Sample records for source presenting theoretical

  1. Identification of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; Totaro, N.; Guyader, J.-L.

    2010-08-01

    In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.

  2. The Pedagogy of Primary Historical Sources in Mathematics: Classroom Practice Meets Theoretical Frameworks

    ERIC Educational Resources Information Center

    Barnett, Janet Heine; Lodder, Jerry; Pengelley, David

    2014-01-01

    We analyze our method of teaching with primary historical sources within the context of theoretical frameworks for the role of history in teaching mathematics developed by Barbin, Fried, Jahnke, Jankvist, and Kjeldsen and Blomhøj, and more generally from the perspective of Sfard's theory of learning as communication. We present case studies…

  3. The Pedagogy of Primary Historical Sources in Mathematics: Classroom Practice Meets Theoretical Frameworks

    NASA Astrophysics Data System (ADS)

    Barnett, Janet Heine; Lodder, Jerry; Pengelley, David

    2014-01-01

    We analyze our method of teaching with primary historical sources within the context of theoretical frameworks for the role of history in teaching mathematics developed by Barbin, Fried, Jahnke, Jankvist, and Kjeldsen and Blomhøj, and more generally from the perspective of Sfard's theory of learning as communication. We present case studies for two of our guided student modules that are built around sequences of primary sources and are intended for learning core curricular material, one on logical implication, the other on the concept of a group. Additionally, we propose some conclusions about the advantages and challenges of using primary sources in teaching mathematics.

  4. The acoustic monopole in motion

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Liu, C. H.

    1976-01-01

    The results of an experiment are presented in which a small monochromatic source which behaves like an acoustic monopole when stationary is moved at a constant speed over an asphalt surface past stationary microphones. An analysis of the monopole moving above a finite impedance reflecting plane is given. The theoretical and experimental results are compared for different ground to observer heights, source frequencies, and source velocities. A computation of the effects of source acceleration on the noise radiated by the monopole is also presented.

  5. Common source cascode amplifiers for integrating IR-FPA applications

    NASA Technical Reports Server (NTRS)

    Woolaway, James T.; Young, Erick T.

    1989-01-01

    Space based astronomical infrared measurements present stringent performance requirements on the infrared detector arrays and their associated readout circuitry. To evaluate the usefulness of commercial CMOS technology for astronomical readout applications a theoretical and experimental evaluation was performed on source follower and common-source cascode integrating amplifiers. Theoretical analysis indicates that for conditions where the input amplifier integration capacitance is limited by the detectors capacitance the input referred rms noise electrons of each amplifier should be equivalent. For conditions of input gate limited capacitance the source follower should provide lower noise. Measurements of test circuits containing both source follower and common source cascode circuits showed substantially lower input referred noise for the common-source cascode input circuits. Noise measurements yielded 4.8 input referred rms noise electrons for an 8.5 minute integration. The signal and noise gain of the common-source cascode amplifier appears to offer substantial advantages in acheiving predicted noise levels.

  6. Development of the ion source for cluster implantation

    NASA Astrophysics Data System (ADS)

    Kulevoy, T. V.; Seleznev, D. N.; Kozlov, A. V.; Kuibeda, R. P.; Kropachev, G. N.; Alexeyenko, O. V.; Dugin, S. N.; Oks, E. M.; Gushenets, V. I.; Hershcovitch, A.; Jonson, B.; Poole, H. J.

    2014-02-01

    Bernas ion source development to meet needs of 100s of electron-volt ion implanters for shallow junction production is in progress in Institute for Theoretical and Experimental Physics. The ion sources provides high intensity ion beam of boron clusters under self-cleaning operation mode. The last progress with ion source operation is presented. The mechanism of self-cleaning procedure is described.

  7. The stratosphere: Present and future

    NASA Technical Reports Server (NTRS)

    Hudson, R. D. (Editor); Reed, E. I. (Editor)

    1979-01-01

    The present status of stratospheric science is discussed. The three basic elements of stratospheric science-laboratory measurements, atmospheric observations, and theoretical studies are presented along with an attempt to predict, with reasonable confidence, the effect on ozone of particular anthropogenic sources of pollution.

  8. The pressure distribution for biharmonic transmitting array: theoretical study

    NASA Astrophysics Data System (ADS)

    Baranowska, A.

    2005-03-01

    The aim of the paper is theoretical analysis of the finite amplitude waves interaction problem for the biharmonic transmitting array. We assume that the array consists of 16 circular pistons of the same dimensions that regrouped in two sections. Two different arrangements of radiating elements were considered. In this situation the radiating surface is non-continuous without axial symmetry. The mathematical model was built on the basis of the Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation. To solve the problem the finite-difference method was applied. On-axis pressure amplitude for different frequency waves as a function of distance from the source, transverse pressure distribution of these waves at fixed distances from the source and pressure amplitude distribution for them at fixed planes were examined. Especially changes of normalized pressure amplitude for difference frequency were studied. The paper presents mathematical model and some results of theoretical investigations obtained for different values of source parameters.

  9. Very high power THz radiation sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.

    2002-10-31

    We report the production of high power (20 watts average, {approx} 1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source to one based on ultrafast laser techniques.

  10. Numerical Models for Sound Propagation in Long Spaces

    NASA Astrophysics Data System (ADS)

    Lai, Chenly Yuen Cheung

    Both reverberation time and steady-state sound field are the key elements for assessing the acoustic condition in an enclosed space. They affect the noise propagation, speech intelligibility, clarity index, and definition. Since the sound field in a long space is non diffuse, classical room acoustics theory does not apply in this situation. The ray tracing technique and the image source methods are two common models to fathom both reverberation time and steady-state sound field in long enclosures nowadays. Although both models can give an accurate estimate of reverberation times and steady-state sound field directly or indirectly, they often involve time-consuming calculations. In order to simplify the acoustic consideration, a theoretical formulation has been developed for predicting both steady-state sound fields and reverberation times in street canyons. The prediction model is further developed to predict the steady-state sound field in a long enclosure. Apart from the straight long enclosure, there are other variations such as a cross junction, a long enclosure with a T-intersection, an U-turn long enclosure. In the present study, an theoretical and experimental investigations were conducted to develop formulae for predicting reverberation times and steady-state sound fields in a junction of a street canyon and in a long enclosure with T-intersection. The theoretical models are validated by comparing the numerical predictions with published experimental results. The theoretical results are also compared with precise indoor measurements and large-scale outdoor experimental results. In all of previous acoustical studies related to long enclosure, most of the studies are focused on the monopole sound source. Besides non-directional noise source, many noise sources in long enclosure are dipole like, such as train noise and fan noise. In order to study the characteristics of directional noise sources, a review of available dipole source was conducted. A dipole was constructed which was subsequent used for experimental studies. In additional, a theoretical model was developed for predicting dipole sound fields. The theoretical model can be used to study the effect of a dipole source on the speech intelligibility in long enclosures.

  11. Investigation of spherical loudspeaker arrays for local active control of sound.

    PubMed

    Peleg, Tomer; Rafaely, Boaz

    2011-10-01

    Active control of sound can be employed globally to reduce noise levels in an entire enclosure, or locally around a listener's head. Recently, spherical loudspeaker arrays have been studied as multiple-channel sources for local active control of sound, presenting the fundamental theory and several active control configurations. In this paper, important aspects of using a spherical loudspeaker array for local active control of sound are further investigated. First, the feasibility of creating sphere-shaped quiet zones away from the source is studied both theoretically and numerically, showing that these quiet zones are associated with sound amplification and poor system robustness. To mitigate the latter, the design of shell-shaped quiet zones around the source is investigated. A combination of two spherical sources is then studied with the aim of enlarging the quiet zone. The two sources are employed to generate quiet zones that surround a rigid sphere, investigating the application of active control around a listener's head. A significant improvement in performance is demonstrated in this case over a conventional headrest-type system that uses two monopole secondary sources. Finally, several simulations are presented to support the theoretical work and to demonstrate the performance and limitations of the system. © 2011 Acoustical Society of America

  12. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  13. Editorial of the PCCP themed issue on "Solvation Science".

    PubMed

    Morgenstern, Karina; Marx, Dominik; Havenith, Martina; Muhler, Martin

    2015-04-07

    The present special issue presents exciting experimental and theoretical results in the topic of "Solvation Science", a topic that emerges from physical, theoretical, and industrial chemistry, and is also of interest to a multitude of neighboring fields, such as inorganic and organic chemistry, biochemistry, physics and engineering. We hope that the articles will be highly useful for researchers who would like to enter this newly emerging area, and that it is a valuable source for the nucleation of new ideas and collaborations to better understand the active role of the solvent in reactions.

  14. Exploring uncertainty in the Earth Sciences - the potential field perspective

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Blakely, R. J.

    2013-12-01

    Interpretation of gravity and magnetic anomalies is mathematically non-unique because multiple theoretical solutions are possible. The mathematical label of 'non-uniqueness' can lead to the erroneous impression that no single interpretation is better in a geologic sense than any other. The purpose of this talk is to present a practical perspective on the theoretical non-uniqueness of potential field interpretation in geology. There are multiple ways to approach and constrain potential field studies to produce significant, robust, and definitive results. For example, a smooth, bell-shaped gravity profile, in theory, could be caused by an infinite set of physical density bodies, ranging from a deep, compact, circular source to a shallow, smoothly varying, inverted bell-shaped source. In practice, however, we can use independent geologic or geophysical information to limit the range of possible source densities and rule out many of the theoretical solutions. We can further reduce the theoretical uncertainty by careful attention to subtle anomaly details. For example, short-wavelength anomalies are a well-known and theoretically established characteristic of shallow geologic sources. The 'non-uniqueness' of potential field studies is closely related to the more general topic of scientific uncertainty in the Earth sciences and beyond. Nearly all results in the Earth sciences are subject to significant uncertainty because problems are generally addressed with incomplete and imprecise data. The increasing need to combine results from multiple disciplines into integrated solutions in order to address complex global issues requires special attention to the appreciation and communication of uncertainty in geologic interpretation.

  15. Number theoretical foundations in cryptography

    NASA Astrophysics Data System (ADS)

    Atan, Kamel Ariffin Mohd

    2017-08-01

    In recent times the hazards in relationships among entities in different establishments worldwide have generated exciting developments in cryptography. Central to this is the theory of numbers. This area of mathematics provides very rich source of fundamental materials for constructing secret codes. Some number theoretical concepts that have been very actively used in designing crypto systems will be highlighted in this presentation. This paper will begin with introduction to basic number theoretical concepts which for many years have been thought to have no practical applications. This will include several theoretical assertions that were discovered much earlier in the historical development of number theory. This will be followed by discussion on the "hidden" properties of these assertions that were later exploited by designers of cryptosystems in their quest for developing secret codes. This paper also highlights some earlier and existing cryptosystems and the role played by number theoretical concepts in their constructions. The role played by cryptanalysts in detecting weaknesses in the systems developed by cryptographers concludes this presentation.

  16. Experimental and theoretical studies of near-ground acoustic radiation propagation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Belov, Vladimir V.; Burkatovskaya, Yuliya B.; Krasnenko, Nikolai P.; Rakov, Aleksandr S.; Rakov, Denis S.; Shamanaeva, Liudmila G.

    2017-11-01

    Results of experimental and theoretical studies of the process of near-ground propagation of monochromatic acoustic radiation on atmospheric paths from a source to a receiver taking into account the contribution of multiple scattering on fluctuations of atmospheric temperature and wind velocity, refraction of sound on the wind velocity and temperature gradients, and its reflection by the underlying surface for different models of the atmosphere depending the sound frequency, coefficient of reflection from the underlying surface, propagation distance, and source and receiver altitudes are presented. Calculations were performed by the Monte Carlo method using the local estimation algorithm by the computer program developed by the authors. Results of experimental investigations under controllable conditions are compared with theoretical estimates and results of analytical calculations for the Delany-Bazley impedance model. Satisfactory agreement of the data obtained confirms the correctness of the suggested computer program.

  17. Theory of step on leading edge of negative corona current pulse

    NASA Astrophysics Data System (ADS)

    Gupta, Deepak K.; Mahajan, Sangeeta; John, P. I.

    2000-03-01

    Theoretical models taking into account different feedback source terms (e.g., ion-impact electron emission, photo-electron emission, field emission, etc) have been proposed for the existence and explanation of the shape of negative corona current pulse, including the step on the leading edge. In the present work, a negative corona current pulse with the step on the leading edge is obtained in the presence of ion-impact electron emission feedback source only. The step on the leading edge is explained in terms of the plasma formation process and enhancement of the feedback source. Ionization wave-like movement toward the cathode is observed after the step. The conditions for the existence of current pulse, with and without the step on the leading edge, are also described. A qualitative comparison with earlier theoretical and experimental work is also included.

  18. Theoretical Calculations of Atomic Data for Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  19. Crystal study and econometric model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An econometric model was developed that can be used to predict demand and supply figures for crystals over a time horizon roughly concurrent with that of NASA's Space Shuttle Program - that is, 1975 through 1990. The model includes an equation to predict the impact on investment in the crystal-growing industry. Actually, two models are presented. The first is a theoretical model which follows rather strictly the standard theoretical economic concepts involved in supply and demand analysis, and a modified version of the model was developed which, though not quite as theoretically sound, was testable utilizing existing data sources.

  20. The mechanism and process of spontaneous boron doping in graphene in the theoretical perspective

    NASA Astrophysics Data System (ADS)

    Deng, Xiaohui; Zeng, Jing; Si, Mingsu; Lu, Wei

    2016-10-01

    A theoretical model is presented that reveals the mechanism of spontaneous boron doping of graphene and is consistent with the microwave plasma experiment choosing trimethylboron as the doping source (Tang et al. (2012) [19]). The spontaneous boron doping originates from the synergistic effect of B and other groups (C, H, CH, CH2 or CH3) decomposing from trimethylboron. This work successfully explains the above experimental phenomenon and proposes a novel and feasible method aiming at B doping of graphene. The mechanism presented here may be also suitable for other two-dimensional carbon-based materials.

  1. The Library of the Institute of Theoretical Astronomy of the R.A.S. (1924-1994). History, Present State, Perspectives for Future

    NASA Astrophysics Data System (ADS)

    Lapteva, M. V.

    Building up a specialized library collection of the Library of the Institute of Theoretical Astronomy of the Russian Academy of Sciences beginning with foundation of the Library (1924) up to the present time have been considered in their historical perspective. The main acquisition sources, stock figures, various parameters of the collection composi- tion, including information on rare foreign editions are also dealt with. The data on the existing retrieval systems and the perspectives of developing computerized problem directed reference bibliographic complexes are also considered.

  2. NuSTAR observations of M31: globular cluster candidates found to be Z sources

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann E.; Lehmer, Bret; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas; Boyd, Patricia T.; Kennea, Jamie A.; Page, Kim; Eracleous, Michael; Williams, Benjamin F.; NuSTAR mission Team

    2016-01-01

    We present the results of Swift + NuSTAR observations of 4 bright globular cluster sources in M31. Three of these had previously been suggested to be black holes on the basis of their spectra. We show that all are well fit by models indicative of Z source natures for the sources. We also discuss some reasons why the long term light curves of these objects indicate that they are more likely to be neutron stars, and discuss the discrepancy between the empirical understanding of persistent sources and theoretical predictions.

  3. Infrared upconversion for astronomical applications. [laser applications to astronomical spectroscopy of infrared spectra

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Ogilvie, K. W.

    1975-01-01

    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle infrared spectral range. Theoretical values for the performance parameters of an upconversion system for astronomical observations are evaluated in view of the conversion efficiencies, spectral resolution, field of view, minimum detectable source brightness and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates of the expected optimum sensitivity of an upconversion device which may be built with the presently available components are given.

  4. Exotic X-ray Sources from Intermediate Energy Electron Beams

    NASA Astrophysics Data System (ADS)

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.

    2003-08-01

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).

  5. Optimal Pulse Configuration Design for Heart Stimulation. A Theoretical, Numerical and Experimental Study.

    NASA Astrophysics Data System (ADS)

    Hardy, Neil; Dvir, Hila; Fenton, Flavio

    Existing pacemakers consider the rectangular pulse to be the optimal form of stimulation current. However, other waveforms for the use of pacemakers could save energy while still stimulating the heart. We aim to find the optimal waveform for pacemaker use, and to offer a theoretical explanation for its advantage. Since the pacemaker battery is a charge source, here we probe the stimulation current waveforms with respect to the total charge delivery. In this talk we present theoretical analysis and numerical simulations of myocyte ion-channel currents acting as an additional source of charge that adds to the external stimulating charge for stimulation purposes. Therefore, we find that as the action potential emerges, the external stimulating current can be reduced accordingly exponentially. We then performed experimental studies in rabbit and cat hearts and showed that indeed exponential truncated pulses with less total charge can still induce activation in the heart. From the experiments, we present curves showing the savings in charge as a function of exponential waveform and we calculated that the longevity of the pacemaker battery would be ten times higher for the exponential current compared to the rectangular waveforms. Thanks to Petit Undergraduate Research Scholars Program and NSF# 1413037.

  6. Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE.

    PubMed

    Penescu, L; Catherall, R; Lettry, J; Stora, T

    2010-02-01

    We report here recent developments of Forced Electron Beam Induced Arc Discharge (FEBIAD) ion sources at the ISOLDE radioactive ion beam facility, hosted at the European Organization for Nuclear Research (CERN). As a result of the propositions to improve the ionization efficiency, two FEBIAD prototypes have been produced and successfully tested in 2008. Off-line studies showed that the 1+ ionization efficiencies for noble gases are 5-20 times larger than with the standard ISOLDE FEBIAD ion sources and reach 60% for radon, which allowed the identification at ISOLDE of (229)Rn, an isotope that had never previously been observed in the laboratory. A factor of 3 increase is also expected for the ionization efficiency of the other elements. The experimental and theoretical methodology is presented. The theoretical model, which gives precise insights on the processes affecting the ionization, is used to design optimal sources (grouped under the name of VADIS--Versatile Arc Discharge Ion Source) for the different chemical classes of the produced isotopes, as already demonstrated for the noble gases.

  7. Open source tools for the information theoretic analysis of neural data.

    PubMed

    Ince, Robin A A; Mazzoni, Alberto; Petersen, Rasmus S; Panzeri, Stefano

    2010-01-01

    The recent and rapid development of open source software tools for the analysis of neurophysiological datasets consisting of simultaneous multiple recordings of spikes, field potentials and other neural signals holds the promise for a significant advance in the standardization, transparency, quality, reproducibility and variety of techniques used to analyze neurophysiological data and for the integration of information obtained at different spatial and temporal scales. In this review we focus on recent advances in open source toolboxes for the information theoretic analysis of neural responses. We also present examples of their use to investigate the role of spike timing precision, correlations across neurons, and field potential fluctuations in the encoding of sensory information. These information toolboxes, available both in MATLAB and Python programming environments, hold the potential to enlarge the domain of application of information theory to neuroscience and to lead to new discoveries about how neurons encode and transmit information.

  8. Efficiency of Pm-147 direct charge radioisotope battery.

    PubMed

    Kavetskiy, A; Yakubova, G; Yousaf, S M; Bower, K; Robertson, J D; Garnov, A

    2011-05-01

    A theoretical analysis is presented here of the efficiency of direct charge radioisotope batteries based on the efficiency of the radioactive source, the system geometry, electrostatic repulsion of beta particles from the collector, the secondary electron emission, and backscattered beta particles from the collector. Efficiency of various design batteries using Pm-147 sources was experimentally measured and found to be in good agreement with calculations. The present approach can be used for predicting the efficiency for different designs of direct charge radioisotope batteries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Users' manual for the Langley high speed propeller noise prediction program (DFP-ATP)

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1989-01-01

    The use of the Dunn-Farassat-Padula Advanced Technology Propeller (DFP-ATP) noise prediction program which computes the periodic acoustic pressure signature and spectrum generated by propellers moving with supersonic helical tip speeds is described. The program has the capacity of predicting noise produced by a single-rotation propeller (SRP) or a counter-rotation propeller (CRP) system with steady or unsteady blade loading. The computational method is based on two theoretical formulations developed by Farassat. One formulation is appropriate for subsonic sources, and the other for transonic or supersonic sources. Detailed descriptions of user input, program output, and two test cases are presented, as well as brief discussions of the theoretical formulations and computational algorithms employed.

  10. Theoretical and experimental studies of a planar inductive coupled rf plasma source as the driver in simulator facility (ISTAPHM) of interactions of waves with the edge plasma on tokamaks

    NASA Astrophysics Data System (ADS)

    Ghanei, V.; Nasrabadi, M. N.; Chin, O.-H.; Jayapalan, K. K.

    2017-11-01

    This research aims to design and build a planar inductive coupled RF plasma source device which is the driver of the simulator project (ISTAPHM) of the interactions between ICRF Antenna and Plasma on tokamak by using the AMPICP model. For this purpose, a theoretical derivation of the distribution of the RF magnetic field in the plasma-filled reactor chamber is presented. An experimental investigation of the field distributions is described and Langmuir measurements are developed numerically. A comparison of theory and experiment provides an evaluation of plasma parameters in the planar ICP reactor. The objective of this study is to characterize the plasma produced by the source alone. We present the results of the first analysis of the plasma characteristics (plasma density, electron temperature, electron-ion collision frequency, particle fluxes and their velocities, stochastic frequency, skin depth and electron energy distribution functions) as function of the operating parameters (injected power, neutral pressure and magnetic field) as measured with fixed and movable Langmuir probes. The plasma is currently produced only by the planar ICP. The exact goal of these experiments is that the produced plasma by external source can exist as a plasma representative of the edge of tokamaks.

  11. The Interaction-Activity Connection

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1996-01-01

    A review is presented of the numerous studies that have been undertaken to investigate the likely interaction-activity connection among galaxies. Both observational evidence and theoretical supporting models are reviewed. Some specific examples of "interactive" galaxies from the author's own research are presented: (a) the collision-induced AGN (Active Galactic Nuclei) activity in the radio jet source 3C278; and (b) the collision-induced starburst activity in the spectacular "Cartwheel" ring galaxy. Some comments are offered concerning some of the more promising theoretical investigations that are now taking place. A few words of warning are also offered about the possible misinterpretation of putative collision-induced morphologies among some galaxy samples.

  12. Novel MSVPWM to reduce the inductor current ripple for Z-source inverter in electric vehicle applications.

    PubMed

    Zhang, Qianfan; Dong, Shuai; Xue, Ping; Zhou, Chaowei; Cheng, ShuKang

    2014-01-01

    A novel modified space vector pulse width modulation (MSVPWM) strategy for Z-Source inverter is presented. By rearranging the position of shoot-through states, the frequency of inductor current ripple is kept constant. Compared with existing MSVPWM strategies, the proposed approach can reduce the maximum inductor current ripple. So the volume of Z-source network inductor can be designed smaller, which brings the beneficial effect on the miniaturization of the electric vehicle controller. Theoretical findings in the novel MSVPWM for Z-Source inverter have been verified by experiment results.

  13. Novel MSVPWM to Reduce the Inductor Current Ripple for Z-Source Inverter in Electric Vehicle Applications

    PubMed Central

    Zhang, Qianfan; Dong, Shuai; Xue, Ping; Zhou, Chaowei; Cheng, ShuKang

    2014-01-01

    A novel modified space vector pulse width modulation (MSVPWM) strategy for Z-Source inverter is presented. By rearranging the position of shoot-through states, the frequency of inductor current ripple is kept constant. Compared with existing MSVPWM strategies, the proposed approach can reduce the maximum inductor current ripple. So the volume of Z-source network inductor can be designed smaller, which brings the beneficial effect on the miniaturization of the electric vehicle controller. Theoretical findings in the novel MSVPWM for Z-Source inverter have been verified by experiment results. PMID:24883412

  14. Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz.

    PubMed

    Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Ikemoto, Yuka; Okamura, Hidekazu

    2012-05-07

    Infrared (IR) spectroscopy is a versatile analytical method and nano-scale spatial resolution could be achieved by scattering type near-field optical microscopy (s-SNOM). The spectral bandwidth was, however, limited to approximately 300 cm(-1) with a laser light source. In the present study, the development of a broadband mid-IR near-field spectroscopy with a ceramic light source is demonstrated. A much wider bandwidth (at least 3000 to 1000 cm(-1)) is achieved with a ceramic light source. The experimental data on quartz Si-O phonon resonance bands are well reproduced by theoretical simulations indicating the validity of the present broadband near-field IR spectroscopy.

  15. Performance evaluation of a permanent ring magnet based helicon plasma source for negative ion source research

    NASA Astrophysics Data System (ADS)

    Pandey, Arun; Bandyopadhyay, M.; Sudhir, Dass; Chakraborty, A.

    2017-10-01

    Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.

  16. Performance evaluation of a permanent ring magnet based helicon plasma source for negative ion source research.

    PubMed

    Pandey, Arun; Bandyopadhyay, M; Sudhir, Dass; Chakraborty, A

    2017-10-01

    Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.

  17. Step - wise transient method - Influence of heat source inertia

    NASA Astrophysics Data System (ADS)

    Malinarič, Svetozár; Dieška, Peter

    2016-07-01

    Step-wise transient (SWT) method is an experimental technique for measuring the thermal diffusivity and conductivity of materials. Theoretical models and experimental apparatus are presented and the influence of the heat source capacity are investigated using the experiment simulation. The specimens from low density polyethylene (LDPE) were measured yielding the thermal diffusivity 0.165 mm2/s and thermal conductivity 0.351 W/mK with the coefficient of variation less than 1.4 %. The heat source capacity caused the systematic error of the results smaller than 1 %.

  18. Achievement Goal Orientation for Athletic Training Education: Preparing for Lifelong Learning

    ERIC Educational Resources Information Center

    Peer, Kimberly S.

    2007-01-01

    Objective: This review of literature presents the theoretical framework of goal orientation and student achievement from a pedagogical perspective while providing practical applications and implications for integrating goal orientation into athletic training education programs. Data Sources: Selected literature derived from EBSCO, Education…

  19. Theoretical and experimental examination of near-field acoustic levitation.

    PubMed

    Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa

    2002-04-01

    A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense.

  20. Theoretical and experimental examination of near-field acoustic levitation

    NASA Astrophysics Data System (ADS)

    Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa

    2002-04-01

    A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense.

  1. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: theoretical systematics and Baryon Acoustic Oscillations in the galaxy correlation function

    NASA Astrophysics Data System (ADS)

    Vargas-Magaña, Mariana; Ho, Shirley; Cuesta, Antonio J.; O'Connell, Ross; Ross, Ashley J.; Eisenstein, Daniel J.; Percival, Will J.; Grieb, Jan Niklas; Sánchez, Ariel G.; Tinker, Jeremy L.; Tojeiro, Rita; Beutler, Florian; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Seo, Hee-Jong; Brownstein, Joel R.; Olmstead, Matthew; Thomas, Daniel

    2018-06-01

    We investigate the potential sources of theoretical systematics in the anisotropic Baryon Acoustic Oscillation (BAO) distance scale measurements from the clustering of galaxies in configuration space using the final Data Release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS). We perform a detailed study of the impact on BAO measurements from choices in the methodology such as fiducial cosmology, clustering estimators, random catalogues, fitting templates, and covariance matrices. The theoretical systematic uncertainties in BAO parameters are found to be 0.002 in the isotropic dilation α and 0.003 in the quadrupolar dilation ɛ. The leading source of systematic uncertainty is related to the reconstruction techniques. Theoretical uncertainties are sub-dominant compared with the statistical uncertainties for BOSS survey, accounting 0.2σstat for α and 0.25σstat for ɛ (σα, stat ˜ 0.010 and σɛ, stat ˜ 0.012, respectively). We also present BAO-only distance scale constraints from the anisotropic analysis of the correlation function. Our constraints on the angular diameter distance DA(z) and the Hubble parameter H(z), including both statistical and theoretical systematic uncertainties, are 1.5 per cent and 2.8 per cent at zeff = 0.38, 1.4 per cent and 2.4 per cent at zeff = 0.51, and 1.7 per cent and 2.6 per cent at zeff = 0.61. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are cross-checked with other BAO analysis in Alam et al. The systematic error budget concerning the methodology on post-reconstruction BAO analysis presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  2. [Efficacy analysis and theoretical study on Chinese herbal properties of Açaí (Euterpe oleracea)].

    PubMed

    Zhang, Jian-jun; Chen, Shao-hong; Zhu, Ying-li; Wang, Chun; Wang, Jing-xia; Wang, Lin-yuan; Gao, Xue-min

    2015-06-01

    Açaí (Euterpe oleracea) emerged as a source of herb has a long history in South America, which was approved by the Ministry of Health used in China and it has been introduced planting in Guangdong and Taiwan. This article summarized applied history of Açaí and its present status in China. Did theoretical study on the Chinese herbal properties of Açaí based on the Chinese traditional philosophical culture to analysis the function and symptom preliminary, combining with used for medical recordation, chemical component, biological activity. It is aiming at establishing the theoretical foundation for the application under the guidance of TCM theory.

  3. Influence of the noise sources motion on the estimated Green's functions from ambient noise cross-correlations.

    PubMed

    Sabra, Karim G

    2010-06-01

    It has been demonstrated theoretically and experimentally that an estimate of the Green's function between two receivers can be obtained by cross-correlating acoustic (or elastic) ambient noise recorded at these two receivers. Coherent wavefronts emerge from the noise cross-correlation time function due to the accumulated contributions over time from noise sources whose propagation path pass through both receivers. Previous theoretical studies of the performance of this passive imaging technique have assumed that no relative motion between noise sources and receivers occurs. In this article, the influence of noise sources motion (e.g., aircraft or ship) on this passive imaging technique was investigated theoretically in free space, using a stationary phase approximation, for stationary receivers. The theoretical results were extended to more complex environments, in the high-frequency regime, using first-order expansions of the Green's function. Although sources motion typically degrades the performance of wideband coherent processing schemes, such as time-delay beamforming, it was found that the Green's function estimated from ambient noise cross-correlations are not expected to be significantly affected by the Doppler effect, even for supersonic sources. Numerical Monte-Carlo simulations were conducted to confirm these theoretical predictions for both cases of subsonic and supersonic moving sources.

  4. Theoretical study of turbulent channel flow - Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1990-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  5. New modes of particle accelerations techniques and sources. Formal report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1996-12-31

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on New Modes of Particle Accelerations - Techniques and Sources, August 19-23, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  6. Human annoyance and reactions to hotel room specific noises

    NASA Astrophysics Data System (ADS)

    Everhard, Ian L.

    2004-05-01

    A new formula is presented where multiple annoyance sources and transmission loss values of any partition are combined to produce a new single number rating of annoyance. The explanation of the formula is based on theoretical psychoacoustics and survey testing used to create variables used to weight the results. An imaginary hotel room is processed through the new formula and is rated based on theoretical survey results that would be taken by guests of the hotel. The new single number rating compares the multiple sources of annoyance to a single imaginary unbiased source where absolute level is the only factor in stimulating a linear rise in annoyance [Fidell et al., J. Acoust. Soc. Am. 66, 1427 (1979); D. M. Jones and D. E. Broadbent, ``Human performance and noise,'' in Handbook of Noise Control, 3rd ed., edited by C. M. Harris (ASA, New York, 1998), Chap. 24; J. P. Conroy and J. S. Roland, ``STC Field Testing and Results,'' in Sound and Vibration Magazine, Acoustical Publications, pp. 10-15 (July 2003)].

  7. An analytical study of double bend achromat lattice.

    PubMed

    Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A D

    2015-03-01

    In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.

  8. Midfield wireless powering of subwavelength autonomous devices.

    PubMed

    Kim, Sanghoek; Ho, John S; Poon, Ada S Y

    2013-05-17

    We obtain an analytical bound on the efficiency of wireless power transfer to a weakly coupled device. The optimal source is solved for a multilayer geometry in terms of a representation based on the field equivalence principle. The theory reveals that optimal power transfer exploits the properties of the midfield to achieve efficiencies far greater than conventional coil-based designs. As a physical realization of the source, we present a slot array structure whose performance closely approaches the theoretical bound.

  9. THE HYDROCARBON SPILL SCREENING MODEL (HSSM), VOLUME 2: THEORETICAL BACKGROUND AND SOURCE CODES

    EPA Science Inventory

    A screening model for subsurface release of a nonaqueous phase liquid which is less dense than water (LNAPL) is presented. The model conceptualizes the release as consisting of 1) vertical transport from near the surface to the capillary fringe, 2) radial spreading of an LNAPL l...

  10. Evidence of solar wind energy deposition into the ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Mantas, G. P.; Hanson, W. B.

