Sample records for source pollution study

  1. Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies.

    PubMed

    Krall, Jenna R; Ladva, Chandresh N; Russell, Armistead G; Golan, Rachel; Peng, Xing; Shi, Guoliang; Greenwald, Roby; Raysoni, Amit U; Waller, Lance A; Sarnat, Jeremy A

    2018-06-01

    Concentrations of traffic-related air pollutants are frequently higher within commuting vehicles than in ambient air. Pollutants found within vehicles may include those generated by tailpipe exhaust, brake wear, and road dust sources, as well as pollutants from in-cabin sources. Source-specific pollution, compared to total pollution, may represent regulation targets that can better protect human health. We estimated source-specific pollution exposures and corresponding pulmonary response in a panel study of commuters. We used constrained positive matrix factorization to estimate source-specific pollution factors and, subsequently, mixed effects models to estimate associations between source-specific pollution and pulmonary response. We identified four pollution factors that we named: crustal, primary tailpipe traffic, non-tailpipe traffic, and secondary. Among asthmatic subjects (N = 48), interquartile range increases in crustal and secondary pollution were associated with changes in lung function of -1.33% (95% confidence interval (CI): -2.45, -0.22) and -2.19% (95% CI: -3.46, -0.92) relative to baseline, respectively. Among non-asthmatic subjects (N = 51), non-tailpipe pollution was associated with pulmonary response only at 2.5 h post-commute. We found no significant associations between pulmonary response and primary tailpipe pollution. Health effects associated with traffic-related pollution may vary by source, and therefore some traffic pollution sources may require targeted interventions to protect health.

  2. The estimation of the load of non-point source nitrogen and phosphorus based on observation experiments and export coefficient method in Three Gorges Reservoir Area

    NASA Astrophysics Data System (ADS)

    Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.

    2017-12-01

    In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.

  3. [Numerical simulation study of SOA in Pearl River Delta region].

    PubMed

    Cheng, Yan-li; Li, Tian-tian; Bai, Yu-hua; Li, Jin-long; Liu, Zhao-rong; Wang, Xue-song

    2009-12-01

    Secondary organic aerosols (SOA) is an important component of the atmospheric particle pollution, thus, determining the status and sources of SOA pollution is the premise of deeply understanding the occurrence, development law and the influence factors of the atmospheric particle pollution. Based on the pollution sources and meteorological data of Pearl River Delta region, the study used the two-dimensional model coupled with SOA module to stimulate the status and source of SOA pollution in regional scale. The results show: the generation of SOA presents obvious characteristics of photochemical reaction, and the high concentration appears at about 14:00; SOA concentration is high in some areas of Guangshou and Dongguan with large pollution source-emission, and it is also high in some areas of Zhongshan, Zhuhai and Jiangmen which are at downwind position of Guangzhou and Dongguan. Contribution ratios of several main pollution sources to SOA are: biogenic sources 72.6%, mobile sources 30.7%, point sources 12%, solvent and oil paint sources 12%, surface sources less than 5% respectively.

  4. [Spatial heterogeneity and classified control of agricultural non-point source pollution in Huaihe River Basin].

    PubMed

    Zhou, Liang; Xu, Jian-Gang; Sun, Dong-Qi; Ni, Tian-Hua

    2013-02-01

    Agricultural non-point source pollution is of importance in river deterioration. Thus identifying and concentrated controlling the key source-areas are the most effective approaches for non-point source pollution control. This study adopts inventory method to analysis four kinds of pollution sources and their emissions intensity of the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in 173 counties (cities, districts) in Huaihe River Basin. The four pollution sources include livestock breeding, rural life, farmland cultivation, aquacultures. The paper mainly addresses identification of non-point polluted sensitivity areas, key pollution sources and its spatial distribution characteristics through cluster, sensitivity evaluation and spatial analysis. A geographic information system (GIS) and SPSS were used to carry out this study. The results show that: the COD, TN and TP emissions of agricultural non-point sources were 206.74 x 10(4) t, 66.49 x 10(4) t, 8.74 x 10(4) t separately in Huaihe River Basin in 2009; the emission intensity were 7.69, 2.47, 0.32 t.hm-2; the proportions of COD, TN, TP emissions were 73%, 24%, 3%. The paper achieves that: the major pollution source of COD, TN and TP was livestock breeding and rural life; the sensitivity areas and priority pollution control areas among the river basin of non-point source pollution are some sub-basins of the upper branches in Huaihe River, such as Shahe River, Yinghe River, Beiru River, Jialu River and Qingyi River; livestock breeding is the key pollution source in the priority pollution control areas. Finally, the paper concludes that pollution type of rural life has the highest pollution contribution rate, while comprehensive pollution is one type which is hard to control.

  5. Recent Approaches to Estimate Associations Between Source-Specific Air Pollution and Health.

    PubMed

    Krall, Jenna R; Strickland, Matthew J

    2017-03-01

    Estimating health effects associated with source-specific exposure is important for better understanding how pollution impacts health and for developing policies to better protect public health. Although epidemiologic studies of sources can be informative, these studies are challenging to conduct because source-specific exposures (e.g., particulate matter from vehicles) often are not directly observed and must be estimated. We reviewed recent studies that estimated associations between pollution sources and health to identify methodological developments designed to address important challenges. Notable advances in epidemiologic studies of sources include approaches for (1) propagating uncertainty in source estimation into health effect estimates, (2) assessing regional and seasonal variability in emissions sources and source-specific health effects, and (3) addressing potential confounding in estimated health effects. Novel methodological approaches to address challenges in studies of pollution sources, particularly evaluation of source-specific health effects, are important for determining how source-specific exposure impacts health.

  6. A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases.

    PubMed

    Hackstadt, Amber J; Peng, Roger D

    2014-11-01

    Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major contributors to air pollution and are also desired when estimating source-specific health effects. However, researchers often lack direct observations of the emissions at the source level. We propose a Bayesian multivariate receptor model to infer information about source contributions from ambient air pollution measurements. The proposed model incorporates information from national databases containing data on both the composition of source emissions and the amount of emissions from known sources of air pollution. The proposed model is used to perform source apportionment analyses for two distinct locations in the United States (Boston, Massachusetts and Phoenix, Arizona). Our results mirror previous source apportionment analyses that did not utilize the information from national databases and provide additional information about uncertainty that is relevant to the estimation of health effects.

  7. Identifying exposure disparities in air pollution epidemiology specific to adverse birth outcomes

    NASA Astrophysics Data System (ADS)

    Geer, Laura A.

    2014-10-01

    More than 147 million people in the US live in areas where pollutant levels are above regulatory limits and pose a risk to health. Most of the vast network of air pollutant monitors in the US are located in places with higher pollution levels and a higher density of pollutant sources (e.g., point sources from industrial pollution). Vulnerable populations are more likely to live closer to pollutant sources, and thus closer to pollutant monitors. These differential exposures have an impact on maternal and child health; maternal air pollutant exposures have been linked to adverse outcomes such as preterm birth and infant low birth weight. Several studies are highlighted that address methodological approaches in the study of air pollution and health disparities.

  8. [Groundwater organic pollution source identification technology system research and application].

    PubMed

    Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan

    2013-02-01

    Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.

  9. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.

    PubMed

    Roinas, Georgios; Mant, Cath; Williams, John B

    2014-01-01

    Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.

  10. Monitor-based evaluation of pollutant load from urban stormwater runoff in Beijing.

    PubMed

    Liu, Y; Che, W; Li, J

    2005-01-01

    As a major pollutant source to urban receiving waters, the non-point source pollution from urban runoff needs to be well studied and effectively controlled. Based on monitoring data from urban runoff pollutant sources, this article describes a systematic estimation of total pollutant loads from the urban areas of Beijing. A numerical model was developed to quantify main pollutant loads of urban runoff in Beijing. A sub-procedure is involved in this method, in which the flush process influences both the quantity and quality of stormwater runoff. A statistics-based method was applied in computing the annual pollutant load as an output of the runoff. The proportions of pollutant from point-source and non-point sources were compared. This provides a scientific basis for proper environmental input assessment of urban stormwater pollution to receiving waters, improvement of infrastructure performance, implementation of urban stormwater management, and utilization of stormwater.

  11. Calculation and analysis of the non-point source pollution in the upstream watershed of the Panjiakou Reservoir, People's Republic of China

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Tang, L.

    2007-05-01

    Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a distributed model, it is possible to view model output as it varies across the basin, so the critical areas and reaches can be found in the study area. According to the simulation results, it is found that different land uses can yield different results and fertilization in rainy season has an important impact on the non- point source pollution. The limitations of the SWAT model are also discussed and the measures of the control and prevention of non- point source pollution for Panjiakou Reservoir are presented according to the analysis of model calculation results.

  12. [Study on the risk assessment method of regional groundwater pollution].

    PubMed

    Yang, Yan; Yu, Yun-Jiang; Wang, Zong-Qing; Li, Ding-Long; Sun, Hong-Wei

    2013-02-01

    Based on the boundary elements of system risk assessment, the regional groundwater pollution risk assessment index system was preliminarily established, which included: regional groundwater specific vulnerability assessment, the regional pollution sources characteristics assessment and the health risk assessment of regional featured pollutants. The three sub-evaluation systems were coupled with the multi-index comprehensive method, the risk was characterized with the Spatial Analysis of ArcMap, and a new method to evaluate regional groundwater pollution risk that suitable for different parts of natural conditions, different types of pollution was established. Take Changzhou as an example, the risk of shallow groundwater pollution was studied with the new method, and found that the vulnerability index of groundwater in Changzhou is high and distributes unevenly; The distribution of pollution sources is concentrated and has a great impact on groundwater pollution risks; Influenced by the pollutants and pollution sources, the values of health risks are high in the urban area of Changzhou. The pollution risk of shallow groundwater is high and distributes unevenly, and distributes in the north of the line of Anjia-Xuejia-Zhenglu, the center of the city and the southeast, where the human activities are more intense and the pollution sources are intensive.

  13. The risk assessment of sudden water pollution for river network system under multi-source random emission

    NASA Astrophysics Data System (ADS)

    Li, D.

    2016-12-01

    Sudden water pollution accidents are unavoidable risk events that we must learn to co-exist with. In China's Taihu River Basin, the river flow conditions are complicated with frequently artificial interference. Sudden water pollution accident occurs mainly in the form of a large number of abnormal discharge of wastewater, and has the characteristics with the sudden occurrence, the uncontrollable scope, the uncertainty object and the concentrated distribution of many risk sources. Effective prevention of pollution accidents that may occur is of great significance for the water quality safety management. Bayesian networks can be applied to represent the relationship between pollution sources and river water quality intuitively. Using the time sequential Monte Carlo algorithm, the pollution sources state switching model, water quality model for river network and Bayesian reasoning is integrated together, and the sudden water pollution risk assessment model for river network is developed to quantify the water quality risk under the collective influence of multiple pollution sources. Based on the isotope water transport mechanism, a dynamic tracing model of multiple pollution sources is established, which can describe the relationship between the excessive risk of the system and the multiple risk sources. Finally, the diagnostic reasoning algorithm based on Bayesian network is coupled with the multi-source tracing model, which can identify the contribution of each risk source to the system risk under the complex flow conditions. Taking Taihu Lake water system as the research object, the model is applied to obtain the reasonable results under the three typical years. Studies have shown that the water quality risk at critical sections are influenced by the pollution risk source, the boundary water quality, the hydrological conditions and self -purification capacity, and the multiple pollution sources have obvious effect on water quality risk of the receiving water body. The water quality risk assessment approach developed in this study offers a effective tool for systematically quantifying the random uncertainty in plain river network system, and it also provides the technical support for the decision-making of controlling the sudden water pollution through identification of critical pollution sources.

  14. Combining land use information and small stream sampling with PCR-based methods for better characterization of diffuse sources of human fecal pollution.

    PubMed

    Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C

    2011-07-01

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.

  15. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County.

    PubMed

    Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran

    2011-07-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. State of the art molecular markers for fecal pollution source tracking in water.

    PubMed

    Roslev, Peter; Bukh, Annette S

    2011-03-01

    Most environmental waters are susceptible to fecal contamination from animal and/or human pollution sources. To attenuate or eliminate such contamination, it is often critical that the pollution sources are rapidly and correctly identified. Fecal pollution source tracking (FST) is a promising research area that aims to identify the origin(s) of fecal pollution in water. This mini-review focuses on the potentials and limitations of library independent molecular markers that are exclusively or strongly associated with fecal pollution from humans and different animals. Fecal-source-associated molecular markers include nucleic acid sequences from prokaryotes and viruses associated with specific biological hosts, but also sequences such as mitochondrial DNA retrieved directly from humans and animals. However, some fecal-source-associated markers may not be absolutely specific for a given source type, and apparent specificity and frequency established in early studies are sometimes compromised by new studies suggesting variation in specificity and abundance on a regional, global and/or temporal scale. It is therefore recommended that FST studies are based on carefully selected arrays of markers, and that identification of human and animal contributions are based on a multi-marker toolkit with several markers for each source category. Furthermore, future FST studies should benefit from increased knowledge regarding sampling strategies and temporal and spatial variability of marker ratios. It will also be important to obtain a better understanding of marker persistence and the quantitative relationship between marker abundance and the relative contribution from individual fecal pollution source types. A combination of enhanced pathogen screening methods, and validated quantitative source tracking techniques could then contribute significantly to future management of environmental water quality including improved microbial risk assessment.

  17. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  18. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China.

    PubMed

    Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei

    2018-05-03

    Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.

  19. Study on road surface source pollution controlled by permeable pavement

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  20. On the use of coprostanol to identify source of nitrate pollution in groundwater

    NASA Astrophysics Data System (ADS)

    Nakagawa, Kei; Amano, Hiroki; Takao, Yuji; Hosono, Takahiro; Berndtsson, Ronny

    2017-07-01

    Investigation of contaminant sources is indispensable for developing effective countermeasures against nitrate (NO3-) pollution in groundwater. Known major nitrogen (N) sources are chemical fertilizers, livestock waste, and domestic wastewater. In general, scatter diagrams of δ18O and δ15N from NO3- can be used to identify these pollution sources. However, this method can be difficult to use for chemical fertilizers and livestock waste sources due to the overlap of δ18O and δ15N ranges. In this study, we propose to use coprostanol as an indicator for the source of pollution. Coprostanol can be used as a fecal contamination indicator because it is a major fecal sterol formed by the conversion of cholesterol by intestinal bacteria in the gut of higher animals. The proposed method was applied to investigate NO3- pollution sources for groundwater in Shimabara, Nagasaki, Japan. Groundwater samples were collected at 33 locations from March 2013 to November 2015. These data were used to quantify relationships between NO3-N, δ15N-NO3-, δ18O-NO3-, and coprostanol. The results show that coprostanol has a potential for source identification of nitrate pollution. For lower coprostanol concentrations (<30 ng L-1) in the nitrate-polluted group, fertilizer is likely to be the predominant source of NO3-. However, higher concentration coprostanol samples in the nitrate-polluted group can be related to pollution from livestock waste. Thus, when conventional diagrams of isotopic ratios cannot distinguish pollution sources, coprostanol may be a useful tool.

  1. Identifiability and identification of trace continuous pollutant source.

    PubMed

    Qu, Hongquan; Liu, Shouwen; Pang, Liping; Hu, Tao

    2014-01-01

    Accidental pollution events often threaten people's health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions.

  2. A new conceptual model for quantifying transboundary contribution of atmospheric pollutants in the East Asian Pacific rim region.

    PubMed

    Lai, I-Chien; Lee, Chon-Lin; Huang, Hu-Ching

    2016-03-01

    Transboundary transport of air pollution is a serious environmental concern as pollutant affects both human health and the environment. Many numerical approaches have been utilized to quantify the amounts of pollutants transported to receptor regions, based on emission inventories from possible source regions. However, sparse temporal-spatial observational data and uncertainty in emission inventories might make the transboundary transport contribution difficult to estimate. This study presents a conceptual quantitative approach that uses transport pathway classification in combination with curve fitting models to simulate an air pollutant concentration baseline for pollution background concentrations. This approach is used to investigate the transboundary transport contribution of atmospheric pollutants to a metropolitan area in the East Asian Pacific rim region. Trajectory analysis categorized pollution sources for the study area into three regions: East Asia, Southeast Asia, and Taiwan cities. The occurrence frequency and transboundary contribution results suggest the predominant source region is the East Asian continent. This study also presents an application to evaluate heavy pollution cases for health concerns. This new baseline construction model provides a useful tool for the study of the contribution of transboundary pollution delivered to receptors, especially for areas deficient in emission inventories and regulatory monitoring data for harmful air pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Gulls identified as major source of fecal pollution in coastal waters: a microbial source tracking study.

    PubMed

    Araújo, Susana; Henriques, Isabel S; Leandro, Sérgio Miguel; Alves, Artur; Pereira, Anabela; Correia, António

    2014-02-01

    Gulls were reported as sources of fecal pollution in coastal environments and potential vectors of human infections. Microbial source tracking (MST) methods were rarely tested to identify this pollution origin. This study was conducted to ascertain the source of water fecal contamination in the Berlenga Island, Portugal. A total of 169 Escherichia coli isolates from human sewage, 423 isolates from gull feces and 334 water isolates were analyzed by BOX-PCR. An average correct classification of 79.3% was achieved. When an 85% similarity cutoff was applied 24% of water isolates were present in gull feces against 2.7% detected in sewage. Jackknifing resulted in 29.3% of water isolates classified as gull, and 10.8% classified as human. Results indicate that gulls constitute a major source of water contamination in the Berlenga Island. This study validated a methodology to differentiate human and gull fecal pollution sources in a real case of a contaminated beach. © 2013.

  4. A review of the impacts of tobacco heating system on indoor air quality versus conventional pollution sources.

    PubMed

    Kaunelienė, Violeta; Meišutovič-Akhtarieva, Marija; Martuzevičius, Dainius

    2018-05-08

    With the introduction of novel and potentially less polluting nicotine containing products to the market, the impacts of their usage to indoor air quality as opposed to conventional pollution sources must be reviewed and considered. This review study aimed to comparatively analyse changes in indoor air quality as the consequence of tobacco heating system (THS) generated pollution against general indoor air quality in various micro-environments, especially with combustion-based pollution sources present. Indoor concentrations of formaldehyde, acetaldehyde, benzene, toluene, nicotine and PM 2.5 were reviewed and compared; concentrations of other harmful and potentially harmful substances (HPHCs) were discussed. Generally, the usage of THS has been associated with lower or comparable indoor air pollutant concentrations compared against other conventional indoor sources or environments, in most cases distinguishable above background, thus potentially being associated with health effects at prolonged exposures as any other artificial air pollution source. In the controlled environment the use of THS (as well as an electronic cigarette) resulted in the lowest concentrations of formaldehyde, benzene, toluene, PM 2.5, among majority researched pollution sources (conventional cigarettes, waterpipe, incense, mosquito coils). The exposure to significantly higher pollution levels of benzene, toluene, and formaldehyde occurred in public environments, especially transport micro-environments. Such low levels of conventionally-assessed indoor pollutants resulting from the use of new nicotine containing products raise challenges for epidemiological studies of second-hand exposure to THS aerosol in real-life environments. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale.

    PubMed

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-11-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Approach to identifying pollutant source and matching flow field

    NASA Astrophysics Data System (ADS)

    Liping, Pang; Yu, Zhang; Hongquan, Qu; Tao, Hu; Wei, Wang

    2013-07-01

    Accidental pollution events often threaten people's health and lives, and it is necessary to identify a pollutant source rapidly so that prompt actions can be taken to prevent the spread of pollution. But this identification process is one of the difficulties in the inverse problem areas. This paper carries out some studies on this issue. An approach using single sensor information with noise was developed to identify a sudden continuous emission trace pollutant source in a steady velocity field. This approach first compares the characteristic distance of the measured concentration sequence to the multiple hypothetical measured concentration sequences at the sensor position, which are obtained based on a source-three-parameter multiple hypotheses. Then we realize the source identification by globally searching the optimal values with the objective function of the maximum location probability. Considering the large amount of computation load resulting from this global searching, a local fine-mesh source search method based on priori coarse-mesh location probabilities is further used to improve the efficiency of identification. Studies have shown that the flow field has a very important influence on the source identification. Therefore, we also discuss the impact of non-matching flow fields with estimation deviation on identification. Based on this analysis, a method for matching accurate flow field is presented to improve the accuracy of identification. In order to verify the practical application of the above method, an experimental system simulating a sudden pollution process in a steady flow field was set up and some experiments were conducted when the diffusion coefficient was known. The studies showed that the three parameters (position, emission strength and initial emission time) of the pollutant source in the experiment can be estimated by using the method for matching flow field and source identification.

  7. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    PubMed

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  8. Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China.

    PubMed

    Chen, Wenjun; He, Bin; Nover, Daniel; Duan, Weili; Luo, Chuan; Zhao, Kaiyan; Chen, Wen

    2018-01-01

    Excessive nitrogen (N) discharge from agriculture causes widespread problems in aquatic ecosystems. Knowledge of spatiotemporal patterns and source attribution of N pollution is critical for nutrient management programs but is poorly studied in headwaters with various small water bodies and mini-point pollution sources. Taking a typical small watershed in the low mountains of Southeastern China as an example, N pollution and source attribution were studied for a multipond system around a village using the Hydrological Simulation Program-Fortran (HSPF) model. The results exhibited distinctive spatio-seasonal variations with an overall seriousness rank for the three indicators: total nitrogen (TN) > nitrate/nitrite nitrogen (NO x - -N) > ammonia nitrogen (NH 3 -N), according to the Chinese Surface Water Quality Standard. TN pollution was severe for the entire watershed, while NO x - -N pollution was significant for ponds and ditches far from the village, and the NH 3 -N concentrations were acceptable except for the ponds near the village in summer. Although food and cash crop production accounted for the largest source of N loads, we discovered that mini-point pollution sources, including animal feeding operations, rural residential sewage, and waste, together contributed as high as 47% of the TN and NH 3 -N loads in ponds and ditches. So, apart from eco-fertilizer programs and concentrated animal feeding operations, the importance of environmental awareness building for resource management is highlighted for small farmers in headwater agricultural watersheds. As a first attempt to incorporate multipond systems into the process-based modeling of nonpoint source (NPS) pollution, this work can inform other hydro-environmental studies on scattered and small water bodies. The results are also useful to water quality improvement for entire river basins.

  9. [Regulation framework of watershed landscape pattern for non-point source pollution control based on 'source-sink' theory: A case study in the watershed of Maluan Bay, Xiamen City, China].

    PubMed

    Huang, Ning; Wang, Hong Ying; Lin, Tao; Liu, Qi Ming; Huang, Yun Feng; Li, Jian Xiong

    2016-10-01

    Watershed landscape pattern regulation and optimization based on 'source-sink' theory for non-point source pollution control is a cost-effective measure and still in the exploratory stage. Taking whole watershed as the research object, on the basis of landscape ecology, related theories and existing research results, a regulation framework of watershed landscape pattern for non-point source pollution control was developed at two levels based on 'source-sink' theory in this study: 1) at watershed level: reasonable basic combination and spatial pattern of 'source-sink' landscape was analyzed, and then holistic regulation and optimization method of landscape pattern was constructed; 2) at landscape patch level: key 'source' landscape was taken as the focus of regulation and optimization. Firstly, four identification criteria of key 'source' landscape including landscape pollutant loading per unit area, landscape slope, long and narrow transfer 'source' landscape, pollutant loading per unit length of 'source' landscape along the riverbank were developed. Secondly, nine types of regulation and optimization methods for different key 'source' landscape in rural and urban areas were established, according to three regulation and optimization rules including 'sink' landscape inlay, banding 'sink' landscape supplement, pollutants capacity of original 'sink' landscape enhancement. Finally, the regulation framework was applied for the watershed of Maluan Bay in Xiamen City. Holistic regulation and optimization mode of watershed landscape pattern of Maluan Bay and key 'source' landscape regulation and optimization measures for the three zones were made, based on GIS technology, remote sensing images and DEM model.

  10. ALTERNATIVE POLICIES FOR CONTROLLING NONPOINT AGRICULTURAL SOURCES OF WATER POLLUTION

    EPA Science Inventory

    This study of policies for controlling water pollution from nonpoint agricultural sources includes a survey of existing state and Federal programs, agencies, and laws directed to the control of soil erosion. Six policies representing a variety of approaches to this pollution prob...

  11. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping

    Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river pollution control and effective water resources management.

  12. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary.

    PubMed

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan

    2014-10-15

    Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. New approach for point pollution source identification in rivers based on the backward probability method.

    PubMed

    Wang, Jiabiao; Zhao, Jianshi; Lei, Xiaohui; Wang, Hao

    2018-06-13

    Pollution risk from the discharge of industrial waste or accidental spills during transportation poses a considerable threat to the security of rivers. The ability to quickly identify the pollution source is extremely important to enable emergency disposal of pollutants. This study proposes a new approach for point source identification of sudden water pollution in rivers, which aims to determine where (source location), when (release time) and how much pollutant (released mass) was introduced into the river. Based on the backward probability method (BPM) and the linear regression model (LR), the proposed LR-BPM converts the ill-posed problem of source identification into an optimization model, which is solved using a Differential Evolution Algorithm (DEA). The decoupled parameters of released mass are not dependent on prior information, which improves the identification efficiency. A hypothetical case study with a different number of pollution sources was conducted to test the proposed approach, and the largest relative errors for identified location, release time, and released mass in all tests were not greater than 10%. Uncertainty in the LR-BPM is mainly due to a problem with model equifinality, but averaging the results of repeated tests greatly reduces errors. Furthermore, increasing the gauging sections further improves identification results. A real-world case study examines the applicability of the LR-BPM in practice, where it is demonstrated to be more accurate and time-saving than two existing approaches, Bayesian-MCMC and basic DEA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Pollution source localization in an urban water supply network based on dynamic water demand.

    PubMed

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  15. Indoor Air Pollution in Non Ac Passenger Bus

    NASA Astrophysics Data System (ADS)

    El Husna, Iksiroh; Unzilatirrizqi, Rizal D. Yan El; Karyanto, Yudi; Sunoko, Henna R.

    2018-02-01

    Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR). The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR) on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  16. Identifiability and Identification of Trace Continuous Pollutant Source

    PubMed Central

    Qu, Hongquan; Liu, Shouwen; Pang, Liping; Hu, Tao

    2014-01-01

    Accidental pollution events often threaten people's health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions. PMID:24892041

  17. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils.

    PubMed

    Xu, Yongfeng; Dai, Shixiang; Meng, Ke; Wang, Yuting; Ren, Wenjie; Zhao, Ling; Christie, Peter; Teng, Ying

    2018-07-15

    The residual levels and risk assessment of several potentially toxic elements (PTEs), phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in rural soils near different types of pollution sources in Tianjin, China, were studied. The soils were found to be polluted to different extents with PTEs, PAEs and PAHs from different pollution sources. The soil concentrations of chromium (Cr), nickel (Ni), di-n-butyl phthalate (DnBP), acenaphthylene (Any) and acenaphthene (Ane) were higher than their corresponding regulatory reference limits. The health risk assessment model used to calculate human exposure indicates that both non-carcinogenic and carcinogenic risks from selected pollutants were generally acceptable or close to acceptable. Different types of pollution sources and soil physicochemical properties substantially affected the soil residual concentrations of and risks from these pollutants. PTEs in soils collected from agricultural lands around industrial and residential areas and organic pollutants (PAEs and PAHs) in soils collected from agricultural areas around livestock breeding were higher than those from other types of pollution sources and merit long-term monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Pupils' Understanding of Air Pollution

    ERIC Educational Resources Information Center

    Dimitriou, Anastasia; Christidou, Vasilia

    2007-01-01

    This paper reports on a study of pupils' knowledge and understanding of atmospheric pollution. Specifically, the study is aimed at identifying: 1) the extent to which pupils conceptualise the term "air pollution" in a scientifically appropriate way; 2) pupils' knowledge of air pollution sources and air pollutants; and 3) pupils'…

  19. An almost-parameter-free harmony search algorithm for groundwater pollution source identification.

    PubMed

    Jiang, Simin; Zhang, Yali; Wang, Pei; Zheng, Maohui

    2013-01-01

    The spatiotemporal characterization of unknown sources of groundwater pollution is frequently encountered in environmental problems. This study adopts a simulation-optimization approach that combines a contaminant transport simulation model with a heuristic harmony search algorithm to identify unknown pollution sources. In the proposed methodology, an almost-parameter-free harmony search algorithm is developed. The performance of this methodology is evaluated on an illustrative groundwater pollution source identification problem, and the identified results indicate that the proposed almost-parameter-free harmony search algorithm-based optimization model can give satisfactory estimations, even when the irregular geometry, erroneous monitoring data, and prior information shortage of potential locations are considered.

  20. [A landscape ecological approach for urban non-point source pollution control].

    PubMed

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  1. Source Identification and Apportionment of Trace Elements in Soils in the Yangtze River Delta, China.

    PubMed

    Shao, Shuai; Hu, Bifeng; Fu, Zhiyi; Wang, Jiayu; Lou, Ge; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-06-12

    Trace elements pollution has attracted a lot of attention worldwide. However, it is difficult to identify and apportion the sources of multiple element pollutants over large areas because of the considerable spatial complexity and variability in the distribution of trace elements in soil. In this study, we collected total of 2051 topsoil (0⁻20 cm) samples, and analyzed the general pollution status of soils from the Yangtze River Delta, Southeast China. We applied principal component analysis (PCA), a finite mixture distribution model (FMDM), and geostatistical tools to identify and quantitatively apportion the sources of seven kinds of trace elements (chromium (Cr), cadmium (Cd), mercury (Hg), copper (Cu), zinc (Zn), nickel (Ni), and arsenic (As)) in soil. The PCA results indicated that the trace elements in soil in the study area were mainly from natural, multi-pollutant and industrial sources. The FMDM also fitted three sub log-normal distributions. The results from the two models were quite similar: Cr, As, and Ni were mainly from natural sources caused by parent material weathering; Cd, Cu, and Zu were mainly from mixed sources, with a considerable portion from anthropogenic activities such as traffic pollutants, domestic garbage, and agricultural inputs, and Hg was mainly from industrial wastes and pollutants.

  2. Gender, ethnicity and environmental risk perception revisited: the importance of residential location

    PubMed Central

    Laws, M. Barton; Yeh, Yating; Reisner, Ellin; Stone, Kevin; Wang, Tina; Brugge, Doug

    2015-01-01

    Objectives Studies in the U.S. have found that white men are less concerned about pollution than are women or people of other ethnicity. These studies have not assessed respondents’ proximity to localized sources of pollution. Our objective was to assess lay perceptions of risk from air pollution in an ethnically diverse sample in which proximity to a major perceptible source of pollution is known. Methods Cross sectional interview study of combined area probability and convenience sample of individuals 40 and older in the Boston area, selected according to proximity to high traffic controlled access highways. Results Of 697 respondents 46% were white, 37% Asian (mostly Chinese), 6.3% African-American, 6.3% Latino, and 7.6% other ethnicity. While white respondents, and particularly white men, were less concerned about air pollution than others, this effect disappeared when controlling for distance from the highway. White men were slightly less supportive than others of government policy to control pollution Conclusions The “white male” effect may in part be accounted for by the greater likelihood of minority respondents to live near perceptible localized sources of pollution. PMID:25822317

  3. Potentially toxic trace element contamination, sources, and pollution assessment in farmlands, Bijie City, southwestern China.

    PubMed

    Yuan, Zhimin; Yao, Jun; Wang, Fei; Guo, Zunwei; Dong, Zeqin; Chen, Feng; Hu, Yu; Sunahara, Geoffrey

    2017-01-01

    Artisanal zinc smelting activities, which had been widely applied in Bijie City, Guizhou Province, southwestern of China, can pollute surrounding farmlands. In the present study, 177 farmland topsoil samples of Bijie City were collected and 11 potentially toxic trace elements (PTEs), namely Pb, Zn, Cu, Ni, Co, Mn, Cr, V, Hg, As, and Cd were tested to characterize the concentrations, sources, and ecological risks. Mean concentrations of these PTEs in soils were (mg/kg) as follows: Pb (127), Zn (379), Cu (93.1), Ni (54.6), Co (26.2), Mn (1095), Cr (133), V (206), Hg (0.15), As (16.2), and Cd (3.08). Pb, Zn, and Cd had coefficients of variation greater than 100% and showed a high uneven distribution and spatial variability in the study area. Correlation coefficient analysis and principal component analysis (PCA) were used to quantify potential pollution sources. Results showed that Cu, Ni, Co, Mn, and V came from natural sources, whereas Pb, Zn, Hg, As, and Cd came from anthropogenic pollution sources. Geoaccumulation index and potential ecological risk indices were employed to study the pollution degree of PTEs, which revealed that Pb and Cd shared the greatest contamination and would pose serious ecological risks to the surrounding environment. The results of this study could help the local government managers to establish pollution control strategies and to secure food safety.

  4. Multi-angle Indicators System of Non-point Pollution Source Assessment in Rural Areas: A Case Study Near Taihu Lake

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Ban, Jie; Han, Yu Ting; Yang, Jie; Bi, Jun

    2013-04-01

    This study aims to identify key environmental risk sources contributing to water eutrophication and to suggest certain risk management strategies for rural areas. The multi-angle indicators included in the risk source assessment system were non-point source pollution, deficient waste treatment, and public awareness of environmental risk, which combined psychometric paradigm methods, the contingent valuation method, and personal interviews to describe the environmental sensitivity of local residents. Total risk values of different villages near Taihu Lake were calculated in the case study, which resulted in a geographic risk map showing which village was the critical risk source of Taihu eutrophication. The increased application of phosphorus (P) and nitrogen (N), loss vulnerability of pollutant, and a lack of environmental risk awareness led to more serious non-point pollution, especially in rural China. Interesting results revealed by the quotient between the scores of objective risk sources and subjective risk sources showed what should be improved for each study village. More environmental investments, control of agricultural activities, and promotion of environmental education are critical considerations for rural environmental management. These findings are helpful for developing targeted and effective risk management strategies in rural areas.

  5. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Abou Rafee, Sameh A.; Martins, Leila D.; Kawashima, Ana B.; Almeida, Daniela S.; Morais, Marcos V. B.; Souza, Rita V. A.; Oliveira, Maria B. L.; Souza, Rodrigo A. F.; Medeiros, Adan S. S.; Urbina, Viviana; Freitas, Edmilson D.; Martin, Scot T.; Martins, Jorge A.

    2017-06-01

    This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs). Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  6. Characterization and source identification of pollutants in runoff from a mixed land use watershed using ordination analyses.

    PubMed

    Lee, Dong Hoon; Kim, Jin Hwi; Mendoza, Joseph A; Lee, Chang Hee; Kang, Joo-Hyon

    2016-05-01

    While identification of critical pollutant sources is the key initial step for cost-effective runoff management, it is challenging due to the highly uncertain nature of runoff pollution, especially during a storm event. To identify critical sources and their quantitative contributions to runoff pollution (especially focusing on phosphorous), two ordination methods were used in this study: principal component analysis (PCA) and positive matrix factorization (PMF). For the ordination analyses, we used runoff quality data for 14 storm events, including data for phosphorus, 11 heavy metal species, and eight ionic species measured at the outlets of subcatchments with different land use compositions in a mixed land use watershed. Five factors as sources of runoff pollutants were identified by PCA: agrochemicals, groundwater, native soils, domestic sewage, and urban sources (building materials and automotive activities). PMF identified similar factors to those identified by PCA, with more detailed source mechanisms for groundwater (i.e., nitrate leaching and cation exchange) and urban sources (vehicle components/motor oils/building materials and vehicle exhausts), confirming the sources identified by PCA. PMF was further used to quantify contributions of the identified sources to the water quality. Based on the results, agrochemicals and automotive activities were the two dominant and ubiquitous phosphorus sources (39-61 and 16-47 %, respectively) in the study area, regardless of land use types.

  7. [Empirical study on non-point sources pollution based on landscape pattern & ecological processes theory: a case of soil water loss on the Loess Plateau in China].

    PubMed

    Suo, An-ning; Wang, Tian-ming; Wang, Hui; Yu, Bo; Ge, Jian-ping

    2006-12-01

    Non-point sources pollution is one of main pollution modes which pollutes the earth surface environment. Aimed at soil water loss (a typical non-point sources pollution problem) on the Losses Plateau in China, the paper applied a landscape patternevaluation method to twelve watersheds of Jinghe River Basin on the Loess Plateau by means of location-weighted landscape contrast index(LCI) and landscape slope index(LSI). The result showed that LSI of farm land, low density grass land, forest land and LCI responded significantly to soil erosion modulus and responded to depth of runoff, while the relationship between these landscape index and runoff variation index and erosion variation index were not statistically significant. This tell us LSI and LWLCI are good indicators of soil water loss and thus have big potential in non-point source pollution risk evaluation.

  8. [Classification of Priority Area for Soil Environmental Protection Around Water Sources: Method Proposed and Case Demonstration].

    PubMed

    Li, Lei; Wang, Tie-yu; Wang, Xiaojun; Xiao, Rong-bo; Li, Qi-feng; Peng, Chi; Han, Cun-liang

    2016-04-15

    Based on comprehensive consideration of soil environmental quality, pollution status of river, environmental vulnerability and the stress of pollution sources, a technical method was established for classification of priority area of soil environmental protection around the river-style water sources. Shunde channel as an important drinking water sources of Foshan City, Guangdong province, was studied as a case, of which the classification evaluation system was set up. In detail, several evaluation factors were selected according to the local conditions of nature, society and economy, including the pollution degree of heavy metals in soil and sediment, soil characteristics, groundwater sensitivity, vegetation coverage, the type and location of pollution sources. Data information was mainly obtained by means of field survey, sampling analysis, and remote sensing interpretation. Afterwards, Analytical Hierarchy Process (AHP) was adopted to decide the weight of each factor. The basic spatial data layers were set up respectively and overlaid based on the weighted summation assessment model in Geographical Information System (GIS), resulting in a classification map of soil environmental protection level in priority area of Shunde channel. Accordingly, the area was classified to three levels named as polluted zone, risky zone and safe zone, which respectively accounted for 6.37%, 60.90% and 32.73% of the whole study area. Polluted zone and risky zone were mainly distributed in Lecong, Longjiang and Leliu towns, with pollutants mainly resulted from the long-term development of aquaculture and the industries containing furniture, plastic constructional materials and textile and clothing. In accordance with the main pollution sources of soil, targeted and differentiated strategies were put forward. The newly established evaluation method could be referenced for the protection and sustainable utilization of soil environment around the water sources.

  9. Source apportionments of PM2.5 organic carbon during the elevated pollution episodes in the Ordos region, Inner Mongolia, China.

    PubMed

    Khuzestani, Reza Bashiri; Schauer, James J; Shang, Jing; Cai, Tianqi; Fang, Dongqing; Wei, Yongjie; Zhang, Lulu; Zhang, Yuanxun

    2018-05-01

    The Ordos region in the southwestern part of Inner Mongolia experiences frequent PM concentrations in excess of the national PM 2.5 air quality standards. In order to determine the key sources of PM 2.5 contributing to these pollution episodes, the main sources of PM 2.5 OC during elevated PM episodes in the Inner Mongolia were analyzed and compared with non-polluted days. This will provide insight to the main sources of particulate matter pollution during the high-pollution episodes and the effective seasonal strategies to control sources of particulate matter during months and with the highest PM concentrations that need to be controlled. The PMF source contributions to OC demonstrated that the industrial/coal combustion (4762.77 ± 1061.54 versus 2726.49 ± 469.75 ng/m 3 ; p < 0.001) and mobile source factors (4651.14 ± 681.82 versus 2605.55 ± 276.50 ng/m 3 ; p value < 0.001) showed greater contributions to the elevated concentrations during the episode. The spatial analysis of secondary organic carbon (SOC) factors, regional biomass burning, and biogenic sources did not show significant difference in the pollution episodes and the non-polluted months. In addition, the bivariate polar plots and CWT maps of the industrial/coal combustion and mobile illustrated a regional long-range transport patterns from the external sources to the study area, however, adjacent areas were mostly controlling the contributions of these factors during the PM elevated episodes. The SOC sources, regional biomass burning, and biogenic sources illustrated a regional long-range transport with similar locations found during the elevated pollution episodes compared to the normal situations.

  10. An novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks.

    PubMed

    Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu

    2013-07-01

    The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.

  11. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution.

    PubMed

    Laumbach, Robert J; Kipen, Howard M

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels, primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time because of varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory tract diseases. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  12. Evaluation of agricultural nonpoint source pollution potential risk over China with a Transformed-Agricultural Nonpoint Pollution Potential Index method.

    PubMed

    Yang, Fei; Xu, Zhencheng; Zhu, Yunqiang; He, Chansheng; Wu, Genyi; Qiu, Jin Rong; Fu, Qiang; Liu, Qingsong

    2013-01-01

    Agricultural nonpoint source (NPS) pollution has been the most important threat to water environment quality. Understanding the spatial distribution of NPS pollution potential risk is important for taking effective measures to control and reduce NPS pollution. A Transformed-Agricultural Nonpoint Pollution Potential Index (T-APPI) model was constructed for evaluating the national NPS pollution potential risk in this study; it was also combined with remote sensing and geographic information system techniques for evaluation on the large scale and at 1 km2 spatial resolution. This model considers many factors contributing to the NPS pollution as the original APPI model, summarized as four indicators of the runoff, sediment production, chemical use and the people and animal load. These four indicators were analysed in detail at 1 km2 spatial resolution throughout China. The T-APPI model distinguished the four indicators into pollution source factors and transport process factors; it also took their relationship into consideration. The studied results showed that T-APPI is a credible and convenient method for NPS pollution potential risk evaluation. The results also indicated that the highest NPS pollution potential risk is distributed in the middle-southern Jiangsu province. Several other regions, including the North China Plain, Chengdu Basin Plain, Jianghan Plain, cultivated lands in Guangdong and Guangxi provinces, also showed serious NPS pollution potential. This study can provide a scientific reference for predicting the future NPS pollution risk throughout China and may be helpful for taking reasonable and effective measures for preventing and controlling NPS pollution.

  13. Effluent trading in river systems through stochastic decision-making process: a case study.

    PubMed

    Zolfagharipoor, Mohammad Amin; Ahmadi, Azadeh

    2017-09-01

    The objective of this paper is to provide an efficient framework for effluent trading in river systems. The proposed framework consists of two pessimistic and optimistic decision-making models to increase the executability of river water quality trading programs. The models used for this purpose are (1) stochastic fallback bargaining (SFB) to reach an agreement among wastewater dischargers and (2) stochastic multi-criteria decision-making (SMCDM) to determine the optimal treatment strategy. The Monte-Carlo simulation method is used to incorporate the uncertainty into analysis. This uncertainty arises from stochastic nature and the errors in the calculation of wastewater treatment costs. The results of river water quality simulation model are used as the inputs of models. The proposed models are used in a case study on the Zarjoub River in northern Iran to determine the best solution for the pollution load allocation. The best treatment alternatives selected by each model are imported, as the initial pollution discharge permits, into an optimization model developed for trading of pollution discharge permits among pollutant sources. The results show that the SFB-based water pollution trading approach reduces the costs by US$ 14,834 while providing a relative consensus among pollutant sources. Meanwhile, the SMCDM-based water pollution trading approach reduces the costs by US$ 218,852, but it is less acceptable by pollutant sources. Therefore, it appears that giving due attention to stability, or in other words acceptability of pollution trading programs for all pollutant sources, is an essential element of their success.

  14. Variations of pollution sources of Cu in Jiaozhou Bay 1982-1986

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Li, Haixia; Wang, Qi; Ding, Jun; Zhang, Longlei

    2017-12-01

    Cu pollution in marine bays has been one of the critical environmental issues in the whole world, and understanding the variations of the pollution sources is essential to environmental protection. This paper identified the sources of Cu in Jiaozhou Bay during 1982-1986, and revealed the variations of the sources. Results showed that there were five Cu sources during study years including marine current, stream flow, island top, overland runoff and marine traffic, respectively, whose source strengths were varying from 0.39-20.60 μg L-1, 0.37-10.57 μg L-1, 0.77-4.86 μg L-1, 2.28-3.56 μg L-1, 9.48 μg L-1, respectively. These findings were helpful information in decision-making of pollution control and environmental remediation practice.

  15. Sources of hydrocarbons in urban road dust: Identification, quantification and prediction.

    PubMed

    Mummullage, Sandya; Egodawatta, Prasanna; Ayoko, Godwin A; Goonetilleke, Ashantha

    2016-09-01

    Among urban stormwater pollutants, hydrocarbons are a significant environmental concern due to their toxicity and relatively stable chemical structure. This study focused on the identification of hydrocarbon contributing sources to urban road dust and approaches for the quantification of pollutant loads to enhance the design of source control measures. The study confirmed the validity of the use of mathematical techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for source identification and principal component analysis/absolute principal component scores (PCA/APCS) receptor model for pollutant load quantification. Study outcomes identified non-combusted lubrication oils, non-combusted diesel fuels and tyre and asphalt wear as the three most critical urban hydrocarbon sources. The site specific variabilities of contributions from sources were replicated using three mathematical models. The models employed predictor variables of daily traffic volume (DTV), road surface texture depth (TD), slope of the road section (SLP), effective population (EPOP) and effective impervious fraction (EIF), which can be considered as the five governing parameters of pollutant generation, deposition and redistribution. Models were developed such that they can be applicable in determining hydrocarbon contributions from urban sites enabling effective design of source control measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. HP-25 PROGRAMMABLE POCKET CALCULATOR APPLIED TO AIR POLLUTION MEASUREMENT STUDIES: STATIONARY SOURCES

    EPA Science Inventory

    The report should be useful to persons concerned with Air Pollution Measurement Studies of Stationary Industrial Sources. It gives detailed descriptions of 22 separate programs, written specifically for the Hewlett Packard Model HP-25 manually programmable pocket calculator. Each...

  17. HP-65 PROGRAMMABLE POCKET CALCULATOR APPLIED TO AIR POLLUTION MEASUREMENT STUDIES: STATIONARY SOURCES

    EPA Science Inventory

    The handbook is intended for persons concerned with air pollution measurement studies of stationary industrial sources. It gives detailed descriptions of 22 different programs written specifically for the Hewlett Packard Model HP-65 card-programmable pocket calculator. For each p...

  18. Location identification for indoor instantaneous point contaminant source by probability-based inverse Computational Fluid Dynamics modeling.

    PubMed

    Liu, X; Zhai, Z

    2008-02-01

    Indoor pollutions jeopardize human health and welfare and may even cause serious morbidity and mortality under extreme conditions. To effectively control and improve indoor environment quality requires immediate interpretation of pollutant sensor readings and accurate identification of indoor pollution history and source characteristics (e.g. source location and release time). This procedure is complicated by non-uniform and dynamic contaminant indoor dispersion behaviors as well as diverse sensor network distributions. This paper introduces a probability concept based inverse modeling method that is able to identify the source location for an instantaneous point source placed in an enclosed environment with known source release time. The study presents the mathematical models that address three different sensing scenarios: sensors without concentration readings, sensors with spatial concentration readings, and sensors with temporal concentration readings. The paper demonstrates the inverse modeling method and algorithm with two case studies: air pollution in an office space and in an aircraft cabin. The predictions were successfully verified against the forward simulation settings, indicating good capability of the method in finding indoor pollutant sources. The research lays a solid ground for further study of the method for more complicated indoor contamination problems. The method developed can help track indoor contaminant source location with limited sensor outputs. This will ensure an effective and prompt execution of building control strategies and thus achieve a healthy and safe indoor environment. The method can also assist the design of optimal sensor networks.

