-circuit voltage, inter-electrode voltages, current density, axial current, sodium mass flow rate, and power density. The paper illustrates that analytical procedure by applying it to OSC`s latest cell design and by presenting detailed analytical results for that design. The OSC-developed analytic methodology constitutes a unique and powerful tool for accurate parametric analyses and design optimizations of the multi-tube AMTEC cells and of radioisotope power systems. This is illustrated in two companion papers in these proceedings. The first of those papers applies the OSC-derived program to determine the effect of various design parameters on the performance of single AMTEC cells with adiabatic side walls, culminating in an OSC-recommended revised cell design. And the second describes a number of OSC-generated AMTEC generator designs consisting of 2 and 3 GPHS heat source modules, 16 multi-tube converter cells, and a hybrid insulation design, and presents the results of applying the above analysis program to determine the applicability of those generators to possible future missions under consideration by NASA.« less
Radioisotope Stirling Engine Powered Airship for Low Altitude Operation on Venus
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
2012-01-01
The feasibility of a Stirling engine powered airship for the near surface exploration of Venus was evaluated. The heat source for the Stirling engine was limited to 10 general purpose heat source (GPHS) blocks. The baseline airship utilized hydrogen as the lifting gas and the electronics and payload were enclosed in a cooled insulated pressure vessel to maintain the internal temperature at 320 K and 1 Bar pressure. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the Venus surface based on the available thermal power. The atmospheric conditions on Venus were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Venus surface. From this baseline design additional trades were made to see how other factors affected the design such as the internal temperature of the payload chamber and the flight altitude. In addition other lifting methods were evaluated such as an evacuated chamber, heated atmospheric gas and augmented heated lifting gas. However none of these methods proved viable.
An interdecadal climate dipole between Northeast Asia and Antarctica over the past five centuries
NASA Astrophysics Data System (ADS)
Fang, Keyan; Chen, Deliang; Guo, Zhengtang; Zhao, Yan; Frank, David; He, Maosheng; Zhou, Feifei; Shi, Feng; Seppä, Heikki; Zhang, Peng; Neukom, Raphael
2018-03-01
Climate models emphasize the need to investigate inter-hemispheric climatic interactions. However, these models often underestimate the inter-hemispheric differences in climate change. With the wide application of reanalysis data since 1948, we identified a dipole pattern between the geopotential heights (GPHs) in Northeast Asia and Antarctica on the interdecadal scale in boreal summer. This Northeast Asia/Antarctica (NAA) dipole pattern is not conspicuous on the interannual scale, probably in that the interannual inter-hemispheric climate interaction is masked by strong interannual signals in the tropics associated with the El Niño-Southern Oscillation (ENSO). Unfortunately, the instrumental records are not sufficiently long-lasting to detect the interdecadal variability of the NAA. We thus reconstructed GPHs since 1565, making using the proxy records mostly from tree rings in Northeast Asia and ice cores from Antarctica. The strength of the NAA is time-varying and it is most conspicuous in the eighteenth century and after the late twentieth century. The strength of the NAA matches well with the variations of the solar radiation and tends to increase in along with its enhancement. In boreal summer, enhanced heating associated with high solar radiation in the Northern Hemisphere drives more air masses from the South to the North. This inter-hemispheric interaction is particularly strong in East Asia as a result of the Asian summer monsoon. Northeast Asia and Antarctica appear to be the key regions responsible for inter-hemispheric interactions on the interdecadal scale in boreal summer since they are respectively located at the front and the end of this inter-hemispheric trajectory.
AMTEC radioisotope power system design and analysis for Pluto Express Fly-By
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Huang, C.; Sievers, R.K.
1997-12-31
The Pluto Express Fly-By program requires a Radioisotope Power System (RPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, high-efficiency RPS to power the Pluto Express Fly-By spacecraft. An AMTEC-based RPS using the General Purpose Heat Source (GPHS) has been conceptually designed to satisfy the Pluto Express power requirements. Integrated AMTEC cell and system thermal/electrical design analyses, structural design analyses, and mass analyses were performed to define an optimum system design. Using fresh radioisotope fuel at beginning of mission, the RPS producesmore » 102 watts of power, has a mass of 8.35 kg (specific power density = 12.2 watts/kg), with a system conversion efficiency of 20.3%. Mass/power scale-up estimates have also been generated, indicating that a 150-watt version of this RPS would weigh approximately 11.3 kg. This paper presents and discusses the key features of this RPS design, the design and analysis methodology, and the numerous system and AMTEC cell tradeoff studies establishing the optimum AMTEC-based RPS.« less
Demonstrating the Viability and Affordability of Nuclear Surface Power Systems
NASA Technical Reports Server (NTRS)
Vandyke, Melissa K.
2006-01-01
A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.
NASA Technical Reports Server (NTRS)
Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Suitor, J.; O'Connor, D.
1993-01-01
Alkali metal thermal to electric converter (AMTEC) designs for space power are numerous, but selection of materials for construction of long-lived AMTEC devices has been limited to electrodes, current collectors, and the solid electrolyte. AMTEC devices with lifetimes greater than 5 years require careful selection and life testing of all hot-side components. The likely selection of a remote condensed design for initial flight test and probable use with a GPHS in AMTEC powered outer planet probes requires the device to be constructed to tolerate T greater than 1150K, as well as exposure to Na(sub (g)), and Na(sub (liq)) on the high pressure side. The temperatures involved make critical high strength and chemical resistance to Na containing Na(sub 2)O. Selection among materials which can be worked should not be driven by ease of fabricability, as high temperature stability is the critical issue. These concepts drive the selection of Mo alloys for Na(sub (liq)) containment in AMTEC cells for T to 1150K operation, as they are significantly stronger than comparable NB or Ta alloys, are less soluble in Na(sub (liq)) containing dissolved Na(sub 2)O, are workable compared to W alloys (which might be used for certain components), and are ductile at the T greater than 500K of proposed AMTEC modules in space applications.
GPHS-RTGs in support of the Cassini RTG Program
NASA Astrophysics Data System (ADS)
1995-04-01
The technical progress achieved during the period 26 Sep. 1994 - 2 Apr. 1995 on Contract DE-AC03-91SF-18852 Radioisotope Thermoelectric Generators and Ancillary Activities is described herein. Monthly technical activity for the period 27 Feb. - 2 Apr. 1995 is included in this progress report. The report addresses tasks, including: spacecraft integration and liaison; engineering support; safety; qualified unicouple production; ETG fabrication, assembly, and test; ground support equipment; RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, reliability, contract changes, CAGO acquisition (operating funds), and CAGO maintenance and repair; and CAGO acquisition (capital funds).
Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen, J.
2012-01-01
This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.
An ion source module for the Beijing Radioactive Ion-beam Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.
2014-02-15
An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.
Sound source localization identification accuracy: Envelope dependencies.
Yost, William A
2017-07-01
Sound source localization accuracy as measured in an identification procedure in a front azimuth sound field was studied for click trains, modulated noises, and a modulated tonal carrier. Sound source localization accuracy was determined as a function of the number of clicks in a 64 Hz click train and click rate for a 500 ms duration click train. The clicks were either broadband or high-pass filtered. Sound source localization accuracy was also measured for a single broadband filtered click and compared to a similar broadband filtered, short-duration noise. Sound source localization accuracy was determined as a function of sinusoidal amplitude modulation and the "transposed" process of modulation of filtered noises and a 4 kHz tone. Different rates (16 to 512 Hz) of modulation (including unmodulated conditions) were used. Providing modulation for filtered click stimuli, filtered noises, and the 4 kHz tone had, at most, a very small effect on sound source localization accuracy. These data suggest that amplitude modulation, while providing information about interaural time differences in headphone studies, does not have much influence on sound source localization accuracy in a sound field.
Photonic Applications Using Electrooptic Optical Signal Processors
2011-11-16
analog-to-digital conversion using a continuous wave multiwavelength source and phase modulation Author(s): Bortnik, B.J.; Fetterman, H.R. Source... multiwavelength source and phase modulation Bartosz J. Bortnik* and Harold R. Fetterman Department of Electrical Engineering, University of California Los...utilizing a cw multiwavelength source and phase modulation instead of a mode-locked laser is presented. The output of the cw multiwave- length source
Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Cataldo, Robert L.
2014-01-01
The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.
Summary of aerospace and nuclear engineering activities
NASA Technical Reports Server (NTRS)
1988-01-01
The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Gutierrez, Sulmer, E-mail: sulmer.a.fernandez.gutierrez@intel.com; Browning, Jim; Lin, Ming-Chieh
Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versusmore » continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.« less
Montcalm, Claude [Livermore, CA; Folta, James Allen [Livermore, CA; Walton, Christopher Charles [Berkeley, CA
2003-12-23
A method and system for determining a source flux modulation recipe for achieving a selected thickness profile of a film to be deposited (e.g., with highly uniform or highly accurate custom graded thickness) over a flat or curved substrate (such as concave or convex optics) by exposing the substrate to a vapor deposition source operated with time-varying flux distribution as a function of time. Preferably, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. Preferably, the method includes the steps of measuring the source flux distribution (using a test piece held stationary while exposed to the source with the source operated at each of a number of different applied power levels), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of source flux modulation recipes, and determining from the predicted film thickness profiles a source flux modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal source flux modulation recipe to achieve a desired thickness profile on a substrate. The method enables precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.
Modulating the Neutron Flux from a Mirror Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D D
2011-09-01
A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronousmore » detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.« less
Modulated infrared radiant source
NASA Technical Reports Server (NTRS)
Stewart, W. F.; Edwards, S. F.; Vann, D. S.; Mccormick, R. F.
1981-01-01
A modulated, infrared radiant energy source was developed to calibrate an airborne nadir-viewing pressure modulated radiometer to be used to detect from Earth orbit trace gases in the troposphere. The technique used an 8 cm long, 0.005 cm diameter platinum-iridium wire as an isothermal, thin line radiant energy source maintained at 1200 K. A + or - 20 K signal, oscillating at controllable frequencies from dc to 20 Hz, was superimposed on it. This periodic variation of the line source energy was used to verify the pressure modulated radiometer's capability to distinguish between the signal variations caused by the Earth's background surface and the signal from the atmospheric gases of interest.
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
Laser-controlled optical transconductance varistor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hoang T.; Stuart, Brent C.
2017-07-11
An optical transconductance varistor system having a modulated radiation source configured to provide modulated stimulus, a wavelength converter operably connected to the modulated radiation source to produce a modulated stimulus having a predetermined wavelength, and a wide bandgap semiconductor photoconductive material in contact between two electrodes. The photoconductive material is operably coupled, such as by a beam transport module, to receive the modulated stimulus having the predetermined wavelength to control a current flowing through the photoconductive material when a voltage potential is present across the electrodes.
Super-contrast photoacoustic resonance imaging
NASA Astrophysics Data System (ADS)
Gao, Fei; Zhang, Ruochong; Feng, Xiaohua; Liu, Siyu; Zheng, Yuanjin
2018-02-01
In this paper, a new imaging modality, named photoacoustic resonance imaging (PARI), is proposed and experimentally demonstrated. Being distinct from conventional single nanosecond laser pulse induced wideband PA signal, the proposed PARI method utilizes multi-burst modulated laser source to induce PA resonant signal with enhanced signal strength and narrower bandwidth. Moreover, imaging contrast could be clearly improved than conventional single-pulse laser based PA imaging by selecting optimum modulation frequency of the laser source, which originates from physical properties of different materials beyond the optical absorption coefficient. Specifically, the imaging steps is as follows: 1: Perform conventional PA imaging by modulating the laser source as a short pulse to identify the location of the target and the background. 2: Shine modulated laser beam on the background and target respectively to characterize their individual resonance frequency by sweeping the modulation frequency of the CW laser source. 3: Select the resonance frequency of the target as the modulation frequency of the laser source, perform imaging and get the first PARI image. Then choose the resonance frequency of the background as the modulation frequency of the laser source, perform imaging and get the second PARI image. 4: subtract the first PARI image from the second PARI image, then we get the contrast-enhanced PARI results over the conventional PA imaging in step 1. Experimental validation on phantoms have been performed to show the merits of the proposed PARI method with much improved image contrast.
The Microbial Source Module (MSM) estimates microbial loading rates to land surfaces from non-point sources, and to streams from point sources for each subwatershed within a watershed. A subwatershed, the smallest modeling unit, represents the common basis for information consume...
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2013-11-18
We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.
Directly Phase-Modulated Light Source
NASA Astrophysics Data System (ADS)
Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.
2016-07-01
The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.
Ignition in tokamaks with modulated source of auxiliary heating
NASA Astrophysics Data System (ADS)
Morozov, D. Kh
2017-12-01
It is shown that the ignition may be achieved in tokamaks with the modulated power source. The time-averaged source power may be smaller than the steady-state source power, which is sufficient for the ignition. Nevertheless, the maximal power must be large enough, because the ignition must be achieved within a finite time interval.
Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.
NASA Technical Reports Server (NTRS)
Wein, D.; Gorland, S. H.
1973-01-01
Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.
NASA Astrophysics Data System (ADS)
Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da
2018-04-01
X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.
Modular radiochemistry synthesis system
Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, Michael R.; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu
2016-11-01
A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.
Modular radiochemistry synthesis system
Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu
2015-12-15
A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.
Modular radiochemistry synthesis system
Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu
2015-02-10
A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.
Farahani, Ehsan Darestani; Goossens, Tine; Wouters, Jan; van Wieringen, Astrid
2017-03-01
Investigating the neural generators of auditory steady-state responses (ASSRs), i.e., auditory evoked brain responses, with a wide range of screening and diagnostic applications, has been the focus of various studies for many years. Most of these studies employed a priori assumptions regarding the number and location of neural generators. The aim of this study is to reconstruct ASSR sources with minimal assumptions in order to gain in-depth insight into the number and location of brain regions that are activated in response to low- as well as high-frequency acoustically amplitude modulated signals. In order to reconstruct ASSR sources, we applied independent component analysis with subsequent equivalent dipole modeling to single-subject EEG data (young adults, 20-30 years of age). These data were based on white noise stimuli, amplitude modulated at 4, 20, 40, or 80Hz. The independent components that exhibited a significant ASSR were clustered among all participants by means of a probabilistic clustering method based on a Gaussian mixture model. Results suggest that a widely distributed network of sources, located in cortical as well as subcortical regions, is active in response to 4, 20, 40, and 80Hz amplitude modulated noises. Some of these sources are located beyond the central auditory pathway. Comparison of brain sources in response to different modulation frequencies suggested that the identified brain sources in the brainstem, the left and the right auditory cortex show a higher responsiveness to 40Hz than to the other modulation frequencies. Copyright © 2017 Elsevier Inc. All rights reserved.
Network based management for multiplexed electric vehicle charging
Gadh, Rajit; Chung, Ching Yen; Qui, Li
2017-04-11
A system for multiplexing charging of electric vehicles, comprising a server coupled to a plurality of charging control modules over a network. Each of said charging modules being connected to a voltage source such that each charging control module is configured to regulate distribution of voltage from the voltage source to an electric vehicle coupled to the charging control module. Data collection and control software is provided on the server for identifying a plurality of electric vehicles coupled to the plurality of charging control modules and selectively distributing charging of the plurality of charging control modules to multiplex distribution of voltage to the plurality of electric vehicles.
Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor)
2003-01-01
Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.
Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R. (Inventor)
2010-01-01
A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path.
Deason, Vance A.; Telschow, Kenneth L.
2006-10-17
An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.
Scott, Marion W.
1990-01-01
A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.
Scott, M.W.
1990-06-19
A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.
CADDIS Volume 2. Sources, Stressors and Responses: Metals - Point Sources from Industry
Introduction to the metals module, when to list metals as a candidate cause, ways to measure metals, simple and detailed conceptual diagrams for metals, metals module references and literature reviews.
Multi-wavelength time-coincident optical communications system and methods thereof
NASA Technical Reports Server (NTRS)
Lekki, John (Inventor); Nguyen, Quang-Viet (Inventor)
2009-01-01
An optical communications transmitter includes a oscillator source, producing a clock signal, a data source, producing a data signal, a modulating circuit for modulating the clock signal using the data signal to produce modulating signals, optical drivers, receiving the modulating signals and producing optical driving signals based on the modulating signals and optical emitters, producing small numbers of photons based on the optical driving signals. The small numbers of photons are time-correlated between at least two separate optical transmission wavelengths and quantum states and the small number of photons can be detected by a receiver to reform the data signal.
Numerical models analysis of energy conversion process in air-breathing laser propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Yanji; Song Junling; Cui Cunyan
Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.
NASA Astrophysics Data System (ADS)
Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.
2018-02-01
Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.
Jiao, Shuliang; Todorović, Milos; Stoica, George; Wang, Lihong V
2005-09-10
We report on a new configuration of fiber-based polarization-sensitive Mueller matrix optical coherence tomography that permits the acquisition of the round-trip Jones matrix of a biological sample using only one light source and a single depth scan. In this new configuration, a polarization modulator is used in the source arm to continuously modulate the incident polarization state for both the reference and the sample arms. The Jones matrix of the sample can be calculated from the two frequency terms in the two detection channels. The first term is modulated by the carrier frequency, which is determined by the longitudinal scanning mechanism, whereas the other term is modulated by the beat frequency between the carrier frequency and the second harmonic of the modulation frequency of the polarization modulator. One important feature of this system is that, for the first time to our knowledge, the Jones matrix of the sample can be calculated with a single detection channel and a single measurement when diattenuation is negligible. The system was successfully tested by imaging both standard polarization elements and biological samples.
Non-Cooled Power System for Venus Lander
NASA Technical Reports Server (NTRS)
Salazar, Denise; Landis, Geoffrey A.; Colozza, Anthony J.
2014-01-01
The Planetary Science Decadal Survey of 2013-2022 stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission - to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHSRTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass. Finally, the advantages and disadvantages of both power systems with regard to science return, risk, and cost are briefly compared. The design of the radioisotope power system is considerably riskier because it is novel and would require additional years of further refinement, manufacturing, safety analysis, and testing that the primary batteries do not need. However, the lifetime of the radioisotope power system makes its science return more promising.
Welchko, Brian A [Torrance, CA
2012-02-14
Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.
Thermal Neutron Point Source Imaging using a Rotating Modulation Collimator (RMC)
2010-03-01
Source Details.........................................................................................37 3.5 Simulation of RMC in MCNP ...passed through the masks at each rotation angle. ................................. 42 19. Figure 19: MCNP Generate Modulation Profile for Cadmium. The...Cadmium. The multi-energetic neutron source simulation from MCNP is used for this plot. The energy is values are shown per energy bin. The
Ultra high frequency imaging acoustic microscope
Deason, Vance A.; Telschow, Kenneth L.
2006-05-23
An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.
2012-03-13
Source Approach Part II. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing Report Title ABSTRACT This final report for Contract W911NF-09-C-0135 transmits the...prototype development. The second (Part II.) is "Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Test Report". The
Beste, Christian; Mückschel, Moritz; Rosales, Raymond; Domingo, Aloysius; Lee, Lillian; Ng, Arlene; Klein, Christine; Münchau, Alexander
2018-07-01
Cognitive control is relevant when distracting information induces behavioral conflicts. Such conflicts can be produced consciously and by subliminally processed information. Interestingly, both sources of conflict interact suggesting that they share neural mechanisms. Here, we ask whether conjoint effects between different sources of conflict are modulated by microstructural basal ganglia dysfunction. To this end, we carried out an electroencephalography study and examined event-related potentials (ERPs) including source localization using a combined flanker-subliminal priming task in patients with X-linked dystonia Parkinsonism (XDP) and a group of healthy controls. XDP in its early stages is known to predominantly affect the basal ganglia striosomes. The results suggest that conjoint effects between subliminal and conscious sources of conflicts are modulated by the striosomes and were stronger in XDP patients. The neurophysiological data indicate that this effect is related to modulations in conflict monitoring and response selection (N2 ERP) mechanisms engaging the anterior cingulate cortex. Bottom-up perceptual gating, attentional selection, and motor response activation processes in response to the stimuli (P1, N1, and lateralized readiness potential ERPs) were unaffected. Taken together, these data indicate that striosomes modulate the processing of conscious and subliminal sources of conflict suggesting that microstructural basal ganglia properties are relevant for cognitive control.
Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device.
Hoffmann, Maximilian; Papadopoulos, Ioannis N; Judkewitz, Benjamin
2018-01-01
The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation, or patterned photostimulation. For most of these applications, it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.
Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device
NASA Astrophysics Data System (ADS)
Hoffmann, Maximilian; Papadopoulos, Ioannis N.; Judkewitz, Benjamin
2018-01-01
The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation or patterned photostimulation. For most of these applications it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator, but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.
Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E
2013-10-22
A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
NASA Astrophysics Data System (ADS)
Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman
2016-02-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.
A variable-step-size robust delta modulator.
NASA Technical Reports Server (NTRS)
Song, C. L.; Garodnick, J.; Schilling, D. L.
1971-01-01
Description of an analytically obtained optimum adaptive delta modulator-demodulator configuration. The device utilizes two past samples to obtain a step size which minimizes the mean square error for a Markov-Gaussian source. The optimum system is compared, using computer simulations, with a linear delta modulator and an enhanced Abate delta modulator. In addition, the performance is compared to the rate distortion bound for a Markov source. It is shown that the optimum delta modulator is neither quantization nor slope-overload limited. The highly nonlinear equations obtained for the optimum transmitter and receiver are approximated by piecewise-linear equations in order to obtain system equations which can be transformed into hardware. The derivation of the experimental system is presented.
Source-to-incident-flux relation in a Tokamak blanket module
NASA Astrophysics Data System (ADS)
Imel, G. R.
The next-generation Tokamak experiments, including the Tokamak fusion test reactor (TFTR), will utilize small blanket modules to measure performance parameters such as tritium breeding profiles, power deposition profiles, and neutron flux profiles. Specifically, a neutron calorimeter (simply a neutron moderating blanket module) which permits inferring the incident 14 MeV flux based on measured temperature profiles was proposed for TFTR. The problem of how to relate this total scalar flux to the fusion neutron source is addressed. This relation is necessary since the calorimeter is proposed as a total fusion energy monitor. The methods and assumptions presented was valid for the TFTR Lithium Breeding Module (LBM), as well as other modules on larger Tokamak reactors.
Ultrasound modulation of bioluminescence generated inside a turbid medium
NASA Astrophysics Data System (ADS)
Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.
2017-03-01
In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.
Analysis of dead zone sources in a closed-loop fiber optic gyroscope.
Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To
2016-01-01
Analysis of the dead zone is among the intensive studies in a closed-loop fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and experiments. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-loop and closed-loop modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.
Diffusion spectral imaging modules correlate with EEG LORETA neuroimaging modules.
Thatcher, Robert W; North, Duane M; Biver, Carl J
2012-05-01
The purpose of this study was to test the hypothesis that the highest temporal correlations between 3-dimensional EEG current source density corresponds to anatomical Modules of high synaptic connectivity. Eyes closed and eyes open EEG was recorded from 19 scalp locations with a linked ears reference from 71 subjects age 13-42 years. LORETA was computed from 1 to 30 Hz in 2,394 cortical gray matter voxels that were grouped into six anatomical Modules corresponding to the ROIs in the Hagmann et al.'s [2008] diffusion spectral imaging (DSI) study. All possible cross-correlations between voxels within a DSI Module were compared with the correlations between Modules. The Hagmann et al. [ 2008] Module correlation structure was replicated in the correlation structure of EEG three-dimensional current source density. EEG Temporal correlation between brain regions is related to synaptic density as measured by diffusion spectral imaging. Copyright © 2011 Wiley-Liss, Inc.
Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism
Xie, Xiaoliang Sunney [Lexington, MA; Freudiger, Christian [Boston, MA; Min, Wei [Cambridge, MA
2011-09-27
A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.
Tian, Yu; Kang, Xiaodong; Li, Yunyi; Li, Wei; Zhang, Aiqun; Yu, Jiangchen; Li, Yiping
2013-01-01
This article presents a strategy for identifying the source location of a chemical plume in near-shore oceanic environments where the plume is developed under the influence of turbulence, tides and waves. This strategy includes two modules: source declaration (or identification) and source verification embedded in a subsumption architecture. Algorithms for source identification are derived from the moth-inspired plume tracing strategies based on a chemical sensor. The in-water test missions, conducted in November 2002 at San Clemente Island (California, USA) in June 2003 in Duck (North Carolina, USA) and in October 2010 at Dalian Bay (China), successfully identified the source locations after autonomous underwater vehicles tracked the rhodamine dye plumes with a significant meander over 100 meters. The objective of the verification module is to verify the declared plume source using a visual sensor. Because images taken in near shore oceanic environments are very vague and colors in the images are not well-defined, we adopt a fuzzy color extractor to segment the color components and recognize the chemical plume and its source by measuring color similarity. The source verification module is tested by images taken during the CPT missions. PMID:23507823
Low profile, highly configurable, current sharing paralleled wide band gap power device power module
McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M
2016-08-23
A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.
PyEEG: an open source Python module for EEG/MEG feature extraction.
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.
PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction. PMID:21512582
Chen, Ming; Henry, Nathan; Almsaeed, Abdullah; Zhou, Xiao; Wegrzyn, Jill; Ficklin, Stephen
2017-01-01
Abstract Tripal is an open source software package for developing biological databases with a focus on genetic and genomic data. It consists of a set of core modules that deliver essential functions for loading and displaying data records and associated attributes including organisms, sequence features and genetic markers. Beyond the core modules, community members are encouraged to contribute extension modules to build on the Tripal core and to customize Tripal for individual community needs. To expand the utility of the Tripal software system, particularly for RNASeq data, we developed two new extension modules. Tripal Elasticsearch enables fast, scalable searching of the entire content of a Tripal site as well as the construction of customized advanced searches of specific data types. We demonstrate the use of this module for searching assembled transcripts by functional annotation. A second module, Tripal Analysis Expression, houses and displays records from gene expression assays such as RNA sequencing. This includes biological source materials (biomaterials), gene expression values and protocols used to generate the data. In the case of an RNASeq experiment, this would reflect the individual organisms and tissues used to produce sequencing libraries, the normalized gene expression values derived from the RNASeq data analysis and a description of the software or code used to generate the expression values. The module will load data from common flat file formats including standard NCBI Biosample XML. Data loading, display options and other configurations can be controlled by authorized users in the Drupal administrative backend. Both modules are open source, include usage documentation, and can be found in the Tripal organization’s GitHub repository. Database URL: Tripal Elasticsearch module: https://github.com/tripal/tripal_elasticsearch Tripal Analysis Expression module: https://github.com/tripal/tripal_analysis_expression PMID:29220446
Modular Open-Source Software for Item Factor Analysis
ERIC Educational Resources Information Center
Pritikin, Joshua N.; Hunter, Micheal D.; Boker, Steven M.