    1985-01-01

    Suprathermal electron fluxes measured in the ionosphere of Mars by the retarding potential analyzer (RPA) on Viking lander 1 are presented and compared with the photoelectron flux that is produced by the absorption of the solar EUV. The calculation of the equilibrium photoelectron population on Mars is based on the multistream electron transport theory and a model neutral atmosphere and ionosphere that was actually observed by Viking lander 1. From the theoretical equilibrium photoelectron population, the expected RPA volt-ampere characteristic curves are computed and compared with those recorded by the instrument. The theoretical and the observed RPA currents below about 170 km are in agreement, confirming that the solar EUV is the main source of suprathermal electrons at these altitudes. Above about 170 km an additional source of suprathermal electrons is required to explain the observations.

  11. An open-source java platform for automated reaction mapping.

    PubMed

    Crabtree, John D; Mehta, Dinesh P; Kouri, Tina M

    2010-09-27

    This article presents software applications that have been built upon a modular, open-source, reaction mapping library that can be used in both cheminformatics and bioinformatics research. We first describe the theoretical underpinnings and modular architecture of the core software library. We then describe two applications that have been built upon that core. The first is a generic reaction viewer and mapper, and the second classifies reactions according to rules that can be modified by end users with little or no programming skills.

  12. Derivation of the open-circuit voltage of organic solar cells

    NASA Astrophysics Data System (ADS)

    Staple, Douglas B.; Oliver, Patricia A. K.; Hill, Ian G.

    2014-05-01

    Organic photovoltaic cells have improved in efficiency from 1% two decades ago to over 10% today. Continued improvement necessitates a theoretical understanding of the factors determining efficiency. Organic photovoltaic efficiency can be parameterized in terms of open-circuit voltage, short-circuit current, and fill factor. Here we present a theory that explains the dependencies of open-circuit voltage on semiconductor energy levels, light intensity, solar cell and light-source temperatures, charge-carrier recombination, and external fluorescence efficiency. The present theory also explains why recombination at the donor-acceptor heterointerface is a dominant process in heterojunction-based cells. Furthermore, the Carnot efficiency appears, highlighting the connection to basic thermodynamics. The theory presented here is consistent with and builds on the experimental and theoretical observations already in the literature. Crucially, the present theory can be straightforwardly derived in a line-by-line fashion using standard tools from statistical physics.

  13. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy.

    PubMed

    Zhang, Chi; Tang, Wei; Han, Changbao; Fan, Fengru; Wang, Zhong Lin

    2014-06-11

    Triboelectric nanogenerator (TENG) is a newly invented technology that is effective using conventional organic materials with functionalized surfaces for converting mechanical energy into electricity, which is light weight, cost-effective and easy scalable. Here, we present the first systematic analysis and comparison of EMIG and TENG from their working mechanisms, governing equations and output characteristics, aiming at establishing complementary applications of the two technologies for harvesting various mechanical energies. The equivalent transformation and conjunction operations of the two power sources for the external circuit are also explored, which provide appropriate evidences that the TENG can be considered as a current source with a large internal resistance, while the EMIG is equivalent to a voltage source with a small internal resistance. The theoretical comparison and experimental validations presented in this paper establish the basis of using the TENG as a new energy technology that could be parallel or possibly equivalently important as the EMIG for general power application at large-scale. It opens a field of organic nanogenerator for chemists and materials scientists who can be first time using conventional organic materials for converting mechanical energy into electricity at a high efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rhenium ion beam for implantation into semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics andmore » nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.« less

  15. Design Science Methodology Applied to a Chemical Surveillance Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhuanyi; Han, Kyungsik; Charles-Smith, Lauren E.

    Public health surveillance systems gain significant benefits from integrating existing early incident detection systems,supported by closed data sources, with open source data.However, identifying potential alerting incidents relies on finding accurate, reliable sources and presenting the high volume of data in a way that increases analysts work efficiency; a challenge for any system that leverages open source data. In this paper, we present the design concept and the applied design science research methodology of ChemVeillance, a chemical analyst surveillance system.Our work portrays a system design and approach that translates theoretical methodology into practice creating a powerful surveillance system built for specificmore » use cases.Researchers, designers, developers, and related professionals in the health surveillance community can build upon the principles and methodology described here to enhance and broaden current surveillance systems leading to improved situational awareness based on a robust integrated early warning system.« less

  16. Meanings and Implications of Culture in Sustainability Education Research

    ERIC Educational Resources Information Center

    Anderson, Vince; Datta, Ranjan; Dyck, Shannon; Kayira, Jean; McVittie, Janet

    2016-01-01

    As scholars working both individually and collectively, we are interested in exploring what may be achieved through taking up the complex notion of culture in sustainability education research. In this article, we present a bricolage of research, drawing on empirical and theoretical sources that collectively establish the kind of capacity we see…

  17. Power-law X-ray and gamma-ray emission from relativistic thermal plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1985-01-01

    A common characteristic of cosmic sources is power-law X-ray emission. Extragalactic sources of this type include compact components of active galactic nuclei (AGN). The present study is concerned with a theoretical model of such sources, taking into account the assumption that the power-law spectra are produced by repeated Compton scatterings of soft photons by relativistic thermal electrons. This is one of several possible physical mechanisms leading to the formation of a power-law spectrum. Attention is given to the Comptonization of soft photon sources, the rates of pair processes, the solution of the pair equilibrium equation, and the constraints on a soft photon source and an energy source. It is concluded that the compactness parameters L/R of most of the cosmic sources observed to date lie below the maximum luminosity curves considered.

  18. One-way mode transmission in one-dimensional phononic crystal plates

    NASA Astrophysics Data System (ADS)

    Zhu, Xuefeng; Zou, Xinye; Liang, Bin; Cheng, Jianchun

    2010-12-01

    We investigate theoretically the band structures of one-dimensional phononic crystal (PC) plates with both antisymmetric and symmetric structures, and show how unidirectional transmission behavior can be obtained for either antisymmetric waves (A modes) or symmetric waves (S modes) by exploiting mode conversion and selection in the linear plate systems. The theoretical approach is illustrated for one PC plate example where unidirectional transmission behavior is obtained in certain frequency bands. Employing harmonic frequency analysis, we numerically demonstrate the one-way mode transmission for the PC plate with finite superlattice by calculating the steady-state displacement fields under A modes source (or S modes source) in forward and backward direction, respectively. The results show that the incident waves from A modes source (or S modes source) are transformed into S modes waves (or A modes waves) after passing through the superlattice in the forward direction and the Lamb wave rejections in the backward direction are striking with a power extinction ratio of more than 1000. The present structure can be easily extended to two-dimensional PC plate and efficiently encourage practical studies of experimental realization which is believed to have much significance for one-way Lamb wave mode transmission.

  19. The propagation of sound in tunnels

    NASA Astrophysics Data System (ADS)

    Li, Kai Ming; Iu, King Kwong

    2002-11-01

    The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.

  20. Information theoretic approach for assessing image fidelity in photon-counting arrays.

    PubMed

    Narravula, Srikanth R; Hayat, Majeed M; Javidi, Bahram

    2010-02-01

    The method of photon-counting integral imaging has been introduced recently for three-dimensional object sensing, visualization, recognition and classification of scenes under photon-starved conditions. This paper presents an information-theoretic model for the photon-counting imaging (PCI) method, thereby providing a rigorous foundation for the merits of PCI in terms of image fidelity. This, in turn, can facilitate our understanding of the demonstrated success of photon-counting integral imaging in compressive imaging and classification. The mutual information between the source and photon-counted images is derived in a Markov random field setting and normalized by the source-image's entropy, yielding a fidelity metric that is between zero and unity, which respectively corresponds to complete loss of information and full preservation of information. Calculations suggest that the PCI fidelity metric increases with spatial correlation in source image, from which we infer that the PCI method is particularly effective for source images with high spatial correlation; the metric also increases with the reduction in photon-number uncertainty. As an application to the theory, an image-classification problem is considered showing a congruous relationship between the fidelity metric and classifier's performance.

  1. Heinz-Dietrich Doebner — an accomplished octogenarian

    NASA Astrophysics Data System (ADS)

    Boyle, L. L.

    2012-02-01

    A scientific biography of Heinz-Dietrich Doebner is presented on the occasion of his 80th birthday. Doebner has been responsible for fostering the development of theoretical physics both in Germany and internationally. His scientific interests have centred around the quantum theory of both linear and non-linear systems moving on manifolds for which a technique known as Borel quantisation was developed in his group at Clausthal. He was responsible for establishing the Arnold Sommerfeld Institute within the Theoretical Physics Department at Clausthal. This provided a base for visiting scientists for many of whom funding was obtained from various sources.

  2. A Laboratory Study of River Discharges into Shallow Seas

    NASA Astrophysics Data System (ADS)

    Crawford, T. J.; Linden, P. F.

    2016-02-01

    We present an experimental study that aims to simulate the buoyancy driven coastal currents produced by estuarine freshwater discharges into the ocean. The currents are generated inside a rotating tank filled with saltwater by the continuous release of buoyant freshwater from a source structure located at the fluid surface. The freshwater is discharged horizontally from a finite-depth source, giving rise to significant momentum-flux effects and a non-zero potential vorticity. We perform a parametric study in which we vary the rotation rate, freshwater discharge magnitude, the density difference and the source cross-sectional area. The parameter values are chosen to match the regimes appropriate to the River Rhine and River Elbe when entering the North Sea. Persistent features of an anticyclonic outflow vortex and a propagating boundary current were identified and their properties quantified. We also present a finite potential vorticity, geostrophic model that provides theoretical predictions for the current height, width and velocity as functions of the experimental parameters. The experiments and model are compared with each other in terms of a set of non-dimensional parameters identified in the theoretical analysis of the problem. Good agreement between the model and the experimental data is found. The effect of mixing in the turbulent ocean is also addressed with the addition of an oscillating grid to the experimental setup. The grid generates turbulence in the saltwater ambient that is designed to represent the mixing effects of the wind, tides and bathymetry in a shallow shelf sea. The impact of the addition of turbulence is discussed in terms of the experimental data and through modifications to the theoretical model to include mixing. Once again, good agreement is seen between the experiments and the model.

  3. Residual Gases in Crystal Growth Systems: Their Origin, Magnitude, and Dependence on the Processing Conditions

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Residual gases present in closed ampoules may affect different crystal growth processes. Their presence may affect techniques requiring low pressures and affect the crystal quality in different ways. For that reason a good understanding and control of formation of residual gases may be important for an optimum design and meaningful interpretation of crystal growth experiments. Our extensive experimental and theoretical study includes degassing of silica glass and generation of gases from various source materials. Different materials processing conditions, like outgassing under vacuum, annealing in hydrogen, resublimation, different material preparation procedures, multiple annealings, different processing times, and others were applied and their effect on the amount and composition of gas were analyzed. The experimental results were interpreted based on theoretical calculations on diffusion in silica glass and source materials and thermochemistry of the system. Procedures for a reduction of the amount of gas are also discussed.

  4. A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The equations of momentum annd continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in Earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.

  5. A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The equations of momentum and continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.

  6. Masked Phonological Priming Effects in English: Are They Real? Do They Matter?

    ERIC Educational Resources Information Center

    Rastle, Kathleen; Brysbaert, Marc

    2006-01-01

    For over 15 years, masked phonological priming effects have been offered as evidence that phonology plays a leading role in visual word recognition. The existence of these effects--along with their theoretical implications--has, however, been disputed. The authors present three sources of evidence relevant to an assessment of the existence and…

  7. Theoretical Models and Processes of Reading. Fourth Edition.

    ERIC Educational Resources Information Center

    Ruddell, Robert B., Ed.; And Others

    Serving as a source of questions for researchers to investigate and a resource for professors and their students, this book presents 51 essays that discuss where the reading field has been, is now, and might be going. More than 80% of the essays are new or revised from the third edition. Essays in the book include "Professional Connections:…

  8. Action Research as Primary Vehicle for Inquiry in the Professional Development School

    ERIC Educational Resources Information Center

    Tunks, Jeanne L.

    2011-01-01

    This Yearbook chapter, a compilation of multiple sources, presents both the history of action research and an analysis of reported action research in the professional development school (PDS) between 1992 and 2010. The history begins prior to the inception of the PDS and provides a theoretical premise for action research in the PDS in subsequent…

  9. Youth Advocacy Training Resource. Volume IV. A Review of Theory and Applications for the Education of Troubled Youth.

    ERIC Educational Resources Information Center

    Evaluation Technologies, Inc., Arlington, VA.

    This volume serves as a source of information about the relationship of Teacher Corps Youth Advocacy Project activities to the field of secondary school reform for troubled youth. This document presents major theories about educating troubled youth, theoretically-based programs, and research and evaluation on their effectiveness. Theories are…

  10. Understanding Social Work in the History of Ideas

    ERIC Educational Resources Information Center

    Soydan, Haluk

    2012-01-01

    Objectives: The purpose of this article is to present a theoretical frame of reference for the study and assessment of social work from the perspective of a history of ideas. Method: The study employed an analysis of primary and secondary historical sources. Results: Social work as a practice and research field is embedded in the genesis of modern…

  11. A brief review of intermediate controlled nuclear syntheses (ICNS) without harmful radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanjewar, R. B.

    Hadronic mechanics gave birth to new magnecular fuels. The present day demand is of clean energy source that is cheap and abundant. Clean energy can be obtained by harnessing renewable energy sources like solar, wind etc. Nuclear energy conventionally produced by fission reactions emits hazardous radiation and radioactive waste. The requirements of clean and safe energy gets fulfilled by novel fuel that achieved by elevating the traditional quantum mechanics to hadronic mechanics and to hadronic chemistry. In the present paper, a comprehensive review on both the theoretical and experimental aspect of the Intermediate Controlled Nuclear Synthesis (ICNS) as developed bymore » Italian American Scientist Professor R. M. Santilli.« less

  12. Properties of thermospheric gravity waves on earth, Venus and Mars

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Pesnell, W. D.

    1992-01-01

    A spectral model with spherical harmonics and Fourier components that can simulate atmospheric perturbations in the global geometry of a multiconstituent atmosphere is presented. The boundaries are the planetary surface where the transport velocities vanish and the exobase where molecular heat conduction and viscosity dominate. The time consuming integration of the conservation equations is reduced to computing the transfer function (TF) which describes the dynamic properties of the medium divorced from the complexities in the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source distribution is then obtained in short order. Theoretical studies are presented to illuminate some properties of gravity waves on earth, Venus and Mars.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streets, W.E.

    As the need for rapid and more accurate determinations of gamma-emitting radionuclides in environmental and mixed waste samples grows, there is continued interest in the development of theoretical tools to eliminate the need for some laboratory analyses and to enhance the quality of information from necessary analyses. In gamma spectrometry the use of theoretical self-absorption coefficients (SACs) can eliminate the need to determine the SAC empirically by counting a known source through each sample. This empirical approach requires extra counting time and introduces another source of counting error, which must be included in the calculation of results. The empirical determinationmore » of SACs is routinely used when the nuclides of interest are specified; theoretical determination of the SAC can enhance the information for the analysis of true unknowns, where there may be no prior knowledge about radionuclides present in a sample. Determination of an exact SAC does require knowledge about the total composition of a sample. In support of the Department of Energy`s (DOE) Environmental Survey Program, the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory developed theoretical self-absorption models to estimate SACs for the determination of non-specified radionuclides in samples of unknown, widely-varying, compositions. Subsequently, another SAC model, in a different counting geometry and for specified nuclides, was developed for another application. These two models are now used routinely for the determination of gamma-emitting radionuclides in a wide variety of environmental and mixed waste samples.« less

  14. Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials.

    PubMed

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-27

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator's gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  15. Theoretical studies of tone noise from a fan rotor

    NASA Technical Reports Server (NTRS)

    Rao, G. V. R.; Chu, W. T.; Digumarthi, R. V.

    1973-01-01

    An analytical study was made of some possible rotor alone noise sources of dipole, quadrapole and monopole characters which generate discrete tone noise. Particular emphasis is given to the tone noise caused by fan inlet flow distortion and turbulence. Analytical models are developed to allow prediction of absolute levels. Experimental data measured on a small scale fan is presented which indicates inlet turbulence interaction with a fan rotor can be a source of tone noise. Predicted and measured tone noise for the small scale rotor are shown to be in reasonable agreement.

  16. Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources.

    PubMed

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-16

    This paper presents a novel SCM optical transmission system for next-generation WDM-PONs combining broadband optical sources and a Mach-Zehnder interferometric structure. The approach leeds to transport RF signals up to 50 GHz being compatible with RoF systems since a second configuration has been proposed in order to overcome dispersion carrier suppression effect using DSB modulation. The theoretical analysis validates the potentiality of the system also considering the effects of the dispersion slope over the transmission window. (c) 2009 Optical Society of America

  17. Ringfield lithographic camera

    DOEpatents

    Sweatt, W.C.

    1998-09-08

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D{sub source} {approx_equal} 0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors. 11 figs.

  18. Simulations of the plasma dynamics in high-current ion diodes

    NASA Astrophysics Data System (ADS)

    Boine-Frankenheim, O.; Pointon, T. D.; Mehlhorn, T. A.

    Our time-implicit fluid/Particle-In-Cell (PIC) code DYNAID [1]is applied to problems relevant for applied- B ion diode operation. We present simulations of the laser ion source, which will soon be employed on the SABRE accelerator at SNL, and of the dynamics of the anode source plasma in the applied electric and magnetic fields. DYNAID is still a test-bed for a higher-dimensional simulation code. Nevertheless, the code can already give new theoretical insight into the dynamics of plasmas in pulsed power devices.

  19. Fluorescence errors in integrating sphere measurements of remote phosphor type LED light sources

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Zong, Y.; Podobedov, V. B.; Nadal, M. E.; Hanselaer, P.; Ohno, Y.

    2011-05-01

    The relative spectral radiant flux error caused by phosphor fluorescence during integrating sphere measurements is investigated both theoretically and experimentally. Integrating sphere and goniophotometer measurements are compared and used for model validation, while a case study provides additional clarification. Criteria for reducing fluorescence errors to a degree of negligibility as well as a fluorescence error correction method based on simple matrix algebra are presented. Only remote phosphor type LED light sources are studied because of their large phosphor surfaces and high application potential in general lighting.

  20. Information-Theoretical Analysis of EEG Microstate Sequences in Python.

    PubMed

    von Wegner, Frederic; Laufs, Helmut

    2018-01-01

    We present an open-source Python package to compute information-theoretical quantities for electroencephalographic data. Electroencephalography (EEG) measures the electrical potential generated by the cerebral cortex and the set of spatial patterns projected by the brain's electrical potential on the scalp surface can be clustered into a set of representative maps called EEG microstates. Microstate time series are obtained by competitively fitting the microstate maps back into the EEG data set, i.e., by substituting the EEG data at a given time with the label of the microstate that has the highest similarity with the actual EEG topography. As microstate sequences consist of non-metric random variables, e.g., the letters A-D, we recently introduced information-theoretical measures to quantify these time series. In wakeful resting state EEG recordings, we found new characteristics of microstate sequences such as periodicities related to EEG frequency bands. The algorithms used are here provided as an open-source package and their use is explained in a tutorial style. The package is self-contained and the programming style is procedural, focusing on code intelligibility and easy portability. Using a sample EEG file, we demonstrate how to perform EEG microstate segmentation using the modified K-means approach, and how to compute and visualize the recently introduced information-theoretical tests and quantities. The time-lagged mutual information function is derived as a discrete symbolic alternative to the autocorrelation function for metric time series and confidence intervals are computed from Markov chain surrogate data. The software package provides an open-source extension to the existing implementations of the microstate transform and is specifically designed to analyze resting state EEG recordings.

  1. Gunshot identification system by integration of open source consumer electronics

    NASA Astrophysics Data System (ADS)

    López R., Juan Manuel; Marulanda B., Jose Ignacio

    2014-05-01

    This work presents a prototype of low-cost gunshots identification system that uses consumer electronics in order to ensure the existence of gunshots and then classify it according to a previously established database. The implementation of this tool in the urban areas is to set records that support the forensics, hence improving law enforcement also on developing countries. An analysis of its effectiveness is presented in comparison with theoretical results obtained with numerical simulations.

  2. Radioisotope powered alkali metal thermoelectric converter design for space systems

    NASA Technical Reports Server (NTRS)

    Sievers, R. K.; Bankston, C. P.

    1988-01-01

    The design concept of an alkali-metal thermoelectric converter (AMTEC) for 15-30-percent-efficient conversion of heat from the General Purpose (radioisotope) Heat Source (GPHS) on spacecraft is presented. The basic physical principles of the conversion cycle are outlined; a theoretical model is derived; a modular design is described and illustrated with drawings; and the overall AMTEC/GPHS system design is characterized. Predicted performance data are presented in extensive tables and graphs and discussed in detail.

  3. An integrated organisation-wide data quality management and information governance framework: theoretical underpinnings.

    PubMed

    Liaw, Siaw-Teng; Pearce, Christopher; Liyanage, Harshana; Liaw, Gladys S S; de Lusignan, Simon

    2014-01-01

    Increasing investment in eHealth aims to improve cost effectiveness and safety of care. Data extraction and aggregation can create new data products to improve professional practice and provide feedback to improve the quality of source data. A previous systematic review concluded that locally relevant clinical indicators and use of clinical record systems could support clinical governance. We aimed to extend and update the review with a theoretical framework. We searched PubMed, Medline, Web of Science, ABI Inform (Proquest) and Business Source Premier (EBSCO) using the terms curation, information ecosystem, data quality management (DQM), data governance, information governance (IG) and data stewardship. We focused on and analysed the scope of DQM and IG processes, theoretical frameworks, and determinants of the processing, quality assurance, presentation and sharing of data across the enterprise. There are good theoretical reasons for integrated governance, but there is variable alignment of DQM, IG and health system objectives across the health enterprise. Ethical constraints exist that require health information ecosystems to process data in ways that are aligned with improving health and system efficiency and ensuring patient safety. Despite an increasingly 'big-data' environment, DQM and IG in health services are still fragmented across the data production cycle. We extend current work on DQM and IG with a theoretical framework for integrated IG across the data cycle. The dimensions of this theory-based framework would require testing with qualitative and quantitative studies to examine the applicability and utility, along with an evaluation of its impact on data quality across the health enterprise.

  4. The gj factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Beier, Thomas

    2000-12-01

    The comparison between theory and experiment of the hyperfine structure splitting and the electronic gj factor in heavy highly charged ions provides a unique testing ground for quantum electrodynamics in the presence of strong electric and magnetic fields. A theoretical evaluation is presented of all quantum electrodynamical contributions to the ground-state hfs splitting in hydrogenlike and lithiumlike atoms as well as to the gj factor. Binding and nuclear effects are discussed as well. A comparison with the available experimental data is performed, and a detailed discussion of theoretical sources of uncertainty is included which is mainly due to insufficiently known nuclear properties.

  5. Dose calibrator linearity test: 99mTc versus 18F radioisotopes*

    PubMed Central

    Willegaignon, José; Sapienza, Marcelo Tatit; Coura-Filho, George Barberio; Garcez, Alexandre Teles; Alves, Carlos Eduardo Gonzalez Ribeiro; Cardona, Marissa Anabel Rivera; Gutterres, Ricardo Fraga; Buchpiguel, Carlos Alberto

    2015-01-01

    Objective The present study was aimed at evaluating the viability of replacing 18F with 99mTc in dose calibrator linearity testing. Materials and Methods The test was performed with sources of 99mTc (62 GBq) and 18F (12 GBq) whose activities were measured up to values lower than 1 MBq. Ratios and deviations between experimental and theoretical 99mTc and 18F sources activities were calculated and subsequently compared. Results Mean deviations between experimental and theoretical 99mTc and 18F sources activities were 0.56 (± 1.79)% and 0.92 (± 1.19)%, respectively. The mean ratio between activities indicated by the device for the 99mTc source as measured with the equipment pre-calibrated to measure 99mTc and 18F was 3.42 (± 0.06), and for the 18F source this ratio was 3.39 (± 0.05), values considered constant over the measurement time. Conclusion The results of the linearity test using 99mTc were compatible with those obtained with the 18F source, indicating the viability of utilizing both radioisotopes in dose calibrator linearity testing. Such information in association with the high potential of radiation exposure and costs involved in 18F acquisition suggest 99mTc as the element of choice to perform dose calibrator linearity tests in centers that use 18F, without any detriment to the procedure as well as to the quality of the nuclear medicine service. PMID:25798005

  6. A numerical experiment on light pollution from distant sources

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.

    2011-08-01

    To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.

  7. Spherical loudspeaker array for local active control of sound.

    PubMed

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  8. An experimental investigation of sound radiation from a duct with a circumferentially varying liner

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Silcox, R. J.

    1983-01-01

    The radiation of sound from an asymmetrically lined duct is experimentally studied for various hard-walled standing mode sources. Measurements were made of the directivity of the radiated field and amplitude reflection coefficients in the hard-walled source section. These measurements are compared with baseline hardwall and uniformly lined duct data. The dependence of these characteristics on mode number and angular location of the source is investigated. A comparison between previous theoretical calculations and the experimentally measured results is made and in general good agreement is obtained. For the several cases presented an asymmetry in the liner impedance distribution was found to produce related asymmetries in the radiated acoustic field.

  9. Summary of Research 2002

    DTIC Science & Technology

    2005-01-01

    dissipation, nonuniformity , and nonlinearity are included. A possible future objective is to theoretically investigate nonradiating sources in two and...dissipation, nonuniformity , and nonlinearity. The presence of any of these effects causes radiation to “leak” from the driven region. This radiation was...The utility of LWIR spectral imagery for plume detection was studied. PRESENTATION: Olsen, R.C., Ganer, J. and Van Dyke, E., “Terrain

  10. Objectives Stated for the Use of Literature at School: An Empirical Analysis, Part I.

    ERIC Educational Resources Information Center

    Klingberg, Gote; Agren, Bengt

    This report presents a theoretical basis for literary education through goal analyses. The object of the analyses is to obtain clearer formulations of the subgoals of instruction with the help of literature, and to arrange them in logical sequence. Using 79 sources from 12 countries, an empirical study was made, and goal descriptions were…

  11. Amnesic H.M. Exhibits Parallel Deficits and Sparing in Language and Memory: Systems versus Binding Theory Accounts

    ERIC Educational Resources Information Center

    MacKay, Donald G.; James, Lori E.; Taylor, Jennifer K.; Marian, Diane E.

    2007-01-01

    This study examines sentence-level language abilities of amnesic H.M. to test competing theoretical conceptions of relations between language and memory. We present 11 new sources of experimental evidence indicating deficits in H.M's comprehension and production of non-cliche sentences. Contrary to recent claims that H.M.'s comprehension is…

  12. Effective learning strategies for real-time image-guided adaptive control of multiple-source hyperthermia applicators.

    PubMed

    Cheng, Kung-Shan; Dewhirst, Mark W; Stauffer, Paul R; Das, Shiva

    2010-03-01

    This paper investigates overall theoretical requirements for reducing the times required for the iterative learning of a real-time image-guided adaptive control routine for multiple-source heat applicators, as used in hyperthermia and thermal ablative therapy for cancer. Methods for partial reconstruction of the physical system with and without model reduction to find solutions within a clinically practical timeframe were analyzed. A mathematical analysis based on the Fredholm alternative theorem (FAT) was used to compactly analyze the existence and uniqueness of the optimal heating vector under two fundamental situations: (1) noiseless partial reconstruction and (2) noisy partial reconstruction. These results were coupled with a method for further acceleration of the solution using virtual source (VS) model reduction. The matrix approximation theorem (MAT) was used to choose the optimal vectors spanning the reduced-order subspace to reduce the time for system reconstruction and to determine the associated approximation error. Numerical simulations of the adaptive control of hyperthermia using VS were also performed to test the predictions derived from the theoretical analysis. A thigh sarcoma patient model surrounded by a ten-antenna phased-array applicator was retained for this purpose. The impacts of the convective cooling from blood flow and the presence of sudden increase of perfusion in muscle and tumor were also simulated. By FAT, partial system reconstruction directly conducted in the full space of the physical variables such as phases and magnitudes of the heat sources cannot guarantee reconstructing the optimal system to determine the global optimal setting of the heat sources. A remedy for this limitation is to conduct the partial reconstruction within a reduced-order subspace spanned by the first few maximum eigenvectors of the true system matrix. By MAT, this VS subspace is the optimal one when the goal is to maximize the average tumor temperature. When more than 6 sources present, the steps required for a nonlinear learning scheme is theoretically fewer than that of a linear one, however, finite number of iterative corrections is necessary for a single learning step of a nonlinear algorithm. Thus, the actual computational workload for a nonlinear algorithm is not necessarily less than that required by a linear algorithm. Based on the analysis presented herein, obtaining a unique global optimal heating vector for a multiple-source applicator within the constraints of real-time clinical hyperthermia treatments and thermal ablative therapies appears attainable using partial reconstruction with minimum norm least-squares method with supplemental equations. One way to supplement equations is the inclusion of a method of model reduction.

  13. Experimental and theoretical study of Rayleigh-Lamb waves in a plate containing a surface-breaking crack

    NASA Technical Reports Server (NTRS)

    Paffenholz, Joseph; Fox, Jon W.; Gu, Xiaobai; Jewett, Greg S.; Datta, Subhendu K.

    1990-01-01

    Scattering of Rayleigh-Lamb waves by a normal surface-breaking crack in a plate has been studied both theoretically and experimentally. The two-dimensionality of the far field, generated by a ball impact source, is exploited to characterize the source function using a direct integration technique. The scattering of waves generated by this impact source by the crack is subsequently solved by employing a Green's function integral expression for the scattered field coupled with a finite element representation of the near field. It is shown that theoretical results of plate response, both in frequency and time, are similar to those obtained experimentally. Additionally, implication for practical applications are discussed.

  14. Source counting in MEG neuroimaging

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Dell, John; Magee, Ralphy; Roberts, Timothy P. L.

    2009-02-01

    Magnetoencephalography (MEG) is a multi-channel, functional imaging technique. It measures the magnetic field produced by the primary electric currents inside the brain via a sensor array composed of a large number of superconducting quantum interference devices. The measurements are then used to estimate the locations, strengths, and orientations of these electric currents. This magnetic source imaging technique encompasses a great variety of signal processing and modeling techniques which include Inverse problem, MUltiple SIgnal Classification (MUSIC), Beamforming (BF), and Independent Component Analysis (ICA) method. A key problem with Inverse problem, MUSIC and ICA methods is that the number of sources must be detected a priori. Although BF method scans the source space on a point-to-point basis, the selection of peaks as sources, however, is finally made by subjective thresholding. In practice expert data analysts often select results based on physiological plausibility. This paper presents an eigenstructure approach for the source number detection in MEG neuroimaging. By sorting eigenvalues of the estimated covariance matrix of the acquired MEG data, the measured data space is partitioned into the signal and noise subspaces. The partition is implemented by utilizing information theoretic criteria. The order of the signal subspace gives an estimate of the number of sources. The approach does not refer to any model or hypothesis, hence, is an entirely data-led operation. It possesses clear physical interpretation and efficient computation procedure. The theoretical derivation of this method and the results obtained by using the real MEG data are included to demonstrates their agreement and the promise of the proposed approach.

  15. Source of polarized ions for the JINR accelerator complex

    NASA Astrophysics Data System (ADS)

    Belov, A. S.; Donets, D. E.; Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, V. B.; Turbabin, A. V.; Zubets, V. N.

    2017-12-01

    The JINR atomic beam type polarized ion source is described. Results of tests of the plasma ionizer with a storage cell and of tuning of high frequency transition units are presented. The source was installed in a linac injector hall of NUCLOTRON in May 2016. The source has been commissioned and used in the NUCLOTRON runs in 2016 and February - March 2017. Polarized and unpolarized deuteron beams were produced as well as polarized protons for acceleration in the NUCLOTRON. Polarized deuteron beam with pulsed current up to 2 mA has been produced. Deuteron beam polarization of 0.6-0.9 of theoretical values for different modes of high frequency transition units operation has been measured with the NUCLOTRON ring internal polarimeter for the accelerated deuteron and proton beams.

  16. Thermal-electric numerical simulation of a surface ion source for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, Mattia; Meneghetti, Giovanni; Andrighetto, Alberto

    2010-11-01

    In a facility for the production of radioactive ion beams (RIBs), the target system and the ion source are the most critical objects. In the context of the Selective Production of Exotic Species (SPES) project, a proton beam directly impinges a Uranium Carbide production target, generating approximately 10 13 fissions per second. The radioactive isotopes produced by the 238U fissions are then directed to the ion source to acquire a charge state. After that, the radioactive ions obtained are transported electrostatically to the subsequent areas of the facility. In this work the surface ion source at present adopted for the SPES project is studied by means of both analytical and numerical thermal-electric models. The theoretical results are compared with temperature and electric potential difference measurements.