  19. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    EPA Science Inventory

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studi...

  20. Analysis of non-point and point source pollution in China: case study in Shima Watershed in Guangdong Province

    NASA Astrophysics Data System (ADS)

    Fang, Huaiyang; Lu, Qingshui; Gao, Zhiqiang; Shi, Runhe; Gao, Wei

    2013-09-01

    China economy has been rapidly increased since 1978. Rapid economic growth led to fast growth of fertilizer and pesticide consumption. A significant portion of fertilizers and pesticides entered the water and caused water quality degradation. At the same time, rapid economic growth also caused more and more point source pollution discharge into the water. Eutrophication has become a major threat to the water bodies. Worsening environment problems forced governments to take measures to control water pollution. We extracted land cover from Landsat TM images; calculated point source pollution with export coefficient method; then SWAT model was run to simulate non-point source pollution. We found that the annual TP loads from industry pollution into rivers are 115.0 t in the entire watershed. Average annual TP loads from each sub-basin ranged from 0 to 189.4 ton. Higher TP loads of each basin from livestock and human living mainly occurs in the areas where they are far from large towns or cities and the TP loads from industry are relatively low. Mean annual TP loads that delivered to the streams was 246.4 tons and the highest TP loads occurred in north part of this area, and the lowest TP loads is mainly distributed in middle part. Therefore, point source pollution has much high proportion in this area and governments should take measures to control point source pollution.

  1. Assessment of source-specific health effects associated with an unknown number of major sources of multiple air pollutants: a unified Bayesian approach.

    PubMed

    Park, Eun Sug; Hopke, Philip K; Oh, Man-Suk; Symanski, Elaine; Han, Daikwon; Spiegelman, Clifford H

    2014-07-01

    There has been increasing interest in assessing health effects associated with multiple air pollutants emitted by specific sources. A major difficulty with achieving this goal is that the pollution source profiles are unknown and source-specific exposures cannot be measured directly; rather, they need to be estimated by decomposing ambient measurements of multiple air pollutants. This estimation process, called multivariate receptor modeling, is challenging because of the unknown number of sources and unknown identifiability conditions (model uncertainty). The uncertainty in source-specific exposures (source contributions) as well as uncertainty in the number of major pollution sources and identifiability conditions have been largely ignored in previous studies. A multipollutant approach that can deal with model uncertainty in multivariate receptor models while simultaneously accounting for parameter uncertainty in estimated source-specific exposures in assessment of source-specific health effects is presented in this paper. The methods are applied to daily ambient air measurements of the chemical composition of fine particulate matter ([Formula: see text]), weather data, and counts of cardiovascular deaths from 1995 to 1997 for Phoenix, AZ, USA. Our approach for evaluating source-specific health effects yields not only estimates of source contributions along with their uncertainties and associated health effects estimates but also estimates of model uncertainty (posterior model probabilities) that have been ignored in previous studies. The results from our methods agreed in general with those from the previously conducted workshop/studies on the source apportionment of PM health effects in terms of number of major contributing sources, estimated source profiles, and contributions. However, some of the adverse source-specific health effects identified in the previous studies were not statistically significant in our analysis, which probably resulted because we incorporated parameter uncertainty in estimated source contributions that has been ignored in the previous studies into the estimation of health effects parameters. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics.

    PubMed

    Reischer, G H; Haider, J M; Sommer, R; Stadler, H; Keiblinger, K M; Hornek, R; Zerobin, W; Mach, R L; Farnleitner, A H

    2008-10-01

    The impairment of water quality by faecal pollution is a global public health concern. Microbial source tracking methods help to identify faecal sources but the few recent quantitative microbial source tracking applications disregarded catchment hydrology and pollution dynamics. This quantitative microbial source tracking study, conducted in a large karstic spring catchment potentially influenced by humans and ruminant animals, was based on a tiered sampling approach: a 31-month water quality monitoring (Monitoring) covering seasonal hydrological dynamics and an investigation of flood events (Events) as periods of the strongest pollution. The detection of a ruminant-specific and a human-specific faecal Bacteroidetes marker by quantitative real-time PCR was complemented by standard microbiological and on-line hydrological parameters. Both quantitative microbial source tracking markers were detected in spring water during Monitoring and Events, with preponderance of the ruminant-specific marker. Applying multiparametric analysis of all data allowed linking the ruminant-specific marker to general faecal pollution indicators, especially during Events. Up to 80% of the variation of faecal indicator levels during Events could be explained by ruminant-specific marker levels proving the dominance of ruminant faecal sources in the catchment. Furthermore, soil was ruled out as a source of quantitative microbial source tracking markers. This study demonstrates the applicability of quantitative microbial source tracking methods and highlights the prerequisite of considering hydrological catchment dynamics in source tracking study design.

  3. Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory.

    PubMed

    Zhu, Guangxu; Guo, Qingjun; Xiao, Huayun; Chen, Tongbin; Yang, Jun

    2017-06-01

    Heavy metals are considered toxic to humans and ecosystems. In the present study, heavy metal concentration in soil was investigated using the single pollution index (PIi), the integrated Nemerow pollution index (PIN), and the geoaccumulation index (Igeo) to determine metal accumulation and its pollution status at the abandoned site of the Capital Iron and Steel Factory in Beijing and its surrounding area. Multivariate statistical (principal component analysis and correlation analysis), geostatistical analysis (ArcGIS tool), combined with stable Pb isotopic ratios, were applied to explore the characteristics of heavy metal pollution and the possible sources of pollutants. The results indicated that heavy metal elements show different degrees of accumulation in the study area, the observed trend of the enrichment factors, and the geoaccumulation index was Hg > Cd > Zn > Cr > Pb > Cu ≈ As > Ni. Hg, Cd, Zn, and Cr were the dominant elements that influenced soil quality in the study area. The Nemerow index method indicated that all of the heavy metals caused serious pollution except Ni. Multivariate statistical analysis indicated that Cd, Zn, Cu, and Pb show obvious correlation and have higher loads on the same principal component, suggesting that they had the same sources, which are related to industrial activities and vehicle emissions. The spatial distribution maps based on ordinary kriging showed that high concentrations of heavy metals were located in the local factory area and in the southeast-northwest part of the study region, corresponding with the predominant wind directions. Analyses of lead isotopes confirmed that Pb in the study soils is predominantly derived from three Pb sources: dust generated during steel production, coal combustion, and the natural background. Moreover, the ternary mixture model based on lead isotope analysis indicates that lead in the study soils originates mainly from anthropogenic sources, which contribute much more than the natural sources. Our study could not only reveal the overall situation of heavy metal contamination, but also identify the specific pollution sources.

  4. Identification and quantification of indoor air pollutant sources within a residential academic campus.

    PubMed

    Suryawanshi, Shalini; Chauhan, Amit Singh; Verma, Ritika; Gupta, Tarun

    2016-11-01

    There is a growing concern regarding the adverse health effects due to indoor air pollution in developing countries including India. Hence, it becomes important to study the causes and sources of indoor air pollutants. This study presents the indoor concentrations of PM0.6 (particles with aerodynamic diameter less than 0.6μm) and identifies sources leading to indoor air pollution. Indoor air samples were collected at IIT Kanpur campus. Ninety-eight PM0.6 samples were collected during November 2013 to September 2014. PM0.6 concentration was measured using a single stage impactor type PM0.6 sampler. The average PM0.6 concentration indoor was about 94.44μg/m(3). Samples collected were then analysed for metal concentrations using ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometer). Eight metals Ba, Ca, Cr, Cu, Fe, Mg, Ni and Pb were quantified from PM samples using ICP-OES. Positive Matrix Factorization (PMF) was used for source apportionment of indoor air pollution. PMF is a factor analysis tool which helps in resolving the profile and contribution of the sources from an unknown mixture. Five possible sources of indoor pollutants were identified by factor analysis - (1) Coal combustion (21.8%) (2) Tobacco smoking (9.8%) (3) Wall dust (25.7%) (4) Soil particles (17.5%) (5) Wooden furniture/paper products (25.2%). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Community Perceptions of Air Pollution and Related Health Risks in Nairobi Slums

    PubMed Central

    Egondi, Thaddaeus; Kyobutungi, Catherine; Ng, Nawi; Muindi, Kanyiva; Oti, Samuel; van de Vijver, Steven; Ettarh, Remare; Rocklöv, Joacim

    2013-01-01

    Air pollution is among the leading global risks for mortality and responsible for increasing risk for chronic diseases. Community perceptions on exposure are critical in determining people’s response and acceptance of related policies. Therefore, understanding people’ perception is critical in informing the design of appropriate intervention measures. The aim of this paper was to establish levels and associations between perceived pollution and health risk perception among slum residents. A cross-sectional study of 5,317 individuals aged 35+ years was conducted in two slums of Nairobi. Association of perceived score and individual characteristics was assessed using linear regression. Spatial variation in the perceived levels was determined through hot spot analysis using ArcGIS. The average perceived air pollution level was higher among residents in Viwandani compared to those in Korogocho. Perceived air pollution level was positively associated with perceived health risks. The majority of respondents were exposed to air pollution in their place of work with 66% exposed to at least two sources of air pollution. Less than 20% of the respondents in both areas mentioned sources related to indoor pollution. The perceived air pollution level and related health risks in the study community were lowamong the residents indicating the need for promoting awareness on air pollution sources and related health risks. PMID:24157509

  6. Sources and contents of air pollution affecting term low birth weight in Los Angeles County, California, 2001-2008.

    PubMed

    Laurent, Olivier; Hu, Jianlin; Li, Lianfa; Cockburn, Myles; Escobedo, Loraine; Kleeman, Michael J; Wu, Jun

    2014-10-01

    Low birth weight (LBW, <2500 g) has been associated with exposure to air pollution, but it is still unclear which sources or components of air pollution might be in play. The association between ultrafine particles and LBW has never been studied. To study the relationships between LBW in term born infants and exposure to particles by size fraction, source and chemical composition, and complementary components of air pollution in Los Angeles County (California, USA) over the period 2001-2008. Birth certificates (n=960,945) were geocoded to maternal residence. Primary particulate matter (PM) concentrations by source and composition were modeled. Measured fine PM, nitrogen dioxide and ozone concentrations were interpolated using empirical Bayesian kriging. Traffic indices were estimated. Associations between LBW and air pollution metrics were examined using generalized additive models, adjusting for maternal age, parity, race/ethnicity, education, neighborhood income, gestational age and infant sex. Increased LBW risks were associated with the mass of primary fine and ultrafine PM, with several major sources (especially gasoline, wood burning and commercial meat cooking) of primary PM, and chemical species in primary PM (elemental and organic carbon, potassium, iron, chromium, nickel, and titanium but not lead or arsenic). Increased LBW risks were also associated with total fine PM mass, nitrogen dioxide and local traffic indices (especially within 50 m from home), but not with ozone. Stronger associations were observed in infants born to women with low socioeconomic status, chronic hypertension, diabetes and a high body mass index. This study supports previously reported associations between traffic-related pollutants and LBW and suggests other pollution sources and components, including ultrafine particles, as possible risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: Using soluble and insoluble particles in snow and rime.

    PubMed

    Novak, Martin; Sipkova, Adela; Chrastny, Vladislav; Stepanova, Marketa; Voldrichova, Petra; Veselovsky, Frantisek; Prechova, Eva; Blaha, Vladimir; Curik, Jan; Farkas, Juraj; Erbanova, Lucie; Bohdalkova, Leona; Pasava, Jan; Mikova, Jitka; Komarek, Arnost; Krachler, Michael

    2016-11-01

    Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ 65 Cu and δ 66 Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ 65 Cu and δ 66 Zn values in snow and rime, extracted by diluted HNO 3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ 65 Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ 65 Cu value of pollution sources (-1.17‰). The variability in δ 65 Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ 66 Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ 66 Zn value of pollution sources (-0.23‰). The variability in δ 66 Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Application of an integrated Weather Research and Forecasting (WRF)/CALPUFF modeling tool for source apportionment of atmospheric pollutants for air quality management: A case study in the urban area of Benxi, China.

    PubMed

    Wu, Hao; Zhang, Yan; Yu, Qi; Ma, Weichun

    2018-04-01

    In this study, the authors endeavored to develop an effective framework for improving local urban air quality on meso-micro scales in cities in China that are experiencing rapid urbanization. Within this framework, the integrated Weather Research and Forecasting (WRF)/CALPUFF modeling system was applied to simulate the concentration distributions of typical pollutants (particulate matter with an aerodynamic diameter <10 μm [PM 10 ], sulfur dioxide [SO 2 ], and nitrogen oxides [NO x ]) in the urban area of Benxi. Statistical analyses were performed to verify the credibility of this simulation, including the meteorological fields and concentration fields. The sources were then categorized using two different classification methods (the district-based and type-based methods), and the contributions to the pollutant concentrations from each source category were computed to provide a basis for appropriate control measures. The statistical indexes showed that CALMET had sufficient ability to predict the meteorological conditions, such as the wind fields and temperatures, which provided meteorological data for the subsequent CALPUFF run. The simulated concentrations from CALPUFF showed considerable agreement with the observed values but were generally underestimated. The spatial-temporal concentration pattern revealed that the maximum concentrations tended to appear in the urban centers and during the winter. In terms of their contributions to pollutant concentrations, the districts of Xihu, Pingshan, and Mingshan all affected the urban air quality to different degrees. According to the type-based classification, which categorized the pollution sources as belonging to the Bengang Group, large point sources, small point sources, and area sources, the source apportionment showed that the Bengang Group, the large point sources, and the area sources had considerable impacts on urban air quality. Finally, combined with the industrial characteristics, detailed control measures were proposed with which local policy makers could improve the urban air quality in Benxi. In summary, the results of this study showed that this framework has credibility for effectively improving urban air quality, based on the source apportionment of atmospheric pollutants. The authors endeavored to build up an effective framework based on the integrated WRF/CALPUFF to improve the air quality in many cities on meso-micro scales in China. Via this framework, the integrated modeling tool is accurately used to study the characteristics of meteorological fields, concentration fields, and source apportionments of pollutants in target area. The impacts of classified sources on air quality together with the industrial characteristics can provide more effective control measures for improving air quality. Through the case study, the technical framework developed in this study, particularly the source apportionment, could provide important data and technical support for policy makers to assess air pollution on the scale of a city in China or even the world.

  9. Policy Guidance From a Multi-scale Suite of Natural Field and Digital Laboratories of Change: Hydrological Catchment Studies of Nutrient and Pollutant Source Releases, Waterborne Transport-Transformations and Mass Flows in Water Ecosystems

    NASA Astrophysics Data System (ADS)

    Destouni, G.

    2008-12-01

    Continental fresh water transports and loads excess nutrients and pollutants from various land surface sources, through the landscape, into downstream inland and coastal water environments. Our ability to understand, predict and control the eutrophication and the pollution pressures on inland, coastal and marine water ecosystems relies on our ability to quantify these mass flows. This paper synthesizes a series of hydro- biogeochemical studies of nutrient and pollutant sources, transport-transformations and mass flows in catchment areas across a range of scales, from continental, through regional and national, to individual drainage basin scales. Main findings on continental scales include correlations between country/catchment area, population and GDP and associated pollutant and nutrient loading, which differ significantly between world regions with different development levels. On regional scales, essential systematic near-coastal gaps are identified in the national monitoring of nutrient and pollutant loads from land to the sea. Combination of the unmonitored near-coastal area characteristics with the relevant regional nutrient and pollutant load correlations with these characteristics shows that the unmonitored nutrient and pollutant mass loads to the sea may often be as large as, or greater than the monitored river loads. Process studies on individual basin- scales show long-term nutrient and pollutant memories in the soil-groundwater systems of the basins, which may continue to uphold large mass loading to inland and coastal waters long time after mitigation of the sources. Linked hydro-biogeochemical-economic model studies finally demonstrate significant comparative advantages of policies that demand explicit quantitative account of the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model limitations, instead of the now common neglect or subjective implicit handling of such uncertainties in strategies and practices for combating water pollution and eutrophication.

  10. Effects of Source-Apportioned Coarse Particulate Matter (PM) on Allergic Responses in Mice

    EPA Science Inventory

    The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coa...

  11. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    PubMed

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  12. A clustering algorithm for sample data based on environmental pollution characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Wang, Pengfei; Chen, Qiang; Wu, Jiadong; Chen, Xiaoyun

    2015-04-01

    Environmental pollution has become an issue of serious international concern in recent years. Among the receptor-oriented pollution models, CMB, PMF, UNMIX, and PCA are widely used as source apportionment models. To improve the accuracy of source apportionment and classify the sample data for these models, this study proposes an easy-to-use, high-dimensional EPC algorithm that not only organizes all of the sample data into different groups according to the similarities in pollution characteristics such as pollution sources and concentrations but also simultaneously detects outliers. The main clustering process consists of selecting the first unlabelled point as the cluster centre, then assigning each data point in the sample dataset to its most similar cluster centre according to both the user-defined threshold and the value of similarity function in each iteration, and finally modifying the clusters using a method similar to k-Means. The validity and accuracy of the algorithm are tested using both real and synthetic datasets, which makes the EPC algorithm practical and effective for appropriately classifying sample data for source apportionment models and helpful for better understanding and interpreting the sources of pollution.

  13. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China

    PubMed Central

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-01-01

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution. PMID:26308032

  14. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China.

    PubMed

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-08-21

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  15. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils.

    PubMed

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-12-15

    Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74-100% and 0-24% of the total Hg input, while road dusts and solid wastes contributed for 0-80% and 19-100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Monitoring Lead (Pb) Pollution and Identifying Pb Pollution Sources in Japan Using Stable Pb Isotope Analysis with Kidneys of Wild Rats.

    PubMed

    Nakata, Hokuto; Nakayama, Shouta M M; Oroszlany, Balazs; Ikenaka, Yoshinori; Mizukawa, Hazuki; Tanaka, Kazuyuki; Harunari, Tsunehito; Tanikawa, Tsutomu; Darwish, Wageh Sobhy; Yohannes, Yared B; Saengtienchai, Aksorn; Ishizuka, Mayumi

    2017-01-10

    Although Japan has been considered to have little lead (Pb) pollution in modern times, the actual pollution situation is unclear. The present study aims to investigate the extent of Pb pollution and to identify the pollution sources in Japan using stable Pb isotope analysis with kidneys of wild rats. Wild brown ( Rattus norvegicus , n = 43) and black ( R. rattus , n = 98) rats were trapped from various sites in Japan. Mean Pb concentrations in the kidneys of rats from Okinawa (15.58 mg/kg, dry weight), Aichi (10.83), Niigata (10.62), Fukuoka (8.09), Ibaraki (5.06), Kyoto (4.58), Osaka (4.57), Kanagawa (3.42), and Tokyo (3.40) were above the threshold (2.50) for histological kidney changes. Similarly, compared with the previous report, it was regarded that even structural and functional kidney damage as well as neurotoxicity have spread among rats in Japan. Additionally, the possibility of human exposure to a high level of Pb was assumed. In regard to stable Pb isotope analysis, distinctive values of stable Pb isotope ratios (Pb-IRs) were detected in some kidney samples with Pb levels above 5.0 mg/kg. This result indicated that composite factors are involved in Pb pollution. However, the identification of a concrete pollution source has not been accomplished due to limited differences among previously reported values of Pb isotope composition in circulating Pb products. Namely, the current study established the limit of Pb isotope analysis for source identification. Further detailed research about monitoring Pb pollution in Japan and the demonstration of a novel method to identify Pb sources are needed.

  17. Monitoring Lead (Pb) Pollution and Identifying Pb Pollution Sources in Japan Using Stable Pb Isotope Analysis with Kidneys of Wild Rats

    PubMed Central

    Nakata, Hokuto; Nakayama, Shouta M. M.; Oroszlany, Balazs; Ikenaka, Yoshinori; Mizukawa, Hazuki; Tanaka, Kazuyuki; Harunari, Tsunehito; Tanikawa, Tsutomu; Darwish, Wageh Sobhy; Yohannes, Yared B.; Saengtienchai, Aksorn; Ishizuka, Mayumi

    2017-01-01

    Although Japan has been considered to have little lead (Pb) pollution in modern times, the actual pollution situation is unclear. The present study aims to investigate the extent of Pb pollution and to identify the pollution sources in Japan using stable Pb isotope analysis with kidneys of wild rats. Wild brown (Rattus norvegicus, n = 43) and black (R. rattus, n = 98) rats were trapped from various sites in Japan. Mean Pb concentrations in the kidneys of rats from Okinawa (15.58 mg/kg, dry weight), Aichi (10.83), Niigata (10.62), Fukuoka (8.09), Ibaraki (5.06), Kyoto (4.58), Osaka (4.57), Kanagawa (3.42), and Tokyo (3.40) were above the threshold (2.50) for histological kidney changes. Similarly, compared with the previous report, it was regarded that even structural and functional kidney damage as well as neurotoxicity have spread among rats in Japan. Additionally, the possibility of human exposure to a high level of Pb was assumed. In regard to stable Pb isotope analysis, distinctive values of stable Pb isotope ratios (Pb-IRs) were detected in some kidney samples with Pb levels above 5.0 mg/kg. This result indicated that composite factors are involved in Pb pollution. However, the identification of a concrete pollution source has not been accomplished due to limited differences among previously reported values of Pb isotope composition in circulating Pb products. Namely, the current study established the limit of Pb isotope analysis for source identification. Further detailed research about monitoring Pb pollution in Japan and the demonstration of a novel method to identify Pb sources are needed. PMID:28075384

  18. A Method for Identifying Pollution Sources of Heavy Metals and PAH for a Risk-Based Management of a Mediterranean Harbour

    PubMed Central

    Moranda, Arianna

    2017-01-01

    A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities. PMID:29270328

  19. A Method for Identifying Pollution Sources of Heavy Metals and PAH for a Risk-Based Management of a Mediterranean Harbour.

    PubMed

    Paladino, Ombretta; Moranda, Arianna; Seyedsalehi, Mahdi

    2017-01-01

    A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities.

  20. Using CSLD Method to Calculate COD Pollution Load of Wei River Watershed above Huaxian Section, China

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Song, JinXi; Liu, WanQing

    2017-12-01

    Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. Weihe River Watershed above Huaxian Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load(CSLD) method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the normal, rainy and wet period in turn.

  1. Calculating NH3-N pollution load of wei river watershed above Huaxian section using CSLD method

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Song, JinXi; Liu, WanQing

    2018-02-01

    Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. So it is taken as the research objective in this paper and NH3-N is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load (CSLD)method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly. The non-point source pollution load proportions of total pollution load of NH3-N decrease in the normal, rainy and wet period in turn.

  2. Aerosol Source Attributions and Source-Receptor Relationships Across the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Bian, Huisheng; Chin, Mian; Kucsera, Tom; Pan, Xiaohua; Darmenov, Anton; Colarco, Peter; Torres, Omar; Shults, Michael

    2014-01-01

    Emissions and long-range transport of air pollution pose major concerns on air quality and climate change. To better assess the impact of intercontinental transport of air pollution on regional and global air quality, ecosystems, and near-term climate change, the UN Task Force on Hemispheric Transport of Air Pollution (HTAP) is organizing a phase II activity (HTAP2) that includes global and regional model experiments and data analysis, focusing on ozone and aerosols. This study presents the initial results of HTAP2 global aerosol modeling experiments. We will (a) evaluate the model results with surface and aircraft measurements, (b) examine the relative contributions of regional emission and extra-regional source on surface PM concentrations and column aerosol optical depth (AOD) over several NH pollution and dust source regions and the Arctic, and (c) quantify the source-receptor relationships in the pollution regions that reflect the sensitivity of regional aerosol amount to the regional and extra-regional emission reductions.

  3. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    PubMed

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  4. Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources

    NASA Astrophysics Data System (ADS)

    Wang, Yao

    2018-01-01

    The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.

  5. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida.

    PubMed

    Haji Gholizadeh, Mohammad; Melesse, Assefa M; Reddi, Lakshmi

    2016-10-01

    In this study, principal component analysis (PCA), factor analysis (FA), and the absolute principal component score-multiple linear regression (APCS-MLR) receptor modeling technique were used to assess the water quality and identify and quantify the potential pollution sources affecting the water quality of three major rivers of South Florida. For this purpose, 15years (2000-2014) dataset of 12 water quality variables covering 16 monitoring stations, and approximately 35,000 observations was used. The PCA/FA method identified five and four potential pollution sources in wet and dry seasons, respectively, and the effective mechanisms, rules and causes were explained. The APCS-MLR apportioned their contributions to each water quality variable. Results showed that the point source pollution discharges from anthropogenic factors due to the discharge of agriculture waste and domestic and industrial wastewater were the major sources of river water contamination. Also, the studied variables were categorized into three groups of nutrients (total kjeldahl nitrogen, total phosphorus, total phosphate, and ammonia-N), water murkiness conducive parameters (total suspended solids, turbidity, and chlorophyll-a), and salt ions (magnesium, chloride, and sodium), and average contributions of different potential pollution sources to these categories were considered separately. The data matrix was also subjected to PMF receptor model using the EPA PMF-5.0 program and the two-way model described was performed for the PMF analyses. Comparison of the obtained results of PMF and APCS-MLR models showed that there were some significant differences in estimated contribution for each potential pollution source, especially in the wet season. Eventually, it was concluded that the APCS-MLR receptor modeling approach appears to be more physically plausible for the current study. It is believed that the results of apportionment could be very useful to the local authorities for the control and management of pollution and better protection of important riverine water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    PubMed

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.

  7. Use of abundance ratios of somatic coliphages and bacteriophages of Bacteroides thetaiotaomicron GA17 for microbial source identification.

    PubMed

    Muniesa, Maite; Lucena, Francisco; Blanch, Anicet R; Payán, Andrey; Jofre, Juan

    2012-12-01

    Water contaminated with human faeces is a risk to human health and management of water bodies can be improved by determining the sources of faecal pollution. Field studies show that existing methods are insufficient and that different markers are required. This study proposes the combined use of two microbial indicators, the concentrations of which are presented as ratios. This provides a more reliable approach to identifying faecal sources as it avoids variation due to treatment or ageing of the contamination. Among other indicators, bacteriophages have been proposed as rapid and cheap indicators of faecal pollution. Samples analysed in this study were derived from wastewater treatment plants (raw sewage, secondary and tertiary effluents and raw sewage sludge) river water, seawater and animal related wastewater. The abundance ratios of faecal coliforms and Bacteroides phages, either strain RYC2056 (non-specific for faecal origin) or strain GA17 (specific for human pollution), and among somatic coliphages and phages infecting both Bacteroides strains, were evaluated. The results indicate that the ratio of somatic coliphages and phages infecting Bacteroides strain GA17, which is specific to human faecal sources, provides a robust method for discriminating samples, even those presenting different levels and ages of pollution, and allows samples polluted with human faeces to be distinguished from those containing animal faecal pollution. This method allows the generation of numerical data that can be further applied to numerical methods for faecal pollution discrimination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. In-time source tracking of watershed loads of Taihu Lake Basin, China based on spatial relationship modeling.

    PubMed

    Wang, Ce; Bi, Jun; Zhang, Xu-Xiang; Fang, Qiang; Qi, Yi

    2018-05-25

    Influent river carrying cumulative watershed load plays a significant role in promoting nuisance algal bloom in river-fed lake. It is most relevant to discern in-stream water quality exceedance and evaluate the spatial relationship between risk location and potential pollution sources. However, no comprehensive studies of source tracking in watershed based on management grid have been conducted for refined water quality management, particularly for plain terrain with complex river network. In this study, field investigations were implemented during 2014 in Taige Canal watershed of Taihu Lake Basin. A Geographical Information System (GIS)-based spatial relationship model was established to characterize the spatial relationships of "point (point-source location and monitoring site)-line (river segment)-plane (catchment)." As a practical exemplification, in-time source tracking was triggered on April 15, 2015 at Huangnianqiao station, where TN and TP concentration violated the water quality standard (TN 4.0 mg/L, TP 0.15 mg/L). Of the target grid cells, 53 and 46 were identified as crucial areas having high pollution intensity for TN and TP pollution, respectively. The estimated non-point source load in each grid cell could be apportioned into different source types based on spatial pollution-related entity objects. We found that the non-point source load derived from rural sewage and livestock and poultry breeding accounted for more than 80% of total TN or TP load than another source type of crop farming. The approach in this study would be of great benefit to local authorities for identifying the serious polluted regions and efficiently making environmental policies to reduce watershed load.

  9. Tracking the Primary Sources of Fecal Pollution in a Tropical Watershed in a One-Year Study

    EPA Science Inventory

    A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n=534) from 10 different sites along the Rio Grande de Arecibo watershed were collected every two-three w...

  10. Source Apportionment of Final Particulate Matterin North China Plain based on Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Xing, J.; Wu, W.; Chang, X.; Wang, S.; Hao, J.

    2016-12-01

    Most Chinese cities in North China Plain are suffering from serious air pollution. To develop the regional air pollution control policies, we need to identify the major source contributions to such pollution and to design the control policy which is accurate, efficient and effective. This study used the air quality model with serval advanced technologies including ISAM and ERSM, to assess the source contributions from individual pollutants (incl. SO2, NOx, VOC, NH3, primary PM), sectors (incl. power plants, industry, transportation and domestic), and regions (Beijing, Hebei, Tianjing and surrounding provinces). The modeling period is two months in 2012 as January and July which represent winter and summer respectively. The non-linear relationship between air pollutant emissions and air quality will be addressed, and the integrated control of multi-pollutants and multi-regions in China will be suggested.

  11. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China.

    PubMed

    Zhang, Pengyan; Qin, Chengzhe; Hong, Xin; Kang, Guohua; Qin, Mingzhou; Yang, Dan; Pang, Bo; Li, Yanyan; He, Jianjian; Dick, Richard P

    2018-08-15

    The level of concentration of heavy metal in soil is detrimental to soil quality. The Heigangkou-Liuyuankou irrigation area in the lower-reach of Yellow River irrigation, as home to a large population and a major site to agricultural production, is vulnerable to heavy metal pollution. This study examined soil quality in Heigangkou-Liuyuankou irrigation areas of Kaifeng, China. Pollution in soil and potential risks introduced by heavy metal accumulation were assessed using Nemerow, Geoaccumulation, and Hakanson's ecological risk indices. Statistics and Geographic Information Systems (GIS) were used to model and present the spatiotemporal changes of the pollution sources and factors affecting the levels of pollution. The heavy metals found in the sampled soil are Cr, Ni, Cu, Zn, Cd, Pb, As, and Hg. Among them, Cd is more concentrated than the others. The southwestern region of the studied area confronts the most serious heavy metal pollution. There exist spatial disparities of low concentrations of different heavy metals in the study area. Hg and Cd are found to pose the highest potential ecological risks. However, their risk levels are not the same across the study area. Levels concentration of Ni, Cu, Zn, Cd, Pb, As, and Hg in soil are highly correlated. In combination, they post an additional threat to the ecological environment. Transportation, rural settlements, and water bodies are found to be the major sources of Cr, Ni, Cu, Zn, Cd, Pb, and Hg pollution in the soil; among the major sources, transportation is the most significant factor. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Potential pollutant sources in a Choptank River subwatershed: Influence of agricultural and residential land use and aqueous and atmospheric sources

    USDA-ARS?s Scientific Manuscript database

    Agriculture and animal feeding operations have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined a subwatershed within the Choptank River watershed for effects of land use on water quality. Water and sediment...

  13. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    NASA Astrophysics Data System (ADS)

    Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus

    2015-11-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.

  14. Quantifying sources of elemental carbon over the Guanzhong Basin of China: A consistent network of measurements and WRF-Chem modeling.

    PubMed

    Li, Nan; He, Qingyang; Tie, Xuexi; Cao, Junji; Liu, Suixin; Wang, Qiyuan; Li, Guohui; Huang, Rujin; Zhang, Qiang

    2016-07-01

    We conducted a year-long WRF-Chem (Weather Research and Forecasting Chemical) model simulation of elemental carbon (EC) aerosol and compared the modeling results to the surface EC measurements in the Guanzhong (GZ) Basin of China. The main goals of this study were to quantify the individual contributions of different EC sources to EC pollution, and to find the major cause of the EC pollution in this region. The EC measurements were simultaneously conducted at 10 urban, rural, and background sites over the GZ Basin from May 2013 to April 2014, and provided a good base against which to evaluate model simulation. The model evaluation showed that the calculated annual mean EC concentration was 5.1 μgC m(-3), which was consistent with the observed value of 5.3 μgC m(-3). Moreover, the model result also reproduced the magnitude of measured EC in all seasons (regression slope = 0.98-1.03), as well as the spatial and temporal variations (r = 0.55-0.78). We conducted several sensitivity studies to quantify the individual contributions of EC sources to EC pollution. The sensitivity simulations showed that the local and outside sources contributed about 60% and 40% to the annual mean EC concentration, respectively, implying that local sources were the major EC pollution contributors in the GZ Basin. Among the local sources, residential sources contributed the most, followed by industry and transportation sources. A further analysis suggested that a 50% reduction of industry or transportation emissions only caused a 6% decrease in the annual mean EC concentration, while a 50% reduction of residential emissions reduced the winter surface EC concentration by up to 25%. In respect to the serious air pollution problems (including EC pollution) in the GZ Basin, our findings can provide an insightful view on local air pollution control strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Estimation of River Towboat Air Pollution in Saint Louis, Missouri

    DOT National Transportation Integrated Search

    1976-02-01

    The study gives an estimate of river towboat air pollution emissions for the St. Louis Air Pollution Study area. No emissions from secondary sources or from recreational boating on the river of other areas are considered. The emission estimate is bas...

  16. Sourcing faecal pollution: a combination of library-dependent and library-independent methods to identify human faecal pollution in non-sewered catchments.

    PubMed

    Ahmed, W; Stewart, J; Gardner, T; Powell, D; Brooks, P; Sullivan, D; Tindale, N

    2007-08-01

    Library-dependent (LD) (biochemical fingerprinting of Escherichia coli and enterococci) and library-independent (LI) (PCR detection of human-specific biomarkers) methods were used to detect human faecal pollution in three non-sewered catchments. In all, 550 E. coli isolates and 700 enterococci isolates were biochemically fingerprinted from 18 water samples and compared with metabolic fingerprint libraries of 4508 E. coli and 4833 enterococci isolates. E. coli fingerprints identified human unique biochemical phenotypes (BPTs) in nine out of 18 water samples; similarly, enterococci fingerprints identified human faecal pollution in 10 water samples. Seven samples were tested by PCR for the detection of biomarkers. Human-specific HF134 Bacteroides and enterococci surface protein (esp) biomarkers were detected in five samples. Four samples were also positive for HF183 Bacteroides biomarker. The combination of biomarkers detected human faecal pollution in six out of seven water samples. Of the seven samples analysed for both the indicators/markers, at least one indicator/marker was detected in every sample. Four of the seven PCR-positive samples were also positive for one of the human-specific E. coli or enterococci BPTs. The results indicated human faecal pollution in the studied sub-catchments after storm events. LD and LI methods used in this study complimented each other and provided additional information regarding the polluting sources when one method failed to detect human faecal pollution. Therefore, it is recommended that a combination of methods should be used to identify the source(s) of faecal pollution where possible.

  17. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources.

    PubMed

    Hime, Neil J; Marks, Guy B; Cowie, Christine T

    2018-06-08

    This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM) air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  18. Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997-2010.

    PubMed

    Chudnovsky, A Alexandra; Koutrakis, Petros; Kostinski, Alex; Proctor, Susan P; Garshick, Eric

    2017-01-01

    Satellite imaging has emerged as a method for monitoring regional air pollution and detecting areas of high dust concentrations. Unlike ground observations, continuous data monitoring is available with global coverage of terrestrial and atmospheric components. In this study we test the utility of different sources of satellite data to assess air pollution concentrations in Iraq. SeaWiFS and MODIS Deep Blue (DB) aerosol optical depth (AOD) products were evaluated and used to characterize the spatial and temporal pollution levels from the late 1990s through 2010. The AOD and Ångström exponent (an indicator of particle size, since smaller Ångström exponent values reflect a source that includes larger particles) were correlated on 50 × 50 km spatial resolution. Generally, AOD and Ångström exponent were inversely correlated, suggesting a significant contribution of coarse particles from dust storms to AOD maxima. Although the majority of grid cells exhibited this trend, a weaker relationship in other locations suggested an additional contribution of fine particles from anthropogenic sources. Tropospheric NO 2 densities from the OMI satellite were elevated over cities, also consistent with a contribution from anthropogenic sources. Our analysis demonstrates the use of satellite imaging data to estimate relative pollution levels and source contributions in areas of the world where direct measurements are not available. The authors demonstrated how satellite data can be used to characterize exposures to dust and to anthropogenic pollution for future health related studies. This approach is of a great potential to investigate the associations between subject-specific exposures to different pollution sources and their health effects in inaccessible regions and areas where ground monitoring is unavailable.

  19. Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997–2010

    PubMed Central

    Chudnovsky, A. Alexandra; Koutrakis, Petros; Kostinski, Alex; Proctor, Susan P.; Garshick, Eric

    2016-01-01

    Satellite imaging has emerged as a method for monitoring regional air pollution and detecting areas of high dust concentrations. Unlike ground observations, continuous data monitoring is available with global coverage of terrestrial and atmospheric components. In this study we test the utility of different sources of satellite data to assess air pollution concentrations in Iraq. SeaWiFS and MODIS Deep Blue (DB) aerosol optical depth (AOD) products were evaluated and used to characterize the spatial and temporal pollution levels from the late 1990s through 2010. The AOD and Ångström exponent (an indicator of particle size, since smaller Ångström exponent values reflect a source that includes larger particles) were correlated on 50 × 50 km spatial resolution. Generally, AOD and Ångström exponent were inversely correlated, suggesting a significant contribution of coarse particles from dust storms to AOD maxima. Although the majority of grid cells exhibited this trend, a weaker relationship in other locations suggested an additional contribution of fine particles from anthropogenic sources. Tropospheric NO2 densities from the OMI satellite were elevated over cities, also consistent with a contribution from anthropogenic sources. Our analysis demonstrates the use of satellite imaging data to estimate relative pollution levels and source contributions in areas of the world where direct measurements are not available. Implications The authors demonstrated how satellite data can be used to characterize exposures to dust and to anthropogenic pollution for future health related studies. This approach is of a great potential to investigate the associations between subject-specific exposures to different pollution sources and their health effects in inaccessible regions and areas where ground monitoring is unavailable. PMID:28001122

  20. Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis

    PubMed Central

    Zhou, Ying; Levy, Jonathan I

    2007-01-01

    Background There has been growing interest among exposure assessors, epidemiologists, and policymakers in the concept of "hot spots", or more broadly, the "spatial extent" of impacts from traffic-related air pollutants. This review attempts to quantitatively synthesize findings about the spatial extent under various circumstances. Methods We include both the peer-reviewed literature and government reports, and focus on four significant air pollutants: carbon monoxide, benzene, nitrogen oxides, and particulate matter (including both ultrafine particle counts and fine particle mass). From the identified studies, we extracted information about significant factors that would be hypothesized to influence the spatial extent within the study, such as the study type (e.g., monitoring, air dispersion modeling, GIS-based epidemiological studies), focus on concentrations or health risks, pollutant under study, background concentration, emission rate, and meteorological factors, as well as the study's implicit or explicit definition of spatial extent. We supplement this meta-analysis with results from some illustrative atmospheric dispersion modeling. Results We found that pollutant characteristics and background concentrations best explained variability in previously published spatial extent estimates, with a modifying influence of local meteorology, once some extreme values based on health risk estimates were removed from the analysis. As hypothesized, inert pollutants with high background concentrations had the largest spatial extent (often demonstrating no significant gradient), and pollutants formed in near-source chemical reactions (e.g., nitrogen dioxide) had a larger spatial extent than pollutants depleted in near-source chemical reactions or removed through coagulation processes (e.g., nitrogen oxide and ultrafine particles). Our illustrative dispersion model illustrated the complex interplay of spatial extent definitions, emission rates, background concentrations, and meteorological conditions on spatial extent estimates even for non-reactive pollutants. Our findings indicate that, provided that a health risk threshold is not imposed, the spatial extent of impact for mobile sources reviewed in this study is on the order of 100–400 m for elemental carbon or particulate matter mass concentration (excluding background concentration), 200–500 m for nitrogen dioxide and 100–300 m for ultrafine particle counts. Conclusion First, to allow for meaningful comparisons across studies, it is important to state the definition of spatial extent explicitly, including the comparison method, threshold values, and whether background concentration is included. Second, the observation that the spatial extent is generally within a few hundred meters for highway or city roads demonstrates the need for high resolution modeling near the source. Finally, our findings emphasize that policymakers should be able to develop reasonable estimates of the "zone of influence" of mobile sources, provided that they can clarify the pollutant of concern, the general site characteristics, and the underlying definition of spatial extent that they wish to utilize. PMID:17519039

  1. Inverse modeling methods for indoor airborne pollutant tracking: literature review and fundamentals.

    PubMed

    Liu, X; Zhai, Z

    2007-12-01

    Reduction in indoor environment quality calls for effective control and improvement measures. Accurate and prompt identification of contaminant sources ensures that they can be quickly removed and contaminated spaces isolated and cleaned. This paper discusses the use of inverse modeling to identify potential indoor pollutant sources with limited pollutant sensor data. The study reviews various inverse modeling methods for advection-dispersion problems and summarizes the methods into three major categories: forward, backward, and probability inverse modeling methods. The adjoint probability inverse modeling method is indicated as an appropriate model for indoor air pollutant tracking because it can quickly find source location, strength and release time without prior information. The paper introduces the principles of the adjoint probability method and establishes the corresponding adjoint equations for both multi-zone airflow models and computational fluid dynamics (CFD) models. The study proposes a two-stage inverse modeling approach integrating both multi-zone and CFD models, which can provide a rapid estimate of indoor pollution status and history for a whole building. Preliminary case study results indicate that the adjoint probability method is feasible for indoor pollutant inverse modeling. The proposed method can help identify contaminant source characteristics (location and release time) with limited sensor outputs. This will ensure an effective and prompt execution of building management strategies and thus achieve a healthy and safe indoor environment. The method can also help design optimal sensor networks.

  2. SOURCE APPORTIONMENT STUDIES OF PM-2.5 IN TWO CZECH CITIES: POSSIBLE USES IN HEALTH STUDIES

    EPA Science Inventory

    Aerosol and gas phase air pollutant measurements were made in two cities during an ongoing air pollution-health outcome study in the Czech Republic. Teplice, located in northwestern Bohemia, was selected because the local population was exposed to high air pollution levels. Prac...

  3. 76 FR 13514 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources. Among the... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources (CMAS) on October...

  4. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution

    Treesearch

    Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Igor Burstyn; Yvonne L. Michael; Michael C. Amacher; Vicente J. Monleon

    2016-01-01

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting....

  5. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    PubMed

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  6. Development of an on-line source-tagged model for sulfate, nitrate and ammonium: A modeling study for highly polluted periods in Shanghai, China.

    PubMed

    Wu, Jian-Bin; Wang, Zifa; Wang, Qian; Li, Jie; Xu, Jianming; Chen, HuanSheng; Ge, Baozhu; Zhou, Guangqiang; Chang, Luyu

    2017-02-01

    An on-line source-tagged model coupled with an air quality model (Nested Air Quality Prediction Model System, NAQPMS) was applied to estimate source contributions of primary and secondary sulfate, nitrate and ammonium (SNA) during a representative winter period in Shanghai. This source-tagged model system could simultaneously track spatial and temporal sources of SNA, which were apportioned to their respective primary precursors in a simulation run. The results indicate that in the study period, local emissions in Shanghai accounted for over 20% of SNA contributions and that Jiangsu and Shandong were the two major non-local sources. In particular, non-local emissions had higher contributions during recorded pollution periods. This suggests that the transportation of pollutants plays a key role in air pollution in Shanghai. The temporal contributions show that the emissions from the "current day" (emission contribution from the current day during which the model was simulating) contributed 60%-70% of the sulfate and ammonium concentrations but only 10%-20% of the nitrate concentration, while the previous days' contributions increased during the recorded pollution periods. Emissions that were released within three days contributed over 85% averagely for SNA in January 2013. To evaluate the source-tagged model system, the results were compared by sensitivity analysis (emission perturbation of -30%) and backward trajectory analysis. The consistency of the comparison results indicated that the source-tagged model system can track sources of SNA with reasonable accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Characterization of sources and loadings of fecal pollutants using microbial source tracking assays in urban and rural areas of the Grand River Watershed, Southwestern Ontario.

    PubMed

    Lee, Dae-Young; Lee, Hung; Trevors, Jack T; Weir, Susan C; Thomas, Janis L; Habash, Marc

    2014-04-15

    Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Exploring the interaction between O₃ and NOx pollution patterns in the atmosphere of Barcelona, Spain using the MCR-ALS method.

    PubMed

    Malik, Amrita; Tauler, Roma

    2015-06-01

    This work focuses on understanding the behaviour and patterns of three atmospheric pollutants namely, nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) along with their mutual interactions in the atmosphere of Barcelona, North Spain. Hourly samples were collected for NO, NO2 and O3 from the same city location for three consecutive years (2010-2012). The study explores the seasonal, annual and weekday-weekend variations in their diurnal profiles along with the possible identification of their source and mutual interactions in the region. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) was applied to the individual datasets of these pollutants, as well as to all of them simultaneously (augmented mode) to resolve the profiles related to their source and variation patterns in the atmosphere. The analysis of the individual datasets confirmed the source pattern variations in the concerned pollutant's profiles; and the resolved profiles for augmented datasets suggested for the mutual interaction of the pollutants along with their patterns variations, simultaneously. The study suggests vehicular pollution as the major source of atmospheric nitrogen oxides and presence of weekend ozone effect in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Comprehensive risk assessment and source identification of selected heavy metals (Cu, Cd, Pb, Zn, Hg, As) in tidal saltmarsh sediments of Shuangtai Estuary, China.

    PubMed

    Liu, Chang-Fa; Li, Bing; Wang, Yi-Ting; Liu, Yuan; Cai, Heng-Jiang; Wei, Hai-Feng; Wu, Jia-Wen; Li, Jin

    2017-10-06

    Heavy metals do not degrade and can remain in the environment for a long time. In this study, we analyzed the effects of Cu, Cd, Pb, Zn, Hg, and As, on environmental quality, pollutant enrichment, ecological hazard, and source identification of elements in sediments using data collected from samples taken from Shuangtai tidal wetland. The comprehensive pollution indices were used to assess environmental quality; fuzzy similarity analysis and geoaccumulation index were used to analyze pollution accumulation; correlation matrix, principal component analysis, and clustering analysis were used to analyze pollution source; environmental risk index and ecological risk index were used to assess ecological risk. The results showed that the environmental quality was either clean or almost clean. Pollutant enrichment analysis showed that the four sub-regions had similar pollution-causing metals to the background values of the soil element of the Liao River Plain, which were ranked according to their similarity. Source identification showed that all the elements were correlated. Ecological hazard analysis showed that the environmental risk index in the study area was less than zero, posing a low ecological risk. Ecological risk of the six elements was as follows: As > Cd > Hg > Cu > Pb > Zn.