2015-01-01
This article introduces an item factor analysis (IFA) module for "OpenMx," a free, open-source, and modular statistical modeling package that runs within the R programming environment on GNU/Linux, Mac OS X, and Microsoft Windows. The IFA module offers a novel model specification language that is well suited to programmatic generation…
Miniaturized, High-Speed, Modulated X-Ray Source
NASA Technical Reports Server (NTRS)
Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick
2013-01-01
A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum(TradeMark) multiplier. This system yields an extremely robust photon-driven electron source that can tolerate long, weeks or more, exposure to air with negligible degradation. The package is also small. When combined with the electron target, necessary vacuum fittings, and supporting components (but not including LED electronics or high-voltage sources), the entire modulated x-ray source weighs as little as 158 grams.
Ghost imaging with bucket detection and point detection
NASA Astrophysics Data System (ADS)
Zhang, De-Jian; Yin, Rao; Wang, Tong-Biao; Liao, Qing-Hua; Li, Hong-Guo; Liao, Qinghong; Liu, Jiang-Tao
2018-04-01
We experimentally investigate ghost imaging with bucket detection and point detection in which three types of illuminating sources are applied: (a) pseudo-thermal light source; (b) amplitude modulated true thermal light source; (c) amplitude modulated laser source. Experimental results show that the quality of ghost images reconstructed with true thermal light or laser beam is insensitive to the usage of bucket or point detector, however, the quality of ghost images reconstructed with pseudo-thermal light in bucket detector case is better than that in point detector case. Our theoretical analysis shows that the reason for this is due to the first order transverse coherence of the illuminating source.
FPGA Techniques Based New Hybrid Modulation Strategies for Voltage Source Inverters
Sudha, L. U.; Baskaran, J.; Elankurisil, S. A.
2015-01-01
This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results. PMID:25821852
Radio over fiber transceiver employing phase modulation of an optical broadband source.
Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José
2010-10-11
This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks.
Tao, Li; Daghighian, Henry M.; Levin, Craig S.
2016-01-01
Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5 × 10−6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source. PMID:27716640
Asadi, R; Ouyang, Z; Mohammd, M M
2015-07-14
We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.
Cost-effective bidirectional digitized radio-over-fiber systems employing sigma delta modulation
NASA Astrophysics Data System (ADS)
Lee, Kyung Woon; Jung, HyunDo; Park, Jung Ho
2016-11-01
We propose a cost effective digitized radio-over-fiber (D-RoF) system employing a sigma delta modulation (SDM) and a bidirectional transmission technique using phase modulated downlink and intensity modulated uplink. SDM is transparent to different radio access technologies and modulation formats, and more suitable for a downlink of wireless system because a digital to analog converter (DAC) can be avoided at the base station (BS). Also, Central station and BS share the same light source by using a phase modulation for the downlink and an intensity modulation for the uplink transmission. Avoiding DACs and light sources have advantages in terms of cost reduction, power consumption, and compatibility with conventional wireless network structure. We have designed a cost effective bidirectional D-RoF system using a low pass SDM and measured the downlink and uplink transmission performance in terms of error vector magnitude, signal spectra, and constellations, which are based on the 10MHz LTE 64-QAM standard.
Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing; Evans, Philip G.; Grice, Warren P.
In the Gaussian-modulated coherent-states (GMCS) quantum key distribution (QKD) protocol, Alice prepares quantum states actively: For each transmission, Alice generates a pair of Gaussian-distributed random numbers, encodes them on a weak coherent pulse using optical amplitude and phase modulators, and then transmits the Gaussian-modulated weak coherent pulse to Bob. Here we propose a passive state preparation scheme using a thermal source. In our scheme, Alice splits the output of a thermal source into two spatial modes using a beam splitter. She measures one mode locally using conjugate optical homodyne detectors, and transmits the other mode to Bob after applying appropriatemore » optical attenuation. Under normal conditions, Alice's measurement results are correlated to Bob's, and they can work out a secure key, as in the active state preparation scheme. Given the initial thermal state generated by the source is strong enough, this scheme can tolerate high detector noise at Alice's side. Furthermore, the output of the source does not need to be single mode, since an optical homodyne detector can selectively measure a single mode determined by the local oscillator. Preliminary experimental results suggest that the proposed scheme could be implemented using an off-the-shelf amplified spontaneous emission source.« less
Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution
Qi, Bing; Evans, Philip G.; Grice, Warren P.
2018-01-01
In the Gaussian-modulated coherent-states (GMCS) quantum key distribution (QKD) protocol, Alice prepares quantum states actively: For each transmission, Alice generates a pair of Gaussian-distributed random numbers, encodes them on a weak coherent pulse using optical amplitude and phase modulators, and then transmits the Gaussian-modulated weak coherent pulse to Bob. Here we propose a passive state preparation scheme using a thermal source. In our scheme, Alice splits the output of a thermal source into two spatial modes using a beam splitter. She measures one mode locally using conjugate optical homodyne detectors, and transmits the other mode to Bob after applying appropriatemore » optical attenuation. Under normal conditions, Alice's measurement results are correlated to Bob's, and they can work out a secure key, as in the active state preparation scheme. Given the initial thermal state generated by the source is strong enough, this scheme can tolerate high detector noise at Alice's side. Furthermore, the output of the source does not need to be single mode, since an optical homodyne detector can selectively measure a single mode determined by the local oscillator. Preliminary experimental results suggest that the proposed scheme could be implemented using an off-the-shelf amplified spontaneous emission source.« less
Open-Source Tools for Enhancing Full-Text Searching of OPACs: Use of Koha, Greenstone and Fedora
ERIC Educational Resources Information Center
Anuradha, K. T.; Sivakaminathan, R.; Kumar, P. Arun
2011-01-01
Purpose: There are many library automation packages available as open-source software, comprising two modules: staff-client module and online public access catalogue (OPAC). Although the OPAC of these library automation packages provides advanced features of searching and retrieval of bibliographic records, none of them facilitate full-text…
ISS Destiny Laboratory Smoke Detection Model
NASA Technical Reports Server (NTRS)
Brooker, John E.; Urban, David L.; Ruff, Gary A.
2007-01-01
Smoke transport and detection were modeled numerically in the ISS Destiny module using the NIST, Fire Dynamics Simulator code. The airflows in Destiny were modeled using the existing flow conditions and the module geometry included obstructions that simulate the currently installed hardware on orbit. The smoke source was modeled as a 0.152 by 0.152 m region that emitted smoke particulate ranging from 1.46 to 8.47 mg/s. In the module domain, the smoke source was placed in the center of each Destiny rack location and the model was run to determine the time required for the two smoke detectors to alarm. Overall the detection times were dominated by the circumferential flow, the axial flow from the intermodule ventilation and the smoke source strength.
Shielded Metal Arc Welding. Welding Module 4. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching an eight-unit module in shielded metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety; theory, power sources, and…
Algorithms for a very high speed universal noiseless coding module
NASA Technical Reports Server (NTRS)
Rice, Robert F.; Yeh, Pen-Shu
1991-01-01
The algorithmic definitions and performance characterizations are presented for a high performance adaptive coding module. Operation of at least one of these (single chip) implementations is expected to exceed 500 Mbits/s under laboratory conditions. Operation of a companion decoding module should operate at up to half the coder's rate. The module incorporates a powerful noiseless coder for Standard Form Data Sources (i.e., sources whose symbols can be represented by uncorrelated non-negative integers where the smaller integers are more likely than the larger ones). Performance close to data entropies can be expected over a Dynamic Range of from 1.5 to 12 to 14 bits/sample (depending on the implementation).
Verma, Chandrabhan; Quraishi, M. A.; Kluza, K.; Makowska-Janusik, M.; Olasunkanmi, Lukman O.; Ebenso, Eno E.
2017-01-01
D-glucose derivatives of dihydropyrido-[2,3-d:6,5-d′]-dipyrimidine-2, 4, 6, 8(1H,3H, 5H,7H)-tetraone (GPHs) have been synthesized and investigated as corrosion inhibitors for mild steel in 1M HCl solution using gravimetric, electrochemical, surface, quantum chemical calculations and Monte Carlo simulations methods. The order of inhibition efficiencies is GPH-3 > GPH-2 > GPH-1. The results further showed that the inhibitor molecules with electron releasing (-OH, -OCH3) substituents exhibit higher efficiency than the parent molecule without any substituents. Polarization study suggests that the studied compounds are mixed-type but exhibited predominantly cathodic inhibitive effect. The adsorption of these compounds on mild steel surface obeyed the Langmuir adsorption isotherm. SEM, EDX and AFM analyses were used to confirm the inhibitive actions of the molecules on mild steel surface. Quantum chemical (QC) calculations and Monte Carlo (MC) simulations studies were undertaken to further corroborate the experimental results. PMID:28317849
Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source.
Riek, Claudius; Kocher, Claudius; Zirak, Peyman; Kölbl, Christoph; Fimpel, Peter; Leitenstorfer, Alfred; Zumbusch, Andreas; Brida, Daniele
2016-08-15
A highly stable setup for stimulated Raman scattering (SRS) microscopy is presented. It is based on a two-branch femtosecond Er:fiber laser operating at a 40 MHz repetition rate. One of the outputs is directly modulated at the Nyquist frequency with an integrated electro-optic modulator (EOM). This compact source combines a jitter-free pulse synchronization with a broad tunability and allows for shot-noise limited SRS detection. The performance of the SRS microscope is illustrated with measurements on samples from material science and cell biology.
NASA Technical Reports Server (NTRS)
1974-01-01
Shuttle simulation software modules in the environment, crew station, vehicle configuration and vehicle dynamics categories are discussed. For each software module covered, a description of the module functions and operational modes, its interfaces with other modules, its stored data, inputs, performance parameters and critical performance parameters is given. Reference data sources which provide standards of performance are identified for each module. Performance verification methods are also discussed briefly.
Optically coupled methods for microwave impedance microscopy
NASA Astrophysics Data System (ADS)
Johnston, Scott R.; Ma, Eric Yue; Shen, Zhi-Xun
2018-04-01
Scanning Microwave Impedance Microscopy (MIM) measurement of photoconductivity with 50 nm resolution is demonstrated using a modulated optical source. The use of a modulated source allows for the measurement of photoconductivity in a single scan without a reference region on the sample, as well as removing most topographical artifacts and enhancing signal to noise as compared with unmodulated measurement. A broadband light source with a tunable monochrometer is then used to measure energy resolved photoconductivity with the same methodology. Finally, a pulsed optical source is used to measure local photo-carrier lifetimes via MIM, using the same 50 nm resolution tip.
Spatial Light Modulators as Optical Crossbar Switches
NASA Technical Reports Server (NTRS)
Juday, Richard
2003-01-01
A proposed method of implementing cross connections in an optical communication network is based on the use of a spatial light modulator (SLM) to form controlled diffraction patterns that connect inputs (light sources) and outputs (light sinks). Sources would typically include optical fibers and/or light-emitting diodes; sinks would typically include optical fibers and/or photodetectors. The sources and/or sinks could be distributed in two dimensions; that is, on planes. Alternatively or in addition, sources and/or sinks could be distributed in three dimensions -- for example, on curved surfaces or in more complex (including random) three-dimensional patterns.
Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra
Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.
2014-01-01
Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813
Study of run time errors of the ATLAS pixel detector in the 2012 data taking period
NASA Astrophysics Data System (ADS)
Gandrajula, Reddy Pratap
The high resolution silicon Pixel detector is critical in event vertex reconstruction and in particle track reconstruction in the ATLAS detector. During the pixel data taking operation, some modules (Silicon Pixel sensor +Front End Chip+ Module Control Chip (MCC)) go to an auto-disable state, where the Modules don't send the data for storage. Modules become operational again after reconfiguration. The source of the problem is not fully understood. One possible source of the problem is traced to the occurrence of single event upset (SEU) in the MCC. Such a module goes to either a Timeout or Busy state. This report is the study of different types and rates of errors occurring in the Pixel data taking operation. Also, the study includes the error rate dependency on Pixel detector geometry.
Application of a water quality model in the White Cart water catchment, Glasgow, UK.
Liu, S; Tucker, P; Mansell, M; Hursthouse, A
2003-03-01
Water quality models of urban systems have previously focused on point source (sewerage system) inputs. Little attention has been given to diffuse inputs and research into diffuse pollution has been largely confined to agriculture sources. This paper reports on new research that is aimed at integrating diffuse inputs into an urban water quality model. An integrated model is introduced that is made up of four modules: hydrology, contaminant point sources, nutrient cycling and leaching. The hydrology module, T&T consists of a TOPMODEL (a TOPography-based hydrological MODEL), which simulates runoff from pervious areas and a two-tank model, which simulates runoff from impervious urban areas. Linked into the two-tank model, the contaminant point source module simulates the overflow from the sewerage system in heavy rain. The widely known SOILN (SOIL Nitrate model) is the basis of nitrogen cycle module. Finally, the leaching module consists of two functions: the production function and the transfer function. The production function is based on SLIM (Solute Leaching Intermediate Model) while the transfer function is based on the 'flushing hypothesis' which postulates a relationship between contaminant concentrations in the receiving water course and the extent to which the catchment is saturated. This paper outlines the modelling methodology and the model structures that have been developed. An application of this model in the White Cart catchment (Glasgow) is also included.
Reduced order modelling in searches for continuous gravitational waves - I. Barycentring time delays
NASA Astrophysics Data System (ADS)
Pitkin, M.; Doolan, S.; McMenamin, L.; Wette, K.
2018-06-01
The frequencies and phases of emission from extra-solar sources measured by Earth-bound observers are modulated by the motions of the observer with respect to the source, and through relativistic effects. These modulations depend critically on the source's sky-location. Precise knowledge of the modulations are required to coherently track the source's phase over long observations, for example, in pulsar timing, or searches for continuous gravitational waves. The modulations can be modelled as sky-location and time-dependent time delays that convert arrival times at the observer to the inertial frame of the source, which can often be the Solar system barycentre. We study the use of reduced order modelling for speeding up the calculation of this time delay for any sky-location. We find that the time delay model can be decomposed into just four basis vectors, and with these the delay for any sky-location can be reconstructed to sub-nanosecond accuracy. When compared to standard routines for time delay calculation in gravitational wave searches, using the reduced basis can lead to speed-ups of 30 times. We have also studied components of time delays for sources in binary systems. Assuming eccentricities <0.25, we can reconstruct the delays to within 100 s of nanoseconds, with best case speed-ups of a factor of 10, or factors of two when interpolating the basis for different orbital periods or time stamps. In long-duration phase-coherent searches for sources with sky-position uncertainties, or binary parameter uncertainties, these speed-ups could allow enhancements in their scopes without large additional computational burdens.
Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Macroeconomic Activity Module - NEMS Documentation
2016-01-01
Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2016 (AEO2016). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code
NASA Astrophysics Data System (ADS)
Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao
2018-03-01
Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.
NASA Astrophysics Data System (ADS)
Hofierka, Jaroslav; Lacko, Michal; Zubal, Stanislav
2017-10-01
In this paper, we describe the parallelization of three complex and computationally intensive modules of GRASS GIS using the OpenMP application programming interface for multi-core computers. These include the v.surf.rst module for spatial interpolation, the r.sun module for solar radiation modeling and the r.sim.water module for water flow simulation. We briefly describe the functionality of the modules and parallelization approaches used in the modules. Our approach includes the analysis of the module's functionality, identification of source code segments suitable for parallelization and proper application of OpenMP parallelization code to create efficient threads processing the subtasks. We document the efficiency of the solutions using the airborne laser scanning data representing land surface in the test area and derived high-resolution digital terrain model grids. We discuss the performance speed-up and parallelization efficiency depending on the number of processor threads. The study showed a substantial increase in computation speeds on a standard multi-core computer while maintaining the accuracy of results in comparison to the output from original modules. The presented parallelization approach showed the simplicity and efficiency of the parallelization of open-source GRASS GIS modules using OpenMP, leading to an increased performance of this geospatial software on standard multi-core computers.
International Energy Module - NEMS Documentation
2014-01-01
Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.
Image matrix processor for fast multi-dimensional computations
Roberson, George P.; Skeate, Michael F.
1996-01-01
An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.
Nature's Energy, Module B. Fourth Grade. Pilot Form.
ERIC Educational Resources Information Center
Pasco County Schools, Dade City, FL.
This booklet is one of a set of learning modules on energy for use by students and teachers in the fourth grade. This module examines man's use of fossil fuels, electricity production, and other energy sources. Included are laboratory activities and values exercises. (BT)
Method and apparatus for assessing material properties of sheet-like materials
Telschow, Kenneth L.; Deason, Vance A.
2002-01-01
Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.
Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian; Robertson, Amy; Jonkman, Jason
2016-08-01
The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less
Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian F.; Andersen, Morten T.; Robertson, Amy N.
2016-07-01
The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less
Modulation of voice related to tremor and vibrato
NASA Astrophysics Data System (ADS)
Lester, Rosemary Anne
Modulation of voice is a result of physiologic oscillation within one or more components of the vocal system including the breathing apparatus (i.e., pressure supply), the larynx (i.e. sound source), and the vocal tract (i.e., sound filter). These oscillations may be caused by pathological tremor associated with neurological disorders like essential tremor or by volitional production of vibrato in singers. Because the acoustical characteristics of voice modulation specific to each component of the vocal system and the effect of these characteristics on perception are not well-understood, it is difficult to assess individuals with vocal tremor and to determine the most effective interventions for reducing the perceptual severity of the disorder. The purpose of the present studies was to determine how the acoustical characteristics associated with laryngeal-based vocal tremor affect the perception of the magnitude of voice modulation, and to determine if adjustments could be made to the voice source and vocal tract filter to alter the acoustic output and reduce the perception of modulation. This research was carried out using both a computational model of speech production and trained singers producing vibrato to simulate laryngeal-based vocal tremor with different voice source characteristics (i.e., vocal fold length and degree of vocal fold adduction) and different vocal tract filter characteristics (i.e., vowel shapes). It was expected that, by making adjustments to the voice source and vocal tract filter that reduce the amplitude of the higher harmonics, the perception of magnitude of voice modulation would be reduced. The results of this study revealed that listeners' perception of the magnitude of modulation of voice was affected by the degree of vocal fold adduction and the vocal tract shape with the computational model, but only by the vocal quality (corresponding to the degree of vocal fold adduction) with the female singer. Based on regression analyses, listeners' judgments were predicted by modulation information in both low and high frequency bands. The findings from these studies indicate that production of a breathy vocal quality might be a useful compensatory strategy for reducing the perceptual severity of modulation of voice for individuals with tremor affecting the larynx.
NASA Astrophysics Data System (ADS)
Lindsay, I. D.; Groß, P.; Lee, C. J.; Adhimoolam, B.; Boller, K.-J.
2006-12-01
We describe the implementation of the wavelength- and frequency-modulation spectroscopy techniques using a singly-resonant optical parametric oscillator (OPO) pumped by a fiber-amplified diode laser. Frequency modulation of the diode laser was transferred to the OPO’s mid-infrared idler output, avoiding the need for external modulation devices. This approach thus provides a means of implementing these important techniques with powerful, widely tunable, mid-infrared sources while retaining the simple, flexible modulation properties of diode lasers.
Scannerless laser range imaging using loss modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandusky, John V
2011-08-09
A scannerless 3-D imaging apparatus is disclosed which utilizes an amplitude modulated cw light source to illuminate a field of view containing a target of interest. Backscattered light from the target is passed through one or more loss modulators which are modulated at the same frequency as the light source, but with a phase delay .delta. which can be fixed or variable. The backscattered light is demodulated by the loss modulator and detected with a CCD, CMOS or focal plane array (FPA) detector to construct a 3-D image of the target. The scannerless 3-D imaging apparatus, which can operate inmore » the eye-safe wavelength region 1.4-1.7 .mu.m and which can be constructed as a flash LADAR, has applications for vehicle collision avoidance, autonomous rendezvous and docking, robotic vision, industrial inspection and measurement, 3-D cameras, and facial recognition.« less
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.
2009-03-01
In practice, dynamic behavior of fiber-optic ring resonator (FORR) appears as a detrimental factor to influence the transmission response of the FORR. This paper presents dynamic response analysis of the FORR by considering phase modulation of the FORR loop and sinewave modulation of input signal applied to the FORR from a laser diode. The analysis investigates the influences of modulation frequency and amplitude modulation index of laser diode, loop delay time of the FORR, phase angle between FM and AM response of laser diode, and laser diode line-width on dynamic response of the FORR. The analysis shows that the transient response of the FORR strongly depends on the product of modulation frequency and loop delay time, coupling and transmission coefficients of the FORR. The analyses presented here may have applications in optical systems employing an FORR with a laser diode source.
Apparatus and Method for Generating Thrust Using a Two Dimensional, Asymmetrical Capacitor Module
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2001-01-01
A capacitor module system is provided for creating a thrust force. The system includes a capacitor module provided with a first conductive element having a cylindrical geometry. The first conductive element can be a hollow cylinder or a solid cylinder. The capacitor module also includes a second conductive element axially spaced from the first conductive element and of smaller axial extent. The second conductive element can be a flat disk, a dome, or a conductive tip at the end of a dielectric rod. A dielectric element is disposed between the first conductive element and the second conductive element. The system also includes a high voltage source having first and second terminals connected respectively to the first and second conductive elements. The high voltage source applies a high voltage to the conductive elements of sufficient value to create a thrust force on the module inducing movement thereof.
Scannerless laser range imaging using loss modulation
Sandusky, John V [Albuquerque, NM
2011-08-09
A scannerless 3-D imaging apparatus is disclosed which utilizes an amplitude modulated cw light source to illuminate a field of view containing a target of interest. Backscattered light from the target is passed through one or more loss modulators which are modulated at the same frequency as the light source, but with a phase delay .delta. which can be fixed or variable. The backscattered light is demodulated by the loss modulator and detected with a CCD, CMOS or focal plane array (FPA) detector to construct a 3-D image of the target. The scannerless 3-D imaging apparatus, which can operate in the eye-safe wavelength region 1.4-1.7 .mu.m and which can be constructed as a flash LADAR, has applications for vehicle collision avoidance, autonomous rendezvous and docking, robotic vision, industrial inspection and measurement, 3-D cameras, and facial recognition.
Apparatus and method for compensating for clock drift in downhole drilling components
Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Hall, Jr., H. Tracy
2007-08-07
A precise downhole clock that compensates for drift includes a prescaler configured to receive electrical pulses from an oscillator. The prescaler is configured to output a series of clock pulses. The prescaler outputs each clock pulse after counting a preloaded number of electrical pulses from the oscillator. The prescaler is operably connected to a compensator module for adjusting the number loaded into the prescaler. By adjusting the number that is loaded into the prescaler, the timing may be advanced or retarded to more accurately synchronize the clock pulses with a reference time source. The compensator module is controlled by a counter-based trigger module configured to trigger the compensator module to load a value into the prescaler. Finally, a time-base logic module is configured to calculate the drift of the downhole clock by comparing the time of the downhole clock with a reference time source.
NASA Technical Reports Server (NTRS)
Brand, J.
1972-01-01
The fabrication, test, and delivery of an optical modulator system which will operate with a mode-locked Nd:YAG laser indicating at either 1.06 or 0.53 micrometers is discussed. The delivered hardware operates at data rates up to 400 Mbps and includes a 0.53 micrometer electrooptic modulator, a 1.06 micrometer electrooptic modulator with power supply and signal processing electronics with power supply. The modulators contain solid state drivers which accept digital signals with MECL logic levels, temperature controllers to maintain a stable thermal environment for the modulator crystals, and automatic electronic compensation to maximize the extinction ratio. The modulators use two lithium tantalate crystals cascaded in a double pass configuration. The signal processing electronics include encoding electronics which are capable of digitizing analog signals between the limit of + or - 0.75 volts at a maximum rate of 80 megasamples per second with 5 bit resolution. The digital samples are serialized and made available as a 400 Mbps serial NRZ data source for the modulators. A pseudorandom (PN) generator is also included in the signal processing electronics. This data source generates PN sequences with lengths between 31 bits and 32,767 bits in a serial NRZ format at rates up to 400 Mbps.
Modular approach to achieving the next-generation X-ray light source
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Milton, S. V.; Freund, H. P.
2001-12-01
A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.
Optical sensors and multiplexing for aircraft engine control
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul
1993-02-01
Time division multiplexing of spectral modulation fiber optic sensors for aircraft engine control is presented. The paper addresses the architectural properties, the accuracy, the benefits and problems of different type of sources, the spectral stability and update times using these sources, the size, weight, and power issues, and finally the technology needs regarding FADEC mountability. The fiber optic sensors include temperature, pressure, and position spectral modulation sensors.
Self-Sustained Ultrafast Pulsation in Coupled VCSELs
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng
2001-01-01
High frequency, narrow-band self-pulsating operation is demonstrated in two coupled vertical-cavity surface-emitting lasers (VCSELs). The coupled VCSELs provide an ideal source for high-repetition rate (over 40 GHz), sinusoidal-like modulated laser source with Gaussian-like near- and far-field profiles. We also show that the frequency of the modulation can be tuned by the inter-VCSEL separation or by DC-bias level.
Solid rocket motor fire tests: Phases 1 and 2
NASA Astrophysics Data System (ADS)
Chang, Yale; Hunter, Lawrence W.; Han, David K.; Thomas, Michael E.; Cain, Russell P.; Lennon, Andrew M.