  17. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  18. Dynamical Analysis of a Cylindrical Piezoelectric Transducer

    NASA Astrophysics Data System (ADS)

    LU, P.; LEE, K. H.; LIM, S. P.

    2003-01-01

    In the present paper, the vibration of a cylindrical piezoelectric transducer induced by applied voltage, which can be used as the stator transducer of a cylindrical micromotor, is studied based on shell theory. The transducer is modelled as a thin elastic cylinder. The properties of the vibration modes of the transducer, such as mode frequencies and amplitude ratios of the mode shapes, are determined following Galerkin method. The response of the transducer under the four electric sources with 90° phase difference is then obtained by the modal summation method. With the results, the performance of the transducer under the electric sources can be estimated. The present work provides a general and precise theoretical modelling on the dynamical movement of the transducer.

  19. Theory of Remote Image Formation

    NASA Astrophysics Data System (ADS)

    Blahut, Richard E.

    2004-11-01

    In many applications, images, such as ultrasonic or X-ray signals, are recorded and then analyzed with digital or optical processors in order to extract information. Such processing requires the development of algorithms of great precision and sophistication. This book presents a unified treatment of the mathematical methods that underpin the various algorithms used in remote image formation. The author begins with a review of transform and filter theory. He then discusses two- and three-dimensional Fourier transform theory, the ambiguity function, image construction and reconstruction, tomography, baseband surveillance systems, and passive systems (where the signal source might be an earthquake or a galaxy). Information-theoretic methods in image formation are also covered, as are phase errors and phase noise. Throughout the book, practical applications illustrate theoretical concepts, and there are many homework problems. The book is aimed at graduate students of electrical engineering and computer science, and practitioners in industry. Presents a unified treatment of the mathematical methods that underpin the algorithms used in remote image formation Illustrates theoretical concepts with reference to practical applications Provides insights into the design parameters of real systems

  20. White light Sagnac interferometer—a common (path) tale of light

    NASA Astrophysics Data System (ADS)

    Schwartz, Eyal

    2017-11-01

    White or polychromatic light sources are vastly abundant in nature and lie in our most basic understanding of the theory of light, beginning from stars like our Sun and extending to every common household light bulb or street lamp. In this paper, I present concepts of white light interferometery using a common-path Sagnac interferometer, manifested in a straightforward laboratory experiment. I further show the use of this as a Fourier transform spectrometer while presenting a basic overview of the theoretical concepts and spectrum of different light sources obtained experimentally. This work, both experimentally and analytically, is suitable for upper-level undergraduate physics or engineering courses where electromagnetic theory and optics are discussed. The experiment and theory presents important deep concepts and aspects in modern optics and physics that every science student should acquire.

  1. Theoretical prediction of thick wing and pylon-fuselage-fanpod-nacelle aerodynamic characteristics at subcritical speeds. Part 1: Theory and results

    NASA Technical Reports Server (NTRS)

    Tulinius, J. R.

    1974-01-01

    The theoretical development and the comparison of results with data of a thick wing and pylon-fuselage-fanpod-nacelle analysis are presented. The analysis utilizes potential flow theory to compute the surface velocities and pressures, section lift and center of pressure, and the total configuration lift, moment, and vortex drag. The skin friction drag is also estimated in the analysis. The perturbation velocities induced by the wing and pylon, fuselage and fanpod, and nacelle are represented by source and vortex lattices, quadrilateral vortices, and source frustums, respectively. The strengths of these singularities are solved for simultaneously including all interference effects. The wing and pylon planforms, twists, cambers, and thickness distributions, and the fuselage and fanpod geometries can be arbitrary in shape, provided the surface gradients are smooth. The flow through nacelle is assumed to be axisymmetric. An axisymmetric center engine hub can also be included. The pylon and nacelle can be attached to the wing, fuselage, or fanpod.

  2. Residual Gases in Crystal Growth Systems

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Residual gases present in closed ampoules may affect different crystal growth processes. That seems to be particularly true under microgravity conditions where, due to weightlessness of the melt, the gases may lead to detached solidification and/or formation of voids and bubbles, as observed in the past. For that reason a good understanding and control of formation of residual gases is important for an optimum design and meaningful interpretation of crystal growth experiments. Our extensive experimental and theoretical studies of the subject, summarized in this paper, include degassing of silica glass and generation of gases from different source materials. Different materials processing conditions, like outgassing under vacuum, annealing in hydrogen, resublimation, different material preparation procedures, multiple annealings, different processing times, and others were applied and their effect on the amount and composition of gas were analyzed. The experimental results were interpreted based on theoretical calculations on diffusion in silica glass and source materials and thermochemistry of the system. Procedures for a reduction of the amount of gas are also discussed.

  3. Minimization of nanosatellite low frequency magnetic fields.

    PubMed

    Belyayev, S M; Dudkin, F L

    2016-03-01

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones.

  4. Ringfield lithographic camera

    DOEpatents

    Sweatt, William C.

    1998-01-01

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.

  5. Reconstruction of Vectorial Acoustic Sources in Time-Domain Tomography

    PubMed Central

    Xia, Rongmin; Li, Xu; He, Bin

    2009-01-01

    A new theory is proposed for the reconstruction of curl-free vector field, whose divergence serves as acoustic source. The theory is applied to reconstruct vector acoustic sources from the scalar acoustic signals measured on a surface enclosing the source area. It is shown that, under certain conditions, the scalar acoustic measurements can be vectorized according to the known measurement geometry and subsequently be used to reconstruct the original vector field. Theoretically, this method extends the application domain of the existing acoustic reciprocity principle from a scalar field to a vector field, indicating that the stimulating vectorial source and the transmitted acoustic pressure vector (acoustic pressure vectorized according to certain measurement geometry) are interchangeable. Computer simulation studies were conducted to evaluate the proposed theory, and the numerical results suggest that reconstruction of a vector field using the proposed theory is not sensitive to variation in the detecting distance. The present theory may be applied to magnetoacoustic tomography with magnetic induction (MAT-MI) for reconstructing current distribution from acoustic measurements. A simulation on MAT-MI shows that, compared to existing methods, the present method can give an accurate estimation on the source current distribution and a better conductivity reconstruction. PMID:19211344

  6. Gravitational anti-screening as an alternative to dark matter

    NASA Astrophysics Data System (ADS)

    Penner, A. Raymond

    2016-04-01

    A semiclassical model of the screening of electric charge by virtual electric dipoles, as found in electrodynamic theory, will be presented. This model is then applied to the hypothetical case of an electric force where like charges attract. The resulting anti-screening of the electric charge is found to have the same functional dependence on the field source and observation distance that is found with the Baryonic Tully-Fisher Relationship. This leads to an anti-screening model for the gravitational force which is then used to determine the theoretical rotational curve of the Galaxy and the theoretical velocity dispersions and shear values for the Coma cluster. These theoretical results are found to be in good agreement with the corresponding astronomical observations. The screening of electric charge as found in QED and the larger apparent masses of galaxies and galactic clusters therefore appears to be two sides of the same coin.

  7. XII Multifrequency Behaviour of High Energy Cosmic Sources Workshop

    NASA Astrophysics Data System (ADS)

    2017-06-01

    This is the twelfth edition of the series of Frascati Workshops on "Multifrequency Behaviour of High Energy Cosmic Sources" which is undoubtedly a largely accepted biennial meeting in which an updated experimental and theoretical panorama will be depicted. This edition comes at the 33rd anniversary of the first historical "multifrequency" workshop about "Multifrequency Behaviour of GalacticAccreting Sources", held in Vulcano in September 1984. This surely renders the Frascati Workshop Series the oldest among the many devoted to "Multifrequency Studies of Cosmic Sources". The study of the physics governing the cosmic sources will be the main goal of the workshop. A session devoted to the ongoing and next generation ground- and space-based experiments will give the actual prospects for the first decades of this millennium. The following items will be reviewed: Cosmology: Cosmic Background, Clusters of Galaxies Extragalactic Sources: Active Galaxies, Normal Galaxies Gamma-Rays Burst: Experiments versus Theories Galactic Sources: Pre-Main-Sequence and Main-Sequence Stars, Cataclysmic Variables and Novae, Supernovae and SNRs, X-Ray Binary Systems, Pulsars, Black Holes, Gamma-Ray Sources,Nucleosynthesis. The Astrophysics with the Ongoing and Future Experiments: Space-Based Experiments,Ground-Based Experiments. The workshop will include few 30-minute general review talks to introduce the current problems, and typically 20-minute talks discussing new experimental and theoretical results. A series of 20-minute talks will discuss the ongoing and planned ground- and space- based experiments. The cadence of the workshop is biennial. The participation will be only by invitation. All participants are kindly invited to attend the whole workshop. However, to keep alive the workshop it was decided that all presentations should be compulsorily given to the LOC, so that they can be inserted into the web page of the workshop. These presentations will form the basis for writing the papers to be published in the proceedings of the Frascati Workshop 2017 in electronic form by the Proceedings of Science (PoS-SISSA), after a peer referee process, and they will be freely available at once in the NASA- ADS. The editor of the proceedings will be Franco Giovannelli and Lola Sabau-Graziati.

  8. Choosing for Quality or Inequality: Current Perspectives on the Implementation of School Choice Policy in Sweden

    ERIC Educational Resources Information Center

    Bunar, Nihad

    2010-01-01

    A policy of school choice has, in various shapes, been implemented in educational systems across the world during the last decades. Drawing on various empirical and theoretical sources, the aim of this article is to distinguish the key defining elements of the Swedish school choice policy and to present and discuss some of its outcomes in terms of…

  9. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    NASA Astrophysics Data System (ADS)

    Arnold, N. D.; Attig, J.; Banks, G.; Bechtold, R.; Beczek, K.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Biggs, J. A.; Borland, M.; Boerste, K.; Bosek, M.; Brzowski, W. R.; Budz, J.; Carwardine, J. A.; Castro, P.; Chae, Y.-C.; Christensen, S.; Clark, C.; Conde, M.; Crosbie, E. A.; Decker, G. A.; Dejus, R. J.; DeLeon, H.; Den Hartog, P. K.; Deriy, B. N.; Dohan, D.; Dombrowski, P.; Donkers, D.; Doose, C. L.; Dortwegt, R. J.; Edwards, G. A.; Eidelman, Y.; Erdmann, M. J.; Error, J.; Ferry, R.; Flood, R.; Forrestal, J.; Freund, H.; Friedsam, H.; Gagliano, J.; Gai, W.; Galayda, J. N.; Gerig, R.; Gilmore, R. L.; Gluskin, E.; Goeppner, G. A.; Goetzen, J.; Gold, C.; Gorski, A. J.; Grelick, A. E.; Hahne, M. W.; Hanuska, S.; Harkay, K. C.; Harris, G.; Hillman, A. L.; Hogrefe, R.; Hoyt, J.; Huang, Z.; Jagger, J. M.; Jansma, W. G.; Jaski, M.; Jones, S. J.; Keane, R. T.; Kelly, A. L.; Keyser, C.; Kim, K.-J.; Kim, S. H.; Kirshenbaum, M.; Klick, J. H.; Knoerzer, K.; Koldenhoven, R. J.; Knott, M.; Labuda, S.; Laird, R.; Lang, J.; Lenkszus, F.; Lessner, E. S.; Lewellen, J. W.; Li, Y.; Lill, R. M.; Lumpkin, A. H.; Makarov, O. A.; Markovich, G. M.; McDowell, M.; McDowell, W. P.; McNamara, P. E.; Meier, T.; Meyer, D.; Michalek, W.; Milton, S. V.; Moe, H.; Moog, E. R.; Morrison, L.; Nassiri, A.; Noonan, J. R.; Otto, R.; Pace, J.; Pasky, S. J.; Penicka, J. M.; Pietryla, A. F.; Pile, G.; Pitts, C.; Power, J.; Powers, T.; Putnam, C. C.; Puttkammer, A. J.; Reigle, D.; Reigle, L.; Ronzhin, D.; Rotela, E. R.; Russell, E. F.; Sajaev, V.; Sarkar, S.; Scapino, J. C.; Schroeder, K.; Seglem, R. A.; Sereno, N. S.; Sharma, S. K.; Sidarous, J. F.; Singh, O.; Smith, T. L.; Soliday, R.; Sprau, G. A.; Stein, S. J.; Stejskal, B.; Svirtun, V.; Teng, L. C.; Theres, E.; Thompson, K.; Tieman, B. J.; Torres, J. A.; Trakhtenberg, E. M.; Travish, G.; Trento, G. F.; Vacca, J.; Vasserman, I. B.; Vinokurov, N. A.; Walters, D. R.; Wang, J.; Wang, X. J.; Warren, J.; Wesling, S.; Weyer, D. L.; Wiemerslage, G.; Wilhelmi, K.; Wright, R.; Wyncott, D.; Xu, S.; Yang, B.-X.; Yoder, W.; Zabel, R. B.

    2001-12-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  10. Sound propagation from a simple source in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III

    1975-01-01

    The nature of the acoustic field of a simple source in a wind tunnel under flow conditions was examined theoretically and experimentally. The motivation of the study was to establish aspects of the theoretical framework for interpreting acoustic data taken (in wind) tunnels using in wind microphones. Three distinct investigations were performed and are described in detail.

  11. Discontinuity stresses in metallic pressure vessels

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The state of the art, criteria, and recommended practices for the theoretical and experimental analyses of discontinuity stresses and their distribution in metallic pressure vessels for space vehicles are outlined. The applicable types of pressure vessels include propellant tanks ranging from main load-carrying integral tank structure to small auxiliary tanks, storage tanks, solid propellant motor cases, high pressure gas bottles, and pressurized cabins. The major sources of discontinuity stresses are discussed, including deviations in geometry, material properties, loads, and temperature. The advantages, limitations, and disadvantages of various theoretical and experimental discontinuity analysis methods are summarized. Guides are presented for evaluating discontinuity stresses so that pressure vessel performance will not fall below acceptable levels.

  12. A morphological study of waves in the thermosphere using DE-2 observations

    NASA Technical Reports Server (NTRS)

    Gross, S. H.; Kuo, S. P.; Shmoys, J.

    1986-01-01

    Theoretical model and data analysis of DE-2 observations for determining the correlation between the neutral wave activity and plasma irregularities have been presented. The relationships between the observed structure of the sources, precipitation and joule heating, and the fluctuations in neutral and plasma parameters are obtained by analyzing two measurements of neutral atmospheric wave activity and plasma irregularities by DE-2 during perigee passes at an altitude on the order of 300 to 350 km over the polar cap. A theoretical model based on thermal nonlinearity (joule heating) to give mode-mode coupling is developed to explore the role of neutral disturbance (winds and gravity waves) on the generation of plasma irregularities.

  13. R CORONAE BOREALIS STARS ARE VIABLE FACTORIES OF PRE-SOLAR GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakas, Amanda I.; Ruiter, Ashley J.; Hampel, Melanie, E-mail: amanda.karakas@anu.edu.au

    2015-08-20

    We present a new theoretical estimate for the birthrate of R Coronae Borealis (RCB) stars that is in agreement with recent observational data. We find the current Galactic birthrate of RCB stars to be ≈25% of the Galactic rate of Type Ia supernovae, assuming that RCB stars are formed through the merger of carbon–oxygen and helium-rich white dwarfs. Our new RCB birthrate (1.8 × 10{sup −3} yr{sup −1}) is a factor of 10 lower than previous theoretical estimates. This results in roughly 180–540 RCB stars in the Galaxy, depending on the RCB lifetime. From the theoretical and observational estimates, wemore » calculate the total dust production from RCB stars and compare this rate to dust production from novae and born-again asymptotic giant branch (AGB) stars. We find that the amount of dust produced by RCB stars is comparable to the amounts produced by novae or born-again post-AGB stars, indicating that these merger objects are a viable source of carbonaceous pre-solar grains in the Galaxy. There are graphite grains with carbon and oxygen isotopic ratios consistent with the observed composition of RCB stars, adding weight to the suggestion that these rare objects are a source of stardust grains.« less

  14. The timing and sources of information for the adoption and implementation of production innovations

    NASA Technical Reports Server (NTRS)

    Ettlie, J. E.

    1976-01-01

    Two dimensions (personal-impersonal and internal-external) are used to characterize information sources as they become important during the interorganizational transfer of production innovations. The results of three studies are reviewed for the purpose of deriving a model of the timing and importance of different information sources and the utilization of new technology. Based on the findings of two retrospective studies, it was concluded that the pattern of information seeking behavior in user organizations during the awareness stage of adoption is not a reliable predictor of the eventual utilization rate. Using the additional findings of a real-time study, an empirical model of the relative importance of information sources for successful user organizations is presented. These results are extended and integrated into a theoretical model consisting of a time-profile of successful implementations and the relative importance of four types of information sources during seven stages of the adoption-implementation process.

  15. Development of a directivity-controlled piezoelectric transducer for sound reproduction

    NASA Astrophysics Data System (ADS)

    Bédard, Magella; Berry, Alain

    2008-04-01

    Present sound reproduction systems do not attempt to simulate the spatial radiation of musical instruments, or sound sources in general, even though the spatial directivity has a strong impact on the psychoacoustic experience. A transducer consisting of 4 piezoelectric elemental sources made from curved PVDF films is used to generate a target directivity pattern in the horizontal plane, in the frequency range of 5-20 kHz. The vibratory and acoustical response of an elemental source is addressed, both theoretically and experimentally. Two approaches to synthesize the input signals to apply to each elemental source are developed in order to create a prescribed, frequency-dependent acoustic directivity. The circumferential Fourier decomposition of the target directivity provides a compromise between the magnitude and the phase reconstruction, whereas the minimization of a quadratic error criterion provides a best magnitude reconstruction. This transducer can improve sound reproduction by introducing the spatial radiation aspect of the original source at high frequency.

  16. Fatigue crack localization with near-field acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Zhang, Yunfeng

    2013-04-01

    This paper presents an AE source localization technique using near-field acoustic emission (AE) signals induced by crack growth and propagation. The proposed AE source localization technique is based on the phase difference in the AE signals measured by two identical AE sensing elements spaced apart at a pre-specified distance. This phase difference results in canceling-out of certain frequency contents of signals, which can be related to AE source direction. Experimental data from simulated AE source such as pencil breaks was used along with analytical results from moment tensor analysis. It is observed that the theoretical predictions, numerical simulations and the experimental test results are in good agreement. Real data from field monitoring of an existing fatigue crack on a bridge was also used to test this system. Results show that the proposed method is fairly effective in determining the AE source direction in thick plates commonly encountered in civil engineering structures.

  17. A boundary element approach to optimization of active noise control sources on three-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cunefare, K. A.; Koopmann, G. H.

    1991-01-01

    This paper presents the theoretical development of an approach to active noise control (ANC) applicable to three-dimensional radiators. The active noise control technique, termed ANC Optimization Analysis, is based on minimizing the total radiated power by adding secondary acoustic sources on the primary noise source. ANC Optimization Analysis determines the optimum magnitude and phase at which to drive the secondary control sources in order to achieve the best possible reduction in the total radiated power from the noise source/control source combination. For example, ANC Optimization Analysis predicts a 20 dB reduction in the total power radiated from a sphere of radius at a dimensionless wavenumber ka of 0.125, for a single control source representing 2.5 percent of the total area of the sphere. ANC Optimization Analysis is based on a boundary element formulation of the Helmholtz Integral Equation, and thus, the optimization analysis applies to a single frequency, while multiple frequencies can be treated through repeated analyses.

  18. SGR 0418+5729, Swift J1822.3-1606, and 1E 2259+586 as massive, fast-rotating, highly magnetized white dwarfs

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Izzo, L.; Rueda Hernandez, J. A.; Ruffini, R.

    2013-07-01

    Aims: We describe the so-called low magnetic field magnetars, SGR 0418+5729, Swift J1822.3-1606, and the AXP prototype 1E 2259+586 as massive, fast-rotating, highly magnetized white dwarfs. Methods: We give bounds for the mass, radius, moment of inertia, and magnetic field for these sources by requesting the stability of realistic, general relativistic, uniformly rotating white dwarfs. We also present the theoretical expectation of the infrared, optical, and ultraviolet emission of these objects and show their consistency with the current available observational data. Results: We improve the theoretical prediction of the lower limit of the spindown rate of SGR 0418+5729; for a white dwarf close to its maximum stable mass we obtain the very stringent interval for the spindown rate of 4.1 × 10-16 < Ṗ < 6 × 10-15, where the upper value is the known observational limit. A lower limit has been also set for Swift J1822.3-1606, whose spindown rate is not yet fully confirmed. Our model provides for the source Ṗ ≥ 2.13 × 10-15 if the star is close to its maximum stable mass. We give in addition the frequencies at which absorption features could be present in the spectrum of these sources as the result of the scattering of photons with the quantized electrons by the surface magnetic field.

  19. Constraints on Nucleosynthesis from Xenon Isotopes in Presolar Material

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Turner, G.

    2007-03-01

    By applying theoretical constraints to three-dimensional fits of xenon isotope data from presolar grains, we show that they strongly suggest a nucleosynthesis process that produces ``r-process'' isotopes without producing s-process isotopes (128Xe, 130Xe) and without producing the conventional r-process isotope 136Xe. It is one of three distinct nucleosynthetic sources that are necessary and sufficient to explain the gross variation in xenon isotopic data across all presolar material. The other source contributing r-process isotopes is responsible for the heavy isotope signature identified in nanodiamonds, which is also present in presolar SiC, and is associated with light isotope enrichment. The relative enrichments of heavy and light isotopes in this component in nanodiamonds and SiC grains are different, implying that the parent nucleosynthetic processes are not inextricably linked. Because minor variations in the isotopic compositions of xenon trapped in nanodiamonds show that two distinct sites contributed nanodiamonds to the early solar system within the average grain lifetime, it is suggested that Type IIa supernovae (SNe IIa) are not the source of the nanodiamonds. The s-process signature derived is consistent with that derived from mixing lines between grain subpopulations for isotopes on the s-process path. This implies that a pure end-member is present in the grains (although not approached in analyses). Our approach is more general and provides a less restrictive set of numerical constraints to be satisfied by proposed theoretical treatments of nucleosynthesis.

  20. Search for old neutron stars in molecular clouds: Cygnus rift and Cygnus OB7.

    NASA Astrophysics Data System (ADS)

    Belloni, T.; Zampieri, L.; Campana, S.

    1997-03-01

    We present the results of a systematic search for old isolated neutron stars (ONSs) in the direction of two giant molecular clouds in Cygnus (Rift and OB7). From theoretical calculations, we expect the detection of a large number of ONSs with the PSPC on board ROSAT. By analyzing the PSPC pointings in the direction of the clouds, we find four sources characterized by count rates (~10^-3^ct/s) and spectral properties consistent with the hypothesis that the X-ray radiation is produced by ONSs and also characterized by the absence of any measurable optical counterpart within their error circle in the digitized red plates of the Palomar All Sky Survey. The importance of follow-up deep observations in the direction of these ONS candidates is discussed. The observational and theoretical approach presented here could be fruitfully applied also to the systematic search for ONSs in other regions of the Galaxy.

  1. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    PubMed

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  2. Laser driven plasmas based incoherent x-ray sources at PALS and ELI Beamlines (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kozlová, Michaela

    2017-05-01

    We will present data on a various X-ray production schemes from laser driven plasmas at the PALS Research Center and discuss the plan for the ELI Beamlines project. One of the approaches, how to generate ultrashort pulses of incoherent X-ray radiation, is based on interaction of femtosecond laser pulses with solid or liquid targets. So-called K-alpha source depending on used targets emits in hard X-ray region from micrometric source size. The source exhibits sufficient spatial coherence to observe phase contrast. Detailed characterization of various sources including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. Other method, known as laser wakefield electron acceleration (LWFA), can produce up to GeV electron beams emitting radiation in collimated beam with a femtosecnond pulse duration. This approach was theoretically and experimentally examined at the PALS Center. The parameters of the PALS Ti:S laser interaction were studied by extensive particle-in-cell simulations with radiation post-processors in order to evaluate the capabilities of our system in this field. The extensions of those methods at the ELI Beamlines facility will enable to generate either higher X-ray energies or higher repetition rate. The architecture of such sources and their considered applications will be proposed.

  3. Comparative theoretical and experimental study of a Shack-Hartmann and a phase diversity sensor, for high-precision wavefront sensing dedicated to space active optics

    NASA Astrophysics Data System (ADS)

    Montmerle Bonnefois, A.; Fusco, T.; Meimon, S.; Michau, V.; Mugnier, L.; Sauvage, J.-F.; Engel, C.; Escolle, C.; Ferrari, M.; Hugot, E.; Liotard, A.; Bernot, M.; Carlavan, M.; Falzon, F.; Bret-Dibat, T.; Laubier, D.

    2017-11-01

    Earth-imaging or Universe Science satellites are always in need of higher spatial resolutions, in order to discern finer and finer details in images. This means that every new generation of satellites must have a larger main mirror than the previous one, because of the diffraction. Since it allows the use of larger mirrors, active optics is presently studied for the next generation of satellites. To measure the aberrations of such an active telescope, the Shack-Hartmann (SH), and the phase-diversity (PD) are the two wavefront sensors (WFS) considered preferentially because they are able to work with an extended source like the Earth's surface, as well as point sources like stars. The RASCASSE project was commissioned by the French spatial agency (CNES) to study the SH and PD sensors for high-performance wavefront sensing. It involved ONERA and Thales Alenia Space (TAS), and LAM. Papers by TAS and LAM on the same project are available in this conference, too [1,2]. The purpose of our work at ONERA was to explore what the best performance both wavefront sensors can achieve in a space optics context. So we first performed a theoretical study in order to identify the main sources of errors and quantify them - then we validated those results experimentally. The outline of this paper follows this approach: we first discuss phase diversity theoretical results, then Shack-Hartmann's, then experimental results - to finally conclude on each sensor's performance, and compare their weak and strong points.

  4. Observations of medium energy gamma ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  5. Herringbone bursts associated with type II solar radio emission

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.; Robinson, R. D.

    1987-01-01

    Detailed observations of the herringbone (HB) fine structure on type II solar radio bursts are presented. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. The characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts are determined. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. These data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.

  6. Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey

    NASA Astrophysics Data System (ADS)

    Guillemot, Christine; Siohan, Pierre

    2005-12-01

    Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS) provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD) strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM) capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC) and variable-length source codes (VLC) widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.

  7. The Bi-directional Relationship between Source Characteristics and Message Content

    PubMed Central

    Collins, Peter J.; Hahn, Ulrike; von Gerber, Ylva; Olsson, Erik J.

    2018-01-01

    Much of what we believe we know, we know through the testimony of others (Coady, 1992). While there has been long-standing evidence that people are sensitive to the characteristics of the sources of testimony, for example in the context of persuasion, researchers have only recently begun to explore the wider implications of source reliability considerations for the nature of our beliefs. Likewise, much remains to be established concerning what factors influence source reliability. In this paper, we examine, both theoretically and empirically, the implications of using message content as a cue to source reliability. We present a set of experiments examining the relationship between source information and message content in people's responses to simple communications. The results show that people spontaneously revise their beliefs in the reliability of the source on the basis of the expectedness of a source's claim and, conversely, adjust message impact by perceived reliability; hence source reliability and message content have a bi-directional relationship. The implications are discussed for a variety of psychological, philosophical and political issues such as belief polarization and dual-route models of persuasion. PMID:29441029

  8. Top: Latest results from the Tevatron - Cross section and mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Coca

    2003-09-02

    The Tevatron is presently the world's only source of top quark production. This presentation summarizes the latest Run II results on top physics obtained by the CDF and D0 collaborations, using data taken until mid-January 2003. The first cross section measurements at 1.96 TeV in dilepton and lepton+jets channels agree with the NLO (Next-to-Leading-Order) theoretical predictions. Two top mass measurements, one by CDF using Run II data and another by D0 using an improved technique anticipate the improvements to come in the near future.

  9. TeV radiation from the Crab nebula and other matters

    NASA Technical Reports Server (NTRS)

    Lamb, R. C.

    1990-01-01

    The detection of the Crab Nebula via the Cherenkov imaging technique places TeV astronomy on a secure observational footing. The motivation for TeV observations, a discussion of the atmospheric Cherenkov technique, the experimental details of the Crab Nebula detection, and its scientific implications are presented. The present dilemma of VHE/UHE astronomy is that the Crab appears to be the only source whose showers match theoretical expectations. The situation will be clarified as improved ground-based detectors come on-line with sensitivities matching those of the GRO (Gamma Ray Observatory) instruments.

  10. An introduction to genetic quality in the context of sexual selection.

    PubMed

    Pitcher, Trevor E; Mays, Herman L

    2008-09-01

    This special issue of Genetica brings together empirical researchers and theoreticians to present the latest on the evolutionary ecology of genetic quality in the context of sexual selection. The work comes from different fields of study including behavioral ecology, quantitative genetics and molecular genetics on a diversity of organisms using different approaches from comparative studies, mathematical modeling, field studies and laboratory experiments. The papers presented in this special issue primarily focus on genetic quality in relation to (1) sources of genetic variation, (2) polyandry, (3) new theoretical developments and (4) comprehensive reviews.

  11. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field

    NASA Astrophysics Data System (ADS)

    Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.

    2018-03-01

    Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.

  12. Integrated primary care, the collaboration imperative inter-organizational cooperation in the integrated primary care field: a theoretical framework

    PubMed Central

    Valentijn, Pim P; Bruijnzeels, Marc A; de Leeuw, Rob J; Schrijvers, Guus J.P

    2012-01-01

    Purpose Capacity problems and political pressures have led to a rapid change in the organization of primary care from mono disciplinary small business to complex inter-organizational relationships. It is assumed that inter-organizational collaboration is the driving force to achieve integrated (primary) care. Despite the importance of collaboration and integration of services in primary care, there is no unambiguous definition for both concepts. The purpose of this study is to examine and link the conceptualisation and validation of the terms inter-organizational collaboration and integrated primary care using a theoretical framework. Theory The theoretical framework is based on the complex collaboration process of negotiation among multiple stakeholder groups in primary care. Methods A literature review of health sciences and business databases, and targeted grey literature sources. Based on the literature review we operationalized the constructs of inter-organizational collaboration and integrated primary care in a theoretical framework. The framework is being validated in an explorative study of 80 primary care projects in the Netherlands. Results and conclusions Integrated primary care is considered as a multidimensional construct based on a continuum of integration, extending from segregation to integration. The synthesis of the current theories and concepts of inter-organizational collaboration is insufficient to deal with the complexity of collaborative issues in primary care. One coherent and integrated theoretical framework was found that could make the complex collaboration process in primary care transparent. This study presented theoretical framework is a first step to understand the patterns of successful collaboration and integration in primary care services. These patterns can give insights in the organization forms needed to create a good working integrated (primary) care system that fits the local needs of a population. Preliminary data of the patterns of collaboration and integration will be presented.

  13. Minimization of nanosatellite low frequency magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyayev, S. M., E-mail: belyayev@isr.lviv.ua; Royal Institute of Technology, Stockholm 11428; Dudkin, F. L.

    2016-03-15

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accuratemore » than the conventional ones.« less

  14. Modal noise impact in radio over fiber multimode fiber links.

    PubMed

    Gasulla, I; Capmany, J

    2008-01-07

    A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise.

  15. Stepwise and Pulse Transient Methods of Thermophysical Parameters Measurement

    NASA Astrophysics Data System (ADS)

    Malinarič, Svetozár; Dieška, Peter

    2016-12-01

    Stepwise transient and pulse transient methods are experimental techniques for measuring the thermal diffusivity and conductivity of solid materials. Theoretical models and experimental apparatus are presented, and the influence of the heat source capacity and the heat transfer coefficient is investigated using the experiment simulation. The specimens from low-density polyethylene (LDPE) and polymethylmethacrylate (PMMA) were measured by both methods. Coefficients of variation were better than 0.9 % for LDPE and 2.8 % for PMMA measurements. The time dependence of the temperature response to the input heat flux showed a small drop, which was caused by thermoelastic wave generated by thermal expansions of the heat source.

  16. Extrapolation of rotating sound fields.

    PubMed

    Carley, Michael

    2018-03-01

    A method is presented for the computation of the acoustic field around a tonal circular source, such as a rotor or propeller, based on an exact formulation which is valid in the near and far fields. The only input data required are the pressure field sampled on a cylindrical surface surrounding the source, with no requirement for acoustic velocity or pressure gradient information. The formulation is approximated with exponentially small errors and appears to require input data at a theoretically minimal number of points. The approach is tested numerically, with and without added noise, and demonstrates excellent performance, especially when compared to extrapolation using a far-field assumption.