  10. Characteristic variation and original analysis of emergent water source pollution accidents in China between 1985 and 2013.

    PubMed

    Qu, Jianhua; Meng, Xianlin; Ye, Xiuqing; You, Hong

    2016-10-01

    China has suffered various water source pollution incidents in the past decades, which have resulted in severe threats to the safety of the water supply for millions of residents. From the aspects of quantity fluctuation, temporal volatility, regional inequality, pollutant category variation, and accident type differences, this study first characterizes the current status of water source contaminations in China by analyzing 340 pollution events for the period spanning from 1985 to 2013. The results show a general increase in the number of accidents during the period 1985-2006 and then a rapid decline starting in 2007. Spring and summer are high-incidence seasons for pollution, and the accident rate in developed southeastern coastal areas is far higher than that in the northwestern regions. Hazardous chemicals and petroleum are the most frequently occurring pollutants, whereas heavy metals and tailings are becoming emerging contaminants during occasional pollutions. Most of the accidents that occurred before 2005 were blamed on illegal emissions or traffic accidents; however, leakage in production has gradually become a major accident type in the past decade. Then, in combination with government actions and policy constraints, this paper explores the deep inducements and offers valuable insight into measures that should be taken to ensure future prevention and mitigation of emergent source water pollution.

  11. Olive plants (Olea europaea L.) as a bioindicator for pollution.

    PubMed

    Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik

    2013-06-15

    In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants.

  12. [Heavy metals pollution and analysis of seasonal variation runoff in Xi'an].

    PubMed

    Yuan, Hong-Lin; Li, Xing-Yu; Wang, Xiao-Chang

    2014-11-01

    In order to explore heavy metals pollution situation,changes in characteristics, the correlation between each heavy mental and pollution source analysis of Xi'an various regions in different season in one year. This study collected several samples of Xi'an rainfall typical urban trunk roads throughout the year in 2013 and used inductively coupled plasma mass spectrometry (ICP-MS) to determine the level of Fe, Mn, Pb, Zn, Al, Cd of the samples, then, analyzed the seasonal change of heavy mental. Studies have shown that: the heavy metal of Xi'an road runoff pollutes seriously, the concentration of Fe over three times of the national standard and maintain the higher levels throughout the year, meanwhile the concentration with the intensity of human activities increases. The concentration of Mn and Zn in one year show a trends: winter > autumn > summer> spring. Pb concentration increases with the increase in traffic volume, while showing: winter > spring > summer > autumn. Factor analysis shows: Fe and Al was affected by the same sources-natural sources; Zn, Cd affected by anthropogenic sources of large; Mn, Pb affected by the larger traffic sources.

  13. A multi-tracer approach to assess fingerprints of nitrate in an aquifer under agriculturally used land

    NASA Astrophysics Data System (ADS)

    Pasten-Zapata, Ernesto; Ledesma-Ruiz, Rogelio; Ramirez, Aldo; Harter, Thomas; Mahlknecht, Jürgen

    2014-05-01

    To effectively manage groundwater quality it is essential to understand sources of contamination and underground processes. The objective of the study was to identify sources and fate of nitrate pollution occurring in an aquifer underneath a sub-humid to humid region in NE Mexico which provides 10% of national citrus production. Nitrate isotopes and halide ratios were applied to understand nitrate sources and transformations in relation to land use/land cover. It was found that the study area is subject to diverse nitrate sources including organic waste and wastewater, synthetic fertilizers and soil processes. Animal manure and sewage from septic tanks were the causes of groundwater nitrate pollution within orchards and vegetable agriculture. Dairy activities within a radius of 1,000m from a sampling point increased nitrate pollution. Leachates from septic tanks incited nitrate pollution in residential areas. Soil nitrogen and animal waste were the sources of nitrate in groundwater under shrubland and grassland. Partial denitrification processes were evidenced. The denitrification process helped to attenuate nitrate concentration in the agricultural lands and grassland particularly during summer months.

  14. Nature of air pollution, emission sources, and management in the Indian cities

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Goel, Rahul; Pant, Pallavi

    2014-10-01

    The global burden of disease study estimated 695,000 premature deaths in 2010 due to continued exposure to outdoor particulate matter and ozone pollution for India. By 2030, the expected growth in many of the sectors (industries, residential, transportation, power generation, and construction) will result in an increase in pollution related health impacts for most cities. The available information on urban air pollution, their sources, and the potential of various interventions to control pollution, should help us propose a cleaner path to 2030. In this paper, we present an overview of the emission sources and control options for better air quality in Indian cities, with a particular focus on interventions like urban public transportation facilities; travel demand management; emission regulations for power plants; clean technology for brick kilns; management of road dust; and waste management to control open waste burning. Also included is a broader discussion on key institutional measures, like public awareness and scientific studies, necessary for building an effective air quality management plan in Indian cities.

  15. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    PubMed

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  16. USE OF WATERSHED CLASSIFICATION IN MONITORING FRAMEWORKS FOR THE WESTERN LAKE SUPERIOR BASIS

    EPA Science Inventory

    In this case study we predicted stream sensitivity to nonpoint source pollution based on the nonlinear responses of hydrologic regimes and associated loadings of nonpoint source pollutants to catchment properties. We assessed two hydrologically-based thresholds of impairment, on...

  17. Estimating near-road pollutant dispersion: a model inter-comparison

    EPA Science Inventory

    A model inter-comparison study to assess the abilities of steady-state Gaussian dispersion models to capture near-road pollutant dispersion has been carried out with four models (AERMOD, run with both the area-source and volume-source options to represent roadways, CALINE, versio...

  18. A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems.

    PubMed

    Ayvaz, M Tamer

    2010-09-20

    This study proposes a linked simulation-optimization model for solving the unknown groundwater pollution source identification problems. In the proposed model, MODFLOW and MT3DMS packages are used to simulate the flow and transport processes in the groundwater system. These models are then integrated with an optimization model which is based on the heuristic harmony search (HS) algorithm. In the proposed simulation-optimization model, the locations and release histories of the pollution sources are treated as the explicit decision variables and determined through the optimization model. Also, an implicit solution procedure is proposed to determine the optimum number of pollution sources which is an advantage of this model. The performance of the proposed model is evaluated on two hypothetical examples for simple and complex aquifer geometries, measurement error conditions, and different HS solution parameter sets. Identified results indicated that the proposed simulation-optimization model is an effective way and may be used to solve the inverse pollution source identification problems. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Air Pollution in the World's Megacities.

    ERIC Educational Resources Information Center

    Richman, Barbara T., Ed.

    1994-01-01

    Reports findings of the Global Environment Monitoring System study concerning air pollution in the world's megacities. Discusses sources of air pollution, air pollution impacts, air quality monitoring, air quality trends, and control strategies. Provides profiles of the problem in Beijing, Los Angeles, Mexico City, India, Cairo, Sao Paulo, and…

  20. Air quality assessment and the use of specific markers to apportion pollutants to source

    NASA Astrophysics Data System (ADS)

    Douce, David Stewart

    The contributions of specific polluting sources to both indoor and outdoor atmospheric pollution are difficult to determine, as solid and gaseous products from different combustion sources are often similar. Sometimes, however, a marker compound can be identified that is unique to a pollution source (or at least not present in most other local combustion sources) and which will allow assessment of the contribution of that source to total atmospheric pollution.The aim of this study was to identify suitable marker compounds and methods for the apportionment (assessment of percentage contribution) of specific sources to atmospheric pollution. The sources selected were diesel exhaust emissions in outdoor, and environmental tobacco smoke (ETS) in indoor environments. Studies with controlled (laboratory) atmospheres would be followed by field studies using these methods and markers to produce apportionments for these sources to air pollution in selected environments. Initial analysis of such polluting sources was therefore the qualitative analysis of volatile compounds and particulate associated material, both organic and inorganic. Volatile organic compounds were adsorbed onto various resins, while particulate material was sampled onto various filter paper types. Organics were determined by GC-AED and GC-MS, and elements by ICP-MS.1-Nitropyrene was identified as a suitable marker for diesel particulate emissions (<5um). A large volume air sample from Sheffield city centre using 1-nitropyrene as a marker suggested that 63% of atmospheric particulate material (<5um) might be of diesel origin. However the concentration of 1-nitropyrene is low in atmospheric samples, and in the volumes used in routine sampling the amount of 1-nitropyrene was below the limit of detection on the instrument used. In an alternative approach the aliphatic alkane tetracosane (C24) was used as a diesel marker for urban air, with a 1-nitropyrene:tetracosane ratio derived from the average results from laboratory experiments with a diesel engine running at various speeds and loads. This approach yielded apportionment values ranging from 5-85% for the diesel contribution to particulate material (<5mum) in the urban air of Sheffield. No volatile marker compound was found for diesel apportionment.The contribution of ETS to atmospheric pollution has previously been estimated from the measurement of respirable suspended particulates (RSP), which was superseded by total UV absorbance and total fluorescence of a methanol extract. More recent work has suggested the use of solanesol or scopoletin as marker compounds. This thesis shows that the non specific methods overestimated the particulate contribution of ETS in some atmospheres, and that solanesol is a better marker compound than scopoletin. Preliminary studies from a small number of smokers homes and offices, with solanesol as a marker compound for particulate ETS, indicated that ETS contributions to total particulate material (<5mum) ranged from 6 to 49% in homes and 11 to 28% in offices.Pyrrole was used as a marker for ETS contribution to volatile organic pollution, and studies with controlled atmospheres with a smoking machine allowed calculation of the ratios of pyrrole to other volatile organic compounds (VOC's) in ETS. Samples from the field study were used to produce apportionment percentage levels of benzene, toluene, o-xylene and p+m-xylene associated with ETS.In addition the use of tree bark as a atmospheric sink for airborne particulates was investigated. Six nitrated polycyclic aromatic hydrocarbons associated with diesel emissions were quantified in bark extracts and levels of these were found to be highest during winter months.

  1. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    NASA Astrophysics Data System (ADS)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant contributors to organic carbon. Results show that the Yangtze River Delta region should focus on the joint pollution control of industrial processing, combustion emissions, mobile source emissions, and fugitive dust. Regional transport of air pollution among the cities are prominent, and the implementation of regional joint prevention and control of air pollution will help to alleviate fine particulate matter concentrations under heavy pollution case significantly.

  2. Water Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of water pollution and water pollution treatment systems is accompanied by graphic illustrations. Sources of pollution such as lake bottom vegetation, synthetic organic pollutants, heat pollution, radioactive substance pollution, and human and industrial waste products are discussed. Several types of water purification…

  3. A GIS-based multi-source and multi-box modeling approach (GMSMB) for air pollution assessment--a North American case study.

    PubMed

    Wang, Bao-Zhen; Chen, Zhi

    2013-01-01

    This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.

  4. An innovative expression model of human health risk based on the quantitative analysis of soil metals sources contribution in different spatial scales.

    PubMed

    Zhang, Yimei; Li, Shuai; Wang, Fei; Chen, Zhuang; Chen, Jie; Wang, Liqun

    2018-09-01

    Toxicity of heavy metals from industrialization poses critical concern, and analysis of sources associated with potential human health risks is of unique significance. Assessing human health risk of pollution sources (factored health risk) concurrently in the whole and the sub region can provide more instructive information to protect specific potential victims. In this research, we establish a new expression model of human health risk based on quantitative analysis of sources contribution in different spatial scales. The larger scale grids and their spatial codes are used to initially identify the level of pollution risk, the type of pollution source and the sensitive population at high risk. The smaller scale grids and their spatial codes are used to identify the contribution of various sources of pollution to each sub region (larger grid) and to assess the health risks posed by each source for each sub region. The results of case study show that, for children (sensitive populations, taking school and residential area as major region of activity), the major pollution source is from the abandoned lead-acid battery plant (ALP), traffic emission and agricultural activity. The new models and results of this research present effective spatial information and useful model for quantifying the hazards of source categories and human health a t complex industrial system in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Pollution loads in urban runoff and sanitary wastewater.

    PubMed

    Taebi, Amir; Droste, Ronald L

    2004-07-05

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.

  6. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    NASA Astrophysics Data System (ADS)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  7. Trans boundary transport of pollutants by atmospheric mineral dust.

    PubMed

    Erel, Yigal; Dayan, Uri; Rabi, Reut; Rudich, Yinon; Stein, Mordechai

    2006-05-01

    The transport of anthropogenic pollution by desert dust in the Eastern Mediterranean region was studied by analyzing major and trace element composition, organic species, and Pb isotope ratios in suspended dust samples collected in Jerusalem, Israel. Dust storms in this region are associated with four distinct synoptic conditions (Red Sea Trough (RS), Eastern High (EH), Sharav Cyclone (SC), and Cold Depression (Cyprus low, CD)) that carry dust mostly from North African (SC, CD, EH) and Arabian and Syrian (RS, EH) deserts. Substantial contamination of dust particles by Pb, Cu, Zn, and Ni is observed, while other elements (Na, Ca, Mg, Mn, Sr, Rb, REE, U, and Th) display natural concentrations. Sequential extraction of the abovementioned elements from the dust samples shows that the carbonate and sorbed fractions contain most of the pollution, yet the Al-silicate fraction is also contaminated, implying that soils and sediments in the source terrains of the dust are already polluted. We identified the pollutant sources by using Pb isotopes. It appears that before the beginning of the dust storm, the pollutants in the collected samples are dominated by local sources but with the arrival of dust from North Africa, the proportion of foreign pollutants increases. Organic pollutants exhibit behavior similar and complementary to that of the inorganic tracers, attesting to the importance of anthropogenic-pollutant addition en route of the dust from its remote sources. Pollution of suspended dust is observed under all synoptic conditions, yet it appears that easterly winds carry higher proportions of local pollution and westerly winds carry pollution emitted in the Cairo basin. Therefore, pollution transport by mineral dust should be accounted for in environmental models and in assessing the health-related effects of mineral dust.

  8. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    PubMed

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...

  10. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China.

    PubMed

    Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping

    2011-02-01

    The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment is thus believed to have potentials to offer new insights into water management and advance the source apportionment framework as an operational basis for national and local governments. © 2010 Elsevier Ltd. All rights reserved.

  11. A NATIONAL STUDY TO ASSESS SUSCEPTIBILITY, VULNERABILITY, AND EFFECT MODIFICATION OF AIR POLLUTION HEALTH RISKS

    EPA Science Inventory

    Identifying factors that explain heterogeneity of risks will help to identify: 1) the populations that are more susceptible/vulnerable to air pollution; and 2) the emission sources, pollutants and pollutant mixtures that are more toxic. The characterization of susceptibility f...

  12. Meet EPA Engineer Gayle Hagler, Ph.D.

    EPA Pesticide Factsheets

    Gayle develops innovative ways to measure air pollution through field studies, data analysis and computer modeling. She is deeply involved with a research program that explores near-roadway air pollution sources and other local air pollution emissions

  13. Regional Air Pollutions in Three Different Regions of Asia From a Transcontinental Transport Perspective

    NASA Astrophysics Data System (ADS)

    Pochanart, P.; Kanaya, Y.; Komazaki, Y.; Liu, Y.; Akimoto, H.

    2007-12-01

    Asia is known as one of the regions with the fastest rate of growing in industrialization and urbanization. As a result, the rapid increases of large-scale air pollution in Asia emerge as a serious concern at both domestic and international levels. Apart from the problems of air quality degradation, emission control, environmental risk, and health effect in a domestic level, evidences from scientific studies indicate that by the long-range transport, Asian air pollution is becoming a global problem. Observations and model studies confirm that air pollution from Asia could be transported to North America or farther. In this work, we investigate the Asian air pollutions, in particular ozone and some other atmospheric components such as carbon monoxide and black carbon, from the ground- based observations in the three different regions, namely 1) background region of Siberia and central Asia, 2) highly anthropogenic region in eastern China, and 3) the rim region of the Asia-Pacific. In a transcontinental transport perspective, these regions are regarded as the inflow region, source region, and outflow region of Asia, respectively. From the results, it is found that the influences from large-scale emission in East Asia are observed clearly in the source region, and to the significant extent in the outflow region. For the inflow region of Asia, our data in Siberia and Kyrgyzstan indicate that air masses in this region are mostly intact from large-scale anthropogenic emission, and remain much of the global background atmospheric pollution characteristic. When the air masses are transported to source region, the air pollutants level increased sharply and frequent episodes of extremely high pollutions have been observed. Our results show good correlation between the residence time of air masses over the source region in eastern China and the observed levels of air pollutants verifying the strong enhancements by anthropogenic emissions from industrialization and urbanization. In the outflow region, air pollutants characteristics depend largely on the air mass climatology. In most cases, increases of air pollutants level are observed with the transport events directly from the source region.

  14. Assessment of semi-volatile organic compounds in drinking water sources in Jiangsu, China.

    PubMed

    Wu, Yifeng; Jia, Yongzhi; Lu, Xiwu

    2013-08-01

    Many xenobiotic compounds, especially organic pollutants in drinking water, can cause threats to human health and natural ecosystems. The ability to predict the level of pollutants and identify their source is crucial for the design of pollutant risk reduction plans. In this study, 25 semi-volatile organic compounds (SVOCs) were assessed at 16 monitoring sites of drinking water sources in Jiangsu, east China, to evaluate water quality conditions and source of pollutants. Four multivariate statistical techniques were used for this analysis. The correlation test indicated that 25 SVOCs parameters variables had a significant spatial variability (P<0.05). The results of correlation analysis, principal component analysis (PCA) and cluster analysis (CA) suggested that at least four sources, i.e., agricultural residual pesticides, industrial sewage, water transportation vehicles and miscellaneous sources, were responsible for the presence of SVOCs in the drinking water sites examined, accounting for 89.6% of the total variance in the dataset. The analysis of site similarity showed that 16 sites could be divided into high, moderate, and low pollutant level groups at (D(link)/D(max))×25<10, and each group had primary typical SVOCs. These results provide useful information for developing appropriate strategies for contaminants control in drinking water sources. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Source apportionment of indoor air pollution

    NASA Astrophysics Data System (ADS)

    Sexton, Ken; Hayward, Steven B.

    An understanding of the relative contributions from important pollutant sources to human exposures is necessary for the design and implementation of effective control strategies. In the past, societal efforts to control air pollution have focused almost exclusively on the outdoor (ambient) environment. As a result, substantial amounts of time and money have been spent to limit airborne discharges from mobile and stationary sources. Yet it is now recognized that exposures to elevated pollutant concentrations often occur as a result of indoor, rather than outdoor, emissions. While the major indoor sources have been identified, their relative impacts on indoor air quality have not been well defined. Application of existing source apportionment models to nonindustrial indoor environments is only just beginning. It is possible that these models might be used to distinguish between indoor and outdoor emissions, as well as to distinguish among indoor sources themselves. However, before the feasibility and suitability of source-apportionment methods for indoor applications can be assessed adequately, it is necessary to take account of model assumptions and associated data requirements. This paper examines the issue of indoor source apportionment and reviews the need for emission characterization studies to support such source-apportionment efforts.

  16. Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations

    EPA Science Inventory

    This paper presents a wind tunnel study of the effects of elongated rectangular buildings on the dispersion of pollutants from nearby stacks. The study examines the influence of source location, building aspect ratio, and wind direction on pollutant dispersion with the goal of de...

  17. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model.

    PubMed

    Guo, H; Wang, T; Louie, P K K

    2004-06-01

    Receptor-oriented source apportionment models are often used to identify sources of ambient air pollutants and to estimate source contributions to air pollutant concentrations. In this study, a PCA/APCS model was applied to the data on non-methane hydrocarbons (NMHCs) measured from January to December 2001 at two sampling sites: Tsuen Wan (TW) and Central & Western (CW) Toxic Air Pollutants Monitoring Stations in Hong Kong. This multivariate method enables the identification of major air pollution sources along with the quantitative apportionment of each source to pollutant species. The PCA analysis identified four major pollution sources at TW site and five major sources at CW site. The extracted pollution sources included vehicular internal engine combustion with unburned fuel emissions, use of solvent particularly paints, liquefied petroleum gas (LPG) or natural gas leakage, and industrial, commercial and domestic sources such as solvents, decoration, fuel combustion, chemical factories and power plants. The results of APCS receptor model indicated that 39% and 48% of the total NMHCs mass concentrations measured at CW and TW were originated from vehicle emissions, respectively. 32% and 36.4% of the total NMHCs were emitted from the use of solvent and 11% and 19.4% were apportioned to the LPG or natural gas leakage, respectively. 5.2% and 9% of the total NMHCs mass concentrations were attributed to other industrial, commercial and domestic sources, respectively. It was also found that vehicle emissions and LPG or natural gas leakage were the main sources of C(3)-C(5) alkanes and C(3)-C(5) alkenes while aromatics were predominantly released from paints. Comparison of source contributions to ambient NMHCs at the two sites indicated that the contribution of LPG or natural gas at CW site was almost twice that at TW site. High correlation coefficients (R(2) > 0.8) between the measured and predicted values suggested that the PCA/APCS model was applicable for estimation of sources of NMHCs in ambient air.

  18. A modeling study of coarse particulate matter pollution in Beijing: regional source contributions and control implications for the 2008 summer Olympics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litao Wang; Jiming Hao; Kebin He

    In the last 10 yr, Beijing has made a great effort to improve its air quality. However, it is still suffering from regional coarse particulate matter (PM10) pollution that could be a challenge to the promise of clean air during the 2008 Olympics. To provide scientific guidance on regional air pollution control, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) air quality modeling system was used to investigate the contributions of emission sources outside the Beijing area to pollution levels in Beijing. The contributions to the PM10 concentrations in Beijing were assessed formore » the following sources: power plants, industry, domestic sources, transportation, agriculture, and biomass open burning. In January, it is estimated that on average 22% of the PM10 concentrations can be attributed to outside sources, of which domestic and industrial sources contributed 37 and 31%, respectively. In August, as much as 40% of the PM10 concentrations came from regional sources, of which approximately 41% came from industry and 31% from power plants. However, the synchronous analysis of the hourly concentrations, regional contributions, and wind vectors indicates that in the heaviest pollution periods the local emission sources play a more important role. The implications are that long-term control strategies should be based on regional-scale collaborations, and that emission abatement of local sources may be more effective in lowering the PM10 concentration levels on the heavy pollution days. Better air quality can be attained during the Olympics by placing effective emission controls on the local sources in Beijing and by controlling emissions from industry and power plants in the surrounding regions. 44 refs., 6 figs., 3 tabs.« less

  19. Sensitivity Analysis for some Water Pollution Problem

    NASA Astrophysics Data System (ADS)

    Le Dimet, François-Xavier; Tran Thu, Ha; Hussaini, Yousuff

    2014-05-01

    Sensitivity Analysis for Some Water Pollution Problems Francois-Xavier Le Dimet1 & Tran Thu Ha2 & M. Yousuff Hussaini3 1Université de Grenoble, France, 2Vietnamese Academy of Sciences, 3 Florida State University Sensitivity analysis employs some response function and the variable with respect to which its sensitivity is evaluated. If the state of the system is retrieved through a variational data assimilation process, then the observation appears only in the Optimality System (OS). In many cases, observations have errors and it is important to estimate their impact. Therefore, sensitivity analysis has to be carried out on the OS, and in that sense sensitivity analysis is a second order property. The OS can be considered as a generalized model because it contains all the available information. This presentation proposes a method to carry out sensitivity analysis in general. The method is demonstrated with an application to water pollution problem. The model involves shallow waters equations and an equation for the pollutant concentration. These equations are discretized using a finite volume method. The response function depends on the pollutant source, and its sensitivity with respect to the source term of the pollutant is studied. Specifically, we consider: • Identification of unknown parameters, and • Identification of sources of pollution and sensitivity with respect to the sources. We also use a Singular Evolutive Interpolated Kalman Filter to study this problem. The presentation includes a comparison of the results from these two methods. .

  20. Analysis on the distribution characteristics and sources of soil heavy metals in suburban farmland in Xiangtan City

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Sun, Xinxin

    2018-01-01

    The rapid development of the economy will inevitably have an impact on the farmland soil environment. The content of heavy metal is increasing day by day, and the heavy metal can enter people's body through different channels and endanger people's health. Based on agricultural land and crop types in accordance with the regional land use classification, using the method of the Single Factor Index and Comprehensive Pollution Index, the pollution status of heavy metals in farmland soil in the suburbs of Xiangtan city was studied and evaluated. At the same time, we use SPSS software to analyze the four heavy metal elements (Cu, Zn, As and Pb) and analyze their possible sources. The results showed that the farmland soils in Erhuan Road and Zhubu Port were polluted, and the farmland soil in Shuangma (an old industrial district) was not polluted; for different crop lands, orchards and vegetable lands were not contaminated, but rape and rice lands were contaminated. Pearson correlation analysis showed that Cu, As and Pb might come from the same pollution source, while Zn might come from other sources. Waste water from a chemical plant, crop types, automobile exhaust and other human factors may be important sources of soil pollution in agricultural fields.

  1. Local-Scale Exposure Assessment of Air Pollutants in Source-Impacted Neighborhoods in Detroit, MI (Invited)

    NASA Astrophysics Data System (ADS)

    Vette, A. F.; Bereznicki, S.; Sobus, J.; Norris, G.; Williams, R.; Batterman, S.; Breen, M.; Isakov, V.; Perry, S.; Heist, D.; Community Action Against Asthma Steering Committee

    2010-12-01

    There has been growing interest in improving local-scale (< 1-km) exposure assessments to better understand the impact of local sources of air pollutants on adverse health outcomes. This paper describes two research studies aimed at understanding the impact of local sources contributing to spatial gradients at the neighborhood-scale in Detroit, MI. The first study, the Detroit Exposure and Aerosol Research Study (DEARS), was designed to assess the variability in concentrations of air pollutants derived from local and regional sources on community, neighborhood and personal exposures to air pollutants. Homes were identified at random in six different neighborhoods throughout Wayne County, MI that varied proximally to local industrial and mobile sources. Data were collected in summer (July-August) and winter (January-March) at a total of 135 homes over a three-year period (2004-2007). For five consecutive days at each home in summer and winter concurrent samples were collected of personal exposures, residential indoor and outdoor concentrations, and at a community monitoring site. The samples were analyzed for PM2.5 (mass and composition), air toxics, O3 and NO2. The second study is on-going and focuses on characterizing the impacts of mobile sources on near-road air quality and exposures among a cohort of asthmatic children. The Near-road EXposures and effects from Urban air pollutants Study (NEXUS) is designed to examine the relationship between near-road exposures to traffic-related air pollutants (BC, CO, NOx and PM components) and respiratory health of asthmatic children who live close to major roadways. The study will investigate the effects of traffic-associated exposures on exaggerated airway responses, biomolecular responses of inflammatory and oxidative stress, and how these exposures affect the frequency and severity of adverse respiratory outcomes. The study will also examine different near-road exposure assessment metrics, including monitoring and modeling techniques. Concentrations of traffic-related air pollutants will be measured and modeled indoors and outdoors of the children’s homes. Measurements will be made in a subset of homes each during fall 2010 and early spring 2011. High-time resolution measurements will be made of the chemical composition of traffic-related pollutants in the gas and particle phases adjacent to selected roadways. These data will be used to quantify the impact of traffic on the observed air quality data. Air pollutant dispersion and exposure models will be used in combination with measured data to estimate indoor/outdoor concentrations and personal exposures. Near-road spatial concentration patterns will be estimated at the children’s residences and schools across the study domain using dispersion modeling. These data will be used as input for an individual-level exposure model to estimate personal exposures from meteorology and questionnaire data on indoor sources, residential characteristics and operation, and time-location-activity patterns.

  2. Estimation of Phosphorus Emissions in the Upper Iguazu Basin (brazil) Using GIS and the More Model

    NASA Astrophysics Data System (ADS)

    Acosta Porras, E. A.; Kishi, R. T.; Fuchs, S.; Hilgert, S.

    2016-06-01

    Pollution emissions into the drainage basin have direct impact on surface water quality. These emissions result from human activities that turn into pollution loads when they reach the water bodies, as point or diffuse sources. Their pollution potential depends on the characteristics and quantity of the transported materials. The estimation of pollution loads can assist decision-making in basin management. Knowledge about the potential pollution sources allows for a prioritization of pollution control policies to achieve the desired water quality. Consequently, it helps avoiding problems such as eutrophication of water bodies. The focus of the research described in this study is related to phosphorus emissions into river basins. The study area is the upper Iguazu basin that lies in the northeast region of the State of Paraná, Brazil, covering about 2,965 km2 and around 4 million inhabitants live concentrated on just 16% of its area. The MoRE (Modeling of Regionalized Emissions) model was used to estimate phosphorus emissions. MoRE is a model that uses empirical approaches to model processes in analytical units, capable of using spatially distributed parameters, covering both, emissions from point sources as well as non-point sources. In order to model the processes, the basin was divided into 152 analytical units with an average size of 20 km2. Available data was organized in a GIS environment. Using e.g. layers of precipitation, the Digital Terrain Model from a 1:10000 scale map as well as soils and land cover, which were derived from remote sensing imagery. Further data is used, such as point pollution discharges and statistical socio-economic data. The model shows that one of the main pollution sources in the upper Iguazu basin is the domestic sewage that enters the river as point source (effluents of treatment stations) and/or as diffuse pollution, caused by failures of sanitary sewer systems or clandestine sewer discharges, accounting for about 56% of the emissions. Second significant shares of emissions come from direct runoff or groundwater, being responsible for 32% of the total emissions. Finally, agricultural erosion and industry pathways represent 12% of emissions. This study shows that MoRE is capable of producing valid emission calculation on a relatively reduced input data basis.

  3. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  4. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.

    PubMed

    Wu, Yiping; Liu, Shuguang

    2012-09-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  5. Assessment of Near-Source Air Pollution at a Fine Spatial ...

    EPA Pesticide Factsheets

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous pollutants – was used to map air pollution levels near the Port of Charleston in South Carolina. High-resolution monitoring was performed along driving routes near several port terminals and rail yard facilities, recording geospatial coordinates and concentrations of pollutants including black carbon, size-resolved particle count ranging from ultrafine to coarse (6 nm to 20 um), carbon monoxide, carbon dioxide, and nitrogen dioxide. Additionally, a portable meteorological station was used to characterize local conditions. The primary objective of this work is to characterize the impact of port facilities on local scale air quality. It is found that elevated concentration measurements of Black Carbon and PM correlate to periods of increased port activity and a significant elevation in concentration is observed downwind of ports. However, limitations in study design prevent a more complete analysis of the port effect. As such, we discuss the ways in which this study is limited and how future work could be improved. Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollut

  6. Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies.

    PubMed

    Vedal, Sverre; Han, Bin; Xu, Jia; Szpiro, Adam; Bai, Zhipeng

    2017-12-15

    No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources.

  7. Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies

    PubMed Central

    Vedal, Sverre; Han, Bin; Szpiro, Adam; Bai, Zhipeng

    2017-01-01

    No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources. PMID:29244738

  8. Linking stroke mortality with air pollution, income, and greenness in northwest Florida: an ecological geographical study

    PubMed Central

    Hu, Zhiyong; Liebens, Johan; Rao, K Ranga

    2008-01-01

    Background Relatively few studies have examined the association between air pollution and stroke mortality. Inconsistent and inclusive results from existing studies on air pollution and stroke justify the need to continue to investigate the linkage between stroke and air pollution. No studies have been done to investigate the association between stroke and greenness. The objective of this study was to examine if there is association of stroke with air pollution, income and greenness in northwest Florida. Results Our study used an ecological geographical approach and dasymetric mapping technique. We adopted a Bayesian hierarchical model with a convolution prior considering five census tract specific covariates. A 95% credible set which defines an interval having a 0.95 posterior probability of containing the parameter for each covariate was calculated from Markov Chain Monte Carlo simulations. The 95% credible sets are (-0.286, -0.097) for household income, (0.034, 0.144) for traffic air pollution effect, (0.419, 1.495) for emission density of monitored point source polluters, (0.413, 1.522) for simple point density of point source polluters without emission data, and (-0.289,-0.031) for greenness. Household income and greenness show negative effects (the posterior densities primarily cover negative values). Air pollution covariates have positive effects (the 95% credible sets cover positive values). Conclusion High risk of stroke mortality was found in areas with low income level, high air pollution level, and low level of exposure to green space. PMID:18452609

  9. Changing Regulations of COD Pollution Load of Weihe River Watershed above TongGuan Section, China

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Liu, WanQing

    2018-02-01

    TongGuan Section of Weihe River Watershed is a provincial section between Shaanxi Province and Henan Province, China. Weihe River Watershed above TongGuan Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a method—characteristic section load (CSLD) method is suggested and point and non-point source pollution loads of Weihe River Watershed above TongGuan Section are calculated in the rainy, normal and dry season in 2013. The results show that the monthly point source pollution loads of Weihe River Watershed above TongGuan Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above TongGuan Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the rainy, wet and normal period in turn.

  10. Distribution, origin, and transformation of metal and metalloid pollution in vegetable fields, irrigation water, and aerosols near a Pb-Zn mine.

    PubMed

    Luo, Liqiang; Chu, Binbin; Liu, Ying; Wang, Xiaofang; Xu, Tao; Bo, Ying

    2014-01-01

    Pollution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in vegetable fields was investigated near a Pb-Zn mine that has been exploited for over 50 years without a tailing reservoir. A total of 205 water, soil, and aerosol samples were taken and quantified by combined chemical, spectrometric, and mineral analytical methods. The pollution origins were identified by Pb isotopes and the pathways of transformation and transport of the elements and minerals was studied. The data showed that the vegetable fields were seriously polluted by As, Cd, and Pb. Some concentrations in the samples were beyond the regulatory levels and not suitable for agricultural activities. This study revealed that: (1) particulate matter is a major pollution source and an important carrier of mineral particles and pollutants; (2) the elements from the polluted water and soils were strongly correlated with each other; (3) Pb isotope ratios from the samples show that Pb minerals were the major pollution sources in the nearby vegetable fields, and the aerosols were the main carrier of mining pollution; (4) the alkaline, rich-carbonate, and wet conditions in this area promoted the weathering and transformation of galena into the secondary minerals, anglesite and cerussite, which are significant evidence of such processes; (5) the soil and the aerosols are a recycled secondary pollution source for each other when being re-suspended with wind.Highlights• Mining activities generated heavy metal pollution in fields around a Pb-Zn mine• The elements from water and soils are strongly correlated• Anglesite and cerussite are evidence of galena transformation into secondary minerals• Particulate matter is an important transport carrier of pollution.

  11. Pollution prevention and control procedure case study: an application for petroleum refineries.

    PubMed

    Rodríguez, Encarnación; Martínez, Jose-Luis

    2005-06-01

    There is global environmental concern about the pollution from industries and other organizations that should not only be controlled but also prevented. Many alternatives are available to those in charge of environmental protection, but they should be able to draw on a systematic procedure to help implement prevention and control measures. At present, there are three immediate tasks: defining the objective of any environmental study, identifying the potential pollution sources, and selecting alternatives to these sources. However, it is necessary to evaluate these alternatives by using as large a number of criteria as possible and making them cumulative so as to enable the classification and selection of the best available techniques for each pollution source. The petroleum refining industry plays an important role in the developed economies and also has a potential for pollution generation that must be controlled. The best solution for all (i.e., petroleum companies, the public, and the environment) is pollution prevention, because this option will protect all of them and will also reduce costs in terms of lower raw materials consumption as well as reducing potential fines. The procedure we have presented in this article has been applied successfully.

  12. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: a case study from South China.

    PubMed

    Fei, Jiang-Chi; Min, Xiao-Bo; Wang, Zhen-Xing; Pang, Zhi-Hua; Liang, Yan-Jie; Ke, Yong

    2017-12-01

    In recent years, international research on the toxicity of the heavy metal, antimony, has gradually changed focus from early medical and pharmacological toxicology to environmental toxicology and ecotoxicology. However, little research has been conducted for sources identification and risk management of heavy metals pollution by long-term antimony mining activities. In this study, a large number of investigations were conducted on the temporal and spatial distribution of antimony and related heavy metal contaminants (lead, zinc, and arsenic), as well as on the exposure risks for the population for the Yuxi river basin in the Hunan province, China. The scope of the investigations included mine water, waste rock, tailings, agricultural soil, surface water, river sediments, and groundwater sources of drinking water. Health and ecological risks from exposure to heavy metal pollution were evaluated. The main pollution sources of heavy metals in the Yuxi River basin were analyzed. Remediation programs and risk management strategies for heavy metal pollution were consequently proposed. This article provides a scientific basis for the risk assessment and management of heavy metal pollution caused by antimony basin ore mining.

  13. Sources of indoor air pollution and respiratory health in preschool children.

    PubMed

    Fuentes-Leonarte, Virginia; Ballester, Ferran; Tenías, José Maria

    2009-01-01

    We carried out bibliographic searches in PubMed and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DYI work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development.

  14. Bacteriological quality evaluation of seawater and oysters from the Jaranman-Saryangdo area, a designated shellfish growing area in Korea: Impact of inland pollution sources.

    PubMed

    Mok, Jong Soo; Lee, Ka Jeong; Kim, Poong Ho; Lee, Tae Seek; Lee, Hee Jung; Jung, Yeoun Joong; Kim, Ji Hoe

    2016-07-15

    From 2011 to 2013, we conducted a full sanitary survey of pollution sources in proximity to a designated shellfish growing area in Korea, and their impact on the sea area therein. From this area, 836 seawater samples and 93 oyster samples were examined to evaluate their bacteriological quality. There were 483 potential pollution sources in the drainage area of the Jaranman-Saryangdo area, including 38 sources discharging water. It demonstrates that while many pollution sources have been identified, no significant impact occurred within the designated shellfish growing area. Variations in fecal coliform (FC) levels in seawater were closely related to rainfall. The FC levels of seawater and oysters from the designated area met the regulation limits set by various countries. Our study indicates that the oysters produced in this area are apparently safe for raw consumption based on their bacterial quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of pollution on land snail abundance, size and diversity as resources for pied flycatcher, Ficedula hypoleuca.

    PubMed

    Eeva, Tapio; Rainio, Kalle; Suominen, Otso

    2010-09-01

    Passerine birds need extra calcium during their breeding for developing egg shells and proper growth of nestling skeleton. Land snails are an important calcium source for many passerines and human-induced changes in snail populations may pose a severe problem for breeding birds. We studied from the bird's viewpoint how air pollution affects the shell mass, abundance and diversity of land snail communities along a pollution gradient of a copper smelter. We sampled remnant snail shells from the nests of an insectivorous passerine, the pied flycatcher, Ficedula hypoleuca, to find out how the availability of land snails varies along the pollution gradient. The total snail shell mass increased towards the pollution source but declined abruptly in the vicinity of the smelter. This spatial variation in shell mass was evident also within a single snail species and could not be wholly explained by spatially varying snail numbers or species composition. Instead, the total shell mass was related to their shell size, individuals being largest at the moderately polluted areas. Smaller shell size suggests inferior growth of snails in the most heavily polluted area. Our study shows that pollution affects the diversity, abundance (available shell mass) and individual quality of land snails, posing reproductive problems for birds that rely on snails as calcium sources during breeding. There are probably both direct pollution-related (heavy metal and calcium levels) and indirect (habitat change) effects behind the observed changes in snail populations. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Emerging research on real-time air pollution sensing with the United States Environmental Protection Agency, Office of Research and Development

    EPA Science Inventory

    Abstract: Air pollution research ranges broadly at the US EPA and includes the characterization of pollutant emissions from a wide array of sources, studying post-emission transport and transformation in the atmosphere, and evaluating the linkages between air pollution and advers...

  17. 40 CFR 464.25 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Copper Casting... existing sources. (a) Casting Quench Operations. PSES Pollutant or pollutant property Maximum for any 1 day... monitoring) 1.2 0.399 (b) Direct Chill Casting Operations. PSES Pollutant or pollutant property Maximum for...

  18. Integration of Rs/gis for Surface Water Pollution Risk Modeling. Case Study: Al-Abrash Syrian Coastal Basin

    NASA Astrophysics Data System (ADS)

    Yaghi, Y.; Salim, H.

    2017-09-01

    Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  19. Air Pollution Emissions Overview | Air Quality Planning & ...

    EPA Pesticide Factsheets

    2016-06-08

    Air pollution comes from many different sources: stationary sources such as factories, power plants, and smelters and smaller sources such as dry cleaners and degreasing operations; mobile sources such as cars, buses, planes, trucks, and trains; and naturally occurring sources such as windblown dust, and volcanic eruptions, all contribute to air pollution.

  20. Application of meteorology-based methods to determine local and external contributions to particulate matter pollution: A case study in Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Squizzato, Stefania; Masiol, Mauro

    2015-10-01

    The air quality is influenced by the potential effects of meteorology at meso- and synoptic scales. While local weather and mixing layer dynamics mainly drive the dispersion of sources at small scales, long-range transports affect the movements of air masses over regional, transboundary and even continental scales. Long-range transport may advect polluted air masses from hot-spots by increasing the levels of pollution at nearby or remote locations or may further raise air pollution levels where external air masses originate from other hot-spots. Therefore, the knowledge of ground-wind circulation and potential long-range transports is fundamental not only to evaluate how local or external sources may affect the air quality at a receptor site but also to quantify it. This review is focussed on establishing the relationships among PM2.5 sources, meteorological condition and air mass origin in the Po Valley, which is one of the most polluted areas in Europe. We have chosen the results from a recent study carried out in Venice (Eastern Po Valley) and have analysed them using different statistical approaches to understand the influence of external and local contribution of PM2.5 sources. External contributions were evaluated by applying Trajectory Statistical Methods (TSMs) based on back-trajectory analysis including (i) back-trajectories cluster analysis, (ii) potential source contribution function (PSCF) and (iii) concentration weighted trajectory (CWT). Furthermore, the relationships between the source contributions and ground-wind circulation patterns were investigated by using (iv) cluster analysis on wind data and (v) conditional probability function (CPF). Finally, local source contribution have been estimated by applying the Lenschow' approach. In summary, the integrated approach of different techniques has successfully identified both local and external sources of particulate matter pollution in a European hot-spot affected by the worst air quality.

  1. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  2. Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China.

    PubMed

    Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H

    2015-10-01

    Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.

  3. An improved export coefficient model to estimate non-point source phosphorus pollution risks under complex precipitation and terrain conditions.

    PubMed

    Cheng, Xian; Chen, Liding; Sun, Ranhao; Jing, Yongcai

    2018-05-15

    To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports and identify sources of pollution. Precipitation and terrain have large impacts on the export and transport of NPS pollutants. We established an improved export coefficient model (IECM) to estimate the amount of agricultural and rural NPS total phosphorus (TP) exported from the Luanhe River Basin (LRB) in northern China. The TP concentrations of rivers from 35 selected catchments in the LRB were used to test the model's explanation capacity and accuracy. The simulation results showed that, in 2013, the average TP export was 57.20 t at the catchment scale. The mean TP export intensity in the LRB was 289.40 kg/km 2 , which was much higher than those of other basins in China. In the LRB topographic regions, the TP export intensity was the highest in the south Yanshan Mountains and was followed by the plain area, the north Yanshan Mountains, and the Bashang Plateau. Among the three pollution categories, the contribution ratios to TP export were, from high to low, the rural population (59.44%), livestock husbandry (22.24%), and land-use types (18.32%). Among all ten pollution sources, the contribution ratios from the rural population (59.44%), pigs (14.40%), and arable land (10.52%) ranked as the top three sources. This study provides information that decision makers and planners can use to develop sustainable measures for the prevention and control of NPS pollution in semi-arid regions.

  4. Assesment of PM10 pollution episodes in a ceramic cluster (NE Spain): proposal of a new quality index for PM10, As, Cd, Ni and Pb.

    PubMed

    Vicente, A B; Sanfeliu, T; Jordan, M M

    2012-10-15

    Environmental pollution control is one of the most important goals in pollution risk assessment today. In this sense, modern and precise tools that allow scientists to evaluate, quantify and predict air pollution are of particular interest. Monitoring atmospheric particulate matter is a challenge faced by the European Union. Specific rules on this subject are being developed (Directive 2004/107/EC, Directive 2008/50/EC) in order to reduce the potential adverse effects on human health caused by air pollution. Air pollution has two sources: natural and anthropogenic. Contributions from natural sources can be assessed but cannot be controlled, while emissions from anthropogenic sources can be controlled; monitoring to reduce this latter type of pollution should therefore be carried out. In this paper, we describe an air quality evaluation in terms of levels of atmospheric particles (PM10), as outlined by European Union legislation, carried out in an industrialised Spanish coastal area over a five-year period with the purpose of comparing these values with those of other areas in the Mediterranean Basin with different weather conditions from North of Europe. The study area is in the province of Castellón. This province is a strategic area in the frame work of European Union (EU) pollution control. Approximately 80% of European ceramic tiles and ceramic frit manufacturers are concentrated in two areas, forming the so-called "ceramics clusters"; ones in Modena (Italy) and the other in Castellón. In this kind of areas, there are a lot of air pollutants from this industry then it is difficult to fulfill de European limits of PM10 so it is necessary to control the air quality in them. The seasonal differences in the number of days in which pollutant level limits were exceeded were evaluated and the sources of contamination were identified. Air quality indexes for each pollutant have been established to determine easily and clearly the quality of air breathed. Furthermore, in accordance with Directive 2008/50/EC, an Air Quality Plan is proposed to protect human health, and the environment as a whole, in the study area. General and specific corrective measures of main emission sources are provided. A strategy for air pollution management is thus presented. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Assessment of Small-Particle Emissions (Less Than 2 Micron).

    ERIC Educational Resources Information Center

    Shannon, Larry J.; And Others

    This paper is based on a particulate pollutant system study to delineate the deficiencies in knowledge regarding the nature and magnitude of particulate pollutant emissions from stationary sources. Presented at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, it focuses…

  6. Chemical composition of aerosol measurements in the air pollution plume during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Kim, J.; Park, S.; Lee, Y.; Desyaterik, Y.; Collett, J. L., Jr.; Lee, T.

    2017-12-01

    The Korean peninsula is a great place to study different sources of the aerosols: urban, rural and marine. In addition, Seoul is one of the large metropolitan areas in the world and has a variety of sources because half of the Korean population lives in Seoul, which comprises only 12% of the country's area. To understand the chemical composition of aerosol form long-range transport and local sources better, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on an airborne platform (NASA DC-8 aircraft). The HR-ToF-AMS is capable of measuring non-refractory size resolved chemical composition of submicron particle(NR-PM1) in the air pollution plume, including mass concentration of organic carbon, nitrate, sulfate, and ammonium with 10 seconds time resolution. The measurements were performed twenty times research flight for understanding characteristic of the air pollution from May to June, 2016 on the South Korean peninsula during KORUS-AQ 2016 campaign. The scientific goal of this study is to characterize aerosol chemical properties and mass concentration in order to understand the role of the long-range transport from northeast Asia to South Korea, and influence of the local sources. To brief, organics dominated during all of flights. Also, organics and nitrate were dominant around energy industrial complex near by Taean, South Korea. The presentation will provide an overview of the composition of NR-PM1 measured in air pollution plumes, and deliver detail information about width, depth and spatial distribution of the pollutant in the air pollution plumes. The results of this study will provide high temporal and spatial resolved details on the air pollution plumes, which are valuable input parameters of aerosol properties for the current air quality models.