2002-01-01
JHU/APL conducted a series of open-air burns of small blocks (3 to 10 kg) of solid rocket motor (SRM) propellant at the Thiokol Elkton MD facility to elucidate the thermal environment under burning propellant. The propellant was TP-H-3340A for the STAR 48 motor, with a weight ratio of 71/18/11 for the ammonium perchlorate, aluminum, and HTPB binder. Combustion inhibitor applied on the blocks allowed burning on the bottom and/or sides only. Burns were conducted on sand and concrete to simulate near-launch pad surfaces, and on graphite to simulate a low-recession surface. Unique test fixturing allowed propellant self-levitation while constraining lateral motion. Optics instrumentation consisted of a longwave infrared imaging pyrometer, a midwave spectroradiometer, and a UV/visible spectroradiometer. In-situ instrumentation consisted of rod calorimeters, Gardon gauges, elevated thermocouples, flush thermocouples, a two-color pyrometer, and Knudsen cells. Witness materials consisted of yttria, ceria, alumina, tungsten, iridium, and platinum/rhodium. Objectives of the tests were to determine propellant burn characteristics such as burn rate and self-levitation, to determine heat fluxes and temperatures, and to carry out materials analyses. A summary of qualitative results: alumina coated almost all surfaces, the concrete spalled, sand moisture content matters, the propellant self-levitated, the test fixtures worked as designed, and bottom-burning propellant does not self-extinguish. A summary of quantitative results: burn rate averaged 1.15 mm/s, thermocouples peaked at 2070 C, pyrometer readings matched MWIR data at about 2400 C, the volume-averaged plume temperatures were 2300-2400 C with peaks of 2400-2600 C, and the heat fluxes peaked at 125 W/cm2. These results are higher than other researchers' measurements of top-burning propellant in chimneys, and will be used, along with Phase 3 test results, to analyze hardware response to these environments, including General Purpose Heat Sources (GPHS) and Radioisotope Heater Units (RHU). Follow-on Phase 3 tests burning propellant blocks up to 90 kg will be briefly described. .
Power System for Venus Surface Exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Mellott, Kenneth
2002-01-01
A radioisotope power and cooling system is designed to provide electrical power for a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep electronic components at a temperature below ambient. The fundamental cooling parameters are the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density (90 bar CO2) atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus, with a small contribution of heat generation from electronics and sensors. Both thermoelectric (RTG) and dynamic power conversion systems were analyzed, based on use of a standard isotope (General-purpose heat source, or GPHS) brick. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500-watt power class, laboratory-tested Stirling engines. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg. Additional information is included in the original extended abstract.
Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications
NASA Astrophysics Data System (ADS)
Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.
2009-03-01
X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.
Optical pattern recognition architecture implementing the mean-square error correlation algorithm
Molley, Perry A.
1991-01-01
An optical architecture implementing the mean-square error correlation algorithm, MSE=.SIGMA.[I-R].sup.2 for discriminating the presence of a reference image R in an input image scene I by computing the mean-square-error between a time-varying reference image signal s.sub.1 (t) and a time-varying input image signal s.sub.2 (t) includes a laser diode light source which is temporally modulated by a double-sideband suppressed-carrier source modulation signal I.sub.1 (t) having the form I.sub.1 (t)=A.sub.1 [1+.sqroot.2m.sub.1 s.sub.1 (t)cos (2.pi.f.sub.o t)] and the modulated light output from the laser diode source is diffracted by an acousto-optic deflector. The resultant intensity of the +1 diffracted order from the acousto-optic device is given by: I.sub.2 (t)=A.sub.2 [+2m.sub.2.sup.2 s.sub.2.sup.2 (t)-2.sqroot.2m.sub.2 (t) cos (2.pi.f.sub.o t] The time integration of the two signals I.sub.1 (t) and I.sub.2 (t) on the CCD deflector plane produces the result R(.tau.) of the mean-square error having the form: R(.tau.)=A.sub.1 A.sub.2 {[T]+[2m.sub.2.sup.2.multidot..intg.s.sub.2.sup.2 (t-.tau.)dt]-[2m.sub.1 m.sub.2 cos (2.tau.f.sub.o .tau.).multidot..intg.s.sub.1 (t)s.sub.2 (t-.tau.)dt]} where: s.sub.1 (t) is the signal input to the diode modulation source: s.sub.2 (t) is the signal input to the AOD modulation source; A.sub.1 is the light intensity; A.sub.2 is the diffraction efficiency; m.sub.1 and m.sub.2 are constants that determine the signal-to-bias ratio; f.sub.o is the frequency offset between the oscillator at f.sub.c and the modulation at f.sub.c +f.sub.o ; and a.sub.o and a.sub.1 are constant chosen to bias the diode source and the acousto-optic deflector into their respective linear operating regions so that the diode source exhibits a linear intensity characteristic and the AOD exhibits a linear amplitude characteristic.
The impact of odor–reward memory on chemotaxis in larval Drosophila
Schleyer, Michael; Reid, Samuel F.; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander
2015-01-01
How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor “valence” (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior. PMID:25887280
Multisource inverse-geometry CT. Part II. X-ray source design and prototype
Neculaes, V. Bogdan; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun; Pelc, Norbert J.; Lounsberry, Brian
2016-01-01
Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations. PMID:27487878
Multisource inverse-geometry CT. Part II. X-ray source design and prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caia
2016-08-15
Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode blockmore » per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations.« less
Montcalm, Claude [Livermore, CA; Folta, James Allen [Livermore, CA; Tan, Swie-In [San Jose, CA; Reiss, Ira [New City, NY
2002-07-30
A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.
Gaussian temporal modulation for the behavior of multi-sinc Schell-model pulses in dispersive media
NASA Astrophysics Data System (ADS)
Liu, Xiayin; Zhao, Daomu; Tian, Kehan; Pan, Weiqing; Zhang, Kouwen
2018-06-01
A new class of pulse source with correlation being modeled by the convolution operation of two legitimate temporal correlation function is proposed. Particularly, analytical formulas for the Gaussian temporally modulated multi-sinc Schell-model (MSSM) pulses generated by such pulse source propagating in dispersive media are derived. It is demonstrated that the average intensity of MSSM pulses on propagation are reshaped from flat profile or a train to a distribution with a Gaussian temporal envelope by adjusting the initial correlation width of the Gaussian pulse. The effects of the Gaussian temporal modulation on the temporal degree of coherence of the MSSM pulse are also analyzed. The results presented here show the potential of coherence modulation for pulse shaping and pulsed laser material processing.
Active optimal control strategies for increasing the efficiency of photovoltaic cells
NASA Astrophysics Data System (ADS)
Aljoaba, Sharif Zidan Ahmad
Energy consumption has increased drastically during the last century. Currently, the worldwide energy consumption is about 17.4 TW and is predicted to reach 25 TW by 2035. Solar energy has emerged as one of the potential renewable energy sources. Since its first physical recognition in 1887 by Adams and Day till nowadays, research in solar energy is continuously developing. This has lead to many achievements and milestones that introduced it as one of the most reliable and sustainable energy sources. Recently, the International Energy Agency declared that solar energy is predicted to be one of the major electricity production energy sources by 2035. Enhancing the efficiency and lifecycle of photovoltaic (PV) modules leads to significant cost reduction. Reducing the temperature of the PV module improves its efficiency and enhances its lifecycle. To better understand the PV module performance, it is important to study the interaction between the output power and the temperature. A model that is capable of predicting the PV module temperature and its effects on the output power considering the individual contribution of the solar spectrum wavelengths significantly advances the PV module edsigns toward higher efficiency. In this work, a thermoelectrical model is developed to predict the effects of the solar spectrum wavelengths on the PV module performance. The model is characterized and validated under real meteorological conditions where experimental temperature and output power of the PV module measurements are shown to agree with the predicted results. The model is used to validate the concept of active optical filtering. Since this model is wavelength-based, it is used to design an active optical filter for PV applications. Applying this filter to the PV module is expected to increase the output power of the module by filtering the spectrum wavelengths. The active filter performance is optimized, where different cutoff wavelengths are used to maximize the module output power. It is predicted that if the optimized active optical filter is applied to the PV module, the module efficiency is predicted to increase by about 1%. Different technologies are considered for physical implementation of the active optical filter.
Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light
Jarrett, Christopher W.; Caskey, Charles F.; Gore, John C.
2014-01-01
A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the interpretation of other hybrid imaging methods. PMID:25105880
Light distribution modulated diffuse reflectance spectroscopy.
Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao
2016-06-01
Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.
Light distribution modulated diffuse reflectance spectroscopy
Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao
2016-01-01
Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931
High-Speed Operation of Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.
2010-01-01
Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links
NASA Astrophysics Data System (ADS)
Lei, Xiaohui; Wang, Yuhui; Liao, Weihong; Jiang, Yunzhong; Tian, Yu; Wang, Hao
2011-09-01
Many regions are still threatened with frequent floods and water resource shortage problems in China. Consequently, the task of reproducing and predicting the hydrological process in watersheds is hard and unavoidable for reducing the risks of damage and loss. Thus, it is necessary to develop an efficient and cost-effective hydrological tool in China as many areas should be modeled. Currently, developed hydrological tools such as Mike SHE and ArcSWAT (soil and water assessment tool based on ArcGIS) show significant power in improving the precision of hydrological modeling in China by considering spatial variability both in land cover and in soil type. However, adopting developed commercial tools in such a large developing country comes at a high cost. Commercial modeling tools usually contain large numbers of formulas, complicated data formats, and many preprocessing or postprocessing steps that may make it difficult for the user to carry out simulation, thus lowering the efficiency of the modeling process. Besides, commercial hydrological models usually cannot be modified or improved to be suitable for some special hydrological conditions in China. Some other hydrological models are open source, but integrated into commercial GIS systems. Therefore, by integrating hydrological simulation code EasyDHM, a hydrological simulation tool named MWEasyDHM was developed based on open-source MapWindow GIS, the purpose of which is to establish the first open-source GIS-based distributed hydrological model tool in China by integrating modules of preprocessing, model computation, parameter estimation, result display, and analysis. MWEasyDHM provides users with a friendly manipulating MapWindow GIS interface, selectable multifunctional hydrological processing modules, and, more importantly, an efficient and cost-effective hydrological simulation tool. The general construction of MWEasyDHM consists of four major parts: (1) a general GIS module for hydrological analysis, (2) a preprocessing module for modeling inputs, (3) a model calibration module, and (4) a postprocessing module. The general GIS module for hydrological analysis is developed on the basis of totally open-source GIS software, MapWindow, which contains basic GIS functions. The preprocessing module is made up of three submodules including a DEM-based submodule for hydrological analysis, a submodule for default parameter calculation, and a submodule for the spatial interpolation of meteorological data. The calibration module contains parallel computation, real-time computation, and visualization. The postprocessing module includes model calibration and model results spatial visualization using tabular form and spatial grids. MWEasyDHM makes it possible for efficient modeling and calibration of EasyDHM, and promises further development of cost-effective applications in various watersheds.
Experimental study of boron-coated straws with a neutron source
NASA Astrophysics Data System (ADS)
Xie, Zhaoyang; Zhou, Jianrong; Song, Yushou; Lacy, Jeffrey L.; Sun, Liang; Sun, Zhijia; Hu, Bitao; Chen, Yuanbo
2018-04-01
Multiple types of high quality neutron detectors are proposed for the first phase of the China Spallation Neutron Source (CSNS), which will be commissioned in 2018. Considering the shortage of 3He supply, a detector module composed of 49 boron-coated straws (BCS) was developed by Proportional Technologies Inc. (PTI). Each straw has a length of 1000 mm and a diameter of 7.5 mm. Seven straws are tightly packed in a tube, and seven tubes are organized in a row to form a detector module. The charge division method is used for longitudinal positioning. A specific readout system was utilized to output the signal and simultaneously encode each straw. The performance of this detector module was studied using a moderated 252Cf source at the Institute of High Energy Physics (IHEP). The signal amplitude spectrum indicates its n-gamma discrimination capability. Despite the complex readout method, a longitudinal resolution of FWHM=6.1 ± 0.5 mm was obtained. The three-dimensional positioning ability qualifies this BCS detector module as a promising detector for small angle neutron scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, David E.
The JEMA modulator was originally developed for the European Spallation Source (ESS) when Spain was under consideration as a location for the ESS facility. Discussions ensued and the Spallation Neutron Source Research Accelerator Division agreed to form a collaboration with ESS-Bilbao (ESS-B) consortium to provide services for specifying the requirements for a version of the modulator capable of operating twelve 550 kW klystrons, monitoring the technical progress on the contract with JEMA, installing and commissioning the modulator at SNS, and performing a 30 day full power test. This work was recently completed, and this report discusses those activities with primarymore » emphasis on the installation and testing activities.« less
CADDIS Volume 2. Sources, Stressors and Responses: Herbicides
Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Insecticides
Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Sediments
Introduction to the Sediments module, when to list Sediments as a candidate cause, ways to measure Sediments, simple and detailed conceptual diagrams for Sediments, Sediments module references and literature reviews.
Industrial Demand Module - NEMS Documentation
2014-01-01
Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.
CADDIS Volume 2. Sources, Stressors and Responses: Metals
Introduction to the metals module, when to list metals as a candidate cause, ways to measure metals, simple and detailed conceptual diagrams for metals, metals module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Temperature
Introduction to the temperature module, when to list temperature as a candidate cause, ways to measure temperature, simple and detailed conceptual diagrams for temperature, temperature module references and literature reviews.
Image matrix processor for fast multi-dimensional computations
Roberson, G.P.; Skeate, M.F.
1996-10-15
An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.
Mirage effect from thermally modulated transparent carbon nanotube sheets.
Aliev, Ali E; Gartstein, Yuri N; Baughman, Ray H
2011-10-28
The single-beam mirage effect, also known as photothermal deflection, is studied using a free-standing, highly aligned carbon nanotube aerogel sheet as the heat source. The extremely low thermal capacitance and high heat transfer ability of these transparent forest-drawn carbon nanotube sheets enables high frequency modulation of sheet temperature over an enormous temperature range, thereby providing a sharp, rapidly changing gradient of refractive index in the surrounding liquid or gas. The advantages of temperature modulation using carbon nanotube sheets are multiple: in inert gases the temperature can reach > 2500 K; the obtained frequency range for photothermal modulation is ~100 kHz in gases and over 100 Hz in high refractive index liquids; and the heat source is transparent for optical and acoustical waves. Unlike for conventional heat sources for photothermal deflection, the intensity and phase of the thermally modulated beam component linearly depends upon the beam-to-sheet separation over a wide range of distances. This aspect enables convenient measurements of accurate values for thermal diffusivity and the temperature dependence of refractive index for both liquids and gases. The remarkable performance of nanotube sheets suggests possible applications as photo-deflectors and for switchable invisibility cloaks, and provides useful insights into their use as thermoacoustic projectors and sonar. Visibility cloaking is demonstrated in a liquid.
Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N
2009-06-08
1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.
The HEAO-A Scanning Modulation Collimator instrument
NASA Technical Reports Server (NTRS)
Roy, A.; Ballas, J.; Jagoda, N.; Mckinnon, P.; Ramsey, A.; Wester, E.
1977-01-01
The Scanning Modulation Collimator X-ray instrument for the HEAO-A satellite was designed to measure celestial radiation in the range between 1 and 15 KeV and to resolve, and correlate, the position of X-ray sources with visible light sources on the celestial sphere to within 5 arc seconds. The positional accuracy is made possible by mechanical collimation of the X-ray sources viewed by the instrument. High sensitivity is provided from two systems each containing four gas filled proportional counters followed by preamplification, signal summing, pulse height analysis, pulse shape discrimination, X-ray event accumulators and telemetry processing electronics.
Method and apparatus for detecting internal structures of bulk objects using acoustic imaging
Deason, Vance A.; Telschow, Kenneth L.
2002-01-01
Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.
Characterization of modulated time-of-flight range image sensors
NASA Astrophysics Data System (ADS)
Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.
2009-01-01
A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10-100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements.
Kansas Food Service Employee. Short Courses.
ERIC Educational Resources Information Center
Kansas State Dept. of Education, Topeka. Div. of Vocational Education.
This is a series of five modules, each of which consists of six 3-hour classes in food preparation for nonmanagement personnel from institutional food services. Topics of the modules are breads and breakfasts, meats, vegetables and salads, extended meats and meat alternatives as sources of protein, and desserts. Included in each module are…
ERIC Educational Resources Information Center
Donovan, Edward P.
The major objective of this module is to help students understand how water from a source such as a lake is treated to make it fit to drink. The module, consisting of five major activities and a test, is patterned after Individualized Science Instructional System (ISIS) modules. The first activity (Planning) consists of a brief introduction and a…
General Conformity Training Modules: Appendix A Sample Emissions Calculations
Appendix A of the training modules gives example calculations for external and internal combustion sources, construction, fuel storage and transfer, on-road vehicles, aircraft operations, storage piles, and paved roads.
Chang, Ho; Yu, Zhi-Rong
2012-08-01
This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.
pyam: Python Implementation of YaM
NASA Technical Reports Server (NTRS)
Myint, Steven; Jain, Abhinandan
2012-01-01
pyam is a software development framework with tools for facilitating the rapid development of software in a concurrent software development environment. pyam provides solutions for development challenges associated with software reuse, managing multiple software configurations, developing software product lines, and multiple platform development and build management. pyam uses release-early, release-often development cycles to allow developers to integrate their changes incrementally into the system on a continual basis. It facilitates the creation and merging of branches to support the isolated development of immature software to avoid impacting the stability of the development effort. It uses modules and packages to organize and share software across multiple software products, and uses the concepts of link and work modules to reduce sandbox setup times even when the code-base is large. One sidebenefit is the enforcement of a strong module-level encapsulation of a module s functionality and interface. This increases design transparency, system stability, and software reuse. pyam is written in Python and is organized as a set of utilities on top of the open source SVN software version control package. All development software is organized into a collection of modules. pyam packages are defined as sub-collections of the available modules. Developers can set up private sandboxes for module/package development. All module/package development takes place on private SVN branches. High-level pyam commands support the setup, update, and release of modules and packages. Released and pre-built versions of modules are available to developers. Developers can tailor the source/link module mix for their sandboxes so that new sandboxes (even large ones) can be built up easily and quickly by pointing to pre-existing module releases. All inter-module interfaces are publicly exported via links. A minimal, but uniform, convention is used for building modules.
Bell, Raoul; Buchner, Axel; Musch, Jochen
2010-12-01
A popular assumption in evolutionary psychology is that the human mind comprises specialized cognitive modules for social exchange, including a module that serves to enhance memory for faces of cheaters. In the present study, participants played a trust game with computerized opponents, who either defected or cooperated. In a control condition, no interaction took place. In a surprise memory test, old-new recognition for faces and source memory for the associated cooperative or non-cooperative behavior were assessed. A multinomial model was used to measure old-new discrimination, source memory, and guessing biases separately. Inconsistent with the assumption of a memory mechanism that focuses exclusively on cheating, the present study showed enhanced old-new discrimination and source memory for both cooperators and defectors. Rarity of the behavior strategies within the experiment modulated source memory, but only when the differences in base rates were extreme. The findings can be attributed to a mechanism that focuses on exchange-relevant information and flexibly adapts to take into account the relative significance of this information in the encoding context, which may be more beneficial than focusing exclusively on cheaters. Copyright © 2010 Elsevier B.V. All rights reserved.
Scatter correction for x-ray conebeam CT using one-dimensional primary modulation
NASA Astrophysics Data System (ADS)
Zhu, Lei; Gao, Hewei; Bennett, N. Robert; Xing, Lei; Fahrig, Rebecca
2009-02-01
Recently, we developed an efficient scatter correction method for x-ray imaging using primary modulation. A two-dimensional (2D) primary modulator with spatially variant attenuating materials is inserted between the x-ray source and the object to separate primary and scatter signals in the Fourier domain. Due to the high modulation frequency in both directions, the 2D primary modulator has a strong scatter correction capability for objects with arbitrary geometries. However, signal processing on the modulated projection data requires knowledge of the modulator position and attenuation. In practical systems, mainly due to system gantry vibration, beam hardening effects and the ramp-filtering in the reconstruction, the insertion of the 2D primary modulator results in artifacts such as rings in the CT images, if no post-processing is applied. In this work, we eliminate the source of artifacts in the primary modulation method by using a one-dimensional (1D) modulator. The modulator is aligned parallel to the ramp-filtering direction to avoid error magnification, while sufficient primary modulation is still achieved for scatter correction on a quasicylindrical object, such as a human body. The scatter correction algorithm is also greatly simplified for the convenience and stability in practical implementations. The method is evaluated on a clinical CBCT system using the Catphan© 600 phantom. The result shows effective scatter suppression without introducing additional artifacts. In the selected regions of interest, the reconstruction error is reduced from 187.2HU to 10.0HU if the proposed method is used.
2015-06-21
problem was detected . Protection elements were implemented to trigger on over- voltage , over-current, over/under-frequency, and zero-sequence voltage ...power hardware in the loop simulation of distribution networks with photovoltaic generation,” International Journal of Renewable Energy Research...source modules were intended to support both emulation of a representative gas turbine generator set, as well as a flexible, controllable voltage source
NASA Astrophysics Data System (ADS)
Santoru, Joseph; Schumacher, Robert W.; Gregoire, Daniel J.
1994-11-01
The plasma-anode electron gun (PAG) is an electron source in which the thermionic cathode is replaced with a cold, secondary-electron-emitting electrode. Electron emission is stimulated by bombarding the cathode with high-energy ions. Ions are injected into the high-voltage gap through a gridded structure from a plasma source (gas pressure less than or equal to 50 mTorr) that is embedded in the anode electrode. The gridded structure serves as both a cathode for the plasma discharge and as an anode for the PAG. The beam current is modulated at near ground potential by modulating the plasma source, eliminating the need for a high-voltage modulator system. During laboratory tests, the PAG has demonstrated square-wave, 17-microsecond-long beam pulses at 100 kV and 10 A, and it has operated stably at 70 kV and 2.5 A for 210 microsecond pulse lengths without gap closure.
Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun
2018-03-01
The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.
CADDIS Volume 2. Sources, Stressors and Responses: Ammonia
Introduction to the ammonia module, when to list ammonia as a candidate cause, ways to measure ammonia, simple and detailed conceptual diagrams for ammonia, literature reviews and references for the ammonia module.
CADDIS Volume 2. Sources, Stressors and Responses: Temperature - Detailed Conceptual Diagram
Introduction to the temperature module, when to list temperature as a candidate cause, ways to measure temperature, simple and detailed conceptual diagrams for temperature, temperature module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Temperature - Simple Conceptual Diagram
Introduction to the temperature module, when to list temperature as a candidate cause, ways to measure temperature, simple and detailed conceptual diagrams for temperature, temperature module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Simple Conceptual Diagram
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Sediments - Detailed Conceptual Diagram
Introduction to the Sediments module, when to list Sediments as a candidate cause, ways to measure Sediments, simple and detailed conceptual diagrams for Sediments, Sediments module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Detailed Conceptual Diagram
Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Insecticides - Simple Conceptual Diagram
Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Insecticides - Detailed Conceptual Diagram
Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Simple Conceptual Diagram
Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Sediments - Simple Conceptual Diagram
Introduction to the Sediments module, when to list Sediments as a candidate cause, ways to measure Sediments, simple and detailed conceptual diagrams for Sediments, Sediments module references and literature reviews.
Miniaturized High-Speed Modulated X-Ray Source
NASA Technical Reports Server (NTRS)
Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)
2015-01-01
A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.
NASA Astrophysics Data System (ADS)
Wang, Chaoen; Chang, Lung-Hai; Chang, Mei-Hsia; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Liu, Zong-Kai; Lo, Chih-Hung; Tsai, Chi-Lin; Yeh, Meng-Shu; Yu, Tsung-Chi
2017-11-01
Excitation of multipacting, enhanced by gas condensation on cold surfaces of the high power input coupler in a SRF module poses the highest challenge for reliable SRF operation under high average RF power. This could prevent the light source SRF module from being operated with a desired high beam current. Off-line long-term reliability tests have been conducted for the newly constructed 500-MHz SRF KEKB type modules at an accelerating RF voltage of 1.6-MV to enable prediction of their operational reliability in the 3-GeV Taiwan Photon Source (TPS), since prediction from mere production performance by conventional horizontal test is presently unreliable. As expected, operational difficulties resulting from multipacting, enhanced by gas condensation, have been identified in the course of long-term reliability test. Our present hypothesis is that gas condensation can be slowed down by preserving the vacuum pressure at the power coupler close to that reached just after its cool down to liquid helium temperatures. This is achievable by reduction of the power coupler out-gassing rate through comprehensive warm aging. Its feasibility and effectiveness has been experimentally verified in a second long term reliability test. Our success opens the possibility to operate the SRF module free of multipacting trouble and opens a new direction to improve the operational performance of next generation SRF modules in light sources with high beam currents.
Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V.
2013-01-01
This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151
Long-term variability in bright hard X-ray sources: 5+ years of BATSE data
NASA Technical Reports Server (NTRS)
Robinson, C. R.; Harmon, B. A.; McCollough, M. L.; Paciesas, W. S.; Sahi, M.; Scott, D. M.; Wilson, C. A.; Zhang, S. N.; Deal, K. J.
1997-01-01
The operation of the Compton Gamma Ray Observatory (CGRO)/burst and transient source experiment (BATSE) continues to provide data for inclusion into a data base for the analysis of long term variability in bright, hard X-ray sources. The all-sky capability of BATSE provides up to 30 flux measurements/day for each source. The long baseline and the various rising and setting occultation flux measurements allow searches for periodic and quasi-periodic signals with periods of between several hours to hundreds of days to be conducted. The preliminary results from an analysis of the hard X-ray variability in 24 of the brightest BATSE sources are presented. Power density spectra are computed for each source and profiles are presented of the hard X-ray orbital modulations in some X-ray binaries, together with amplitude modulations and variations in outburst durations and intensities in recurrent X-ray transients.