  17. A likely source of an observation report in Ptolemy's Almagest.

    NASA Astrophysics Data System (ADS)

    Jones, A.

    1999-09-01

    A recently publishes volume of Greek papyri from Oxyrhynchus (modern Bahnasa, Egypt) containing astronomical text, tables, and horoscopes also includes a fragment of a theoretical work on planetary theory. This text, published under the number P.Oxy. LXI 4133, contains the report of an observation of Jupiter's position in AD 104-105 and refers also to another observation of Jupiter made 344 years earlier. The author of the present note has identified tentatively Menelaus of Alexandria as the author of the treatise on planetary theory. Here, he argues that the recovered treatise was very likely Ptolemy's immediate source for the Jupiter observations referred to in the Almagest.

  18. The importance of quadrupole sources in prediction of transonic tip speed propeller noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Fink, M. R.

    1978-01-01

    A theoretical analysis is presented for the harmonic noise of high speed, open rotors. Far field acoustic radiation equations based on the Ffowcs-Williams/Hawkings theory are derived for a static rotor with thin blades and zero lift. Near the plane of rotation, the dominant sources are the volume displacement and the rho U(2) quadrupole, where u is the disturbance velocity component in the direction blade motion. These sources are compared in both the time domain and the frequency domain using two dimensional airfoil theories valid in the subsonic, transonic, and supersonic speed ranges. For nonlifting parabolic arc blades, the two sources are equally important at speeds between the section critical Mach number and a Mach number of one. However, for moderately subsonic or fully supersonic flow over thin blade sections, the quadrupole term is negligible. It is concluded for thin blades that significant quadrupole noise radiation is strictly a transonic phenomenon and that it can be suppressed with blade sweep. Noise calculations are presented for two rotors, one simulating a helicopter main rotor and the other a model propeller. For the latter, agreement with test data was substantially improved by including the quadrupole source term.

  19. Hadronic vacuum polarization in true muonium

    NASA Astrophysics Data System (ADS)

    Lamm, Henry

    2017-01-01

    In order to reduce the theoretical uncertainty in the prediction, the leading-order hadronic vacuum polarization contribution to the hyperfine splitting of true muonium is reevaluated in two ways. A more complex pionic form factor and better estimates of the perturbative QCD contributions are used to study the model dependence of the previous calculation. The second, more accurate method directly integrates the Drell ratio R (s ) to obtain C1 ,HVP=-0.04874 (9 ) . This corresponds to an energy shift in the hyperfine splitting (HFS) of Δ EHFS,HVP μ=-8202 (16 ) MHz and represents a factor-of-50 reduction in the theoretical uncertainty from hadronic sources. We also compute the contribution in positronium, which is too small at present to detect.

  20. Directional Hearing and Sound Source Localization in Fishes.

    PubMed

    Sisneros, Joseph A; Rogers, Peter H

    2016-01-01

    Evidence suggests that the capacity for sound source localization is common to mammals, birds, reptiles, and amphibians, but surprisingly it is not known whether fish locate sound sources in the same manner (e.g., combining binaural and monaural cues) or what computational strategies they use for successful source localization. Directional hearing and sound source localization in fishes continues to be important topics in neuroethology and in the hearing sciences, but the empirical and theoretical work on these topics have been contradictory and obscure for decades. This chapter reviews the previous behavioral work on directional hearing and sound source localization in fishes including the most recent experiments on sound source localization by the plainfin midshipman fish (Porichthys notatus), which has proven to be an exceptional species for fish studies of sound localization. In addition, the theoretical models of directional hearing and sound source localization for fishes are reviewed including a new model that uses a time-averaged intensity approach for source localization that has wide applicability with regard to source type, acoustic environment, and time waveform.

  1. Investigation of the Statistics of Pure Tone Sound Power Injection from Low Frequency, Finite Sized Sources in a Reverberant Room

    NASA Technical Reports Server (NTRS)

    Smith, Wayne Farrior

    1973-01-01

    The effect of finite source size on the power statistics in a reverberant room for pure tone excitation was investigated. Theoretical results indicate that the standard deviation of low frequency, pure tone finite sources is always less than that predicted by point source theory and considerably less when the source dimension approaches one-half an acoustic wavelength or greater. A supporting experimental study was conducted utilizing an eight inch loudspeaker and a 30 inch loudspeaker at eleven source positions. The resulting standard deviation of sound power output of the smaller speaker is in excellent agreement with both the derived finite source theory and existing point source theory, if the theoretical data is adjusted to account for experimental incomplete spatial averaging. However, the standard deviation of sound power output of the larger speaker is measurably lower than point source theory indicates, but is in good agreement with the finite source theory.

  2. Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Anderson, S G; Barty, C P J

    2003-05-28

    The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less

  3. The derived population of luminous supersoft X-ray sources

    NASA Technical Reports Server (NTRS)

    Di Stefano, R.STEFANO; Rappaport, S.

    1994-01-01

    The existence of a new class of astrophysical object, luminous supersoft X-ray sources, has been established through ROSAT satellite observations and analysis during the past approximately 3 yr. Because most of the radiation emitted by supersoft sources spans a range of wavelengths readily absorbed by interstellar gas, a substantial fraction of these sources may not be detectable with present satellite instrumentation. It is therefore important to derive a reliable estimate of the underlying population, based on the approximately 30 sources that have been observed to date. The work reported here combines the observational results with a theoretical analysis, to obtain an estimate of the total number of sources likely to be present in M31, the Magellanic Clouds, and in our own Galaxy. We find that in M31, where approximately 15 supersoft sources have been identified and roughly an equal number of sources are being investigated as supersoft candidates, there are likely to be approximately 2500 active supersoft sources at the present time. In our own Galaxy, where about four supersoft sources have been detected in the Galactic plane, there are likely to be approximately 1000 active sources. Similarly, with about six and about four (nonforeground) sources observed in the Large (LMC) and Small Magellanic Clouds (SMC), respectively, there should be approximately 30 supersoft sources in the LMC, and approximately 20 in the SMC. The likely uncertainties in the numbers quoted above, and the properties of observable sources relative to those of the total underlying population, are also derived in detail. These results can be scaled to estimate the numbers of supersoft sources likely to be present in other galaxies. The results reported here on the underlying population of supersoft X-ray sources are in good agreement with the results of a prior population synthesis study of the white dwarf accretor model for luminous supersoft X-ray sources. It should be emphasized, however, that the questions asked in these two investigations are distinct, that the approaches taken to answer these questions are largely independent and that the findings of these two studies could in principle have been quite different.

  4. Two dimensional imaging of the virtual source of a supersonic beam: helium at 125 K.

    PubMed

    Eder, S D; Bracco, G; Kaltenbacher, T; Holst, B

    2014-01-09

    Here we present the first two-dimensional images of the virtual source of a supersonic helium expansion. The images were obtained using a free-standing Fresnel zone plate with an outermost zone width of 50 nm as imaging lens and a beam cooled to around 125 K. The nozzle diameter was 10 μm. The virtual source diameter was found to increase with stagnation pressure from 140 ± 30 μm at po = 21 bar up to 270 ± 25 μm at po = 101 bar. The experimental results are compared to a theoretical model based on the solution of the Boltzmann equation by the method of moments. The quantum mechanical cross sections used in the model have been calculated for the Lennard-Jones (LJ) and the Hurly-Moldover (HM) potentials. By using a scaling of the perpendicular temperature that parametrizes the perpendicular velocity distribution based on a continuum expansion approach, the LJ potential shows a good overall agreement with the experiment. However, at higher pressures the data points lie in between the two theoretical curves and the slope of the trend is more similar to the HM curve. Real gas corrections to enthalpy are considered but they affect the results less than the experimental errors.

  5. The Swift Supergiant Fast X-ray Transient Project

    NASA Astrophysics Data System (ADS)

    Romano, P.; Barthelmy, S.; Bozzo, E.; Burrows, D.; Ducci, L.; Esposito, P.; Evans, P.; Kennea, J.; Krimm, H.; Vercellone, S.

    2017-10-01

    We present the Swift Supergiant Fast X-ray Transients project, a systematic study of SFXTs and classical supergiant X-ray binaries (SGXBs) through efficient long-term monitoring of 17 sources including SFXTs and classical SGXBs across more than 4 orders of magnitude in X-ray luminosity on timescales from hundred seconds to years. We derived dynamic ranges, duty cycles, and luminosity distributions to highlight systematic differences that help discriminate between different theoretical models proposed to explain the differences between the wind accretion processes in SFXTs and classical SGXBs. Our follow-ups of the SFXT outbursts provide a steady advancement in the comprehension of the mechanisms triggering the high X-ray level emission of these sources. In particular, the observations of the outburst of the SFXT prototype IGR J17544-2619, when the source reached a peak X-ray luminosity of 3×10^{38} erg s^{-1}, challenged for the first time the maximum theoretical luminosity achievable by a wind-fed neutron star high mass X-ray binary. We propose that this giant outburst was due to the formation of a transient accretion disc around the compact object. We also created a catalogue of over 1000 BAT flares which we use to predict the observability and perspectives with future missions.

  6. Status report on the development of a tubular electron beam ion source

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E. N.; Pikin, A. I.

    2004-05-01

    The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations.

  7. Electrical-thermal-structural finite element simulation and experimental study of a plasma ion source for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.

    2016-03-01

    The production target and the ion source constitute the core of the selective production of exotic species (SPES) facility. In this complex experimental apparatus for the production of radioactive ion beams, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The transfer line enables the unstable isotopes generated by the 238U fissions in the target to reach the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work, the plasma ion source currently adopted for the SPES facility is analyzed in detail by means of electrical, thermal, and structural numerical models. Next, theoretical results are compared with the electric potential difference, temperature, and displacement measurements. Experimental tests with stable ion beams are also presented and discussed.

  8. Experimental and theoretical investigations on the antioxidant activity of isoorientin from Crotalaria globosa

    NASA Astrophysics Data System (ADS)

    Deepha, V.; Praveena, R.; Sivakumar, Raman; Sadasivam, K.

    2014-03-01

    The increasing interests in naturally occurring flavonoids are well known for their bioactivity as antioxidants. The present investigations with combined experimental and theoretical methods are employed to determine the radical scavenging activity and phytochemicals present in Crotalaria globosa, a novel plant source. Preliminary quantification of ethanolic extract of leaves shows high phenolic and flavonoid content than root extract; also it is validated through DPPHrad assay. Further analysis is carried out with successive extracts of leaves of varying polarity of solvents. In DPPHrad and FRAP assays, ethyl acetate fraction (EtOAc) exhibit higher scavenging activity followed by ethanol fraction (EtOH) whereas in NOS assay ethanol fraction is slightly predominant over the EtOAc fraction. The LC-MS analysis provides tentative information about the presence of flavonoid C-glycoside in EtOAc fraction (yellow solid). Presence of flavonoid isorientin has been confirmed through isolation (PTLC) and detected by spectroscopy methods (UV-visible and 1H NMR). Utilizing B3LYP/6-311G (d,p) level of theory the structure and reactivity of flavonoid isoorientin theoretically have been explored. The analysis of the theoretical Bond dissociation energy values, for all Osbnd H sites of isoorientin reveals that minimum energy is required to dissociate H-atom from B-ring than A and C-rings. In order to validate the antioxidant characteristics of isoorientin the relevant molecular descriptors IP, HOMO-LUMO, Mulliken spin density analysis and molecular electrostatic potential surfaces have been computed and interpreted. From experimental and theoretical results, it is proved that isoorientin can act as potent antiradical scavenger in oxidative system.

  9. Magnetars: the physics behind observations. A review.

    PubMed

    Turolla, R; Zane, S; Watts, A L

    2015-11-01

    Magnetars are the strongest magnets in the present universe and the combination of extreme magnetic field, gravity and density makes them unique laboratories to probe current physical theories (from quantum electrodynamics to general relativity) in the strong field limit. Magnetars are observed as peculiar, burst-active x-ray pulsars, the anomalous x-ray pulsars (AXPs) and the soft gamma repeaters (SGRs); the latter emitted also three 'giant flares', extremely powerful events during which luminosities can reach up to 10(47) erg s(-1) for about one second. The last five years have witnessed an explosion in magnetar research which has led, among other things, to the discovery of transient, or 'outbursting', and 'low-field' magnetars. Substantial progress has been made also on the theoretical side. Quite detailed models for explaining the magnetars' persistent x-ray emission, the properties of the bursts, the flux evolution in transient sources have been developed and confronted with observations. New insight on neutron star asteroseismology has been gained through improved models of magnetar oscillations. The long-debated issue of magnetic field decay in neutron stars has been addressed, and its importance recognized in relation to the evolution of magnetars and to the links among magnetars and other families of isolated neutron stars. The aim of this paper is to present a comprehensive overview in which the observational results are discussed in the light of the most up-to-date theoretical models and their implications. This addresses not only the particular case of magnetar sources, but the more fundamental issue of how physics in strong magnetic fields can be constrained by the observations of these unique sources.

  10. An experimental, theoretical and event-driven computational study of narrow vibrofluidised granular materials

    NASA Astrophysics Data System (ADS)

    Thornton, Anthony; Windows-Yule, Kit; Parker, David; Luding, Stefan

    2017-06-01

    We review simulations, experiments and a theoretical treatment of vertically vibrated granular media. The systems considered are confined in narrow quasi-two-dimensional and quasi-one-dimensional (column) geometries, where the vertical extension of the container is much larger than one or both horizontal lengths. The additional geometric constraint present in the column setup frustrates the convection state that is normally observed in wider geometries. We start by showing that the Event Driven (ED) simulation method is able to accurately reproduce the previously experimentally determined phase-diagram for vibrofludised granular materials. We then review two papers that used ED simulations to study narrow quasi-one-dimensional systems revealing a new phenomenon: collective oscillations of the grains with a characteristic frequency that is much lower than the frequency of energy injection. Theoretical work was then undertaken that is able to accurately predict the frequency of such an oscillation and Positron Emission Particle Tracking (PEPT) experiments were undertaken to provide the first experimental evidence of this new phenomenon. Finally, we briefly discuss ongoing work to create an open-source version of this ED via its integration in the existing open-source package MercuryDPM (http://MercuryDPM.org); which has many advanced features that are not found in other codes.

  11. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  12. A continuous-wave ultrasound system for displacement amplitude and phase measurement.

    PubMed

    Finneran, James J; Hastings, Mardi C

    2004-06-01

    A noninvasive, continuous-wave ultrasonic technique was developed to measure the displacement amplitude and phase of mechanical structures. The measurement system was based on a method developed by Rogers and Hastings ["Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated," U.S. Patent No. 4,819,643 (1989)] and expanded to include phase measurement. A low-frequency sound source was used to generate harmonic vibrations in a target of interest. The target was simultaneously insonified by a low-power, continuous-wave ultrasonic source. Reflected ultrasound was phase modulated by the target motion and detected with a separate ultrasonic transducer. The target displacement amplitude was obtained directly from the received ultrasound frequency spectrum by comparing the carrier and sideband amplitudes. Phase information was obtained by demodulating the received signal using a double-balanced mixer and low-pass filter. A theoretical model for the ultrasonic receiver field is also presented. This model coupled existing models for focused piston radiators and for pulse-echo ultrasonic fields. Experimental measurements of the resulting receiver fields compared favorably with theoretical predictions.

  13. Superresolution near-field imaging with surface waves

    NASA Astrophysics Data System (ADS)

    Fu, Lei; Liu, Zhaolun; Schuster, Gerard

    2018-02-01

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulae and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green's functions for migration, and only costs O(N4) algebraic operations for post-stack migration compared to O(N6) operations for natural pre-stack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.

  14. A Comparison between Oceanographic Parameters and Seafloor Pressures; Measured, Theoretical and Modelled, and Terrestrial Seismic Data

    NASA Astrophysics Data System (ADS)

    Donne, Sarah; Bean, Christopher; Craig, David; Dias, Frederic; Christodoulides, Paul

    2016-04-01

    Microseisms are continuous seismic vibrations which propagate mainly as surface Rayleigh and Love waves. They are generated by the Earth's oceans and there are two main types; primary and secondary microseisms. Primary microseisms are generated through the interaction of travelling surface gravity ocean waves with the seafloor in shallow waters relative to the wavelength of the ocean wave. Secondary microseisms, on the other hand are generated when two opposing wave trains interact and a non-linear second order effect produces a pressure fluctuation which is depth independent. The conditions necessary to produce secondary microseisms are presented in Longuet-Higgins (1950) through the interaction of two travelling waves with the same wave period and which interact at an angle of 180 degrees. Equivalent surface pressure density (p2l) is modelled using the numerical ocean wave model Wavewatch III and this term is considered as the microseism source term. This work presents an investigation of the theoretical second order pressures generated through the interaction of travelling waves with varying wave amplitude, period and angle of incidence. Predicted seafloor pressures calculated off the Southwest coast of Ireland are compared with terrestrially recorded microseism records, measured seafloor pressures and oceanographic parameters. The work presented in this study suggests that a broad set of sea states can generate second order seafloor pressures that are consistent with seafloor pressure measurements. Local seismic arrays throughout Ireland allow us to investigate the temporal covariance of these seafloor pressures with microseism source locations.

  15. Jet Measurements for Development of Jet Noise Prediction Tools

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2006-01-01

    The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity.

  16. Observations of medium-energy gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium-energy range between 15 and 100 MeV, obtained during two balloon flights from Brazil, are presented. The importance of this energy region in determining whether neutral-pion decay or electron bremsstrahlung is the most likely dominant source mechanism is discussed, along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to the theoretical spectrum calculated by Fichtel et al. (1976), including both source mechanisms but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  17. Acoustic centering of sources measured by surrounding spherical microphone arrays.

    PubMed

    Hagai, Ilan Ben; Pollow, Martin; Vorländer, Michael; Rafaely, Boaz

    2011-10-01

    The radiation patterns of acoustic sources have great significance in a wide range of applications, such as measuring the directivity of loudspeakers and investigating the radiation of musical instruments for auralization. Recently, surrounding spherical microphone arrays have been studied for sound field analysis, facilitating measurement of the pressure around a sphere and the computation of the spherical harmonics spectrum of the sound source. However, the sound radiation pattern may be affected by the location of the source inside the microphone array, which is an undesirable property when aiming to characterize source radiation in a unique manner. This paper presents a theoretical analysis of the spherical harmonics spectrum of spatially translated sources and defines four measures for the misalignment of the acoustic center of a radiating source. Optimization is used to promote optimal alignment based on the proposed measures and the errors caused by numerical and array-order limitations are investigated. This methodology is examined using both simulated and experimental data in order to investigate the performance and limitations of the different alignment methods. © 2011 Acoustical Society of America

  18. Microlensing optical depth towards the Galactic Bulge using bright sources from OGLE-II

    NASA Astrophysics Data System (ADS)

    Sumi, T.; Woźniak, P.; Udalski, A.; Szymański, M.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Zebruń, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-12-01

    We present a measurement of the microlensing optical depth towards the Galactic Bulge by using bright stars as sources from the central 20 OGLE-II Galactic bulge fields covering a range of 0o

  19. Structural elucidation of direct analysis in real time ionized nerve agent simulants with infrared multiple photon dissociation spectroscopy.

    PubMed

    Rummel, Julia L; Steill, Jeffrey D; Oomens, Jos; Contreras, Cesar S; Pearson, Wright L; Szczepanski, Jan; Powell, David H; Eyler, John R

    2011-06-01

    Infrared multiple photon dissociation (IRMPD) was used to generate vibrational spectra of ions produced with a direct analysis in real time (DART) ionization source coupled to a 4.7 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The location of protonation on the nerve agent simulants diisopropyl methylphosphonate (DIMP) and dimethyl methylphosphonate (DMMP) was studied while solutions of the compounds were introduced for extended periods of time with a syringe pump. Theoretical vibrational spectra were generated with density functional theory calculations. Visual comparison of experimental mid-IR IRMPD spectra and theoretical spectra could not establish definitively if a single structure or a mixture of conformations was present for the protonated parent of each compound. However, theoretical calculations, near-ir IRMPD spectra, and frequency-to-frequency and statistical comparisons indicated that the protonation site for both DIMP and DMMP was predominantly, if not exclusively, the phosphonyl oxygen instead of one of the oxygen atoms with only single bonds.

  20. A theoretical approach to sound propagation and radiation for ducts with suppressors

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Sawdy, D. T.

    1981-01-01

    The several phenomena involved in theoretical prediction of the far-field sound radiation attenuation from an acoustically lined duct were studied. These include absorption by the suppressor, termination reflections, and far-field radiation. Extensive parametric studies show that the suppressor absorption performance can be correlated with mode cut-off ratio or angle of propagation. The other phenomena can be shown to depend explicitly upon mode cut-off ratio. A complete system can thus be generated which can be used to evaluate aircraft sound suppressors and which can be related to the sound source through the cut-off ratio-acoustic power distribution. Although the method is most fully developed for inlet suppressors, several aft radiated noise phenomena are also discussed. This simplified suppressor design and evaluation method is summarized, the recent improvements in the technique are presented, and areas where further refinement is necessary are discussed. Noise suppressor data from engine experiments are compared with the theoretical calculations.

  1. [Acceptance and Commitment Therapy: Theoretical background and practice].

    PubMed

    Eisenbeck, Nikolett; Schlosser, Károly Kornél; Szondy, Máté; Szabó-Bartha, Anett

    The Acceptance and Commitment Therapy (ACT) is one of the modern, so-called third-wave behavioural therapies. Among them the most successful is ACT, both in the number of therapists and respective scientific research. ACT's theoretical and philosophical background is described explicitly and its therapeutic interventions were developed according to this philosophy. Its psychopathological model is based on the idea that mainly the person's regulatory efforts of their own thoughts and feelings lead to psychological problems. That is, the source of human suffering and various psychological problems is the so called psychological inflexibility: control attempts of private events instead of living a life based on personal values and long-term goals. Therefore, clinical work in ACT focuses on the acceptance and defusion of the unwanted inner experiences and on the development of a meaningful life. The present article aims to provide a comprehensive description of ACT in Hungarian: its theoretical background, clinical techniques, and efficacy. At the end of the article, the state of ACT in Hungary will also be briefly discussed.

  2. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas.

    PubMed

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo; Hansen, Peter Møller; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-08-01

    A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis to cross-sectional scans of the fistulas, the major axis was on average 10.2mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p=0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Thermal Nondestructive Characterization of Corrosion in Boiler Tubes by Application fo a Moving Line Heat Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Wall thinning in utility boiler waterwall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used lor inspection of these tubes. This technique has proved to be very labor intensive and slow. This has resulted in a "spot check" approach to inspections, making thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source, coupled with this analysis technique, represents a significant improvement in the inspection speed for large structures such as boiler waterwalls while still providing high-resolution thickness measurements. A theoretical basis for the technique will be presented thus demonstrating the quantitative nature of the technique. Further, results of laboratory experiments on flat Panel specimens with fabricated material loss regions will be presented.

  4. Ionization nebulae surrounding supersoft X-ray sources

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Chiang, E.; Kallman, T.; Malina, R.

    1994-01-01

    In this work we carry out a theoretical investigation of a new type of astrophysical gaseous nebula, viz., ionized regions surrounding supersoft X-ray sources. Supersoft X-ray sources, many of which have characteristic luminosities of approximately 10(exp 37)-(10(exp 38) ergs/s and effective temperatures of approximately 4 x 10(exp 5) K, were first discovered with the Einstein Observatory. These sources have now been shown to constitute a distinct class of X-ray source and are being found in substantial numbers with ROSAT. We predict that these sources should be surrounded by regions of ionized hydrogen and helium with properties that are distinct from other astrophysical gaseous nebulae. We present caluations of the ionization and temperature structure of these ionization nebulae, as well as the expected optical line fluxes. The ionization profiles for both hydrogen and helium exhibit substantially more gradual transitions from the ionized to the unionized state than is the case for conventional H II regions. The calculated optical line intensitites are presented as absolute fluxes from sources in the Large Magellanic Cloud and as fractions of the central source luminosity. We find, in particular, that (O III) lambda 5008 and He II lambda 4686 are especially prominent in these ionization nebulae as compared to other astrophysical nebulae. We propose that searches for supersoft X-rays via their characteristic optical lines may reveal sources in regions where the soft X-rays are nearly completely absorbed by the interstellar medium.

  5. Far-field DOA estimation and source localization for different scenarios in a distributed sensor network

    NASA Astrophysics Data System (ADS)

    Asgari, Shadnaz

    Recent developments in the integrated circuits and wireless communications not only open up many possibilities but also introduce challenging issues for the collaborative processing of signals for source localization and beamforming in an energy-constrained distributed sensor network. In signal processing, various sensor array processing algorithms and concepts have been adopted, but must be further tailored to match the communication and computational constraints. Sometimes the constraints are such that none of the existing algorithms would be an efficient option for the defined problem and as the result; the necessity of developing a new algorithm becomes undeniable. In this dissertation, we present the theoretical and the practical issues of Direction-Of-Arrival (DOA) estimation and source localization using the Approximate-Maximum-Likelihood (AML) algorithm for different scenarios. We first investigate a robust algorithm design for coherent source DOA estimation in a limited reverberant environment. Then, we provide a least-square (LS) solution for source localization based on our newly proposed virtual array model. In another scenario, we consider the determination of the location of a disturbance source which emits both wideband acoustic and seismic signals. We devise an enhanced AML algorithm to process the data collected at the acoustic sensors. For processing the seismic signals, two distinct algorithms are investigated to determine the DOAs. Then, we consider a basic algorithm for fusion of the results yielded by the acoustic and seismic arrays. We also investigate the theoretical and practical issues of DOA estimation in a three-dimensional (3D) scenario. We show that the performance of the proposed 3D AML algorithm converges to the Cramer-Rao Bound. We use the concept of an isotropic array to reduce the complexity of the proposed algorithm by advocating a decoupled 3D version. We also explore a modified version of the decoupled 3D AML algorithm which can be used for DOA estimation with non-isotropic arrays. In this dissertation, for each scenario, efficient numerical implementations of the corresponding AML algorithm are derived and applied into a real-time sensor network testbed. Extensive simulations as well as experimental results are presented to verify the effectiveness of the proposed algorithms.

  6. More on Magnetic Spectra from Correlated Crustal Sources on Mars

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.

    2005-01-01

    The spectral method for distinguishing crustal from core-source magnetic fields has been re-examined, modified and applied to both a comprehensive geomagnetic field model and an altitude normalized magnetic map of Mars. These observational spectra are fairly fitted by theoretical forms expected from certain elementary classes of magnetic sources. For Earth we found fields from a core of radius 3512 plus or minus 64 km, in accord with the 3480 km seismologic radius, and a crust represented by a shell of random dipolar sources at radius 6367 plus or minus 14 km, just beneath the 6371.0 km mean radius. For Mars we found only a field from a crust represented in same way, but 46 plus or minus 10 km below the planetary mean radius of 3389.5 km, and with sources about 9.6 plus or minus 3.2 times stronger than Earth's. It is remarkable that the same simple theoretical form should fairly fit crustal magnetic spectra for both worlds and return crustal-source depth estimates of plausible magnitude. Evidently, the idea of an ensemble of compact, quasi-independent, magnetized regions within these planetary crusts has some merit. Yet such estimates, at best a kind of average, depend upon both the observational spectrum fitted and the physical basis of the theoretical spectrum.

  7. Theoretical considerations for mapping activation in human cardiac fibrillation

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan; Narayan, Sanjiv M.

    2013-06-01

    Defining mechanisms for cardiac fibrillation is challenging because, in contrast to other arrhythmias, fibrillation exhibits complex non-repeatability in spatiotemporal activation but paradoxically exhibits conserved spatial gradients in rate, dominant frequency, and electrical propagation. Unlike animal models, in which fibrillation can be mapped at high spatial and temporal resolution using optical dyes or arrays of contact electrodes, mapping of cardiac fibrillation in patients is constrained practically to lower resolutions or smaller fields-of-view. In many animal models, atrial fibrillation is maintained by localized electrical rotors and focal sources. However, until recently, few studies had revealed localized sources in human fibrillation, so that the impact of mapping constraints on the ability to identify rotors or focal sources in humans was not described. Here, we determine the minimum spatial and temporal resolutions theoretically required to detect rigidly rotating spiral waves and focal sources, then extend these requirements for spiral waves in computer simulations. Finally, we apply our results to clinical data acquired during human atrial fibrillation using a novel technique termed focal impulse and rotor mapping (FIRM). Our results provide theoretical justification and clinical demonstration that FIRM meets the spatio-temporal resolution requirements to reliably identify rotors and focal sources for human atrial fibrillation.

  8. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.

    PubMed

    Frank, Scott D; Odom, Robert I; Collis, Jon M

    2013-03-01

    Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.

  9. Frequency dependence of coherently amplified two-photon emission from hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Hara, Hideaki; Miyamoto, Yuki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2017-12-01

    We investigate how the efficiency of coherently amplified two-photon emission depends on the frequency of one of the two emitted photons, namely the signal photon. This is done over the wavelength range of 5.048-10.21 μ m by using the vibrational transition of parahydrogen. The efficiency increases with the frequency of the signal photon. Considering experimental errors, our results are consistent with the theoretical prediction for the present experimental conditions. This study is an experimental demonstration of the frequency dependence of coherently amplified two-photon emission, and also presents its potential as a light source.

  10. Theoretical and Measured Attenuation of Mufflers at Room Temperature Without Flow, with Comments on Engine-exhaust Muffler Design

    NASA Technical Reports Server (NTRS)

    Davis, Don D , Jr; Stevens, George L , Jr; Moore, Dewey; Stokes, George M

    1953-01-01

    Equations are presented for the attenuation characteristics of several types of mufflers. Experimental curves of attenuation plotted against frequency are presented for 77 different mufflers and the results are compared with theory. The experiments were made at room temperature without flow and the sound source was a loud-speaker. A method is given for including the tail pipe in the calculations. The application of the theory to the design of engine-exhaust mufflers is discussed, and charts have been included for the assistance of the designer.

  11. Operational rate-distortion performance for joint source and channel coding of images.

    PubMed

    Ruf, M J; Modestino, J W

    1999-01-01

    This paper describes a methodology for evaluating the operational rate-distortion behavior of combined source and channel coding schemes with particular application to images. In particular, we demonstrate use of the operational rate-distortion function to obtain the optimum tradeoff between source coding accuracy and channel error protection under the constraint of a fixed transmission bandwidth for the investigated transmission schemes. Furthermore, we develop information-theoretic bounds on performance for specific source and channel coding systems and demonstrate that our combined source-channel coding methodology applied to different schemes results in operational rate-distortion performance which closely approach these theoretical limits. We concentrate specifically on a wavelet-based subband source coding scheme and the use of binary rate-compatible punctured convolutional (RCPC) codes for transmission over the additive white Gaussian noise (AWGN) channel. Explicit results for real-world images demonstrate the efficacy of this approach.

  12. Simplified and quick electrical modeling for dye sensitized solar cells: An experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    de Andrade, Rocelito Lopes; de Oliveira, Matheus Costa; Kohlrausch, Emerson Cristofer; Santos, Marcos José Leite

    2018-05-01

    This work presents a new and simple method for determining IPH (current source dependent on luminance), I0 (reverse saturation current), n (ideality factor), RP and RS, (parallel and series resistance) to build an electrical model for dye sensitized solar cells (DSSCs). The electrical circuit parameters used in the simulation and to generate theoretical curves for the single diode electrical model were extracted from I-V curves of assembled DSSCs. Model validation was performed by assembling five different types of DSSCs and evaluating the following parameters: effect of a TiO2 blocking/adhesive layer, thickness of the TiO2 layer and the presence of a light scattering layer. In addition, irradiance, temperature, series and parallel resistance, ideality factor and reverse saturation current were simulated.

  13. Far-field self-focusing and -defocusing radiation behaviors of the electroluminescent light sources due to negative refraction.

    PubMed

    Yin, Yu-Feng; Lin, Yen-Chen; Tsai, Tsung-Han; Shen, Yi-Chun; Huang, Jianjang

    2013-01-15

    In recent years, researchers have demonstrated negative refraction theoretically and experimentally by pumping optical power into photonic crystal (PhC) or waveguide structures. The concept of negative refraction can be used to create a perfect lens that focuses an object smaller than the wavelength. By inserting two-dimensional PhCs into the peripheral of a semiconductor light emitting structure, this study presents an electroluminescent device with negative refraction in the visible wavelength range. This approach produces polarization dependent collimation behavior in far-field radiation patterns. The modal dispersion of negative refraction results in strong group velocity modulation, and self-focusing and -defocusing behaviors are apparent from light extraction. This study further verifies experimental results by using theoretic calculations based on equifrequency contours.