  7. The Effects of Weather Patterns on the Spatio-Temporal Distribution of SO2 over East Asia as Seen from Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Dunlap, L.; Li, C.; Dickerson, R. R.; Krotkov, N. A.

    2015-12-01

    Weather systems, particularly mid-latitude wave cyclones, have been known to play an important role in the short-term variation of near-surface air pollution. Ground measurements and model simulations have demonstrated that stagnant air and minimal precipitation associated with high pressure systems are conducive to pollutant accumulation. With the passage of a cold front, built up pollution is transported downwind of the emission sources or washed out by precipitation. This concept is important to note when studying long-term changes in spatio-temporal pollution distribution, but has not been studied in detail from space. In this study, we focus on East Asia (especially the industrialized eastern China), where numerous large power plants and other point sources as well as area sources emit large amounts of SO2, an important gaseous pollutant and a precursor of aerosols. Using data from the Aura Ozone Monitoring Instrument (OMI) we show that such weather driven distribution can indeed be discerned from satellite data by utilizing probability distribution functions (PDFs) of SO2 column content. These PDFs are multimodal and give insight into the background pollution level at a given location and contribution from local and upwind emission sources. From these PDFs it is possible to determine the frequency for a given region to have SO2 loading that exceeds the background amount. By comparing OMI-observed long-term change in the frequency with meteorological data, we can gain insights into the effects of climate change (e.g., the weakening of Asian monsoon) on regional air quality. Such insight allows for better interpretation of satellite measurements as well as better prediction of future pollution distribution as a changing climate gives way to changing weather patterns.

  8. A systematic review of the physical and chemical characteristics of pollutants from biomass burning and combustion of fossil fuels and health effects in Brazil.

    PubMed

    Oliveira, Beatriz Fátima Alves de; Ignotti, Eliane; Hacon, Sandra S

    2011-09-01

    The aim of this study was to carry out a review of scientific literature published in Brazil between 2000 and 2009 on the characteristics of air pollutants from different emission sources, especially particulate matter (PM) and its effects on respiratory health. Using electronic databases, a systematic literature review was performed of all research related to air pollutant emissions. Publications were analyzed to identify the physical and chemical characteristics of pollutants from different emission sources and their related effects on the respiratory system. The PM2.5 is composed predominantly of organic compounds with 20% of inorganic elements. Higher concentrations of metals were detected in metropolitan areas than in biomass burning regions. The relative risk of hospital admissions due to respiratory diseases in children was higher than in the elderly population. The results of studies of health effects of air pollution are specific to the region where the emissions occurred and should not be used to depict the situation in other areas with different emission sources.

  9. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    NASA Astrophysics Data System (ADS)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  10. Aldehydes in Relation to Air Pollution Sources: A Case Study around the Beijing Olympics

    PubMed Central

    Altemose, Brent; Gong, Jicheng; Zhu, Tong; Hu, Min; Zhang, Liwen; Cheng, Hong; Zhang, Lin; Tong, Jian; Kipen, Howard M.; Strickland, Pamela Ohman; Meng, Qingyu; Robson, Mark G.; Zhang, Junfeng

    2015-01-01

    This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a central Beijing site in the summer and early fall of 2008 (from June to October). Aldehydes in polluted atmospheres come from both primary and secondary sources, which limits the control strategies for these reactive compounds. Measurements were made before, during, and after the Beijing Olympics to examine whether the dramatic air pollution control measures implemented during the Olympics had an impact on concentrations of the three aldehydes and their underlying primary and secondary sources. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.3±15.1 μg/m3, 27.1±15.7 μg/m3 and 2.3±1.0 μg/m3, respectively, for the entire period of measurements, all being at the high end of concentration ranges measured in cities around the world in photochemical smog seasons. Formaldehyde and acrolein increased during the pollution control period compared to the pre-Olympic Games, followed the changing pattern of temperature, and were significantly correlated with ozone and with a secondary formation factor identified by principal component analysis (PCA). In contrast, acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period and was significantly correlated with several pollutants emitted from local emission sources (e.g., NO2, CO, and PM2.5). Acetaldehyde was also more strongly associated with primary emission sources including vegetative burning and oil combustion factors identified through the PCA. All three aldehydes were lower during the post-Olympic sampling period compared to the before and during Olympic periods, likely due to seasonal and regional effects. Our findings point to the complexity of source control strategies for secondary pollutants. PMID:25883528

  11. Probabilistic Analysis of Earthquake-Led Water Contamination: A Case of Sichuan, China

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Li, Lin; Benjamin Zhan, F.; Zhuang, Yanhua

    2016-06-01

    The objective of this paper is to evaluate seismic-led point source and non-point source water pollution, under the seismic hazard of 10 % probability of exceedance in 50 years, and with the minimum value of the water quality standard in Sichuan, China. The soil conservation service curve number method of calculating the runoff depth in the single rainfall event combined with the seismic damage index were applied to estimate the potential degree of non-point source water pollution. To estimate the potential impact of point source water pollution, a comprehensive water pollution evaluation framework is constructed using a combination of Water Quality Index and Seismic Damage Index methods. The four key findings of this paper are: (1) The water catchment that has the highest factory concentration does not have the highest risk of non-point source water contamination induced by the outbreak of potential earthquake. (2) The water catchment that has the highest numbers of cumulative water pollutants types are typically located in the south western parts of Sichuan where the main river basins in the regions flow through. (3) The most common pollutants in sample factories studied is COD and NH3-N which are found in all catchments. The least common pollutant is pathogen—found present in W1 catchment which has the best rating in the water quality index. (4) Using water quality index as a standardization parameter, parallel comparisons is made among the 16 water catchments. Only catchment W1 reaches level II water quality status which has the rating of moderately polluted in events of earthquake induced water contamination. All other areas suffer from severe water contamination with multiple pollution sources. The results from the data model are significant to urban planning commissions and businesses to strategically choose their factory locations in order to minimize potential hazardous impact during the outbreak of earthquake.

  12. Metal pollution investigation of Goldman Park, Middletown Ohio: Evidence for steel and coal pollution in a high child use setting.

    PubMed

    Dietrich, Matthew; Huling, Justin; Krekeler, Mark P S

    2018-03-15

    A geochemical investigation of both ballfield sediment and street sediment in a park adjacent to a major steel manufacturing site in Middletown, Ohio revealed Pb, Cu, Cr and Zn exceeded background levels, but in heterogeneous ways and in varying levels of health concern. Pb, Sn, and Zn had geoaccumulation values>2 (moderate to heavy pollutants) in street sediment samples. Cr had a geoaccumulation value>1, while Ni, W, Fe and Mn had geoaccumulation values between 1 and 0 in street sediment. Street sediment contamination factors for respective elements are Zn (10.41), Sn (5.45), Pb (4.70), Sb (3.45), Cr (3.19), W (2.59), and Mn (2.43). The notable elements with the highest factors for ball fields are Zn (1.72), Pb (1.36), Cr (0.99), V (0.95), and Mn (1.00). High correlation coefficients of known constituents of steel, such as Fe and Mo, Ni and Cr, W and Co, W and V, as well as particulate steel and coal spherule fragments found by SEM suggest probable sourcing of some of the metals from the AK Steel facility directly adjacent to the park. However, overall extensive heterogeneity of metal pollutants in the area points to the difficulties in sourcing pollutant metals, with many outside sources likely contributing as well. This study demonstrates that different sediment media can be impacted by significantly different metal pollutants even when in very close proximity to a single source and points to unrecognized complexity in urban pollution processes in the region. This study pertains to large-scale regional importance, as Middletown, Ohio is indicative of a typical post-industrial Midwestern U.S. city where limited investigation has been conducted regarding urban pollution and sourcing of materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spatial analysis and source profiling of beta-agonists and sulfonamides in Langat River basin, Malaysia.

    PubMed

    Sakai, Nobumitsu; Mohd Yusof, Roslan; Sapar, Marni; Yoneda, Minoru; Ali Mohd, Mustafa

    2016-04-01

    Beta-agonists and sulfonamides are widely used for treating both humans and livestock for bronchial and cardiac problems, infectious disease and even as growth promoters. There are concerns about their potential environmental impacts, such as producing drug resistance in bacteria. This study focused on their spatial distribution in surface water and the identification of pollution sources in the Langat River basin, which is one of the most urbanized watersheds in Malaysia. Fourteen beta-agonists and 12 sulfonamides were quantitatively analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A geographic information system (GIS) was used to visualize catchment areas of the sampling points, and source profiling was conducted to identify the pollution sources based on a correlation between a daily pollutant load of the detected contaminant and an estimated density of human or livestock population in the catchment areas. As a result, 6 compounds (salbutamol, sulfadiazine, sulfapyridine, sulfamethazine, sulfadimethoxine and sulfamethoxazole) were widely detected in mid catchment areas towards estuary. The source profiling indicated that the pollution sources of salbutamol and sulfamethoxazole were from sewage, while sulfadiazine was from effluents of cattle, goat and sheep farms. Thus, this combination method of quantitative and spatial analysis clarified the spatial distribution of these drugs and assisted for identifying the pollution sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An application of Landsat and computer technology to potential water pollution from soil erosion

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.

    1981-01-01

    Agricultural activity has been recognized as the primary source of nonpoint source water pollution. Water quality planners have needed information that is timely, accurate, easily reproducible, and relatively inexpensive to utilize to implement 'Best Management Practices' for water quality. In this paper, a case study shows how the combination of satellite data, which can give accurate land-cover/land-use information, and a computerized geographic information system, can assess nonpoint pollution at a regional scale and be cost effective.

  15. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau.

    PubMed

    Wu, Jun; Lu, Jian; Li, Leiming; Min, Xiuyun; Luo, Yongming

    2018-06-01

    The Qinghai-Tibet Plateau, especially the northeastern region, is not a pure land any more due to recently increasing anthropogenic activities. This study collected soil samples from 70 sites of the northeastern Qinghai-Tibet Plateau to evaluate pollution, ecological-health risks, and possible pollution sources of heavy metals. The concentrations of heavy metals in soil were relatively high. Values of geo-accumulation index exhibited that Hg pollution was the most serious meanwhile Hg possessed the strongest enrichment feature based on enrichment factor values. The modified degrees of contamination showed that about 54.3% and 17.1% of sampling sites were at moderate and high contamination degree while pollution load indexes illustrated that 72.9% and 27.1% of sampling sites possessed moderate and high contamination level, respectively. Ecological risk indexes of heavy metals in soil ranged from 234.6 to 3759.0, suggesting that most of sites were under considerable/very high risks. Cancer risks for adults and children were determined as high and high-very high levels while non-cancer risks for children were high although those for adults were low. Industrial source contributed to the main fraction of ecological and health risks. Summarily speaking, heavy metals in soil of the study area has caused significantly serious pollution and exerted high potential ecological and health risks, especially for children who are more susceptible to hurt from pollutants. Therefore, more efficient and strict pollution control and management in study area should be put out as soon as possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection.

    PubMed

    Zhang, Lixun; Zhao, Bo; Xu, Gang; Guan, Yuntao

    2018-09-01

    Globally, fluvial heavy metal (HM) pollution has recently become an increasingly severe problem. However, few studies have investigated the variational characteristics of fluvial HMs after rain over long periods (≥1 year). The Dakan River in Xili Reservoir watershed (China) was selected as a case study to investigate pollution levels, influencing factors, and sources of HMs under different rainfall conditions during 2015 and 2016. Fluvial HMs showed evident spatiotemporal variations attributable to the coupled effects of pollution generation and rainfall diffusion. Fluvial HM concentrations were significantly associated with rainfall characteristics (e.g., rainfall intensity, rainfall amount, and antecedent dry period) and river flow, which influenced the generation and the transmission of fluvial HMs in various ways. Moreover, this interrelationship depended considerably on the HM type and particle size distribution. Mn, Pb, Cr, and Ni were major contributors to high values of the comprehensive pollution index; therefore, they should be afforded special attention. Additionally, quantitative source apportionment of fluvial HMs was conducted by combining principal component analysis with multiple linear regression and chemical mass balance models to obtain comprehensive source profiles. Finally, an environment-friendly control strategy coupling "source elimination" and "transport barriers" was proposed for aquatic environment protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Environmental Kuznets Curve Analysis of the Economic Development and Nonpoint Source Pollution in the Ningxia Yellow River Irrigation Districts in China

    PubMed Central

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area. PMID:24171160

  18. Environmental Kuznets curve analysis of the economic development and nonpoint source pollution in the Ningxia Yellow River irrigation districts in China.

    PubMed

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  19. Pollution and Oral Bioaccessibility of Pb in Soils of Villages and Cities with a Long Habitation History

    PubMed Central

    Walraven, Nikolaj; Bakker, Martine; van Os, Bertil; Klaver, Gerard; Middelburg, Jack Jacobus; Davies, Gareth

    2016-01-01

    The Dutch cities Utrecht and Wijk bij Duurstede were founded by the Romans around 50 B.C. and the village Fijnaart and Graft-De Rijp around 1600 A.D. The soils of these villages are polluted with Pb (up to ~5000 mg/kg). Lead isotope ratios were used to trace the sources of Pb pollution in the urban soils. In ~75% of the urban soils the source of the Pb pollution was a mixture of glazed potsherd, sherds of glazed roof tiles, building remnants (Pb sheets), metal slag, Pb-based paint flakes and coal ashes. These anthropogenic Pb sources most likely entered the urban soils due to historical smelting activities, renovation and demolition of houses, disposal of coal ashes and raising and fertilization of land with city waste. Since many houses still contain Pb-based building materials, careless renovation or demolition can cause new or more extensive Pb pollution in urban soils. In ~25% of the studied urban topsoils, Pb isotope compositions suggest Pb pollution was caused by incinerator ash and/or gasoline Pb suggesting atmospheric deposition as the major source. The bioaccessible Pb fraction of 14 selected urban soils was determined with an in vitro test and varied from 16% to 82% of total Pb. The bioaccessibility appears related to the chemical composition and grain size of the primary Pb phases and pollution age. Risk assessment based on the in vitro test results imply that risk to children may be underestimated in ~90% of the studied sample sites (13 out of 14). PMID:26901208

  20. Pollution and Oral Bioaccessibility of Pb in Soils of Villages and Cities with a Long Habitation History.

    PubMed

    Walraven, Nikolaj; Bakker, Martine; van Os, Bertil; Klaver, Gerard; Middelburg, Jack Jacobus; Davies, Gareth

    2016-02-17

    The Dutch cities Utrecht and Wijk bij Duurstede were founded by the Romans around 50 B.C. and the village Fijnaart and Graft-De Rijp around 1600 A.D. The soils of these villages are polluted with Pb (up to ~5000 mg/kg). Lead isotope ratios were used to trace the sources of Pb pollution in the urban soils. In ~75% of the urban soils the source of the Pb pollution was a mixture of glazed potsherd, sherds of glazed roof tiles, building remnants (Pb sheets), metal slag, Pb-based paint flakes and coal ashes. These anthropogenic Pb sources most likely entered the urban soils due to historical smelting activities, renovation and demolition of houses, disposal of coal ashes and raising and fertilization of land with city waste. Since many houses still contain Pb-based building materials, careless renovation or demolition can cause new or more extensive Pb pollution in urban soils. In ~25% of the studied urban topsoils, Pb isotope compositions suggest Pb pollution was caused by incinerator ash and/or gasoline Pb suggesting atmospheric deposition as the major source. The bioaccessible Pb fraction of 14 selected urban soils was determined with an in vitro test and varied from 16% to 82% of total Pb. The bioaccessibility appears related to the chemical composition and grain size of the primary Pb phases and pollution age. Risk assessment based on the in vitro test results imply that risk to children may be underestimated in ~90% of the studied sample sites (13 out of 14).

  1. Controlling Nonpoint-Source Water Pollution: A Citizen's Handbook.

    ERIC Educational Resources Information Center

    Hansen, Nancy Richardson; And Others

    Citizens can play an important role in helping their states develop pollution control programs and spurring effective efforts to deal with nonpoint-source pollution. This guide takes the reader step-by-step through the process that states must follow to comply with water quality legislation relevant to nonpoint-source pollution. Part I provides…

  2. 40 CFR 420.94 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....0 to 9.0. (5) Fume scrubbers. Subpart I Pollutant or pollutant property New source performance... Within the range of 6.0 to 9.0. The above limitations shall be applicable to each fume scrubber....0 to 9.0. (4) Fume scrubbers. Subpart I Pollutant or pollutant property New source performance...

  3. 40 CFR 420.94 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....0 to 9.0. (5) Fume scrubbers. Subpart I Pollutant or pollutant property New source performance... Within the range of 6.0 to 9.0. The above limitations shall be applicable to each fume scrubber....0 to 9.0. (4) Fume scrubbers. Subpart I Pollutant or pollutant property New source performance...

  4. 40 CFR 420.94 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....0 to 9.0. (5) Fume scrubbers. Subpart I Pollutant or pollutant property New source performance... Within the range of 6.0 to 9.0. The above limitations shall be applicable to each fume scrubber....0 to 9.0. (4) Fume scrubbers. Subpart I Pollutant or pollutant property New source performance...

  5. 40 CFR 420.94 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....0 to 9.0. (5) Fume scrubbers. Subpart I Pollutant or pollutant property New source performance... Within the range of 6.0 to 9.0. The above limitations shall be applicable to each fume scrubber....0 to 9.0. (4) Fume scrubbers. Subpart I Pollutant or pollutant property New source performance...

  6. 40 CFR 420.94 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....0 to 9.0. (5) Fume scrubbers. Subpart I Pollutant or pollutant property New source performance... Within the range of 6.0 to 9.0. The above limitations shall be applicable to each fume scrubber....0 to 9.0. (4) Fume scrubbers. Subpart I Pollutant or pollutant property New source performance...

  7. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    PubMed

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  8. Magnetic biomonitoring of industrial air pollution in SW Finland

    NASA Astrophysics Data System (ADS)

    Salo, Hanna; Mäkinen, Joni

    2015-04-01

    Moss bags made of Sphagnum papillosum were exposed along 8 km transects near Harjavalta Industrial Park in SW Finland. Previous studies have identified Cu-Ni smelter's pipe as the main source of air pollution. Our research hypothesis is that nowadays the local pollution load of airborne particulate matter from Industrial Park is mainly caused by other emission sources than the smelter's pipe. To identify possible magnetic fingerprints, industrial samples (fiberglass filters from the smokestacks of Cu-Ni smelter and Ni-dryer, final Cu-slag, granulated Ni-slag, Cu-concentrates, Ni-concentrates) were investigated. Mass-specific susceptibility and heavy metal levels were significantly higher near Industrial Park and showed a decreasing trend with increasing distance from the source. The magnetic mineralogy of moss bags, smelter's filter and Cu-slag was dominated by a low-coercivity magnetite while high-coercivity minerals were observed in dryer's filter, Ni-slag and majority of concentrates including all Ni-concentrates. Angular and sharp-edged particles prevailed in moss bags and industrial samples, except for smelter's filter and granulated Ni-slag in which spherical particles dominated. Seven air pollution impact zones were distinguished around Industrial Park on the basis of magnetic susceptibility and previous studies. Overall, industrial area's influence is observable up to 4 km and even further distances in SE and NW along prevailing wind directions and Kokemäenjoki River valley. The heaviest anthropogenic air pollution load is deposited at 0.5-1 km distances. Particle morphology and magnetic data of the moss bags indicate that the particulate matter in the hot spot area, which spatial emphasis is in S-SW-W-NW in the upwind from the smelter, originate mainly from the dust emissions from other sources rather than the smelter's pipe. The industrial activities in and nearby hot spot area include handling and moving of concentrates and slags as well as heavy traffic. This study shows that air pollution from various dust-providing sources outweighs the fly-ash load from the Cu-Ni smelter's pipe especially at short distances. Furthermore, active magnetic monitoring by moss bags is spatially detailed sampling method for the identification of air pollutants and emission sources.

  9. Data Assimilation to Improve CMAQ Model Estimates of Particulate Matter Pollution during Wintertime Persistent Cold Air Pool Events in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Ivey, C. E.; Balachandran, S.; Russell, A. G.; Hu, Y.; Holmes, H.

    2017-12-01

    More than one million people live in Salt Lake Valley, Utah, where wintertime pollution reaches unhealthy levels due to the unique meteorology and orography of the region. Persistent cold air pool (PCAP) events occur when high pressure ridges create stagnant conditions over a valley, which hampers large-scale advection and reduces surface wind speeds. During PCAP periods the fraction of incoming solar radiation that reaches the valley floor is also reduced, leading to temperature inversions that allow pollution to build. Pollution levels continue to climb until a washout event removes the pollutants from the valley. Washout events include high winds or precipitation events with advection or wet deposition related removal processes, respectively. In this work, novel data assimilation and source apportionment techniques are applied for January and February 2007 to analyze CMAQ-modeled source composition and source impacts for the Salt Lake Valley during PCAP events. First, a hybrid source-oriented apportionment model is applied over continental U.S. to determine observation and model-based impacts from 20 sources, including agricultural activities, fossil fuel combustion, dust, and metals processing. Then, a secondary bias correction method is applied to better quantify the source impacts on secondary PM2.5, which constitutes the majority of the PM2.5 mass. Revised concentrations reflect what was previously reported in studies of PCAP pollution in the Salt Lake Valley, where the dominant aerosol was found to be ammonium nitrate. Further, gasoline and natural gas combustion were found to be the greatest contributing sources to aerosol concentrations during the PCAP events. The benefit of the data assimilation methods is the availability of spatially and temporally resolved model estimates of source impacts that better reflect observed concentrations.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulle, D.J.; Bilello, M.A.; Armstrong, J.A.

    The US Trade and Development Agency is partially funding the initial phase of an ambient air quality monitoring program for the Metropolitan Municipality of Istanbul in Turkey. The objectives of the monitoring program are fourfold: (1) to ascertain existing levels of air pollution within the urban area; (2) to identify locations where there may be health concerns associated with existing levels of air pollution; (3) to determine the portion of air pollution arising from specific anthropogenic sources within the urban area; and (4) to target the major sources for an emission-reduction program. This program is being carried out in phases.more » A feasibility study has recently been completed. This initial activity will be followed by three main program phases. Phase 1 will involve the installation of several air quality monitoring stations to collect area-wide background data within and surrounding the Municipality. Phase 2 will consist of taking detailed pollutant measurements near specific sources and in specific areas of high pollutant concentrations identified in Phase 1. Phase 3 would target the major sources for emission reductions to improve local air quality and would institute revisions to the existing air quality permitting program. The feasibility study included determining the pollutants of concern, specifying the equipment that should be utilized in Phase 1 for the collection of the data, recommending the number and location of sites where data should be collected, determining site preparation and security needs, and defining the data reduction and analysis techniques which should be employed. This paper describes the results of the feasibility study and outlines plans for the remaining phases of the program.« less

  11. Study of Chinese pollution with the 3D regional chemistry transport CHIMERE model and remote sensing observations, with a focus on mineral dust impacts

    NASA Astrophysics Data System (ADS)

    Lachatre, Mathieu; Foret, Gilles; Beekmann, Matthias; Cheiney, Audrey; Dufour, Gaëlle; Laurent, Benoit; Cuesta, Juan

    2017-04-01

    Since the end of the 20th century, China has observed important growth in numerous sectors. China's Gross Domestic Product (GDP) has been multiply by 4 during the 2000-2010 decade (National Bureau of Statistics of China), mostly because of the industry's growth. These evolutions have been accompanied by important increases of atmospheric pollutants emissions (Yinmin et al, Atmo Env, 2016). As a consequence and for about 10 years now, Chinese authorities have been working to reduce pollutant levels, because atmospheric pollution is a major health issue for Chinese population especially within cities, for which World Health Organisation's standards for major pollutants (Ozone, PM2.5, PM10) are often exceeded. Particles have multiple issues, as they impact on health and global warming. Their impacts will depend on their sources (primary or secondary pollutants) and natures (Particle size distribution, chemical composition…). Controlling particles loading is a complex task as their sources are various and dispersed on the Chinese territories: mineral dust can be emitted from Chinese deserts in large amount (Laurent et al., GPC, 2006), ammonia can be emitted from agriculture and livestock (Kang et al., ACP, 2016) and lots of urban primary pollutants can be emitted from urbanized areas. It is then necessary to work from a continental to local scales to understand more precisely pollution of urbanized areas. It is then mandatory to discriminate and quantify pollution sources and to estimate the impact of natural pollution and the major contributing sources. We propose here an approach based on a model and satellite observation synergy to estimate what controls Chinese pollution. We use the regional chemistry transport model CHIMERE (Menut et al., GMD, 2013) to simulate atmospheric pollutants concentrations. A large domain (72°E-145°E; 17.5°N-55°N), with a ¼°x¼° resolution is used to make multi-annual simulations. CHIMERE model include most of the pollutants sources, and using a soil properties database is able to model Dust emissions (Laurent B. et al., JGR, 2005). Satellite products are available to evaluate and improve our simulations, as for example the AOD and Angstrom coefficient from the MODIS instrument. Mineral dust pollution represents one of the most important sources of atmospheric pollutant over Chinese territories, but dust emissions and transport present important seasonal variabilities. To evaluate impacts of dust pollutants on inhabited areas' pollutions, we compute dust emissions (Marticorena and Bergametti, JGR, 1995) and transport. Using MODIS instrument information over dust source regions, we control that AOD amplitudes and temporal variations simulated with CHIMERE correspond. We attempt to quantify the impact of mineral dust pollution each month over several urbanized areas using multi-annual simulations (2011, 2013, and 2015). We also investigate the impact of heavy dust events within inhabited areas' pollution. This work is also part of the French funded project "Pollution in Eastern Asia: towards better air quality prevision and impacts' evaluation".

  12. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    PubMed

    Xanthos, Dirk; Walker, Tony R

    2017-05-15

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Numerical simulations for the sources apportionment and control strategies of PM2.5 over Pearl River Delta, China, part I: Inventory and PM2.5 sources apportionment.

    PubMed

    Huang, Yeqi; Deng, Tao; Li, Zhenning; Wang, Nan; Yin, Chanqin; Wang, Shiqiang; Fan, Shaojia

    2018-09-01

    This article uses the WRF-CMAQ model to systematically study the source apportionment of PM 2.5 under typical meteorological conditions in the dry season (November 2010) in the Pearl River Delta (PRD). According to the geographical location and the relative magnitude of pollutant emission, Guangdong Province is divided into eight subdomains for source apportionment study. The Brute-Force Method (BFM) method was implemented to simulate the contribution from different regions to the PM 2.5 pollution in the PRD. Results show that the industrial sources accounted for the largest proportion. For emission species, the total amount of NO x and VOC in Guangdong Province, and NH 3 and VOC in Hunan Province are relatively larger. In Guangdong Province, the emission of SO 2 , NO x and VOC in the PRD are relatively larger, and the NH 3 emissions are higher outside the PRD. In northerly-controlled episodes, model simulations demonstrate that local emissions are important for PM 2.5 pollution in Guangzhou and Foshan. Meanwhile, emissions from Dongguan and Huizhou (DH), and out of Guangdong Province (SW) are important contributors for PM 2.5 pollution in Guangzhou. For PM 2.5 pollution in Foshan, emissions in Guangzhou and DH are the major contributors. In addition, high contribution ratio from DH only occurs in severe pollution periods. In southerly-controlled episode, contribution from the southern PRD increases. Local emissions and emissions from Shenzhen, DH, Zhuhai-Jiangmen-Zhongshan (ZJZ) are the major contributors. Regional contribution to the chemical compositions of PM 2.5 indicates that the sources of chemical components are similar to those of PM 2.5 . In particular, SO 4 2- is mainly sourced from emissions out of Guangdong Province, while the NO 3- and NH 4+ are more linked to agricultural emissions. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Chemical, biological, and DNA markers for tracing slaughterhouse effluent.

    PubMed

    Harvey, P J; Taylor, M P; Handley, H K; Foster, S; Gillings, M R; Asher, A J

    2017-07-01

    Agricultural practices, if not managed correctly, can have a negative impact on receiving environments via waste disposal and discharge. In this study, a chicken slaughter facility on the rural outskirts of Sydney, Australia, has been identified as a possible source of persistent effluent discharge into a peri-urban catchment. Questions surrounding the facility's environmental management practices go back more than four decades. Despite there having never been a definitive determination of the facility's impact on local stream water quality, the New South Wales Environment Protection Authority (NSW EPA) has implemented numerous pollution reduction requirements to manage noise and water pollution at the slaughter facility. However, assessment of compliance remains complicated by potential additional sources of pollution in the catchment. To unravel this long-standing conundrum related to water pollution we apply a forensic, multiple lines of evidence approach to delineate the origin of the likely pollution source(s). Water samples collected between 2014 and 2016 from irrigation pipes and a watercourse exiting the slaughter facility had elevated concentrations of ammonia (max: 63,000µg/L), nitrogen (max: 67,000µg/L) and phosphorus (max: 39,000µg/L), which were significantly higher than samples from adjacent streams that did not receive direct runoff from the facility. Arsenic, sometimes utilised in growth promoting compounds, was detected in water discharging from the facility up to ~4 times (max 3.84µg/L) local background values (<0.5µg/L), with inorganic As (∑V+III) being the dominant species. The spatial association of elevated water pollution to the facility could not unequivocally distinguish a source and consequently DNA analysis of a suspected pollution discharge event was undertaken. Analysis of catchment runoff from several local streams showed that only water sampled at the downstream boundary of the facility tested positive for chicken DNA, with traces of duck DNA being absent, which was a potential confounder given that wild ducks are present in the area. Further, PCR analysis showed that only the discharge water emanating from the slaughter facility tested positive for a generalized marker of anthropogenic pollution, the clinical class 1 integron-integrase gene. The environmental data collected over a three-year period demonstrates that the slaughter facility is indisputably the primary source of water-borne pollution in the catchment. Moreover, application of DNA and PCR for confirming pollution sources demonstrates its potential for application by regulators in fingerprinting pollution sources. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Activity patterns of Californians: Use of and proximity to indoor pollutant sources

    NASA Astrophysics Data System (ADS)

    Jenkins, Peggy L.; Phillips, Thomas J.; Mulberg, Elliot J.; Hui, Steve P.

    The California Air Resources Board funded a statewide survey of activity patterns of Californians over 11 years of age in order to improve the accuracy of exposure assessments for air pollutants. Telephone interviews were conducted with 1762 respondents over the four seasons from fall 1987 through summer 1988. In addition to completing a 24-h recall diary of activities and locations, participants also responded to questions about their use of and proximity to potential pollutant sources. Results are presented regarding time spent by Californians in different activities and locations relevant to pollutant exposure, and their frequency of use of or proximity to pollutant sources including cigarettes, consumer products such as paints and deodorizers, combustion appliances and motor vehicles. The results show that Californians spend, on average, 87% of their time indoors, 7% in enclosed transit and 6% outdoors. At least 62% of the population over 11 years of age and 46% of nonsmokers are near others' tobacco smoke at some time during the day. Potential exposure to different pollutant sources appears to vary among different gender and age groups. For example, women are more likely to use or be near personal care products and household cleaning agents, while men are more likely to be exposed to environmental tobacco smoke, solvents and paints. Data from this study can be used to reduce significantly the uncertainty associated with risk assessments for many pollutants.

  16. Occurrence of bacteriophages infecting Aeromonas, Enterobacter, and Klebsiella in water and association with contamination sources in Thailand.

    PubMed

    Wangkahad, Bencharong; Bosup, Suchada; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee

    2015-06-01

    The co-residence of bacteriophages and their bacterial hosts in humans, animals, and environmental sources directed the use of bacteriophages to track the origins of the pathogenic bacteria that can be found in contaminated water. The objective of this study was to enumerate bacteriophages of Aeromonas caviae (AecaKS148), Enterobacter sp. (EnspKS513), and Klebsiella pneumoniae (KlpnKS648) in water and evaluate their association with contamination sources (human vs. animals). Bacterial host strains were isolated from untreated wastewater in Bangkok, Thailand. A double-layer agar technique was used to detect bacteriophages. All three bacteriophages were detected in polluted canal samples, with likely contamination from human wastewater, whereas none was found in non-polluted river samples. AecaKS148 was found to be associated with human fecal sources, while EnspKS513 and KlpnKS648 seemed to be equally prevalent in both human and animal fecal sources. Both bacteriophages were also present in polluted canals that could receive contamination from other fecal sources or the environment. In conclusion, all three bacteriophages were successfully monitored in Bangkok, Thailand. This study provided an example of bacteriophages for potential use as source identifiers of pathogen contamination. The results from this study will assist in controlling sources of pathogen contamination, especially in developing countries.

  17. A study of impact of Asian dusts and their transport pathways to Hong Kong using multiple AERONET data, trajectory, and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wong, Man Sing; Nichol, Janet Elizabeth; Lee, Kwon Ho

    2010-10-01

    Hong Kong, a commercial and financial city located in south-east China has suffered serious air pollution for the last decade due largely to rapid urban and industrial expansion of the cities of mainland China. However, the potential sources and pathways of aerosols transported to Hong Kong have not been well researched due to the lack of air quality monitoring stations in southern China. Here, an integrated method combining the AErosol RObotic NETwork (AERONET) data, trajectory and Potential Source Contribution Function (PSCF) modeling is used to identify the potential transport pathways and contribution of sources from four characteristic aerosol types. Four characteristic aerosol types were defined using a total of 730 AERONET data measurements between 2005 and 2008. They are coastal urban, polluted urban, dust (likely to be long distance desert dust), and heavy pollution. Results show that the sources of polluted urban and heavy pollution are associated with industrial emissions in southern China, whereas coastal urban aerosols have been affected both from natural marine aerosol and emissions. The PSCF map of dust shows a wide range of pathways followed by east- and south-eastwards trajectories from northwest China to Hong Kong. Although the contribution from dust sources is small compared to the anthropogenic aerosols, a serious recent dust outbreak has been observed in Hong Kong with an elevation of the Air Pollution Index to 500, compared with 50-100 on normal days. Therefore, the combined use of clustered AERONET data, trajectory and the PSCF models can help to resolve the longstanding issue about source regions and characteristics of pollutants carried to Hong Kong.

  18. Chemical characteristics and source apportionment of PM2.5 between heavily polluted days and other days in Zhengzhou, China.

    PubMed

    Jiang, Nan; Li, Qiang; Su, Fangcheng; Wang, Qun; Yu, Xue; Kang, Panru; Zhang, Ruiqin; Tang, Xiaoyan

    2018-04-01

    PM 2.5 samples were collected in Zhengzhou during 3years of observation, and chemical characteristics and source contribution were analyzed. Approximately 96% of the daily PM 2.5 concentrations and annual average values exceeded the Chinese National Ambient Air Quality Daily and Annual Standards, indicating serious PM 2.5 pollution. The average concentration of water-soluble inorganic ions was 2.4 times higher in heavily polluted days (daily PM 2.5 concentrations>250μg/m 3 and visibility <3km) than that in other days, with sulfate, nitrate, and ammonium as major ions. According to the ratio of NO 3 - /SO 4 2- , stationary sources are still the dominant source of PM 2.5 and vehicle emission could not be ignored. The ratio of secondary organic carbon to organic carbon indicated that photochemical reactivity in heavily polluted days was more intense than in other days. Crustal elements were the most abundant elements, accounting for more than 60% of 23 elements. Chemical Mass Balance results indicated that the contributions of major sources (i.e., nitrate, sulfate, biomass, carbon and refractory material, coal combustion, soil dust, vehicle, and industry) of PM 2.5 were 13%, 16%, 12%, 2%, 14%, 8%, 7%, and 8% in heavily polluted days and 20%, 18%, 9%, 2%, 27%, 14%, 15%, and 9% in other days, respectively. Extensive combustion activities were the main sources of polycyclic aromatic hydrocarbons during the episode (Jan 1-9, 2015) and the total benzo[a]pyrene equivalency concentrations in heavily polluted days present significant health threat. Because of the effect of regional transport, the pollution level of PM 2.5 in the study area was aggravated. Copyright © 2017. Published by Elsevier B.V.

  19. AGRICULTURAL NONPOINT SOURCE POLLUTION (AGNPS)

    EPA Science Inventory

    Developed by the USDA Agricultural Research Service, Agricultural Nonpoint Source Pollution (AGNPS) model addresses concerns related to the potential impacts of point and nonpoint source pollution on surface and groundwater quality (Young et al., 1989). It was designed to quantit...

  20. HUMAN HEALTH DAMAGES FROM MOBILE SOURCE AIR POLLUTION: ADDITIONAL DELPHI DATA ANALYSIS. VOLUME II

    EPA Science Inventory

    The report contains the results of additional analyses of the data generated by a panel of medical experts for a study of Human Health Damages from Mobile Source Air Pollution (hereafter referred to as HHD) conducted by the California Air Resources Board in 1973-75 for the U.S. E...

  1. 40 CFR 49.135 - Rule for emissions detrimental to public health or welfare.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...? This section is intended to prevent the emission of air pollutants from any air pollution source... affected by this section? This section applies to any person who owns or operates an air pollution source. (c) What are the requirements for air pollution sources? (1) A person must not cause or allow the...

  2. 40 CFR 49.135 - Rule for emissions detrimental to public health or welfare.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...? This section is intended to prevent the emission of air pollutants from any air pollution source... affected by this section? This section applies to any person who owns or operates an air pollution source. (c) What are the requirements for air pollution sources? (1) A person must not cause or allow the...

  3. 40 CFR 49.135 - Rule for emissions detrimental to public health or welfare.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...? This section is intended to prevent the emission of air pollutants from any air pollution source... affected by this section? This section applies to any person who owns or operates an air pollution source. (c) What are the requirements for air pollution sources? (1) A person must not cause or allow the...

  4. Numerical prediction on the dispersion of pollutant particles

    NASA Astrophysics Data System (ADS)

    Osman, Kahar; Ali, Zairi; Ubaidullah, S.; Zahid, M. N.

    2012-06-01

    The increasing concern on air pollution has led people around the world to find more efficient ways to control the problem. Air dispersion modeling is proven to be one of the alternatives that provide economical ways to control the growing threat of air pollution. The objective of this research is to develop a practical numerical algorithm to predict the dispersion of pollutant particles around a specific source of emission. The source selected was a rubber wood manufacturing plant. Gaussian-plume model were used as air dispersion model due to its simplicity and generic application. Results of this study show the concentrations of the pollutant particles on ground level reached approximately 90μg/m3, compared with other software. This value surpasses the limit of 50μg/m3 stipulated by the National Ambient Air Quality Standard (NAAQS) and Recommended Malaysian Guidelines (RMG) set by Environment Department of Malaysia. The results also show high concentration of pollutant particles reading during dru seasons as compared to that of rainy seasons. In general, the developed algorithm is proven to be able to predict particles distribution around emitted source with acceptable accuracy.

  5. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system.

    PubMed

    Xia, Fang; Qu, Liyin; Wang, Ting; Luo, Lili; Chen, Han; Dahlgren, Randy A; Zhang, Minghua; Mei, Kun; Huang, Hong

    2018-09-01

    Heavy metal pollution of aquatic environments in rapidly developing industrial regions is of considerable global concern due to its potential to cause serious harm to aquatic ecosystems and human health. This study assessed heavy metal contamination of sediments in a highly industrialized urban watershed of eastern China containing several historically unregulated manufacturing enterprises. Total concentrations and solid-phase fractionation of Cu, Zn, Pb, Cr and Cd were investigated for 39 river sediments using multivariate statistical analysis and geographically weighted regression (GWR) methods to quantitatively examine the relationship between land use and heavy metal pollution at the watershed scale. Results showed distinct spatial patterns of heavy metal contamination within the watershed, such as higher concentrations of Zn, Pb and Cd in the southwest and higher Cu concentration in the east, indicating links to specific pollution sources within the watershed. Correlation and PCA analyses revealed that Zn, Pb and Cd were dominantly contributed by anthropogenic activities; Cu originated from both industrial and agricultural sources; and Cr has been altered by recent pollution control strategies. The GWR model indicated that several heavy metal fractions were strongly correlated with industrial land proportion and this correlation varied with the level of industrialization as demonstrated by variations in local GWR R 2 values. This study provides important information for assessing heavy metal contaminated areas, identifying heavy metal pollutant sources, and developing regional-scale remediation strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Analysis of point source pollution and water environmental quality variation trends in the Nansi Lake basin from 2002 to 2012.

    PubMed

    Wang, Weiliang; Liu, Xiaohui; Wang, Yufan; Guo, Xiaochun; Lu, Shaoyong

    2016-03-01

    Based on the data analysis of the water environmental quality and economic development from 2002 to 2012 in the Nansi Lake basin, the correlation and change between the water environmental quality and economic development were studied. Results showed that the GDP and wastewater emissions of point source in the Nansi Lake basin had an average annual growth of 7.30 and 7.68 %, respectively, from 2002 to 2012. The emissions of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) had the average annual decrease of 7.69 and 6.79 % in 2012, respectively, compared to 2002. Basin water quality overall improved, reaching the Class III of the "Environmental quality standards for surface water (GB3838-2002)," in which the main reason was that sewage treatment rate increased gradually and was above 90 % in 2012 (an increase of 10 % compared to 2002) with the progress of pollution abatement technology and the implementation of relevant policies and regulations. The contribution of water environmental pollution was analyzed from related cities (Ji'ning, Zaozhuang, Heze). Results indicated that Ji'ning had the largest contribution to water pollution of the Nansi Lake basin, and the pollutant from domestic sources accounted for a higher percentage compared to industrial sources. The wastewater, COD, and NH3-N mainly came from mining and washing of coal, manufacture of raw chemical materials and chemical products, papermaking industry, and food processing industry. According to the water pollution characteristics of the Nansi Lake basin, the basin pollution treatment strategy and prevention and treatment system were dissected to provide a scientific basis for prevention and control of lakeside point source pollution along the Nansi Lake.

  7. Application of advanced characterization techniques to assess DOM treatability of micro-polluted and un-polluted drinking source waters in China.

    PubMed

    Wang, Dongsheng; Xing, Linan; Xie, Jiankun; Chow, Christopher W K; Xu, Zhizhen; Zhao, Yanmei; Drikas, Mary

    2010-09-01

    China has a very complex water supply system which relies on many rivers and lakes. As the population and economic development increases, water quality is greatly impacted by anthropogenic processes. This seriously affects the character of the dissolved organic matter (DOM) and imposes operational challenges to the water treatment facilities in terms of process optimization. The aim of this investigation was to compare selected drinking water sources (raw) with different DOM character, and the respective treated waters after coagulation, using simple organic characterization techniques to obtain a better understanding of the impact of source water quality on water treatment. Results from the analyses of selected water samples showed that the dissolved organic carbon (DOC) of polluted waters is generally higher than that of un-polluted waters, but the specific UV absorbance value has the opposite trend. After resolving the high performance size exclusion chromatography (HPSEC) peak components of source waters using peak fitting, the twelve waters studied can be divided into two main groups (micro-polluted and un-polluted) by using cluster analysis. The DOM removal efficiency (treatability) of these waters has been compared using four coagulants. For water sources allocated to the un-polluted group, traditional coagulants (Al(2)(SO(4))(3) and FeCl(3)) achieved better removal. High performance poly aluminum chloride, a new type of composite coagulant, performed very well and more efficiently for polluted waters. After peak fitting the HPSEC chromatogram of each of the treated waters, average removal efficiency of the profiles can be calculated and these correspond well with DOC and UV removal. This provides a convenient tool to assess coagulation removal and coagulant selection. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies

    NASA Astrophysics Data System (ADS)

    Duan, Jingchun; Tan, Jihua

    2013-08-01

    In recent years, heavy metal pollution accidents were reported frequently in China. The atmospheric heavy metal pollution is drawing all aspects of attention. This paper summarizes the recent research results from our studies and previous studies in recent years in China. The level, temporal variation, seasonal variation and size distribution of the heavy metals of atmospheric Lead(Pb), Vanadium(V), Manganese(Mn), Nickel(Ni), Chromium(Cr), Cadmium(Cd), Copper(Cu), Zinc(Zn) and Arsenic(As) were characterized in China. The emission characteristics and sources of atmospheric heavy metals and As in China were reviewed. Coal burning, iron and steel industry and vehicle emission are important sources in China. Control policies and effects in China were reviewed including emission standards, ambient air quality standards, phase out of leaded gasoline and so on, and further works for atmospheric heavy metals control were suggested. The comprehensive heavy metals pollution control measures and suggestions were put forward based on the summarization of the development and experience of the atmospheric heavy metal pollution control abroad.

  9. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include food sources for animals, water sources for plants, pollution sources...

  10. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    PubMed

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  11. Polluted Runoff: Nonpoint Source Pollution

    EPA Pesticide Factsheets

    Nonpoint Source (NPS) pollution is caused by rainfall or snowmelt moving over and through the ground, it picks up and carries natural and human-made pollutants, depositing them into lakes, rivers, wetlands, coastal waters and ground waters.

  12. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China.

    PubMed

    Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan

    2013-08-01

    Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.

  13. Conference on alternatives for pollution control from coal-fired low emission sources, Plzen, Czech Republic. Plzen Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies ofmore » assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  14. Spatial assessment of air quality patterns in Malaysia using multivariate analysis

    NASA Astrophysics Data System (ADS)

    Dominick, Doreena; Juahir, Hafizan; Latif, Mohd Talib; Zain, Sharifuddin M.; Aris, Ahmad Zaharin

    2012-12-01

    This study aims to investigate possible sources of air pollutants and the spatial patterns within the eight selected Malaysian air monitoring stations based on a two-year database (2008-2009). The multivariate analysis was applied on the dataset. It incorporated Hierarchical Agglomerative Cluster Analysis (HACA) to access the spatial patterns, Principal Component Analysis (PCA) to determine the major sources of the air pollution and Multiple Linear Regression (MLR) to assess the percentage contribution of each air pollutant. The HACA results grouped the eight monitoring stations into three different clusters, based on the characteristics of the air pollutants and meteorological parameters. The PCA analysis showed that the major sources of air pollution were emissions from motor vehicles, aircraft, industries and areas of high population density. The MLR analysis demonstrated that the main pollutant contributing to variability in the Air Pollutant Index (API) at all stations was particulate matter with a diameter of less than 10 μm (PM10). Further MLR analysis showed that the main air pollutant influencing the high concentration of PM10 was carbon monoxide (CO). This was due to combustion processes, particularly originating from motor vehicles. Meteorological factors such as ambient temperature, wind speed and humidity were also noted to influence the concentration of PM10.

  15. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    NASA Astrophysics Data System (ADS)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords: groundwater pollution, early warning, aquifer vulnerability, pollution load, pollution risk, ComGIS

  16. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment.

    PubMed

    Li, Yinghui; Huang, Shuaijin; Qu, Xuexin

    2017-10-27

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter "Reservoir Area"). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  17. A stress ecology framework for comprehensive risk assessment of diffuse pollution.