Rifai Chai; Naik, Ganesh R; Tran, Yvonne; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T
2015-08-01
An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p <; 0.05).
Quasi-CW 110 kW AlGaAs Laser Diode Array Module for Inertial Fusion Energy Laser Driver
NASA Astrophysics Data System (ADS)
Kawashima, Toshiyuki; Kanzaki, Takeshi; Matsui, Ken; Kato, Yoshinori; Matsui, Hiroki; Kanabe, Tadashi; Yamanaka, Masanobu; Nakatsuka, Masahiro; Izawa, Yasukazu; Nakai, Sadao; Miyamoto, Masahiro; Kan, Hirofumi; Hiruma, Teruo
2001-12-01
We have successfully demonstrated a large aperture 803 nm AlGaAs diode laser module as a pump source for a 1053 nm, 10 J output Nd:glass slab laser amplifier for diode-pumped solid-state laser (DPSSL) fusion driver. Detailed performance results of the laser diode module are presented, including bar package and stack configuration, and their thermal design and analysis. A sufficiently low thermal impedance of the stack was realized by combining backplane liquid cooling configuration with modular bar package architecture. Total peak power of 110 kW and electrical to optical conversion efficiency of 46% were obtained from the module consisting of a total of 1000 laser diode bars. A peak intensity of 2.6 kW/cm2 was accomplished across an emitting area of 418 mm× 10 mm. Currently, this laser diode array module with a large two-dimensional aperture is, to our knowledge, the only operational pump source for the high output energy DPSSL.
1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less
Jiang, Guoqian; Solbrig, Harold R; Chute, Christopher G
2011-01-01
A source of semantically coded Adverse Drug Event (ADE) data can be useful for identifying common phenotypes related to ADEs. We proposed a comprehensive framework for building a standardized ADE knowledge base (called ADEpedia) through combining ontology-based approach with semantic web technology. The framework comprises four primary modules: 1) an XML2RDF transformation module; 2) a data normalization module based on NCBO Open Biomedical Annotator; 3) a RDF store based persistence module; and 4) a front-end module based on a Semantic Wiki for the review and curation. A prototype is successfully implemented to demonstrate the capability of the system to integrate multiple drug data and ontology resources and open web services for the ADE data standardization. A preliminary evaluation is performed to demonstrate the usefulness of the system, including the performance of the NCBO annotator. In conclusion, the semantic web technology provides a highly scalable framework for ADE data source integration and standard query service.
Localizing the sources of two independent noises: Role of time varying amplitude differences
Yost, William A.; Brown, Christopher A.
2013-01-01
Listeners localized the free-field sources of either one or two simultaneous and independently generated noise bursts. Listeners' localization performance was better when localizing one rather than two sound sources. With two sound sources, localization performance was better when the listener was provided prior information about the location of one of them. Listeners also localized two simultaneous noise bursts that had sinusoidal amplitude modulation (AM) applied, in which the modulation envelope was in-phase across the two source locations or was 180° out-of-phase. The AM was employed to investigate a hypothesis as to what process listeners might use to localize multiple sound sources. The results supported the hypothesis that localization of two sound sources might be based on temporal-spectral regions of the combined waveform in which the sound from one source was more intense than that from the other source. The interaural information extracted from such temporal-spectral regions might provide reliable estimates of the sound source location that produced the more intense sound in that temporal-spectral region. PMID:23556597
Localizing the sources of two independent noises: role of time varying amplitude differences.
Yost, William A; Brown, Christopher A
2013-04-01
Listeners localized the free-field sources of either one or two simultaneous and independently generated noise bursts. Listeners' localization performance was better when localizing one rather than two sound sources. With two sound sources, localization performance was better when the listener was provided prior information about the location of one of them. Listeners also localized two simultaneous noise bursts that had sinusoidal amplitude modulation (AM) applied, in which the modulation envelope was in-phase across the two source locations or was 180° out-of-phase. The AM was employed to investigate a hypothesis as to what process listeners might use to localize multiple sound sources. The results supported the hypothesis that localization of two sound sources might be based on temporal-spectral regions of the combined waveform in which the sound from one source was more intense than that from the other source. The interaural information extracted from such temporal-spectral regions might provide reliable estimates of the sound source location that produced the more intense sound in that temporal-spectral region.
Dynamic Spatial Hearing by Human and Robot Listeners
NASA Astrophysics Data System (ADS)
Zhong, Xuan
This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum of perceived sound sources was close to four. The second experiment asked whether the amplitude modulation of multiple static sound sources could lead to the perception of auditory motion. On the horizontal and vertical planes, four independent noise sound sources with 60° spacing were amplitude modulated with consecutively larger phase delay. At lower modulation rates, motion could be perceived by human listeners in both cases. The third experiment asked whether several sources at static positions could serve as "acoustic landmarks" to improve the localization of other sources. Four continuous speech sound sources were placed on the horizontal plane with 90° spacing and served as the landmarks. The task was to localize a noise that was played for only three seconds when the listener was passively rotated in a chair in the middle of the loudspeaker array. The human listeners were better able to localize the sound sources with landmarks than without. The other experiments were with the aid of an acoustic manikin in an attempt to fuse binaural recording and motion data to localize sounds sources. A dummy head with recording devices was mounted on top of a rotating chair and motion data was collected. The fourth experiment showed that an Extended Kalman Filter could be used to localize sound sources in a recursive manner. The fifth experiment demonstrated the use of a fitting method for separating multiple sounds sources.
Longitudinal density modulation and energy conversion in intense beams.
Harris, J R; Neumann, J G; Tian, K; O'Shea, P G
2007-08-01
Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams.
Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam
NASA Astrophysics Data System (ADS)
Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.
2018-04-01
We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlon, Joseph P.; Day, Francesca; Jennings, Nicholas
We extend previous searches for X-ray spectral modulations induced by ALP-photon conversion to a variety of new sources, all consisting of quasars or AGNs located in or behind galaxy clusters. We consider a total of seven new sources, with data drawn from the Chandra archive. In all cases the spectrum is well fit by an absorbed power-law with no evidence for spectral modulations, allowing constraints to be placed on the ALP-photon coupling parameter g {sub a} {sub γγ}. Two sources are particularly good: the Seyfert galaxy 2E3140 in A1795 and the AGN NGC3862 within the cluster A1367, leading to 95%more » bounds for light ALPs ( m {sub a} ∼< 10{sup −12} eV) of g {sub a} {sub γγ} ∼< 1.5 × 10{sup −12} GeV{sup −1} and g {sub a} {sub γγ} ∼< 2.4 × 10{sup −12} GeV{sup −1} respectively.« less
Yang, Zhongyuan; Sassa, Fumihiro; Hayashi, Kenshi
2018-06-22
Improving the efficiency of detecting the spatial distribution of gas information with a mobile robot is a great challenge that requires rapid sample collection, which is basically determined by the speed of operation of gas sensors. The present work developed a robot equipped with a high-speed gas sensor module based on localized surface plasmon resonance. The sensor module is designed to sample gases from an on-ground odor source, such as a footprint material or artificial odor marker, via a fine sampling tubing. The tip of the sampling tubing was placed close to the ground to reduce the sampling time and the effect of natural gas diffusion. On-ground ethanol odor sources were detected by the robot at high resolution (i.e., 2.5 cm when the robot moved at 10 cm/s), and the reading of gas information was demonstrated experimentally. This work may help in the development of environmental sensing robots, such as the development of odor source mapping and multirobot systems with pheromone tracing.
A preliminary assessment of small steam Rankine and Brayton point-focusing solar modules
NASA Technical Reports Server (NTRS)
Roschke, E. J.; Wen, L.; Steele, H.; Elgabalawi, N.; Wang, J.
1979-01-01
A preliminary assessment of three conceptual point-focusing distributed solar modules is presented. The basic power conversion units consist of small Brayton or Rankine engines individually coupled to two-axis, tracking, point-focusing solar collectors. An array of such modules can be linked together, via electric transport, to form a small power station. Each module also can be utilized on a stand-alone basis, as an individual power source.
Pan, Jui-Wen; Tu, Sheng-Han
2012-05-20
A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.
CADDIS Volume 2. Sources, Stressors and Responses: Ammonia - Detailed Conceptual Diagram
Introduction to the ammonia module, when to list ammonia as a candidate cause, ways to measure ammonia, simple and detailed conceptual diagrams for ammonia, literature reviews and references for the ammonia module.
CADDIS Volume 2. Sources, Stressors and Responses: Ammonia - Simple Conceptual Diagram
Introduction to the ammonia module, when to list ammonia as a candidate cause, ways to measure ammonia, simple and detailed conceptual diagrams for ammonia, literature reviews and references for the ammonia module.
CADDIS Volume 2. Sources, Stressors and Responses: Metals - Simple Conceptual Model Diagram
Introduction to the metals module, when to list metals as a candidate cause, ways to measure metals, simple and detailed conceptual diagrams for metals, metals module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (N)
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Metals - Detailed Conceptual Model Diagram
Introduction to the metals module, when to list metals as a candidate cause, ways to measure metals, simple and detailed conceptual diagrams for metals, metals module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (P)
Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.
Residential Demand Module - NEMS Documentation
2017-01-01
Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.
ERIC Educational Resources Information Center
Kourilsky, Marilyn; And Others
The New Youth Entrepreneur curriculum is a series of 12 youth-oriented educational modules containing instructional materials, learning activities, and checkup exercises designed to teach students key elements of entrepreneurship. This document is the second module, designed to help students define the notion of opportunity, determine sources of…
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module expands on the introductory discussion of nitrogen in other modules. The various chemical forms of nitrogen found in land treatment systems are defined. Inputs from waste application as well as natural sources are quantified for typical situations. A discussion of nitrogen transformations in the soil includes mineralization and…
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
This module covers the relationships between current and voltage; resistance in a series circuit; how to determine the values of current, voltage, resistance, and power in resistive series circuits; the effects of source internal resistance; and an introduction to the troubleshooting of series circuits. This module is divided into five lessons:…
Synchronous identification of friendly targets
Telle, John M.; Roger, Stutz A.
1998-01-01
A synchronous communication targeting system for use in battle. The present invention includes a transceiver having a stabilizing oscillator, a synchronous amplifier and an omnidirectional receiver, all in electrical communication with each other. A remotely located beacon is attached to a blackbody radiation source and has an amplitude modulator in electrical communication with a optical source. The beacon's amplitude modulator is set so that the optical source transmits radiation frequency at approximately the same or lower amplitude than that of the blackbody radiation source to which the beacon is attached. The receiver from the transceiver is adapted to receive frequencies approximately at or below blackbody radiation signals and sends such signals to the synchronous amplifier. The synchronous amplifier then rectifies and amplifies those signals which correspond to the predetermined frequency to therefore identify whether the blackbody radiation source is friendly or not.
Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Aizawa, Kento; Inoue, Tsutomu; Okamura, Hidekazu; Ikemoto, Yuka
2011-06-20
In order to obtain broadband near-field infrared (IR) spectra, a Fourier-transform IR spectrometer (FT-IR) and a ceramic light source were used with a scattering-type scanning near-field optical microscope (s-SNOM). To suppress the background (far-field) scattering, the distance between the scattering probe and the sample was modulated with frequency Ω by a piezo-electric actuator, and the Ω component was extracted from the signal with a lock-in detection. With Ω=30 kHz, a peak-to-peak modulation amplitude of 198 nm, and a probe with smooth surface near the tip, broadband near-field IR spectra could be obtained in the 1200-2500 cm(-1).
Improved neutron activation prediction code system development
NASA Technical Reports Server (NTRS)
Saqui, R. M.
1971-01-01
Two integrated neutron activation prediction code systems have been developed by modifying and integrating existing computer programs to perform the necessary computations to determine neutron induced activation gamma ray doses and dose rates in complex geometries. Each of the two systems is comprised of three computational modules. The first program module computes the spatial and energy distribution of the neutron flux from an input source and prepares input data for the second program which performs the reaction rate, decay chain and activation gamma source calculations. A third module then accepts input prepared by the second program to compute the cumulative gamma doses and/or dose rates at specified detector locations in complex, three-dimensional geometries.
Study of SPM tolerances of electronically compensated DML based systems.
Papagiannakis, I; Klonidis, D; Birbas, Alexios N; Kikidis, J; Tomkos, I
2009-05-25
This paper experimentally investigates the effectiveness of electronic dispersion compensation (EDC) for signals limited by self phase modulation (SPM) and various dispersion levels. The sources considered are low-cost conventional directly modulated lasers (DMLs), fabricated for operation at 2.5 Gb/s but modulated at 10 Gb/s. Performance improvement is achieved by means of electronic feed-forward and decision-feedback equalization (FFE/DFE) at the receiver end. Experimental studies consider both transient and adiabatic chirp dominated DMLs sources. The improvement is evaluated in terms of required optical signal-to-noise ratio (ROSNR) for bit-error-rate (BER) values of 10(-3) versus launch power over uncompensated links of standard single mode fiber (SSMF).
A programmable optical few wavelength source for flexgrid optical networks
NASA Astrophysics Data System (ADS)
Imran, M.; Fresi, F.; Meloni, G.; Bhowmik, B. B.; Sambo, N.; Potì, L.
2016-07-01
Multi-wavelength (MW) sources will probably replace discrete lasers or laser arrays in next generation multi-carrier transponders (e.g., 1 Tb/s), currently called multi-flow transponders or sliceable bandwidth variable transponders (SBVTs). We present design and experimental demonstration of a few wavelength (FW) source suitable for SBVTs in a flexgrid scenario. We refer to FW instead of MW since for an SBVT just few subcarriers are required (e.g., eight). The proposed FW source does not require optical filtering for subcarrier modulation. The design exploits frequency shifting in IQ modulators by using single side band suppressed carrier modulation. A reasonable number of lines can be provided depending on the chosen architecture, tunable in the whole C-band. The scheme is also capable of providing symmetric (equally spaced) and asymmetric subcarrier spacing arbitrarily tunable from 6.25 GHz to 37.5 GHz. The control on the number of subcarriers (increase/decrease depending on line rate) provides flexibility to the SBVT, being the spacing dependent on transmission parameters such as line rate or modulation format. Transmission performance has been tested and compared with an array of standard lasers considering a 480 Gb/s transmission for different carrier spacing. Additionally, an integrable solution based on complementary frequency shifter is also presented to improve scalability and costs. The impact on transceiver techno-economics and network performance is also discussed.
Narayan, Sanjiv M.; Shivkumar, Kalyanam; Krummen, David E.; Miller, John M.; Rappel, Wouter-Jan
2013-01-01
Background The foundation for successful arrhythmia ablation is the mapping of electric propagation to identify underlying mechanisms. In atrial fibrillation (AF), however, mapping is difficult so that ablation has often targeted electrogram features, with mixed results. We hypothesized that wide field-of-view (panoramic) mapping of both atria would identify causal mechanisms for AF and allow interpretation of local electrogram features, including complex fractionated atrial electrograms (CFAE). Methods and Results Contact mapping was performed using biatrial multipolar catheters in 36 AF subjects (29 persistent). Stable AF rotors (spiral waves) or focal sources were seen in 35 of 36 cases and targeted for ablation (focal impulse and rotor modulation) before pulmonary vein isolation. In 31 of 36 subjects (86.1%), AF acutely terminated (n=20; 16 to sinus rhythm) or organized (n=11; 19±8% slowing) with 2.5 minutes focal impulse and rotor modulation (interquartile range, 1.0–3.1) at one source, defined as the primary source. Subjects exhibited 2.1±1.0 concurrent AF sources of which the primary, by phase mapping, precessed in limited areas (persistent 2.5±1.7 versus paroxysmal 1.7±0.5 cm2; P=0.30). Notably, source regions showed mixed electrogram amplitudes and CFAE grades that did not differ from surrounding atrium (P=NS). AF sources were not consistently surrounded by CFAE (P=0.67). Conclusions Stable rotors and focal sources for human AF were revealed by contact panoramic mapping (focal impulse and rotor modulation mapping), but not by electrogram footprints. AF sources precessed within areas of ≈2 cm2, with diverse voltage characteristics poorly correlated with CFAE. Most CFAE sites lie remote from AF sources and are not suitable targets for catheter ablation of AF. PMID:23392583
CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration
Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen
Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.
CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength
Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat
Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.
Integration of Multiple Data Sources to Simulate the Dynamics of Land Systems
Deng, Xiangzheng; Su, Hongbo; Zhan, Jinyan
2008-01-01
In this paper we present and develop a new model, which we have called Dynamics of Land Systems (DLS). The DLS model is capable of integrating multiple data sources to simulate the dynamics of a land system. Three main modules are incorporated in DLS: a spatial regression module, to explore the relationship between land uses and influencing factors, a scenario analysis module of the land uses of a region during the simulation period and a spatial disaggregation module, to allocate land use changes from a regional level to disaggregated grid cells. A case study on Taips County in North China is incorporated in this paper to test the functionality of DLS. The simulation results under the baseline, economic priority and environmental scenarios help to understand the land system dynamics and project near future land-use trajectories of a region, in order to focus management decisions on land uses and land use planning. PMID:27879726
NASA Astrophysics Data System (ADS)
Byrd, James C.
1999-08-01
On 18 September 1998, Optical Imaging Systems (OIS) of Northville, MI ceased production of Active Matrix Liquid Crystal Display (AMLCD) modules due to financial losses and the lack of a clear and immediate path to making the company profitable. Lack of OIS AMLCD modules has threatened to delay production delivery of aircraft to the US Air Force, Navy and Army. Other vendors make similar modules, but in most cases there is no interchangeable module immediately available. Consequently, military Program Offices and their contractors are working to overcome the present shortage. This paper discusses the non-standard parts/diminishing manufacturing sources problem and assesses various strategies that might be needed to prevent programs from being so dependent on unique sole-source devices in the future. It also suggests a list of display sizes and types that are good candidates for wide application and are thus less sensitive to events like the closing of one component manufacturer.
Solar cell and module performance assessment based on indoor calibration methods
NASA Astrophysics Data System (ADS)
Bogus, K.
A combined space/terrestrial solar cell test calibration method that requires five steps and can be performed indoors is described. The test conditions are designed to qualify the cell or module output data in standard illumination and temperature conditions. Measurements are made of the short-circuit current, the open circuit voltage, the maximum power, the efficiency, and the spectral response. Standard sunlight must be replicated both in earth surface and AM0 conditions; Xe lamps are normally used for the light source, with spectral measurements taken of the light. Cell and module spectral response are assayed by using monochromators and narrow band pass monochromatic filters. Attention is required to define the performance characteristics of modules under partial shadowing. Error sources that may effect the measurements are discussed, as are previous cell performance testing and calibration methods and their effectiveness in comparison with the behaviors of satellite solar power panels.
A comparison of radioisotope Brayton and Stirling systems for lunar surface mobile power
NASA Astrophysics Data System (ADS)
Harty, Richard B.
A study was performed by the Rocketdyne Division of Rockwell International on a 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The application considered was for lunar mobile power sources in the power range of 2.5 kWe to 15 kWe. The study indicated that the Stirling power module has 20 percent lower mass and 40 percent lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangement to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system.
NASA Astrophysics Data System (ADS)
Pei, Yong; Modestino, James W.
2007-12-01
We describe a multilayered video transport scheme for wireless channels capable of adapting to channel conditions in order to maximize end-to-end quality of service (QoS). This scheme combines a scalable H.263+ video source coder with unequal error protection (UEP) across layers. The UEP is achieved by employing different channel codes together with a multiresolution modulation approach to transport the different priority layers. Adaptivity to channel conditions is provided through a joint source-channel coding (JSCC) approach which attempts to jointly optimize the source and channel coding rates together with the modulation parameters to obtain the maximum achievable end-to-end QoS for the prevailing channel conditions. In this work, we model the wireless links as slow-fading Rician channel where the channel conditions can be described in terms of the channel signal-to-noise ratio (SNR) and the ratio of specular-to-diffuse energy[InlineEquation not available: see fulltext.]. The multiresolution modulation/coding scheme consists of binary rate-compatible punctured convolutional (RCPC) codes used together with nonuniform phase-shift keyed (PSK) signaling constellations. Results indicate that this adaptive JSCC scheme employing scalable video encoding together with a multiresolution modulation/coding approach leads to significant improvements in delivered video quality for specified channel conditions. In particular, the approach results in considerably improved graceful degradation properties for decreasing channel SNR.
Simulation and Spectrum Extraction in the Spectroscopic Channel of the SNAP Experiment
NASA Astrophysics Data System (ADS)
Tilquin, Andre; Bonissent, A.; Gerdes, D.; Ealet, A.; Prieto, E.; Macaire, C.; Aumenier, M. H.
2007-05-01
A pixel-level simulation software is described. It is composed of two modules. The first module applies Fourier optics at each active element of the system to construct the PSF at a large variety of wavelengths and spatial locations of the point source. The input is provided by the engineer's design program (Zemax). It describes the optical path and the distortions. The PSF properties are compressed and interpolated using shapelets decomposition and neural network techniques. A second module is used for production jobs. It uses the output of the first module to reconstruct the relevant PSF and integrate it on the detector pixels. Extended and polychromatic sources are approximated by a combination of monochromatic point sources. For the spectrum extraction, we use a fast simulator based on a multidimensional linear interpolation of the pixel response tabulated on a grid of values of wavelength, position on sky and slice number. The prediction of the fast simulator is compared to the observed pixel content, and a chi-square minimization where the parameters are the bin contents is used to build the extracted spectrum. The visible and infrared arms are combined in the same chi-square, providing a single spectrum.
Modeling of a Compact Terahertz Source based on the Two-Stream Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svimonishvili, Tengiz
2016-05-17
THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenonmore » called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.« less
Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki
2018-05-08
A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.
10 CFR 431.222 - Definitions concerning traffic signal modules and pedestrian modules.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., all portions of the module behind the lens are within the chamber at a temperature of 74 °C and the air temperature in front of the lens is maintained at a minimum of 49 °C. Nominal wattage means the... signal indication that— (1) Consists of a light source, a lens, and all other parts necessary for...
ERIC Educational Resources Information Center
Washington Consulting Group, Inc., Washington, DC.
The second of 17 modules in a self-instructional course on student financial aid administration, this module offers novice financial aid administrators and other institutional personnel a systematic introduction to the management of federal financial aid programs authorized by the Higher Education Act Title IV. It traces the history of federal…
Thermal testing by internal IR heating of the FEP module
NASA Technical Reports Server (NTRS)
Nathanson, D. M.; Efromson, R. A.; Lee, E. I.
1986-01-01
A spacecraft module, to be integrated with the FLTSATCOM spacecraft, was tested in a simulated orbit environment separate from the host spacecraft. Thermal vacuum testing of the module was accomplished using internal IR heating rather than conventional external heat sources. For this configuration, the technique produced boundary conditions expected for flight to enable verification of system performance and thermal design details.
ERIC Educational Resources Information Center
Virginia Polytechnic Inst. and State Univ., Blacksburg. Div. of Vocational-Technical Education.
This self-instructional module on determining capital needs is the third in a set of twelve modules designed for small business owner-managers. Competencies for this module are (1) identify factors which must be considered when you begin the search for additional funds and (2) identify the sources of additional funds. Provided are information…
Program structure-based blocking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.
2017-09-26
Embodiments relate to program structure-based blocking. An aspect includes receiving source code corresponding to a computer program by a compiler of a computer system. Another aspect includes determining a prefetching section in the source code by a marking module of the compiler. Yet another aspect includes performing, by a blocking module of the compiler, blocking of instructions located in the prefetching section into instruction blocks, such that the instruction blocks of the prefetching section only contain instructions that are located in the prefetching section.
Generation of a widely spaced optical frequency comb using an amplitude modulator pair
NASA Astrophysics Data System (ADS)
Gunning, Fatima C. G.; Ellis, Andrew D.
2005-06-01
Multi-wavelength sources are required for wavelength division multiplexed (WDM) optical communication systems, and typically a bank of DFB lasers is used. However, large costs are involved to provide wavelength selected sources and high precision wavelength lockers. Optical comb generation is attractive solution, minimizing the component count and improving wavelength stability. In addition, comb generation offers the potential for new WDM architectures, such as coherent WDM, as it preserves the phase relation between the generated channels. Complex comb generation systems have been introduced in the past, using fibre ring lasers [1] or non-linear effects within long fibres [2]. More recently, simpler set-ups were proposed, including hybrid amplitude-phase modulation schemes [3-5]. However, the narrow line spacing of these systems, typically 17 GHz, restricts their use to bit rates up to 10 Gbit/s. In this paper, we propose and demonstrate a simple method of comb generation that is suitable for bit rates up to 42.667 Gbit/s. The comb generator was composed of two Mach-Zehnder modulators (MZM) in series, each being driven with a sinusoidal wave at 42.667 GHz with a well-defined phase relationship. As a result, 7 comb lines separated by 42.667 GHz were generated from a single source, when amplitude up to 2.2 Vp was applied to the modulators, giving flatness better than 1 dB. By passively multiplexing 8 source lasers with the comb generator and minimising inter-modulator dispersion, it was possible to achieve a multi-wavelength transmitter with 56 channels, with flatness better than 1.2 dB across 20 nm (2.4 THz).
Tunable Soft X-Ray Oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtele, Jonathan; Gandhi, Punut; Gu, X-W
A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixedmore » frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.« less
Folta, James A.; Montcalm, Claude; Walton, Christopher
2003-01-01
A method and system for producing a thin film with highly uniform (or highly accurate custom graded) thickness on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source with controlled (and generally, time-varying) velocity. In preferred embodiments, the method includes the steps of measuring the source flux distribution (using a test piece that is held stationary while exposed to the source), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of sweep velocity modulation recipes, and determining from the predicted film thickness profiles a sweep velocity modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a practical method of accurately measuring source flux distribution, and a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal sweep velocity modulation recipe to achieve a desired thickness profile on a substrate. Preferably, the computer implements an algorithm in which many sweep velocity function parameters (for example, the speed at which each substrate spins about its center as it sweeps across the source) can be varied or set to zero.