  14. Spectroscopic properties of nuclear skyrme energy density functionals.

    PubMed

    Tarpanov, D; Dobaczewski, J; Toivanen, J; Carlsson, B G

    2014-12-19

    We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.

  15. Aircraft noise prediction program theoretical manual, part 1

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1982-01-01

    Aircraft noise prediction theoretical methods are given. The prediction of data which affect noise generation and propagation is addressed. These data include the aircraft flight dynamics, the source noise parameters, and the propagation effects.

  16. Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional acquisition geometries and low-frequency data

    NASA Astrophysics Data System (ADS)

    Brenders, A. J.; Pratt, R. G.

    2007-01-01

    We provide a series of numerical experiments designed to test waveform tomography under (i) a reduction in the number of input data frequency components (`efficient' waveform tomography), (ii) sparse spatial subsampling of the input data and (iii) an increase in the minimum data frequency used. These results extend the waveform tomography results of a companion paper, using the same third-party, 2-D, wide-angle, synthetic viscoelastic seismic data, computed in a crustal geology model 250 km long and 40 km deep, with heterogeneous P-velocity, S-velocity, density and Q-factor structure. Accurate velocity models were obtained using efficient waveform tomography and only four carefully selected frequency components of the input data: 0.8, 1.7, 3.6 and 7.0 Hz. This strategy avoids the spectral redundancy present in `full' waveform tomography, and yields results that are comparable with those in the companion paper for an 88 per cent decrease in total computational cost. Because we use acoustic waveform tomography, the results further justify the use of the acoustic wave equation in calculating P-wave velocity models from viscoelastic data. The effect of using sparse survey geometries with efficient waveform tomography were investigated for both increased receiver spacing, and increased source spacing. Sampling theory formally requires spatial sampling at maximum interval of one half-wavelength (2.5 km at 0.8 Hz): For data with receivers every 0.9 km (conforming to this criterion), artefacts in the tomographic images were still minimal when the source spacing was as large as 7.6 km (three times the theoretical maximum). Larger source spacings led to an unacceptable degradation of the results. When increasing the starting frequency, image quality was progressively degraded. Acceptable image quality within the central portion of the model was nevertheless achieved using starting frequencies up to 3.0 Hz. At 3.0 Hz the maximum theoretical sample interval is reduced to 0.67 km due to the decreased wavelengths; the available sources were spaced every 5.0 km (more than seven times the theoretical maximum), and receivers were spaced every 0.9 km (1.3 times the theoretical maximum). Higher starting frequencies than 3.0 Hz again led to unacceptable degradation of the results.

  17. Thermoelectric Generation Of Current - Theoretical And Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Ruciński, Adam; Rusowicz, Artur

    2017-12-01

    This paper provides some information about thermoelectric technology. Some new materials with improved figures of merit are presented. These materials in Peltier modules make it possible to generate electric current thanks to a temperature difference. The paper indicates possible applications of thermoelectric modules as interesting tools for using various waste heat sources. Some zero-dimensional equations describing the conditions of electric power generation are given. Also, operating parameters of Peltier modules, such as voltage and electric current, are analyzed. The paper shows chosen characteristics of power generation parameters. Then, an experimental stand for ongoing research and experimental measurements are described. The authors consider the resistance of a receiver placed in the electric circuit with thermoelectric elements. Finally, both the analysis of experimental results and conclusions drawn from theoretical findings are presented. Voltage generation of about 1.5 to 2.5 V for the temperature difference from 65 to 85 K was observed when a bismuth telluride thermoelectric couple (traditionally used in cooling technology) was used.

  18. New developments in theoretical thermochemistry and electronic structure applications in supramolecular chemistry and cluster science

    NASA Astrophysics Data System (ADS)

    Ramabhadran, Raghunath Ozhapakkam

    In a concise display of the power and diversity of electronic structure theory (EST), the work presented herein involves the development of new computational methods to advance the practical utility of quantum chemistry, as well as solving different types of challenging chemical problems by applying existing EST tools. The research presented is highly interdisciplinary in nature and features synergistic collaborations to solve real-life problems such as regulating toxic chemicals and generating alternative sources of energy. In the first chapter of this dissertation, the solution to a long-standing problem in theoretical thermochemistry is accomplished by the development of the automated, chemically intuitive and generalized thermochemical hierarchy, Connectivity-Based Hierarchy (CBH) to accurately predict the thermochemical properties of organic molecules. The extension of the hierarchy to predict the enthalpies of formations of biomonomers such as amino acids is also presented. The development of a computationally efficient protocol to accurately extrapolate to high CCSD(T) energies based on MP2 and DFT energies using CBH is presented in the second chapter, thus merging theoretical thermochemistry with fragment-based methods in quantum chemistry. This merger drastically reduces the computational cost involved in a CCSD(T) calculation, while retaining the impeccable accuracy it offers. The practical utility of the CH hydrogen bond, commonly thought as being too weak to be used in supramolecular applications has been demonstrated by DFT calculations (along with experimental results from the Flood group) in the third chapter. This is accomplished by systematically studying the binding of monoatomic chloride, diatomic and toxic cyanide and the polyatomic bi-fluoride anions for the first time using only CH hydrogen bonds within a triazolophane macrocycle. The fourth chapter contains the introduction of the concept of fluxionality in the chemical reactions of transition metal oxide clusters. This is useful to develop a systematic paradigm for discussing the mechanisms in the reactions of larger transition metal oxide clusters with small molecules. Additionally, DFT calculations (along with experimental results from the C. C. Jarrold group) are shown to be useful to provide new insights on hydrogen liberation from water, thus aiding in the generation of alternative sources of energy.

  19. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep, E-mail: sandeep0078monu@gmail.com; Singh, Sukhpal, E-mail: sukhpal-78@rediffmail.com

    2016-05-06

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present in Bi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely {sup 241}Am and {sup 137}Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  20. Prediction of airframe noise

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Fratello, D. J.; Hayden, R. E.; Kadman, Y.; Africk, S.

    1975-01-01

    Methods of predicting airframe noise generated by aircraft in flight under nonpowered conditions are discussed. Approaches to predictions relying on flyover data and component theoretical analyses are developed. A nondimensional airframe noise spectrum of various aircraft is presented. The spectrum was obtained by smoothing all the measured spectra to remove any peculiarities due to airframe protrusions, normalizing each spectra by its overall sound pressure level and a characteristics frequency, and averaging the spectra together. A chart of airframe noise sources is included.

  1. Development of an Individualism-Collectivism Scale revisited: a Korean sample.

    PubMed

    Kim, Kitae; Cho, Bongsoon

    2011-04-01

    A 13-item Individualism-Collectivism scale comprising source of identity, goal priority, mode of social relation, and norm acceptance is presented. A validation of this scale was conducted using a survey of 773 Korean employees. An exploratory factor analysis and a second-order confirmatory factor analysis supported the measure as having theoretical face validity and acceptable internal consistency reliability. Among the four facets, goal priority most strongly predicted the general Individualism-Collectivism latent factor.

  2. Efficient optical injection locking of electronic oscillators

    NASA Astrophysics Data System (ADS)

    Cochran, S. R.; Wang, S. Y.

    1989-05-01

    The paper presents techniques for direct optical injection locking of electronic oscillators and analyzes the problem of direct optical injection locking of a common-source FET oscillator using a high impedance optoelectronic transducer. A figure-of-merit for optically injection locked oscillators is defined, and an experimental oscillator based on the design criteria was fabricated. The oscillator achieved efficient, high power operation and moderate locking bandwidth with small locking signal magnitude. The experimental results are consistent with the theoretical model.

  3. Mechanical response of thick laminated beams and plates subject to out-of-plane loading

    NASA Technical Reports Server (NTRS)

    Hiel, C. C.; Brinson, . F.

    1989-01-01

    The use of simplified elasticity solutions to determine the mechanical response of thick laminated beams and plates subject to out-of-plane loading is demonstrated. Excellent results were obtained which compare favorably with theoretical, numerical and experimental analyses from other sources. The most important characteristic of the solution methodology presented is that it combines great mathematical precision with simplicity. This symbiosis has been needed for design with advanced composite materials.

  4. Towards the theory of pollinator-mediated gene flow.

    PubMed Central

    Cresswell, James E

    2003-01-01

    I present a new exposition of a model of gene flow by animal-mediated pollination between a source population and a sink population. The model's parameters describe two elements: (i) the expected portion of the source's paternity that extends to the sink population; and (ii) the dilution of this portion by within-sink pollinations. The model is termed the portion-dilution model (PDM). The PDM is a parametric restatement of the conventional view of animal-mediated pollination. In principle, it can be applied to plant species in general. I formulate a theoretical value of the portion parameter that maximizes gene flow and prescribe this as a benchmark against which to judge the performance of real systems. Existing foraging theory can be used in solving part of the PDM, but a theory for source-to-sink transitions by pollinators is currently elusive. PMID:12831465

  5. Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables

    NASA Astrophysics Data System (ADS)

    Goodwell, Allison E.; Kumar, Praveen

    2017-07-01

    Information theoretic measures can be used to identify nonlinear interactions between source and target variables through reductions in uncertainty. In information partitioning, multivariate mutual information is decomposed into synergistic, unique, and redundant components. Synergy is information shared only when sources influence a target together, uniqueness is information only provided by one source, and redundancy is overlapping shared information from multiple sources. While this partitioning has been applied to provide insights into complex dependencies, several proposed partitioning methods overestimate redundant information and omit a component of unique information because they do not account for source dependencies. Additionally, information partitioning has only been applied to time-series data in a limited context, using basic pdf estimation techniques or a Gaussian assumption. We develop a Rescaled Redundancy measure (Rs) to solve the source dependency issue, and present Gaussian, autoregressive, and chaotic test cases to demonstrate its advantages over existing techniques in the presence of noise, various source correlations, and different types of interactions. This study constitutes the first rigorous application of information partitioning to environmental time-series data, and addresses how noise, pdf estimation technique, or source dependencies can influence detected measures. We illustrate how our techniques can unravel the complex nature of forcing and feedback within an ecohydrologic system with an application to 1 min environmental signals of air temperature, relative humidity, and windspeed. The methods presented here are applicable to the study of a broad range of complex systems composed of interacting variables.

  6. Detection and monitoring of pollutant sources with Lidar/Dial techniques

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Malizia, A.; Parracino, S.; Richetta, M.; De Leo, L.; Perrimezzi, C.; Bellecci, C.

    2015-11-01

    It's well known that air pollution due to anthropogenic sources can have adverse effects on humans and the ecosystem. Therefore, in the last years, surveying large regions of the atmosphere in an automatic way has become a strategic objective of various public health organizations for early detection of pollutant sources in urban and industrial areas. The Lidar and Dial techniques have become well established laser based methods for the remote sensing of the atmosphere. They are often implemented to probe almost any level of the atmosphere and to acquire information to validate theoretical models about different topics of atmospheric physics. They can also be used for environment surveying by monitoring particles, aerosols and molecules. The aim of the present work is to demonstrate the potential of these methods to detect pollutants emitted from local sources (such as particulate and/or chemical compounds) and to evaluate their concentration. This is exemplified with the help of experimental data acquired in an industrial area in the south of Italy by mean of experimental campaign by use of pollutants simulated source. For this purpose, two mobile systems Lidar and Dial have been developed by the authors. In this paper there will be presented the operating principles of the system and the results of the experimental campaign.

  7. Passing Decisions in Football: Introducing an Empirical Approach to Estimating the Effects of Perceptual Information and Associative Knowledge.

    PubMed

    Steiner, Silvan

    2018-01-01

    The importance of various information sources in decision-making in interactive team sports is debated. While some highlight the role of the perceptual information provided by the current game context, others point to the role of knowledge-based information that athletes have regarding their team environment. Recently, an integrative perspective considering the simultaneous involvement of both of these information sources in decision-making in interactive team sports has been presented. In a theoretical example concerning passing decisions, the simultaneous involvement of perceptual and knowledge-based information has been illustrated. However, no precast method of determining the contribution of these two information sources empirically has been provided. The aim of this article is to bridge this gap and present a statistical approach to estimating the effects of perceptual information and associative knowledge on passing decisions. To this end, a sample dataset of scenario-based passing decisions is analyzed. This article shows how the effects of perceivable team positionings and athletes' knowledge about their fellow team members on passing decisions can be estimated. Ways of transfering this approach to real-world situations and implications for future research using more representative designs are presented.

  8. Simulation of multi-element multispectral UV radiation source for optical-electronic system of minerals luminescence analysis

    NASA Astrophysics Data System (ADS)

    Peretyagin, Vladimir S.; Korolev, Timofey K.; Chertov, Aleksandr N.

    2017-02-01

    The problems of dressability the solid minerals are attracted attention of specialists, where the extraction of mineral raw materials is a significant sector of the economy. There are a significant amount of mineral ore dressability methods. At the moment the radiometric dressability methods are considered the most promising. One of radiometric methods is method photoluminescence. This method is based on the spectral analysis, amplitude and kinetic parameters luminescence of minerals (under UV radiation), as well as color parameters of radiation. The absence of developed scientific and methodological approaches of analysis irradiation area to UV radiation as well as absence the relevant radiation sources are the factors which hinder development and use of photoluminescence method. The present work is devoted to the development of multi-element UV radiation source designed for the solution problem of analysis and sorting minerals by their selective luminescence. This article is presented a method of theoretical modeling of the radiation devices based on UV LEDs. The models consider such factors as spectral component, the spatial and energy parameters of the LEDs. Also, this article is presented the results of experimental studies of the some samples minerals.

  9. Passing Decisions in Football: Introducing an Empirical Approach to Estimating the Effects of Perceptual Information and Associative Knowledge

    PubMed Central

    Steiner, Silvan

    2018-01-01

    The importance of various information sources in decision-making in interactive team sports is debated. While some highlight the role of the perceptual information provided by the current game context, others point to the role of knowledge-based information that athletes have regarding their team environment. Recently, an integrative perspective considering the simultaneous involvement of both of these information sources in decision-making in interactive team sports has been presented. In a theoretical example concerning passing decisions, the simultaneous involvement of perceptual and knowledge-based information has been illustrated. However, no precast method of determining the contribution of these two information sources empirically has been provided. The aim of this article is to bridge this gap and present a statistical approach to estimating the effects of perceptual information and associative knowledge on passing decisions. To this end, a sample dataset of scenario-based passing decisions is analyzed. This article shows how the effects of perceivable team positionings and athletes' knowledge about their fellow team members on passing decisions can be estimated. Ways of transfering this approach to real-world situations and implications for future research using more representative designs are presented. PMID:29623057

  10. Thickness of the Magnetic Crust of Mars from Magneto-Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2006-01-01

    Previous analysis of the magnetic spectrum of Mars showed only a crustal source field. The observational spectrum was fairly well fitted by the spectrum expected from random dipolar sources scattered on a spherical shell about 46 plus or minus 10 km below Mars' 3389.5 km mean radius. This de-correlation depth overestimates the typical depth of extended magnetized structures, and so was judged closer to mean source layer thickness than twice its value. To better estimate the thickness of the magnetic crust of Mars, six different magnetic spectra were fitted with the theoretical spectrum expected from a novel, bimodal distribution of magnetic sources. This theoretical spectrum represents both compact and extended, laterally correlated sources, so source shell depth is doubled to obtain layer thickness. The typical magnetic crustal thickness is put at 47.8 plus or minus 8.2 km. The extended sources are enormous, typically 650 km across, and account for over half the magnetic energy at low degrees. How did such vast regions form?

  11. A deterministic model for the sublayer streaks in turbulent boundary layers for application to flow control.

    PubMed

    Carpenter, Peter W; Kudar, Karen L; Ali, Reza; Sen, Pradeep K; Davies, Christopher

    2007-10-15

    We present a relatively simple, deterministic, theoretical model for the sublayer streaks in a turbulent boundary layer based on an analogy with Klebanoff modes. Our approach is to generate the streamwise vortices found in the buffer layer by means of a vorticity source in the form of a fictitious body force. It is found that the strongest streaks correspond to a spanwise wavelength that lies within the range of the experimentally observed values for the statistical mean streak spacing. We also present results showing the effect of streamwise pressure gradient, Reynolds number and wall compliance on the sublayer streaks. The theoretical predictions for the effects of wall compliance on the streak characteristics agree well with experimental data. Our proposed theoretical model for the quasi-periodic bursting cycle is also described, which places the streak modelling in context. The proposed bursting process is as follows: (i) streamwise vortices generate sublayer streaks and other vortical elements generate propagating plane waves, (ii) when the streaks reach a sufficient amplitude, they interact nonlinearly with the plane waves to produce oblique waves that exhibit transient growth, and (iii) the oblique waves interact nonlinearly with the plane wave to generate streamwise vortices; these in turn generate the sublayer streaks and so the cycle is renewed.

  12. A Bayesian methodological framework for accommodating interannual variability of nutrient loading with the SPARROW model

    NASA Astrophysics Data System (ADS)

    Wellen, Christopher; Arhonditsis, George B.; Labencki, Tanya; Boyd, Duncan

    2012-10-01

    Regression-type, hybrid empirical/process-based models (e.g., SPARROW, PolFlow) have assumed a prominent role in efforts to estimate the sources and transport of nutrient pollution at river basin scales. However, almost no attempts have been made to explicitly accommodate interannual nutrient loading variability in their structure, despite empirical and theoretical evidence indicating that the associated source/sink processes are quite variable at annual timescales. In this study, we present two methodological approaches to accommodate interannual variability with the Spatially Referenced Regressions on Watershed attributes (SPARROW) nonlinear regression model. The first strategy uses the SPARROW model to estimate a static baseline load and climatic variables (e.g., precipitation) to drive the interannual variability. The second approach allows the source/sink processes within the SPARROW model to vary at annual timescales using dynamic parameter estimation techniques akin to those used in dynamic linear models. Model parameterization is founded upon Bayesian inference techniques that explicitly consider calibration data and model uncertainty. Our case study is the Hamilton Harbor watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. Our analysis suggests that dynamic parameter estimation is the more parsimonious of the two strategies tested and can offer insights into the temporal structural changes associated with watershed functioning. Consistent with empirical and theoretical work, model estimated annual in-stream attenuation rates varied inversely with annual discharge. Estimated phosphorus source areas were concentrated near the receiving water body during years of high in-stream attenuation and dispersed along the main stems of the streams during years of low attenuation, suggesting that nutrient source areas are subject to interannual variability.

  13. Heuristic versus Systematic Processing of Specialist versus Generalist Sources in Online Media

    ERIC Educational Resources Information Center

    Koh, Yoon Jeon; Sundar, S. Shyam

    2010-01-01

    In exploring why specialist sources (e.g., CNN.com) are more persuasive than generalist sources (e.g., CBS.com), this study examines theoretical mechanisms related to information-processing differences caused by these sources. When we have a chain of sources (Websites and agents) in online media, does specialization of one of them bias the…

  14. Plasma studies of the permanent magnet electron cyclotron resonance ion source at Peking University.

    PubMed

    Ren, H T; Peng, S X; Xu, Y; Zhao, J; Lu, P N; Chen, J; Zhang, A L; Zhang, T; Guo, Z Y; Chen, J E

    2014-02-01

    At Peking University (PKU) we have developed several 2.45 GHz Permanent Magnet Electron Cyclotron Resonance ion sources for PKUNIFTY, SFRFQ, Coupled RFQ&SFRFQ, and Dielectric-Wall Accelerator (DWA) projects (respectively, 50 mA of D(+), 10 mA of O(+), 10 mA of He(+), and 50 mA of H(+)). In order to improve performance of these ion sources, it is necessary to better understand the principal factors that influence the plasma density and the atomic ion fraction. Theoretical analysis about microwave transmission and cut-off inside the discharge chamber were carried out to study the influence of the discharge chamber diameters. As a consequence, experimental studies on plasma density and ion fraction with different discharge chamber sizes have been carried out. Due to the difficulties in measuring plasma density inside the discharge chamber, the output beam current was measured to reflect the plasma density. Experimental results show that the plasma density increases to the maximum and then decreases significantly as the diameter changed from 64 mm to 30 mm, and the atomic ion fraction has the same tendency. The maximum beam intensity was obtained with the diameter of 35 mm, but the maximum atomic ion fraction with a diameter of 40 mm. The experimental results are basically accordant with the theoretical calculation. Details are presented in this paper.

  15. TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy

    PubMed Central

    2011-01-01

    Background Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an information theoretic implementation of Wiener's principle of observational causality. It offers an approach to the detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials (LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal one-way connection is likely present. Results In simulated data TE detected information flow in the simulated direction reliably with false positives not exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the retina to the tectum, despite the complicated signal transformations between these stages. No false positive interactions in the reverse directions were detected. Conclusions TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly integrates with the popular FieldTrip toolbox. PMID:22098775

  16. TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy.

    PubMed

    Lindner, Michael; Vicente, Raul; Priesemann, Viola; Wibral, Michael

    2011-11-18

    Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an information theoretic implementation of Wiener's principle of observational causality. It offers an approach to the detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials (LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal one-way connection is likely present. In simulated data TE detected information flow in the simulated direction reliably with false positives not exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the retina to the tectum, despite the complicated signal transformations between these stages. No false positive interactions in the reverse directions were detected. TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly integrates with the popular FieldTrip toolbox.

  17. Experience Gained on Direct Use of Low Enthalpy Energy in Hotel do Parque, S. Pedro do Sul, Portugal

    NASA Astrophysics Data System (ADS)

    Ferreira Gomes, L. M.; Neves Trota, A. P.; Reis Afonso de Albuquerque, F. J.

    2017-12-01

    Despite the high number of thermal flowing springs in Portugal mainland (up to 52 hot springs), ranging temperatures from 20 °C to 77 °C, and with significant water flow rate, few district heating system were implemented in Portugal. Here we present the São Pedro do Sul district heating system, located northern of Portugal. The thermal power plant was designed, completed, and commissioned in 2001 allowing the utilization of the geothermal heat by local users, as Hotel do Parque. The district heating system sums about 15 years of utilization without interruption and with minor drawbacks. On this paper we present the project overview along with thermal power plant specifications and data numbers. Heat comes from a 16.9 L/s of thermal water supplied by a natural spring and a nearby well. Heat from the spring and well sources is transferred to a secondary low mineralized water system by a plate heat exchanger, allowing the heating of space and domestic waters of hotel areas. Based on a theoretically cascade direct use of heat from a 67 °C to a 20 °C water temperature range, available heat totals 29.1*106 kWh yearly. However, past and actual use of heat only reaches around 1.6% of that figure. By comparing with fossil heat sources, actual use of a natural heat source reduces a theoretically amount of 117.9 ton of CO2 emissions by year. The successful use of this district heating system can promote local expansion of new users and other possible heat uses of this renewable energy, giving chance for the district heating system saturation.

  18. Magnetars: the physics behind observations. A review

    NASA Astrophysics Data System (ADS)

    Turolla, R.; Zane, S.; Watts, A. L.

    2015-11-01

    Magnetars are the strongest magnets in the present universe and the combination of extreme magnetic field, gravity and density makes them unique laboratories to probe current physical theories (from quantum electrodynamics to general relativity) in the strong field limit. Magnetars are observed as peculiar, burst-active x-ray pulsars, the anomalous x-ray pulsars (AXPs) and the soft gamma repeaters (SGRs); the latter emitted also three ‘giant flares’, extremely powerful events during which luminosities can reach up to 1047erg s-1 for about one second. The last five years have witnessed an explosion in magnetar research which has led, among other things, to the discovery of transient, or ‘outbursting’, and ‘low-field’ magnetars. Substantial progress has been made also on the theoretical side. Quite detailed models for explaining the magnetars’ persistent x-ray emission, the properties of the bursts, the flux evolution in transient sources have been developed and confronted with observations. New insight on neutron star asteroseismology has been gained through improved models of magnetar oscillations. The long-debated issue of magnetic field decay in neutron stars has been addressed, and its importance recognized in relation to the evolution of magnetars and to the links among magnetars and other families of isolated neutron stars. The aim of this paper is to present a comprehensive overview in which the observational results are discussed in the light of the most up-to-date theoretical models and their implications. This addresses not only the particular case of magnetar sources, but the more fundamental issue of how physics in strong magnetic fields can be constrained by the observations of these unique sources.

  19. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema

    Damour, Thibault

    2018-05-22

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  20. Study of dual radio frequency capacitively coupled plasma: an analytical treatment matched to an experiment

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Bhuyan, H.; Escalona, M.; Favre, M.; Wyndham, E.; Maze, J.; Schulze, J.

    2018-01-01

    The behavior of a dual frequency capacitively coupled plasma (2f CCP) driven by 2.26 and 13.56 MHz radio frequency (rf) source is investigated using an approach that integrates a theoretical model and experimental data. The basis of the theoretical analysis is a time dependent dual frequency analytical sheath model that casts the relation between the instantaneous sheath potential and plasma parameters. The parameters used in the model are obtained by operating the 2f CCP experiment (2.26 MHz + 13.56 MHz) in argon at a working pressure of 50 mTorr. Experimentally measured plasma parameters such as the electron density, electron temperature, as well as the rf current density ratios are the inputs of the theoretical model. Subsequently, a convenient analytical solution for the output sheath potential and sheath thickness was derived. A comparison of the present numerical results is done with the results obtained in another 2f CCP experiment conducted by Semmler et al (2007 Plasma Sources Sci. Technol. 16 839). A good quantitative correspondence is obtained. The numerical solution shows the variation of sheath potential with the low and high frequency (HF) rf powers. In the low pressure plasma, the sheath potential is a qualitative measure of DC self-bias which in turn determines the ion energy. Thus, using this analytical model, the measured values of the DC self-bias as a function of low and HF rf powers are explained in detail.

  1. Distinguishing one from many using super-resolution compressive sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, Stephen Michael; Mulcahy-Stanislawczyk, Johnathan; Shields, Eric A.

    We present that distinguishing whether a signal corresponds to a single source or a limited number of highly overlapping point spread functions (PSFs) is a ubiquitous problem across all imaging scales, whether detecting receptor-ligand interactions in cells or detecting binary stars. Super-resolution imaging based upon compressed sensing exploits the relative sparseness of the point sources to successfully resolve sources which may be separated by much less than the Rayleigh criterion. However, as a solution to an underdetermined system of linear equations, compressive sensing requires the imposition of constraints which may not always be valid. One typical constraint is that themore » PSF is known. However, the PSF of the actual optical system may reflect aberrations not present in the theoretical ideal optical system. Even when the optics are well characterized, the actual PSF may reflect factors such as non-uniform emission of the point source (e.g. fluorophore dipole emission). As such, the actual PSF may differ from the PSF used as a constraint. Similarly, multiple different regularization constraints have been suggested including the l 1-norm, l 0-norm, and generalized Gaussian Markov random fields (GGMRFs), each of which imposes a different constraint. Other important factors include the signal-to-noise ratio of the point sources and whether the point sources vary in intensity. In this work, we explore how these factors influence super-resolution image recovery robustness, determining the sensitivity and specificity. In conclusion, we determine an approach that is more robust to the types of PSF errors present in actual optical systems.« less

  2. Distinguishing one from many using super-resolution compressive sensing

    DOE PAGES

    Anthony, Stephen Michael; Mulcahy-Stanislawczyk, Johnathan; Shields, Eric A.; ...

    2018-05-14

    We present that distinguishing whether a signal corresponds to a single source or a limited number of highly overlapping point spread functions (PSFs) is a ubiquitous problem across all imaging scales, whether detecting receptor-ligand interactions in cells or detecting binary stars. Super-resolution imaging based upon compressed sensing exploits the relative sparseness of the point sources to successfully resolve sources which may be separated by much less than the Rayleigh criterion. However, as a solution to an underdetermined system of linear equations, compressive sensing requires the imposition of constraints which may not always be valid. One typical constraint is that themore » PSF is known. However, the PSF of the actual optical system may reflect aberrations not present in the theoretical ideal optical system. Even when the optics are well characterized, the actual PSF may reflect factors such as non-uniform emission of the point source (e.g. fluorophore dipole emission). As such, the actual PSF may differ from the PSF used as a constraint. Similarly, multiple different regularization constraints have been suggested including the l 1-norm, l 0-norm, and generalized Gaussian Markov random fields (GGMRFs), each of which imposes a different constraint. Other important factors include the signal-to-noise ratio of the point sources and whether the point sources vary in intensity. In this work, we explore how these factors influence super-resolution image recovery robustness, determining the sensitivity and specificity. In conclusion, we determine an approach that is more robust to the types of PSF errors present in actual optical systems.« less

  3. Predictability effects in auditory scene analysis: a review

    PubMed Central

    Bendixen, Alexandra

    2014-01-01

    Many sound sources emit signals in a predictable manner. The idea that predictability can be exploited to support the segregation of one source's signal emissions from the overlapping signals of other sources has been expressed for a long time. Yet experimental evidence for a strong role of predictability within auditory scene analysis (ASA) has been scarce. Recently, there has been an upsurge in experimental and theoretical work on this topic resulting from fundamental changes in our perspective on how the brain extracts predictability from series of sensory events. Based on effortless predictive processing in the auditory system, it becomes more plausible that predictability would be available as a cue for sound source decomposition. In the present contribution, empirical evidence for such a role of predictability in ASA will be reviewed. It will be shown that predictability affects ASA both when it is present in the sound source of interest (perceptual foreground) and when it is present in other sound sources that the listener wishes to ignore (perceptual background). First evidence pointing toward age-related impairments in the latter capacity will be addressed. Moreover, it will be illustrated how effects of predictability can be shown by means of objective listening tests as well as by subjective report procedures, with the latter approach typically exploiting the multi-stable nature of auditory perception. Critical aspects of study design will be delineated to ensure that predictability effects can be unambiguously interpreted. Possible mechanisms for a functional role of predictability within ASA will be discussed, and an analogy with the old-plus-new heuristic for grouping simultaneous acoustic signals will be suggested. PMID:24744695

  4. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    PubMed

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  5. Distributed feedback guided surface acoustic wave microresonator

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1989-08-01

    Surface acoustic wave resonators have been used in a number of applications: high-Q frequency filtering, very accurate frequency sources, etc. A major disadvantage of conventional resonators is their large dimensions, which makes them inadequate for integrated acoustics applications. In order to overcome these size limitations a new type of microresonator was designed, developed, and tested. In this paper, theoretical calculations and measurements on two kinds of such devices (a corrugated waveguide filter and a microresonator structure) are presented and their possible applications are discussed.

  6. PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy.

    PubMed

    Müller, Paul; Schwille, Petra; Weidemann, Thomas

    2014-09-01

    We present a graphical user interface (PyCorrFit) for the fitting of theoretical model functions to experimental data obtained by fluorescence correlation spectroscopy (FCS). The program supports many data file formats and features a set of tools specialized in FCS data evaluation. The Python source code is freely available for download from the PyCorrFit web page at http://pycorrfit.craban.de. We offer binaries for Ubuntu Linux, Mac OS X and Microsoft Windows. © The Author 2014. Published by Oxford University Press.

  7. A Mars 1 Watt vortex wind energy machine

    NASA Technical Reports Server (NTRS)

    Ralston, Michael; Crowley, Christopher; Thomson, Ronald; Gwynne, Owen

    1992-01-01

    A Martian wind power generator capable of surviving impact and fulfilling the long-term (2-5 yr) low-level power requirements (1-2 W) of an unmanned surface probe is presented. Attention is given to a tornado vortex generator that was chosen on the basis of its capability to theoretically augment the available power that may be extracted for average Martian wind speeds of about 7.5 m/s. The generator offers comparable mass-to-power ratios with solar power sources.

  8. Imaging episodic memory: implications for cognitive theories and phenomena.

    PubMed

    Nyberg, L

    1999-01-01

    Functional neuroimaging studies are beginning to identify neuroanatomical correlates of various cognitive functions. This paper presents results relevant to several theories and phenomena of episodic memory, including component processes of episodic retrieval, encoding specificity, inhibition, item versus source memory, encoding-retrieval overlap, and the picture-superiority effect. Overall, by revealing specific activation patterns, the results provide support for existing theoretical views and they add some unique information which may be important to consider in future attempts to develop cognitive theories of episodic memory.

  9. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1992-01-01

    The results obtained in the second year of a three year collaborative effort with MSFC are summarized. A succession of experimental studies was completed to determine the effects of the natural and induced space vehicle environment on the measurement of auroral images from space-based platforms. In addition, a global model which incorporates both auroral and dayglow emission sources is being developed to allow interpretation of measured auroral emissions. A description of work completed on these two tasks is presented.

  10. Development of the triplet singularity for the analysis of wings and bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.