    PubMed

    van Straalen, Nico M; van Gestel, Cornelis A M

    2008-12-01

    Environmental pollution is traditionally classified as either localized or diffuse. Local pollution comes from a point source that emits a well-defined cocktail of chemicals, distributed in the environment in the form of a gradient around the source. Diffuse pollution comes from many sources, small and large, that cause an erratic distribution of chemicals, interacting with those from other sources into a complex mixture of low to moderate concentrations over a large area. There is no good method for ecological risk assessment of such types of pollution. We argue that effects of diffuse contamination in the field must be analysed in the wider framework of stress ecology. A multivariate approach can be applied to filter effects of contaminants from the many interacting factors at the ecosystem level. Four case studies are discussed (1) functional and structural properties of terrestrial model ecosystems, (2) physiological profiles of microbial communities, (3) detritivores in reedfield litter, and (4) benthic invertebrates in canal sediment. In each of these cases the data were analysed by multivariate statistics and associations between ecological variables and the levels of contamination were established. We argue that the stress ecology framework is an appropriate assessment instrument for discriminating effects of pollution from other anthropogenic disturbances and naturally varying factors.

  18. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  19. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  20. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  1. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  2. Acute effects of air pollutants on pulmonary function among students: a panel study in an isolated island.

    PubMed

    Yoda, Yoshiko; Takagi, Hiroshi; Wakamatsu, Junko; Ito, Takeshi; Nakatsubo, Ryouhei; Horie, Yosuke; Hiraki, Takatoshi; Shima, Masayuki

    2017-04-04

    Many epidemiological studies on the health effects of air pollutants have been carried out in regions with major sources such as factories and automobiles. However, the health effects of air pollutants in regions without major sources remain unclear. This study investigated the acute effects of ambient air pollution on pulmonary function among healthy students in an isolated island without major artificial sources of air pollutants. A panel study was conducted of 43 healthy subjects who attended a school in an isolated island in the Seto Inland Sea, Japan. We measured the forced expiratory volume in 1 s (FEV 1 ) and peak expiratory flow (PEF) every morning for about 1 month in May 2014. Ambient concentrations of particulate matter ≤ 2.5 μm in diameter (PM 2.5 ), particulate matter between 2.5 and 10 μm in diameter (PM 10-2.5 ), black carbon (BC), ozone (O 3 ), and nitrogen dioxide (NO 2 ) were measured. The associations between the concentrations of air pollutants and pulmonary function were analyzed using mixed-effects models. A decrease in FEV 1 was significantly associated with BC concentrations (-27.28 mL [95%confidence interval (CI):-54.10,-0.46] for an interquartile range (IQR) increase of 0.23 μg/m 3 ). The decrease in PEF was significantly associated with indoor O 3 concentrations (-8.03 L/min [95% CI:-13.02,-3.03] for an IQR increase of 11 ppb). Among subjects with a history of allergy, an increase in PM 2.5 concentrations was significantly associated with low FEV 1 . In subjects with a history of asthma, an inverse association between the indoor O 3 concentration and pulmonary function was observed. Our results demonstrate that increases in BC and O 3 concentrations have acute effects on the pulmonary function among students in an isolated island without major artificial sources of air pollutants.

  3. Risk Assessment of Pollution Emergencies in Water Source Areas of the Hanjiang-to-Weihe River Diversion Project

    NASA Astrophysics Data System (ADS)

    Liu, Luyao; Feng, Minquan

    2018-03-01

    [Objective] This study quantitatively evaluated risk probabilities of sudden water pollution accidents under the influence of risk sources, thus providing an important guarantee for risk source identification during water diversion from the Hanjiang River to the Weihe River. [Methods] The research used Bayesian networks to represent the correlation between accidental risk sources. It also adopted the sequential Monte Carlo algorithm to combine water quality simulation with state simulation of risk sources, thereby determining standard-exceeding probabilities of sudden water pollution accidents. [Results] When the upstream inflow was 138.15 m3/s and the average accident duration was 48 h, the probabilities were 0.0416 and 0.0056 separately. When the upstream inflow was 55.29 m3/s and the average accident duration was 48 h, the probabilities were 0.0225 and 0.0028 separately. [Conclusions] The research conducted a risk assessment on sudden water pollution accidents, thereby providing an important guarantee for the smooth implementation, operation, and water quality of the Hanjiang-to-Weihe River Diversion Project.

  4. An Analysis of Microbial Pollution in the Sinclair-Dyes Inlet Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Christopher W.; Cullinan, Valerie I.

    2005-09-21

    This assessment of fecal coliform sources and pathways in Sinclair and Dyes Inlets is part of the Project ENVironmental InVESTment (ENVVEST) being conducted by the Navy's Puget Sound Naval Shipyard and Intermediate Maintenance Facility in cooperation with the US Environmental Protection Agency, Washington State Department of Ecology, the Suquamish Tribe, Kitsap County, the City of Bremerton, the City of Port Orchard, and other local stakeholders. The goal of this study was to identify microbial pollution problems within the Sinclair-Dyes Inlet watershed and to provide a comprehensive assessment of fecal coliform (FC) contamination from all identifiable sources in the watershed. Thismore » study quantifies levels of contamination and estimated loadings from known sources within the watersheds and describes pollutant transport mechanisms found in the study area. In addition, the effectiveness of pollution prevention and mitigation measures currently in place within the Sinclair-Dyes Inlet watershed are discussed. This comprehensive study relies on historical data collected by several cooperating agencies, in addition to data collected during the study period from spring 2001 through summer 2005. This report is intended to provide the technical information needed to continue current water quality cleanup efforts and to help implement future efforts.« less

  5. Sources of Indoor Air Pollution and Respiratory Health in Preschool Children

    PubMed Central

    Fuentes-Leonarte, Virginia; Ballester, Ferran; Tenías, José Maria

    2009-01-01

    We carried out bibliographic searches in PubMed and Embase.com for the period from 1996 to 2008 with the aim of reviewing the scientific literature on the relationship between various sources of indoor air pollution and the respiratory health of children under the age of five. Those studies that included adjusted correlation measurements for the most important confounding variables and which had an adequate population size were considered to be more relevant. The results concerning the relationship between gas energy sources and children's respiratory health were heterogeneous. Indoor air pollution from biomass combustion in the poorest countries was found to be an important risk factor for lower respiratory tract infections. Solvents involved in redecorating, DYI work, painting, and so forth, were found to be related to an increased risk for general respiratory problems. The distribution of papers depending on the pollution source showed a clear relationship with life-style and the level of development. PMID:20168984

  6. A Statewide Nested Case–Control Study of Preterm Birth and Air Pollution by Source and Composition: California, 2001–2008

    PubMed Central

    Laurent, Olivier; Hu, Jianlin; Li, Lianfa; Kleeman, Michael J.; Bartell, Scott M.; Cockburn, Myles; Escobedo, Loraine; Wu, Jun

    2016-01-01

    Background: Preterm birth (PTB) has been associated with exposure to air pollution, but it is unclear whether effects might vary among air pollution sources and components. Objectives: We studied the relationships between PTB and exposure to different components of air pollution, including gases and particulate matter (PM) by size fraction, chemical composition, and sources. Methods: Fine and ultrafine PM (respectively, PM2.5 and PM0.1) by source and composition were modeled across California over 2000–2008. Measured PM2.5, nitrogen dioxide, and ozone concentrations were spatially interpolated using empirical Bayesian kriging. Primary traffic emissions at fine scale were modeled using CALINE4 and traffic indices. Data on maternal characteristics, pregnancies, and birth outcomes were obtained from birth certificates. Associations between PTB (n = 442,314) and air pollution exposures defined according to the maternal residence at birth were examined using a nested matched case–control approach. Analyses were adjusted for maternal age, race/ethnicity, education and neighborhood income. Results: Adjusted odds ratios for PTB in association with interquartile range (IQR) increases in average exposure during pregnancy were 1.133 (95% CI: 1.118, 1.148) for total PM2.5, 1.096 (95% CI: 1.085, 1.108) for ozone, and 1.079 (95% CI: 1.065, 1.093) for nitrogen dioxide. For primary PM, the strongest associations per IQR by source were estimated for onroad gasoline (9–11% increase), followed by onroad diesel (6–8%) and commercial meat cooking (4–7%). For PM2.5 composition, the strongest positive associations per IQR were estimated for nitrate, ammonium, and secondary organic aerosols (11–14%), followed by elemental and organic carbon (2–4%). Associations with local traffic emissions were positive only when analyses were restricted to births with residences geocoded at the tax parcel level. Conclusions: In our statewide nested case–control study population, exposures to both primary and secondary pollutants were associated with an increase in PTB. Citation: Laurent O, Hu J, Li L, Kleeman MJ, Bartell SM, Cockburn M, Escobedo L, Wu J. 2016. A statewide nested case–control study of preterm birth and air pollution by source and composition: California, 2001–2008. Environ Health Perspect 124:1479–1486; http://dx.doi.org/10.1289/ehp.1510133 PMID:26895492

  7. A Statewide Nested Case-Control Study of Preterm Birth and Air Pollution by Source and Composition: California, 2001-2008.

    PubMed

    Laurent, Olivier; Hu, Jianlin; Li, Lianfa; Kleeman, Michael J; Bartell, Scott M; Cockburn, Myles; Escobedo, Loraine; Wu, Jun

    2016-09-01

    Preterm birth (PTB) has been associated with exposure to air pollution, but it is unclear whether effects might vary among air pollution sources and components. We studied the relationships between PTB and exposure to different components of air pollution, including gases and particulate matter (PM) by size fraction, chemical composition, and sources. Fine and ultrafine PM (respectively, PM2.5 and PM0.1) by source and composition were modeled across California over 2000-2008. Measured PM2.5, nitrogen dioxide, and ozone concentrations were spatially interpolated using empirical Bayesian kriging. Primary traffic emissions at fine scale were modeled using CALINE4 and traffic indices. Data on maternal characteristics, pregnancies, and birth outcomes were obtained from birth certificates. Associations between PTB (n = 442,314) and air pollution exposures defined according to the maternal residence at birth were examined using a nested matched case-control approach. Analyses were adjusted for maternal age, race/ethnicity, education and neighborhood income. Adjusted odds ratios for PTB in association with interquartile range (IQR) increases in average exposure during pregnancy were 1.133 (95% CI: 1.118, 1.148) for total PM2.5, 1.096 (95% CI: 1.085, 1.108) for ozone, and 1.079 (95% CI: 1.065, 1.093) for nitrogen dioxide. For primary PM, the strongest associations per IQR by source were estimated for onroad gasoline (9-11% increase), followed by onroad diesel (6-8%) and commercial meat cooking (4-7%). For PM2.5 composition, the strongest positive associations per IQR were estimated for nitrate, ammonium, and secondary organic aerosols (11-14%), followed by elemental and organic carbon (2-4%). Associations with local traffic emissions were positive only when analyses were restricted to births with residences geocoded at the tax parcel level. In our statewide nested case-control study population, exposures to both primary and secondary pollutants were associated with an increase in PTB. Laurent O, Hu J, Li L, Kleeman MJ, Bartell SM, Cockburn M, Escobedo L, Wu J. 2016. A statewide nested case-control study of preterm birth and air pollution by source and composition: California, 2001-2008. Environ Health Perspect 124:1479-1486; http://dx.doi.org/10.1289/ehp.1510133.

  8. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    PubMed Central

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  9. Point source pollution and variability of nitrate concentrations in water from shallow aquifers

    NASA Astrophysics Data System (ADS)

    Nemčić-Jurec, Jasna; Jazbec, Anamarija

    2017-06-01

    Agriculture is one of the several major sources of nitrate pollution, and therefore the EU Nitrate Directive, designed to decrease pollution, has been implemented. Point sources like septic systems and broken sewage systems also contribute to water pollution. Pollution of groundwater by nitrate from 19 shallow wells was studied in a typical agricultural region, middle Podravina, in northwest Croatia. The concentration of nitrate ranged from <0.1 to 367 mg/l in water from wells, and 29.8 % of 253 total samples were above maximum acceptable value of 50 mg/l (MAV). Among regions R1-R6, there was no statistically significant difference in nitrate concentrations ( F = 1.98; p = 0.15) during the years 2002-2007. Average concentrations of nitrate in all 19 wells for all the analyzed years were between recommended limit value of 25 mg/l (RLV) and MAV except in 2002 (concentration was under RLV). The results of the repeated measures ANOVA showed statistically significant differences between the wells at the point source distance (proximity) of <10 m, compared to the wells at the point source distance of >20 m ( F = 10.6; p < 0.001). Average annual concentrations of nitrate during the years studied are not statistically different, but interaction between proximity and years is statistically significant ( F = 2.07; p = 0.04). Results of k-means clustering confirmed division into four clusters according to the pollution. Principal component analysis showed that there is only one significant factor, proximity, which explains 91.6 % of the total variability of nitrate. Differences in water quality were found as a result of different environmental factors. These results will contribute to the implementation of the Nitrate Directive in Croatia and the EU.

  10. Source sampling of particulate matter emissions from cotton harvesting - System field testing and emission factor development

    USDA-ARS?s Scientific Manuscript database

    Emission factors are used in the air pollution regulatory process to quantify the mass of pollutants emitted from a source. Accurate emission factors must be used in the air pollution regulatory process to ensure fair and appropriate regulation for all sources. Agricultural sources, including cotton...

  11. Identification of Cu’s sources in Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Li, Haixia; Ding, Jun; Zhang, Longlei; Li, Jiangmin

    2017-12-01

    Many marine bays have been polluted by Cu along with the rapid development of industry, economy and population size, and identification the sources of Cu is essential to environmental protection. This paper identified the sources of Cu in according to the horizontal distribution in Jiaozhou Bay during 1982-1986. Results showed that there were five Cu sources during study years including marine current, stream flow, island top, overland runoff and marine traffic, respectively. These findings were helpful information in decision-making of pollution control and environmental remediation practice.

  12. [Analysis of the quality of data issued from Beirut's hospitals in order to measure short-term health effects of air pollution].

    PubMed

    Mrad Nakhlé, M; Farah, W; Ziade, N; Abboud, M; Gerard, J; Zaarour, R; Saliba, N; Dabar, G; Abdel Massih, T; Zoghbi, A; Coussa-Koniski, M-L; Annesi-Maesano, I

    2013-12-01

    The effects of air pollution on human health have been the subject of much public health research. Several techniques and methods of analysis have been developed. Thus, Beirut Air Pollution and Health Effects (BAPHE) was designed to develop a methodology adapted to the context of the city of Beirut in order to quantify the short-term health effects of air pollution. The quality of data collected from emergency units was analyzed in order to properly estimate hospitalizations via these units. This study examined the process of selecting and validating health and pollution indicators. The different sources of data from emergency units were not correlated. BAPHE was therefore reoriented towards collecting health data from the emergency registry of each hospital. A pilot study determined the appropriate health indicators for BAPHE and created a classification methodology for data collection. In Lebanon, several studies have attempted to indirectly assess the impact of air pollution on health. They had limitations and weaknesses and offered no recommendations regarding the sources and quality of data. The present analysis will be useful for BAPHE and for planning further studies. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Environmental Research: Communication Studies and Information Sources.

    ERIC Educational Resources Information Center

    Ercegovac, Zorana

    1992-01-01

    Reviews literature on environmental information since 1986, with special emphasis on machine-readable sources as reported in the published literature. Highlights include a new model for studying environmental issues; environmental communication studies, including user studies; and environmental information sources, including pollution media and…

  14. The accumulation of heavy metals in agricultural land and the associated potential ecological risks in Shenzhen, China.

    PubMed

    Wu, Jiansheng; Song, Jing; Li, Weifeng; Zheng, Maokun

    2016-01-01

    Accumulation of heavy metals in agricultural land and their ecological risks are key issues in soil security studies. This study investigated the concentrations of six heavy metals--copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr) in Shenzhen's agricultural lands and examined the potential hazards and possible sources of these metals. Eighty-two samples from agricultural topsoil were collected. Potential ecological risk index was used to calculate the potential risk of heavy metals. Principal component analysis (PCA) was applied to explore pollution sources of the metals. Finally, Kriging was used to predict the spatial distribution of the metals' potential ecological risks. The concentrations of the heavy metals were higher than their background values. Most of them presented little potential ecological risk, except for the heavy metal cadmium (Cd). Four districts (Longgang, Longhua, Pingshan, and Dapeng) exhibited some degree of potential risk, which tended to have more industries and road networks. Three major sources of heavy metals included geochemical processes, industrial pollutants, and traffic pollution. The heavy metal Cd was the main contributor to the pollution in agricultural land during the study period. It also poses the potential hazard for the future. High potential risk is closely related to industrial pollution and transportation. Since the 1980s, the sources of heavy metals have evolved from parent rock weathering, erosion, degradation of organics, and mineralization to human disturbances resulting in chemical changes in the soil.

  15. An Integrated Risk Management Model for Source Water Protection Areas

    PubMed Central

    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien

    2012-01-01

    Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans. PMID:23202770

  16. [Estimation of nonpoint source pollutant loads and optimization of the best management practices (BMPs) in the Zhangweinan River basin].

    PubMed

    Xu, Hua-Shan; Xu, Zong-Xue; Liu, Pin

    2013-03-01

    One of the key techniques in establishing and implementing TMDL (total maximum daily load) is to utilize hydrological model to quantify non-point source pollutant loads, establish BMPs scenarios, reduce non-point source pollutant loads. Non-point source pollutant loads under different years (wet, normal and dry year) were estimated by using SWAT model in the Zhangweinan River basin, spatial distribution characteristics of non-point source pollutant loads were analyzed on the basis of the simulation result. During wet years, total nitrogen (TN) and total phosphorus (TP) accounted for 0.07% and 27.24% of the total non-point source pollutant loads, respectively. Spatially, agricultural and residential land with steep slope are the regions that contribute more non-point source pollutant loads in the basin. Compared to non-point source pollutant loads with those during the baseline period, 47 BMPs scenarios were set to simulate the reduction efficiency of different BMPs scenarios for 5 kinds of pollutants (organic nitrogen, organic phosphorus, nitrate nitrogen, dissolved phosphorus and mineral phosphorus) in 8 prior controlled subbasins. Constructing vegetation type ditch was optimized as the best measure to reduce TN and TP by comparing cost-effective relationship among different BMPs scenarios, and the costs of unit pollutant reduction are 16.11-151.28 yuan x kg(-1) for TN, and 100-862.77 yuan x kg(-1) for TP, which is the most cost-effective measure among the 47 BMPs scenarios. The results could provide a scientific basis and technical support for environmental protection and sustainable utilization of water resources in the Zhangweinan River basin.

  17. Australia’s first national level quantitative environmental justice assessment of industrial air pollution

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayajit; Green, Donna

    2014-04-01

    This study presents the first national level quantitative environmental justice assessment of industrial air pollution in Australia. Specifically, our analysis links the spatial distribution of sites and emissions associated with industrial pollution sources derived from the National Pollution Inventory, to Indigenous status and social disadvantage characteristics of communities derived from Australian Bureau of Statistics indicators. Our results reveal a clear national pattern of environmental injustice based on the locations of industrial pollution sources, as well as volume, and toxicity of air pollution released at these locations. Communities with the highest number of polluting sites, emission volume, and toxicity-weighted air emissions indicate significantly greater proportions of Indigenous population and higher levels of socio-economic disadvantage. The quantities and toxicities of industrial air pollution are particularly higher in communities with the lowest levels of educational attainment and occupational status. These findings emphasize the need for more detailed analysis in specific regions and communities where socially disadvantaged groups are disproportionately impacted by industrial air pollution. Our empirical findings also underscore the growing necessity to incorporate environmental justice considerations in environmental planning and policy-making in Australia.

  18. Locating Groundwater Pollution Source using Breakthrough Curve Characteristics and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Jain, A.; Srivastava, R.

    2005-12-01

    The identification of pollution sources in aquifers is an important area of research not only for the hydrologists but also for the local and Federal agencies and defense organizations. Once the data in terms of pollutant concentration measurements at observation wells become known, it is important to identify the polluting industry in order to implement punitive or remedial measures. Traditionally, hydrologists have relied on the conceptual methods for the identification of groundwater pollution sources. The problem of identification of groundwater pollution sources using the conceptual methods requires a thorough understanding of the groundwater flow and contaminant transport processes and inverse modeling procedures that are highly complex and difficult to implement. Recently, the soft computing techniques, such as artificial neural networks (ANNs) and genetic algorithms, have provided an attractive and easy to implement alternative to solve complex problems efficiently. Some researchers have used ANNs for the identification of pollution sources in aquifers. A major problem with most previous studies using ANNs has been the large size of the neural networks that are needed to model the inverse problem. The breakthrough curves at an observation well may consist of hundreds of concentration measurements, and presenting all of them to the input layer of an ANN not only results in humongous networks but also requires large amount of training and testing data sets to develop the ANN models. This paper presents the results of a study aimed at using certain characteristics of the breakthrough curves and ANNs for determining the distance of the pollution source from a given observation well. Two different neural network models are developed that differ in the manner of characterizing the breakthrough curves. The first ANN model uses five parameters, similar to the synthetic unit hydrograph parameters, to characterize the breakthrough curves. The five parameters employed are peak concentration, time to peak concentration, the widths of the breakthrough curves at 50% and 75% of the peak concentration, and the time base of the breakthrough curve. The second ANN model employs only the first four parameters leaving out the time base. The measurement of breakthrough curve at an observation well involves very high costs in sample collection at suitable time intervals and analysis for various contaminants. The receding portions of the breakthrough curves are normally very long and excluding the time base from modeling would result in considerable cost savings. The feed-forward multi-layer perceptron (MLP) type neural networks trained using the back-propagation algorithm, are employed in this study. The ANN models for the two approaches were developed using simulated data generated for conservative pollutant transport through a homogeneous aquifer. A new approach for ANN training using back-propagation is employed that considers two different error statistics to prevent over-training and under-training of the ANNs. The preliminary results indicate that the ANNs are able to identify the location of the pollution source very efficiently from both the methods of the breakthrough curves characterization.

  19. 40 CFR 421.195 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Indium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Indium... existing sources. The mass of wastewater pollutants in secondary indium process wastewater introduced into...

  20. 40 CFR 421.195 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Indium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Indium... existing sources. The mass of wastewater pollutants in secondary indium process wastewater introduced into...

  1. IDENTIFICATION OF SOURCES OF FECAL POLLUTION IN ENVIRONMENTAL WATERS

    EPA Science Inventory

    A number of Microbial Source Tracking (MST) methods are currently used to determine the origin of fecal pollution impacting environmental waters. MST is based on the assumption that given the appropriate method and indicator organism, the source of fecal microbial pollution can ...

  2. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim, U.S.; Jolly, R.

    1994-01-01

    Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations ofmore » spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.« less

  3. [Hygienic evaluation of transboundary pollution of the Ural River basin].

    PubMed

    Iskakov, A Zh; Lestsova, N A; Zasorin, B V; Boev, M V

    2009-01-01

    The anthropogenic pollution of the Ural River and its tributaries is the most important problem of the Ural-Caspian basin. Transboundary inflow from Kazakhstan to Russian is 30.9 km3/year. The border Ilek river pollution was hygienically evaluated and the contribution of pollution sources was ascertained, with the seasonal variations and hydrochemical background being kept in mind, from 2002 to 2007. The monitoring data on the content of priority pollutants of the surface waters of the basin of the Ilek River, a tributary of the Ural River, which come from the Republic of Kazakhstan, are given. Semiquantitative spectral estimation and the atomic absorption method were used to study the chemical composition of bottom sediments in the Ilek River and its tributaries. The magnitude and sources of influence of man-caused pollution on the quality of the river water were established.

  4. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-03-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.

  5. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-05-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant ( p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.

  6. Spatial and temporal variability of fine particle composition and source types in five cities of Connecticut and Massachusetts

    PubMed Central

    Lee, Hyung Joo; Gent, Janneane F.; Leaderer, Brian P.; Koutrakis, Petros

    2011-01-01

    To protect public health from PM2.5 air pollution, it is critical to identify the source types of PM2.5 mass and chemical components associated with higher risks of adverse health outcomes. Source apportionment modeling using Positive Matrix Factorization (PMF), was used to identify PM2.5 source types and quantify the source contributions to PM2.5 in five cities of Connecticut and Massachusetts. Spatial and temporal variability of PM2.5 mass, components and source contributions were investigated. PMF analysis identified five source types: regional pollution as traced by sulfur, motor vehicle, road dust, oil combustion and sea salt. The sulfur-related regional pollution and traffic source type were major contributors to PM2.5. Due to sparse ground-level PM2.5 monitoring sites, current epidemiological studies are susceptible to exposure measurement errors. The higher correlations in concentrations and source contributions between different locations suggest less spatial variability, resulting in less exposure measurement errors. When concentrations and/or contributions were compared to regional averages, correlations were generally higher than between-site correlations. This suggests that for assigning exposures for health effects studies, using regional average concentrations or contributions from several PM2.5 monitors is more reliable than using data from the nearest central monitor. PMID:21429560

  7. Lung cancer mortality in towns near paper, pulp and board industries in Spain: a point source pollution study

    PubMed Central

    Monge-Corella, Susana; García-Pérez, Javier; Aragonés, Nuria; Pollán, Marina; Pérez-Gómez, Beatriz; López-Abente, Gonzalo

    2008-01-01

    Background This study sought to ascertain whether there might be excess lung cancer mortality among the population residing in the vicinity of Spanish paper and board industries which report their emissions to the European Pollutant Emission Register (EPER). Methods This was an ecological study that modelled the Standardised Mortality Ratio (SMR) for lung cancer in 8073 Spanish towns over the period 1994–2003. Population exposure to industrial pollution was estimated on the basis of distance from town of residence to pollution source. An exploratory, near-versus-far analysis was conducted, using mixed Poisson regression models and an analysis of the effect of municipal proximity within a 50-kilometre radius of each of the 18 installations. Results Results varied for the different facilities. In two instances there was an increasing mortality gradient with proximity to the installation, though this was exclusively observed among men. Conclusion The study of cancer mortality in areas surrounding pollutant foci is a useful tool for environmental surveillance, and serves to highlight areas of interest susceptible to being investigated by ad hoc studies. Despite present limitations, recognition is therefore due to the advance represented by publication of the EPER and the study of pollutant foci. PMID:18702814

  8. Air Pollution Study in the Republic of Moldova Using Moss Biomonitoring Technique.

    PubMed

    Zinicovscaia, Inga; Hramco, Constantin; Duliu, Octavian G; Vergel, Konstantin; Culicov, Otilia A; Frontasyeva, Marina V; Duca, Gheorghe

    2017-02-01

    Moss biomonitoring using the species Hypnum cupressiforme (Hedw.) and Pleurocarpous sp was applied to study air pollution in the Republic of Moldova. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Cd, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb, Hf, Ta, W, Pb, Th, and U) were determined by instrumental epithermal neutron activation analysis and atomic absorption spectrometry. Principal component analysis was used to identify and characterize different pollution sources. Geographical distribution maps were prepared to point out the regions most affected by air pollution and relate this to potential sources of contamination. Median values of the elements studied were compared with data from the European moss biomonitoring program. The cities of Chisinau and Balti were determined to experience particular environmental stress.

  9. Traffic, Air Pollution, Minority and Socio-Economic Status: Addressing Inequities in Exposure and Risk

    PubMed Central

    Pratt, Gregory C.; Vadali, Monika L.; Kvale, Dorian L.; Ellickson, Kristie M.

    2015-01-01

    Higher levels of nearby traffic increase exposure to air pollution and adversely affect health outcomes. Populations with lower socio-economic status (SES) are particularly vulnerable to stressors like air pollution. We investigated cumulative exposures and risks from traffic and from MNRiskS-modeled air pollution in multiple source categories across demographic groups. Exposures and risks, especially from on-road sources, were higher than the mean for minorities and low SES populations and lower than the mean for white and high SES populations. Owning multiple vehicles and driving alone were linked to lower household exposures and risks. Those not owning a vehicle and walking or using transit had higher household exposures and risks. These results confirm for our study location that populations on the lower end of the socio-economic spectrum and minorities are disproportionately exposed to traffic and air pollution and at higher risk for adverse health outcomes. A major source of disparities appears to be the transportation infrastructure. Those outside the urban core had lower risks but drove more, while those living nearer the urban core tended to drive less but had higher exposures and risks from on-road sources. We suggest policy considerations for addressing these inequities. PMID:25996888

  10. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution.

    PubMed

    Zhu, Xianlei; Fan, Zhihua Tina; Wu, Xiangmei; Jung, Kyung Hwa; Ohman-Strickland, Pamela; Bonanno, Linda J; Lioy, Paul J

    2011-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ∼1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44-96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution.

  11. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution

    PubMed Central

    ZHU, XIANLEI; FAN, ZHIHUA (TINA); WU, XIANGMEI; JUNG, KYUNG HWA; OHMAN-STRICKLAND, PAMELA; BONANNO, LINDA J.; LIOY, PAUL J.

    2014-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ~1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44–96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution. PMID:21364704

  12. Contribution of Man – Made Activities to the Pollution of the Tigris within Mosul Area/IRAQ

    PubMed Central

    Al-Rawi, S. M.

    2005-01-01

    This paper presents an overall view of major sources that may lead to the pollution of the Tigris within Mosul city. A stretch exceeding 20kms in length is selected that represents the “sick” path of the river. Many sites along the studied stretch are likely to affect the river quality in some way or another. Samples from 40 sources sites are taken for quality analyses These sources – as huge as 400000 m3 a day – are characterized as (medium – strong) in composition. Such wastewaters with the pollutants they carry alter the river water quality rendering it unsuitable for beneficial uses. Such alterations – do leave –many negative consequences concerning human beings and aquatic life. It is found that domestic discharges are among the most important sources of pollution. Sanitary wastes are often discharged – untreated -into the Tigris. Other illegal practices such as in-house slaughtering add to the pollution as well. Industrial, tourist and institutional wastes put an additional burden on pollution of the river water quality. These wastes contain lead, chrome, and other heavy metals that may pose health risks. Wastewater treatment plants that exist in some sectors do not perform as they are expected. They need proper evaluation and rehabilitation. Eutrophication - a characteristic problem in lakes - finds an access to occur into the Tigris. This problem results from intensive use of detergents rich in nutrients (P&N compounds). In general, pollutants of different sources heavily affect the river water. Recovery and self purification of the river is estimated to occur at 40 km far from reference point. The paper concludes with the necessity of construction of a central treatment plant(s) or tackling the pollutants at their origin. The paper also stresses on importance of environmental education and awareness in order to combat pollution problems. PMID:16705824

  13. Annotated Bibliography of Law-Related Pollution Prevention Sources.

    ERIC Educational Resources Information Center

    Lynch, Holly; Murphy, Elaine

    This annotated bibliography of law-related pollution prevention sources was prepared by the National Pollution Prevention Center for Higher Education. Some topics of the items include waste reduction, hazardous wastes, risk reduction, environmental policy, pollution prevention, environmental protection, environmental leadership, environmental…

  14. EPA Air Pollution Control Cost Manual

    EPA Science Inventory

    EPA's Air Pollution Control Cost Manual provides guidance for the development of accurate and consistent costs for air pollution control devices. A long-standing document prepared by EPA, the Control Cost Manual focuses on point source and stationary area source air pollution con...

  15. ATLAS OF SOURCE EMISSION PARTICLES

    EPA Science Inventory

    An atlas of various source emission particles characterized by electron optical techniques has been compiled for use by air pollution investigators. The particles studied were emitted by mobile, stationary, and natural sources. Sources included automobiles, manufacturing operatio...

  16. Car indoor air pollution - analysis of potential sources

    PubMed Central

    2011-01-01

    The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources. Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future. PMID:22177291

  17. Source identification of hydrocarbon contaminants and their transportation over the Zonguldak shelf, Turkish Black Sea

    NASA Astrophysics Data System (ADS)

    Unlu, S.; Alpar, B.

    2009-04-01

    Under great anthropogenic pressure due to the substantial freshwater input from the surrounding industrial and agricultural areas, especially central and middle-Eastern Europe, the Black Sea basin is ranked among the most ecologically threatened water bodies of the world. Oil levels are unacceptable in many coastal areas perilously close to polluted harbors and many river mouths; the places presenting the highest levels of bio-diversity and having a high socio-economic importance due to human use of coastal resources. There are about sixty sources of pollution which resulted in "hot spots" having disastrous impacts on sensitive marine and coastal areas and needing immediate priorities for action. Beyond such land-based sources, trans-boundary pollution sources from Black Sea riparian countries, heavy maritime traffic, particularly involving petroleum transports and fishing boats, and the improper disposal of ballast and bilge waters and solid waste are also important marine sources of pollution. Found in fossil fuels such as Polycyclic Aromatic Hydrocarbons are generated by incomplete combustion of organic matter. In order to estimate their distribution in sediment and their sources, they were monitored from the bottom samples offshore the Zonguldak industry region, one of the most polluted spots in the Turkish Black Sea. There the budget of pollutants via rivers is not precisely known due to an evident lack of data on chemical and granulometric composition of the river runoff and their fluxes. Therefore the marine sediments, essential components of marine ecosystems, are very important in our estimating the degree of the damage given to the ecosystem by such inputs. Realization of the sources and transport of these contaminants will be a critical tool for future management of the Zonguldak industry region and its watershed. The sea bottom in study area is composed of mainly sand and silt mixtures with small amount of clay. Geochemical analyses have shown that oil contamination was dominated in near-shore sediments. Their spatial distributions over the shelf area make an estimation of possible pollution sources and their transportation routes possible. Sea port activities, industrial inputs and partly maritime petroleum transport are the main sources of pollutants. They are under the control of the longshore currents supplied with river alluvium and coastal abrasion material.

  18. Identifying avian sources of faecal contamination using sterol analysis.

    PubMed

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

  19. Indoor airborne particle sources and outdoor haze days effect in urban office areas in Guangzhou.

    PubMed

    Zhang, Manwen; Zhang, Sukun; Feng, Guixian; Su, Hui; Zhu, Fengzhi; Ren, Mingzhong; Cai, Zongwei

    2017-04-01

    To identify the sources of PM 2.5 pollutants in work environments and determine whether the air quality inside an office was affected by a change in outdoor pollution status, concurrent indoor and outdoor measurements of PM 2.5 were conducted at five different office spaces in the urban center of Guangzhou on low pollution days (non-episode days, NEDs), and high pollution days (haze episode days, EDs). Indoor-outdoor relationships between the PM 2.5 mass and its chemical constituents, which included water-soluble ions, carbonaceous species, and metal elements, were investigated. A principle component analysis (PCA) was performed to further confirm the relationship between the indoor and outdoor PM 2.5 pollution. The results reveal that (1) Printing and ETS (Environmental tobacco smoking) were found to be important office PM 2.5 sources and associated with the enrichment of SO 4 2- , OC, EC and some toxic metals indoors; (2) On EDs, serious outdoor pollution and higher air exchange rate greatly affected all studied office environments, masking the original differences of the indoor characteristics (3) Fresh air system could efficiently filter out most of the outside pollutants on both NEDs and EDs. Overall, the results of our study suggest that improper human behavior is associated with the day-to-day generation of indoor PM 2.5 levels and sporadic outdoor pollution events can lead to poor indoor air quality in urban office environments. Moreover, fresh air system has been experimentally proved with data as an effective way to improve the air quality in office. Copyright © 2016. Published by Elsevier Inc.

  20. Development of unauthorized airborne emission source identification procedure

    NASA Astrophysics Data System (ADS)

    Shtripling, L. O.; Bazhenov, V. V.; Varakina, N. S.; Kupriyanova, N. P.

    2018-01-01

    The paper presents the procedure for searching sources of unauthorized airborne emissions. To make reasonable regulation decisions on airborne pollutant emissions and to ensure the environmental safety of population, the procedure provides for the determination of a pollutant mass emission value from the source being the cause of high pollution level and the search of a previously unrecognized contamination source in a specified area. To determine the true value of mass emission from the source, the minimum of the mean-root-square mismatch criterion between the computed and measured pollutant concentration in the given location is used.

  1. Eutrophication assessment and management methodology of multiple pollution sources of a landscape lake in North China.

    PubMed

    Chen, Yanxi; Niu, Zhiguang; Zhang, Hongwei

    2013-06-01

    Landscape lakes in the city suffer high eutrophication risk because of their special characters and functions in the water circulation system. Using a landscape lake HMLA located in Tianjin City, North China, with a mixture of point source (PS) pollution and non-point source (NPS) pollution, we explored the methodology of Fluent and AQUATOX to simulate and predict the state of HMLA, and trophic index was used to assess the eutrophication state. Then, we use water compensation optimization and three scenarios to determine the optimal management methodology. Three scenarios include ecological restoration scenario, best management practices (BMPs) scenario, and a scenario combining both. Our results suggest that the maintenance of a healthy ecosystem with ecoremediation is necessary and the BMPs have a far-reaching effect on water reusing and NPS pollution control. This study has implications for eutrophication control and management under development for urbanization in China.

  2. 40 CFR 421.275 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... standards for existing sources. The mass of wastewater pollutants in primary rare earth metals process.... PSES for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for any 1...

  3. 40 CFR 421.275 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... standards for existing sources. The mass of wastewater pollutants in primary rare earth metals process.... PSES for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for any 1...

  4. 40 CFR 421.275 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... standards for existing sources. The mass of wastewater pollutants in primary rare earth metals process.... PSES for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for any 1...

  5. 40 CFR 421.275 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... standards for existing sources. The mass of wastewater pollutants in primary rare earth metals process.... PSES for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for any 1...

  6. 40 CFR 421.275 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth... standards for existing sources. The mass of wastewater pollutants in primary rare earth metals process.... PSES for the Primary Rare Earth Metals Subcategory Pollutant or pollutant property Maximum for any 1...

  7. Distributed source pollutant transport module based on BTOPMC: a case study of the Laixi River basin in the Sichuan province of southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Ao, Tianqi; Gusyev, Maksym; Ishidaira, Hiroshi; Magome, Jun; Takeuchi, Kuniyoshi

    2018-06-01

    Nitrogen and phosphorus concentrations in Chinese river catchments are contributed by agricultural non-point and industrial point sources causing deterioration of river water quality and degradation of ecosystem functioning for a long distance downstream. To evaluate these impacts, a distributed pollutant transport module was developed on the basis of BTOPMC (Block-Wise Use of TOPMODEL with Muskingum-Cunge Method), a grid-based distributed hydrological model, using the water flow routing process of BTOPMC as the carrier of pollutant transport due a direct runoff. The pollutant flux at each grid is simulated based on mass balance of pollutants within the grid and surface water transport of these pollutants occurs between grids in the direction of the water flow on daily time steps. The model was tested in the study area of the Lu county area situated in the Laixi River basin in the Sichuan province of southwest China. The simulated concentrations of nitrogen and phosphorus are compared with the available monthly data at several water quality stations. These results demonstrate a greater pollutant concentration in the beginning of high flow period indicating the main mechanism of pollution transport. From these preliminary results, we suggest that the distributed pollutant transport model can reflect the characteristics of the pollutant transport and reach the expected target.

  8. Impact of covariate models on the assessment of the air pollution-mortality association in a single- and multipollutant context.

    PubMed

    Sacks, Jason D; Ito, Kazuhiko; Wilson, William E; Neas, Lucas M

    2012-10-01

    With the advent of multicity studies, uniform statistical approaches have been developed to examine air pollution-mortality associations across cities. To assess the sensitivity of the air pollution-mortality association to different model specifications in a single and multipollutant context, the authors applied various regression models developed in previous multicity time-series studies of air pollution and mortality to data from Philadelphia, Pennsylvania (May 1992-September 1995). Single-pollutant analyses used daily cardiovascular mortality, fine particulate matter (particles with an aerodynamic diameter ≤2.5 µm; PM(2.5)), speciated PM(2.5), and gaseous pollutant data, while multipollutant analyses used source factors identified through principal component analysis. In single-pollutant analyses, risk estimates were relatively consistent across models for most PM(2.5) components and gaseous pollutants. However, risk estimates were inconsistent for ozone in all-year and warm-season analyses. Principal component analysis yielded factors with species associated with traffic, crustal material, residual oil, and coal. Risk estimates for these factors exhibited less sensitivity to alternative regression models compared with single-pollutant models. Factors associated with traffic and crustal material showed consistently positive associations in the warm season, while the coal combustion factor showed consistently positive associations in the cold season. Overall, mortality risk estimates examined using a source-oriented approach yielded more stable and precise risk estimates, compared with single-pollutant analyses.

  9. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water

    PubMed Central

    Staley, C.; Sadowsky, M. J.; Gyawali, P.; Sidhu, J. P. S.; Palmer, A.; Beale, D. J.; Toze, S.

    2015-01-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. PMID:26231650

  10. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control

    NASA Astrophysics Data System (ADS)

    Maringanti, Chetan; Chaubey, Indrajeet; Popp, Jennie

    2009-06-01

    Best management practices (BMPs) are effective in reducing the transport of agricultural nonpoint source pollutants to receiving water bodies. However, selection of BMPs for placement in a watershed requires optimization of the available resources to obtain maximum possible pollution reduction. In this study, an optimization methodology is developed to select and place BMPs in a watershed to provide solutions that are both economically and ecologically effective. This novel approach develops and utilizes a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The BMP tool replaces the dynamic linkage of the distributed parameter watershed model during optimization and therefore reduces the computation time considerably. Total pollutant load from the watershed, and net cost increase from the baseline, were the two objective functions minimized during the optimization process. The optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)), was developed and tested for nonpoint source pollution control in the L'Anguille River watershed located in eastern Arkansas. The optimized solutions provided a trade-off between the two objective functions for sediment, phosphorus, and nitrogen reduction. The results indicated that buffer strips were very effective in controlling the nonpoint source pollutants from leaving the croplands. The optimized BMP plans resulted in potential reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads, respectively, from the watershed.

  11. The Other Water Pollution

    ERIC Educational Resources Information Center

    Barton, Kathy

    1978-01-01

    Nonpoint source pollution, water pollution not released at one specific identifiable point, now accounts for 50 percent of the nation's water pollution problem. Runoff is the primary culprit and includes the following sources: agriculture, mining, hydrologic modifications, and urban runoff. Economics, legislation, practices, and management of this…

  12. Simultaneous Exposure to Multiple Air Pollutants Influences Alveolar Epithelial Cell Ion Transport

    EPA Science Inventory

    Purpose. Air pollution sources generally release multiple pollutants simultaneously and yet, research has historically focused on the source-to-health linkages of individual air pollutants. We recently showed that exposure of alveolar epithelial cells to a combination of particul...

  13. Low birth weight and air pollution in California: Which sources and components drive the risk?

    PubMed

    Laurent, Olivier; Hu, Jianlin; Li, Lianfa; Kleeman, Michael J; Bartell, Scott M; Cockburn, Myles; Escobedo, Loraine; Wu, Jun

    2016-01-01

    Intrauterine growth restriction has been associated with exposure to air pollution, but there is a need to clarify which sources and components are most likely responsible. This study investigated the associations between low birth weight (LBW, <2500g) in term born infants (≥37 gestational weeks) and air pollution by source and composition in California, over the period 2001-2008. Complementary exposure models were used: an empirical Bayesian kriging model for the interpolation of ambient pollutant measurements, a source-oriented chemical transport model (using California emission inventories) that estimated fine and ultrafine particulate matter (PM2.5 and PM0.1, respectively) mass concentrations (4km×4km) by source and composition, a line-source roadway dispersion model at fine resolution, and traffic index estimates. Birth weight was obtained from California birth certificate records. A case-cohort design was used. Five controls per term LBW case were randomly selected (without covariate matching or stratification) from among term births. The resulting datasets were analyzed by logistic regression with a random effect by hospital, using generalized additive mixed models adjusted for race/ethnicity, education, maternal age and household income. In total 72,632 singleton term LBW cases were included. Term LBW was positively and significantly associated with interpolated measurements of ozone but not total fine PM or nitrogen dioxide. No significant association was observed between term LBW and primary PM from all sources grouped together. A positive significant association was observed for secondary organic aerosols. Exposure to elemental carbon (EC), nitrates and ammonium were also positively and significantly associated with term LBW, but only for exposure during the third trimester of pregnancy. Significant positive associations were observed between term LBW risk and primary PM emitted by on-road gasoline and diesel or by commercial meat cooking sources. Primary PM from wood burning was inversely associated with term LBW. Significant positive associations were also observed between term LBW and ultrafine particle numbers modeled with the line-source roadway dispersion model, traffic density and proximity to roadways. This large study based on complementary exposure metrics suggests that not only primary pollution sources (traffic and commercial meat cooking) but also EC and secondary pollutants are risk factors for term LBW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    PubMed

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  15. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    PubMed Central

    Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-01-01

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929

  16. Variability of Springtime Transpacific Pollution Transport During 2000-2006: The INTEX-5 Mission in the Context of Previous Years

    NASA Technical Reports Server (NTRS)

    Pfister, G. G.; Emmons, L. K.; Edwards, D. P.; Arellano, A.; Sachse, G.; Campos, T.

    2010-01-01

    We analyze the transport of pollution across the Pacific during the NASA INTEX-B (Intercontinental Chemical Transport Experiment Part 8) campaign in spring 2006 and examine how this year compares to the time period for 2000 through 2006. In addition to aircraft measurements of carbon monoxide (CO) collected during INTEX-B, we include in this study multi-year satellite retrievals of CO from the Measurements of Pollution in the Troposphere (MOPITT) instrument and simulations from the chemistry transport model MOZART-4. Model tracers are used to examine the contributions of different source regions and source types to pollution levels over the Pacific. Additional modeling studies are performed to separate the impacts of inter-annual variability in meteorology and .dynamics from changes in source strength. interannual variability in the tropospheric CO burden over the Pacific and the US as estimated from the MOPITT data range up to 7% and a somewhat smaller estimate (5%) is derived from the model. When keeping the emissions in the model constant between years, the year-to-year changes are reduced (2%), but show that in addition to changes in emissions, variable meteorological conditions also impact transpacific pollution transport. We estimate that about 113 of the variability in the tropospheric CO loading over the contiguous US is explained by changes in emissions and about 213 by changes in meteorology and transport. Biomass burning sources are found to be a larger driver for inter-annual variability in the CO loading compared to fossil and biofuel sources or photochemical CO production even though their absolute contributions are smaller. Source contribution analysis shows that the aircraft sampling during INTEX-B was fairly representative of the larger scale region, but with a slight bias towards higher influence from Asian contributions.

  17. Storm water runoff for the Y-12 Plant and selected parking lots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, E.T.