Introduction to the temperature module, when to list temperature as a candidate cause, ways to measure temperature, simple and detailed conceptual diagrams for temperature, temperature module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Simple Conceptual Diagram
Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.
CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Detailed Conceptual Diagram
Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.
CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Simple Conceptual Diagram
Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Detailed Conceptual Diagram
Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals
Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat - Simple Conceptual Diagram
Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat - Detailed Conceptual Diagram
Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.
Chen, Chen; Zhang, Chongfu; Liu, Deming; Qiu, Kun; Liu, Shuang
2012-10-01
We propose and experimentally demonstrate a multiuser orthogonal frequency-division multiple access passive optical network (OFDMA-PON) with source-free optical network units (ONUs), enabled by tunable optical frequency comb generation technology. By cascading a phase modulator (PM) and an intensity modulator and dynamically controlling the peak-to-peak voltage of a PM driven signal, a tunable optical frequency comb source can be generated. It is utilized to assist the configuration of a multiple source-free ONUs enhanced OFDMA-PON where simultaneous and interference-free multiuser upstream transmission over a single wavelength can be efficiently supported. The proposed multiuser OFDMA-PON is scalable and cost effective, and its feasibility is successfully verified by experiment.
NASA Astrophysics Data System (ADS)
Lemos, N.; Albert, F.; Shaw, J. L.; Papp, D.; Polanek, R.; King, P.; Milder, A. L.; Marsh, K. A.; Pak, A.; Pollock, B. B.; Hegelich, B. M.; Moody, J. D.; Park, J.; Tommasini, R.; Williams, G. J.; Chen, Hui; Joshi, C.
2018-05-01
An x-ray source generated by an electron beam produced using a Self-Modulated Laser Wakefield Accelerator (SM-LWFA) is explored for use in high energy density science facilities. By colliding the electron beam, with a maximum energy of 380 MeV, total charge of >10 nC and a divergence of 64 × 100 mrad, from a SM-LWFA driven by a 1 ps 120 J laser, into a high-Z foil, an x/gamma-ray source was generated. A broadband bremsstrahlung energy spectrum with temperatures ranging from 0.8 to 2 MeV was measured with an almost 2 orders of magnitude flux increase when compared with other schemes using LWFA. GEANT4 simulations were done to calculate the source size and divergence.
Bortnik, Bartosz J; Fetterman, Harold R
2008-10-01
A more simple photonically assisted analog-to-digital conversion system utilizing a cw multiwavelength source and phase modulation instead of a mode-locked laser is presented. The output of the cw multiwavelength source is launched into a dispersive device (such as a single-mode fiber). This fiber creates a pulse train, where the central wavelength of each pulse corresponds to a spectral line of the optical source. The pulses can then be either dispersed again to perform discrete wavelength time stretching or demultiplexed for continuous time analog-to-digital conversion. We experimentally demonstrate the operation of both time stretched and interleaved systems at 38 GHz. The potential of integrating this type of system on a monolithic chip is discussed.
Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R
2016-11-16
Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from movement phase-related amplitude modulations. We separate these two EEG source elements motivated by our previous findings in gait. Here, we found two types of large-scale networks, representing the right fingers in distinction from the time sequence of the movements. These findings suggest that EEG source amplitudes reconstructed in a cortical patch are the superposition of these simultaneously present network activities. Separating these frequency-specific networks is relevant for studying function and possible dysfunction of the cortical sensorimotor system in humans as well as to provide more advanced features for brain-computer interfaces. Copyright © 2016 the authors 0270-6474/16/3611671-11$15.00/0.
A modular Space Station/Base electrical power system - Requirements and design study.
NASA Technical Reports Server (NTRS)
Eliason, J. T.; Adkisson, W. B.
1972-01-01
The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.
Ultrashort high-brightness pulses from storage rings
NASA Astrophysics Data System (ADS)
Khan, Shaukat
2017-09-01
The brightness of short-wavelength radiation from accelerator-based sources can be increased by coherent emission in which the radiation intensity scales with the number of contributing electrons squared. This requires a microbunched longitudinal electron distribution, which is the case in free-electron lasers. The brightness of light sources based on electron storage rings was steadily improved, but could profit further from coherent emission. The modulation of the electron energy by a continuous-wave laser field may provide steady-state microbunching in the infrared regime. For shorter wavelengths, the energy modulation can be converted into a temporary density modulation by a dispersive chicane. One particular goal is coherent emission from a very short "slice" within an electron bunch in order to produce ultrashort radiation pulses with high brightness.
Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes
Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang
2015-04-21
A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.
Experimental study on discretely modulated continuous-variable quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Yong; Zou Hongxin; Chen Pingxing
2010-08-15
We present a discretely modulated continuous-variable quantum key distribution system in free space by using strong coherent states. The amplitude noise in the laser source is suppressed to the shot-noise limit by using a mode cleaner combined with a frequency shift technique. Also, it is proven that the phase noise in the source has no impact on the final secret key rate. In order to increase the encoding rate, we use broadband homodyne detectors and the no-switching protocol. In a realistic model, we establish a secret key rate of 46.8 kbits/s against collective attacks at an encoding rate of 10more » MHz for a 90% channel loss when the modulation variance is optimal.« less
Block 4 solar cell module design and test specification for residential applications
NASA Technical Reports Server (NTRS)
1978-01-01
Near-term design, qualification and acceptance requirements are provided for terrestrial solar cell modules suitable for incorporation in photovoltaic power sources (2 kW to 10 kW) applied to single family residential installations. Requirement levels and recommended design limits for selected performance criteria are specified for modules intended principally for rooftop installations. Modules satisfying the requirements of this specification fall into one of two categories, residential panel or residential shingle, both meeting general performance requirements plus additional category peculiar constraints.
1988-08-10
addrsesed to it, the wall-receptacle module energizes a relay. Modules can be built to use a triac instead and have the capacity to increase or decrease... modulated by other constraints for a safe, functional ana effective power distribution system. 2.2.3 BackuR Equipment Alternate power sources are...environments have limited sensor capability and no remote control capability. However, future enhancements to current equipment, such as frequency- modulated
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA
2012-02-14
A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.
A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems
NASA Astrophysics Data System (ADS)
Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.
2017-08-01
This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.
Valence modulates source memory for faces.
Bell, Raoul; Buchner, Axel
2010-01-01
Previous studies in which the effects of emotional valence on old-new discrimination and source memory have been examined have yielded highly inconsistent results. Here, we present two experiments showing that old-new face discrimination was not affected by whether a face was associated with disgusting, pleasant, or neutral behavior. In contrast, source memory for faces associated with disgusting behavior (i.e., memory for the disgusting context in which the face was encountered) was consistently better than source memory for other types of faces. This data pattern replicates the findings of studies in which descriptions of cheating, neutral, and trustworthy behavior were used, which findings were previously ascribed to a highly specific cheater detection module. The present results suggest that the enhanced source memory for faces of cheaters is due to a more general source memory advantage for faces associated with negative or threatening contexts that may be instrumental in avoiding the negative consequences of encounters with persons associated with negative or threatening behaviors.
Links between Dietary Protein Sources, the Gut Microbiota, and Obesity.
Madsen, Lise; Myrmel, Lene S; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten
2017-01-01
The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.
Links between Dietary Protein Sources, the Gut Microbiota, and Obesity
Madsen, Lise; Myrmel, Lene S.; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten
2017-01-01
The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity. PMID:29311977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filho, Faete; Maia, Helder Z; Mateus, Tiago Henrique D
2013-01-01
A new approach for modulation of an 11-level cascade multilevel inverter using selective harmonic elimination is presented in this paper. The dc sources feeding the multilevel inverter are considered to be varying in time, and the switching angles are adapted to the dc source variation. This method uses genetic algorithms to obtain switching angles offline for different dc source values. Then, artificial neural networks are used to determine the switching angles that correspond to the real-time values of the dc sources for each phase. This implies that each one of the dc sources of this topology can have different valuesmore » at any time, but the output fundamental voltage will stay constant and the harmonic content will still meet the specifications. The modulating switching angles are updated at each cycle of the output fundamental voltage. This paper gives details on the method in addition to simulation and experimental results.« less
Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.
Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration - Simple Conceptual Diagram
Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration - Detailed Conceptual Diagram
Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SmartImport.py is a Python source-code file that implements a replacement for the standard Python module importer. The code is derived from knee.py, a file in the standard Python diestribution , and adds functionality to improve the performance of Python module imports in massively parallel contexts.
Tang, W W; Shu, C
2005-02-21
We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.
ERIC Educational Resources Information Center
Pomales-García, Cristina; Rivera-Nivar, Mericia
2015-01-01
Research in design of Web-based modules should incorporate aging as an important factor given the diversity of the current workforce. This work aims to understand how Web-Based Learning modules can be designed to accommodate young (25-35 years) as well as older (55-65 years) users by: (1) identifying how information sources (instructor video,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevitz, Daniel Wolf; Key, Brian P.; Garcia, Daniel B.
2017-09-05
The Fragment Impact Toolkit (FIT) is a software package used for probabilistic consequence evaluation of fragmenting sources. The typical use case for FIT is to simulate an exploding shell and evaluate the consequence on nearby objects. FIT is written in the programming language Python and is designed as a collection of interacting software modules. Each module has a function that interacts with the other modules to produce desired results.
Effects Of Local Oscillator Errors On Digital Beamforming
2016-03-01
processor EF element factor EW electronic warfare FFM flicker frequency modulation FOV field-of-view FPGA field-programmable gate array FPM flicker...frequencies and also more difficult to measure [15]. 2. Flicker frequency modulation The source for flicker frequency modulation ( FFM ) is attributed to...a physical resonance mechanism of an oscillator or issues controlling electronic components. Some oscillators might not show FFM noise, which might
FERMI OBSERVATION OF THE TRANSITIONAL PULSAR BINARY XSS J12270–4859
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Yi; Wang, Zhongxiang
Because of the disappearance of its accretion disk during the time period of 2012 November–December, XSS J12270–4859 has recently been identified as a transitional millisecond pulsar binary, joining PSR J1023+0038. We have carried out a detailed analysis of the Fermi Large Area Telescope data for this binary. While both spectra are well-described by an exponentially cut-off power law before and after the disk-disappearance transition, which is typical for pulsars’ emissions in Fermi's 0.2–300 GeV band, we have detected a factor of 2 flux decrease related to the transition. A weak orbital modulation is possibly seen, but is only detectable in the after-transition data, making itmore » the same as orbital modulations found in X-rays. In the long-term light curve of the source before the transition, a factor of 3 flux variations are seen. Compared to the properties of J1023+0038, we discuss the implications from these results. We suggest that since the modulation is aligned with the modulations in X-rays in the orbital phase, it possibly arises due to the occultation of the γ-ray emitting region by the companion. The origin of the variations in the long-term light curve is not clear because the source field also contains unidentified radio or X-ray sources and their contamination cannot be excluded. Multi-wavelength observations of the source field will help identify the origin of the variations by detecting any related flux changes from the in-field sources.« less
Non-destructive evaluation of water ingress in photovoltaic modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bora, Mihail; Kotovsky, Jack
Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, amore » focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.« less
Compact optical transconductance varistor
Sampayan, Stephen
2015-09-22
A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.
ERIC Educational Resources Information Center
Plummer, Nancy; Michael, Nancy, Ed.
This module on diuretics is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided.…
SIMULATING INTEGRATED MULTIMEDIA CHEMICAL FATE AND TRANSPORT FOR NATIONAL RISK ASSESSMENTS
The site-based multimedia, multipathway and multireceptor risk assessment (3MRA) approach is comprised of source, fate and transport, exposure and risk modules. The main interconnected multimedia fate and transport modules are: watershed, air, surface water, vadose zone and sat...
ERIC Educational Resources Information Center
Plummer, Nancy; Michael, Nancy, Ed.
This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…
ERIC Educational Resources Information Center
Plummer, Nancy; Michael, Nancy, Ed.
This module on multiple sclerosis is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…
ERIC Educational Resources Information Center
Morris, Sara; Michael, Nancy, Ed.
This module on antineoplastic drugs is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…
Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task.
Frühholz, Sascha; Godde, Ben; Finke, Mareike; Herrmann, Manfred
2011-01-01
It is yet not well known whether different types of conflicts share common or rely on distinct brain mechanisms of conflict processing. We used a combined Flanker (stimulus-stimulus; S-S) and Simon (stimulus-response; S-R) conflict paradigm both in an fMRI and an EEG study. S-S conflicts induced stronger behavioral interference effects compared to S-R conflicts and the latter decayed with increasing response latencies. Besides some similar medial frontal activity across all conflict trials, which was, however, not statically consistent across trials, we especially found distinct activations depending on the type of conflict. S-S conflicts activated the anterior cingulate cortex and modulated the N2 and early P3 component with underlying source activity in inferior frontal cortex. S-R conflicts produced distinct activations in the posterior cingulate cortex and modulated the late P3b component with underlying source activity in superior parietal cortex. Double conflict trials containing both S-S and S-R conflicts revealed, first, distinct anterior frontal activity representing a meta-processing unit and, second, a sequential modulation of the N2 and the P3b component. The N2 modulation during double conflict trials was accompanied by increased source activity in the medial frontal gyrus (MeFG). In summary, S-S and S-R conflict processing mostly rely on distinct mechanisms of conflict processing and these conflicts differentially modulate the temporal stages of stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Corbet, R. H. D.; Sokoloski, J. L.; Mukai, K.; Markwardt, C. B.; Tueller, J.
2007-01-01
We present an analysis of the X-ray variability of three symbiotic X-ray binaries, GX 1+4, 4U 1700+24, and 4U 1954+31, using observations made with the Swift Burst Alert Telescope (BAT) and the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Observations of 4U 1954+31 with the Swift BAT show modulation at a period near 5 hours. Models to explain this modulation are discussed including the presence of an exceptionally slow X-ray pulsar in the system and accretion instabilities. We conclude that the most likely interpretation is that 4U 1954+31 contains one of the slowest known X-ray pulsars. Unlike 4U 1954+31, neither GX 1+4 nor 4U 1700+24 show any evidence for modulation on a timescale of hours. An analysis of the RXTE ASM light curves of GX l+4, 4U 1700+24, and 4U 1954+31 does not show the presence of periodic modulation in any source, although there is considerable variability on long timescales for all three sources. There is no modulation in GX 1+4 on either the optical 1161 day orbital period or a previously reported 304 day X-ray period. For 4U 1700+24 we do not confirm the 404 day period previously proposed for this source from a shorter duration ASM light curve.
Systems and methods for initializing a charging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perisic, Milun; Ransonm, Ray M.; Kojouke, Lateef A.
2017-09-26
Systems and methods are provided for charging a battery. The system, for example, includes, but is not limited to a first interface configured to receive a voltage from an AC voltage source, a matrix conversion module comprising a plurality of switches electrically connected to the first interface and configured to provide a charging voltage to the battery, and a controller communicatively connected to the matrix conversion module, wherein the controller is configured to: determine a voltage of the battery, determine an angle of the AC voltage source to initiate charging of the battery based upon the voltage of the battery,more » and control the plurality of switches to provide the charging voltage to the battery between the determined angle of the AC voltage source and a subsequent zero-crossing of the AC voltage source.« less
Direction-Finding Measurements of Heliospheric 2-3 kHz Radio Emissions
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
1998-01-01
Using data from the Voyager 1 plasma wave instrument, a series of direction-finding measurements is presented for the intense 1992-93 heliospheric 2- to 3-kHz radio emission event, and several weaker events extending into 1994. Direction-finding measurements can only be obtained during roll maneuvers, which are performed about once every three months. Two parameters can be determined from the roll-induced intensity modulation, the azimuthal direction of arrival (measured around the roll axis), and the modulation index (the peak-to-peak amplitude divided by the peak amplitude). Measurements were made at two frequencies, 1.78 and 3.11 kHz. No roll modulation was observed at 1.78 kHz, which is consistent with an isotropic source at this frequency. In most cases an easily measurable roll modulation was detectable at 3.11 kHz. Although the azimuth angles have considerable scatter, the directions of arrival at 3.11 kHz can be organized into three groups, each of which appears to be associated with a separate upward drifting feature in the radio emission spectrum. The first group, which is associated with the main 1992-93 event, is consistent with a source located near the nose of the heliosphere. The remaining two groups, which occur after the main 1992-93 event, have azimuth angles well away from the nose of the heliosphere. The modulation indexes vary over a large range, from 0.06 to 0.61, with no obvious trend. Although the variations in the directions of arrival and modulation indicies appear to reflect changes in the position and angular size of the source, it is also possible that they could be caused by refraction or scattering due to density structures in the solar wind.
The phase-space dependence of fast-ion interaction with tearing modes
Heidbrink, William W.; Bardoczi, Laszlo; Collins, Cami S.; ...
2018-03-19
Modulation of various neutral beam sources probes the interaction of fast ions with tearing modes (TM) in the DIII-D tokamak. As measured by electron cyclotron emission, the (m,n) = (2,1) tearing modes have an island width of ~8 cm and change phase 180 at the q = 2 surface. (Here, m is the poloidal mode number and n is the toroidal mode number.) Deuterium neutral beam injection by six sources with differing injection geometries produces the fast ions. To study the interaction in different parts of phase space, on successive discharges, one of the six sources is modulated at 20more » Hz to populate different fast-ion orbits. The modulation only changes the island width by a few millimeters, implying that any fast-ion effect on mode stability is below detection limits. When compared to the expected signals in the absence of TM-induced transport, both the average and modulated neutron signals deviate, implying that fast-ion transport occurs in much of phase space. Fast-ion D-α (FIDA) measurements detect reductions in signal at wavelengths that are sensitive to counter-passing ions. Neutral particle analyzer data imply poor confinement of trapped fast ions. Lastly, calculations of the expected fast-ion transport that use measured TM properties successfully reproduce the data.« less
The phase-space dependence of fast-ion interaction with tearing modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidbrink, William W.; Bardoczi, Laszlo; Collins, Cami S.
Modulation of various neutral beam sources probes the interaction of fast ions with tearing modes (TM) in the DIII-D tokamak. As measured by electron cyclotron emission, the (m,n) = (2,1) tearing modes have an island width of ~8 cm and change phase 180 at the q = 2 surface. (Here, m is the poloidal mode number and n is the toroidal mode number.) Deuterium neutral beam injection by six sources with differing injection geometries produces the fast ions. To study the interaction in different parts of phase space, on successive discharges, one of the six sources is modulated at 20more » Hz to populate different fast-ion orbits. The modulation only changes the island width by a few millimeters, implying that any fast-ion effect on mode stability is below detection limits. When compared to the expected signals in the absence of TM-induced transport, both the average and modulated neutron signals deviate, implying that fast-ion transport occurs in much of phase space. Fast-ion D-α (FIDA) measurements detect reductions in signal at wavelengths that are sensitive to counter-passing ions. Neutral particle analyzer data imply poor confinement of trapped fast ions. Lastly, calculations of the expected fast-ion transport that use measured TM properties successfully reproduce the data.« less
ELATE: an open-source online application for analysis and visualization of elastic tensors
NASA Astrophysics Data System (ADS)
Gaillac, Romain; Pullumbi, Pluton; Coudert, François-Xavier
2016-07-01
We report on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties. After describing the software features, how we compute the conventional elastic constants and how we represent them graphically, we explain our technical choices for the implementation. In particular, we focus on why a Python module is used to generate the HTML web page with embedded Javascript for dynamical plots.
Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation
NASA Astrophysics Data System (ADS)
Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai
2018-03-01
The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.
Custom chipset and compact module design for a 75-110 GHz laboratory signal source
NASA Astrophysics Data System (ADS)
Morgan, Matthew A.; Boyd, Tod A.; Castro, Jason J.
2016-12-01
We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers.
Atmosphere-entry behavior of a modular, disk-shaped, isotope heat source.
NASA Technical Reports Server (NTRS)
Vorreiter, J. W.; Pitts, W. C.; Stine, H. A.; Burns, J. J.
1973-01-01
The authors have studied the entry and impact behavior of an isotope heat source for space nuclear power that disassembles into a number of modules which would enter the earth's atmosphere separately if a flight aborted. These modules are disk-shaped units, each with its own reentry heat shield and protective impact container. In normal operation, the disk modules are stacked inside the generator, but during a reentry abort they separate and fly as individual units of low ballistic coefficient. Flight tests at hypersonic speeds have confirmed that a stack of disks will separate and assume a flat-forward mode of flight. Free-fall tests of single disks have demonstrated a nominal impact velocity of 30 m/sec at sea level for a practical range of ballistic coefficients.
Ray, Sumanta; Maulik, Ujjwal
2016-12-20
Detecting perturbation in modular structure during HIV-1 disease progression is an important step to understand stage specific infection pattern of HIV-1 virus in human cell. In this article, we proposed a novel methodology on integration of multiple biological information to identify such disruption in human gene module during different stages of HIV-1 infection. We integrate three different biological information: gene expression information, protein-protein interaction information and gene ontology information in single gene meta-module, through non negative matrix factorization (NMF). As the identified metamodules inherit those information so, detecting perturbation of these, reflects the changes in expression pattern, in PPI structure and in functional similarity of genes during the infection progression. To integrate modules of different data sources into strong meta-modules, NMF based clustering is utilized here. Perturbation in meta-modular structure is identified by investigating the topological and intramodular properties and putting rank to those meta-modules using a rank aggregation algorithm. We have also analyzed the preservation structure of significant GO terms in which the human proteins of the meta-modules participate. Moreover, we have performed an analysis to show the change of coregulation pattern of identified transcription factors (TFs) over the HIV progression stages.
NASA Astrophysics Data System (ADS)
Field, E. C.; Bloom, R. M.
1993-05-01
In this report, the principal of reciprocity is used in conjunction with a full-wave propagation code to calculate ground-level fields excited by ionospheric currents modulated at frequencies between 50 and 100 Hz with HF heaters. Results show the dependence on source orientation, altitude, and dimension and therefore pertain to experiments using the HIPAS or HAARP ionospheric heaters. In the end-fire mode, the waveguide excitation efficiency of an ELF HED in the ionosphere is up to 20 dB greater than for a ground-based antenna, provided its altitude does not exceed 80 to 90 km. The highest efficiency occurs for a source altitude of around 70 km; if that altitude is raised to 100 km, the efficiency drops by about 20 dB in the day and 10 dB at night. That efficiency does not account for the greater conductivity modulation that might be achieved at altitudes greater than 70 km, however. The trade-off between the altitude dependencies of the excitation efficiency and maximum achievable modulation depends on the ERP of the HF heater, the optimum altitude increasing with increasing ERP. For HIPAS the best modulation altitude is around 70 km, whereas for HAARP there might be marginal value in modulating at attitudes as high as 100 km.
ERIC Educational Resources Information Center
Plummer, Nancy; Michael, Nancy, Ed.
This module on urinary tract infections is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are…
Commercial Demand Module - NEMS Documentation
2017-01-01
Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.
Novel intercore-cladding lithium niobate thin film coated MOEMS fiber sensor/modulator
NASA Technical Reports Server (NTRS)
Jamlson, Tracee L.; Konreich, Phillip; Yu, Chung
2005-01-01
A MOEMS fiber modulator/sensor is fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125-micron fibers. Such a MOEMS modulator design is expected to enhance existing lithium niobate undersea acousto-optic sound wave detectors. In our proposed version, the lithium niobate thin film alters the ordinary silica core/cladding boundary conditions such that, when a stress or strain is applied to the fiber, the core light confinement factor changes, leading to modulation of fiber light transmission. Test results of the lithium niobate embedded fiber with a 1550-nm, 4-mW laser source revealed a reduction in light transmission with applied tension. As a comparison, using the same laser source, an ordinary silica core/cladding fiber did not exhibit any reduction in transmitted light when the same strain was applied. Further experimental work and theoretical analysis is ongoing.
Method for the substantial reduction of quenching effects in luminescence spectrometry
Demas, James N.; Jones, Wesley M.; Keller, Richard A.
1989-01-01
Method for reducing quenching effects in analytical luminescence measurements. Two embodiments of the present invention are described which relate to a form of time resolution based on the amplitudes and phase shifts of modulated emission signals. In the first embodiment, the measured modulated emission signal is substantially independent of sample quenching at sufficiently high frequenices. In the second embodiment, the modulated amplitude and the phase shift between the emission signal and the excitation source are simultaneously measured. Using either method, the observed modulated amplitude may reduced to tis unquenched value.
NASA Technical Reports Server (NTRS)
Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)
2013-01-01
One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)
2015-01-01
One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1971-01-01
The conclusions of the design research of the song adaptive delta modulator are presented for source encoding voice signals. The variation of output SNR vs input signal power/when 8, 9, and 10 bit internal arithmetic is employed. Voice intelligibility tapes to test the 10-bit system are used. An analysis of a delta modulator is also presented designed to minimize the in-band rms error. This is accomplished by frequency shaping the error signal in the modulator prior to hard limiting. The result is a significant increase in the output SNR measured after low pass filtering.
Dense module enumeration in biological networks
NASA Astrophysics Data System (ADS)
Tsuda, Koji; Georgii, Elisabeth
2009-12-01
Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.
Galileo probe battery systems design
NASA Technical Reports Server (NTRS)
Dagarin, B. P.; Van Ess, J. S.; Marcoux, L. S.
1986-01-01
NASA's Galileo mission to Jupiter will consist of a Jovian orbiter and an atmospheric entry probe. The power for the probe will be derived from two primary power sources. The main source is composed of three Li-SO2 battery modules containing 13 D-size cell strings per module. These are required to retain capacity for 7.5 years, support a 150 day clock, and a 7 hour mission sequence of increasing loads from 0.15 to 9.5 amperes for the last 30 minutes. This main power source is supplemented by two thermal batteries (CaCrO4-Ca) for use in firing the pyrotechnic initiators during the atmospheric staging events. This paper describes design development and testing of these batteries at the system level.
ERIC Educational Resources Information Center
Tong, Ye; Kolen, Michael J.