    1981-01-01

    A supersonic triplet singularity was developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which gives directional properties to the perturbation flow field surrounding the panel. The theoretical development of the triplet singularity is described together with its application to the calculation of surface pressures on wings and bodies. Examples are presented comparing the results of the new method with other supersonic methods and with experimental data.

  11. Optical diffraction by ordered 2D arrays of silica microspheres

    NASA Astrophysics Data System (ADS)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  12. Every document and picture tells a story: using internal corporate document reviews, semiotics, and content analysis to assess tobacco advertising.

    PubMed

    Anderson, S J; Dewhirst, T; Ling, P M

    2006-06-01

    In this article we present communication theory as a conceptual framework for conducting documents research on tobacco advertising strategies, and we discuss two methods for analysing advertisements: semiotics and content analysis. We provide concrete examples of how we have used tobacco industry documents archives and tobacco advertisement collections iteratively in our research to yield a synergistic analysis of these two complementary data sources. Tobacco promotion researchers should consider adopting these theoretical and methodological approaches.

  13. Pair production of J/ψ mesons in the kt-factorization approach

    NASA Astrophysics Data System (ADS)

    Baranov, S. P.

    2011-09-01

    In the framework of kt-factorization approach, we consider the production of J/ψ pairs at the LHC conditions. We give predictions on the differential cross sections and discuss the source and the size of theoretical uncertainties. We also present a comparison with collinear parton model showing a dramatic difference in the J/ψ transverse momentum spectrum and J/ψ-J/ψ azimuthal correlations. Finally, we give predictions on the polarization observables in the helicity and Collins-Soper systems.

  14. Contemporary immigration: theoretical perspectives on its determinants and modes of incorporation.

    PubMed

    Portes, A; Borocz, J

    1989-01-01

    This article reviews conventional theories about different aspects of labor migration: its origins, stability over time, and patterns of migrant settlement. For each of these aspects, the authors provide alternative explanatory hypotheses derived from the notions of increasing articulation of the international system and the social embeddedness of its various subprocesses, including labor flows. A typology of sources and outcomes of contemporary immigration is presented as a heuristic device to organize the diversity of such movements as described in the empirical literature.

  15. Determination of calibration constants for the hole-drilling residual stress measurement technique applied to orthotropic composites. II - Experimental evaluations

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Prabhakaran, R.; Tompkins, S.

    1987-01-01

    The first step in the extension of the semidestructive hole-drilling technique for residual stress measurement to orthotropic composite materials is the determination of the three calibration constants. Attention is presently given to an experimental determination of these calibration constants for a highly orthotropic, unidirectionally-reinforced graphite fiber-reinforced polyimide composite. A comparison of the measured values with theoretically obtained ones shows agreement to be good, in view of the many possible sources of experimental variation.

  16. Constrained Null Space Component Analysis for Semiblind Source Separation Problem.

    PubMed

    Hwang, Wen-Liang; Lu, Keng-Shih; Ho, Jinn

    2018-02-01

    The blind source separation (BSS) problem extracts unknown sources from observations of their unknown mixtures. A current trend in BSS is the semiblind approach, which incorporates prior information on sources or how the sources are mixed. The constrained independent component analysis (ICA) approach has been studied to impose constraints on the famous ICA framework. We introduced an alternative approach based on the null space component (NCA) framework and referred to the approach as the c-NCA approach. We also presented the c-NCA algorithm that uses signal-dependent semidefinite operators, which is a bilinear mapping, as signatures for operator design in the c-NCA approach. Theoretically, we showed that the source estimation of the c-NCA algorithm converges with a convergence rate dependent on the decay of the sequence, obtained by applying the estimated operators on corresponding sources. The c-NCA can be formulated as a deterministic constrained optimization method, and thus, it can take advantage of solvers developed in optimization society for solving the BSS problem. As examples, we demonstrated electroencephalogram interference rejection problems can be solved by the c-NCA with proximal splitting algorithms by incorporating a sparsity-enforcing separation model and considering the case when reference signals are available.

  17. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection

    PubMed Central

    Qiu, Gongzhe

    2017-01-01

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly. PMID:29186790

  18. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection.

    PubMed

    Song, Xiaochun; Qiu, Gongzhe

    2017-11-24

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  19. Over-Distribution in Source Memory

    PubMed Central

    Brainerd, C. J.; Reyna, V. F.; Holliday, R. E.; Nakamura, K.

    2012-01-01

    Semantic false memories are confounded with a second type of error, over-distribution, in which items are attributed to contradictory episodic states. Over-distribution errors have proved to be more common than false memories when the two are disentangled. We investigated whether over-distribution is prevalent in another classic false memory paradigm: source monitoring. It is. Conventional false memory responses (source misattributions) were predominantly over-distribution errors, but unlike semantic false memory, over-distribution also accounted for more than half of true memory responses (correct source attributions). Experimental control of over-distribution was achieved via a series of manipulations that affected either recollection of contextual details or item memory (concreteness, frequency, list-order, number of presentation contexts, and individual differences in verbatim memory). A theoretical model was used to analyze the data (conjoint process dissociation) that predicts that predicts that (a) over-distribution is directly proportional to item memory but inversely proportional to recollection and (b) item memory is not a necessary precondition for recollection of contextual details. The results were consistent with both predictions. PMID:21942494

  20. Yahtzee: An Anonymized Group Level Matching Procedure

    PubMed Central

    Jones, Jason J.; Bond, Robert M.; Fariss, Christopher J.; Settle, Jaime E.; Kramer, Adam D. I.; Marlow, Cameron; Fowler, James H.

    2013-01-01

    Researchers often face the problem of needing to protect the privacy of subjects while also needing to integrate data that contains personal information from diverse data sources. The advent of computational social science and the enormous amount of data about people that is being collected makes protecting the privacy of research subjects ever more important. However, strict privacy procedures can hinder the process of joining diverse sources of data that contain information about specific individual behaviors. In this paper we present a procedure to keep information about specific individuals from being “leaked” or shared in either direction between two sources of data without need of a trusted third party. To achieve this goal, we randomly assign individuals to anonymous groups before combining the anonymized information between the two sources of data. We refer to this method as the Yahtzee procedure, and show that it performs as predicted by theoretical analysis when we apply it to data from Facebook and public voter records. PMID:23441156

  1. Using fear appeals in warning labels to promote responsible gambling among VLT players: the key role of depth of information processing.

    PubMed

    Munoz, Yaromir; Chebat, Jean-Charles; Suissa, Jacob Amnon

    2010-12-01

    Video lottery terminals (VLT) are a highly lucrative gambling format, but at the same time they are among the most hazardous. Previous research has shown that threatening warnings may be an appropriate approach for promoting protective behavior. The present study explores the potential benefits of threatening warnings in the fight against compulsive gambling. A 4 × 2 factorial design experiment was used to test our model based on both Elaboration Likelihood Model and Protection Motivation Theory. 258 VLT adult players (58% males, 42% females) with various degrees of problem gambling were exposed to three threat levels (plus a control condition) from two different sources (i.e., either a medical source or a source related to the provider of VLT's). Our results show that both higher threat warnings and the medical source of warnings enhance Depth of Information Processing. It was also found that Depth of Information Processing affects positively attitude change and compliance intentions. The theoretical and managerial implications are discussed.

  2. Yahtzee: an anonymized group level matching procedure.

    PubMed

    Jones, Jason J; Bond, Robert M; Fariss, Christopher J; Settle, Jaime E; Kramer, Adam D I; Marlow, Cameron; Fowler, James H

    2013-01-01

    Researchers often face the problem of needing to protect the privacy of subjects while also needing to integrate data that contains personal information from diverse data sources. The advent of computational social science and the enormous amount of data about people that is being collected makes protecting the privacy of research subjects ever more important. However, strict privacy procedures can hinder the process of joining diverse sources of data that contain information about specific individual behaviors. In this paper we present a procedure to keep information about specific individuals from being "leaked" or shared in either direction between two sources of data without need of a trusted third party. To achieve this goal, we randomly assign individuals to anonymous groups before combining the anonymized information between the two sources of data. We refer to this method as the Yahtzee procedure, and show that it performs as predicted by theoretical analysis when we apply it to data from Facebook and public voter records.

  3. High power narrow-band fiber-based ASE source.

    PubMed

    Schmidt, O; Rekas, M; Wirth, C; Rothhardt, J; Rhein, S; Kliner, A; Strecker, M; Schreiber, T; Limpert, J; Eberhardt, R; Tünnermann, A

    2011-02-28

    In this paper we describe a high power narrow-band amplified spontaneous emission (ASE) light source at 1030 nm center wavelength generated in an Yb-doped fiber-based experimental setup. By cutting a small region out of a broadband ASE spectrum using two fiber Bragg gratings a strongly constrained bandwidth of 12±2 pm (3.5±0.6 GHz) is formed. A two-stage high power fiber amplifier system is used to boost the output power up to 697 W with a measured beam quality of M2≤1.34. In an additional experiment we demonstrate a stimulated Brillouin scattering (SBS) suppression of at least 17 dB (theoretically predicted ~20 dB), which is only limited by the dynamic range of the measurement and not by the onset of SBS when using the described light source. The presented narrow-band ASE source could be of great interest for brightness scaling applications by beam combination, where SBS is known as a limiting factor.

  4. Theoretical study of air forces on an oscillating or steady thin wing in a supersonic main stream

    NASA Technical Reports Server (NTRS)

    Garrick, I E; Rubinow, S I

    1947-01-01

    A theoretical study, based on the linearized equations of motion for small disturbance, is made of the air forces on wings of general plan forms moving forward at a constant supersonic speed. The boundary problem is set up for both the harmonically oscillating and the steady conditions. Two types of boundary conditions are distinguished, which are designated "purely supersonic" and "mixed supersonic." the method is illustrated by applications to a number of examples for both the steady and the oscillating conditions. The purely supersonic case involves independence of action of the upper and lower surfaces of the airfoil and present analysis is mainly concerned with this case. A discussion is first given of the fundamental or elementary solution corresponding to a moving source. The solutions for the velocity potential are then synthesized by means of integration of the fundamental solution for the moving source. The method is illustrated by applications to a number of examples for both the steady and the oscillating cases and for various plan forms, including swept wings and rectangular and triangular plan forms. The special results of a number of authors are shown to be included in the analysis.

  5. Resource Letter GrW-1: Gravitational Waves

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Centrella, Joan M.

    2003-01-01

    The phenomenon of gravitational radiation was one of the first predictions of Einstein's general theory of relativity. Progress in understanding this radiation theoretically was slow at first, owing to the difficulty of the nonlinear field equations and the subtleties of their physical effects. The experimental side of this subject also has taken a long time to develop, with efforts at detection severely challenged by the extreme weakness of the waves impinging on the Earth. However, as the 21st century begins, observations of the gravitational waves from astrophysical sources such as black holes, neutron stars, and stellar collapse are expected to open a new window on the universe. Vigorous experimental programs centered on ground-based detectors are being carried out worldwide, and a space-based detector is in the planning stages. On the theoretical side, much effort is being expended to produce robust models of the astrophysical sources and accurate calculations of the waveforms they produce. In this Resource Letter, a set of basic references will be presented first, to provide a general introduction to and overview of the literature in this field. The focus then will shift to highlighting key resources in more specialized areas at the forefront of current research.

  6. Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer

    USGS Publications Warehouse

    Moench, Allen F.

    1997-01-01

    A Laplace transform solution is presented for the problem of flow to a partially penetrating well of finite diameter in a slightly compressible water table aquifer. The solution, which allows for evaluation of both pumped well and observation piezometer data, accounts for effects of well bore storage and skin and allows for the noninstantaneous release of water from the unsaturated zone. For instantaneous release of water from the unsaturated zone the solution approaches the line source solution derived by Neuman as the diameter of the pumped well approaches zero. Delayed piezometer response, which is significant during times of rapidly changing hydraulic head, is included in the theoretical treatment and shown to be an important factor in accurate evaluation of specific storage. By means of a hypothetical field example it is demonstrated that evaluations of specific storage (Ss) using classical line source solutions may yield values of Ss that are overestimated by a factor of 100 or more, depending upon the location of the observation piezometers and whether effects of delayed piezometer response are included in the analysis. Theoretical responses obtained with the proposed model are used to suggest methods for evaluating specific storage.

  7. Highlights of theoretical progress related to the International Magnetospheric Study

    NASA Technical Reports Server (NTRS)

    Hill, T. W.

    1982-01-01

    U.S. theoretical research efforts have addressed three areas within the International Magnetospheric Study. The first, solar wind/magnetosphere interaction, is presently concerned with the suggestion that magnetic merging may predominantly occur near the polar cusps rather than near the subsolar point. Mechanisms have been proposed for noncollisional diffusion of solar wind plasma across the closed magnetopause entailed by such a phenomenon. The second area considers the importance to magnetotail dynamics of a continuous source of solar wind plasma, and of sporadic plasma loss associated with an unsteady convection cycle. In the third area, the electrodynamic magnetosphere/ionosphere interaction, an advanced state has been reached in the understanding of the relevant physics, with respect both to coupling in the subauroral region and the large scale structure of auroral zone electric fields parallel, and perpendicular to, the magnetic field.

  8. Theoretical analysis of sound transmission loss through graphene sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp; Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553; Ni, Qing-Qing

    2014-11-17

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation propertymore » for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.« less

  9. Relative L-shell X-ray intensities of Pt, Pb and Bi following ionization by 59.54 keV γ-rays

    NASA Astrophysics Data System (ADS)

    Dhal, B. B.; Padhi, H. C.

    1994-12-01

    Relative L-shell X-ray intensities of Pt, Pb and Bi have been measured following ionization by 59.54 keV photons from an 241 Am point source. The measured ratios have been compared with the theoretical ratios estimated using the photoionization cross-sections of Scofield and different decay yield data. The comparison shows good agreement for Pb and Bi with the decay yield data of Krause, but the decay yield data of Xu and Xu overestimates the ratios, particularly for the {I γ}/{I α} ratio. Our results for Pb and Bi with improved error limits also agree with the previous experimental results of Shatendra et al. For Pt our present results are found to lie between the two theoretical results obtained by using different sets of decay yield data.

  10. Comparative study of probability distribution distances to define a metric for the stability of multi-source biomedical research data.

    PubMed

    Sáez, Carlos; Robles, Montserrat; García-Gómez, Juan Miguel

    2013-01-01

    Research biobanks are often composed by data from multiple sources. In some cases, these different subsets of data may present dissimilarities among their probability density functions (PDF) due to spatial shifts. This, may lead to wrong hypothesis when treating the data as a whole. Also, the overall quality of the data is diminished. With the purpose of developing a generic and comparable metric to assess the stability of multi-source datasets, we have studied the applicability and behaviour of several PDF distances over shifts on different conditions (such as uni- and multivariate, different types of variable, and multi-modality) which may appear in real biomedical data. From the studied distances, we found information-theoretic based and Earth Mover's Distance to be the most practical distances for most conditions. We discuss the properties and usefulness of each distance according to the possible requirements of a general stability metric.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less

  13. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser.

    PubMed

    Wysocki, Gerard; Weidmann, Damien

    2010-12-06

    A spectroscopic method of molecular detection based on dispersion measurements using a frequency-chirped laser source is presented. An infrared quantum cascade laser emitting around 1912 cm(-1) is used as a tunable spectroscopic source to measure dispersion that occurs in the vicinity of molecular ro-vibrational transitions. The sample under study is a mixture of nitric oxide in dry nitrogen. Two experimental configurations based on a coherent detection scheme are investigated and discussed. The theoretical models, which describe the observed spectral signals, are developed and verified experimentally. The method is particularly relevant to optical sensing based on mid-infrared quantum cascade lasers as the high chirp rates available with those sources can significantly enhance the magnitude of the measured dispersion signals. The method relies on heterodyne beatnote frequency measurements and shows high immunity to variations in the optical power received by the photodetector.

  14. A microchip laser source with stable intensity and frequency used for self-mixing interferometry.

    PubMed

    Zhang, Shaohui; Zhang, Shulian; Tan, Yidong; Sun, Liqun

    2016-05-01

    We present a stable 40 × 40 × 30 mm(3) Laser-diode (LD)-pumped-microchip laser (ML) laser source used for self-mixing interferometry which can measure non-cooperative targets. We simplify the coupling process of pump light in order to make its polarization and intensity robust against environmental disturbance. Thermal frequency stabilization technology is used to stabilize the laser frequency of both LD and ML. Frequency stability of about 1 × 10(-7) and short-term intensity fluctuation of 0.1% are achieved. The theoretical long-term displacement accuracy limited by frequency and intensity fluctuation is about 10 nm when the measuring range is 0.1 m. The line-width of this laser is about 25 kHz corresponding to 12 km coherent length and 6 km measurement range for self-mixing interference. The laser source has been equipped to a self-mixing interferometer, and it works very well.

  15. Experiments with Lasers and Frequency Doublers

    NASA Technical Reports Server (NTRS)

    Bachor, H.-A.; Taubman, M.; White, A. G.; Ralph, T.; McClelland, D. E.

    1996-01-01

    Solid state laser sources, such as diode-pumped Nd:YAG lasers, have given us CW laser light of high power with unprecedented stability and low noise performance. In these lasers most of the technical sources of noise can be eliminated allowing them to be operated close to the theoretical noise limit set by the quantum properties of light. The next step of reducing the noise below the standard limit is known as squeezing. We present experimental progress in generating reliably squeezed light using the process of frequency doubling. We emphasize the long term stability that makes this a truly practical source of squeezed light. Our experimental results match noise spectra calculated with our recently developed models of coupled systems which include the noise generated inside the laser and its interaction with the frequency doubler. We conclude with some observations on evaluating quadrature squeezed states of light.

  16. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.

    PubMed

    Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2013-05-01

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less

  18. Cosmological Distance Scale to Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Azzam, W. J.; Linder, E. V.; Petrosian, V.

    1993-05-01

    The source counts or the so-called log N -- log S relations are the primary data that constrain the spatial distribution of sources with unknown distances, such as gamma-ray bursts. In order to test galactic, halo, and cosmological models for gamma-ray bursts we compare theoretical characteristics of the log N -- log S relations to those obtained from data gathered by the BATSE instrument on board the Compton Observatory (GRO) and other instruments. We use a new and statistically correct method, that takes proper account of the variable nature of the triggering threshold, to analyze the data. Constraints on models obtained by this comparison will be presented. This work is supported by NASA grants NAGW 2290, NAG5 2036, and NAG5 1578.

  19. State-of-the-art assessment of electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Data are presented that were obtained from the electric and hybrid vehicles tested, information collected from users of electric vehicles, and data and information on electric and hybrid vehicles obtained on a worldwide basis from manufacturers and available literature. The data given include: (1) information and data base (electric and hybrid vehicle systems descriptions, sources of vehicle data and information, and sources of component data); (2) electric vehicles (theoretical background, electric vehicle track tests, user experience, literature data, and summary of electric vehicle status); (3) electric vehicle components (tires, differentials, transmissions, traction motors, controllers, batteries, battery chargers, and component summary); and (4) hybrid vehicles (types of hybrid vehicles, operating modes, hybrid vehicles components, and hybrid vehicles performance characteristics).

  20. Theoretical assessment of whole body counting performances using numerical phantoms of different gender and sizes.

    PubMed

    Marzocchi, O; Breustedt, B; Mostacci, D; Zankl, M; Urban, M

    2011-03-01

    A goal of whole body counting (WBC) is the estimation of the total body burden of radionuclides disregarding the actual position within the body. To achieve the goal, the detectors need to be placed in regions where the photon flux is as independent as possible from the distribution of the source. At the same time, the detectors need high photon fluxes in order to achieve better efficiency and lower minimum detectable activities. This work presents a method able to define the layout of new WBC systems and to study the behaviour of existing ones using both detection efficiency and its dependence on the position of the source within the body of computational phantoms.

  1. The synchrotron-self-Compton process in spherical geometries. I - Theoretical framework

    NASA Technical Reports Server (NTRS)

    Band, D. L.; Grindlay, J. E.

    1985-01-01

    Both spatial and spectral accuracies are stressed in the present method for the calculation of the synchrotron-self-Compton model in spherical geometries, especially in the partially opaque regime of the synchrotron spectrum of inhomogeneous sources that can span a few frequency decades and contribute a significant portion of the scattered flux. A formalism is developed that permits accurate calculation of incident photon density throughout an optically thin sphere. An approximation to the Klein-Nishina cross section is used to model the effects of variable electron and incident photon cutoffs, as well as the decrease in the cross section at high energies. General results are derived for the case of inhomogeneous sources with power law profiles in both electron density and magnetic field.

  2. Thermographic Imaging of Material Loss in Boiler Water-Wall Tubing by Application of Scanning Line Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a spot check approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  3. Indications of negative evolution for the sources of the highest energy cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less

  4. Broadband Fan Noise Generated by Small Scale Turbulence

    NASA Technical Reports Server (NTRS)

    Glegg, Stewart A. L.

    1998-01-01

    This report describes the development of prediction methods for broadband fan noise from aircraft engines. First, experimental evidence of the most important source mechanisms is reviewed. It is found that there are a number of competing source mechanism involved and that there is no single dominant source to which noise control procedures can be applied. Theoretical models are then developed for: (1) ducted rotors and stator vanes interacting with duct wall boundary layers, (2) ducted rotor self noise, and (3) stator vanes operating in the wakes of rotors. All the turbulence parameters required for these models are based on measured quantities. Finally the theoretical models are used to predict measured fan noise levels with some success.

  5. [The theory of mechanical activity of lungs--a creation history, the present and development prospects].

    PubMed

    Tetenev, F F; Tetenev, K F

    2014-01-01

    In article the history of creation of the doctrine about respiratory movements of lungs, history of classical mechanics of breathing is stated. Supervision of the paradoxical facts which became a basis for hypothesis creation, then the theory of mechanical activity of lungs are presented. The facts proving mechanical activity of lungs on an inspiration and an expiration are given. Options of interaction of intra pulmonary and extra pulmonary sources of mechanical energy are considered. Theoretical justification for development of the new direction of studying of physiology of mechanical movements of the internal which does not have own skeleton is stated.

  6. Geometric optimization of microreactor chambers to increase the homogeneity of the velocity field

    NASA Astrophysics Data System (ADS)

    Pálovics, Péter; Ender, Ferenc; Rencz, Márta

    2018-06-01

    In this work microfluidic flow-through chambers are investigated. They are filled with magnetic nanoparticle (MNP) suspension in order to facilitate enzymatic reactions. The enzyme is immobilized on the surface of the MNPs. These reactions have been found to be flow rate dependent. To overcome this issue various chamber geometries have been examined and optimized geometries have been designed and tested experimentally. The investigation is supported with dedicated CFD simulations using the open source software OpenFOAM. The paper presents the theoretical background and the results of the simulations. The simulations have been verified with measurements and these too are presented in the paper.

  7. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.

    PubMed

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.

  8. Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field

    NASA Technical Reports Server (NTRS)

    Voorhies, C.

    1998-01-01

    The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.

  9. Detection of ferromagnetic target based on mobile magnetic gradient tensor system

    NASA Astrophysics Data System (ADS)

    Gang, Y. I. N.; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren

    2016-03-01

    Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source-sensor displacement vector. Secondly, unit source-sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source-sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source-sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source-sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method.

  10. Global Ozone and Reactive Nitrogen : Composition, Chemistry and Sources

    NASA Technical Reports Server (NTRS)

    Sing, Hanwant B.; Bradshaw, J.; Davis, D.; Gregory, G.; Talbot, R.

    1994-01-01

    Ozone plays a central role in the chemistry of the atmosphere both as an ultraviolet shield and as a source of hydroxyl radicals (OH), a potent initiator of atmospheric chemistry. There is evidence to suggest that the ozone abundance in the troposphere (0-10 km) has doubled since the industrial revolution and continues to increase to date. The principle reason for this increase is thought to be the increasing emissions of nitrogen oxides (NO(x)) from anthropogenic activities. Although NO(x) is highly reactive and its products such as HN03 are easily removed by deposition, it now appears that its chemistry is quite complex and it can be transported over long distances via its conversion to a variety of nitrates and penetrates. The sources of atmospheric NO(x) include free tropospheric sources such as lightning and subsonic aircraft, as well as surface emissions which are transported to the free troposphere via convective processes. Recent experimental and theoretical studies have tried to unravel the chemistry of reactive nitrogen species, its sources, and their role in ozone formation. In this presentation we shall describe the results from these studies.

  11. Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage.

    PubMed

    Yao, Yanyan; Jiang, Tao; Zhang, Limin; Chen, Xiangyu; Gao, Zhenliang; Wang, Zhong Lin

    2016-08-24

    Ocean waves are one of the most promising renewable energy sources for large-scope applications due to the abundant water resources on the earth. Triboelectric nanogenerator (TENG) technology could provide a new strategy for water wave energy harvesting. In this work, we investigated the charging characteristics of utilizing a wavy-structured TENG to charge a capacitor under direct water wave impact and under enclosed ball collision, by combination of theoretical calculations and experimental studies. The analytical equations of the charging characteristics were theoretically derived for the two cases, and they were calculated for various load capacitances, cycle numbers, and structural parameters such as compression deformation depth and ball size or mass. Under the direct water wave impact, the stored energy and maximum energy storage efficiency were found to be controlled by deformation depth, while the stored energy and maximum efficiency can be optimized by the ball size under the enclosed ball collision. Finally, the theoretical results were well verified by the experimental tests. The present work could provide strategies for improving the charging performance of TENGs toward effective water wave energy harvesting and storage.

  12. Theoretical and Computational Investigation of High-Brightness Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chiping

    Theoretical and computational investigations of adiabatic thermal beams have been carried out in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research and for various applications such as light sources. Most accelerator applications require high-brightness beams. This is true for high-energy accelerators such as linear colliders. It is also true for energy recovery linacs (ERLs) and free electron lasers (FELs) such as x-ray free electron lasers (XFELs). The breakthroughs and highlights in our research in the period from February 1, 2013 to November 30, 2013 were: a) Completion of a preliminary theoretical and computationalmore » study of adiabatic thermal Child-Langmuir flow (Mok, 2013); and b) Presentation of an invited paper entitled ?Adiabatic Thermal Beams in a Periodic Focusing Field? at Space Charge 2013 Workshop, CERN, April 16-19, 2013 (Chen, 2013). In this report, an introductory background for the research project is provided. Basic theory of adiabatic thermal Child-Langmuir flow is reviewed. Results of simulation studies of adiabatic thermal Child-Langmuir flows are discussed.« less

  13. Structural stiffness and Coulomb damping in compliant foil journal bearings: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Ku, C.-P. Roger; Heshmat, Hooshang

    1994-07-01

    Compliant foil bearings operate on either gas or liquid, which makes them very attractive for use in extreme environments such as in high-temperature aircraft turbine engines and cryogenic turbopumps. However, a lack of analytical models to predict the dynamic characteristics of foil bearings forces the bearing designer to rely on prototype testing, which is time-consuming and expensive. In this paper, the authors present a theoretical model to predict the structural stiffness and damping coefficients of the bump foil strip in a journal bearing or damper. Stiffness is calculated based on the perturbation of the journal center with respect to its static equilibrium position. The equivalent viscous damping coefficients are determined based on the area of a closed hysteresis loop of the journal center motion. The authors found, theoretically, that the energy dissipated from this loop was mostly contributed by the frictional motion between contact surfaces. In addition, the source and mechanism of the nonlinear behavior of the bump foil strips were examined. With the introduction of this enhanced model, the analytical tools are now available for the design of compliant foil bearings.

  14. A source number estimation method for single optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Hu, Junpeng; Huang, Zhiping; Su, Shaojing; Zhang, Yimeng; Liu, Chunwu

    2015-10-01

    The single-channel blind source separation (SCBSS) technique makes great significance in many fields, such as optical fiber communication, sensor detection, image processing and so on. It is a wide range application to realize blind source separation (BSS) from a single optical fiber sensor received data. The performance of many BSS algorithms and signal process methods will be worsened with inaccurate source number estimation. Many excellent algorithms have been proposed to deal with the source number estimation in array signal process which consists of multiple sensors, but they can not be applied directly to the single sensor condition. This paper presents a source number estimation method dealing with the single optical fiber sensor received data. By delay process, this paper converts the single sensor received data to multi-dimension form. And the data covariance matrix is constructed. Then the estimation algorithms used in array signal processing can be utilized. The information theoretic criteria (ITC) based methods, presented by AIC and MDL, Gerschgorin's disk estimation (GDE) are introduced to estimate the source number of the single optical fiber sensor's received signal. To improve the performance of these estimation methods at low signal noise ratio (SNR), this paper make a smooth process to the data covariance matrix. By the smooth process, the fluctuation and uncertainty of the eigenvalues of the covariance matrix are reduced. Simulation results prove that ITC base methods can not estimate the source number effectively under colored noise. The GDE method, although gets a poor performance at low SNR, but it is able to accurately estimate the number of sources with colored noise. The experiments also show that the proposed method can be applied to estimate the source number of single sensor received data.

  15. On building methodological and theoretical frameworks to examine the interrelationships between environmental change and armed conflict

    NASA Astrophysics Data System (ADS)

    Van Den Hoek, J.

    2014-12-01

    Relationships between environmental change and armed conflict have long been studied. Sometimes referred to as 'warfare' or 'conflict' ecology, much of this scholarship has come in response to local-level perceptions of landscape or livelihood changes that result from regional armed conflict. However, such studies have, first, typically focused on spatiotemporally acute and readily detectable environmental change, like deforestation, to the exclusion of protracted and more subtle environmental changes, like agricultural degradation; second, been limited to situational conflicts or circumstances, thereby inhibiting broader theoretical development; and, third, often only considered the environmental consequences rather than the environmental or climatic circumstances that may contribute to conflict. As a result, there is little opportunity for methodological or theoretical cohesion between studies. In this presentation, I synthesize findings from three case studies examining the interrelationships between agricultural change and armed conflict in the semi-arid landscapes of northwest Pakistan, Palestine, and southern Syria. Using coarse through very high resolution remotely sensed imagery, socio-economic and demographic data, conflict databases, open-source programming, and building on theoretical underpinnings of political ecology and conflict studies, I present methods and modeling approaches that aid in overcoming data scarcity and disparity between scales of analysis and integrate environmental and conflict data in spatiotemporally explicit ways. Results from these case studies illuminate the interrelationships between both protracted and acute agricultural change and armed conflict, and have broad relevance for understanding the means by which environment, conflict, and livelihoods are linked, a nexus that will only become tighter with the advance of global climate change.

  16. Temperature effect on betavoltaic microbatteries based on Si and GaAs under 63Ni and 147Pm irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Tang, Xiao-bin; Liu, Yun-Peng; Xu, Zhi-Heng; Liu, Min; Chen, Da

    2015-09-01

    The effect of temperature on the output performance of four different types of betavoltaic microbatteries was investigated experimental and theoretical. Si and GaAs were selected as the energy conversion devices in four types of betavoltaic microbatteries, and 63Ni and 147Pm were used as beta sources. Current density-voltage curves were determined at a temperature range of 213.15-333.15 K. A simplified method was used to calculate the theoretical parameters of the betavoltaic microbatteries considering the energy loss of beta particles for self-absorption of radioactive source, the electron backscatter effect of different types of semiconductor materials, and the absorption of dead layer. Both the experimental and theoretical results show that the short-circuit current density increases slightly and the open-circuit voltage (VOC) decreases evidently with the increase in temperature. Different combinations of energy conversion devices and beta sources cause different effects of temperature on the microbatteries. In the approximately linear range, the VOC sensitivities caused by temperature for 63Ni-Si, 63Ni-GaAs, 147Pm-Si, and 147Pm-GaAs betavoltaic microbatteries were -2.57, -5.30, -2.53, and -4.90 mV/K respectively. Both theoretical and experimental energy conversion efficiency decreased evidently with the increase in temperature.

  17. Collisional & Nonlinear Radiative Processes for Development of Coherent UV & XUV Sources.

    DTIC Science & Technology

    1987-04-01

    4- Charles K. Rhodes in the vicinity of an atomic unit, (e/a ). Extant theoretical work, however, 0 predicted ridiculously low rates...of 14 210 W/cm . These experiments clearly demonstrated that standard theoretical techniques were incapable, by a discrepancy as great as several...experiments were clearly in contradiction to all theoretical treatments, of which there is a considerable number (16-21). This unexpected result, of course

  18. Electron Energy Deposition in Atomic Nitrogen

    DTIC Science & Technology

    1987-10-06

    knovn theoretical results, and their relative accuracy in comparison to existing measurements and calculations is given elsevhere. 20 2.1 The Source Term...with the proper choice of parameters, reduces to vell-known theoretical results. 20 Table 2 gives the parameters for collisional excitation of the...calculations of McGuire 36 and experimental measurements of Brook et al.3 7 Additional theoretical and experimental results are discussed in detail elsevhere

  19. Theoretical Aspects of Speech Production.

    ERIC Educational Resources Information Center

    Stevens, Kenneth N.