    1996-01-01

    A comparison of storm water runoff from the Y-12 Plant and selected employee vehicle parking lots to various industry data is provided in this document. This work is an outgrowth of and part of the continuing Non-Point Source Pollution Elimination Project that was initiated in the late 1980s. This project seeks to identify area pollution sources and remediate these areas through the Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act (RCRA/CERCLA) process as managed by the Environmental Restoration Organization staff. This work is also driven by the Clean Water Act Section 402(p) which, in part, deals withmore » establishing a National Pollutant Discharge Elimination System (NPDES) permit for storm water discharges. Storm water data from events occurring in 1988 through 1991 were analyzed in two reports: Feasibility Study for the Best Management Practices to Control Area Source Pollution Derived from Parking Lots at the DOE Y-12 Plant, September 1992, and Feasibility Study of Best Management Practices for Non-Point Source Pollution Control at the Oak Ridge Y-12 Plant, February 1993. These data consisted of analysis of outfalls discharging to upper East Fork Poplar Creek (EFPC) within the confines of the Y-12 Plant (see Appendixes D and E). These reports identified the major characteristics of concern as copper, iron, lead, manganese, mercury, nitrate (as nitrogen), zinc, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliform, and aluminum. Specific sources of these contaminants were not identifiable because flows upstream of outfalls were not sampled. In general, many of these contaminants were a concern in many outfalls. Therefore, separate sampling exercises were executed to assist in identifying (or eliminating) specific suspected sources as areas of concern.« less

  18. The OCAPI collaborative platform: study of two particle pollution episodes in 2016 in Paris

    NASA Astrophysics Data System (ADS)

    Foret, Gilles; Michoud, Vincent; Formenti, Paola; Gratien, Aline; Beekmann, Matthias; Peinado, Florian; Favez, Olivier; Haeffelin, Martial; Dupont, Jean-Charles; Bodichon, Renaud; Gros, Valérie; Ghersi, Véronique; Meleux, Frédérik; Xuéref-Rémy, Irène

    2017-04-01

    Air pollution and its impacts are subject to an expanded interest since the middle of the 20th century, especially in urban areas which gathered an important part of emission sources. These polluted urban air masses are composed by a complex mixture of gases and aerosols coming from various emission sources (vehicular traffic, industries, residential heating, agricultural activities, natural sources) or chemical processes. To efficiently reduce this pollution and its impacts on population, it is important to understand its drivers, its sources and its impact on human health. To get some insights in Paris air pollution, a collaborative measurement platform called OCAPI ("Observation de la Composition Atmosphérique Parisienne de l'IPSL") has been built and implies several Parisian research laboratories of IPSL institute (CEREA, LSCE, LMD, LISA, LATMOS, LERMA and METIS) as well as public agencies and institutes in charge of Paris air pollution monitoring (AIRPARIF, INERIS). OCAPI platform aims at gathering skills and instruments of these laboratories to measure the composition and dynamics of Paris atmosphere. In this framework, multi-site measurements were performed during two intense particle pollution episodes which occurred in March 2016 and between November and December 2016. These two episodes were characterized by different meteorological conditions and different type of emission sources. Indeed, March episode was related to intense agricultural activities and high ammonium nitrate contribution to aerosol composition; while end of year episode was related to low wind speed, cold conditions and thin boundary layer which favoured the stagnation of locally emitted pollutants. This latter episode was characterized by large contribution of organics in aerosol composition. In this presentation, a study of these two episodes will be presented. We will first present the context and the OCAPI platform. Then, first results of dynamics and aerosol composition measurements will be shown to discuss the drivers of these two episodes. Finally conclusions will be drawn and perspectives will be given by presenting the objectives of the forthcoming EPPI project which will deal with the OCAPI platform measurement device.

  19. 40 CFR 428.96 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Pan, Dry Digestion, and Mechanical... pollutant properties, controlled by this section, which may be discharged to a publicly owned treatment works by a new point source subject to the provisions of this subpart: Pollutant or pollutant property...

  20. 40 CFR 421.186 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Germanium and Gallium Subcategory § 421.186 Pretreatment standards for new sources. Except as provided in 40... sources. The mass of wastewater pollutants in primary and secondary germanium and gallium process... Primary and Secondary Germanium and Gallium Subcategory Pollutant or pollutant property Maximum for any 1...

  1. 40 CFR 421.186 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Germanium and Gallium Subcategory § 421.186 Pretreatment standards for new sources. Except as provided in 40... sources. The mass of wastewater pollutants in primary and secondary germanium and gallium process... Primary and Secondary Germanium and Gallium Subcategory Pollutant or pollutant property Maximum for any 1...

  2. 40 CFR 421.186 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Germanium and Gallium Subcategory § 421.186 Pretreatment standards for new sources. Except as provided in 40... sources. The mass of wastewater pollutants in primary and secondary germanium and gallium process... Primary and Secondary Germanium and Gallium Subcategory Pollutant or pollutant property Maximum for any 1...

  3. 40 CFR 421.186 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Germanium and Gallium Subcategory § 421.186 Pretreatment standards for new sources. Except as provided in 40... sources. The mass of wastewater pollutants in primary and secondary germanium and gallium process... Primary and Secondary Germanium and Gallium Subcategory Pollutant or pollutant property Maximum for any 1...

  4. 40 CFR 421.186 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Germanium and Gallium Subcategory § 421.186 Pretreatment standards for new sources. Except as provided in 40... sources. The mass of wastewater pollutants in primary and secondary germanium and gallium process... Primary and Secondary Germanium and Gallium Subcategory Pollutant or pollutant property Maximum for any 1...

  5. 40 CFR 461.44 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Leclanche Subcategory § 461... existing sources listed below: (1) Subpart D—Foliar Battery Miscellaneous Wash—PSES. Pollutant or pollutant... 0.015 (b) There shall be no discharge allowance for process wastewater pollutants from any battery...

  6. 40 CFR 461.44 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Leclanche Subcategory § 461... existing sources listed below: (1) Subpart D—Foliar Battery Miscellaneous Wash—PSES. Pollutant or pollutant... 0.015 (b) There shall be no discharge allowance for process wastewater pollutants from any battery...

  7. A Genome-wide Trans-ethnic Interaction Study Links the PIGR-FCAMR Locus to Coronary Atherosclerosis Via Interactions Between Genetic Variants and Residential Exposure to Traffic

    EPA Science Inventory

    Air pollution is a worldwide contributor to cardiovascular disease mortality and morbidity. Traffic air pollution is a ubiquitous source of air pollution in developed nations, and is associated with multiple cardiovascular outcomes such as: coronary atherosclerosis, peripheral ar...

  8. Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study

    EPA Science Inventory

    The recent update on the US National Ambient Air Quality Standards (NAAQS) of the ground-level ozone (O3/ can benefit from a better understanding of its source contributions in different US regions during recent years. In the Hemispheric Transport of Air Pollution experiment phas...

  9. Multivariate analysis for stormwater quality characteristics identification from different urban surface types in macau.

    PubMed

    Huang, J; Du, P; Ao, C; Ho, M; Lei, M; Zhao, D; Wang, Z

    2007-12-01

    Statistical analysis of stormwater runoff data enables general identification of runoff characteristics. Six catchments with different urban surface type including roofs, roadway, park, and residential/commercial in Macau were selected for sampling and study during the period from June 2005 to September 2006. Based on univariate statistical analysis of data sampled, major pollutants discharged from different urban surface type were identified. As for iron roof runoff, Zn is the most significant pollutant. The major pollutants from urban roadway runoff are TSS and COD. Stormwater runoff from commercial/residential and Park catchments show high level of COD, TN, and TP concentration. Principal component analysis was further done for identification of linkages between stormwater quality and urban surface types. Two potential pollution sources were identified for study catchments with different urban surface types. The first one is referred as nutrients losses, soil losses and organic pollutants discharges, the second is related to heavy metals losses. PCA was proved to be a viable tool to explain the type of pollution sources and its mechanism for different urban surface type catchments.

  10. [GIS and scenario analysis aid to water pollution control planning of river basin].

    PubMed

    Wang, Shao-ping; Cheng, Sheng-tong; Jia, Hai-feng; Ou, Zhi-dan; Tan, Bin

    2004-07-01

    The forward and backward algorithms for watershed water pollution control planning were summarized in this paper as well as their advantages and shortages. The spatial databases of water environmental function region, pollution sources, monitoring sections and sewer outlets were built with ARCGIS8.1 as the platform in the case study of Ganjiang valley, Jiangxi province. Based on the principles of the forward algorithm, four scenarios were designed for the watershed pollution control. Under these scenarios, ten sets of planning schemes were generated to implement cascade pollution source control. The investment costs of sewage treatment for these schemes were estimated by means of a series of cost-effective functions; with pollution source prediction, the water quality was modeled with CSTR model for each planning scheme. The modeled results of different planning schemes were visualized through GIS to aid decision-making. With the results of investment cost and water quality attainment as decision-making accords and based on the analysis of the economic endurable capacity for water pollution control in Ganjiang river basin, two optimized schemes were proposed. The research shows that GIS technology and scenario analysis can provide a good guidance to the synthesis, integrity and sustainability aspects for river basin water quality planning.

  11. Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils.

    PubMed

    Epelde, Lur; Martín-Sánchez, Iker; González-Oreja, José A; Anza, Mikel; Gómez-Sagasti, María T; Garbisu, Carlos

    2012-09-01

    Soils are currently being degraded at an alarming rate due to increasing pressure from different sources of environmental degradation. Consequently, we carried out a 4-month microcosm experiment to measure the impact of different sources of environmental degradation (biodiversity loss, nitrogen deposition and climate change) on soil health in a non-polluted (non-degraded) and a heavily metal-polluted (degraded) soil, and to compare their responses. To this aim, we determined a variety of soil microbial properties with potential as bioindicators of soil health: basal respiration; β-glucosaminidase and protease activities; abundance (Q-PCR) of bacterial, fungal and chitinase genes; richness (PCR-DGGE) of fungal and chitinase genes. Non-polluted and metal-polluted soils showed different response microbial dynamics when subjected to sources of environmental degradation. The non-polluted soil appeared resilient to "biodiversity loss" and "climate change" treatments. The metal-polluted soil was probably already too severely affected by the presence of high levels of toxic metals to respond to other sources of stress. Our data together suggests that soil microbial activity and biomass parameters are more sensitive to the applied sources of environmental degradation, showing immediate responses of greater magnitude, while soil microbial diversity parameters do not show such variations. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh.

    PubMed

    Bhuiyan, Mohammad A H; Islam, M A; Dampare, Samuel B; Parvez, Lutfar; Suzuki, Shigeyuki

    2010-07-15

    An integrated approach of pollution evaluation indices, principal component analysis (PCA) and cluster analysis (CA) was employed to evaluate the intensity and sources of pollution in irrigation and drinking water systems of northwestern Bangladesh. Temperature, BOD, chemical oxygen demand (COD), Mn, Fe, Co, Ni, Cu and Pb levels in most of the water samples exceed the Bangladesh and international standards. The heavy metal pollution index (HPI) and degree of contamination (C(d)) yield different results despite significant correlations between them. The heavy metal evaluation index (HEI) shows strong correlations with HPI and C(d), and gives a better assessment of pollution levels. Modifications to the existing HPI and C(d) schemes show comparable results with HEI, and indicate that about 55% of the mine drainage/irrigation waters and 50% of the groundwaters are moderately to highly contaminated. The CA, PCA and pollution indices suggest that the mine drainage water (DW) is contaminated by anthropogenic (mining operation and agrogenic) sources, and the proximal parts are more contaminated than the distal part. The groundwater system in the vicinity of the coal mine site is also heavily polluted by anthropogenic sources. The pollution status of irrigation and drinking water systems in the study area are of great environmental and health concerns. 2010 Elsevier B.V. All rights reserved.

  13. 40 CFR 430.45 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Dissolving Sulfite Subcategory... dissolving sulfite pulp facilities where nitration grade pulp is produced] Pollutant or pollutant property Kg... dissolving sulfite pulp facilities where viscose grade pulp is produced] Pollutant or pollutant property Kg...

  14. CHARACTERIZATION OF INDOOR AND OUTDOOR AIR POLLUTION EXPOSURES AND SOURCES

    EPA Science Inventory

    Human exposures to indoor and outdoor pollutants vary depending on the sources and concentrations of pollutants as well as human behavioral factors that determine the extent of an individual's contact with indoor or outdoor pollutants. In general, the older populations spend more...

  15. Determination of Spatial Distribution of Air Pollution by Dye Laser Measurement of Differential Absorption of Elastic Backscatter

    NASA Technical Reports Server (NTRS)

    Ahmed, S. A.; Gergely, J. S.

    1973-01-01

    This paper presents the results of an analytical study of a lidar system which uses tunable organic dye lasers to accurately determine spatial distribution of molecular air pollutants. Also described will be experimental work to date on simultaneous multiwavelength output dye laser sources for this system. Basically the scheme determines the concentration of air pollutants by measuring the differential absorption of an (at least) two wavelength lidar signal elastically backscattered by the atmosphere. Only relative measurements of the backscattered intensity at each of the two wavelengths, one on and one off the resonance absorption of the pollutant in question, are required. The various parameters of the scheme are examined and the component elements required for a system of this type discussed, with emphasis on the dye laser source. Potential advantages of simultaneous multiwavelength outputs are described. The use of correlation spectroscopy in this context is examined. Comparisons are also made for the use of infrared probing wavelengths and sources instead of dye lasers. Estimates of the sensitivity and accuracy of a practical dye laser system of this type, made for specific pollutants, snow it to have inherent advantages over other schemes for determining pollutant spatial distribution.

  16. Indoor air quality of houses located in the urban environment of Agra, India.

    PubMed

    Taneja, Ajay; Saini, Renuka; Masih, Amit

    2008-10-01

    Increased concern over the adverse health effects of air pollution has highlighted the need for air-pollution measurements, especially in urban areas, where many sources of air pollutants are normally monitored outdoors as part of obligations under the National Air Quality Strategies. Very little is known about air pollution indoors. In fact, the largest exposure to health-damaging indoor pollution probably occurs in the developing world, not in households, schools, and offices of developed countries where most research and control efforts have been focused to date. As a result much of the health impacts from air pollution worldwide seem to occur among the poorest and most vulnerable populations. The authors in their earlier studies have confirmed the importance of ambient air in determining the quality of air indoors. In this study an observation of air quality indoors and outdoors of domestic homes located in an urban environment from October 2004 to December 2005 in Agra, north central India, is performed. The purpose of this study was to characterize the indoor/outdoor (I/O) relationship of airborne pollutants and recognize their probable source in all three seasons, that is, winter, summer, and rainy season. Concentrations of SO(2), NO(2), CO(2), Cl(2), H(2)S, NH(3), RSPM, and PAH were monitored simultaneously and I/O ratios were calculated. In order to investigate the effect of seasonality on indoor and ambient air quality, winter to summer and winter to monsoon average ratios were calculated. It is apparent that there is a general pattern of increasing levels from monsoon to summer to winter, and similarly from outdoor to indoor air. Regressions analysis had been done to further investigate the influence of outdoor air-pollutant concentrations on indoor concentrations. The most probable categories of sources for these pollutants have been identified by using principal-component analysis. Indoor air pollution is a complex function of energy housing and behavioral factors. On the basis of this study and observations, some interventions are also suggested.

  17. Steady-state solution of the semi-empirical diffusion equation for area sources. [air pollution studies

    NASA Technical Reports Server (NTRS)

    Lebedeff, S. A.; Hameed, S.

    1975-01-01

    The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.

  18. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    PubMed Central

    Huang, Shuaijin; Qu, Xuexin

    2017-01-01

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area. PMID:29077006

  19. Modeling urban air pollution in Budapest using WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Kovács, Attila; Leelőssy, Ádám; Lagzi, István; Mészáros, Róbert

    2017-04-01

    Air pollution is a major problem for urban areas since the industrial revolution, including Budapest, the capital and largest city of Hungary. The main anthropogenic sources of air pollutants are industry, traffic and residential heating. In this study, we investigated the contribution of major industrial point sources to the urban air pollution in Budapest. We used the WRF (Weather Research and Forecasting) nonhydrostatic mesoscale numerical weather prediction system online coupled with chemistry (WRF-Chem, version 3.6).The model was configured with three nested domains with grid spacings of 15, 5 and 1 km, representing Central Europe, the Carpathian Basin and Budapest with its surrounding area. Emission data was obtained from the National Environmental Information System. The point source emissions were summed in their respective cells in the second nested domain according to latitude-longitude coordinates. The main examined air pollutants were carbon monoxide (CO) and nitrogen oxides (NOx), from which the secondary compound, ozone (O3) forms through chemical reactions. Simulations were performed under different weather conditions and compared to observations from the automatic monitoring site of the Hungarian Air Quality Network. Our results show that the industrial emissions have a relatively weak role in the urban background air pollution, confirming the effect of industrial developments and regulations in the recent decades. However, a few significant industrial sources and their impact area has been demonstrated.

  20. GIS-based groundwater vulnerability modelling: A case study of the Witbank, Ermelo and Highveld Coalfields in South Africa

    NASA Astrophysics Data System (ADS)

    Sakala, E.; Fourie, F.; Gomo, M.; Coetzee, H.

    2018-01-01

    In the last 20 years, the popular mineral systems approach has been used successfully for the exploration of various mineral commodities at various scales owing to its scientific soundness, cost effectiveness and simplicity in mapping the critical processes required for the formation of deposits. In the present study this approach was modified for the assessment of groundwater vulnerability. In terms of the modified approach, water drives the pollution migration processes, with various analogies having been derived from the mineral systems approach. The modified approach is illustrated here by the discussion of a case study of acid mine drainage (AMD) pollution in the Witbank, Ermelo and Highveld coalfields of the Mpumalanga and KwaZulu-Natal Provinces in South Africa. Many AMD cases have been reported in these provinces in recent years and are a cause of concern for local municipalities, mining and environmental agencies. In the Witbank, Ermelo and Highveld coalfields, several areas have been mined out while mining has not yet started in others, hence the need to identify groundwater regions prone to AMD pollution in order to avoid further impacts on the groundwater resources. A knowledge-based fuzzy expert system was built using vulnerability factors (energy sources, ligands sources, pollutant sources, transportation pathways and traps) to generate a groundwater vulnerability model of the coalfields. Highly vulnerable areas were identified in Witbank coalfield and the eastern part of the Ermelo coalfield which are characterised by the presence of AMD sources, good subsurface transport coupled with poor AMD pollution trapping properties. The results from the analysis indicate significant correlations between model values and both groundwater sulphate concentrations as well as pH. This shows that the proposed approach can indeed be used as an alternative to traditional methods of groundwater vulnerability assessment. The methodology only considers the AMD pollution attenuation and migration at a regional scale and does not account for local-scale sources of pollution and attenuation. Further research to refine the approach may include the incorporation of groundwater flow direction, rock-pollution reaction time, and temporal datasets for the future prediction of groundwater vulnerability. The approach may be applied to other coalfields to assess its robustness to changing hydrogeological conditions.

  1. Geochemical assessment of heavy metals pollution in surface sediments of Vellar and Coleroon estuaries, southeast coast of India.

    PubMed

    Nethaji, S; Kalaivanan, R; Arya Viswam; Jayaprakash, M

    2017-02-15

    Surface sediments were collected from Vellar and Coleroon estuaries for determine sediment texture, calcium carbonate, organic matter and heavy metals. Pollution indices such as pollution load index (PLI), contamination factor (CF), enrichment factor (EF) and geo-accumulation index (I geo ) were done for this study to know the level of heavy metals pollution in the estuarine ecosystem. Pearson correlation matrix and factor were used to assess the relationship and source of heavy metals in the estuarine sediments. The results of PLI values reveal that the study area was polluted by all the heavy metals. The calculated values of CF and I geo followed the decreasing order Cu>Ni>Pb>Co>Cr>Zn>Mn>Fe and illustrate that Cu, Ni and Pb are contaminated due to anthropogenic sources in both estuaries. Correlation and factor analysis suggest that FeMn oxyhydroxides, organic matter and fine particles are responsible for high concentration of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Traditional and Host-Associated Fecal Indicator Bacterial Patterns in Southern California Watersheds: Field Source Identification Studies and Laboratory Microcosms Investigating Presence and Persistence in Water and Sediments

    NASA Astrophysics Data System (ADS)

    Mika, Kathryn Beth

    Overall, recreational beach water quality remains an issue of concern in Southern California and across the globe. Many factors come into play when determining water quality, including physical issues such as the myriad sources that contribute pollution to the site and financial and political issues that control the way water quality is monitored and determined. Current national regulations require the monitoring of fecal indicator bacteria in order to determine recreational water quality. However, it is also important to identify biological and geographical sources of pollution to consistently impaired locations. A commonly applied approach to meet the goals of source identification is to sample sites that have been high in FIB for further study. A tiered approach such as this, however, assumes a correlation between FIB and the sources of interest in the watershed. The research described in this dissertation tests this assumption in two Southern California watersheds, Santa Monica Canyon and Ventura Harbor. In both cases, a tiered approach to sampling using FIB as a first tier to guide sampling would have failed to identify sources of human fecal pollution (as identified by the presence of the human-associated Bacteroides marker HF183). Every watershed is a distinct environment that has different potential sources of bacteria and many factors contributing to the persistence of the bacteria. Rather than attempting to apply an indicator that has worked as a first tier in other watersheds, it would be better to have as a first tier an in-depth study of the watershed using historical data or local experts to provide information on the most likely sources of pollution in the watershed. Using this information it would be possible to design a study using FIB and one or more source-associated parameters to identify specific sources of pollution in the watershed. In addition, sampling FIB and other parameters such as HF183 allow the application of other microbial source tracking tools including indicator ratios and detection frequencies. Source identification studies do not necessarily have to be long-term to identify consistent sources of pollution. For example, within the first four months of sampling at Ventura, the increased frequency of detection of HF183 at the Marina Dock sample location was apparent, and a dry weather influx of HF183 was seen in the Keys channels. In addition to the many sources of FIB to the environment such as storm drains, leaking sewers, and wildlife, there are important environmental reservoirs such as sand and seaweed that can foster FIB growth and persistence in the environment. As such, it is important to understand the effect of different factors on the ability of bacteria to survive and persist in these reservoirs. Microcosm experiments conducted during the course of this dissertation research found that in dry beach sand (0.1% moisture), the addition of moisture was detrimental to the survival of the indicators studied (General Bacteroidales, E. coli, and enterococci). While increased moisture was not always detrimental to bacterial survival, these results point to the ability of bacteria to persist for long periods of time in beach environments under in-situ conditions (including dry sand). These findings point to the importance of understanding the behavior of indicator bacteria populations that have evolved to survive in environmental conditions so that their potential impact on overlying or adjacent water quality can be better understood. In summation, results from this research point to the importance of selecting indicators and sample locations that are most relevant to watershed concerns rather than using a first tier such as FIB to preferentially select sites for further analysis. Measuring a marker for human fecal pollution in both watershed studies provided useful information for potential human inputs that would have been missed if sites were chosen based on high FIB levels. In addition it is very important to understand the contribution of different reservoirs, such as sand, in the study area to the observed microbial pollution. Overall, these results point to the need for further examination of the ability of bacteria to survive under various environmental conditions in both water and sand, using both environmental microbial populations and populations from likely sources such as human sewage.

  3. 77 FR 65135 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    .... On February 12, 2010, the American Chemistry Council and the Society of Chemical Manufacturers and... National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources (CMAS) that was...

  4. 75 FR 77760 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    .... 40 CFR 63.11494(e). On February 12, 2010, the American Chemistry Council and the Society of Chemical... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Hazardous Air Pollutants for Chemical Manufacturing Area Sources. Among the provisions that EPA is...

  5. Air Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  6. 40 CFR 464.15 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Aluminum Casting... existing sources. (a) Casting Cleaning Operations. PSES Pollutant or pollutant property Maximum for any 1....0771 0.0421 Lead (T) 0.0791 0.039 Zinc (T) 0.114 0.0431 (b) Casting Quench Operation. PSES Pollutant or...

  7. Air Pollution Manual, Part 1--Evaluation. Second Edition.

    ERIC Educational Resources Information Center

    Giever, Paul M., Ed.

    Due to the great increase in technical knowledge and improvement in procedures, this second edition has been prepared to update existing information. Air pollution legislation is reviewed. Sources of air pollution are examined extensively. They are treated in terms of natural sources, man-made sources, metropolitan regional emissions, emission…

  8. SIMULATION COASTAL PLAIN STREAM FISH COMMUNITY RESPONSE TO NONPOINT SOURCE POLLUTION USING LINKED HYDROLOGIC-ECOLOGICAL MODELS

    EPA Science Inventory

    Nonpoint source pollution is the primary stress in many streams. Characteristic declines in stream fish communities are recognized in streams influenced by nonpoint source pollution, but the processes by which these declines occur are not well understood. Here, predicted time s...

  9. Environmental assessment of mining industry solid pollution in the mercurial district of Azzaba, northeast Algeria.

    PubMed

    Seklaoui, M'hamed; Boutaleb, Abdelhak; Benali, Hanafi; Alligui, Fadila; Prochaska, Walter

    2016-11-01

    To date, there have been few detailed studies regarding the impact of mining and metallogenic activities on solid fractions in the Azzaba mercurial district (northeast Algeria) despite its importance and global similarity with large Hg mines. To assess the degree, distribution, and sources of pollution, a physical inventory of apparent pollution was developed, and several samples of mining waste, process waste, sediment, and soil were collected on regional and local scales to determine the concentration of Hg and other metals according to their existing mineralogical association. Several physico-chemical parameters that are known to influence the pollution distribution are realized. The extremely high concentrations of all metals exceed all norms and predominantly characterize the metallurgic and mining areas; the metal concentrations significantly decrease at significant low distances from these sources. The geo-accumulation index, which is the most realistic assessment method, demonstrates that soils and sediments near waste dumps and abandoned Hg mines are extremely polluted by all analyzed metals. The pollution by these metals decreases significantly with distance, which indicates a limited dispersion. The results of a clustering analysis and an integrated pollution index suggest that waste dumps, which are composed of calcine and condensation wastes, are the main source of pollution. Correlations and principal component analysis reveal the important role of hosting carbonate rocks in limiting pollution and differentiating calcine wastes from condensation waste, which has an extremely high Hg concentration (˃1 %).

  10. Investigation of tracer emission and transport in GEOS-5 during ARCTAS

    NASA Astrophysics Data System (ADS)

    Bian, H.; Chin, M.; Kawa, S. R.; Colarco, P. R.; Nielsen, E.; Pawson, S.; Kucsera, T.; da Silva, A.; Chu, A. D.

    2009-12-01

    We examine the emission and transport of trace gases and their impact on the Arctic environment during two ARCTAS flights. One captures Asian anthropogenic pollution and one focuses on the impact of biomass burning. Three approaches are used in our study. First, the comparison of GEOS5 CO and aerosol with observations from the two ARCTAS flights provides evaluation of the model’s sources, sinks, chemistry, and transport. Second, backward trajectories from the aircraft measurements trace the pollutant samples to their source regions and forward trajectories applied to the emissions at the pollutant origin target the final destination of the pollutant. Third, a high meridonal index (HMI) approach, which emphasizes the part of a blocking where the jet stream curves northwards, will be used to link the long-range pollutant transport from northern hemispheric mid-latitudes to the Arctic region.

  11. 40 CFR 428.95 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mechanical Reclaimed Rubber Subcategory § 428.95 Standards of performance for new sources. (a) The following standards of performance establish the quantity or quality of pollutants or pollutant properties, controlled... or quality of pollutants or pollutant properties, controlled by this section and attributable to pan...

  12. ESTIMATING HEALTH EFFECTS FROM EXPOSURES TO OUTDOOR AND INDOOR SOURCES OF AIR POLLUTION

    EPA Science Inventory

    Individuals are exposed to wide variety of pollutants in various indoor and outdoor microenvironments during the course of a typical day. Sources of pollution in various indoor and outdoor locations produce particulate matter (PM) and gaseous pollutants with different physical an...

  13. 40 CFR 421.184 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Secondary Germanium and Gallium Subcategory § 421.184 Standards of performance for new sources. Any new... liquor. NSPS for the Primary and Secondary Germanium and Gallium Subcategory Pollutant or pollutant... air pollution control. NSPS for the Primary and Secondary Germanium and Gallium Subcategory Pollutant...

  14. 40 CFR 421.184 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Secondary Germanium and Gallium Subcategory § 421.184 Standards of performance for new sources. Any new... liquor. NSPS for the Primary and Secondary Germanium and Gallium Subcategory Pollutant or pollutant... air pollution control. NSPS for the Primary and Secondary Germanium and Gallium Subcategory Pollutant...

  15. 40 CFR 421.184 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Secondary Germanium and Gallium Subcategory § 421.184 Standards of performance for new sources. Any new... liquor. NSPS for the Primary and Secondary Germanium and Gallium Subcategory Pollutant or pollutant... air pollution control. NSPS for the Primary and Secondary Germanium and Gallium Subcategory Pollutant...

  16. 40 CFR 421.184 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Secondary Germanium and Gallium Subcategory § 421.184 Standards of performance for new sources. Any new... liquor. NSPS for the Primary and Secondary Germanium and Gallium Subcategory Pollutant or pollutant... air pollution control. NSPS for the Primary and Secondary Germanium and Gallium Subcategory Pollutant...

  17. 40 CFR 421.184 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Secondary Germanium and Gallium Subcategory § 421.184 Standards of performance for new sources. Any new... liquor. NSPS for the Primary and Secondary Germanium and Gallium Subcategory Pollutant or pollutant... air pollution control. NSPS for the Primary and Secondary Germanium and Gallium Subcategory Pollutant...

  18. 40 CFR 421.86 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Zinc Subcategory § 421... pollutants in primary zinc process wastewaters introduced into a POTW shall not exceed the following values: (a) Subpart H—Zinc Reduction Furnace Wet Air Pollution Control. PSNS Pollutant or pollutant property...

  19. The Sources of Air Pollution and Their Control.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  20. 40 CFR 428.76 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to this subpart that introduces process wastewater pollutants into a publicly owned treatment works... this section. (a) The following pretreatment standard establishes the quantity or quality of pollutants... treatment works by a new point source subject to the provisions of this subpart: Pollutant or pollutant...

  1. 40 CFR 428.76 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to this subpart that introduces process wastewater pollutants into a publicly owned treatment works... this section. (a) The following pretreatment standard establishes the quantity or quality of pollutants... treatment works by a new point source subject to the provisions of this subpart: Pollutant or pollutant...

  2. 40 CFR 428.106 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... section. (a) The following pretreatment standard establishes the quantity or quality of pollutants or... works by a new point source subject to the provisions of this subpart: Pollutant or pollutant property...

  3. 40 CFR 428.106 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... section. (a) The following pretreatment standard establishes the quantity or quality of pollutants or... works by a new point source subject to the provisions of this subpart: Pollutant or pollutant property...

  4. 40 CFR 428.56 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to this subpart that introduces process wastewater pollutants into a publicly owned treatment works... this section. (a) The following pretreatment standard establishes the quantity or quality of pollutants... treatment works by a new point source subject to the provisions of this subpart: Pollutant or pollutant...

  5. 40 CFR 428.56 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to this subpart that introduces process wastewater pollutants into a publicly owned treatment works... this section. (a) The following pretreatment standard establishes the quantity or quality of pollutants... treatment works by a new point source subject to the provisions of this subpart: Pollutant or pollutant...

  6. Water Pollution: Monitoring the Source.

    ERIC Educational Resources Information Center

    Wilkes, James W.

    1980-01-01

    Described is an advanced biology class project involving study of the effects of organic pollution on an aquatic ecosystem from an sewage treatment plant overflow to evaluate the chemical quality and biological activity of the river water. (DS)

  7. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    PubMed

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Groundwater Pollution and Vulnerability Assessment.

    PubMed

    Kurwadkar, Sudarshan

    2017-10-01

    Groundwater is a critical resource that serve as a source of drinking water to large human population and, provide long-term water for irrigation purposes. In recent years; however, this precious resource being increasingly threatened, due to natural and anthropogenic activities. A variety of contaminants of emerging concern such as pharmaceuticals and personal care products, perfluorinated compounds, endocrine disruptors, and biological agents detected in the groundwater sources of both developing and developed nations. In this review paper, various studies have been included that documented instances of groundwater pollution and vulnerability to emerging contaminants of concern, pesticides, heavy metals, and leaching potential of various organic and inorganic contaminants from poorly managed residual waste products (biosolids, landfills, latrines, and septic tanks etc.). Understanding vulnerability of groundwater to pollution is critical to maintain the integrity of groundwater. A section on managed artificial recharge studies is included to highlight the sustainable approaches to groundwater conservation, replenishment and sustainability. This review paper is the synthesis of studies published in last one year that either documented the pollution problems or evaluated the vulnerability of groundwater pollution.

  9. Exposure to Diesel Exhaust Enhances the Generation of Vascular Microparticles

    EPA Science Inventory

    Introduction: In the study of the health impacts of traffic-related air pollution, diesel exhaust is a pollutant of particular interest, since it is a major source of particulate matter (PM). Epidemiological studies associate exposure to ambient levels of PM with cardiovascular m...

  10. Use of Oil Palm Waste as a Renewable Energy Source and Its Impact on Reduction of Air Pollution in Context of Malaysia

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; P, Kumaran; M, Jayakumar

    2013-06-01

    One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.

  11. 75 FR 9647 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ...EPA is promulgating national emission standards for hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion engines that either are located at area sources of hazardous air pollutant emissions or that have a site rating of less than or equal to 500 brake horsepower and are located at major sources of hazardous air pollutant emissions. In addition, EPA is promulgating national emission standards for hazardous air pollutants for existing non-emergency stationary compression ignition engines greater than 500 brake horsepower that are located at major sources of hazardous air pollutant emissions. Finally, EPA is revising the provisions related to startup, shutdown, and malfunction for the engines that were regulated previously by these national emission standards for hazardous air pollutants.

  12. Pollution transport from North America to Greenland during summer 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J. L.; Raut, Jean-Christophe; Law, K. S.

    2013-04-10

    Ozone pollution transported to the Arctic is a significant concern because of the rapid, enhanced warming in high northern latitudes, which is caused, in part, by short lived climate forcers, such as ozone. Long range transport of pollution contributes to background and episodic ozone levels in the Arctic. However, the extent to which plumes are photochemically active during transport, particularly during the summer, is uncertain. Regional chemical transport model simulations are used to examine photochemical production 8 of ozone in air masses originating from boreal fire and anthropogenic emissions over North America and during their transport toward the Arctic duringmore » early July 2008. Model results shows good agreement with aircraft data collected over boreal fire source regions in Canada and several days down-wind over Greenland during the study period. Pollutant plumes were transported east and north towards the Arctic and show significant ozone enhancements downwind of source regions. Anthropogenic plumes were more photochemically active than fire plumes. Together, both sources made an important contribution to ozone in pollution plumes transported to the Arctic.« less

  13. Pollution Transport From North America to Greenland During Summer 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J. L.; Raut, Jean-Christophe; Law, K. S.

    2013-04-10

    Ozone pollution transported to the Arctic is a significant concern because of the rapid, enhanced warming in high northern latitudes, which is caused, in part, by short lived climate forcers, such as ozone. Long range transport of pollution contributes to background and episodic ozone levels in the Arctic. However, the extent to which plumes are photochemically active during transport, particularly during the summer, is uncertain. Regional chemical transport model simulations are used to examine photochemical production of ozone in air masses originating from boreal fire and anthropogenic emissions over North America and during their transport toward the Arctic during earlymore » July 2008. Model results shows good agreement with aircraft data collected over boreal fire source regions in Canada and several days downwind over Greenland during the study period. Pollutant plumes were transported east and north towards the Arctic and show significant ozone enhancements downwind of source regions. Anthropogenic plumes were more photochemically active than fire plumes. Together, both sources made an important contribution to ozone in pollution plumes transported to the Arctic.« less

  14. Indicators reflecting local and transboundary sources of PM2.5 and PMCOARSE in Rome - Impacts in air quality

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-10-01

    The keystone of this paper was to calculate and interpret indicators reflecting sources and air quality impacts of PM2.5 and PMCOARSE (PM10-PM2.5) in Rome (Italy), focusing on potential exogenous influences. A backward atmospheric trajectory cluster analysis was implemented. The likelihood of daily PM10 exceedances was studied in conjunction with atmospheric patterns, whereas a Potential Source Contribution Function (PSCF) based on air mass residence time was deployed on a grid of a 0.5° × 0.5° resolution. Higher PM2.5 concentrations were associated with short/medium range airflows originated from Balkan Peninsula, whereas potential PMCOARSE sources were localized across the Mediterranean and coastal North Africa, due to dust and sea spray transportation. According to the outcome of a daily Pollution Index (PI), a slightly increased degradation of air quality is induced due to the additional quantity of exogenous PM but nevertheless, average levels of PI in all trajectory clusters belong in the low pollution category. Gaseous and particulate pollutants were also elaborated by a Principal Component Analysis (PCA), which produced 4 components: [Traffic], [photochemical], [residential] and [Secondary Coarse Aerosol], reflecting local sources of air pollution. PM2.5 levels were strongly associated with traffic, whereas PMCOARSE were produced autonomously by secondary sources.

  15. [Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring].

    PubMed

    Gao, Shen; Pan, Xiao-chuan; Madaniyazi, Li-na; Xie, Juan; He, Ya-hui

    2013-09-01

    To study source apportionment of atmospheric PM10 (particle matter ≤ 10 µm in aerodynamic diameter) and PM2.5 (particle matter ≤ 2.5 µm in aerodynamic diameter) in Beijing,Urumqi and Qingdao, China. The atmospheric particle samples of PM10 and PM2.5 collected from Beijing between May 17th and June 18th, 2005, from Urumqi between April 20th and June 1st, 2006 and from Qingdao between April 4th and May 15th, 2005, were detected to trace the source apportionment by factor analysis and enrichment factor methods. In Beijing, the source apportionment results derived from factor analysis model for PM10 were construction dust and soil sand dust (contributing rate of variance at 45.35%), industry dust, coal-combusted smoke and vehicle emissions (contributing rate at 31.83%), and biomass burning dust (13.57%). The main pollution element was Pb, while the content (median (minimum value-maximum value)was 0.216 (0.040-0.795) µg/m(3)) . As for PM2.5, the sources were construction dust and soil sand dust (38.86%), industry dust, coal-combusted smoke and vehicle emissions (25.73%), biomass burning dust (13.10%) and burning oil dust (11.92%). The main pollution element was Zn (0.365(0.126-0.808) µg/m(3)).In Urumqi, source apportionment results for PM10 were soil sand dust and coal-combusted dust(49.75%), industry dust, vehicle emissions and secondary particles dust (30.65%). The main characteristic pollution element was Cd (0.463(0.033-1.351) ng/m(3)). As for PM2.5, the sources were soil sand dust and coal-combusted dust (43.26%), secondary particles dust (22.29%), industry dust and vehicle emissions (20.50%). The main characteristic pollution element was As (14.599 (1.696-36.741) µg/m(3)).In Qingdao, source apportionment results for PM10 were construction dust (30.91%), vehicle emissions and industry dust (29.65%) and secondary particles dust (28.99%). The main characteristic pollution element was Pb (64.071 (5.846-346.831) µg/m(3)). As for PM2.5, the sources were secondary particles dust, industry dust and vehicle emissions (49.82%) and construction dust (33.71%). The main characteristic pollution element was Pb(57.340 (5.004-241.559) µg/m(3)).Enrichment factors of Zn, Pb, As and Cd in PM2.5 were higher than those in PM10 both in Beijing and Urumqi. The major sources of the atmospheric particles PM10 and PM2.5 in Beijing were cement dust from construction sites and sand dust from soil; while the major sources of those in Urumqi were pollution by smoke and sand dust from burning coal. The major sources of the atmospheric particles PM10 in Qingdao were cement dust from construction sites; however, the major sources of PM2.5 there were secondary particles dust, industry dust and vehicle emissions. According to our study, the heavy metal elements were likely to gather in PM2.5.

  16. 40 CFR 458.26 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart that introduces process wastewater pollutants into a publicly owned treatment works must comply... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a new source subject to the provisions of this subpart: Pollutant or...

  17. 40 CFR 426.64 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a point source subject to the provisions of this subpart. Pollutant or...

  18. 40 CFR 426.44 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a point source subject to the provisions of this subpart. Pollutant or...

  19. 40 CFR 458.36 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart that introduces process wastewater pollutants into a publicly owned treatment works must comply... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a new source subject to the provisions of this subpart: Pollutant or...

  20. 40 CFR 426.106 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart that introduces process wastewater pollutants into a publicly owned treatment works must comply... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a new point source subject to the provisions of this subpart. Pollutant...

  1. 40 CFR 427.116 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process wastewater pollutants into a publicly owned treatment works must comply with 40 CFR part 403. In addition, the following pretreatment standard establishes the quantity or quality of pollutants or... works by a new point source subject to the provisions of this subpart. Pollutant or pollutant property...

  2. 40 CFR 458.46 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart that introduces process wastewater pollutants into a publicly owned treatment works must comply... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a new source subject to the provisions of this subpart: Pollutant or...

  3. 40 CFR 405.64 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a point source subject to the provisions of this subpart. Pollutant or...

  4. 40 CFR 408.154 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a point source subject to the provisions of this subpart. Pollutant or...

  5. 40 CFR 427.116 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process wastewater pollutants into a publicly owned treatment works must comply with 40 CFR part 403. In addition, the following pretreatment standard establishes the quantity or quality of pollutants or... works by a new point source subject to the provisions of this subpart. Pollutant or pollutant property...

  6. 40 CFR 408.166 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a new source subject to the provisions of this subpart: Pollutant or...

  7. 40 CFR 408.144 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a point source subject to the provisions of this subpart. Pollutant or...

  8. 40 CFR 458.16 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart that introduces process wastewater pollutants into a publicly owned treatment works must comply... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a new source subject to the provisions of this subpart: Pollutant or...

  9. 40 CFR 408.176 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a new source subject to the provisions of this subpart: Pollutant or...

  10. 40 CFR 426.24 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a point source subject to the provisions of this subpart. Pollutant or...

  11. 40 CFR 426.34 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a point source subject to the provisions of this subpart. Pollutant or...

  12. 40 CFR 427.86 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subpart that introduces process wastewater pollutants into a publicly owned treatment works must comply... quality of pollutants or pollutant properties, controlled by this section, which may be discharged to a publicly owned treatment works by a new point source subject to the provisions of this subpart. Pollutant...

  13. 40 CFR 405.64 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must... quality of pollutants or pollutant properties controlled by this section which may be discharged to a publicly owned treatment works by a point source subject to the provisions of this subpart. Pollutant or...

  14. An Integrated WRF-CAMx Modeling Approach for Impact Analysis of Implementing the Emergency PM2.5 Control Measures during Red Alerts in Beijing in December 2015

    NASA Astrophysics Data System (ADS)

    Jia, J.; Cheng, S.; Lei, L.; Lang, J.

    2017-12-01

    In December 2015, the Beijing-Tianjin-Hebei (BTH) region experienced several episodes of heavy air pollution. Beijing municipal government therefore issued 2 red alerts on December 7 and 19, respectively, and also implemented emergency control measures to alleviate the negative effects of pollution. It is estimated that the heavy pollutions in 2 red alert periods in Beijing were due mainly to the accumulation of air pollutants from local emission sources and the transboundary transport of pollutants from surrounding areas. The collected meteorological and PM2.5 data indicate that the severity of air pollutions were enlarged by the poor meteorological conditions along with lower mixing layer height. In this study, the WRF-CAMx modeling system was utilized not only for analyzing the contributions of PM2.5 from different sources, but also for quantitatively assessing the effects of implementing various emergency control measures on PM2.5 pollution control during the red alert periods. The modeling results show that local emissions were the most dominant contributors (64.8%-83.5%) among all emission sources, while the main external contributions came from the city of Baoding (3.4%-9.3%). In addition, among 5 different emission source categories, coal and traffic were the two dominant contributors to PM2.5 concentration in urban area of Beijing. Then four pollution control scenarios were designed particularly to investigate the effectiveness of the emergency control measures, and the results show that, generally these emergency control measures have positive effects on air pollution reduction. In particular, restrictive measures of traffic volume control and industrial activity shutdown/suspension have been found as the most effective measures in comparison to other emergency control measures. It is recommended that such effective measures should be considered to implement when next time similar heavy air pollutions occur in the city of Beijing.

  15. Effects of wind on background particle concentrations at truck freight terminals.

    PubMed

    Garcia, Ronald; Hart, Jaime E; Davis, Mary E; Reaser, Paul; Natkin, Jonathan; Laden, Francine; Garshick, Eric; Smith, Thomas J

    2007-01-01

    Truck freight terminals are predominantly located near highways and industrial facilities. This proximity to pollution sources, coupled with meteorological conditions and wind patterns, may affect occupational exposures to particles at these work locations. To understand this process, data from an environmental sampling study of particles at U.S. trucking terminals, along with weather and geographic maps, were analyzed to determine the extent to which the transportation of particles from local pollutant sources elevated observed occupational exposures at these locations. To help identify potential upwind sources, wind direction weighted averages and speed measurements were used to construct wind roses that were superimposed on overhead photos of the terminal and examined for upwind source activity. Statistical tests were performed on these "source" and "nonsource" directions to determine whether there were significant differences in observed particle levels between the two groups. Our results provide evidence that nearby upwind pollution sources significantly elevated background concentrations at only a few of the locations sampled, whereas the majority provided little to no evidence of a significant upwind source effect.

  16. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (URUGUAY)

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...

  17. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (BRAZIL)

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...

  18. 40 CFR 419.55 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... source subject to this subpart which introduces pollutants into a publicly owned treatment works must... following standards apply to the total refinery flow contribution to the POTW: Pollutant or pollutant...

  19. River water quality and pollution sources in the Pearl River Delta, China.

    PubMed

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2005-07-01

    Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.

  20. Combined multivariate statistical techniques, Water Pollution Index (WPI) and Daniel Trend Test methods to evaluate temporal and spatial variations and trends of water quality at Shanchong River in the Northwest Basin of Lake Fuxian, China.

    PubMed

    Wang, Quan; Wu, Xianhua; Zhao, Bin; Qin, Jie; Peng, Tingchun

    2015-01-01

    Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages.

  1. Combined Multivariate Statistical Techniques, Water Pollution Index (WPI) and Daniel Trend Test Methods to Evaluate Temporal and Spatial Variations and Trends of Water Quality at Shanchong River in the Northwest Basin of Lake Fuxian, China

    PubMed Central

    Wang, Quan; Wu, Xianhua; Zhao, Bin; Qin, Jie; Peng, Tingchun

    2015-01-01

    Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages. PMID:25837673

  2. First Order Estimates of Energy Requirements for Pollution Control. Interagency Energy-Environment Research and Development Program Report.

    ERIC Educational Resources Information Center

    Barker, James L.; And Others

    This U.S. Environmental Protection Agency report presents estimates of the energy demand attributable to environmental control of pollution from stationary point sources. This class of pollution source includes powerplants, factories, refineries, municipal waste water treatment plants, etc., but excludes mobile sources such as trucks, and…

  3. GAS-PHASE MASS TRANSFER MODEL FOR PREDICTING VOLATILE ORGANIC COMPOUND (VOC) EMISSION RATES FROM INDOOR POLLUTANT SOURCES

    EPA Science Inventory

    Analysis of the impact of sources on indoor pollutant concentrations and occupant exposure to indoor pollutants requires knowledge of the emission rates from the sources. Emission rates are often determined by chamber testing and the data from the chamber test are fitted to an em...

  4. 75 FR 3392 - Outer Continental Shelf Air Regulations Consistency Update for Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... 40 CFR part 55,\\1\\ which established requirements to control air pollution from OCS sources in order... air pollution from OCS sources located within 25 miles of States' seaward boundaries that are the same... the Act requires that EPA establish requirements to control air pollution from OCS sources located...

  5. 75 FR 31317 - National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and Allied... when they should not be covered. This action clarifies text of the National Emission Standards for Hazardous Air Pollutants: Paints and Allied Products Manufacturing Area Source Standards which was published...

  6. Corporate Characteristics, Political Embeddedness and Environmental Pollution by Large U.S. Corporations

    ERIC Educational Resources Information Center

    Prechel, Harland; Zheng, Lu

    2012-01-01

    Organizational and environmental sociology contain surprisingly few studies of the corporation as one of the sources of environmental pollution. To fill this gap, we focus on the parent company as the unit of analysis and elaborate environmental theories that focus on the organizational and political-legal causes of pollution. Using a compiled…

  7. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China.