2010-01-01
"Scaling" is the process of constructing a score scale that associates numbers or other ordered indicators with the performance of examinees. Scaling typically is conducted to aid users in interpreting test results. This module describes different types of raw scores and scale scores, illustrates how to incorporate various sources of…
ERIC Educational Resources Information Center
Pallant, Amy; Pryputniewicz, Sarah; Lee, Hee-Sun
2017-01-01
This article describes a five-day online energy module, developed by the Concord Consortium (an educational research and development organization) in which students compare the effects of various energy sources on air quality, water quality, and land use. The module's interactive models explore hydraulic fracturing, real-world data on energy…
ERIC Educational Resources Information Center
Knapp, Henry H., III
This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…
Performance Based Education. Technology Activity Modules.
ERIC Educational Resources Information Center
Custer, Rodney L., Ed.
These Technology Activity Modules are designed to serve as an implementation resource for technology education teachers as they integrate technology education with Missouri's Academic Performance Standards and provide a source of activities and activity ideas that can be used to integrate and reinforce learning across the curriculum. The modules…
ERIC Educational Resources Information Center
Plummer, Nancy
This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…
Technique to determine location of radio sources from measurements taken on spinning spacecraft
NASA Technical Reports Server (NTRS)
Fainberg, J.
1979-01-01
The procedure developed to extract average source direction and average source size from spin-modulated radio astronomy data measured on the IMP-6 spacecraft is described. Because all measurements are used, rather than just finding maxima or minima in the data, the method is very sensitive, even in the presence of large amounts of noise. The technique is applicable to all experiments with directivity characteristics. It is suitable for onboard processing on satellites to reduce the data flow to Earth. The application to spin-modulated nonpolarized radio astronomy data is made and includes the effects of noise, background, and second source interference. The analysis was tested with computer simulated data and the results agree with analytic predictions. Applications of this method with IMP-6 radio data have led to: (1) determination of source positions of traveling solar radio bursts at large distances from the Sun; (2) mapping of magnetospheric radio emissions by radio triangulation; and (3) detection of low frequency radio emissions from Jupiter and Saturn.
Nanosecond liquid crystalline optical modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.
2016-07-26
An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying themore » electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.« less
Boshkova, T; Mitev, K
2016-03-01
In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume (152)Eu source (drum about 200L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Time course of implicit processing and explicit processing of emotional faces and emotional words.
Frühholz, Sascha; Jellinghaus, Anne; Herrmann, Manfred
2011-05-01
Facial expressions are important emotional stimuli during social interactions. Symbolic emotional cues, such as affective words, also convey information regarding emotions that is relevant for social communication. Various studies have demonstrated fast decoding of emotions from words, as was shown for faces, whereas others report a rather delayed decoding of information about emotions from words. Here, we introduced an implicit (color naming) and explicit task (emotion judgment) with facial expressions and words, both containing information about emotions, to directly compare the time course of emotion processing using event-related potentials (ERP). The data show that only negative faces affected task performance, resulting in increased error rates compared to neutral faces. Presentation of emotional faces resulted in a modulation of the N170, the EPN and the LPP components and these modulations were found during both the explicit and implicit tasks. Emotional words only affected the EPN during the explicit task, but a task-independent effect on the LPP was revealed. Finally, emotional faces modulated source activity in the extrastriate cortex underlying the generation of the N170, EPN and LPP components. Emotional words led to a modulation of source activity corresponding to the EPN and LPP, but they also affected the N170 source on the right hemisphere. These data show that facial expressions affect earlier stages of emotion processing compared to emotional words, but the emotional value of words may have been detected at early stages of emotional processing in the visual cortex, as was indicated by the extrastriate source activity. Copyright © 2011 Elsevier B.V. All rights reserved.
Open-source software for collision detection in external beam radiation therapy
NASA Astrophysics Data System (ADS)
Suriyakumar, Vinith M.; Xu, Renee; Pinter, Csaba; Fichtinger, Gabor
2017-03-01
PURPOSE: Collision detection for external beam radiation therapy (RT) is important for eliminating the need for dryruns that aim to ensure patient safety. Commercial treatment planning systems (TPS) offer this feature but they are expensive and proprietary. Cobalt-60 RT machines are a viable solution to RT practice in low-budget scenarios. However, such clinics are hesitant to invest in these machines due to a lack of affordable treatment planning software. We propose the creation of an open-source room's eye view visualization module with automated collision detection as part of the development of an open-source TPS. METHODS: An openly accessible linac 3D geometry model is sliced into the different components of the treatment machine. The model's movements are based on the International Electrotechnical Commission standard. Automated collision detection is implemented between the treatment machine's components. RESULTS: The room's eye view module was built in C++ as part of SlicerRT, an RT research toolkit built on 3D Slicer. The module was tested using head and neck and prostate RT plans. These tests verified that the module accurately modeled the movements of the treatment machine and radiation beam. Automated collision detection was verified using tests where geometric parameters of the machine's components were changed, demonstrating accurate collision detection. CONCLUSION: Room's eye view visualization and automated collision detection are essential in a Cobalt-60 treatment planning system. Development of these features will advance the creation of an open-source TPS that will potentially help increase the feasibility of adopting Cobalt-60 RT.
Energy management of fuel cell/solar cell/supercapacitor hybrid power source
NASA Astrophysics Data System (ADS)
Thounthong, Phatiphat; Chunkag, Viboon; Sethakul, Panarit; Sikkabut, Suwat; Pierfederici, Serge; Davat, Bernard
This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles.
Lee, Young Han; Park, Eun Hae; Suh, Jin-Suck
2015-01-01
The objectives are: 1) to introduce a simple and efficient method for extracting region of interest (ROI) values from a Picture Archiving and Communication System (PACS) viewer using optical character recognition (OCR) software and a macro program, and 2) to evaluate the accuracy of this method with a PACS workstation. This module was designed to extract the ROI values on the images of the PACS, and created as a development tool by using open-source OCR software and an open-source macro program. The principal processes are as follows: (1) capture a region of the ROI values as a graphic file for OCR, (2) recognize the text from the captured image by OCR software, (3) perform error-correction, (4) extract the values including area, average, standard deviation, max, and min values from the text, (5) reformat the values into temporary strings with tabs, and (6) paste the temporary strings into the spreadsheet. This principal process was repeated for the number of ROIs. The accuracy of this module was evaluated on 1040 recognitions from 280 randomly selected ROIs of the magnetic resonance images. The input times of ROIs were compared between conventional manual method and this extraction module-assisted input method. The module for extracting ROI values operated successfully using the OCR and macro programs. The values of the area, average, standard deviation, maximum, and minimum could be recognized and error-corrected with AutoHotkey-coded module. The average input times using the conventional method and the proposed module-assisted method were 34.97 seconds and 7.87 seconds, respectively. A simple and efficient method for ROI value extraction was developed with open-source OCR and a macro program. Accurate inputs of various numbers from ROIs can be extracted with this module. The proposed module could be applied to the next generation of PACS or existing PACS that have not yet been upgraded. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.
1984-03-20
A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-
Dietz, Mathias; Marquardt, Torsten; Salminen, Nelli H.; McAlpine, David
2013-01-01
The ability to locate the direction of a target sound in a background of competing sources is critical to the survival of many species and important for human communication. Nevertheless, brain mechanisms that provide for such accurate localization abilities remain poorly understood. In particular, it remains unclear how the auditory brain is able to extract reliable spatial information directly from the source when competing sounds and reflections dominate all but the earliest moments of the sound wave reaching each ear. We developed a stimulus mimicking the mutual relationship of sound amplitude and binaural cues, characteristic to reverberant speech. This stimulus, named amplitude modulated binaural beat, allows for a parametric and isolated change of modulation frequency and phase relations. Employing magnetoencephalography and psychoacoustics it is demonstrated that the auditory brain uses binaural information in the stimulus fine structure only during the rising portion of each modulation cycle, rendering spatial information recoverable in an otherwise unlocalizable sound. The data suggest that amplitude modulation provides a means of “glimpsing” low-frequency spatial cues in a manner that benefits listening in noisy or reverberant environments. PMID:23980161
Pulse width modulation inverter with battery charger
Slicker, James M.
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Pulse width modulation inverter with battery charger
NASA Technical Reports Server (NTRS)
Slicker, James M. (Inventor)
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
History, Applications, and Philosophy in Mathematics Education: HAPh—A Use of Primary Sources
NASA Astrophysics Data System (ADS)
Jankvist, Uffe Thomas
2013-03-01
The article first investigates the basis for designing teaching activities dealing with aspects of history, applications, and philosophy of mathematics in unison by discussing and analyzing the different `whys' and `hows' of including these three dimensions in mathematics education. Based on the observation that a use of history, applications, and philosophy as a `goal' is best realized through a modules approach, the article goes on to discuss how to actually design such teaching modules. It is argued that a use of primary original sources through a so-called guided reading along with a use of student essay assignments, which are suitable for bringing out relevant meta-issues of mathematics, is a sensible way of realizing a design encompassing the three dimensions. Two concrete teaching modules on aspects of the history, applications, and philosophy of mathematics—HAPh-modules—are outlined and the mathematical cases of these, graph theory and Boolean algebra, are described. Excerpts of student groups' essays from actual implementations of these modules are displayed as illustrative examples of the possible effect such HAPh-modules may have on students' development of an awareness regarding history, applications, and philosophy in relation to mathematics as a (scientific) discipline.
Medium power amplifiers covering 90 - 130 GHz for telescope local oscillators
NASA Technical Reports Server (NTRS)
Samoska, Lorene A.; Bryerton, Eric; Pukala, David; Peralta, Alejandro; Hu, Ming; Schmitz, Adele
2005-01-01
This paper describes a set of power amplifier (PA) modules containing InP High Electron Mobility Transistor (HEMT) Monolithic Millimeter-wave Integrated Circuit (MMIC) chips. The chips were designed and optimized for local oscillator sources in the 90-130 GHz band for the Atacama Large Millimeter Array telescope. The modules feature 20-45 mW of output power, to date the highest power from solid state HEMT MMIC modules above 110 GHz.
FAST TRACK COMMUNICATION: Stable propagation of a modulated positron beam in a bent crystal channel
NASA Astrophysics Data System (ADS)
Kostyuk, A.; Korol, A. V.; Solov'yov, A. V.; Greiner, W.
2010-08-01
The propagation of a modulated positron beam in a planar crystal channel is investigated. It is demonstrated that the beam preserves its modulation at sufficiently large penetration depths, which opens the prospect of using a crystalline undulator as a coherent source of hard x-rays. This finding is a crucial milestone in developing a new type of laser radiating in the hard x-ray and gamma-ray range.
Continued Funding for Prime Development
2012-04-18
Portal The PrIMe Portal is based on the Drupal open-source software. During the past year we upgraded it to version 6. There are currently over 350...Primekinetics.org ( Drupal Data warehouse \\, WebDAV Access Layer - L qeirch Re~~ est Role validation/Authorization Authentication Module I ~ Module...PHP language with the help of CMF Drupal -6. The standard modules of the Drupal core set are developed by third parties and obtained from the
Discharging a DC bus capacitor of an electrical converter system
Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M
2014-10-14
A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.
Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong
2017-10-01
When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.
A Recording-Based Method for Auralization of Rotorcraft Flyover Noise
NASA Technical Reports Server (NTRS)
Pera, Nicholas M.; Rizzi, Stephen A.; Krishnamurthy, Siddhartha; Fuller, Christopher R.; Christian, Andrew
2018-01-01
Rotorcraft noise is an active field of study as the sound produced by these vehicles is often found to be annoying. A means to auralize rotorcraft flyover noise is sought to help understand the factors leading to annoyance. Previous work by the authors focused on auralization of rotorcraft fly-in noise, in which a simplification was made that enabled the source noise synthesis to be based on a single emission angle. Here, the goal is to auralize a complete flyover event, so the source noise synthesis must be capable of traversing a range of emission angles. The synthesis uses a source noise definition process that yields periodic and aperiodic (modulation) components at a set of discrete emission angles. In this work, only the periodic components are used for the source noise synthesis for the flyover; the inclusion of modulation components is the subject of ongoing research. Propagation of the synthesized source noise to a ground observer is performed using the NASA Auralization Framework. The method is demonstrated using ground recordings from a flight test of the AS350 helicopter for the source noise definition.
Exception handling for sensor fusion
NASA Astrophysics Data System (ADS)
Chavez, G. T.; Murphy, Robin R.
1993-08-01
This paper presents a control scheme for handling sensing failures (sensor malfunctions, significant degradations in performance due to changes in the environment, and errant expectations) in sensor fusion for autonomous mobile robots. The advantages of the exception handling mechanism are that it emphasizes a fast response to sensing failures, is able to use only a partial causal model of sensing failure, and leads to a graceful degradation of sensing if the sensing failure cannot be compensated for. The exception handling mechanism consists of two modules: error classification and error recovery. The error classification module in the exception handler attempts to classify the type and source(s) of the error using a modified generate-and-test procedure. If the source of the error is isolated, the error recovery module examines its cache of recovery schemes, which either repair or replace the current sensing configuration. If the failure is due to an error in expectation or cannot be identified, the planner is alerted. Experiments using actual sensor data collected by the CSM Mobile Robotics/Machine Perception Laboratory's Denning mobile robot demonstrate the operation of the exception handling mechanism.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.
Wan, W J; Li, H; Zhou, T; Cao, J C
2017-03-08
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.
NASA Astrophysics Data System (ADS)
Na, M.; Lee, S.; Kim, G.; Kim, H. S.; Rho, J.; Ok, J. G.
2017-12-01
Detecting and mapping the spatial distribution of radioactive materials is of great importance for environmental and security issues. We design and present a novel hemispherical rotational modulation collimator (H-RMC) system which can visualize the location of the radiation source by collecting signals from incident rays that go through collimator masks. The H-RMC system comprises a servo motor-controlled rotating module and a hollow heavy-metallic hemisphere with slits/slats equally spaced with the same angle subtended from the main axis. In addition, we also designed an auxiliary instrument to test the imaging performance of the H-RMC system, comprising a high-precision x- and y-axis staging station on which one can mount radiation sources of various shapes. We fabricated the H-RMC system which can be operated in a fully-automated fashion through the computer-based controller, and verify the accuracy and reproducibility of the system by measuring the rotational and linear positions with respect to the programmed values. Our H-RMC system may provide a pivotal tool for spatial radiation imaging with high reliability and accuracy.
Nan, Yinbo; Huo, Li; Lou, Caiyun
2005-05-20
We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation
Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.
2017-01-01
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492
Design and implementation of a risk assessment module in a spatial decision support system
NASA Astrophysics Data System (ADS)
Zhang, Kaixi; van Westen, Cees; Bakker, Wim
2014-05-01
The spatial decision support system named 'Changes SDSS' is currently under development. The goal of this system is to analyze changing hydro-meteorological hazards and the effect of risk reduction alternatives to support decision makers in choosing the best alternatives. The risk assessment module within the system is to assess the current risk, analyze the risk after implementations of risk reduction alternatives, and analyze the risk in different future years when considering scenarios such as climate change, land use change and population growth. The objective of this work is to present the detailed design and implementation plan of the risk assessment module. The main challenges faced consist of how to shift the risk assessment from traditional desktop software to an open source web-based platform, the availability of input data and the inclusion of uncertainties in the risk analysis. The risk assessment module is developed using Ext JS library for the implementation of user interface on the client side, using Python for scripting, as well as PostGIS spatial functions for complex computations on the server side. The comprehensive consideration of the underlying uncertainties in input data can lead to a better quantification of risk assessment and a more reliable Changes SDSS, since the outputs of risk assessment module are the basis for decision making module within the system. The implementation of this module will contribute to the development of open source web-based modules for multi-hazard risk assessment in the future. This work is part of the "CHANGES SDSS" project, funded by the European Community's 7th Framework Program.
Some practical universal noiseless coding techniques, part 3, module PSl14,K+
NASA Technical Reports Server (NTRS)
Rice, Robert F.
1991-01-01
The algorithmic definitions, performance characterizations, and application notes for a high-performance adaptive noiseless coding module are provided. Subsets of these algorithms are currently under development in custom very large scale integration (VLSI) at three NASA centers. The generality of coding algorithms recently reported is extended. The module incorporates a powerful adaptive noiseless coder for Standard Data Sources (i.e., sources whose symbols can be represented by uncorrelated non-negative integers, where smaller integers are more likely than the larger ones). Coders can be specified to provide performance close to the data entropy over any desired dynamic range (of entropy) above 0.75 bit/sample. This is accomplished by adaptively choosing the best of many efficient variable-length coding options to use on each short block of data (e.g., 16 samples) All code options used for entropies above 1.5 bits/sample are 'Huffman Equivalent', but they require no table lookups to implement. The coding can be performed directly on data that have been preprocessed to exhibit the characteristics of a standard source. Alternatively, a built-in predictive preprocessor can be used where applicable. This built-in preprocessor includes the familiar 1-D predictor followed by a function that maps the prediction error sequences into the desired standard form. Additionally, an external prediction can be substituted if desired. A broad range of issues dealing with the interface between the coding module and the data systems it might serve are further addressed. These issues include: multidimensional prediction, archival access, sensor noise, rate control, code rate improvements outside the module, and the optimality of certain internal code options.
Solar Energy: Solar and the Weather.
ERIC Educational Resources Information Center
Knapp, Henry H., III
This module on solar and the weather is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…
Library Skills and Resources for Business Research.
ERIC Educational Resources Information Center
Lyle, Stanley P.; Ashbaugh, Donald L.
This independent study module is intended to introduce business administration students and managers to business information available in books, periodicals, and other library sources, and to teach library search strategies for the acquisition of needed information with a minimum expenditure of time. The module consists of six parts. The first…
ERIC Educational Resources Information Center
Knapp, Henry H., III
This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…
Solar Energy: Solar System Economics.
ERIC Educational Resources Information Center
Knapp, Henry H., III
This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…
ERIC Educational Resources Information Center
Knapp, Henry H., III
This module on home heating is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…
Solar Energy: Solar System Design Fundamentals.
ERIC Educational Resources Information Center
Knapp, Henry H., III
This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…
OpenDrift v1.0: a generic framework for trajectory modelling
NASA Astrophysics Data System (ADS)
Dagestad, Knut-Frode; Röhrs, Johannes; Breivik, Øyvind; Ådlandsvik, Bjørn
2018-04-01
OpenDrift is an open-source Python-based framework for Lagrangian particle modelling under development at the Norwegian Meteorological Institute with contributions from the wider scientific community. The framework is highly generic and modular, and is designed to be used for any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules have already been developed, including an oil drift module, a stochastic search-and-rescue module, a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the ingestion of an unspecified number of forcing fields (scalar and vectorial) from various sources, including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on Linux, Mac and Windows environments, and can be used with minimal or no Python experience. It is designed for flexibility, and researchers may easily adapt or write modules for their specific purpose. OpenDrift is also designed for performance, and simulations with millions of particles may be performed on a laptop. Further, OpenDrift is designed for robustness and is in daily operational use for emergency preparedness modelling (oil drift, search and rescue, and drifting ships) at the Norwegian Meteorological Institute.
Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei
2016-03-15
A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.
NASA Astrophysics Data System (ADS)
Nejat, Cyrus; Nejat, Narsis; Nejat, Najmeh
2014-06-01
This research project is part of Narsis Nejat Master of Science thesis project that it is done at Shiraz University. The goals of this research are to make a computer model to evaluate the thermal power, electrical power, amount of emitted/absorbed dose, and amount of emitted/absorbed dose rate for static Radioisotope Thermoelectric Generators (RTG)s that is include a comprehensive study of the types of RTG systems and in particular RTG’s fuel resulting from both natural and artificial isotopes, calculation of the permissible dose radioisotope selected from the above, and conceptual design modeling and comparison between several NASA made RTGs with the project computer model pointing out the strong and weakness points for using this model in nuclear industries for simulation. The heat is being converted to electricity by two major methods in RTGs: static conversion and dynamic conversion. The model that is created for this project is for RTGs that heat is being converted to electricity statically. The model approximates good results as being compared with SNAP-3, SNAP-19, MHW, and GPHS RTGs in terms of electrical power, efficiency, specific power, and types of the mission and amount of fuel mass that is required to accomplish the mission.
Requirements and Designs for Mars Rover RTGs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, Alfred; Shirbacheh, M; Sankarankandath, V
The current-generation RTGs (both GPHS and MOD) are designed for operation in a vacuum environment. The multifoil thermal insulation used in those RTGs only functions well in a good vacuum. Current RTGs are designed to operate with an inert cover gas before launch, and to be vented to space vacuum after launch. Both RTGs are sealed with a large number of metallic C-rings. Those seals are adequate for retaining the inert-gas overpressure during short-term launch operations, but would not be adequate to prevent intrusion of the Martian atmospheric gases during long-term operations there. Therefore, for the Mars Rover application, thosemore » RTGs just be modified to prevent the buildup of significant pressures of Mars atmosphere or of helium (from alpha decay of the fuel). In addition, a Mars Rover RTG needs to withstand a long-term dynamic environment that is much more severe than that seen by an RTG on an orbiting spacecraft or on a stationary planetary lander. This paper describes a typical Rover mission, its requirements, the environment it imposes on the RTG, and a design approach for making the RTG operable in such an environment. Specific RTG designs for various thermoelectric element alternatives are presented.; Reference CID #9268 and CID #9276.« less
NASA Astrophysics Data System (ADS)
Xu, Xiang; Zhou, Chen; Shi, Run; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong
2016-09-01
Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W), Wuhan (30.52° N, 114.32° E) and Jicamarca (11.95° S, 76.87° W) at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with latitude in the daytime ionosphere, while it increases with latitude in the nighttime ionosphere; both the electron temperature oscillation amplitude and the ground ULF wave magnitude decreases as the modulation frequency increases; when the electron temperature oscillation is fixed as input, the radiation efficiency of the ring current source is higher in the nighttime ionosphere than in the daytime ionosphere.
Matsuta, Hideyuki; Naeem, Tariq M; Wagatsuma, Kazuaki
2003-06-01
A novel emission excitation source comprising a high repetition rate diode-pumped Q-switched Nd:YAG laser and a Grimm-style glow-discharge lamp is described. Laser-ablated atoms are introduced into the He glow discharge plasma, which then give emission signals. By using phase-sensitive detection with a lock-in amplifier, the emission signal modulated by the pulsed laser can be detected selectively. It is possible to estimate only the emission intensity of sample atoms ablated by laser irradiation with little interference from the other species in the plasma.
Optical Distance Measurement Device And Method Thereof
Bowers, Mark W.
2004-06-15
A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.
The partial coherence modulation transfer function in testing lithography lens
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2018-03-01
Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.
Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources
2010-09-01
Figure 6.10 TE Module with Microtherm Added Around & Between Legs ............................................................... 57 Figure 6.11 Short... Microtherm ® insulation, 2.6 (W) of heater power was required to maintain a temperature of 400 ºC. This is an indication of the losses in the system...side of the module to the cold plate. Pour in Microtherm to insulate the module. Make sure to clean all insulation from the hot side electrodes
RF to millimeter wave integration and module technologies
NASA Astrophysics Data System (ADS)
Vähä-Heikkilä, T.
2015-04-01
Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.
Phase-shifting interference microscope with extendable field of measurement
NASA Astrophysics Data System (ADS)
Lin, Shyh-Tsong; Hsu, Wei-Feng; Wang, Ming-Shiang
2018-04-01
An innovative phase-shifting interference microscope aimed at extending the field of measurement is proposed in this paper. The microscope comprises a light source module, a phase modulation module, and an interferometric module, which reconstructs the micro-structure contours of samples using the five-step phase-shifting algorithm. This paper discusses the measurement theory and outlines the configuration, experimental setup, and experimental results obtained using the proposed interference microscope. The results confirm the efficacy of the microscope, achieving a standard deviation of 2.4 nm from a step height of 86.2 nm in multiple examinations.
Method for the substantial reduction of quenching effects in luminescence spectrometry
Demas, J.N.; Jones, W.M.; Keller, R.A.
1987-06-26
Method for reducing quenching effects in analytical luminescence measurements. Two embodiments of the present invention are described which relate to a form of time resolution based on the amplitudes and phase shifts of modulated emission signals. In the first embodiment, the measured modulated emission signal is substantially independent of sample quenching at sufficiently high frequencies. In the second embodiment, the modulated amplitude and the phase shift between the emission signal and the excitation source are simultaneously measured. Using either method, the observed modulated amplitude may be reduced to its unquenched value. 3 figs.
Aflatouni, Firooz; Hashemi, Hossein
2012-01-15
A wideband laser phase noise reduction scheme is introduced where the optical field of a laser is single sideband modulated with an electrical signal containing the discriminated phase noise of the laser. The proof-of-concept experiments on a commercially available 1549 nm distributed feedback laser show linewidth reduction from 7.5 MHz to 1.8 kHz without using large optical cavity resonators. This feed-forward scheme performs wideband phase noise cancellation independent of the light source and, as such, it is compatible with the original laser source tunability without requiring tunable optical components. By placing the proposed phase noise reduction system after a commercial tunable laser, a tunable coherent light source with kilohertz linewidth over a tuning range of 1530-1570 nm is demonstrated.
Compact, maintainable 80-KeV neutral beam module
Fink, Joel H.; Molvik, Arthur W.
1980-01-01
A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.
Field based plastic contamination sensing
USDA-ARS?s Scientific Manuscript database
The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2012-03-01
We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Sherer, T. N.; Maitland, D. J.
1989-01-01
A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.
New Light Sources and Concepts for Electro-Optic Sampling
1994-03-01
Research to improve electro - optic sampling led to the development of several high performance optical phase modulators. These phase modulators serve...method of optical pulse shape measurement was demonstrated with 3 ps time resolution, excellent power sensitivity and relative system simplicity. These experiments have opened up the field of temporal optics. Electro - optic sampling.
Radar transponder operation with compensation for distortion due to amplitude modulation
Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.
2011-01-04
In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.
The US EPA’s Human Exposure Model (HEM) is an integrated modeling system to estimate human exposure to chemicals in household consumer products. HEM consists of multiple modules, which may be run either together, or independently. The Source-to-Dose (S2D) module in HEM use...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Anuj; Castleton, Karl J.; Hoopes, Bonnie L.