    1992-01-01

    This paper on speech production in children and youth with hearing impairments summarizes theoretical aspects, including the speech production process, sound sources in the vocal tract, vowel production, and consonant production. Examples of spectra for several classes of vowel and consonant sounds in simple syllables are given. (DB)

  20. Incorporation of massage into psychotherapy: an integrative and conjoint approach.

    PubMed

    Posadzki, Paul; Parekh-Bhurke, Sheetal

    2011-02-01

    This article presents the potential integration of psychotherapy and massage when considering the essence of their beneficial effects. The essence of this model of practice is multifaceted, combining principles from anatomy, physiology and neuroscience with psychotherapy to benefit patient care. It has been advocated that possessing multidisciplinary knowledge from these areas of science enhances psychotherapists' holistic care of their depressive patients. A narrative review of the literatures and a qualitative, conceptual synthesis has been performed to create a new theoretical-pragmatic construct. This article introduces the concept of massage practice as a part of psychotherapy practice and presents the potential integration of psychotherapeutic knowledge with clinical decision-making and the management of depressive symptoms. The authors emphasize the usefulness of multi- and interdisciplinary knowledge in the psychotherapeutic process and explain how this knowledge might be extrapolated and incorporated into theoretical and practical settings to benefit depressive patients. The justification for this concept is also presented. The principles set out in this article may be a useful source of information for psychotherapists concerned about their patients' holistic well-being in addition to the psychopathology for which they have sought treatment. Researchers and psychotherapists can obtain valuable and additional knowledge through cross-fertilization of ideas across the arguments presented here.

  1. Forecasting Juno Microwave Radiometer Observations of Jupiter's Synchrotron Emission from Data Reconstruction Methods and Theoretical Model

    NASA Astrophysics Data System (ADS)

    Santos-Costa, D.; Bolton, S. J.; Adumitroaie, V.; Janssen, M.; Levin, S.; Sault, R. J.; De Pater, I.; Tao, C.

    2015-12-01

    The Juno spacecraft will go into polar orbit after it arrives at Jupiter in mid-2016. Between November 2016 and March 2017, six MicroWave Radiometers will collect information on Jupiter's atmosphere and electron belt. Here we present simulations of MWR observations of the electron belt synchrotron emission, and discuss the features and dynamical behavior of this emission when observations are carried out from inside the radiation zone. We first present our computation method. We combine a three-dimensional tomographic reconstruction method of Earth-based observations and a theoretical model of Jupiter's electron belt to constrain the calculations of the volume emissivity of the synchrotron radiation for any frequency, location in the Jovian inner magnetosphere (radial distance < 4 Rj), and observational direction. Values of the computed emissivity are incorporated into a synchrotron simulator to predict Juno MWR measurements (full sky maps and temperatures) at any time of the mission. Samples of simulated MWR observations are presented and examined for different segments of Juno trajectory. We also present results of our ongoing investigation of the radiation zone distribution around the planet and the sources of variation on different time-scales. We show that a better understanding of the spatial distribution and variability of the electron belt is key to realistically forecast Juno MWR measurements.

  2. Thermal Image Sensing Model for Robotic Planning and Search.

    PubMed

    Castro Jiménez, Lídice E; Martínez-García, Edgar A

    2016-08-08

    This work presents a search planning system for a rolling robot to find a source of infra-red (IR) radiation at an unknown location. Heat emissions are observed by a low-cost home-made IR passive visual sensor. The sensor capability for detection of radiation spectra was experimentally characterized. The sensor data were modeled by an exponential model to estimate the distance as a function of the IR image's intensity, and, a polynomial model to estimate temperature as a function of IR intensities. Both theoretical models are combined to deduce a subtle nonlinear exact solution via distance-temperature. A planning system obtains feed back from the IR camera (position, intensity, and temperature) to lead the robot to find the heat source. The planner is a system of nonlinear equations recursively solved by a Newton-based approach to estimate the IR-source in global coordinates. The planning system assists an autonomous navigation control in order to reach the goal and avoid collisions. Trigonometric partial differential equations were established to control the robot's course towards the heat emission. A sine function produces attractive accelerations toward the IR source. A cosine function produces repulsive accelerations against the obstacles observed by an RGB-D sensor. Simulations and real experiments of complex indoor are presented to illustrate the convenience and efficacy of the proposed approach.

  3. VLA OH Zeeman Observations of the NGC 6334 Complex Source A

    NASA Astrophysics Data System (ADS)

    Mayo, E. A.; Sarma, A. P.; Troland, T. H.; Abel, N. P.

    2004-12-01

    We present a detailed analysis of the NGC 6334 complex source A, a compact continuum source in the SW region of the complex. Our intent is to determine the significance of the magnetic field in the support of the surrounding molecular cloud against gravitational collapse. We have performed OH 1665 and 1667 MHz observations taken with the Very Large Array in the BnA configuration and combined these data with the lower resolution CnB data of Sarma et al. (2000). These observations reveal magnetic fields with values of the order of 350 μ G toward source A, with maximum fields reaching 500 μ G. We have also theoretically modeled the molecular cloud surrounding source A using Cloudy, with the constraints to the model based on observation. This model provides significant information on the density of H2 through the cloud and also the relative density of H2 to OH which is important to our analysis of the region. We will combine the knowledge gained through the Cloudy modeling with Virial estimates to determine the significance of the magnetic field to the dynamics and evolution of source A.

  4. Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept

    NASA Astrophysics Data System (ADS)

    Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.

    2016-10-01

    This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.

  5. Triton burnup in plasma focus plasmas

    NASA Astrophysics Data System (ADS)

    Brzosko, Jan S.; Brzosko, Jan R., Jr.; Robouch, Benjamin V.; Ingrosso, Luigi

    1995-04-01

    Pure deuterium plasma discharge from plasma focus breeds 1.01 MeV tritons via the D(d,p)T fusion branch, which has the same cross section as the D(d,n)3He (En=2.45 MeV) fusion branch. Tritons are trapped in and collide with the background deuterium plasma, producing 14.1 MeV neutrons via the D(t,n)4He reaction. The paper presents published in preliminary form as well as unpublished experimental data and theoretical studies of the neutron yield ratio R=Yn(14.1 MeV)/Yn(2.45 MeV). The experimental data were obtained from 1 MJ Frascati plasma focus operated at W=490 kJ with pure deuterium plasma (in the early 1980s). Neutrons were monitored using the nuclear activation method and nuclear emulsions. The present theoretical analysis of the experimental data is based on an exact adaptation of the binary encounter theory developed by Gryzinski. It is found that the experimentally defined value 1ṡ10-3

  6. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    PubMed Central

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  7. Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Mehdizadeh, S.; Hadad, K.

    Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.

  8. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    PubMed

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  9. Intensity correlation imaging with sunlight-like source

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Tang, Zhiguo; Zheng, Huaibin; Chen, Hui; Yuan, Yuan; Liu, Jinbin; Liu, Yanyan; Xu, Zhuo

    2018-05-01

    We show a method of intensity correlation imaging of targets illuminated by a sunlight-like source both theoretically and experimentally. With a Faraday anomalous dispersion optical filter (FADOF), we have modulated the coherence time of a thermal source up to 0.167 ns. And we carried out measurements of temporal and spatial correlations, respectively, with an intensity interferometer setup. By skillfully using the even Fourier fitting on the very sparse sampling data, the images of targets are successfully reconstructed from the low signal-noise-ratio(SNR) interference pattern by applying an iterative phase retrieval algorithm. The resulting imaging quality is as well as the one obtained by the theoretical fitting. The realization of such a case will bring this technique closer to geostationary satellite imaging illuminated by sunlight.

  10. Interpolation bias for the inverse compositional Gauss-Newton algorithm in digital image correlation

    NASA Astrophysics Data System (ADS)

    Su, Yong; Zhang, Qingchuan; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan

    2018-01-01

    It is believed that the classic forward additive Newton-Raphson (FA-NR) algorithm and the recently introduced inverse compositional Gauss-Newton (IC-GN) algorithm give rise to roughly equal interpolation bias. Questioning the correctness of this statement, this paper presents a thorough analysis of interpolation bias for the IC-GN algorithm. A theoretical model is built to analytically characterize the dependence of interpolation bias upon speckle image, target image interpolation, and reference image gradient estimation. The interpolation biases of the FA-NR algorithm and the IC-GN algorithm can be significantly different, whose relative difference can exceed 80%. For the IC-GN algorithm, the gradient estimator can strongly affect the interpolation bias; the relative difference can reach 178%. Since the mean bias errors are insensitive to image noise, the theoretical model proposed remains valid in the presence of noise. To provide more implementation details, source codes are uploaded as a supplement.

  11. Theoretical and experimental studies of the waveforms associated with stratospheric infrasonic returns

    NASA Astrophysics Data System (ADS)

    Waxler, R.; Talmadge, C. L.; Blom, P.

    2009-12-01

    Theory predicts that for ground to ground infrasound propagation along paths which travel downwind, relative to the stratospheric jet, there is a shadow zone which ends about 200 km from the source where the first return from the stratosphere strikes the earth. With increasing range the single stratospheric arrival splits into two distinct arrivals, a fast arrival with the trace velocity of the effective sound speed at the stratopause, and a slower arrival with the trace velocity of the sound speed on the ground. To test the theory we have deployed eight infrasound arrays along an approximate line directly west of the site of the US Navy's Trident Missile rocket motor eliminations. The arrays were deployed during the summer of 2009 spaced roughly 10 km apart along a segment from 180 to 260 km west of the site. Comparisons between the theoretical predictions and the received data will be presented.

  12. A theoretical and experimental study of wood planer noise and its control

    NASA Technical Reports Server (NTRS)

    Stewart, J. S.

    1972-01-01

    A combined analytical and experimental study of wood planer noise is made and the results applied to the development of practical noise control techniques. The dominant mechanisms of sound generation are identified and an analysis is presented which accurately predicts the governing levels of noise emission. Planing operations in which the length of the board is much greater than the width are considered. The dominant source of planer noise is identified as the board being surfaced, which is set into vibration by the impact of cutterhead knives. This is determined from studies made both in the laboratory and in the field concerning the effect of board width on the resulting noise, which indicate a six decibel increase in noise level for each doubling of board width. The theoretical development of a model for board vibration defines the vibrational field set up in the board and serves as a guide for cutterhead redesign.

  13. Brain-Computer Symbiosis

    PubMed Central

    Schalk, Gerwin

    2009-01-01

    The theoretical groundwork of the 1930’s and 1940’s and the technical advance of computers in the following decades provided the basis for dramatic increases in human efficiency. While computers continue to evolve, and we can still expect increasing benefits from their use, the interface between humans and computers has begun to present a serious impediment to full realization of the potential payoff. This article is about the theoretical and practical possibility that direct communication between the brain and the computer can be used to overcome this impediment by improving or augmenting conventional forms of human communication. It is about the opportunity that the limitations of our body’s input and output capacities can be overcome using direct interaction with the brain, and it discusses the assumptions, possible limitations, and implications of a technology that I anticipate will be a major source of pervasive changes in the coming decades. PMID:18310804

  14. Theoretical analysis of the correlation observed in fatigue crack growth rate parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chay, S.C.; Liaw, P.K.

    Fatigue crack growth rates have been found to follow the Paris-Erdogan rule, da/dN = C{sub o}({Delta}K){sup n}, for many steels, aluminum, nickel and copper alloys. The fatigue crack growth rate behavior in the Paris regime, thus, can be characterized by the parameters C{sub o} and n, which have been obtained for various materials. When n vs the logarithm of C{sub o} were plotted for various experimental results, a very definite linear relationship has been observed by many investigators, and questions have been raised as to the nature of this correlation. This paper presents a theoretical analysis that explains precisely whymore » such a linear correlation should exist between the two parameters, how strong the relationship should be, and how it can be predicted by analysis. This analysis proves that the source of such a correlation is of mathematical nature rather than physical.« less

  15. Dynamics of Single-Photon Emission from Electrically Pumped Color Centers

    NASA Astrophysics Data System (ADS)

    Khramtsov, Igor A.; Agio, Mario; Fedyanin, Dmitry Yu.

    2017-08-01

    Low-power, high-speed, and bright electrically driven true single-photon sources, which are able to operate at room temperature, are vital for the practical realization of quantum-communication networks and optical quantum computations. Color centers in semiconductors are currently the best candidates; however, in spite of their intensive study in the past decade, the behavior of color centers in electrically controlled systems is poorly understood. Here we present a physical model and establish a theoretical approach to address single-photon emission dynamics of electrically pumped color centers, which interprets experimental results. We support our analysis with self-consistent numerical simulations of a single-photon emitting diode based on a single nitrogen-vacancy center in diamond and predict the second-order autocorrelation function and other emission characteristics. Our theoretical findings demonstrate remarkable agreement with the experimental results and pave the way to the understanding of single-electron and single-photon processes in semiconductors.

  16. Method and apparatus for sensor fusion

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Inventor); Shaw, Scott (Inventor); Defigueiredo, Rui J. P. (Inventor)

    1991-01-01

    Method and apparatus for fusion of data from optical and radar sensors by error minimization procedure is presented. The method was applied to the problem of shape reconstruction of an unknown surface at a distance. The method involves deriving an incomplete surface model from an optical sensor. The unknown characteristics of the surface are represented by some parameter. The correct value of the parameter is computed by iteratively generating theoretical predictions of the radar cross sections (RCS) of the surface, comparing the predicted and the observed values for the RCS, and improving the surface model from results of the comparison. Theoretical RCS may be computed from the surface model in several ways. One RCS prediction technique is the method of moments. The method of moments can be applied to an unknown surface only if some shape information is available from an independent source. The optical image provides the independent information.

  17. Photon-enhanced thermionic emission for solar concentrator systems.

    PubMed

    Schwede, Jared W; Bargatin, Igor; Riley, Daniel C; Hardin, Brian E; Rosenthal, Samuel J; Sun, Yun; Schmitt, Felix; Pianetta, Piero; Howe, Roger T; Shen, Zhi-Xun; Melosh, Nicholas A

    2010-09-01

    Solar-energy conversion usually takes one of two forms: the 'quantum' approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the 'thermal' approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 degrees C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%.

  18. Analysis on flood generation processes by means of a continuous simulation model

    NASA Astrophysics Data System (ADS)

    Fiorentino, M.; Gioia, A.; Iacobellis, V.; Manfreda, S.

    2006-03-01

    In the present research, we exploited a continuous hydrological simulation to investigate on key variables responsible of flood peak formation. With this purpose, a distributed hydrological model (DREAM) is used in cascade with a rainfall generator (IRP-Iterated Random Pulse) to simulate a large number of extreme events providing insight into the main controls of flood generation mechanisms. Investigated variables are those used in theoretically derived probability distribution of floods based on the concept of partial contributing area (e.g. Iacobellis and Fiorentino, 2000). The continuous simulation model is used to investigate on the hydrological losses occurring during extreme events, the variability of the source area contributing to the flood peak and its lag-time. Results suggest interesting simplification for the theoretical probability distribution of floods according to the different climatic and geomorfologic environments. The study is applied to two basins located in Southern Italy with different climatic characteristics.

  19. Collaborative Learning: Theoretical Foundations and Applicable Strategies to University

    ERIC Educational Resources Information Center

    Roselli, Nestor D.

    2016-01-01

    Collaborative learning is a construct that identifies a current strong field, both in face-to-face and virtual education. Firstly, three converging theoretical sources are analyzed: socio-cognitive conflict theory, intersubjectivity theory and distributed cognition theory. Secondly, a model of strategies that can be implemented by teachers to…

  20. Motivation for Healthy Behavior: A Review of Health Promotion Research

    ERIC Educational Resources Information Center

    Dunsmore, Sarah; Goodson, Patricia

    2006-01-01

    Authors reviewed the theoretical history of the "motivation" construct, and its utilization within past/current health behavior research. Textbooks and review articles functioned as sources for the theoretical history review. Research published within a 10-year period (1993-2002) in four health promotion journals (all with impact factors greater…

  1. Acceleration of auroral electrons in parallel electric fields

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Walker, D. N.; Arnoldy, R. L.

    1976-01-01

    Rocket observations of auroral electrons are compared with the predictions of a number of theoretical acceleration mechanisms that involve an electric field parallel to the earth's magnetic field. The theoretical models are discussed in terms of required plasma sources, the location of the acceleration region, and properties of necessary wave-particle scattering mechanisms. We have been unable to find any steady state scatter-free electric field configuration that predicts electron flux distributions in agreement with the observations. The addition of a fluctuating electric field or wave-particle scattering several thousand kilometers above the rocket can modify the theoretical flux distributions so that they agree with measurements. The presence of very narrow energy peaks in the flux contours implies a characteristic temperature of several tens of electron volts or less for the source of field-aligned auroral electrons and a temperature of several hundred electron volts or less for the relatively isotropic 'monoenergetic' auroral electrons. The temperature of the field-aligned electrons is more representative of the magnetosheath or possibly the ionosphere as a source region than of the plasma sheet.

  2. Systematic Uncertainties in High-Energy Hadronic Interaction Models

    NASA Astrophysics Data System (ADS)

    Zha, M.; Knapp, J.; Ostapchenko, S.

    2003-07-01

    Hadronic interaction models for cosmic ray energies are uncertain since our knowledge of hadronic interactions is extrap olated from accelerator experiments at much lower energies. At present most high-energy models are based on Grib ov-Regge theory of multi-Pomeron exchange, which provides a theoretical framework to evaluate cross-sections and particle production. While experimental data constrain some of the model parameters, others are not well determined and are therefore a source of systematic uncertainties. In this paper we evaluate the variation of results obtained with the QGSJET model, when modifying parameters relating to three ma jor sources of uncertainty: the form of the parton structure function, the role of diffractive interactions, and the string hadronisation. Results on inelastic cross sections, on secondary particle production and on the air shower development are discussed.

  3. Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber.

    PubMed

    Koptev, M Yu; Anashkina, E A; Andrianov, A V; Dorofeev, V V; Kosolapov, A F; Muravyev, S V; Kim, A V

    2015-09-01

    A turnkey fiber laser source generating high-quality pulses with a spectral sech shape and Fourier transform-limited duration of order 100 fs widely tunable in the 1.6-2.65 μm range is presented. It is based on Raman soliton self-frequency shifting in the suspended-core microstructured TeO2-WO3-La2O3 glass fiber pumped by a hybrid Er/Tm fiber system. Detailed experimental and theoretical studies, which are in a very good agreement, of nonlinear pulse dynamics in the tellurite fiber with carefully measured and calculated parameters are reported. A quantitatively verified numerical model is used to show Raman soliton shift in the range well beyond 3 μm for increased pump energy.

  4. Theoretical and experimental aspects of laser cutting with a direct diode laser

    NASA Astrophysics Data System (ADS)

    Costa Rodrigues, G.; Pencinovsky, J.; Cuypers, M.; Duflou, J. R.

    2014-10-01

    Recent developments in beam coupling techniques have made it possible to scale up the power of diode lasers with a laser beam quality suitable for laser cutting of metal sheets. In this paper a prototype of a Direct Diode Laser (DDL) source (BPP of 22 mm-mrad) is analyzed in terms of efficiency and cut performance and compared with two established technologies, CO2 and fiber lasers. An analytical model based on absorption calculations is used to predict the performance of the studied laser source with a good agreement with experimental results. Furthermore results of fusion cutting of stainless steel and aluminium alloys as well as oxygen cutting of structural steel are presented, demonstrating that industrial relevant cutting speeds with high cutting quality can now be achieved with DDL.

  5. Radial Photonic Crystal for detection of frequency and position of radiation sources.

    PubMed

    Carbonell, J; Díaz-Rubio, A; Torrent, D; Cervera, F; Kirleis, M A; Piqué, A; Sánchez-Dehesa, J

    2012-01-01

    Based on the concepts of artificially microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal. This type of device was introduced as a theoretical proposal in the field of acoustics, and can be briefly defined as a structured medium with radial symmetry, where the constitutive parameters are invariant under radial geometrical translations. Our practical demonstration is realized in the electromagnetic microwave spectrum, because of the equivalence between the wave problems in both fields. A device has been designed, fabricated and experimentally characterized. It is able to perform beam shaping of punctual wave sources, and also to sense position and frequency of external radiators. Owing to the flexibility offered by the design concept, other possible applications are discussed.

  6. Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.

    2018-05-01

    In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.

  7. Full-dimensional analytical potential energy surface describing the gas-phase Cl + C2H6 reaction and kinetics study of rate constants and kinetic isotope effects.

    PubMed

    Rangel, Cipriano; Espinosa-Garcia, Joaquin

    2018-02-07

    Within the Born-Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system. This surface presents a valence-bond/molecular mechanics functional form dependent on 60 parameters and is fitted to high-level ab initio calculations. This reaction presents little exothermicity, -2.30 kcal mol -1 , with a low height barrier, 2.44 kcal mol -1 , and intermediate complexes in the entrance and exit channels. We found that the energetic description was strongly dependent on the ab initio level used and it presented a very flat topology in the entrance channel, which represents a theoretical challenge in the fitting process. In general, PES-2017 reproduces the ab initio information used as input, which is merely a test of self-consistency. As a first test of the quality of the PES-2017, a theoretical kinetics study was performed in the temperature range 200-1400 K using two approaches, i.e. the variational transition-state theory and quasi-classical trajectory calculations, with spin-orbit effects. The rate constants show reasonable agreement with experiments in the whole temperature range, with the largest differences at the lowest temperatures, and this behaviour agrees with previous theoretical studies, thus indicating the inherent difficulties in the theoretical simulation of the kinetics of the title reaction. Different sources of error were analysed, such as the limitations of the PES and theoretical methods, recrossing effects, and the tunnelling effect, which is negligible in this reaction, and the manner in which the spin-orbit effects were included in this non-relativistic study. We found that the variation of spin-orbit coupling along the reaction path, and the influence of the reactivity of the excited Cl( 2 P 1/2 ) state, have relative importance, but do not explain the whole discrepancy. Finally, the activation energy and the kinetics isotope effects reproduce the experimental information.

  8. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S G; Barty, C P J; Betts, S M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  9. Editorial

    NASA Astrophysics Data System (ADS)

    Musilek, L.; Dunn, W. L.

    2017-08-01

    The selected proceedings of the 13th International Symposium on Radiation Physics (ISRP-13) are presented here across a broad range of important topics including: Fundamental processes in radiation physics, Theoretical investigations, New radiation sources, techniques & detectors, Absorption and fluorescence spectroscopy (XAFS, XANES, XRF Spectroscopy, Raman, Infrared …), Applications of radiation in material science, nano-science & nanotechnology, Applications of radiation in biology & medical science, Applications of radiation in space, earth, energy & environmental sciences, Applications of radiation in cultural heritage & art and Applications of radiation in industry. In total, 48 papers have been accepted for these proceedings.

  10. The supersonic triplet - A new aerodynamic panel singularity with directional properties. [internal wave elimination

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.; Landrum, E. J.

    1979-01-01

    A new supersonic triplet singularity has been developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which provides the desired directional properties in the flow field surrounding the panel. The theoretical development of the triplet is described, together with its application to the calculation of surface pressure on arbitrary body shapes. Examples are presented comparing the results of the new method with other supersonic panel methods and with experimental data.

  11. Analysis of the interaction of an electron beam with back surface field solar cells

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Luke, K. L.

    1983-01-01

    In this paper the short circuit current Isc induced by the electron beam of a scanning electron microscope in a back surface field solar cell will be determined theoretically. It will be shown that, in a configuration used previously for solar cells with an ohmic back surface, the Isc gives a convenient means for estimating the back surface recombination velocities and thus the quality of back surface field cells. Numerical data will be presented applicable to a point source model for the electron-hole pair generation.

  12. Observation of Shot Noise Suppression at Optical Wavelengths in a Relativistic Electron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratner, Daniel; Stupakov, Gennady; /SLAC

    2012-06-19

    Control of collective properties of relativistic particles is increasingly important in modern accelerators. In particular, shot noise affects accelerator performance by driving instabilities or by competing with coherent processes. We present experimental observations of shot noise suppression in a relativistic beam at the Linac Coherent Light Source. By adjusting the dispersive strength of a chicane, we observe a decrease in the optical transition radiation emitted from a downstream foil. We show agreement between the experimental results, theoretical models, and 3D particle simulations.

  13. Every document and picture tells a story: using internal corporate document reviews, semiotics, and content analysis to assess tobacco advertising

    PubMed Central

    Anderson, S J; Dewhirst, T; Ling, P M

    2006-01-01

    In this article we present communication theory as a conceptual framework for conducting documents research on tobacco advertising strategies, and we discuss two methods for analysing advertisements: semiotics and content analysis. We provide concrete examples of how we have used tobacco industry documents archives and tobacco advertisement collections iteratively in our research to yield a synergistic analysis of these two complementary data sources. Tobacco promotion researchers should consider adopting these theoretical and methodological approaches. PMID:16728758

  14. A Tunable Laser Source for the Validation of Homogeneous Negative Refractive Index Materials in the Optical Regime

    DTIC Science & Technology

    2012-03-01

    theoretically predicted earlier, and it is based on coexistence of the spin wave ( magnon ) mode with the plasmonic mode, with simultaneous negative...region 27-28 µm. Such behavior is expected, since the spin waves ( magnons ) which are responsible for the maximum are not presented in this specific...the magnon -plasmon resonance in magnetic semiconductors. 22 24 26 28 0.65 0.70 0.75 0.80 0.85 R 22 24 26 28 0.65 0.70 0.75 0.80 0.85 R

  15. Electronic structure and electron momentum densities of Ag2CrO4

    NASA Astrophysics Data System (ADS)

    Meena, Seema Kumari; Ahuja, B. L.

    2018-05-01

    We present the first-ever experimental electron momentum density of Ag2CrO4 using 661.65 keV γ-rays from 20 Ci 137Cs source. To validate our experimental data, we have also deduced theoretical Compton profiles, energy bands and density of states using linear combination of atomic orbitals (LCAO) method in the framework of density functional theory. It is seen that the DFT-LDA gives a better agreement with experimental data than free atom model. The energy bands and density of states are also discussed.

  16. High-efficiency free-form condenser overcoming rotational symmetry limitations.

    PubMed

    Miñano, Juan C; Benítez, Pablo; Blen, José; Santamaría, Asunción

    2008-12-08

    Conventional condensers using rotational symmetric devices perform far from their theoretical limits when transferring optical power from sources such as arc lamps or halogen bulbs to the rectangular entrance of homogenizing prisms (target). We present a free-form condenser design (calculated with the SMS method) that overcomes the limitations inherent to rotational devices and can send to the target 1.8 times the power sent by an equivalent elliptical condenser for a 4:1 target aspect ratio and 1.5 times for 16:9 target and for practical values of target etendue.

  17. Numerical solutions for patterns statistics on Markov chains.

    PubMed

    Nuel, Gregory

    2006-01-01

    We propose here a review of the methods available to compute pattern statistics on text generated by a Markov source. Theoretical, but also numerical aspects are detailed for a wide range of techniques (exact, Gaussian, large deviations, binomial and compound Poisson). The SPatt package (Statistics for Pattern, free software available at http://stat.genopole.cnrs.fr/spatt) implementing all these methods is then used to compare all these approaches in terms of computational time and reliability in the most complete pattern statistics benchmark available at the present time.

  18. ITEP MEVVA ion beam for rhenium silicide production.

    PubMed

    Kulevoy, T; Gerasimenko, N; Seleznev, D; Kropachev, G; Kozlov, A; Kuibeda, R; Yakushin, P; Petrenko, S; Medetov, N; Zaporozhan, O

    2010-02-01

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  19. Asteroid differentiation - Pyroclastic volcanism to magma oceans

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Keil, Klaus; Mccoy, Timothy; Haack, Henning; Scott, Edward R. D.

    1993-01-01

    A summary is presented of theoretical and speculative research on the physics of igneous processes involved in asteroid differentiation. Partial melting processes, melt migration, and their products are discussed and explosive volcanism is described. Evidence for the existence of asteroidal magma oceans is considered and processes which may have occurred in these oceans are examined. Synthesis and inferences of asteroid heat sources are discussed under the assumption that asteroids are heated mainly by internal processes and that the role of impact heating is small. Inferences of these results for earth-forming planetesimals are suggested.

  20. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    NASA Astrophysics Data System (ADS)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian-Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  1. A Parametric Study of Fine-scale Turbulence Mixing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James; Freund, Jonathan B.

    2002-01-01

    The present paper is a study of aerodynamic noise spectra from model functions that describe the source. The study is motivated by the need to improve the spectral shape of the MGBK jet noise prediction methodology at high frequency. The predicted spectral shape usually appears less broadband than measurements and faster decaying at high frequency. Theoretical representation of the source is based on Lilley's equation. Numerical simulations of high-speed subsonic jets as well as some recent turbulence measurements reveal a number of interesting statistical properties of turbulence correlation functions that may have a bearing on radiated noise. These studies indicate that an exponential spatial function may be a more appropriate representation of a two-point correlation compared to its Gaussian counterpart. The effect of source non-compactness on spectral shape is discussed. It is shown that source non-compactness could well be the differentiating factor between the Gaussian and exponential model functions. In particular, the fall-off of the noise spectra at high frequency is studied and it is shown that a non-compact source with an exponential model function results in a broader spectrum and better agreement with data. An alternate source model that represents the source as a covariance of the convective derivative of fine-scale turbulence kinetic energy is also examined.

  2. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    NASA Astrophysics Data System (ADS)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  3. Characterising an implementation intervention in terms of behaviour change techniques and theory: the 'Sepsis Six' clinical care bundle.

    PubMed

    Steinmo, Siri; Fuller, Christopher; Stone, Sheldon P; Michie, Susan

    2015-08-08

    Sepsis is a major cause of death from infection, with a mortality rate of 36 %. This can be halved by implementing the 'Sepsis Six' evidence-based care bundle within 1 h of presentation. A UK audit has shown that median implementation rates are 27-47 % and interventions to improve this have demonstrated minimal effects. In order to develop more effective implementation interventions, it is helpful to obtain detailed characterisations of current interventions and to draw on behavioural theory to identify mechanisms of change. The aim of this study was to illustrate this process by using the Behaviour Change Wheel; Behaviour Change Technique (BCT) Taxonomy; Capability, Opportunity, Motivation model of behaviour; and Theoretical Domains Framework to characterise the content and theoretical mechanisms of action of an existing intervention to implement Sepsis Six. Data came from documentary, interview and observational analyses of intervention delivery in several wards of a UK hospital. A broad description of the intervention was created using the Template for Intervention Description and Replication framework. Content was specified in terms of (i) component BCTs using the BCT Taxonomy and (ii) intervention functions using the Behaviour Change Wheel. Mechanisms of action were specified using the Capability, Opportunity, Motivation model and the Theoretical Domains Framework. The intervention consisted of 19 BCTs, with eight identified using all three data sources. The BCTs were delivered via seven functions of the Behaviour Change Wheel, with four ('education', 'enablement', 'training' and 'environmental restructuring') supported by the three data sources. The most frequent mechanisms of action were reflective motivation (especially 'beliefs about consequences' and 'beliefs about capabilities') and psychological capability (especially 'knowledge'). The intervention consisted of a wide range of BCTs targeting a wide range of mechanisms of action. This study demonstrates the utility of the Behaviour Change Wheel, the BCT Taxonomy and the Theoretical Domains Framework, tools recognised for providing guidance for intervention design, for characterising an existing intervention to implement evidence-based care.

  4. A nationwide survey of first aid training and encounters in Norway.

    PubMed

    Bakke, Håkon Kvåle; Steinvik, Tine; Angell, Johan; Wisborg, Torben

    2017-02-23

    Bystander first aid can improve survival following out-of-hospital cardiac arrest or trauma. Thus, providing first aid education to laypersons may lead to better outcomes. In this study, we aimed to establish the prevalence and distribution of first aid training in the populace, how often first aid skills are needed, and self-reported helping behaviour. We conducted a telephone survey of 1000 respondents who were representative of the Norwegian population. Respondents were asked where and when they had first aid training, if they had ever encountered situations where first aid was necessary, and stratified by occupation. First aid included cardio-pulmonary resuscitation (CPR) and basic life support (BLS). To test theoretical first aid knowledge, respondents were subjected to two hypothetical first aid scenarios. Among the respondents, 90% had received first aid training, and 54% had undergone first aid training within the last 5 years. The workplace was the most common source of first aid training. Of the 43% who had been in a situation requiring first aid, 89% had provided first aid in that situation. There were considerable variations among different occupations in first aid training, and exposure to situations requiring first aid. Theoretical first aid knowledge was not as good as expected in light of the high share who had first aid training. In the presented scenarios 42% of respondent would initiate CPR in an unconscious patient not breathing normally, and 46% would provide an open airway to an unconscious road traffic victim. First aid training was correlated with better theoretical knowledge, but time since first aid training was not. A high proportion of the Norwegian population had first aid training, and interviewees reported high willingness to provide first aid. Theoretical first aid knowledge was worse than expected. While first aid is part of national school curriculum, few have listed school as the source for their first aid training.