    PubMed

    Ma, Wenchao; Tai, Lingyu; Qiao, Zhi; Zhong, Lei; Wang, Zhen; Fu, Kaixuan; Chen, Guanyi

    2018-08-01

    Few studies have comprehensively taken into account the source apportionment and human health risk of soil heavy metals in the vicinity of municipal solid waste incinerator (MSWI) in high population density area. In this study, 8 elements (Cr, Pb, Cu, Ni, Zn, Cd, Hg, and As) in fly ash, soil samples from different functional areas and vegetables collected surrounding the MSWI in North China were determined. The single pollution index, integrated Nemerow pollution index, principal component analysis (PCA), absolute principle component score-multiple linear regression (APCS-MLR) model and dose-response model were used in this study. The results showed that the soils around the MSWI were moderately polluted by Cu, Pb, Zn, and Hg, and heavily polluted by As and Cd. MSWI had a significant influence on the distribution of soil heavy metals in different distances from MSWI. The source apportionment results showed that MSWI, natural source, industrial discharges and coal combustion were the four major potential sources for heavy metals in the soils, with the contributions of 36.08%, 29.57%, 10.07%, and 4.55%, respectively. MSWI had a major impact on Zn, Cu, Pb, Cd, and Hg contamination in soil. The non-carcinogenic risk and carcinogenic risk posed by soil heavy metals surrounding the MSWI were unacceptable. The soil heavy metals concentrations and health risks in different functional areas were distinct. MSWI was the predominate source of non-carcinogenic risk with the average contribution rate of 36.99% and carcinogenic risk to adult male, adult female and children with 4.23×10 -4 , 4.57×10 -4 , and 1.41×10 -4 respectively, implying that the impact of MSWI on human health was apparent. This study provided a new insight for the source apportionment and health risk assessment of soil heavy metals in the vicinity of MSWI. Copyright © 2018. Published by Elsevier B.V.

  8. Spatial and temporal variability of fine particle composition and source types in five cities of Connecticut and Massachusetts.

    PubMed

    Lee, Hyung Joo; Gent, Janneane F; Leaderer, Brian P; Koutrakis, Petros

    2011-05-01

    To protect public health from PM(2.5) air pollution, it is critical to identify the source types of PM(2.5) mass and chemical components associated with higher risks of adverse health outcomes. Source apportionment modeling using Positive Matrix Factorization (PMF), was used to identify PM(2.5) source types and quantify the source contributions to PM(2.5) in five cities of Connecticut and Massachusetts. Spatial and temporal variability of PM(2.5) mass, components and source contributions were investigated. PMF analysis identified five source types: regional pollution as traced by sulfur, motor vehicle, road dust, oil combustion and sea salt. The sulfur-related regional pollution and traffic source type were major contributors to PM(2.5). Due to sparse ground-level PM(2.5) monitoring sites, current epidemiological studies are susceptible to exposure measurement errors. The higher correlations in concentrations and source contributions between different locations suggest less spatial variability, resulting in less exposure measurement errors. When concentrations and/or contributions were compared to regional averages, correlations were generally higher than between-site correlations. This suggests that for assigning exposures for health effects studies, using regional average concentrations or contributions from several PM(2.5) monitors is more reliable than using data from the nearest central monitor. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain

    PubMed Central

    2014-01-01

    Background Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. Methods We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. Results During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Conclusions Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling. PMID:24735818

  10. Integration of soil magnetometry and geochemistry for assessment of human health risk from metallurgical slag dumps.

    PubMed

    Rachwał, Marzena; Wawer, Małgorzata; Magiera, Tadeusz; Steinnes, Eiliv

    2017-12-01

    The main objective of the study was an assessment of the pollution level of agricultural land located close to dumps of industrial waste remaining after former Zn and Pb ore processing in Poland. The integrated geophysical-geochemical methods were applied for assessment of soil quality with respect to trace element pollution. Additionally, human health risk induced by the contaminated arable soil and dusting slag heap was estimated. The investigations pointed out that soils in the vicinity of the metallurgical slag dump in Piekary were heavily polluted. Spatial distribution of magnetic susceptibility corresponding well with distribution of the content of potentially toxic elements indicated the local "pollution hotspots." Proper geophysical and geochemical data interpretation supported by statistical factor analysis enabled identification of three different sources of pollution including metallurgical slug dump as a main source, but also traffic pollution influencing the area located along the busy road and relatively strong influence of the geochemical background. Computed health hazard index revealed no adverse health effect to the farmers cultivating arable soil, but in the direct vicinity of dusting, slag dump health risk occurred, caused mostly by very toxic elements as As and Tl. In the future, investigation should be focused on contribution of different sources to the heavy metal pollution in soil-crop system in this area. It should be highlighted that a site-specific approach should be taken in order to redevelop this kind of area in order to reduce ecological and human health threat. The study proved the integrated two-stage geophysical-geochemical method to be a feasible, reliable, and cost-effective tool for identification of the extent of soil pollution and areas at risk.

  11. Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain.

    PubMed

    Shmool, Jessie Lc; Michanowicz, Drew R; Cambal, Leah; Tunno, Brett; Howell, Jeffery; Gillooly, Sara; Roper, Courtney; Tripathy, Sheila; Chubb, Lauren G; Eisl, Holger M; Gorczynski, John E; Holguin, Fernando E; Shields, Kyra Naumoff; Clougherty, Jane E

    2014-04-16

    Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling.

  12. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    NASA Astrophysics Data System (ADS)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  13. Reducing mortality risk by targeting specific air pollution sources: Suva, Fiji.

    PubMed

    Isley, C F; Nelson, P F; Taylor, M P; Stelcer, E; Atanacio, A J; Cohen, D D; Mani, F S; Maata, M

    2018-01-15

    Health implications of air pollution vary dependent upon pollutant sources. This work determines the value, in terms of reduced mortality, of reducing ambient particulate matter (PM 2.5 : effective aerodynamic diameter 2.5μm or less) concentration due to different emission sources. Suva, a Pacific Island city with substantial input from combustion sources, is used as a case-study. Elemental concentration was determined, by ion beam analysis, for PM 2.5 samples from Suva, spanning one year. Sources of PM 2.5 have been quantified by positive matrix factorisation. A review of recent literature has been carried out to delineate the mortality risk associated with these sources. Risk factors have then been applied for Suva, to calculate the possible mortality reduction that may be achieved through reduction in pollutant levels. Higher risk ratios for black carbon and sulphur resulted in mortality predictions for PM 2.5 from fossil fuel combustion, road vehicle emissions and waste burning that surpass predictions for these sources based on health risk of PM 2.5 mass alone. Predicted mortality for Suva from fossil fuel smoke exceeds the national toll from road accidents in Fiji. The greatest benefit for Suva, in terms of reduced mortality, is likely to be accomplished by reducing emissions from fossil fuel combustion (diesel), vehicles and waste burning. Copyright © 2017. Published by Elsevier B.V.

  14. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    PubMed

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.

  15. Groundwater Pollution Source Identification using Linked ANN-Optimization Model

    NASA Astrophysics Data System (ADS)

    Ayaz, Md; Srivastava, Rajesh; Jain, Ashu

    2014-05-01

    Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration values. The main advantage of the proposed model is that it requires only upper half of the breakthrough curve and is capable of predicting source parameters when the lag time is not known. Linking of ANN model with proposed optimization model reduces the dimensionality of the decision variables of the optimization model by one and hence complexity of optimization model is reduced. The results show that our proposed linked ANN-Optimization model is able to predict the source parameters for the error-free data accurately. The proposed model was run several times to obtain the mean, standard deviation and interval estimate of the predicted parameters for observations with random measurement errors. It was observed that mean values as predicted by the model were quite close to the exact values. An increasing trend was observed in the standard deviation of the predicted values with increasing level of measurement error. The model appears to be robust and may be efficiently utilized to solve the inverse pollution source identification problem.

  16. The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape.

    PubMed

    Santos, Artur; Pinho, Pedro; Munzi, Silvana; Botelho, Maria João; Palma-Oliveira, José Manuel; Branquinho, Cristina

    2017-05-01

    Atmospheric dust pollution, especially particulate matter below 2.5 μm, causes 3.3 million premature deaths per year worldwide. Although pollution sources are increasingly well known, the role of ecosystems in mitigating their impact is still poorly known. Our objective was to investigate the role of forests located in the surrounding of industrial and urban areas in reducing atmospheric dust pollution. This was tested using lichen transplants as biomonitors in a Mediterranean regional area with high levels of dry deposition. After a multivariate analysis, we have modeled the maximum pollution load expected for each site taking into consideration nearby pollutant sources. The difference between maximum expected pollution load and the observed values was explained by the deposition in nearby forests. Both the dust pollution and the ameliorating effect of forested areas were then mapped. The results showed that forest located nearby pollution sources plays an important role in reducing atmospheric dust pollution, highlighting their importance in the provision of the ecosystem service of air purification.

  17. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest.

    PubMed

    Rousk, Johannes; Rousk, Kathrin

    2018-05-07

    Heavy metals are some of the most persistent and potent anthropogenic environmental contaminants. Although heavy metals may compromise microbial communities and soil fertility, it is challenging to causally link microbial responses to heavy metals due to various confounding factors, including correlated soil physicochemistry or nutrient availability. A solution is to investigate whether tolerance to the pollutant has been induced, called Pollution Induced Community Tolerance (PICT). In this study, we investigated soil microbial responses to a century-old gradient of metal ore pollution in an otherwise pristine subarctic birch forest generated by a railway source of iron ore transportation. To do this, we determined microbial biomass, growth, and respiration rates, and bacterial tolerance to Zn and Cu in replicated distance transects (1 m-4 km) perpendicular to the railway. Microbial biomass, growth and respiration rates were stable across the pollution gradient. The microbial community structure could be distinguished between sampled distances, but most of the variation was explained by soil pH differences, and it did not align with distance from the railroad pollution source. Bacterial tolerance to Zn and Cu started from background levels at 4 km distance from the pollution source, and remained at background levels for Cu throughout the gradient. Yet, bacterial tolerance to Zn increased 10-fold 100 m from the railway source. Our results show that the microbial community structure, size and performance remained unaffected by the metal ore exposure, suggesting no impact on ecosystem functioning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  19. Assessing heavy metal toxicity in sediments of Chennai Coast of Tamil Nadu using Energy Dispersive X-Ray Fluorescence Spectroscopy (EDXRF) with statistical approach.

    PubMed

    Tholkappian, M; Ravisankar, R; Chandrasekaran, A; Jebakumar, J Prince Prakash; Kanagasabapathy, K V; Prasad, M V R; Satapathy, K K

    2018-01-01

    The concentration of some heavy metals: Al, Ca, K, Fe, Ti, Mg, Mn, V, Cr, Zn, Ni and Co in sediments from Pulicat Lake to Vadanemmeli along Chennai Coast, Tamil Nadu has been determined using EDXRF technique. The mean concentrations of Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni, and Zn were found to be 1918, 25436, 9832, 9859, 2109, 8209, 41.58, 34.14, 160.80, 2.85. 18.79 and 29.12 mg kg -1 respectively. These mean concentrations do not exceed the world crustal average. The level of pollution attributed to heavy metals was evaluated using several pollution indicators in order to determine anthropogenically derived contaminations. Enrichment Factor (EF), Geoaccumulation Index (I geo ), Contamination Factor (CF) and Pollution Load Index (PLI) were used in evaluating the contamination status of sediments. Enrichment Factors (EF) reveal the anthropogenic sources of V, Cr, Ni and Zn Geoaccumulation Index (I geo ) results reveal that the study area is not contaminated by the heavy metals. Similar results were also obtained by using pollution load index (PLI). The results of pollution indices indicates that most of the locations were not polluted by heavy metals. Multivariate statistical analysis performed using principal components and clustering techniques were used to identify the source of the heavy metals. The result of statistical procedures indicate that heavy metals in sediments are mainly of natural origin. This study provides a relatively novel technique for identifying and mapping the distribution of metal pollutants and their sources in sediment.

  20. Contrasting Eutrophication Risks and Countermeasures in Different Water Bodies: Assessments to Support Targeted Watershed Management.

    PubMed

    Li, Tong; Chu, Chunli; Zhang, Yinan; Ju, Meiting; Wang, Yuqiu

    2017-06-29

    Eutrophication is a major problem in China. To combat this issue, the country needs to establish water quality targets, monitoring systems, and intelligent watershed management. This study explores a new watershed management method. Water quality is first assessed using a single factor index method. Then, changes in total nitrogen/total phosphorus (TN/TP) are analyzed to determine the limiting factor. Next, the study compares the eutrophication status of two water function districts, using a comprehensive nutritional state index method and geographic information system (GIS) visualization. Finally, nutrient sources are qualitatively analyzed. Two functional water areas in Tianjin, China were selected and analyzed: Qilihai National Wetland Nature Reserve and Yuqiao Reservoir. The reservoir is a drinking water source. Results indicate that total nitrogen (TN) and total phosphorus (TP) pollution are the main factors driving eutrophication in the Qilihai Wetland and Yuqiao Reservoir. Phosphorus was the limiting factor in the Yuqiao Reservoir; nitrogen was the limiting factor in the Qilihai Wetland. Pollution in Qilihai Wetland is more serious than in Yuqiao Reservoir. The study found that external sources are the main source of pollution. These two functional water areas are vital for Tianjin; as such, the study proposes targeted management measures.

  1. International Conference on Problems Related to the Stratosphere

    NASA Technical Reports Server (NTRS)

    Huntress, W., Jr.

    1977-01-01

    The conference focused on four main areas of investigation: laboratory studies and stratospheric chemistry and constituents, sources for and chemical budget of stratospheric halogen compounds, sources for and chemical budget of stratospheric nitrous oxide, and the dynamics of decision making on regulation of potential pollutants of the stratosphere. Abstracts of the scientific sessions of the conference as well as complete transcriptions of the panel discussions on sources for an atmospheric budget of holocarbons and nitrous oxide are included. The political, social and economic issues involving regulation of potential stratospheric pollutants were examined extensively.

  2. Ambient air quality and exposure assessment study of the Gulf Cooperation Council countries: A critical review.

    PubMed

    Omidvarborna, Hamid; Baawain, Mahad; Al-Mamun, Abdullah

    2018-04-27

    With rapid urbanization and economic growth, many developing countries have faced a greater share of air pollutants in recent years. An increasing number of exposure studies on air pollutants have been reported lately. However, due to lack of strict regulations and monitoring stations among developing countries, such as Gulf Cooperation Council (GCC) countries, limited air pollution and exposure assessment studies have been conducted in this region. Thus, the objective of this critical review was to identify the major sources of air pollutants in the region with hot and arid/semiarid climate for the main categories contributing to specific pollutants. Finally, a summary of the limitations and knowledge gaps were discussed. Additionally, the current available regulations, emission inventories and source apportionment studies in this region were discussed. In this study, the concentration levels of carbon dioxide (CO 2 ), carbon monoxide (CO), particulate matter (PM), metal elements, nitrogen oxides (NO x ), ozone (O 3 ), sulfur dioxide (SO 2 ), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and persistent organic pollutants (POPs) were reviewed. Due to lack of scientific studies, various databases and indexed journals from early 2000 (sometimes prior that time) were considered. The review findings clearly indicated that the sand, dust (natural and anthropogenic, such as cement, metal, stone cutting industries), chemical industries (refinery, petrochemical, etc.) and transportation activities were the major contributors to the overall air pollution in the GCC countries. Besides, the study recommended that the difference between anthropogenic pollution and natural events in dust formation should be explored extensively. Furthermore, possible suggestions for future researches in the region were proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    PubMed

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Mobile assessment of on-road air pollution and its sources along the East-West Highway in Bhutan

    NASA Astrophysics Data System (ADS)

    Wangchuk, Tenzin; Knibbs, Luke D.; He, Congrong; Morawska, Lidia

    2015-10-01

    Human exposures in transportation microenvironments are poorly represented by ambient stationary monitoring. A number of on-road studies using vehicle-based mobile monitoring have been conducted to address this. Most previous studies were conducted on urban roads in developed countries where the primary emission source was vehicles. Few studies have examined on-road pollution in developing countries in urban settings. Currently, no study has been conducted for roadways in rural environments where a substantial proportion of the population live. This study aimed to characterize on-road air quality on the East-West Highway (EWH) in Bhutan and identify its principal sources. We conducted six mobile measurements of PM10, particle number (PN) count and CO along the entire 570 km length of the EWH. We divided the EWH into five segments, R1-R5, taking the road length between two district towns as a single road segment. The pollutant concentrations varied widely along the different road segments, with the highest concentrations for R5 compared with other road segments (PM10 = 149 μg/m3, PN = 5.74 × 104 particles/cm-3, CO = 0.19 ppm), which is the final segment of the road to the capital. Apart from vehicle emissions, the dominant sources were road works, unpaved roads and roadside combustion activities. Overall, the highest contributions above the background levels were made by unpaved roads for PM10 (6 times background), and vehicle emissions for PN and CO (5 and 15 times background, respectively). Notwithstanding the differences in instrumentation used and particle size range measured, the current study showed lower PN concentrations compared with similar on-road studies. However, concentrations were still high enough that commuters, road maintenance workers and residents living along the EWH, were potentially exposed to elevated pollutant concentrations from combustion and non-combustion sources. Future studies should focus on assessing the dispersion patterns of roadway pollutants and defining the short- and long-term health impacts of exposure in Bhutan, as well as in other developing countries with similar characteristics.

  5. Stable Isotope Mixing Models as a Tool for Tracking Sources of Water and Water Pollutants

    EPA Science Inventory

    One goal of monitoring pollutants is to be able to trace the pollutant to its source. Here we review how mixing models using stable isotope information on water and water pollutants can help accomplish this goal. A number of elements exist in multiple stable (non-radioactive) i...

  6. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    NASA Astrophysics Data System (ADS)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to be reversed. At least two factors contribute to the dichotomy between huge investment and limited results. First, the majority of the efforts have been limited to engineering approaches to water pollution control, ignoring the important roles of non-engineering approaches and stakeholder participation. Second, the complex hydrological regime of the basin may aggravate the impacts of various pollutant sources. Using the Yincungang canal, one major tributary to the Lake Tai, as an example, we discuss our work on both hydrological and socio-economic factors affecting the water quality of the canal, as well as the grand challenges of coupling hydrological systems and socio-economic systems in the region. Keywords non-point source pollution, rural sewage, agricultural pollution, spatio-temporal pattern, stakeholder participation

  7. Chemical and biological tracers to determine groundwater flow in karstic aquifer, Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Lenczewski, M.; Leal-Bautista, R. M.; McLain, J. E.

    2013-05-01

    Little is known about the extent of pollution in groundwater in the Yucatan Peninsula; however current population growth, both from international tourism and Mexican nationals increases the potential for wastewater release of a vast array of contaminants including personal care products, pharmaceuticals (Rx), and pathogenic microorganisms. Pathogens and Rx in groundwater can persist and can be particularly acute in this region where high permeability of the karst bedrock and the lack of top soil permit the rapid transport of contaminants into groundwater aquifers. The objective of this research is to develop and utilize novel biological and chemical source tracking methods to distinguish between different sources of anthropogenic pollution in degraded groundwater. Although several methods have been used successfully to track fecal contamination sources in small scale studies, little is known about their spatial limitations, as source tracking studies rarely include sample collection over a wide geographical area and with different sources of water. In addition, although source tracking methods to distinguish human from animal fecal contamination are widely available, this work has developed source tracking distinguish between separate human populations is highly unique. To achieve this objective, we collected water samples from a series of drinking wells, cenotes (sinkholes), wastewater treatment plants, and injection wells across the Yucatan Peninsula and examine potential source tracers within the collected water samples. The result suggests that groundwater sources impacted by tourist vs. local populations contain different chemical stressors. This work has developed a more detailed understanding of the presence and persistence of personal care products, pharmaceuticals, and fecal indicators in a karstic system; such understanding will be a vital component for the protection Mexican groundwater and human health. Quantification of different pollution sources within groundwater samples identified point sources of pollution, identify potential remediation strategies, and contribute to an improved understanding of the environmental impact of tourism and tourism-generated waste products on this groundwater-dependent ecosystem.

  8. FECAL POLLUTION, PUBLIC HEALTH AND MICROBIAL SOURCE TRACKING

    EPA Science Inventory

    Microbial source tracking (MST) seeks to provide information about sources of fecal water contamination. Without knowledge of sources, it is difficult to accurately model risk assessments, choose effective remediation strategies, or bring chronically polluted waters into complian...

  9. Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis.

    PubMed

    Petrucci, Guido; Gromaire, Marie-Christine; Shorshani, Masoud Fallah; Chebbo, Ghassan

    2014-09-01

    The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region. In this application, we suggest several procedures that can be applied for the analysis of other pollutants in different catchments, including an estimation of the total extent of roof accessories (gutters and downspouts, watertight joints and valleys) in a catchment. These accessories result as the major source of Pb and as an important source of Zn in the example catchment, while activity-related sources (traffic, heating) are dominant for Cu (brake pad wear) and PAH (tire wear, atmospheric deposition).

  10. Perception of Air Pollution in the Jinchuan Mining Area, China: A Structural Equation Modeling Approach

    PubMed Central

    Li, Zhengtao; Folmer, Henk; Xue, Jianhong

    2016-01-01

    Studies on the perception of air pollution in China are very limited. The aim of this paper is to help to fill this gap by analyzing a cross-sectional dataset of 759 residents of the Jinchuan mining area, Gansu Province, China. The estimations suggest that perception of air pollution is two-dimensional. The first dimension is the perceived intensity of air pollution and the second is the perceived hazardousness of the pollutants. Both dimensions are influenced by environmental knowledge. Perceived intensity is furthermore influenced by socio-economic status and proximity to the pollution source; perceived hazardousness is influenced by socio-economic status, family health experience, family size and proximity to the pollution source. There are no reverse effects from perception on environmental knowledge. The main conclusion is that virtually all Jinchuan residents perceive high intensity and hazardousness of air pollution despite the fact that public information on air pollution and its health impacts is classified to a great extent. It is suggested that, to assist the residents to take appropriate preventive action, the local government should develop counseling and educational campaigns and institutionalize disclosure of air quality conditions. These programs should pay special attention to young residents who have limited knowledge of air pollution in the Jinchuan mining area. PMID:27455291

  11. Source and path identification of metals pollution in a mining area by PMF and rare earth element patterns in road dust.

    PubMed

    Tian, Shuhan; Liang, Tao; Li, Kexin; Wang, Lingqing

    2018-08-15

    To better assess pollution and offer efficient protection for local residents, it is necessary to both conduct an exhaustive investigation into pollution levels and quantify its contributing sources and paths. As it is the biggest light rare earth element (REE) reserve in the world, Bayan Obo deposit releases large amounts of heavy metals into the surrounding environment. In this study, road dust from zones located at different distances to the mining area was collected and sieved using seven sizes. This allowed for subsequent analysis of size-dependent influences of mining activities. A receptor model was used to quantitatively assess mine contributions. REE distribution patterns and other REE parameters were compared with those in airborne particulates and the surrounding soil to analyze pollution paths. Results showed that 27 metals were rated as moderately to extremely polluted (2

  12. 40 CFR 415.426 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide... Sources (PSNS): Subpart AP—Hydrogen Cyanide Pollutant or pollutant property PSNS effluent limitations...

  13. 40 CFR 415.426 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide... Sources (PSNS): Subpart AP—Hydrogen Cyanide Pollutant or pollutant property PSNS effluent limitations...

  14. 40 CFR 415.426 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide... Sources (PSNS): Subpart AP—Hydrogen Cyanide Pollutant or pollutant property PSNS effluent limitations...

  15. 40 CFR 415.426 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide... Sources (PSNS): Subpart AP—Hydrogen Cyanide Pollutant or pollutant property PSNS effluent limitations...

  16. Contribution of the in-vehicle microenvironment to individual ambient-source nitrogen dioxide exposure: the Multi-Ethnic Study of Atherosclerosis and Air Pollution.

    PubMed

    Hazlehurst, Marnie F; Spalt, Elizabeth W; Nicholas, Tyler P; Curl, Cynthia L; Davey, Mark E; Burke, Gregory L; Watson, Karol E; Vedal, Sverre; Kaufman, Joel D

    2018-06-01

    Exposure estimates that do not account for time in-transit may underestimate exposure to traffic-related air pollution, but exact contributions have not been studied directly. We conducted a 2-week monitoring, including novel in-vehicle sampling, in a subset of the Multi-Ethnic Study of Atherosclerosis and Air Pollution cohort in two cities. Participants spent the majority of their time indoors and only 4.4% of their time (63 min/day) in-vehicle, on average. The mean ambient-source NO 2 concentration was 5.1 ppb indoors and 32.3 ppb in-vehicle during drives. On average, indoor exposure contributed 69% and in-vehicle exposure contributed 24% of participants' ambient-source NO 2 exposure. For participants in the highest quartile of time in-vehicle (≥1.3 h/day), indoor and in-vehicle contributions were 60 and 31%, respectively. Incorporating infiltrated indoor and measured in-vehicle NO 2 produced exposure estimates 5.6 ppb lower, on average, than using only outdoor concentrations. The indoor microenvironment accounted for the largest proportion of ambient-source exposure in this older population, despite higher concentrations of NO 2 outdoors and in vehicles than indoors. In-vehicle exposure was more influential among participants who drove the most and for participants residing in areas with lower outdoor air pollution. Failure to characterize exposures in these microenvironments may contribute to exposure misclassification in epidemiologic studies.

  17. Risk Assessment for Toxic Air Pollutants: A Citizen's Guide

    MedlinePlus

    ... from the source(s). Engineers use either monitors or computer models to estimate the amount of pollutant released ... measure how much of the pollutant is present. Computer models use mathematical equations that represent the processes ...

  18. AIR POLLUTION CONTROL TECHNOLOGIES (CHAPTER 65)

    EPA Science Inventory

    The chapter discusses the use of technologies for reducing air pollution emissions from stationary sources, with emphasis on the control of combustion gen-erated air pollution. Major stationary sources include utility power boilers, industrial boilers and heaters, metal smelting ...

  19. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong, E-mail: wangdong@nju.edu.cn

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl{sup −} concentration. The numerical model ofmore » seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM{sub (ZS)} is used as sampling algorithm. Then, the predictive distribution of Cl{sup -} concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl{sup -} concentration. The results of model calibration and verification demonstrate that the DREAM{sub (ZS)} based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl{sup −} concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl{sup −} concentration.« less

  20. A pollutant load hierarchical allocation method integrated in an environmental capacity management system for Zhushan Bay, Taihu Lake.

    PubMed

    Liang, Shidong; Jia, Haifeng; Yang, Cong; Melching, Charles; Yuan, Yongping

    2015-11-15

    An environmental capacity management (ECM) system was developed to help practically implement a Total Maximum Daily Load (TMDL) for a key bay in a highly eutrophic lake in China. The ECM system consists of a simulation platform for pollutant load calculation and a pollutant load hierarchical allocation (PLHA) system. The simulation platform was developed by linking the Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP). In the PLHA, pollutant loads were allocated top-down in several levels based on characteristics of the pollutant sources. Different allocation methods could be used for the different levels with the advantages of each method combined over the entire allocation. Zhushan Bay of Taihu Lake, one of the most eutrophic lakes in China, was selected as a case study. The allowable loads of total nitrogen, total phosphorus, ammonia, and chemical oxygen demand were found to be 2122.2, 94.9, 1230.4, and 5260.0 t·yr(-1), respectively. The PLHA for the case study consists of 5 levels. At level 0, loads are allocated to those from the lakeshore direct drainage, atmospheric deposition, internal release, and tributary inflows. At level 1 the loads allocated to tributary inflows are allocated to the 3 tributaries. At level 2, the loads allocated to one inflow tributary are allocated to upstream areas and local sources along the tributary. At level 3, the loads allocated to local sources are allocated to the point and non-point sources from different towns. At level 4, the loads allocated to non-point sources in each town are allocated to different villages. Compared with traditional forms of pollutant load allocation methods, PLHA can combine the advantages of different methods which put different priority weights on equity and efficiency, and the PLHA is easy to understand for stakeholders and more flexible to adjust when applied in practical cases. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mapping the scientific research on non-point source pollution: a bibliometric analysis.

    PubMed

    Yang, Beibei; Huang, Kai; Sun, Dezhi; Zhang, Yue

    2017-02-01

    A bibliometric analysis was conducted to examine the progress and future research trends of non-point source (NPS) pollution during the years 1991-2015 based on the Science Citation Index Expanded (SCI-Expanded) of Web of Science (WoS). The publications referencing NPS pollution were analyzed including the following aspects: document type, publication language, publication output and characteristics, subject category, source journal, distribution of country and institution, author keywords, etc. The results indicate that the study of NPS pollution demonstrated a sharply increasing trend since 1991. Article and English were the most commonly used document type and language. Environmental sciences and ecology, water resources, and engineering were the top three subject categories. Water science and technology ranked first in distribution of journal, followed by Science of the total environment and Environmental Monitoring and Assessment. The USA took a leading position in both quantity and quality, playing an important role in the research field of NPS pollution, followed by the UK and China. The most productive institution was the Chinese Academy of Sciences (Chinese Acad Sci), followed by Beijing Normal University and US Department of Agriculture's Agricultural Research Service (USDA ARS). The analysis of author keywords indicates that the major hotspots of NPS pollution from 1991 to 2015 contained "water," "model," "agriculture," "nitrogen," "phosphorus," etc. The results provide a comprehensive understanding of NPS pollution research and help readers to establish the future research directions.

  2. Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China.

    PubMed

    Ma, Jinzhu; Ding, Zhenyu; Wei, Guoxiao; Zhao, Hua; Huang, Tianming

    2009-02-01

    Based on surveys and chemical analyses, we performed a case study of the surface water and groundwater quality in the Wuwei basin, in order to understand the sources of water pollution and the evolution of water quality in Shiyang river. Concentrations of major chemical elements in the surface water were related to the distance downstream from the source of the river, with surface water in the upstream reaches of good quality, but the river from Wuwei city to the Hongya reservoir was seriously polluted, with a synthetic pollution index of 25. Groundwater quality was generally good in the piedmont with dominant bicarbonate and calcium ions, but salinity was high and nitrate pollution occurs in the northern part of the basin. Mineralization of the groundwater has changed rapidly during the past 20 years. There are 23 wastewater outlets that discharge a total of 22.4 x 10(6)m(3)y(-1) into the river from Wuwei city, which, combined with a reduction of inflow water, were found to be the major causes of water pollution. Development of fisheries in the Hongya reservoir since 2000 has also contributed to the pollution. The consumption of water must be decreased until it reaches the sustainable level permitted by the available resources in the whole basin, and discharge of wastes must also be drastically reduced.

  3. TRAFFIC-RELATED AIR POLLUTION AND CHILDREN'S RESPIRATORY HEALTH: BEYOND PROXIMITY TO MAJOR ROADWAYS

    EPA Science Inventory

    Introduction: Previous studies of the respiratory health impact of mobile source air pollutants on

    children have relied heavily on simple exposure metrics such as proximity to roadways and traffic

    density near the home or school. Few studies have conducted area-wide...

  4. A Proof-of-Concept Approach for Quantifying Multi-Pollutant Health Impacts Using the Open-Source BenMAP-CE Software Program

    EPA Science Inventory

    Background Air pollution risk assessments often employ effect coefficients from epidemiologic studies to quantify the public health impact of changes in air quality. Partly due to data and methodological limitations, epidemiologic studies have traditionally characterized the heal...

  5. BISPHENOL-A AND PHTHALATE ESTERS: POTENTIAL SOURCES OF RESIN COMPONENTS IN THE EVERYDAY ENVIRONMENTS OF PRESCHOOL CHILDREN

    EPA Science Inventory

    The Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) study examined the aggregate exposures of 257 preschool children to pollutants commonly found in their everyday environments. A primary objective of the CTEPP study was to ide...

  6. CTEPP NC DATA COLLECTED ON FORM 02: HOUSE/BUILDING CHARACTERISTICS OBSERVATION SURVEY FOR THE HOME

    EPA Science Inventory

    This data set contains data concerning the physical characteristics of the home and identified possible sources of pollutants.

    The Children’s Total Exposure to Persistent Pesticides and Other Persistent Pollutant (CTEPP) study was one of the largest aggregate exposure studies o...

  7. MODELING POPULATION EXPOSURES TO OUTDOOR SOURCES OF HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration ...

  8. Influence of Diffused Sourcers of Water Pollution In The Basin of Volga River

    NASA Astrophysics Data System (ADS)

    Vasilchenco, O.

    The intensive development of industry and agriculture, great growth of cities in the last decades result in an increase of the nature water consumption and deterioration. Different anthropogenic load change characteristics of water objects regime and de- pletion and qualitative degradation of water resources. Sources of pollution are divided on two classes: controlled and uncontrolled. The first includes industrial and domestic wastewater disposal. Their discharge and concentration of pollutants are quite stable. These sources of pollution are identified as "point". Surface run-off from of cities, industrial platforms, agricultural object, navigation, recreation are not controlled have dispersed nature and are identification as diffuse. Pollution from such sources is es- timates by computation. Quantitative assumption of pollution amounts reaches water objects is complicated and independent problem. The significant amount of full-scale observations and information processes of concerning dissolved and fluidized frag- ments movement are required. According to available guidelines the part of the pollu- tant entering water objects, is about 1-10For estimation of pollution mass and transport are mathematical modeling. Preliminary calculations of contaminants transport for different territories under an- thropogenic impact of river-Volga basin were made either for point sources of pol- lution or for non-point. Received data made it possible to analyze the correlation of contaminant volumes, coming from different sources pollution.

  9. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    PubMed

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.

  10. The '333' integrated strategy for effective pollution control and its application to the heavily polluted Jialu River in north China.

    PubMed

    Huang, Yu; Sun, Jie; Li, Aimin; Xie, Xianchuan

    2018-05-01

    In this study, an integrated approach named the '333' strategy was applied to pollution control in the Jialu River, in northern China, which is heavily burdened with anthropogenic pollution. Due to a deficiency of the natural ecological inflow, the Jialu River receives predominantly industrial and municipal effluent. The '333' strategy is composed of three steps of pollution control including industrial point-source pollution control, advanced treatment of municipal wastewater, and ecological restoration; three increased stringency emission standards; and three stages of reclamation. Phase 1 of the '333' strategy focuses on industrial point-source pollution control; phase 2 aims to harness municipal wastewater and minimize sewage effluents using novel techniques for advanced water purification; phase 3 of the '333' strategy focuses on the further purification of effluents flowing into Jialu River with the employment of an engineering-based ecological restoration project. The application of the '333' strategy resulted in the development of novel techniques for water purification including modified magnetic resins (NDMP resin), a two-stage internal circulation anaerobic reactor (IC reactor) and an ecological restoration system. The results indicate that water quality in the river was significantly improved, with increased concentrations of dissolved oxygen (DO), as well as reduction of COD by 42.8% and NH 3 -N by 61.4%. In addition, it was observed that the total population of phytoplankton in treated river water notably increased from only one prior to restoration to 8 following restoration. This system also provides a tool for pollution control of other similar industrial and anthropogenic source polluted rivers.

  11. Modelling the Contribution of Long-range Transport of Ammonium Nitrates to Urban Air Pollution and Human Exposure in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Reis, S.; Vieno, M.; Beck, R.; Ots, R.; Moring, A.; Steinle, S.; Heal, M. R.; Doherty, R. M.

    2014-12-01

    Urban air pollution and its effects on human health remain to be a challenge in spite of substantial reductions in the emissions of air pollutants (e.g. sulphur dioxide, nitrogen oxides) over the past decades in Europe. While primary pollutants play a vital role in urban air pollution, recent model studies highlight and quantify the relevance of long-range transport of secondary pollution (e.g. secondary inorganic aerosols such as ammonium sulphates and nitrates, or ground level ozone) for the exceedance of local air quality limit values in urban areas across Europe. This contribution can be seen in recurring episodes, for instance in spring 2014, with very high levels of fine particulate matter (PM2.5) in Paris, London and other European cities, as well as in elevated background levels throughout the year. While we will focus on the contribution to exceedances of PM2.5 limit values here, this transboundary transport has wider implications for the deposition of reactive nitrogen far from the source as well. As local authorities are tasked with ensuring the attainment of air quality limit values, exceedances caused by long-range transport, with emissions originating from sources outside of their jurisdiction present substantial challenges. Furthermore, while policy measures have successfully addressed emissions from large point sources in the past, and made progress towards reducing pollution from road vehicles, emissions of ammonia from agricultural sources - a key component for the long-range transport of secondary inorganic aerosols - have remained relatively stable in Europe. Using the example of Europe and the UK, we demonstrate in our presentation how atmospheric chemistry transport modelling across different scales (from regional to local) can provide vital insight in the mechanisms of and relative contributions to the formation of secondary inorganic aerosols. In addition, we illustrate how this modelling capability can inform the design of efficient control strategies by quantifying the effect of different policy measures targeted at specific source sectors, and highlight the role of transboundary air pollution to local air pollution challenges.

  12. 40 CFR 415.24 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Aluminum Sulfate... standards for existing sources (PSES): Subpart B—Aluminum Sulfate Pollutant or pollutant property PSES...

  13. 40 CFR 415.24 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Aluminum Sulfate... standards for existing sources (PSES): Subpart B—Aluminum Sulfate Pollutant or pollutant property PSES...

  14. 40 CFR 415.24 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Aluminum Sulfate... standards for existing sources (PSES): Subpart B—Aluminum Sulfate Pollutant or pollutant property PSES...

  15. 40 CFR 415.14 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Aluminum Chloride... standards for existing sources (PSES): Subpart A—Aluminum Chloride Pollutant or pollutant property PSES...

  16. Environmental test chamber

    NASA Astrophysics Data System (ADS)

    Qian, Li

    2016-04-01

    Increasing of particulates in the air in city became a serious problem , but in the Beijing area students rarely research such questions. The intelligent instrument of suspended particulate matter sampler which introduce from the institute of geology and geophysics, Chinese academy of sciences can be collected for all kinds of grain size of suspended matter in the air.We put them near schools,so the PM2.5 in the air near our shool can be collected. The method for analysis is the environmental magnetism, etc. Numerous studies have demonstrated rapid and non-destructive magnetic parameters measurement for rapid estimation of particulate sources of heavy metals and provides a very effective means. Environmental magnetism is a frontier science among earth science, environmental science and magnetism,which has been applied into many fields because it is capable of providing important information for studying the regional or global environmental changes and the impact of human activity on environment. Testing magnetic parameters of the particle can extract atmospheric particulate matter source, distribution, pollution level and dynamic change information. Measured the magnetic parameters of ARM, IRM, hysteresis loop , element composition, soil particle size of the soil, leaf, the river and dustfall samples and PM2.5 of the atmospheric dustfall samples on campus and the Beijing city.By means of environmental magnetism analysis of atmospheric pollutants category, amount, etc. Magnetic properties of pollutants may indicate the source of the pollutants, the nature of the analysis of pollutants, monitoring pollutant change over time.

  17. A candidate framework for PM2.5 source identification in highly industrialized urban-coastal areas

    NASA Astrophysics Data System (ADS)

    Mateus, Vinícius Lionel; Gioda, Adriana

    2017-09-01

    The variability of PM sources and composition impose tremendous challenges for police makers in order to establish guidelines. In urban PM, sources associated with industrial processes are among the most important ones. In this study, a 5-year monitoring of PM2.5 samples was carried out in an industrial district. Their chemical composition was strategically determined in two campaigns in order to check the effectiveness of mitigation policies. Gaseous pollutants (NO2, SO2, and O3) were also monitored along with meteorological variables. The new method called Conditional Bivariate Probability Function (CBPF) was successfully applied to allocate the observed concentration of criteria pollutants (gaseous pollutants and PM2.5) in cells defined by wind direction-speed which provided insights about ground-level and elevated pollution plumes. CBPF findings were confirmed by the Theil-Sen long trend estimations for criteria pollutants. By means of CBPF, elevated pollution plumes were detected in the range of 0.54-5.8 μg m-3 coming from a direction associated to stacks. With high interpretability, the use of Conditional Inference Trees (CIT) provided both classification and regression of the speciated PM2.5 in the two campaigns. The combination of CIT and Random Forests (RF) point out NO3- and Ca+2 as important predictors for PM2.5. The latter predictor mostly associated to non-sea-salt sources, given a nss-Ca2+ contribution equal to 96%.

  18. The innovative concept of three-dimensional hybrid receptor modeling

    NASA Astrophysics Data System (ADS)

    Stojić, A.; Stanišić Stojić, S.

    2017-09-01

    The aim of this study was to improve the current understanding of air pollution transport processes at regional and long-range scale. For this purpose, three-dimensional (3D) potential source contribution function and concentration weighted trajectory models, as well as new hybrid receptor model, concentration weighted boundary layer (CWBL), which uses a two-dimensional grid and a planetary boundary layer height as a frame of reference, are presented. The refined approach to hybrid receptor modeling has two advantages. At first, it considers whether each trajectory endpoint meets the inclusion criteria based on planetary boundary layer height, which is expected to provide a more realistic representation of the spatial distribution of emission sources and pollutant transport pathways. Secondly, it includes pollutant time series preprocessing to make hybrid receptor models more applicable for suburban and urban locations. The 3D hybrid receptor models presented herein are designed to identify altitude distribution of potential sources, whereas CWBL can be used for analyzing the vertical distribution of pollutant concentrations along the transport pathway.

  19. Impact of air pollution on pulmonary function and respiratory symptoms in children. Longitudinal repeated-measures study.

    PubMed

    Linares, Benigno; Guizar, Juan M; Amador, Norma; Garcia, Alfonso; Miranda, Victor; Perez, Jose R; Chapela, Rocío

    2010-11-24

    Salamanca, Mexico occupied fourth place nationally in contaminating emissions. The aim of the study was to determine the impact of air pollution on the frequency of pulmonary function alterations and respiratory symptoms in school-age children in a longitudinal repeated-measures study. We recruited a cohort of 464 children from 6 to 14 years of age, from two schools differing in distance from the major stationary air pollution sources. Spirometry, respiratory symptoms and air pollutants (O3, SO2, NO, NO2, NOx, PM10,) were obtained for each season. Mixed models for continuous variables and multilevel logistic regression for respiratory symptoms were fitted taking into account seasonal variations in health effects according to air pollution levels. Abnormalities in lung function and frequency of respiratory symptoms were higher in the school closer to major stationary air pollution sources than in the distant school. However, in winter differences on health disappeared. The principal alteration in lung function was the obstructive type, which frequency was greater in those students with greater exposure (10.4% vs. 5.3%; OR = 1.95, 95% CI 1.0-3.7), followed by the mixed pattern also more frequent in the same students (4.1% vs. 0.9%; OR = 4.69, 95% CI, 1.0-21.1). PM10 levels were the most consistent factor with a negative relationship with FVC, FEV1 and PEF but with a positive relationship with FEV1/FVC coefficient according to its change per 3-month period. Students from the school closer to major stationary air pollution sources had in general more respiratory symptoms than those from the distant school. However, in winter air pollution was generalized in this city and differences in health disappeared. PM10 levels were the most consistent factor related to pulmonary function according, to its change per 3-month period.

  20. Source apportionments of ambient fine particulate matter in Israeli, Jordanian, and Palestinian cities.

    PubMed

    Heo, Jongbae; Wu, Bo; Abdeen, Ziad; Qasrawi, Radwan; Sarnat, Jeremy A; Sharf, Geula; Shpund, Kobby; Schauer, James J

    2017-06-01

    This manuscript evaluates spatial and temporal variations of source contributions to ambient fine particulate matter (PM 2.5 ) in Israeli, Jordanian, and Palestinian cities. Twenty-four hour integrated PM 2.5 samples were collected every six days over a 1-year period (January to December 2007) in four cities in Israel (West Jerusalem, Eilat, Tel Aviv, and Haifa), four cities in Jordan (Amman, Aqaba, Rahma, and Zarka), and three cities in Palestine (Nablus, East Jerusalem, and Hebron). The PM 2.5 samples were analyzed for major chemical components, including organic carbon and elemental carbon, ions, and metals, and the results were used in a positive matrix factorization (PMF) model to estimate source contributions to PM 2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, industrial lead sources, dust, construction dust, biomass burning, fuel oil combustion and sea salt, were identified across the sampling sites. Secondary sulfate was the dominant source, contributing 35% of the total PM 2.5 mass, and it showed relatively homogeneous temporal trends of daily source contribution in the study area. Mobile sources were found to be the second greatest contributor to PM 2.5 mass in the large metropolitan cities, such as Tel Aviv, Hebron, and West and East Jerusalem. Other sources (i.e. industrial lead sources, construction dust, and fuel oil combustion) were closely related to local emissions within individual cities. This study demonstrates how international cooperation can facilitate air pollution studies that address regional air pollution issues and the incremental differences across cities in a common airshed. It also provides a model to study air pollution in regions with limited air quality monitoring capacity that have persistent and emerging air quality problems, such as Africa, South Asia and Central America. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria

    PubMed Central

    Ilmjärv, Tanel; Naanuri, Eve; Kivisaar, Maia

    2017-01-01

    Bacteria can rapidly evolve mechanisms allowing them to use toxic environmental pollutants as a carbon source. In the current study we examined whether the survival and evolution of indigenous bacteria with the capacity to degrade organic pollutants could be connected with increased mutation frequency. The presence of constitutive and transient mutators was monitored among 53 pollutants-degrading indigenous bacterial strains. Only two strains expressed a moderate mutator phenotype and six were hypomutators, which implies that constitutively increased mutability has not been prevalent in the evolution of pollutants degrading bacteria. At the same time, a large proportion of the studied indigenous strains exhibited UV-irradiation-induced mutagenesis, indicating that these strains possess error-prone DNA polymerases which could elevate mutation frequency transiently under the conditions of DNA damage. A closer inspection of two Pseudomonas fluorescens strains PC20 and PC24 revealed that they harbour genes for ImuC (DnaE2) and more than one copy of genes for Pol V. Our results also revealed that availability of other nutrients in addition to aromatic pollutants in the growth environment of bacteria affects mutagenic effects of aromatic compounds. These results also implied that mutagenicity might be affected by a factor of how long bacteria have evolved to use a particular pollutant as a carbon source. PMID:28777807

  2. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity. © 2011 Society for Risk Analysis.

  3. Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique.

    PubMed

    Barandovski, Lambe; Frontasyeva, Marina V; Stafilov, Trajče; Šajn, Robert; Ostrovnaya, Tatyana M

    2015-10-01

    Moss biomonitoring technique using moss species Homolothecium lutescens (Hedw.) Robins and Hypnum cupressiforme (Hedw.) was applied to air pollution studies in the Republic of Macedonia. The study was performed in the framework of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops under the auspices of the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (LRTAP). The presence of 47 elements was determined by instrumental epithermal neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry with inductively coupled plasma. Normality of the datasets of elements was investigated, and Box-Cox transformation was used in order to achieve normal distributions of the data. Different pollution sources were identified and characterized using principal component analysis (PCA). Distribution maps were prepared to point out the regions most affected by pollution and to relate this to the known sources of contamination. The cities of Veles, Skopje, Tetovo, Radoviš and Kavadarci were determined to experience particular environmental stress. Moreover, three reactivated lead-zinc mines were also shown to contribute to a high content of lead and zinc in the eastern part of the country. However, a comparison with the previous moss survey conducted in 2005 showed a decreasing trend of pollution elements that are usually associated with emission from industrial activities.