2004-06-01
The study of the release and effects of chemicals in the environment and their associated risks to humans is central to public and private decision making. FRAMES 1.X, Framework for Risk Analysis in Multimedia Environmental Systems, is a systems modeling software platform, developed by PNNL, Pacific Northwest National Laboratory, that helps scientists study the release and effects of chemicals on a source to outcome basis, create environmental models for similar risk assessment and management problems. The unique aspect of FRAMES is to dynamically introduce software modules representing individual components of a risk assessment (e.g., source release of contaminants, fate andmore » transport in various environmental media, exposure, etc.) within a software framework, manipulate their attributes and run simulations to obtain results. This paper outlines the fundamental constituents of FRAMES 2.X, an enhanced version of FRAMES 1.X, that greatly improve the ability of the module developers to “plug” their self-developed software modules into the system. The basic design, the underlying principles and a discussion of the guidelines for module developers are presented.« less
Vail, W.B. III.
1991-08-27
Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.
Vail, III, William B.
1991-01-01
Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.
NASA Astrophysics Data System (ADS)
O'Sullivan, Thomas D.; No, Keunsik; Matlock, Alex; Warren, Robert V.; Hill, Brian; Cerussi, Albert E.; Tromberg, Bruce J.
2017-10-01
Frequency-domain photon migration (FDPM) uses modulated laser light to measure the bulk optical properties of turbid media and is increasingly applied for noninvasive functional medical imaging in the near-infrared. Although semiconductor edge-emitting laser diodes have been traditionally used as miniature light sources for this application, we show that vertical-cavity surface-emitting lasers (VCSELs) exhibit output power and modulation performance characteristics suitable for FDPM measurements of tissue optical properties at modulation frequencies exceeding 1 GHz. We also show that an array of multiple VCSEL devices can be coherently modulated at frequencies suitable for FDPM and can improve optical power. In addition, their small size and simple packaging make them an attractive choice as components in wearable sensors and clinical FDPM-based optical spectroscopy systems. We demonstrate the benefits of VCSEL technology by fabricating and testing a unique, compact VCSEL-based optical probe with an integrated avalanche photodiode. We demonstrate sensitivity of the VCSEL-based probe to subcutaneous tissue hemodynamics that was induced during an arterial cuff occlusion of the upper arm in a human subject.
Biological applications of an LCoS-based programmable array microscope (PAM)
NASA Astrophysics Data System (ADS)
Hagen, Guy M.; Caarls, Wouter; Thomas, Martin; Hill, Andrew; Lidke, Keith A.; Rieger, Bernd; Fritsch, Cornelia; van Geest, Bert; Jovin, Thomas M.; Arndt-Jovin, Donna J.
2007-02-01
We report on a new generation, commercial prototype of a programmable array optical sectioning fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module, including light source(s) and detector(s), features an innovative optical design and a ferroelectric liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM) instead of the DMD used in the original PAM design. The LCoS PAM (developed in collaboration with Cairn Research, Ltd.) can be attached to a port of a(ny) unmodified fluorescence microscope. The prototype system currently operated at the Max Planck Institute incorporates a 6-position high-intensity LED illuminator, modulated laser and lamp light sources, and an Andor iXon emCCD camera. The module is mounted on an Olympus IX71 inverted microscope with 60-150X objectives with a Prior Scientific x,y, and z high resolution scanning stages. Further enhancements recently include: (i) point- and line-wise spectral resolution and (ii) lifetime imaging (FLIM) in the frequency domain. Multiphoton operation and other nonlinear techniques should be feasible. The capabilities of the PAM are illustrated by several examples demonstrating single molecule as well as lifetime imaging in live cells, and the unique capability to perform photoconversion with arbitrary patterns and high spatial resolution. Using quantum dot coupled ligands we show real-time binding and subsequent trafficking of individual ligand-growth factor receptor complexes on and in live cells with a temporal resolution and sensitivity exceeding those of conventional CLSM systems. The combined use of a blue laser and parallel LED or visible laser sources permits photoactivation and rapid kinetic analysis of cellular processes probed by photoswitchable visible fluorescent proteins such as DRONPA.
Remember the source: dissociating frontal and parietal contributions to episodic memory.
Donaldson, David I; Wheeler, Mark E; Petersen, Steve E
2010-02-01
Event-related fMRI studies reveal that episodic memory retrieval modulates lateral and medial parietal cortices, dorsal middle frontal gyrus (MFG), and anterior PFC. These regions respond more for recognized old than correctly rejected new words, suggesting a neural correlate of retrieval success. Despite significant efforts examining retrieval success regions, their role in retrieval remains largely unknown. Here we asked the question, to what degree are the regions performing memory-specific operations? And if so, are they all equally sensitive to successful retrieval, or are other factors such as error detection also implicated? We investigated this question by testing whether activity in retrieval success regions was associated with task-specific contingencies (i.e., perceived targetness) or mnemonic relevance (e.g., retrieval of source context). To do this, we used a source memory task that required discrimination between remembered targets and remembered nontargets. For a given region, the modulation of neural activity by a situational factor such as target status would suggest a more domain-general role; similarly, modulations of activity linked to error detection would suggest a role in monitoring and control rather than the accumulation of evidence from memory per se. We found that parietal retrieval success regions exhibited greater activity for items receiving correct than incorrect source responses, whereas frontal retrieval success regions were most active on error trials, suggesting that posterior regions signal successful retrieval whereas frontal regions monitor retrieval outcome. In addition, perceived targetness failed to modulate fMRI activity in any retrieval success region, suggesting that these regions are retrieval specific. We discuss the different functions that these regions may support and propose an accumulator model that captures the different pattern of responses seen in frontal and parietal retrieval success regions.
A compact 16-module camera using 64-pixel CsI(Tl)/Si p-i-n photodiode imaging modules
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Gruber, G. J.; Moses, W. W.; Derenzo, S. E.; Holland, S. E.; Pedrali-Noy, M.; Krieger, B.; Mandelli, E.; Meddeler, G.; Wang, N. W.; Witt, E. K.
2002-10-01
We present a compact, configurable scintillation camera employing a maximum of 16 individual 64-pixel imaging modules resulting in a 1024-pixel camera covering an area of 9.6 cm/spl times/9.6 cm. The 64-pixel imaging module consists of optically isolated 3 mm/spl times/3 mm/spl times/5 mm CsI(Tl) crystals coupled to a custom array of Si p-i-n photodiodes read out by a custom integrated circuit (IC). Each imaging module plugs into a readout motherboard that controls the modules and interfaces with a data acquisition card inside a computer. For a given event, the motherboard employs a custom winner-take-all IC to identify the module with the largest analog output and to enable the output address bits of the corresponding module's readout IC. These address bits identify the "winner" pixel within the "winner" module. The peak of the largest analog signal is found and held using a peak detect circuit, after which it is acquired by an analog-to-digital converter on the data acquisition card. The camera is currently operated with four imaging modules in order to characterize its performance. At room temperature, the camera demonstrates an average energy resolution of 13.4% full-width at half-maximum (FWHM) for the 140-keV emissions of /sup 99m/Tc. The system spatial resolution is measured using a capillary tube with an inner diameter of 0.7 mm and located 10 cm from the face of the collimator. Images of the line source in air exhibit average system spatial resolutions of 8.7- and 11.2-mm FWHM when using an all-purpose and high-sensitivity parallel hexagonal holes collimator, respectively. These values do not change significantly when an acrylic scattering block is placed between the line source and the camera.
NASA Astrophysics Data System (ADS)
Tatchyn, Roman
1992-01-01
Insertion devices that are tuned by electrical period variation are particularly suited for the design of flexible polarized-light sources [R. Tatchyn, J. Appl. Phys. 65, 4107 (1989); R. Tatchyn and T. Cremer, IEEE Trans. Mag. 26, 3102 (1990)]. Important advantages vis-a-vis mechanical or hybrid variable field designs include: (1) significantly more rapid modulation of both polarization and energy, (2) an inherently larger set of polarization modulation capabilities and (3) polarization/energy modulation at continuously optimized values of K. In this paper we outline some of the general considerations that enter into the design of hysteresis-free variable-period/polarizing undulator structures and present the parameters of a recently-completed prototype design capable of generating intense levels of UV/VUV photon flux on SPEAR running at 3 GeV.
Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity
NASA Technical Reports Server (NTRS)
Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.
1995-01-01
A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.
The High Energy X-ray Spectrum of 4U1700-37 Observed from OSO-8
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Maurer, G. S.; Orwig, L. E.
1979-01-01
The most intense hard X-ray source in the confused region in Scorpius is identified as 4U1700-37. The 3.4-day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photon-number spectrum from 20 to 150 keV is well represented by a single power law with a photo-number spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 96.8-min X-ray modulation previously reported at lower energies. Despite the difficulties in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with theories of the evolution and physical properties of neutron stars, the observed properties of 4U1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.
NASA Astrophysics Data System (ADS)
Terminanto, A.; Swantoro, H. A.; Hidayanto, A. N.
2017-12-01
Enterprise Resource Planning (ERP) is an integrated information system to manage business processes of companies of various business scales. Because of the high cost of ERP investment, ERP implementation is usually done in large-scale enterprises, Due to the complexity of implementation problems, the success rate of ERP implementation is still low. Open Source System ERP becomes an alternative choice of ERP application to SME companies in terms of cost and customization. This study aims to identify characteristics and configure the implementation of OSS ERP Payroll module in KKPS (Employee Cooperative PT SRI) using OSS ERP Odoo and using ASAP method. This study is classified into case study research and action research. Implementation of OSS ERP Payroll module is done because the HR section of KKPS has not been integrated with other parts. The results of this study are the characteristics and configuration of OSS ERP payroll module in KKPS.
Coding conventions and principles for a National Land-Change Modeling Framework
Donato, David I.
2017-07-14
This report establishes specific rules for writing computer source code for use with the National Land-Change Modeling Framework (NLCMF). These specific rules consist of conventions and principles for writing code primarily in the C and C++ programming languages. Collectively, these coding conventions and coding principles create an NLCMF programming style. In addition to detailed naming conventions, this report provides general coding conventions and principles intended to facilitate the development of high-performance software implemented with code that is extensible, flexible, and interoperable. Conventions for developing modular code are explained in general terms and also enabled and demonstrated through the appended templates for C++ base source-code and header files. The NLCMF limited-extern approach to module structure, code inclusion, and cross-module access to data is both explained in the text and then illustrated through the module templates. Advice on the use of global variables is provided.
Wireless power using magnetic resonance coupling for neural sensing applications
NASA Astrophysics Data System (ADS)
Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.
2012-04-01
Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.
Developing Media Module Proposed to Editor in Editorial Division
NASA Astrophysics Data System (ADS)
Kristanto, A.; Mustaji; Mariono, A.; Sulistiowati; Nuryati, D. W.
2018-01-01
In this era of technology in Indonesia, various publishers introduce themselves and participate in advancing the quality of education through the publication of various books as the learning sources. One of the publishers is PT. JP Press. In compiling the learning sources, we found some problems that are left unresolved by the editor. The purpose of this research is to overcome the problems that exist in PT. JP Press by developing media module. This development research uses the ADDIE model. The types of data used in this study are qualitative and quantitative data obtained based on the results of structured interviews with material experts and media experts, as well as the editorial response questionnaire provided for individual try-out and small group try-out. Therefore, it can be concluded that the medium of elementary school supplementary module proposed to the editors of PT. JP Press is valuable to be used in the teaching and learning activities.
Integrated resonant micro-optical gyroscope and method of fabrication
Vawter, G Allen [Albuquerque, NM; Zubrzycki, Walter J [Sandia Park, NM; Guo, Junpeng [Albuquerque, NM; Sullivan, Charles T [Albuquerque, NM
2006-09-12
An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.
Ultrawide Shipboard Electrooptic Electromagnetic Environment Monitoring
1994-05-01
ridge-waveguide modulator has a device length of 300 fpm, a waveguide thickness of 0.4 pm, a device capacitance of 0.2 pF, and a r x- 0.7. For digital ...important noise sources identified. Particular attention will be paid to the performance characteristics of the optical modulator. For digital ...1.32 tM for digital as well as analog optical link applications. The operation of the FKE modulator was discussed in Section 2.1.2 of this report. At
2017-01-01
Binaural cues occurring in natural environments are frequently time varying, either from the motion of a sound source or through interactions between the cues produced by multiple sources. Yet, a broad understanding of how the auditory system processes dynamic binaural cues is still lacking. In the current study, we directly compared neural responses in the inferior colliculus (IC) of unanesthetized rabbits to broadband noise with time-varying interaural time differences (ITD) with responses to noise with sinusoidal amplitude modulation (SAM) over a wide range of modulation frequencies. On the basis of prior research, we hypothesized that the IC, one of the first stages to exhibit tuning of firing rate to modulation frequency, might use a common mechanism to encode time-varying information in general. Instead, we found weaker temporal coding for dynamic ITD compared with amplitude modulation and stronger effects of adaptation for amplitude modulation. The differences in temporal coding of dynamic ITD compared with SAM at the single-neuron level could be a neural correlate of “binaural sluggishness,” the inability to perceive fluctuations in time-varying binaural cues at high modulation frequencies, for which a physiological explanation has so far remained elusive. At ITD-variation frequencies of 64 Hz and above, where a temporal code was less effective, noise with a dynamic ITD could still be distinguished from noise with a constant ITD through differences in average firing rate in many neurons, suggesting a frequency-dependent tradeoff between rate and temporal coding of time-varying binaural information. NEW & NOTEWORTHY Humans use time-varying binaural cues to parse auditory scenes comprising multiple sound sources and reverberation. However, the neural mechanisms for doing so are poorly understood. Our results demonstrate a potential neural correlate for the reduced detectability of fluctuations in time-varying binaural information at high speeds, as occurs in reverberation. The results also suggest that the neural mechanisms for processing time-varying binaural and monaural cues are largely distinct. PMID:28381487
FREEWAT: an HORIZON 2020 project to build open source tools for water management.
NASA Astrophysics Data System (ADS)
Foglia, L.; Rossetto, R.; Borsi, I.; Mehl, S.; Velasco Mansilla, V.
2015-12-01
FREEWAT is an HORIZON 2020 EU project. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and related Directives. Specific objectives of the project are: to coordinate previous EU and national funded research to integrate existing software modules for water management in a single environment into the GIS based FREEWAT and to support the FREEWAT application in an innovative participatory approach gathering technical staff and relevant stakeholders (policy and decision makers) in designing scenarios for application of water policies. The open source characteristics of the platform allow to consider this an initiative "ad includendum", as further institutions or developers may contribute to the development. Core of the platform is the SID&GRID framework (GIS integrated physically-based distributed numerical hydrological model based on a modified version of MODFLOW 2005; Rossetto et al. 2013) in its version ported to QGIS desktop. Activities are carried out on two lines: (i) integration of modules to fulfill the end-users requirements, including tools for producing feasibility and management plans; (ii) a set of activities to fix bugs and to provide a well-integrated interface for the different tools implemented. Further capabilities to be integrated are: - module for water management and planning; - calibration, uncertainty and sensitivity analysis; - module for solute transport in unsaturated zone; - module for crop growth and water requirements in agriculture; - tools for groundwater quality issues and for the analysis, interpretation and visualization of hydrogeological data. Through creating a common environment among water research/professionals, policy makers and implementers, FREEWAT main impact will be on enhancing science- and participatory approach and evidence-based decision making in water resource management, hence producing relevant and appropriate outcomes for policy implementation. Large stakeholders involvement is thought to guarantee results dissemination and exploitation.
Concentrator hot-spot testing, phase 1
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.
1987-01-01
Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.
Shao, Jing; Sun, Junqiang
2012-08-15
We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.
Method and apparatus for pulse width modulation control of an AC induction motor
Geppert, Steven; Slicker, James M.
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Method and apparatus for pulse width modulation control of an AC induction motor
NASA Technical Reports Server (NTRS)
Geppert, Steven (Inventor); Slicker, James M. (Inventor)
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
The Bioperl Toolkit: Perl Modules for the Life Sciences
Stajich, Jason E.; Block, David; Boulez, Kris; Brenner, Steven E.; Chervitz, Stephen A.; Dagdigian, Chris; Fuellen, Georg; Gilbert, James G.R.; Korf, Ian; Lapp, Hilmar; Lehväslaiho, Heikki; Matsalla, Chad; Mungall, Chris J.; Osborne, Brian I.; Pocock, Matthew R.; Schattner, Peter; Senger, Martin; Stein, Lincoln D.; Stupka, Elia; Wilkinson, Mark D.; Birney, Ewan
2002-01-01
The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for bioinformatics application programmers. The Bioperl modules have been successfully and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion of how the open-source nature of the project has contributed to the development effort. [Supplemental material is available online at www.genome.org. Bioperl is available as open-source software free of charge and is licensed under the Perl Artistic License (http://www.perl.com/pub/a/language/misc/Artistic.html). It is available for download at http://www.bioperl.org. Support inquiries should be addressed to bioperl-l@bioperl.org.] PMID:12368254
Temporal X-ray astronomy with a pinhole camera. [cygnus and scorpius constellation
NASA Technical Reports Server (NTRS)
Holt, S. S.
1975-01-01
Preliminary results from the Ariel-5 all-sky X-ray monitor are presented, along with sufficient experiment details to define the experiment sensitivity. Periodic modulation of the X-ray emission was investigated from three sources with which specific periods were associated, with the results that the 4.8 hour variation from Cyg X-3 was confirmed, a long-term average 5.6 day variation from Cyg X-1 was discovered, and no detectable 0.787 day modulation of Sco X-1 was observed. Consistency of the long-term Sco X-1 emission with a shot-noise model is discussed, wherein the source behavior is shown to be interpretable as approximately 100 flares per day, each with a duration of several hours. A sudden increase in the Cyg X-1 intensity by almost a factor of three on 22 April 1975 is reported, after 5 months of relative source constancy. The light curve of a bright nova-like transient source in Triangulum is presented, and compared with previously observed transient sources. Preliminary evidence for the existence of X-ray bursts with duration less than 1 hour is offered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, M.E.
1997-12-05
This V and V Report includes analysis of two revisions of the DMS [data management system] System Requirements Specification (SRS) and the Preliminary System Design Document (PSDD); the source code for the DMS Communication Module (DMSCOM) messages; the source code for selected DMS Screens, and the code for the BWAS Simulator. BDM Federal analysts used a series of matrices to: compare the requirements in the System Requirements Specification (SRS) to the specifications found in the System Design Document (SDD), to ensure the design supports the business functions, compare the discreet parts of the SDD with each other, to ensure thatmore » the design is consistent and cohesive, compare the source code of the DMS Communication Module with the specifications, to ensure that the resultant messages will support the design, compare the source code of selected screens to the specifications to ensure that resultant system screens will support the design, compare the source code of the BWAS simulator with the requirements to interface with DMS messages and data transfers relating to the BWAS operations.« less
Chip-to-chip optical link by using optical wiring method
NASA Astrophysics Data System (ADS)
Cho, In-Kui; Ahn, Seoung Ho; Jeong, Myung-Yung; Rho, Byung Sup; Park, Hyo Hoon
2008-01-01
A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (a) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (b) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (c) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. A chip-to-chip optical link system constructed with TRx modules was fabricated and the optical characteristics were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for vertical-cavity surface-emitting lasers (VCSELs) and photodiodes (PDs). We successfully achieved a 5 Gb/s data transmission rate with this optical link.
Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe
NASA Astrophysics Data System (ADS)
Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.
1993-04-01
The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.
AlGaInAs EML having high extinction ratios fabricated by identical epitaxial layer technique
NASA Astrophysics Data System (ADS)
Deng, Qiufang; Guo, Lu; Liang, Song; Sun, Siwei; Xie, Xiao; Zhu, Hongliang; Wang, Wei
2018-04-01
AlGaInAs electroabsorption-modulated lasers (EMLs) fabricated by identical epitaxial layer technique are demonstrated. The EML device shows an infinite characteristic temperature when the temperature ranges from 20 oC to 30 oC. The integrated modulator has static extinction ratios of larger than 20 dB at a reverse bias voltage of - 2 V. The small signal modulation bandwidth of the modulator is larger than 11 GHz. At 10 Gb/s data modulation, the dynamic extinction ratio is about 9.5 dB in a back to back test configuration. Because only a simple fabrication procedure is needed, our EMLs are promising low cost light sources for optical fiber transmission applications.
Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe
NASA Technical Reports Server (NTRS)
Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.
1993-01-01
The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.
Modal noise impact in radio over fiber multimode fiber links.
Gasulla, I; Capmany, J
2008-01-07
A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise.
Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry
Zhang, Yiwei; Ye, Fei; Qi, Bing; ...
2016-07-12
We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.
Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor
NASA Astrophysics Data System (ADS)
Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander
2015-03-01
Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.
Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing
2015-01-01
The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188
Research for the jamming mechanism of high-frequency laser to the laser seeker
NASA Astrophysics Data System (ADS)
Zheng, Xingyuan; Zhang, Haiyang; Wang, Yunping; Feng, Shuang; Zhao, Changming
2013-08-01
High-frequency laser will be able to enter the enemy laser signal processing systems without encoded identification and a copy. That makes it one of the research directions of new interference sources. In order to study the interference mechanism of high-frequency laser to laser guided weapons. According to the principle of high-frequency laser interference, a series of related theoretical models such as a semi-active laser seeker coded identification model, a time door model, multi-signal processing model and a interference signal modulation processing model are established. Then seeker interfere with effective 3σ criterion is proposed. Based on this, the study of the effect of multi-source interference and signal characteristics of the effect of high repetition frequency laser interference are key research. According to the simulation system testing, the results show that the multi-source interference and interference signal frequency modulation can effectively enhance the interference effect. While the interference effect of the interference signal amplitude modulation is not obvious. The research results will provide the evaluation of high-frequency laser interference effect and provide theoretical references for high-frequency laser interference system application.
Kienle, A; Patterson, M S
1997-09-01
We investigate theoretically the errors in determining the reduced scattering and absorption coefficients of semi-infinite turbid media from frequency-domain reflectance measurements made at small distances between the source and the detector(s). The errors are due to the uncertainties in the measurement of the phase, the modulation and the steady-state reflectance as well as to the diffusion approximation which is used as a theoretical model to describe light propagation in tissue. Configurations using one and two detectors are examined for the measurement of the phase and the modulation and for the measurement of the phase and the steady-state reflectance. Three solutions of the diffusion equation are investigated. We show that measurements of the phase and the steady-state reflectance at two different distances are best suited for the determination of the optical properties close to the source. For this arrangement the errors in the absorption coefficient due to typical uncertainties in the measurement are greater than those resulting from the application of the diffusion approximation at a modulation frequency of 200 MHz. A Monte Carlo approach is also examined; this avoids the errors due to the diffusion approximation.
Liu, Zi-Yong; Yao, Xiu-Qing; Zhang, Quan; Liu, Zhen; Wang, Ze-Jie; Zhang, Yong-Yu; Li, Fu-Li
2017-04-01
Producing biobutanol from lignocellulosic biomass has shown promise to ultimately reduce greenhouse gases and alleviate the global energy crisis. However, because of the recalcitrance of a lignocellulosic biomass, a pretreatment of the substrate is needed which in many cases releases soluble lignin compounds (SLCs), which inhibit growth of butanol-producing clostridia. In this study, we found that SLCs changed the acetone/butanol ratio (A/B ratio) during butanol fermentation. The typical A/B molar ratio during Clostridium beijerinckii NCIMB 8052 batch fermentation with glucose as the carbon source is about 0.5. In the present study, the A/B molar ratio during batch fermentation with a lignocellulosic hydrolysate as the carbon source was 0.95 at the end of fermentation. Structural and redox potential changes of the SLCs were characterized before and after fermentation by using gas chromatography/mass spectrometry and electrochemical analyses, which indicated that some exogenous SLCs were involved in distributing electron flow to C. beijerinckii , leading to modulation of the redox balance. This was further demonstrated by the NADH/NAD + ratio and trxB gene expression profile assays at the onset of solventogenic growth. As a result, the A/B ratio of end products changed significantly during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source compared to glucose as the carbon source. These results revealed that SLCs not only inhibited cell growth but also modulated the A/B ratio during C. beijerinckii butanol fermentation. IMPORTANCE Bioconversion of lignocellulosic feedstocks to butanol involves pretreatment, during which hundreds of soluble lignin compounds (SLCs) form. Most of these SLCs inhibit growth of solvent-producing clostridia. However, the mechanism by which these compounds modulate electron flow in clostridia remains elusive. In this study, the results revealed that SLCs changed redox balance by producing oxidative stress and modulating electron flow as electron donors. Production of H 2 and acetone was stimulated, while butanol production remained unchanged, which led to a high A/B ratio during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source. These observations provide insight into utilizing C. beijerinckii to produce butanol from a lignocellulosic biomass. Copyright © 2017 American Society for Microbiology.