  4. Fingerprinting aliphatic hydrocarbon pollutants over agricultural lands surrounding Tehran oil refinery.

    PubMed

    Bayat, Javad; Hashemi, Seyed Hossein; Khoshbakht, Korros; Deihimfard, Reza

    2016-11-01

    The analysis of aliphatic hydrocarbons, which are composed of n-alkanes as well as branched and cyclic alkanes, can be used to distinguish between the sources of hydrocarbon contamination. In this study, the concentration of aliphatic hydrocarbons, soil pH, and organic matter in agricultural soils located south of Tehran were monitored. Eighty-three soil samples were taken from two depth ranges of 0-30 and 30-60 cm. The results showed that aliphatic compounds ranged from 0.22-68.11 mg kg -1 at the top to 0.33-53.18 mg kg -1 at subsoil. The amount of hydrocarbons increases from the northern parts toward the south, and hydrocarbon pollutants originated from both petroleum and non-petroleum sources. Higher concentrations of aliphatic compounds in the southern parts indicated that, aside from the practice of irrigating with untreated wastewater, leakage from oil refinery storage tanks possibly contributed to soil pollution. The results also showed that several sources have polluted the agricultural soils. It is necessary to develop a new local pollution criterion as a diagnostic index that includes not only hydrocarbons but also other parameters such as heavy metal content in both soil and untreated wastewater, surface runoff, and other irrigation water resources to determine the exact origin of pollution.

  5. Research on the Emission Inventory of Major Air Pollutants in 2012 for the Sichuan City Cluster in China

    NASA Astrophysics Data System (ADS)

    Qian, J.; He, Q.

    2014-12-01

    This paper developed a high resolution emission inventory of major pollutants in city cluster of Sichuan Basin, one of the most polluted regions in China. The city cluster included five cities, which were Chengdu, Deyang, Mianyang, Meishan and Ziyang. Pollution source census and field measurements were conducted for the major emission sources such as the industry sources, on-road mobile sources, catering sources and the dust sources. The inventory results showed that in the year of 2012, the emission of SO2、NOX、CO、PM10、PM2.5、VOCs and NH3 in the region were 143.5、251.9、1659.9、299.3、163.5、464.1 and 995kt respectively. Chengdu, the provincial capital city, had the largest emission load of every pollutant among the cities. The industry sources, including power plants, fuel combustion facilities and non-combustion processes were the largest emission sources for SO2、NOX and CO, contributing to 84%, 46.5%, 35% of total SO2, NOX and CO emissions. On-road mobile sources accounted for 46.5%, 33%, 16% of the total NOx, CO, PM2.5 emissions and 28% of the anthropogenic VOCs emission. Dust and industry sources contributed to 42% and 23% of the PM10 emission with the dust sources also as the largest source of PM2.5, contributing to 27%. Anthropogenic and biogenic sources took 75% and 25% of the total VOCs emission while 36% of anthropogenic VOCs emission was owing to solvent use. Livestock contributed to 62% of NH3 emissions, followed by nitrogen fertilizer application whose contribution was 23%. Based on the developed emission inventory and local meteorological data, the regional air quality modeling system WRF-CMAQ was applied to simulate the status of PM2.5 pollution in a regional scale. The results showed that high PM2.5 concentration was distributed over the urban area of Chengdu and Deyang. On-road mobile sources and dust sources were two major contributors to the PM2.5 pollution in Chengdu, both had an contribution ratio of 27%. In Deyang, Mianyang, Meishan and Ziyang, industry sources had a relatively high contribution ratio to the PM2.5 pollution, accounting for about 35%, 33%, 38% and 24% respectively.

  6. Levels, Composition and Sources of PM in the Mexico City Metropolitan Area During the MILAGRO Campaign

    NASA Astrophysics Data System (ADS)

    Querol, X.; Pey, J.; Minguillon, M. C.; Perez, N.; Alastuey, A.; Moreno, T.; Bernabe, R.; Blanco, S.; Cardenas, B.

    2007-05-01

    Particle air pollution in urban agglomerations comes mostly from anthropogenic sources, mainly traffic, industrial processes, energy production, domestic and residential emissions, construction, but also a minor contribution from natural sources may be expected (bioaerosols, soil dust, marine aerosol). Once emitted into the atmosphere, this complex mixture of pollutants may be transformed as a function of the ambient conditions and the interaction among the different PM components, and also between PM components and gaseous pollutants. This system is especially complex in mega-cities due to the large emission volumes of PM components and gaseous precursors, the high variability and broad distribution of emission sources, and the possible long range transport of the polluted air masses. Speciation studies help to identify major sources of PM components with the end objective of applying plans and programs for PM pollution abatement. In this framework, concentration levels and compositions of particulate matter (PM2.5, PM10 and TSP) have been measured simultaneously at two sites in the Mexico City Metropolitan Area (T0 and CENICA) and at one site 50 km away from Mexico City (T1) during the MILAGRO campaign (1st to 31st March 2006). Spatial and time (day and night) variations have been analysed. Coarse fraction levels were higher at T1 than at CENICA and T0, contrary to what was expected. This was due to the important soil re-suspension at T1, contributing significantly to the crustal load. Moreover, crustal levels were higher during daytime than during nights at all sites, while some secondary compounds (sulphate and ammonium) presented an opposite trend. Regarding trace elements, levels of Pb, Zn and Cd were higher at T0 than at CENICA and T1, probably due to traffic contribution. Arsenic levels did not show a clear pattern, being alternatively higher at CENICA and T0. Two intense episodes of Hg particulate have been recorded, more noticeable at T1 than at the urban sites. V and Ni showed the same evolution at all sites and fractions, being alternatively higher at the three sites. In order to identify the sources of the studied pollutants, a statistical analysis has been carried out. Crustal, regional and industrial sources were identified at the three sites. Moreover, traffic and fuel combustion sources were found at the urban sites. Finally, a metallurgy source was detected at T1 and CENICA. Nevertheless these results must be considered as indicative of the possible sources but not completely definitive due to the relative low number of samples.

  7. FIRST ORDER ESTIMATES OF ENERGY REQUIREMENTS FOR POLLUTION CONTROL

    EPA Science Inventory

    This report presents estimates of the energy demand attributable to environmental control of pollution from 'stationary point sources.' This class of pollution source includes powerplants, factories, refineries, municipal waste water treatment plants, etc., but excludes 'mobile s...

  8. Receptor model-based source apportionment of particulate pollution in Hyderabad, India.

    PubMed

    Guttikunda, Sarath K; Kopakka, Ramani V; Dasari, Prasad; Gertler, Alan W

    2013-07-01

    Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2 ± 24.6, 96.2 ± 12.1, and 64.3 ± 21.2 μg/m(3) of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m(3). In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60%). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.

  9. New isotopic evidence of lead contamination in wheat grain from atmospheric fallout.

    PubMed

    Yang, Jun; Chen, Tongbin; Lei, Mei; Zhou, Xiaoyong; Huang, Qifei; Ma, Chuang; Gu, Runyao; Guo, Guanghui

    2015-10-01

    Crops could accumulate trace metals by soil-root transfer and foliar uptake from atmospheric fallout, and an accurate assessment of pollution sources is a prerequisite for preventing heavy metal pollution in agricultural products. In this study, we examined Pb isotope rates to trace the sources of Pb in wheat grain grown in suburbs. Results showed that, even in zones with scarcely any air pollution spots, atmospheric fallout was still a considerable source of Pb accumulation in wheat. The concentration of Pb in wheat grain has poor correlation with that in farm soil. The Pb concentration in wheat grains with dust in bran coat was significantly higher than that in wheat grains, which indicates that Pb may accumulate by foliar uptake. The Pb isotope rate has obvious differences between the soil and atmospheric fallout, and scatter ratio is significantly closer between the wheat grain and atmospheric fallout. Atmospheric fallout is a more significant source of Pb concentration in wheat grains than in soil. As far as we know, this is the first study on the main sources of lead in grain crop (wheat) samples with isotope. This study aims to improve our understanding of the translocation of foliar-absorbed metals to nonexposed parts of plants.

  10. Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter aquifer system (NE Spain) using a multi-isotope approach.

    PubMed

    Puig, Roger; Soler, Albert; Widory, David; Mas-Pla, Josep; Domènech, Cristina; Otero, Neus

    2017-02-15

    Nitrate pollution is a widespread issue affecting global water resources with significant economic and health effects. Knowledge of both the corresponding pollution sources and of processes naturally attenuating them is thus of crucial importance in assessing water management policies and the impact of anthropogenic activities. In this study, an approach combining hydrodynamic, hydrochemical and multi-isotope systematics (8 isotopes) is used to characterize the sources of nitrate pollution and potential natural attenuation processes in a polluted basin of NE Spain. δ 2 H and δ 18 O isotopes were used to further characterize the sources of recharge of the aquifers. Results show that NO 3 - is not homogeneously distributed and presents a large range of concentrations, from no NO 3 - to up to 480mgL -1 . δ 15 N and δ 18 O of dissolved NO 3 - identified manure as the main source of nitrate, although sewage and mineral fertilizers can also be isotopically detected using boron isotopes (δ 11 B) and δ 34 S and δ 18 O of dissolved sulphate, respectively. The multi-isotope approach proved that natural denitrification is occurring, especially in near-river environments or in areas hydrologically related to fault zones. δ 34 S and δ 18 O indicated that denitrification is not driven by pyrite oxidation but rather by the oxidation of organic matter. This could not be confirmed by the study of δ 13 C HCO3 that was buffered by the entanglement of other processes and sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nonpoint Source Pollution: Agriculture, Forestry, and Mining. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Buskirk, E. Drannon, Jr.

    Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…

  12. 40 CFR Table 4 to Part 455 - BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That use End-of-Pipe Biological Treatment 4 Table 4... Limitations for Priority Pollutants for Direct Discharge Point Sources That use End-of-Pipe Biological...

  13. Final Environmental Impact Statement for Langley

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Langley Research Center is described, together with the nature of its activities, from which it can be seen that the Center is basically not a major pollution source. Geographical, geological, and climatic charateristics of the site are also described. inasmuch as they influence both the choice of disposal methods and the environmental effects of the pollutants. The known or probable pollution sources at the Center are described. Where the intensities of these sources might exceed the recommended guide-lines, the corrective actions that have been taken or are being taken are described. The entire inventory of pollution sources and control methods is summarized in an appendix.

  14. 40 CFR 415.534 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Nitrate Production Subcategory § 415.534 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart BA—Silver Nitrate Pollution or pollutant property...

  15. 40 CFR 415.534 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Nitrate Production Subcategory § 415.534 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart BA—Silver Nitrate Pollution or pollutant property...

  16. 40 CFR 415.384 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Chloride Production Subcategory § 415.384 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart AL—Ferric Chloride Pollutant or pollutant property...

  17. 40 CFR 415.534 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Nitrate Production Subcategory § 415.534 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart BA—Silver Nitrate Pollution or pollutant property...

  18. 40 CFR 415.534 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Nitrate Production Subcategory § 415.534 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart BA—Silver Nitrate Pollution or pollutant property...

  19. 40 CFR 415.534 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Nitrate Production Subcategory § 415.534 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart BA—Silver Nitrate Pollution or pollutant property...

  20. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River

    PubMed Central

    Kirschner, A.K.T.; Reischer, G.H.; Jakwerth, S.; Savio, D.; Ixenmaier, S.; Toth, E.; Sommer, R.; Mach, R.L.; Linke, R.; Eiler, A.; Kolarevic, S.; Farnleitner, A.H.

    2017-01-01

    The microbial faecal pollution of rivers has wide-ranging impacts on a variety of human activities that rely on appropriate river water quality. Thus, detailed knowledge of the extent and origin of microbial faecal pollution is crucial for watershed management activities to maintain safe water use. In this study, the microbial faecal pollution levels were monitored by standard faecal indicator bacteria (SFIB) along a 2580 km stretch of the Danube, the world's most international river, as well as the Danube's most important tributaries. To track the origin of faecal pollution, host-associated Bacteroidetes genetic faecal marker qPCR assays for different host groups were applied in concert with SFIB. The spatial resolution analysis was followed by a time resolution analysis of faecal pollution patterns over 1 year at three selected sites. In this way, a comprehensive faecal pollution map of the total length of the Danube was created, combining substantiated information on both the extent and origin of microbial faecal pollution. Within the environmental data matrix for the river, microbial faecal pollution constituted an independent component and did not cluster with any other measured environmental parameters. Generally, midstream samples representatively depicted the microbial pollution levels at the respective river sites. However, at a few, somewhat unexpected sites, high pollution levels occurred in the lateral zones of the river while the midstream zone had good water quality. Human faecal pollution was demonstrated as the primary pollution source along the whole river, while animal faecal pollution was of minor importance. This study demonstrates that the application of host-associated genetic microbial source tracking markers in concert with the traditional concept of microbial faecal pollution monitoring based on SFIB significantly enhances the knowledge of the extent and origin of microbial faecal pollution patterns in large rivers. It constitutes a powerful tool to guide target-oriented water quality management in large river basins. PMID:28806705

  1. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River.

    PubMed

    Kirschner, A K T; Reischer, G H; Jakwerth, S; Savio, D; Ixenmaier, S; Toth, E; Sommer, R; Mach, R L; Linke, R; Eiler, A; Kolarevic, S; Farnleitner, A H

    2017-11-01

    The microbial faecal pollution of rivers has wide-ranging impacts on a variety of human activities that rely on appropriate river water quality. Thus, detailed knowledge of the extent and origin of microbial faecal pollution is crucial for watershed management activities to maintain safe water use. In this study, the microbial faecal pollution levels were monitored by standard faecal indicator bacteria (SFIB) along a 2580 km stretch of the Danube, the world's most international river, as well as the Danube's most important tributaries. To track the origin of faecal pollution, host-associated Bacteroidetes genetic faecal marker qPCR assays for different host groups were applied in concert with SFIB. The spatial resolution analysis was followed by a time resolution analysis of faecal pollution patterns over 1 year at three selected sites. In this way, a comprehensive faecal pollution map of the total length of the Danube was created, combining substantiated information on both the extent and origin of microbial faecal pollution. Within the environmental data matrix for the river, microbial faecal pollution constituted an independent component and did not cluster with any other measured environmental parameters. Generally, midstream samples representatively depicted the microbial pollution levels at the respective river sites. However, at a few, somewhat unexpected sites, high pollution levels occurred in the lateral zones of the river while the midstream zone had good water quality. Human faecal pollution was demonstrated as the primary pollution source along the whole river, while animal faecal pollution was of minor importance. This study demonstrates that the application of host-associated genetic microbial source tracking markers in concert with the traditional concept of microbial faecal pollution monitoring based on SFIB significantly enhances the knowledge of the extent and origin of microbial faecal pollution patterns in large rivers. It constitutes a powerful tool to guide target-oriented water quality management in large river basins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    EPA Science Inventory

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  3. SOURCE PARTITIONING USING STABLE ISOTOPES: COPING WITH TOO MANY SOURCES

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in environmental studies. One application is to use isotopic ratios to quantitatively determine the proportional contribution of several sources to a mixture, such as the proportion of various pollution sources in a waste st...

  4. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water.

    PubMed

    Ahmed, W; Staley, C; Sadowsky, M J; Gyawali, P; Sidhu, J P S; Palmer, A; Beale, D J; Toze, S

    2015-10-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Detection of aerosol pollution sources during sandstorms in Northwestern China using remote sensed and model simulated data

    NASA Astrophysics Data System (ADS)

    Filonchyk, Mikalai; Yan, Haowen; Yang, Shuwen; Lu, Xiaomin

    2018-02-01

    The present paper has used a comprehensive approach to study atmosphere pollution sources including the study of vertical distribution characteristics, the epicenters of occurrence and transport of atmospheric aerosol in North-West China under intensive dust storm registered in all cities of the region in April 2014. To achieve this goal, the remote sensing data using Moderate Resolution Imaging Spectroradiometer satellite (MODIS) as well as model-simulated data, were used, which facilitate tracking the sources, routes, and spatial extent of dust storms. The results of the study have shown strong territory pollution with aerosol during sandstorm. According to ground-based air quality monitoring stations data, concentrations of PM10 and PM2.5 exceeded 400 μg/m3 and 150 μg/m3, respectively, the ratio PM2.5/PM10 being within the range of 0.123-0.661. According to MODIS/Terra Collection 6 Level-2 aerosol products data and the Deep Blue algorithm data, the aerosol optical depth (AOD) at 550 nm in the pollution epicenter was within 0.75-1. The vertical distribution of aerosols indicates that the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 532 nm total attenuates backscatter coefficient ranges from 0.01 to 0.0001 km-1 × sr-1 with the distribution of the main types of aerosols in the troposphere of the region within 0-12.5 km, where the most severe aerosol contamination is observed in the lower troposphere (at 3-6 km). According to satellite sounding and model-simulated data, the sources of pollution are the deserted regions of Northern and Northwestern China.

  6. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.

    PubMed

    Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing

    2017-12-01

    It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of the impacts of climate change and the need to incorporate extreme conditions in managing water environment and developing climate change adaptation and mitigation strategies.

  7. The Southeastern Aerosol Research and Characterization (SEARCH) study: spatial variations and chemical climatology, 1999-2010.

    PubMed

    Blanchard, C L; Hidy, G M; Tanenbaum, S; Edgerton, E S; Hartsell, B E

    2013-03-01

    The Southeastern Aerosol Research and Characterization (SEARCH) study, which has been in continuous operation from 1999 to 2012, was implemented to investigate regional and urban air pollution in the southeastern United States. With complementary data from other networks, the SEARCH measurements provide key knowledge about long-term urban/nonurban pollution contrasts and regional climatology affecting inland locations and sites along the Gulf of Mexico coastline. Analytical approaches ranging from comparisons of mean concentrations to the application of air mass trajectories and principal component analysis provide insight into local and area-wide pollution. Gases (carbon monoxide, sulfur dioxide, nitrogen oxides, ozone, and ammonia), fine particle mass concentration, and fine particle species concentrations (including sulfate, elementary carbon, and organic carbon) are affected by a combination of regional conditions and local emission sources. Urban concentrations in excess of regional baselines and intraurban variations of concentrations depend on source proximity, topography, and local meteorological processes. Regional-scale pollution events (95th percentile concentrations) involving more than 6 of the 8 SEARCH sites are rare (< 2% of days), while subregional events affecting 4-6 sites occur on approximately 10% of days. Regional and subregional events are characterized by widely coincident elevated concentrations of ozone, sulfate, and particulate organic carbon, driven by persistent synoptic-scale air mass stagnation and higher temperatures that favor formation of secondary species, mainly in the summer months. The meteorological conditions associated with regional stagnation do not favor long-range transport of polluted air masses during episodes. Regional and subregional pollution events frequently terminate with southward and eastward penetration of frontal systems, which may initially reduce air pollutant concentrations more inland than along the Gulf Coast. Regional distribution of emission sources and synoptic-scale meteorological influences favoring stagnation lead to high regionwide pollution levels. The regional influence is greatest with secondary species, including ozone (03) particulate sulfate (SO4), and particulate organic matter, some of which is produced by atmospheric oxidation of volatile organic compounds (VOCs) from vegetation and anthropogenic sources. Other species, many of which are from primary emissions, are more influenced by local sources, especially within the Atlanta, GA, and Birmingham, AL, metropolitan areas. Limited measurements of modern and fossil total carbon point to the importance of biological and biogenic emissions in the Southeast.

  8. Implications of salinity pollution hotspots on agricultural production

    NASA Astrophysics Data System (ADS)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally, large metropolitan regions are initially loading hotspots and pollution, too, and prevention becomes important as point sources are dependent on sewer connection rates and treatment levels. In conclusion, this study provides a detailed picture of the spatial and temporal distribution of salinity pollution and identifies hotspot areas as well as the dominant sources. Furthermore, impacts of water quality degradation on agricultural production and food security are quantified, which aim for a better understanding of the risks for food security caused by water quality impairment.

  9. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  10. Turbulent Plume Dispersion over Two-dimensional Idealized Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Wong, C. C. C.; Liu, C. H.

    2012-04-01

    Human activities are the primary pollutant sources which degrade the living quality in the current era of dense and compact cities. A simple and reasonably accurate pollutant dispersion model is helpful to reduce pollutant concentrations in city or neighborhood scales by refining architectural design or urban planning. The conventional method to estimate the pollutant concentration from point/line sources is the Gaussian plume model using empirical dispersion coefficients. Its accuracy is pretty well for applying to rural areas. However, the dispersion coefficients only account for the atmospheric stability and streamwise distance that often overlook the roughness of urban surfaces. Large-scale buildings erected in urban areas significantly modify the surface roughness that in turn affects the pollutant transport in the urban canopy layer (UCL). We hypothesize that the aerodynamic resistance is another factor governing the dispersion coefficient in the UCL. This study is thus conceived to study the effects of urban roughness on pollutant dispersion coefficients and the plume behaviors. Large-eddy simulations (LESs) are carried out to examine the plume dispersion from a ground-level pollutant source over idealized 2D street canyons in neutral stratification. Computations with a wide range of aspect ratios (ARs), including skimming flow to isolated flow regimes, are conducted. The vertical profiles of pollutant distribution for different values of friction factor are compared that all reach a self-similar Gaussian shape. Preliminary results show that the pollutant dispersion is closely related to the friction factor. For relatively small roughness, the factors of dispersion coefficient vary linearly with the friction factor until the roughness is over a certain level. When the friction factor is large, its effect on the dispersion coefficient is less significant. Since the linear region covers at least one-third of the full range of friction factor in our empirical analysis, urban roughness is a major factor for dispersion coefficient. The downstream air quality could then be a function of both atmospheric stability and urban roughness.

  11. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is more humid. A variety of other indices are used to explain the sediments yields. These indices, such as the average percentage of slope, the distance to the stream, the relative position in landscape, the position to the water table, etc. are mainly derived from high precision elevation data. All these data are used to locate critical source areas that generally correspond to a restraint part of the territory but account for the principal amount of sediments exports. Once the critical source areas are identified, best management practices (BMPs) (per example : contaminant source control practices, conservation cropping practices and surface runoff control structures) can be planned. This way, money and energy are used where it really counts. In this presentation, the complete methodology including LiDAR data processing will be explained. The results and the possibility to reproduce the developed method will be discussed.

  12. Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.

    PubMed

    Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem

    2016-07-01

    The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.

  13. Impacts of urbanization on regional nonpoint source pollution: case study for Beijing, China.

    PubMed

    Zhi, Xiaosha; Chen, Lei; Shen, Zhenyao

    2018-04-01

    Due to limits on available data, the effects of urban sprawl on regional nonpoint source pollution (NPS) have not been investigated over long time periods. In this paper, the characteristics of urban sprawl from 1999 to 2014 in Beijing were explored by analyzing historical land-use data. The Event Mean Concentration data have been collected from all available references, which were used to estimate the variation in urban NPSs. Moreover, the impacts of variation in urban sprawl on regional NPSs were qualified. The results indicated that the urbanization process showed different influences on pollutants, while COD and TN were identified as key NPS pollutants. Residential areas contributed more NPS pollutants than did roads, which played a tremendous role in the control of urban NPS. The results also suggested in part that the impact of urban sprawl on the variation of COD decreased while TN increased in Beijing during the study period. These results would provide insight into the impacts of urban sprawl on NPS variation over a long period, as well as the reference for reasonable urban planning directives.

  14. [Exploring the Severe Haze in Beijing During December, 2015: Pollution Process and Emissions Variation].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Nie, Teng; Pan, Tao; Qi, Jun; Nie, Lei; Wang, Zhan-shan; Li, Yun-ting; Li, Xue-feng; Tian, He-zhong

    2016-05-15

    Severe haze episodes shrouded Beijing and its surrounding regions again during December, 2015, causing major environmental and health problems. Beijing authorities had launched two red alerts for atmospheric heavy pollution in this period, adopted a series of emergency control measures to reduce the emissions from major pollution sources. To better understand the pollution process and emissions variation during these extreme pollution events, we performed a model-assisted analysis of the hourly observation data of PM₂.₅, and meteorological parameters combined with the emissions variation of pollution sources. The synthetic analysis indicated that: (1) Compared with the same period of last year, the emissions of atmospheric pollution sources decreased in December 2015. However, the emission levels of primary pollutants were still rather high, which were the main intrinsic causes for haze episodes, and the unfavorable diffusion conditions represented the important external factor. High source emissions and meteorological factors together led to this heavy air pollution process. (2) Emergency control measures taken by the red alert for heavy air pollution could decrease the pollutants emission by about 36% and the PM₂.₅ concentrations by 11% to 21%. Though the implementation of red alert could not reverse the evolution trend of heavier pollution, it indeed played an active role in mitigation of PM₂.₅ pollution aggravating. (3) Under the heavy pollution weather conditions, air pollutants continued to accumulate in the atmosphere, and the maximum effect by taking emergency measures occurred 48-72 hours after starting the implementation; therefore, the best time for executing emergency measures should be 36-48 hours before the rapid rise of PM₂.₅ concentration, which requires a more powerful demand on the accuracy of air quality forecast.

  15. Commuting behaviors and exposure to air pollution in Montreal, Canada.

    PubMed

    Miao, Qun; Bouchard, Michèle; Chen, Dongmei; Rosenberg, Mark W; Aronson, Kristan J

    2015-03-01

    Vehicular traffic is a major source of outdoor air pollution in urban areas, and studies have shown that air pollution is worse during hours of commuting to and from work and school. However, it is unclear to what extent different commuting behaviors are a source of air pollution compared to non-commuters, and if air pollution exposure actually differs by the mode of commuting. This study aimed to examine the relationships between commuting behaviors and air pollution exposure levels measured by urinary 1-OHP (1-hydroxypyrene), a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs). A cross-sectional study of 174 volunteers living in Montreal, 92 females and 82 males, aged 20 to 53 years was conducted in 2011. Each participant completed a questionnaire regarding demographic factors, commuting behaviors, home and workplace addresses, and potential sources of PAH exposure, and provided a complete first morning void urine sample for 1-OHP analysis. Multivariable general linear regression models were used to examine the relationships between different types of commuting and urinary 1-OHP levels. Compared to non-commuters, commuters traveling by foot or bicycle and by car or truck had a significantly higher urinary 1-OHP concentration in urine (p=0.01 for foot or bicycle vs. non-commuters; p=0.02 for car or truck vs. non-commuters); those traveling with public transportation and combinations of two or more types of modes tended to have an increased 1-OHP level in urine (p=0.06 for public transportation vs. non-commuters; p=0.05 for commuters with combinations of two or more types of modes vs. non-commuters). No significant difference in urinary 1-OHP variation was found by mode of commuting. This preliminary study suggests that despite the mode of commuting, all types of commuting during rush hours increase exposure to air pollution as measured by a sensitive PAH metabolite biomarker, and mode of commuting did not explain exposure variation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Detection of the Nitrate Pollution Sources in Shallow Aquifer, Using Integration of RS&GIS with Stable Isotopes Technologies

    NASA Astrophysics Data System (ADS)

    Shakak, N. B. I.

    2018-04-01

    Geographical information system (GIS) and remote sensing technique is a tool which is used for acquiring data from space, storing, analyzing and displaying spatial data, also can use for investigating source of environmental pollution which is affect health. Sudan landsat mosaic image which acquired in 2013 was used in this study to develop land use and land cover maps for tow selected study area, Khartoum urban area, and Bara locality in North kordofan state western Sudan. The main objective to assess the source of Nitrate pollution in shallow aquifer. ERDAS software was used to create land cover-land use maps for the study areas. For Khartoum town we used land sat mosaic image which acquire in 2013, and used supervised classification which more closely controlled than unsupervised. In this process, we select pixel that represent patterns you recognized or can identify with help from knowledge of the data, the classes desired, and the algorithm to be used is required. In this paper we integrated the (GIS&RS), and stable isotopes methods for fingerprinting Nitrate sources in shallow boreholes. The global positioning system (GPS), used in the field to identify the shallow boreholes location in a three dimensional coordinate (Latitude, longitude, and altitude), Water samples were collected from 19 shallow boreholes in the study areas according to the standard sampling method send to laboratory to measure stable nitrogen (δ15Nnitrate), and Nitrate-oxygen (δ18Onitrate) isotopes. Analysis were conducted by using isotope ratio mass spectrometry (IRMS). We can conclude that, special distribution and integration of GIs & RS help to identify the source of nitrate pollution.

  17. MANAGING EXPOSURE TO INDOOR AIR POLLUTANTS IN RESIDENTIAL AND OFFICE ENVIRONMENTS

    EPA Science Inventory

    The paper discusses the factors to be considered in managing indoor air pollutants in residential and office environments to reduce occupant exposures. Techniques for managing indoor air pollution sources include: source elimination, substitution, modification, and pretreatment a...

  18. 40 CFR 461.45 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Leclanche.... (1) Subpart D—Foliar Battery Miscellaneous Wash—PSNS. Pollutant or pollutant property Maximum for any... shall be no discharge allowance for process wastewater pollutants from any battery manufacturing...

  19. 40 CFR 461.45 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Leclanche.... (1) Subpart D—Foliar Battery Miscellaneous Wash—PSNS. Pollutant or pollutant property Maximum for any... shall be no discharge allowance for process wastewater pollutants from any battery manufacturing...

  20. 40 CFR 461.45 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Leclanche.... (1) Subpart D—Foliar Battery Miscellaneous Wash—PSNS. Pollutant or pollutant property Maximum for any... shall be no discharge allowance for process wastewater pollutants from any battery manufacturing...

  1. 40 CFR 420.124 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.124...) Wire products and fasteners. Subpart L Pollutant or pollutant property New source performance standards...

  2. 40 CFR 420.86 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling... and wire. Subpart H Pollutant or pollutant property Pretreatment standards for new sources Maximum for...

  3. 40 CFR 420.86 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling... and wire. Subpart H Pollutant or pollutant property Pretreatment standards for new sources Maximum for...

  4. 40 CFR 420.124 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.124...) Wire products and fasteners. Subpart L Pollutant or pollutant property New source performance standards...

  5. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China

    PubMed Central

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  6. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.

    PubMed

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-12-11

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index I(geo) and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. I(geo) classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes.

  7. Tracking sensitive source areas of different weather pollution types using GRAPES-CUACE adjoint model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; An, Xingqin; Zhai, Shixian; Hou, Qing; Sun, Zhaobin

    2018-02-01

    In this study, the sustained pollution processes were selected during which daily PM2.5 concentration exceeded 75 μg/m3 for three days continuously based on the hourly data of Beijing observation sites from July 2012 to December 2015. Using the China Meteorological Administration (CMA) MICAPS meteorological processing system, synoptic situation during PM2.5 pollution processes was classified into five weather types: low pressure and weak high pressure alternating control, weak high pressure, low pressure control, high rear, and uniform pressure field. Then, we chose the representative pollution cases corresponding to each type, adopted the GRAPES-CUACE adjoint model tracking the sensitive source areas of the five types, and analyzed the critical discharge periods of Beijing and neighboring provinces as well as their contribution to the PM2.5 peak concentration in Beijing. The results showed that the local source plays the main theme in the 30 h before the objective time, and prior to 72 h before the objective time contribution of local sources for the five pollution types are 37.5%, 25.0%, 39.4%, 31.2%, and 42.4%, respectively; the Hebei source contributes constantly in the 57 h ahead of the objective time with the contribution proportion ranging from 37% to 64%; the contribution period and rate of Tianjin and Shanxi sources are shorter and smaller. Based on the adjoint sensitivity analysis, we further discussed the effect of emission reduction control measures in different types, finding that the effect of local source reduction in the first 20 h of the objective time is better, and if the local source is reduced 50% within 72 h before the objective time, the decline rates of PM2.5 in the five types are 11.6%, 9.4%, 13.8%, 9.9% and 15.2% respectively. And the reduction effect of the neighboring sources is better within the 3-57 h before the objective time.

  8. Economic-environmental modeling of point source pollution in Jefferson County, Alabama, USA.

    PubMed

    Kebede, Ellene; Schreiner, Dean F; Huluka, Gobena

    2002-05-01

    This paper uses an integrated economic-environmental model to assess the point source pollution from major industries in Jefferson County, Northern Alabama. Industrial expansion generates employment, income, and tax revenue for the public sector; however, it is also often associated with the discharge of chemical pollutants. Jefferson County is one of the largest industrial counties in Alabama that experienced smog warnings and ambient ozone concentration, 1996-1999. Past studies of chemical discharge from industries have used models to assess the pollution impact of individual plants. This study, however, uses an extended Input-Output (I-O) economic model with pollution emission coefficients to assess direct and indirect pollutant emission for several major industries in Jefferson County. The major findings of the study are: (a) the principal emission by the selected industries are volatile organic compounds (VOC) and these contribute to the ambient ozone concentration; (b) the direct and indirect emissions are significantly higher than the direct emission by some industries, indicating that an isolated analysis will underestimate the emission by an industry; (c) while low emission coefficient industries may suggest industry choice they may also emit the most hazardous chemicals. This study is limited by the assumptions made, and the data availability, however it provides a useful analytical tool for direct and cumulative emission estimation and generates insights on the complexity in choice of industries.

  9. Building Assessment Survey and Evaluation Study: Summarized Data - Test Space Pollutant Sources

    EPA Pesticide Factsheets

    information collected regarding sources that may have potential impact on the building in terms of indoor air quality including sources such as past or current water damage, pesticide application practices, special use spaces, etc.

  10. Linking Meteorology, Air Quality Models and Observations to ...

    EPA Pesticide Factsheets

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion

  11. Modeling population exposures to outdoor sources of hazardous air pollutants.

    PubMed

    Ozkaynak, Halûk; Palma, Ted; Touma, Jawad S; Thurman, James

    2008-01-01

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs or when individuals are exposed to either on- or nonroad sources of HAPs during their daily activities. These findings underscore the importance of applying exposure-modeling methods, which incorporate information on time-activity, commuting, and exposure factors data, for the purposes of assigning exposures in air pollution health studies.

  12. The Impact of Urban Development on the Water Quality in the Las Vegas Watershed

    NASA Astrophysics Data System (ADS)

    Yu, A.; Simmons, C.; Acharya, K.

    2009-12-01

    Las Vegas, one of the fastest growing cities in the nation, must have its water strictly monitored for quality as well as degree of pollution. Samples at various sites were collected to analyze the current pollution status of our water bodies (in both residential and urban settings) in the Las Vegas watershed. These gathered samples (sediment and water) were collected and analyzed for measuring total phosphorus, total organic carbon, trace metal contents, i.e., selenium, arsenic, mercury and lead, as well as pathogens, i.e., E-coli and total coliform counts. The concentrations of various pollutions will be compared among different sites as well as natural local sites (due to the natural occurrence of a few trace metals and normal levels of other measurements) and analyzed for spatial distribution for source identification and for elucidating the cause and consequence. Preliminary analyses of the results indicate that nonpoint source pollutions (golf courses, construction sites, etc.) have larger impacts than point source pollutions such as wastewater treatment effluents. This study will help understand and evaluate the degradation of the water quality caused by the increase of human actions in recent years in Las Vegas.

  13. 40 CFR 420.134 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg. 1 TSS 0.00998 0.00465... operations. Subpart M—New Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg...

  14. 40 CFR 420.134 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg. 1 TSS 0.00998 0.00465... operations. Subpart M—New Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg...

  15. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.

  16. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives

    NASA Astrophysics Data System (ADS)

    Andrade, Maria de Fatima; Kumar, Prashant; de Freitas, Edmilson Dias; Ynoue, Rita Yuri; Martins, Jorge; Martins, Leila D.; Nogueira, Thiago; Perez-Martinez, Pedro; de Miranda, Regina Maura; Albuquerque, Taciana; Gonçalves, Fabio Luiz Teixeira; Oyama, Beatriz; Zhang, Yang

    2017-06-01

    We present a comprehensive review of published results from the last 30 years regarding the sources and atmospheric characteristics of particles and ozone in the Metropolitan Area of São Paulo (MASP). During the last 30 years, many efforts have been made to describe the emissions sources and to analyse the primary and secondary formation of pollutants under a process of increasing urbanisation in the metropolitan area. From the occurrence of frequent violations of air quality standards in the 1970s and 1980s (due to the uncontrolled air pollution sources) to a substantial decrease in the concentrations of the primary pollutants, many regulations have been imposed and enforced, although those concentrations do not yet conform to the World Health Organization guidelines. The greatest challenge currently faced by the São Paulo State Environmental Protection Agency and the local community is controlling secondary pollutants such as ozone and fine particles. Understanding the formation of these secondary pollutants, by experimental or modelling approaches, requires the description of the atmospheric chemical processes driven by biofuel, ethanol and biodiesel emissions. Exposure to air pollution is the cause of many injuries to human health, according to many studies performed not only in the region but also worldwide, and affects susceptible populations such as children and the elderly. The MASP is the biggest megacity in the Southern Hemisphere, and its specifics are important for other urban areas that are facing the challenge of intensive growth that puts pressure on natural resources and worsens the living conditions in urban areas. This text discusses how imposing regulations on air quality and emission sources, mainly related to the transportation sector, has affected the evolution of pollutant concentrations in the MASP.

  17. Local air pollution in the Arctic: knowledge gaps, challenges and future directions

    NASA Astrophysics Data System (ADS)

    Law, K.; Schmale, J.; Anenberg, S.; Arnold, S.; Simpson, W. R.; Mao, J.; Starkweather, S.

    2017-12-01

    It is estimated that about 30 % of the world's undiscovered gas and 13 % of undiscovered oil resources are located in the Arctic. Sea ice loss with climate change is progressing rapidly and by 2050 the Arctic could be nearly sea ice free in summer. This will allow for Arctic industrialization, commercial shipping, fishing and tourism to increase. Given that the world population is projected to grow beyond 9 billion by mid-century needing more resources, partly to be found in the Arctic, it can be expected that the current urbanization trend in the region will accelerate in the future. Against this background, it is likely that new local emission sources emerge which may lead to increased burdens of air pollutants such as particulate matter (PM), reactive nitrogen, and ozone. Typical Arctic emission sources include road transport, domestic fuel burning, diesel emissions, as well as industrial sources such as oil and gas extraction, metallurgical smelting, power generation as well as shipping in coastal areas. These emissions and their impacts remain poorly quantified in the Arctic. Boreal wildfires can already affect summertime air quality and may increase in frequency and size in a warmer climate. Locally produced air pollution, in combination with cold, stagnant weather conditions and inversion layers in winter, can also lead to significant localized pollutant concentrations, often in exceedance of air quality standards. Despite these concerns, very few process studies on local air pollution in or near inhabited areas in the Arctic have been conducted, which significantly limits our understanding of atmospheric chemical reactions involving air pollutants under Arctic conditions (e.g., extremely cold and dry air with little solar radiation in winter) and their impacts on human health and ecosystems. We will provide an overview of our current understanding of local air pollution and its impacts in Arctic urban environments and highlight key gaps. We will discuss a new interdisciplinary study being designed under PACES to improve our knowledge of pollutant sources, processing and health impacts including participation of local residents and policy-makers.

  18. Pollutant concentrations and pollution loads in stormwater runoff from different land uses in Chongqing.

    PubMed

    Wang, Shumin; He, Qiang; Ai, Hainan; Wang, Zhentao; Zhang, Qianqian

    2013-03-01

    To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing, six typical land use types were selected and studied from August 2009 to September 2011. Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff, and the concentrations of the same pollutant also vary greatly in different rainfall events. In addition, it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR), commercial areas (CA), concrete roofs (CR), tile roofs (TRoof), and campus catchment areas (CCA); and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-II standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002). The EMCs of Fe, Pb and Cd are also much higher than the class-III standard values. The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS, COD and TP is UTR. The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR, while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA. The results of this study provide a reference for better management of non-point source pollution in urban regions.

  19. Atmospheric Mercury Transport and Chemistry in Western Canada and the Arctic: Results from the IPY Project INCATPA

    NASA Astrophysics Data System (ADS)

    Cole, A. S.; Steffen, A.; Hung, H.

    2010-12-01

    Elevated levels of mercury and other pollutants are an ongoing threat to the health of Arctic people and wildlife, despite the vast distance that separates the region from major anthropogenic sources of these contaminants. The International Polar Year (IPY) project INterContinental Atmospheric Transport of anthropogenic Pollutants to the Arctic (INCATPA) is investigating the transport of pollutants, specifically persistent organic pollutants and mercury, from source regions to the remote Arctic. Transport from Asia is of particular interest since Asian sources comprise a significant and increasing fraction of global mercury emissions. The INCATPA project is also studying how climate change may affect atmospheric chemistry and transport of these pollutants in the Arctic. Mercury studies under INCATPA have involved concurrent measurements of ambient mercury during the period 2007-2009 at new and ongoing sites in Arctic and Pan-Pacific regions. These data include a first look at ambient mercury levels in areas of western Canada where mercury had not previously been monitored. At some sites, mercury measurements were analyzed along with supplementary data to assess contributions from local and long-distance sources. Long-term Arctic monitoring data were also used to address how climate change may already be affecting mercury chemistry and deposition in this region. As IPY and the INCATPA project wind down, their legacy is a continuation of mercury monitoring at these sites and new international scientific relationships to support growing international cooperation on the delivery of sound science for the development of public policy on mercury.

  20. 40 CFR Appendix A to Part 63 - Test Methods Pollutant Measurement Methods From Various Waste Media

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Test Methods Pollutant Measurement... POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) Pt. 63, App. A Appendix A to Part 63—Test Methods Pollutant... analyte spiking? 13.0How do I conduct tests at similar sources? Optional Requirements 14.0How do I use and...

  1. 40 CFR Appendix A to Part 63 - Test Methods Pollutant Measurement Methods From Various Waste Media

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Test Methods Pollutant Measurement... POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) Pt. 63, App. A Appendix A to Part 63—Test Methods Pollutant... analyte spiking? 13.0How do I conduct tests at similar sources? Optional Requirements 14.0How do I use and...

  2. 40 CFR Appendix A to Part 63 - Test Methods Pollutant Measurement Methods From Various Waste Media

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Test Methods Pollutant Measurement... POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) Pt. 63, App. A Appendix A to Part 63—Test Methods Pollutant... analyte spiking? 13.0How do I conduct tests at similar sources? Optional Requirements 14.0How do I use and...

  3. 40 CFR Appendix A to Part 63 - Test Methods Pollutant Measurement Methods From Various Waste Media

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Test Methods Pollutant Measurement... POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) Pt. 63, App. A Appendix A to Part 63—Test Methods Pollutant... analyte spiking? 13.0How do I conduct tests at similar sources? Optional Requirements 14.0How do I use and...

  4. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ng TEQ/dscm, corrected to 7 percent oxygen, for liquid fuel boilers equipped with a dry air pollution... by paragraph (a)(5) of this section for sources not equipped with a dry air pollution control system; (iii) A source equipped with a wet air pollution control system followed by a dry air pollution control...

  5. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ng TEQ/dscm, corrected to 7 percent oxygen, for liquid fuel boilers equipped with a dry air pollution... by paragraph (a)(5) of this section for sources not equipped with a dry air pollution control system; (iii) A source equipped with a wet air pollution control system followed by a dry air pollution control...

  6. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  7. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp

    EPA Science Inventory

    Chicken feces are vectors of human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a pre...

  8. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies

    EPA Science Inventory

    Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, beca...

  9. MONITORING AND MODELING METHODS FOR DEVELOPING AIR POLLUTION CONTROL STRATEGIES: A CASE STUDY IN THE NORTHWEST CZECH REPUBLIC

    EPA Science Inventory

    Scientists from the United States and the Czech Republic recently completed a study to investigate the ambient air quality impact of industrial and motor vehicle sources in Teplice. ir pollution measurements made from 1992 through 1993 provide data on ambient concentrations of su...

  10. Outdoor air pollution and asthma

    PubMed Central

    Guarnieri, Michael; Balmes, John R.

    2015-01-01

    Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma. PMID:24792855

  11. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART II

    EPA Science Inventory

    The southern Lake Michigan area continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban pollut...

  12. Mobile Air Quality Monitoring for Local High-Resolution Characterization of Vehicle-Sourced Criteria Pollutant

    DOT National Transportation Integrated Search

    2017-06-19

    Transportation-related emissions are a major source of air pollution in many urban areas. Human exposure to this pollution is related to their proximity to major roadways, yet federal and state Environmental Protection Agencies (EPAs) conduct regulat...

  13. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  14. On - road mobile source pollutant emissions : identifying hotspots and ranking roads.

    DOT National Transportation Integrated Search

    2010-12-30

    A considerable amount of pollution to the air in the forms of hydrocarbons, carbon : monoxide (CO), nitrogen oxides (NOx), particulate matter (PM) and air toxics comes : from the on-road mobile sources. Estimation of the emissions of these pollutants...

  15. 40 CFR 461.43 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Leclanche Subcategory § 461... Battery Miscellaneous Wash—NSPS. Pollutant or pollutant property Maximum for any 1 day Maximum for monthly... process wastewater pollutants from any battery manufacturing operation other than those battery...

  16. 40 CFR 461.43 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Leclanche Subcategory § 461... Battery Miscellaneous Wash—NSPS. Pollutant or pollutant property Maximum for any 1 day Maximum for monthly... process wastewater pollutants from any battery manufacturing operation other than those battery...

  17. 40 CFR 461.43 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Leclanche Subcategory § 461... Battery Miscellaneous Wash—NSPS. Pollutant or pollutant property Maximum for any 1 day Maximum for monthly... process wastewater pollutants from any battery manufacturing operation other than those battery...

  18. 40 CFR 63.8794 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Flexible... operate and maintain your affected source, including air pollution control and monitoring equipment...

  19. Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques.

    PubMed

    Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Zain, Sharifuddin Md; Habir, Nur Liyana Abdul; Retnam, Ananthy; Kamaruddin, Mohd Khairul Amri; Umar, Roslan; Azid, Azman

    2016-05-15

    This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time. The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. An open-terrain line source model coupled with street-canyon effects to forecast carbon monoxide at traffic roundabout.

    PubMed

    Pandian, Suresh; Gokhale, Sharad; Ghoshal, Aloke Kumar

    2011-02-15

    A double-lane four-arm roundabout, where traffic movement is continuous in opposite directions and at different speeds, produces a zone responsible for recirculation of emissions within a road section creating canyon-type effect. In this zone, an effect of thermally induced turbulence together with vehicle wake dominates over wind driven turbulence causing pollutant emission to flow within, resulting into more or less equal amount of pollutants upwind and downwind particularly during low winds. Beyond this region, however, the effect of winds becomes stronger, causing downwind movement of pollutants. Pollutant dispersion caused by such phenomenon cannot be described accurately by open-terrain line source model alone. This is demonstrated by estimating one-minute average carbon monoxide concentration by coupling an open-terrain line source model with a street canyon model which captures the combine effect to describe the dispersion at non-signalized roundabout. The results of the modeling matched well with the measurements compared with the line source model alone and the prediction error reduced by about 50%. The study further demonstrated this with traffic emissions calculated by field and semi-empirical methods. Copyright © 2010 Elsevier B.V. All rights reserved.

Top