Liu, Zi-Yong; Yao, Xiu-Qing; Zhang, Quan; Liu, Zhen; Wang, Ze-Jie; Zhang, Yong-Yu
2017-01-01
ABSTRACT Producing biobutanol from lignocellulosic biomass has shown promise to ultimately reduce greenhouse gases and alleviate the global energy crisis. However, because of the recalcitrance of a lignocellulosic biomass, a pretreatment of the substrate is needed which in many cases releases soluble lignin compounds (SLCs), which inhibit growth of butanol-producing clostridia. In this study, we found that SLCs changed the acetone/butanol ratio (A/B ratio) during butanol fermentation. The typical A/B molar ratio during Clostridium beijerinckii NCIMB 8052 batch fermentation with glucose as the carbon source is about 0.5. In the present study, the A/B molar ratio during batch fermentation with a lignocellulosic hydrolysate as the carbon source was 0.95 at the end of fermentation. Structural and redox potential changes of the SLCs were characterized before and after fermentation by using gas chromatography/mass spectrometry and electrochemical analyses, which indicated that some exogenous SLCs were involved in distributing electron flow to C. beijerinckii, leading to modulation of the redox balance. This was further demonstrated by the NADH/NAD+ ratio and trxB gene expression profile assays at the onset of solventogenic growth. As a result, the A/B ratio of end products changed significantly during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source compared to glucose as the carbon source. These results revealed that SLCs not only inhibited cell growth but also modulated the A/B ratio during C. beijerinckii butanol fermentation. IMPORTANCE Bioconversion of lignocellulosic feedstocks to butanol involves pretreatment, during which hundreds of soluble lignin compounds (SLCs) form. Most of these SLCs inhibit growth of solvent-producing clostridia. However, the mechanism by which these compounds modulate electron flow in clostridia remains elusive. In this study, the results revealed that SLCs changed redox balance by producing oxidative stress and modulating electron flow as electron donors. Production of H2 and acetone was stimulated, while butanol production remained unchanged, which led to a high A/B ratio during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source. These observations provide insight into utilizing C. beijerinckii to produce butanol from a lignocellulosic biomass. PMID:28130305
Recent advances in the front-end sources of the LMJ fusion laser
NASA Astrophysics Data System (ADS)
Gleyze, Jean-François; Hares, Jonathan; Vidal, Sebastien; Beck, Nicolas; Dubertrand, Jerome; Perrin, Arnaud
2011-03-01
LMJ is typical of lasers used for inertial confinement fusion and requires a laser of programmable parameters for injection into the main amplifier. For several years, the CEA has developed front end fiber sources, based on telecommunications fiber optics technologies. These sources meet the needs but as the technology evolves we can expect improved efficiency and reductions in size and cost. We give an up-to-date description of some present development issues, particularly in the field of temporal shaping with the use of digital system. The synchronization of such electronics has been challenging however we now obtain system jitter of less then 7ps rms. Secondly, we will present recent advance in the use of fiber based pre-comp system to avoid parasitic amplitude modulation from phase modulation used for spectral broadening.
Martínez-Trujillo, Aurora; Aranda, Juan S.; Gómez-Sánchez, Carlos; Trejo-Aguilar, Blanca; Aguilar-Osorio, Guillermo
2009-01-01
Growth and enzymes production by Aspergillus flavipes FP-500 were evaluated on pectin, polygalacturonic acid, galacturonic acid, arabinose, rhamnose, xylose, glycerol and glucose at different initial pH values. We found that the strain produced exopectinases, endopectinases and pectin lyases. Exopectinases and pectin lyase were found to be produced at basal levels as constitutive enzymes and their production was modulated by the available carbon source and pH of culture medium and stimulated by the presence of inducer in the culture medium. Endo-pectinase was basically inducible and was only produced when pectin was used as carbon source. Our results suggest that pectinases in A. flavipes FP-500 are produced in a concerted way. The first enzyme to be produced was exopectinase followed by Pectin Lyase and Endo-pectinase. PMID:24031315
High Precision Laser Range Sensor
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge (Inventor); Lay, Oliver P. (Inventor)
2003-01-01
The present invention is an improved distance measuring interferometer that includes high speed phase modulators and additional phase meters to generate and analyze multiple heterodyne signal pairs with distinct frequencies. Modulation sidebands with large frequency separation are generated by the high speed electro-optic phase modulators, requiring only a single frequency stable laser source and eliminating the need for a fist laser to be tuned or stabilized relative to a second laser. The combination of signals produced by the modulated sidebands is separated and processed to give the target distance. The resulting metrology apparatus enables a sensor with submicron accuracy or better over a multi- kilometer ambiguity range.
Self-contained, single-use hose and tubing cleaning module
NASA Technical Reports Server (NTRS)
Rollins, Fred P. (Inventor); Glass, James S. (Inventor)
1987-01-01
A self contained, single use hose and tubing cleaning module which utilizes available water supplies without requiring access to precision cleaning facilities is presented. The module is attached to the water source at the inlet side and to the hose or tubing to be cleaned at the outlet side. The water flows through a water purification zone, a detergent dispensing zone, a filtration zone before the detergent laden water flows into the tubing to clean the tubing walls. The module contains an embedded pad which is impregnated with a pH indicator to indicate to the user when the detergent has dissolved and rinsing of the tubing begins.
Simulation verification techniques study. Subsystem simulation validation techniques
NASA Technical Reports Server (NTRS)
Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.
1974-01-01
Techniques for validation of software modules which simulate spacecraft onboard systems are discussed. An overview of the simulation software hierarchy for a shuttle mission simulator is provided. A set of guidelines for the identification of subsystem/module performance parameters and critical performance parameters are presented. Various sources of reference data to serve as standards of performance for simulation validation are identified. Environment, crew station, vehicle configuration, and vehicle dynamics simulation software are briefly discussed from the point of view of their interfaces with subsystem simulation modules. A detailed presentation of results in the area of vehicle subsystems simulation modules is included. A list of references, conclusions and recommendations are also given.
Visual attention: Linking prefrontal sources to neuronal and behavioral correlates.
Clark, Kelsey; Squire, Ryan Fox; Merrikhi, Yaser; Noudoost, Behrad
2015-09-01
Attention is a means of flexibly selecting and enhancing a subset of sensory input based on the current behavioral goals. Numerous signatures of attention have been identified throughout the brain, and now experimenters are seeking to determine which of these signatures are causally related to the behavioral benefits of attention, and the source of these modulations within the brain. Here, we review the neural signatures of attention throughout the brain, their theoretical benefits for visual processing, and their experimental correlations with behavioral performance. We discuss the importance of measuring cue benefits as a way to distinguish between impairments on an attention task, which may instead be visual or motor impairments, and true attentional deficits. We examine evidence for various areas proposed as sources of attentional modulation within the brain, with a focus on the prefrontal cortex. Lastly, we look at studies that aim to link sources of attention to its neuronal signatures elsewhere in the brain. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej
2017-04-01
We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.
A MoTe2 based light emitting diode and photodetector for silicon photonic integrated circuits
NASA Astrophysics Data System (ADS)
Bie, Ya-Qing; Heuck, M.; Grosso, G.; Furchi, M.; Cao, Y.; Zheng, J.; Navarro-Moratalla, E.; Zhou, L.; Taniguchi, T.; Watanabe, K.; Kong, J.; Englund, D.; Jarillo-Herrero, P.
A key challenge in photonics today is to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, partly because many components such as waveguides, interferometers and modulators, could be integrated on silicon-based processors. However, light sources and photodetectors present continued challenges. Common approaches for light source include off-chip or wafer-bonded lasers based on III-V materials, but studies show advantages for directly modulated light sources. The most advanced photodetectors in silicon photonics are based on germanium growth which increases system cost. The emerging two dimensional transition metal dichalcogenides (TMDs) offer a path for optical interconnects components that can be integrated with the CMOS processing by back-end-of-the-line processing steps. Here we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with infrared band gap. The state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2012-01-01
We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.
Taniguchi, Hironori; Okano, Kenji; Honda, Kohsuke
2017-06-01
Bio-based chemical production has drawn attention regarding the realization of a sustainable society. In vitro metabolic engineering is one of the methods used for the bio-based production of value-added chemicals. This method involves the reconstitution of natural or artificial metabolic pathways by assembling purified/semi-purified enzymes in vitro . Enzymes from distinct sources can be combined to construct desired reaction cascades with fewer biological constraints in one vessel, enabling easier pathway design with high modularity. Multiple modules have been designed, built, tested, and improved by different groups for different purpose. In this review, we focus on these in vitro metabolic engineering modules, especially focusing on the carbon metabolism, and present an overview of input modules, output modules, and other modules related to cofactor management.
Bunch modulation in LWFA blowout regime
NASA Astrophysics Data System (ADS)
Vyskočil, Jiří; Klimo, Ondřej; Vieira, Jorge; Korn, Georg
2015-05-01
Laser wakefield acceleration (LWFA) is able to produce high quality electron bunches interesting for many applications ranging from coherent light sources to high energy physics. The blow-out regime of LWFA provides excellent accelerating structure able to maintain small transverse emittance and energy spread of the accelerating electron beam if combined with localised injection. A modulation of the back of a self-injected electron bunch in the blowout regime of Laser Wakefield Acceleration appears 3D Particle-in-Cell simulations with the code OSIRIS. The shape of the modulation is connected to the polarization of the driving laser pulse, although the wavelength of the modulation is longer than that of the pulse. Nevertheless a circularly polarized laser pulse leads to a corkscrew-like modulation, while in the case of linear polarization, the modulation lies in the polarization plane.
Heat-Storage Modules Containing LiNO3-3H2O and Graphite Foam
NASA Technical Reports Server (NTRS)
Bootle, John
2008-01-01
A heat-storage module based on a commercial open-cell graphite foam (Poco-Foam or equivalent) imbued with lithium nitrate trihydrate (LiNO3-3H2O) has been developed as a prototype of other such modules for use as short-term heat sources or heat sinks in the temperature range of approximately 28 to 30 C. In this module, the LiNO3-3H2O serves as a phase-change heat-storage material and the graphite foam as thermally conductive filler for transferring heat to or from the phase-change material. In comparison with typical prior heat-storage modules in which paraffins are the phase-change materials and aluminum fins are the thermally conductive fillers, this module has more than twice the heat-storage capacity per unit volume.
Hot-spot qualification testing of concentrator modules
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.
1987-01-01
Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current, forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator-module hot-spot qualification test is the test developed for flat-plate modules, issues such as providing cell illumination introduce additional complexities into the testing procedure. The results indicate that the same general guidelines apply to protecting concentrator modules from hot-spot stressing as apply to flat-plate modules, and recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. A method for determining the cell temperature in the laboratory or in the field is discussed.
Energy: Decisions for Today and Tomorrow. [Student's Guide.] Preparing for Tomorrow's World.
ERIC Educational Resources Information Center
Iozzi, Louis A.; And Others
The purpose of this module is to engage students (grades 7-8) in examining issues that underlie the "energy crisis" and in considering value aspects involved in decisions regarding energy consumption, distribution, sources, and other energy-related issues. The module is comprised of three parts, each focusing on a current, major source…
The Developing Child Workbook 1995/1996.
ERIC Educational Resources Information Center
Olenick, Rhoda; And Others
An integral part of The Developing Child video modules from the same producer, this workbook provides a very useful clearly formatted modular presentation, 30 modules in all, of information on all areas of child development. The workbook can be used with the videos, without them as a stand alone tutorial or review source, or as the outline for a…
Urban Environmental Education Project, Curriculum Module VI: Solid Waste - Trash or Treasure?
ERIC Educational Resources Information Center
Biglan, Barbara
Included in this module are four activities dealing with issues of solid waste disposal relative to urban concerns. Included activities are: (1) sources and composition of solid waste; (2) a "garbage game"; (3) disposal options for solid waste; and (4) an example county plan for solid waste disposal. Also included are an overview, teacher…
Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.
ERIC Educational Resources Information Center
Nilsen, Alleen Pace; Tyler, Karen Beyard
The school librarian or media specialist who wishes to promote educational equity through the selection of sex-fair materials is offered guidance in determining the suitability of reference sources in this fourth learning module of a continuing education program. The inadequacies of traditional resources are examined in three categories--omissions…
USDA-ARS?s Scientific Manuscript database
Natural products are rich source of gene modulators for prevention and treatment of cancer. In recent days, nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) has been focused as a new target of diverse cancers like colorectal, pancreatic, prostate, and breast. A variety of natural...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module describes important criteria to use in evaluating land for waste treatment sites and tells where the necessary information for such evaluation can be obtained. Among the important criteria for evaluation are climate, land use of potential site and surrounding areas, topography, drainage characteristics, soil properties, and geology.…
Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs
Posada-Roman, Julio E.; Garcia-Souto, Jose A.; Poiana, Dragos A.; Acedo, Pablo
2016-01-01
Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal. PMID:27898043
Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.
Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo
2016-11-26
Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.
A compact self-flowing lithium system for use in an industrial neutron source
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David
2016-10-01
A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.
Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian
2016-03-03
This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz.
Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian
2016-01-01
This paper presents the first low noise complementary metal oxide semiconductor (CMOS) terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31×31 focal plane array has been fully integrated in a 0.13μm standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0.2μV RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0.6 nW at 270 GHz and 0.8 nW at 600 GHz. PMID:26950131
Perforated semiconductor neutron detectors for battery operated portable modules
NASA Astrophysics Data System (ADS)
McGregor, Douglas S.; Bellinger, Steven L.; Bruno, David; McNeil, Walter J.; Patterson, Eric; Shultis, J. Kenneth; Solomon, C. J.; Unruh, Troy
2007-09-01
Perforated semiconductor diode detectors have been under development for several years at Kansas State University for a variety of neutron detection applications. The fundamental device configuration is a pin diode detector fabricated from high-purity float zone refined Si wafers. Perforations are etched into the diode surface with inductively-coupled plasma (ICP) reactive ion etching (RIE) and backfilled with 6LiF neutron reactive material. The perforation shapes and depths can be optimized to yield a flat response to neutrons over a wide variation of angles. The prototype devices delivered over 3.8% thermal neutron detection efficiency while operating on only 15 volts. The highest efficiency devices thus far have delivered over 12% thermal neutron detection efficiency. The miniature devices are 5.6 mm in diameter and require minimal power to operate, ranging from 3.3 volts to 15 volts, depending upon the amplifying electronics. The battery operated devices have been incorporated into compact modules with a digital readout. Further, the new modules have incorporated wireless readout technology and can be monitored remotely. The neutron detection modules can be used for neutron dosimetry and neutron monitoring. When coupled with high-density polyethylene, the detectors can be used to measure fission neutrons from spontaneous fission sources. Monto Carlo analysis indicates that the devices can be used in cargo containers as a passive search tool for spontaneous fission sources, such as 240Pu. Measurements with a 252Cf source are being conducted for verification.
NASA Astrophysics Data System (ADS)
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David
2018-03-01
Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.
Design of 1 MHz Solid State High Frequency Power Supply
NASA Astrophysics Data System (ADS)
Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal
2017-04-01
High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.
Emotion impairs extrinsic source memory--An ERP study.
Mao, Xinrui; You, Yuqi; Li, Wen; Guo, Chunyan
2015-09-01
Substantial advancements in understanding emotional modulation of item memory notwithstanding, controversies remain as to how emotion influences source memory. Using an emotional extrinsic source memory paradigm combined with remember/know judgments and two key event-related potentials (ERPs)-the FN400 (a frontal potential at 300-500 ms related to familiarity) and the LPC (a later parietal potential at 500-700 ms related to recollection), our research investigated the impact of emotion on extrinsic source memory and the underlying processes. We varied a semantic prompt (either "people" or "scene") preceding a study item to manipulate the extrinsic source. Behavioral data indicated a significant effect of emotion on "remember" responses to extrinsic source details, suggesting impaired recollection-based source memory in emotional (both positive and negative) relative to neutral conditions. In parallel, differential FN400 and LPC amplitudes (correctly remembered - incorrectly remembered sources) revealed emotion-related interference, suggesting impaired familiarity and recollection memory of extrinsic sources associated with positive or negative items. These findings thus lend support to the notion of emotion-induced memory trade off: while enhancing memory of central items and intrinsic/integral source details, emotion nevertheless disrupts memory of peripheral contextual details, potentially impairing both familiarity and recollection. Importantly, that positive and negative items result in comparable memory impairment suggests that arousal (vs. affective valence) plays a critical role in modulating dynamic interactions among automatic and elaborate processes involved in memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Uncertainty Analysis Principles and Methods
2007-09-01
error source . The Data Processor converts binary coded numbers to values, performs D/A curve fitting and applies any correction factors that may be...describes the stages or modules involved in the measurement process. We now need to identify all relevant error sources and develop the mathematical... sources , gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden
Unusual Volcanic Tremor Observations in Fogo Island, Cape Verde
NASA Astrophysics Data System (ADS)
Custodio, S. I.; Heleno, S. I.
2004-12-01
Volcanic tremor is a ground motion characterized by well-defined frequencies, and has traditionally been explained by the movement of fluids, namely magma, in conduits or cracks (Chouet, 1996). Thus tremor has the potential to reveal key aspects of volcanic structure and dynamics. Two types of previously unreported seismic signals have been observed in Fogo volcano: a) tide-modulated seismic noise and volcanic tremor, and b) high-frequency low-attenuation harmonic tremor. Amplitude modulation of seismic noise can be detected by simple eye-inspection of raw data in some stations of the VIGIL Network, Fogo Volcano. A more detailed analysis shows that certain frequency bands which we interpret as volcanic tremor, mainly in the range 2.0-3.0Hz, are preferentially modulated. The main frequency of modulation is 1.93 c.p.d., which corresponds to M2, the semi-diurnal lunar harmonic. Air pressure and temperature, which are continuously monitored in Fogo Island, have been analyzed and cannot explain the observed periodicity. Thus we conclude that seismic noise and tremor amplitudes are controlled by tides (Custodio et al., 2003). A relation between the tidal modulation and hydrothermal systems activity is suspected and under investigation. High-frequency (HF) tremor (5-20 Hz) has been recorded simultaneously in several stations in Fogo Island and even in different islands of the Cape Verde archipelago (up to distances of 120 km). In volcanic environments high-frequency motions are normally recorded in a small area close to the source, due to the strong attenuation of seismic waves. Non-volcanic origins for HF tremor were examined: cultural noise, whale vocalizations, ship noise, electronic/processing artifacts and path and/or site effects were all considered and dismissed. Emergent arrivals and strong site effects render source location a difficult task, but the analysis of wave polarizations and amplitude distributions seems to point to an offshore source. Two alternative mechanisms are presently being considered: a) propagation in the ocean sound channel of T-waves generated by resonance in a shallow conduit/chamber, and b) existence of a deep strong source, such as a large fluid-filled crack, capable of producing tremor with a complex pattern that propagates to large distances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-12-09
PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system's plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.
Modulation and transmission of sweet taste information for energy homeostasis.
Sanematsu, Keisuke; Horio, Nao; Murata, Yoshihiro; Yoshida, Ryusuke; Ohkuri, Tadahiro; Shigemura, Noriatsu; Ninomiya, Yuzo
2009-07-01
Perception of sweet taste is important for animals to detect external energy source of calories. In mice, sweet-sensitive cells possess a leptin receptor. Increase of plasma leptin with increasing internal energy storage in the adipose tissue suppresses sweet taste responses via this receptor. Data from our recent studies indicate that leptin may also modulate sweet taste sensation in humans with a diurnal variation in sweet sensitivity. This leptin modulation of sweet taste information to the brain may influence individuals' preference and ingestive behavior, thereby playing important roles in regulation of energy homeostasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-30
Xanthos is a Python package designed to quantify and analyze global water availability in history and in future at 0.5° × 0.5° spatial resolution and a monthly time step under a changing climate. Its performance was also tested through real applications. It is open-source, extendable and convenient to researchers who work on long-term climate data for studies of global water supply, and Global Change Assessment Model (GCAM). This package integrates inherent global gridded data maps, I/O modules, Water-Balance Model modules and diagnostics modules by user-defined configuration.
Thermoelectric generator having a resiliently mounted removable thermoelectric module
Purdy, David L.; Shapiro, Zalman M.; Hursen, Thomas F.; Maurer, Gerould W.
1976-11-02
An electrical generator having an Isotopic Heat Capsule including radioactive fuel rod 21 as a primary heat source and Thermoelectric Modules 41 and 43 as converters. The Biological Shield for the Capsule is suspended from Spiders at each end each consisting of pretensioned rods 237 and 239 defining planes at right angles to each other. The Modules are mounted in cups 171 of transition members 173 of a heat rejection Fin Assembly whose fins 195 and 197 extend from both sides of the transition member 173 for effective cooling.
Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy
NASA Technical Reports Server (NTRS)
Glenar, David A.; Jennings, Donald E.; Nadler, Shacher
1990-01-01
A CdTe phase modulator and low power RF sources have been used with Pb-salt tunable diode lasers operating near 8 microns to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.
Infrasound induced instability by modulation of condensation process in the atmosphere.
Naugolnykh, Konstantin; Rybak, Samuil
2008-12-01
A sound wave in supersaturated water vapor can modulate both the process of heat release caused by condensation, and subsequently, as a result, the resonance interaction of sound with the modulated heat release provides sound amplification. High-intensity atmospheric perturbations such as cyclones and thunderstorms generate infrasound, which is detectable at large distances from the source. The wave-condensation instability can lead to variation in the level of infrasound radiation by a developing cyclone, and this can be as a precursor of these intense atmospheric events.
Delft3D turbine turbulence module v. 1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartrand, Chris; Jagers, Bert
2016-08-25
The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, Delft3D-CEC includes a new module that simulates energy conversion (momentum withdrawal) by MHK current energy conversion devices with commensurate changes in the turbulent kinetic energy and its dissipation rate. The Following is a description of Deltares’s open-source code Delft3Dmore » from which Delft3D-CEC is built upon. “Delft3D is a world leading 3D modeling suite to investigate hydrodynamics, sediment transport and morphology and water quality for fluvial, estuarine and coastal environments. As per 1 January 2011, the Delft3D flow (FLOW), morphology (MOR) and waves (WAVE) modules are available in open source. The software is used and has proven his capabilities on many places around the world, like the Netherlands, USA, Hong Kong, Singapore, Australia, Venice, etc. The software is continuously improved and developed with innovating advanced modelling techniques as consequence of the research work of our institute and to stay world leading. The FLOW module is the heart of Delft3D and is a multi-dimensional (2D or 3D) hydrodynamic (and transport) simulation programme which calculates non-steady flow and transport phenomena resulting from tidal and meteorological forcing on a curvilinear, boundary fitted grid or sperical coordinates. In 3D simulations, the vertical grid is defined following the so-called sigma coordinate approach or Z-layer approach. The MOR module computes sediment transport (both suspended and bed total load) and morphological changes for an arbitrary number of cohesive and non-cohesive fractions. Both currents and waves act as driving forces and a wide variety of transport formulae have been incorporated. For the suspended load this module connects to the 2D or 3D advection-diffusion solver of the FLOW module; density effects may be taken into account. An essential feature of the MOR module is the dynamic feedback with the FLOW and WAVE modules, which allow the flows and waves to adjust themselves to the local bathymetry and allows for simulations on any time scale from days (storm impact) to centuries (system dynamics). It can keep track of the bed composition to build up a stratigraphic record. The MOR module may be extended to include extensive features to simulate dredging and dumping scenarios. For over 30 years Deltares has been in the forefront of these types of combined morphological simulation techniques.”« less
A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle
Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene
2017-01-01
Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities. PMID:28216557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reass, W.A.
1994-07-01
This paper describes the electrical design and operation of a high power modulator system implemented for the Los Alamos Plasma Source Ion Implantation (PSII) facility. To test the viability of the PSII process for various automotive components, the modulator must accept wide variations of load impedance. Components have varying area and composition which must be processed with different plasmas. Additionally, the load impedance may change by large factors during the typical 20 uS pulse, due to plasma displacement currents and sheath growth. As a preliminary design to test the system viability for automotive component implantation, suitable for a manufacturing environment,more » circuit topology must be able to directly scale to high power versions, for increased component through-put. We have chosen an evolutionary design approach with component families of characterized performance, which should Ion result in a reliable modulator system with component lifetimes. The modulator utilizes a pair of Litton L-3408 hollow beam amplifier tubes as switching elements in a ``hot-deck`` configuration. Internal to the main of planar triode hot deck, an additional pair decks, configured in a totem pole circuit, provide input drive to the L-3408 mod-anodes. The modulator can output over 2 amps average current (at 100 kV) with 1 kW of modanode drive. Diagnostic electronics monitor the load and stops pulses for 100 mS when a load arcs occur. This paper, in addition to providing detailed engineering design information, will provide operational characteristics and reliability data that direct the design to the higher power, mass production line capable modulators.« less
Source analysis of auditory steady-state responses in acoustic and electric hearing.
Luke, Robert; De Vos, Astrid; Wouters, Jan
2017-02-15
Speech is a complex signal containing a broad variety of acoustic information. For accurate speech reception, the listener must perceive modulations over a range of envelope frequencies. Perception of these modulations is particularly important for cochlear implant (CI) users, as all commercial devices use envelope coding strategies. Prolonged deafness affects the auditory pathway. However, little is known of how cochlear implantation affects the neural processing of modulated stimuli. This study investigates and contrasts the neural processing of envelope rate modulated signals in acoustic and CI listeners. Auditory steady-state responses (ASSRs) are used to study the neural processing of amplitude modulated (AM) signals. A beamforming technique is applied to determine the increase in neural activity relative to a control condition, with particular attention paid to defining the accuracy and precision of this technique relative to other tomographies. In a cohort of 44 acoustic listeners, the location, activity and hemispheric lateralisation of ASSRs is characterised while systematically varying the modulation rate (4, 10, 20, 40 and 80Hz) and stimulation ear (right, left and bilateral). We demonstrate a complex pattern of laterality depending on both modulation rate and stimulation ear that is consistent with, and extends, existing literature. We present a novel extension to the beamforming method which facilitates source analysis of electrically evoked auditory steady-state responses (EASSRs). In a cohort of 5 right implanted unilateral CI users, the neural activity is determined for the 40Hz rate and compared to the acoustic cohort. Results indicate that CI users activate typical thalamic locations for 40Hz stimuli. However, complementary to studies of transient stimuli, the CI population has atypical hemispheric laterality, preferentially activating the contralateral hemisphere. Copyright © 2016. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Kindle, Joan
Information and exercises are provided in this learning module to increase students' awareness of and effectiveness in their role as consumers. The module, which is written at an elementary level, covers eight topics related to consumer affairs: (1) finding an apartment through newspaper classified advertisements and other sources and signing a…
Coal Market Module - NEMS Documentation
2014-01-01
Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2014 (AEO2014). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).
ERIC Educational Resources Information Center
Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.
2009-01-01
Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
This instructor's lesson plan guide on general pharmacology is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Five units of study are presented: (1) the sources of drugs, drug names, solids and liquids, and the different forms in which drugs may be dispersed; (2) the action (effects) of…