  5. LEO-to-ground polarization measurements aiming for space QKD using Small Optical TrAnsponder (SOTA).

    PubMed

    Carrasco-Casado, Alberto; Kunimori, Hiroo; Takenaka, Hideki; Kubo-Oka, Toshihiro; Akioka, Maki; Fuse, Tetsuharu; Koyama, Yoshisada; Kolev, Dimitar; Munemasa, Yasushi; Toyoshima, Morio

    2016-05-30

    Quantum communication, and more specifically Quantum Key Distribution (QKD), enables the transmission of information in a theoretically secure way, guaranteed by the laws of quantum physics. Although fiber-based QKD has been readily available since several years ago, a global quantum communication network will require the development of space links, which remains to be demonstrated. NICT launched a LEO satellite in 2014 carrying a lasercom terminal (SOTA), designed for in-orbit technological demonstrations. In this paper, we present the results of the campaign to measure the polarization characteristics of the SOTA laser sources after propagating from LEO to ground. The most-widely used property for encoding information in free-space QKD is the polarization, and especially the linear polarization. Therefore, studying its behavior in a realistic link is a fundamental step for proving the feasibility of space quantum communications. The results of the polarization preservation of two highly-polarized lasers are presented here, including the first-time measurement of a linearly-polarized source at λ = 976 nm and a circularly-polarized source at λ = 1549 nm from space using a realistic QKD-like receiver, installed in the Optical Ground Station at the NICT Headquarters, in Tokyo, Japan.

  6. Searching the Gamma-Ray Sky for Counterparts to Gravitational Wave Sources Fermi Gamma-Ray Burst Monitor and Large Area Telescope Observations of LVT151012 and GW151226

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Burns, E.; Goldstein, A.; Connaughton, V.; Wilson-Hodge, C. A.; Jenke, P.; Blackburn, L.; Briggs, M. S.; Broida, J.; Camp, J.; hide

    2017-01-01

    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds across large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.

  7. A high-power fiber-coupled semiconductor light source with low spatio-temporal coherence

    NASA Astrophysics Data System (ADS)

    Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Menke, Tim; Kaufman, Adam M.; Greiner, Markus

    2017-04-01

    Interference-induced distortions pose a significant challenge to a variety of experimental techniques, ranging from full-field imaging applications in biological research to the creation of optical potentials in quantum gas microscopy. Here, we present a design of a high-power, fiber-coupled semiconductor light source with low spatio-temporal coherence that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.

  8. Searching the Gamma-Ray Sky for Counterparts to Gravitational Wave Sources: FERMI Gamma Ray Burst MONITO R and Large Area Telescope Observations of LVT151012 and GW151226

    DOE PAGES

    Racusin, J. L.; Burns, E.; Goldstein, A.; ...

    2017-01-19

    Here, we present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper boundsmore » across large areas of the sky. Finally, due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.« less

  9. SEARCHING THE GAMMA-RAY SKY FOR COUNTERPARTS TO GRAVITATIONAL WAVE SOURCES: FERMI GAMMA-RAY BURST MONITO R AND LARGE AREA TELESCOPE OBSERVATIONS OF LVT151012 AND GW151226

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Racusin, J. L.; Camp, J.; Singer, L.

    2017-01-20

    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds acrossmore » large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.« less

  10. Electric current focusing efficiency in a graphene electric lens.

    PubMed

    Mu, Weihua; Zhang, Gang; Tang, Yunqing; Wang, Wei; Ou-Yang, Zhongcan

    2011-12-14

    In the present work, we study theoretically the electron wave's focusing phenomenon in a single-layered graphene pn junction (PNJ) and obtain the electric current density distribution of graphene PNJ, which is in good agreement with the qualitative result in previous numerical calculations (Cheianov et al 2007 Science, 315, 1252). In addition, we find that, for a symmetric PNJ, 1/4 of total electric current radiated from the source electrode can be collected by the drain electrode. Furthermore, this ratio reduces to 3/16 in a symmetric graphene npn junction. Our results obtained by the present analytical method provide a general design rule for an electric lens based on negative refractory index systems. © 2011 IOP Publishing Ltd

  11. Experimental derivation of the fluence non-uniformity correction for air kerma near brachytherapy linear sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianello, E. A.; Almeida, C. E. de

    2008-07-15

    In brachytherapy, one of the elements to take into account for measurements free in air is the non-uniformity of the photon fluence due to the beam divergence that causes a steep dose gradient near the source. The correction factors for this phenomenon have been usually evaluated by two available theories by Kondo and Randolph [Radiat. Res. 13, 37-60 (1960)] and Bielajew [Phys. Med. Biol. 35, 517-538 (1990)], both conceived for point sources. This work presents the experimental validation of the Monte Carlo calculations made by Rodriguez and deAlmeida [Phys. Med. Biol. 49, 1705-1709 (2004)] for the non-uniformity correction specifically formore » a Cs-137 linear source measured using a Farmer type ionization chamber. The experimental values agree very well with the Monte Carlo calculations and differ from the results predicted by both theoretical models widely used. This result confirms that for linear sources there are some important differences at short distances from the source and emphasizes that those theories should not be used for linear sources. The data provided in this study confirm the limitations of the mentioned theories when linear sources are used. Considering the difficulties and uncertainties associated with the experimental measurements, it is recommended to use the Monte Carlo data to assess the non-uniformity factors for linear sources in situations that require this knowledge.« less

  12. Broadband superluminescent erbium source with multiwave pumping

    NASA Astrophysics Data System (ADS)

    Petrov, Andrey B.; Gumenyuk, Regina; Alimbekov, Mikhail S.; Zhelezov, Pavel E.; Kikilich, Nikita E.; Aleynik, Artem S.; Meshkovsky, Igor K.; Golant, Konstantin M.; Chamorovskii, Yuri K.; Odnoblyudov, Maxim; Filippov, Valery

    2018-04-01

    We demonstrate the superbroad luminescence source based on pure Er-doped fiber and two wavelength-pumping scheme. This source is capable to provide over 80 nm of spectrum bandwidth with flat spectrum shape close to Gaussian distribution. The corresponding coherence and decoherence lengths were as small as 7 μm and 85 μm, correspondingly. The parameters of Er-doped fiber luminescence source were explored theoretically and experimentally.

  13. Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants

    NASA Technical Reports Server (NTRS)

    Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.

    1994-01-01

    We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.

  14. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    USGS Publications Warehouse

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  15. The Competition Between a Localised and Distributed Source of Buoyancy

    NASA Astrophysics Data System (ADS)

    Partridge, Jamie; Linden, Paul

    2012-11-01

    We propose a new mathematical model to study the competition between localised and distributed sources of buoyancy within a naturally ventilated filling box. The main controlling parameters in this configuration are the buoyancy fluxes of the distributed and local source, specifically their ratio Ψ. The steady state dynamics of the flow are heavily dependent on this parameter. For large Ψ, where the distributed source dominates, we find the space becomes well mixed as expected if driven by an distributed source alone. Conversely, for small Ψ we find the space reaches a stable two layer stratification. This is analogous to the classical case of a purely local source but here the lower layer is buoyant compared to the ambient, due to the constant flux of buoyancy emanating from the distributed source. The ventilation flow rate, buoyancy of the layers and also the location of the interface height, which separates the two layer stratification, are obtainable from the model. To validate the theoretical model, small scale laboratory experiments were carried out. Water was used as the working medium with buoyancy being driven directly by temperature differences. Theoretical results were compared with experimental data and overall good agreement was found. A CASE award project with Arup.

  16. PandExo: A Community Tool for Transiting Exoplanet Science with JWST & HST

    NASA Astrophysics Data System (ADS)

    Batalha, Natasha E.; Mandell, Avi; Pontoppidan, Klaus; Stevenson, Kevin B.; Lewis, Nikole K.; Kalirai, Jason; Earl, Nick; Greene, Thomas; Albert, Loïc; Nielsen, Louise D.

    2017-06-01

    As we approach the James Webb Space Telescope (JWST) era, several studies have emerged that aim to (1) characterize how the instruments will perform and (2) determine what atmospheric spectral features could theoretically be detected using transmission and emission spectroscopy. To some degree, all these studies have relied on modeling of JWST’s theoretical instrument noise. With under two years left until launch, it is imperative that the exoplanet community begins to digest and integrate these studies into their observing plans, as well as think about how to leverage the Hubble Space Telescope (HST) to optimize JWST observations. To encourage this and to allow all members of the community access to JWST & HST noise simulations, we present here an open-source Python package and online interface for creating observation simulations of all observatory-supported timeseries spectroscopy modes. This noise simulator, called PandExo, relies on some aspects of Space Telescope Science Institute’s Exposure Time Calculator, Pandeia. We describe PandExo and the formalism for computing noise sources for JWST. Then we benchmark PandExo's performance against each instrument team’s independently written noise simulator for JWST, and previous observations for HST. We find that PandExo is within 10% agreement for HST/WFC3 and for all JWST instruments.

  17. Using cross-correlations of random wavefields for surface waves tomography and structural health monitoring.

    NASA Astrophysics Data System (ADS)

    Sabra, K.

    2006-12-01

    The random nature of noise and scattered fields tends to suggest limited utility. Indeed, seismic or acoustic fields from random sources or scatterers are often considered to be incoherent, but there is some coherence between two sensors that receive signals from the same individual source or scatterer. An estimate of the Green's function (or impulse response) between two points can be obtained from the cross-correlation of random wavefields recorded at these two points. Recent theoretical and experimental studies in ultrasonics, underwater acoustics, structural monitoring and seismology have investigated this technique in various environments and frequency ranges. These results provide a means for passive imaging using only the random wavefields, without the use of active sources. The coherent wavefronts emerge from a correlation process that accumulates contributions over time from random sources whose propagation paths pass through both receivers. Results will be presented from experiments using ambient noise cross-correlations for the following applications: 1) passive surface waves tomography from ocean microseisms and 2) structural health monitoring of marine and airborne structures embedded in turbulent flow.

  18. Second generation bioethanol potential from selected Malaysia's biodiversity biomasses: A review.

    PubMed

    Aditiya, H B; Chong, W T; Mahlia, T M I; Sebayang, A H; Berawi, M A; Nur, Hadi

    2016-01-01

    Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case. As one of countries with rich biodiversity, Malaysia holds enormous potential in second generation bioethanol production from its various agricultural and forestry biomasses, which are the source of lignocellulosic and starch compounds. This paper reviews potentials of biomasses and potential ethanol yield from oil palm, paddy (rice), pineapple, banana and durian, as the common agricultural waste in the country but uncommon to be served as bioethanol feedstock, by calculating the theoretical conversion of cellulose, hemicellulose and starch components of the biomasses into bioethanol. Moreover, the potential of the biomasses as feedstock are discussed based on several reported works. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Protonation of caffeine: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Bahrami, Hamed; Tabrizchi, Mahmoud; Farrokhpour, Hossein

    2013-03-01

    Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M+ ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of "internal proton affinity" (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule.

  20. Sodium D-line emission from Io - Comparison of observed and theoretical line profiles

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Matson, D. L.; Johnson, T. V.; Bergstralh, J. T.

    1978-01-01

    High-resolution spectra of the D-line profiles have been obtained for Io's sodium emission cloud. These lines, which are produced through resonance scattering of sunlight, are broad and asymmetric and can be used to infer source and dynamical properties of the sodium cloud. In this paper we compare line profile data with theoretical line shapes computed for several assumed initial velocity distributions corresponding to various source mechanisms. We also examine the consequences of source distributions which are nonuniform over the surface of Io. It is found that the experimental data are compatible with escape of sodium atoms from the leading hemisphere of Io and with velocity distributions characteristic of sputtering processes. Thermal escape and simple models of plasma sweeping are found to be incompatible with the observations.

  1. Utilizing the Theoretical Framework of Collective Identity to Understand Processes in Youth Programs

    ERIC Educational Resources Information Center

    Futch, Valerie A.

    2016-01-01

    This article explores collective identity as a useful theoretical framework for understanding social and developmental processes that occur in youth programs. Through narrative analysis of past participant interviews (n = 21) from an after-school theater program, known as "The SOURCE", it was found that participants very clearly describe…

  2. Theoretical and Experimental Investigation of Mufflers with Comments on Engine-Exhaust Muffler Design

    NASA Technical Reports Server (NTRS)

    Davis, Don D , Jr; Stokes, George M; Moore, Dewey; Stevens, George L , Jr

    1954-01-01

    Equations are presented for the attenuation characteristics of single-chamber and multiple-chamber mufflers of both the expansion-chamber and resonator types, for tuned side-branch tubes, and for the combination of an expansion chamber with a resonator. Experimental curves of attenuation plotted against frequency are presented for 77 different mufflers with a reflection-free tailpipe termination. The experiments were made at room temperature without flow; the sound source was a loud-speaker. A method is given for including the tailpipe reflections in the calculations. Experimental attenuation curves are presented for four different muffler-tailpipe combinations, and the results are compared with the theory. The application of the theory to the design of engine-exhaust mufflers is discussed, and charts are included for the assistance of the designer.

  3. Random errors in interferometry with the least-squares method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi

    2011-01-20

    This investigation analyzes random errors in interferometric surface profilers using the least-squares method when random noises are present. Two types of random noise are considered here: intensity noise and position noise. Two formulas have been derived for estimating the standard deviations of the surface height measurements: one is for estimating the standard deviation when only intensity noise is present, and the other is for estimating the standard deviation when only position noise is present. Measurements on simulated noisy interferometric data have been performed, and standard deviations of the simulated measurements have been compared with those theoretically derived. The relationships havemore » also been discussed between random error and the wavelength of the light source and between random error and the amplitude of the interference fringe.« less

  4. On oscillatory magnetoconvection in a nanofluid layer in the presence of internal heat source and Soret effect

    NASA Astrophysics Data System (ADS)

    Khalid, Izzati Khalidah; Mokhtar, Nor Fadzillah Mohd; Bakri, Nur Amirah; Siri, Zailan; Ibrahim, Zarina Bibi; Gani, Siti Salwa Abd

    2017-11-01

    The onset of oscillatory magnetoconvection for an infinite horizontal nanofluid layer subjected to Soret effect and internal heat source heated from below is examined theoretically with the implementation of linear stability theory. Two important properties that are thermophoresis and Brownian motion are included in the model and three types of lower-upper bounding systems of the model: rigid-rigid, rigid-free as well as free-free boundaries are examined. Eigenvalue equations are gained from a normal mode analysis and executed using Galerkin technique. Magnetic field effect, internal heat source effect, Soret effect and other nanofluid parameters on the oscillatory convection are presented graphically. For oscillatory mode, it is found that the effect of internal heat source is quite significant for small values of the non-dimensional parameter and elevating the internal heat source speed up the onset of convection. Meanwhile, the increasing of the strength of magnetic field in a nanofluid layer reduced the rate of thermal instability and sustain the stabilization of the system. For the Soret effect, the onset of convection in the system is accelerated when the values of the Soret effect is increased.

  5. Icequake Tremors During Glacier Calving (Invited)

    NASA Astrophysics Data System (ADS)

    Walter, F.; O'Neel, S.; Bassis, J. N.; Fricker, H. A.; Pfeffer, W. T.

    2009-12-01

    Calving poses the largest uncertainty in the prediction of sea-level rise in response to global climate changes. A physically-based calving law has yet to be successfully implemented into ice-sheet models in order to adequately describe the mass loss of tidewater glaciers and ice shelves. Observations from a variety of glacial environments are needed in order to develop a theoretical framework for glacier calving. To this end, several recent investigations on glacier calving have involved the recording of seismic waves. In this context, the study of icequakes has been of high value, as it allows for detecting and monitoring of calving activity. However, there are unanswered fundamental questions concerning source aspects of calving-related seismic activity, such as focal depths of icequakes preceding and accompanying calving events, failure mechanisms and the role of fracturing and crevasse formation upstream from the glacier terminus. Icequake sources associated with opening of surface crevasses are well understood. As glacier ice is often homogeneous these waveforms are relatively simple and can be modeled using the moment tensor representation of a seismic point source. Calving-related seismicity, on the other hand, is more complex, and occurs near the terminus of a glacier, which is often highly heterogeneous due to pervasive crevassing. The signals last up to several minutes or even hours and exhibit both low-frequency (1-3Hz) as well as high-frequency (10-20Hz) energy or tremor-like waveforms. These characteristics can be explained by finite source properties, such as connecting and migrating fractures and repeated slip across contact planes between two bodies of ice. In this presentation we discuss sources of calving-related seismicity by comparing seismic calving records from several different glacial settings. We consider icequakes recorded during tidewater calving at Columbia Glacier, Alaska, during lake calving on Gornergletscher, Switzerland, and during ice shelf calving in Antarctica. The similarities and differences in seismic signatures of these different calving settings provide valuable insights and will be helpful in the theoretical treatment of glacier calving.

  6. Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules

    PubMed Central

    2014-01-01

    We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure–property relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ∼1.1 log S units in a 10-fold cross-validation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.9–1.0 log S units. PMID:24564264

  7. Resonant structure of low-energy H3+ dissociative recombination

    NASA Astrophysics Data System (ADS)

    Petrignani, Annemieke; Altevogt, Simon; Berg, Max H.; Bing, Dennis; Grieser, Manfred; Hoffmann, Jens; Jordon-Thaden, Brandon; Krantz, Claude; Mendes, Mario B.; Novotný, Oldřich; Novotny, Steffen; Orlov, Dmitry A.; Repnow, Roland; Sorg, Tobias; Stützel, Julia; Wolf, Andreas; Buhr, Henrik; Kreckel, Holger; Kokoouline, Viatcheslav; Greene, Chris H.

    2011-03-01

    High-resolution dissociative recombination rate coefficients of rotationally cool and hot H3+ in the vibrational ground state have been measured with a 22-pole trap setup and a Penning ion source, respectively, at the ion storage-ring TSR. The experimental results are compared with theoretical calculations to explore the dependence of the rate coefficient on ion temperature and to study the contributions of different symmetries to probe the rich predicted resonance spectrum. The kinetic energy release was investigated by fragment imaging to derive internal temperatures of the stored parent ions under differing experimental conditions. A systematic experimental assessment of heating effects is performed which, together with a survey of other recent storage-ring data, suggests that the present rotationally cool rate-coefficient measurement was performed at 380-130+50 K and that this is the lowest rotational temperature so far realized in storage-ring rate-coefficient measurements on H3+. This partially supports the theoretical suggestion that temperatures higher than assumed in earlier experiments are the main cause for the large gap between the experimental and the theoretical rate coefficients. For the rotationally hot rate-coefficient measurement a temperature of below 3250 K is derived. From these higher-temperature results it is found that increasing the rotational ion temperature in the calculations cannot fully close the gap between the theoretical and the experimental rate coefficients.

  8. Converging Paradigms: A Reflection on Parallel Theoretical Developments in Psychoanalytic Metapsychology and Empirical Dream Research.

    PubMed

    Schmelowszky, Ágoston

    2016-08-01

    In the last decades one can perceive a striking parallelism between the shifting perspective of leading representatives of empirical dream research concerning their conceptualization of dreaming and the paradigm shift within clinically based psychoanalytic metapsychology with respect to its theory on the significance of dreaming. In metapsychology, dreaming becomes more and more a central metaphor of mental functioning in general. The theories of Klein, Bion, and Matte-Blanco can be considered as milestones of this paradigm shift. In empirical dream research, the competing theories of Hobson and of Solms respectively argued for and against the meaningfulness of the dream-work in the functioning of the mind. In the meantime, empirical data coming from various sources seemed to prove the significance of dream consciousness for the development and maintenance of adaptive waking consciousness. Metapsychological speculations and hypotheses based on empirical research data seem to point in the same direction, promising for contemporary psychoanalytic practice a more secure theoretical base. In this paper the author brings together these diverse theoretical developments and presents conclusions regarding psychoanalytic theory and technique, as well as proposing an outline of an empirical research plan for testing the specificity of psychoanalysis in developing dream formation.

  9. Experimental and theoretical study of Rayleigh-Lamb wave propagation

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.

    1990-01-01

    Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.

  10. Understanding the amplitudes of noise correlation measurements

    USGS Publications Warehouse

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  11. Source-Independent Quantum Random Number Generation

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  12. Broadband attenuation and nonlinear propagation in biological fluids: an experimental facility and measurements.

    PubMed

    Verma, Prashant K; Humphrey, Victor F; Duck, Francis A

    2005-12-01

    The design and construction of a versatile experimental facility for making measurements of the frequency-dependence of attenuation coefficient (over the range 1 MHz to 25 MHz) and nonlinear propagation in samples of biological fluids is described. The main feature of the facility is the ability to perform all of the measurements on the same sample of fluid within a short period of time and under temperature control. In particular, the facility allows the axial development of nonlinear waveform distortion to be measured with a wideband bilaminar polyvinylidene difluoride membrane hydrophone to study nonlinear propagation in biological fluids. The system uses a variable length bellows to contain the fluid, with transparent Mylar end-windows to couple the acoustic field into the fluid. Example results for the frequency-dependence of attenuation of Dow Corning 200/350 silicone fluid, used as a standard fluid, are presented and shown to be in good agreement with alternative measurements. Measurements of finite amplitude propagation in amniotic fluid, urine and 4.5% human albumin solutions at physiological temperature (37 degrees C) are presented and compared with theoretical predictions using existing models. The measurements were made using a 2.25-MHz single-element transducer coupled to a polymethyl methacrylate lens with a focal amplitude gain of 12 in water. The transducer was driven with an eight-cycle tone burst at source pressures up to 0.137 MPa. In general, given an accurate knowledge of the medium parameters and source conditions, the agreement with theoretical prediction is good for the first five harmonics.

  13. Manipulating acoustic wave reflection by a nonlinear elastic metasurface

    NASA Astrophysics Data System (ADS)

    Guo, Xinxin; Gusev, Vitalyi E.; Bertoldi, Katia; Tournat, Vincent

    2018-03-01

    The acoustic wave reflection properties of a nonlinear elastic metasurface, derived from resonant nonlinear elastic elements, are theoretically and numerically studied. The metasurface is composed of a two degree-of-freedom mass-spring system with quadratic elastic nonlinearity. The possibility of converting, during the reflection process, most of the fundamental incoming wave energy into the second harmonic wave is shown, both theoretically and numerically, by means of a proper design of the nonlinear metasurface. The theoretical results from the harmonic balance method for a monochromatic source are compared with time domain simulations for a wave packet source. This protocol allows analyzing the dynamics of the nonlinear reflection process in the metasurface as well as exploring the limits of the operating frequency bandwidth. The reported methodology can be applied to a wide variety of nonlinear metasurfaces, thus possibly extending the family of exotic nonlinear reflection processes.

  14. Experiments on the magnetic coupling in a small scale counter rotating marine current turbine

    NASA Astrophysics Data System (ADS)

    Kim, I. C.; Lee, N. J.; Wata, J.; Hyun, B. S.; Lee, Y. H.

    2016-05-01

    Modern economies are dependent on energy consumption to ensure growth or sustainable development. Renewable energy sources provide a source of energy that can provide energy security and is renewable. Tidal energy is more predictable than other sources or renewable energy like the sun or wind. Horizontal axis marine current turbines are currently the most advanced and commercially feasible option for tidal current convertors. A dual rotor turbine is theoretically able to produce more power than a single rotor turbine at the same fluid velocity. Previous experiments for a counter rotating dual rotor horizontal axis marine current turbine used a mechanical oil seal coupling that caused mechanical losses when water entered through small gaps at the shaft. A new magnetic coupling assembly eliminates the need for a shaft to connect physically with the internal mechanisms and is water tight. This reduces mechanical losses in the system and the effect on the dual rotor performance is presented in this paper.

  15. An analysis of source structure effects in radio interferometry measurements

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1980-01-01

    To begin a study of structure effects, this report presents a theoretical framework, proposes an effective position approach to structure corrections based on brightness distribution measurements, and analyzes examples of analytical and measured brightness distributions. Other topics include the effect of the frequency dependence of a brightness distribution on bandwidth synthesis (BWS) delay, the determination of the absolute location of a measured brightness distribution, and structure effects in dual frequency calibration of charged particle delays. For the 10 measured distributions analyzed, it was found that the structure effect in BWS delay at X-band (3.6 cm) can reach 30 cm, but typically falls in the range of 0 to 5 cm. A trial limit equation that is dependent on visibility was successfully tested against the 10 measured brightness distributions (seven sources). If the validity of this particular equation for an upper limit can be established for nearly all sources, the structure effect in BWS delay could be greatly reduced without supplementary measurements of brightness distributions.

  16. Characteristics of High-Density Helicon Plasma Sources and Their Application to Electrodeless Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Shinohara, S.; Nishida, H.; Nakamura, T.; Mishio, A.; Ishii, H.; Teshigahara, N.; Fujitsuka, H.; Waseda, S.; Tanikawa, T.; Hada, T.; Otsuka, F.; Funaki, I.; Matsuoka, T.; Shamrai, K.; Rudenko, T.

    2012-10-01

    High-density but low temperature helicon plasmas have been proved to be very useful for fundamental research as well as for various applications. First, we introduce our very large helicon sources [1] with a diameter up to 74 cm. For the industrial and propulsion applications, we have reduced the aspect ratio (axial length-to-diameter) down to 0.075, and examined the discharge performance and wave characteristics. Then, we discuss our small helicon sources [1] for developing new electrodeless acceleration schemes. Some experimental and theoretical results [2] by applying the rotating magnetic (or electric) fields to the helicon plasma under the divergent magnetic field will be presented, along with other propulsion schemes. In addition, an initial plasma production experiment with very small diameter will be described.[4pt] [1] S. Shinohara et al., Jpn. J. Appl. Phys. 35 (1996) 4503; Rev. Sci. Instrum. 75 (2004) 1941; Phys. Plasmas 16 (2009) 057104.[0pt] [2] S. Shinohara et al., 32th Int. Electric Propul. Conf., IEPC-2011-056, 2011.

  17. Source selection problem of competitive power plants under government intervention: a game theory approach

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Reza; Hafezalkotob, Ashkan; Makui, Ahmad

    2014-06-01

    Pollution and environmental protection in the present century are extremely significant global problems. Power plants as the largest pollution emitting industry have been the cause of a great deal of scientific researches. The fuel or source type used to generate electricity by the power plants plays an important role in the amount of pollution produced. Governments should take visible actions to promote green fuel. These actions are often called the governmental financial interventions that include legislations such as green subsidiaries and taxes. In this paper, by considering the government role in the competition of two power plants, we propose a game theoretical model that will help the government to determine the optimal taxes and subsidies. The numerical examples demonstrate how government could intervene in a competitive market of electricity to achieve the environmental objectives and how power plants maximize their utilities in each energy source. The results also reveal that the government's taxes and subsidiaries effectively influence the selected fuel types of power plants in the competitive market.

  18. A target development program for beamhole spallation neutron sources in the megawatt range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, G.S.; Atchison, F.

    1995-10-01

    Spallation sources as an alternative to fission neutron sources have been operating successfully up to 160 kW of beam power. With the next generation of these facilities aiming at the medium power range between 0.5 and 5 MW, loads on the targets will be high enough to make present experience of little relevance. With the 0.6 MW continuous facility SINQ under construction, and a 5 MW pulsed facility (ESS) under study in Europe, a research and development program is about to be started which aimes at assessing the limits of stationary and moving solid targets and the feasibility and potentialmore » benefits of flowing liquid metal targets. Apart from theoretical work and examination of existing irradiated material, including used targets from ISIS, it is intended to take advantage of the SINQ solid rod target design to improve the relevant data base by building the target in such a way that individual rods can be equipped as irradiation capsules.« less

  19. Source of seed fluctuations for electromagnetic ion cyclotron waves in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H. K.

    2015-06-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The presented theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz), i.e. into the frequency range of EMIC waves, is able to supply the needed level of seed fluctuations that guarantees growth of EMIC waves up to the observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze the magnetic field data from the Polar and Van Allen Probes spacecraft to test the suggested nonlinear mechanism. In this initial study we restrict our analysis to magnetic fluctuation spectra only. We do not analyze the third-order structure function, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low-frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere data, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability.

  20. Assessment of relative Ti, Ta, and Nb (TiTaN) enrichments in global ocean island basalts

    NASA Astrophysics Data System (ADS)

    Peters, B.; Day, J. M.

    2013-12-01

    The relative sensitivity of trace element concentrations to processes governing solid-melt and solid-fluid interactions has made them particularly useful for tracing the effects of partial melting, fractional crystallization, metasomatism and similar processes on the composition of a parental melt to a rock or mineral. Radiogenic and stable isotope compositions, in contrast, can provide information on the long-term history and provenance of magmas. Despite the distinct information derived from relative and absolute abundances of trace elements compared with isotopes, numerous studies of ocean island basalts (OIB) have attempted to use trace elements as diagnostic geochemical tracers to understand parental magma compositions. In particular, attempts have been made to correlate 'TiTaN' (Ti, Ta and Nb) anomalies to the He-Os isotopic compositions of OIB based on contributions from recycled eclogite, a theoretical high-TiTaN reservoir, and peridotite, a theoretical high-3He/4He reservoir (Jackson, et al., 2008 G-cubed). These authors have proposed that TiTaN anomalies can be used as independent indicators for recycled oceanic crust and lithospheric mantle in OIB sources, a distinction previously reserved for isotopic data. However, TiTaN anomalies appear uncorrelated to OIB mantle source composition for three reasons. First, a new geochemical compilation of global OIB shows a wide range of Ti (Ti/Ti* = 0.28 - 2.35), Ta (Ta/Ta* = 0.11 - 93.42) and Nb (Nb/Nb* = 0.13 - 17.79) anomalies that do not correlated with each other or noble gas systematics, indicating that: (i) TiTaN anomalies alone do not correspond to the primitive source traced by high-3He/4He or the solar neon component and (ii) Ti, Ta and Nb anomalies may each reflect distinct processes or origins, rather than tracing a single source or process together. Second, positive Ti anomalies can be generated by low-degree (1-10%), non-modal batch partial melting of garnet lherzolite at temperatures and pressures thought to be typical for OIB in many settings (T = 1075 - 1420 °C; P = 1 - 3.5 GPa). Furthermore, Ti, Ta and Nb anomalies can be theoretically created by subjecting the same low-degree partial melt to shallow level assimilation-fractional crystallization processes. If TiTaN anomalies are derived from this ubiquitous process, it presents a challenge to their origin from recycled or deep mantle parental materials. Finally, because clinopyroxene can contain large positive Ti anomalies (up to Ti/Ti* ≈ 1000), clinopyroxene accumulation can result in apparent high positive Ti/Ti* anomalies in ankaramites or other clinopyroxene-bearing rocks, when in reality, these Ti anomalies have been generated independent of primary source composition. Current evidence suggests that TiTaN anomalies do not directly reflect distinct source components in OIB lavas. Even if Ti, Ta and/or Nb enrichments are systematically present in high-3He/4He OIB parental materials, it is unlikely they are preserved due to magma processing at shallow depths.

  1. Precision Measurement of Black Hole Binary Dynamics: Analyzing the LISA Data Stream

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Thorpe, James Ira; Baker, John G.; Arnaud, Keith A.; Kelly, Bernard J.

    2008-01-01

    One of the richest potential sources of insight into fundamental physics that LISA will be capable of observing is the inspiral of supermassive black hole binaries (BHBs). However, the data analysis challenge presented by the LISA data stream is quite unlike the situation for present day gravitational wave detectors. In order to make the precision measurements necessary to achieve LISA's science goals, the BHB signal must be distinguished from a data stream that not only contains instrumental noise, but potentially thousands of other signals as well, so that the "background" we wish to separate out to focus on the BHB signal is likely to be highly nonstationary and nongaussian, as well as being of scientific interest in its own right. In addition, whereas the theoretical templates that we calculate in order to ultimately estimate the parameters can afford to be somewhat inaccurate and still be effective for present day and near future detectors, this is not the case for LISA, and extremely high fidelity of the theoretical templates for high signal-to-noise signals will be required to prevent theoretical errors from dominating the parameter estimates. NVe, will describe efforts in the community of LISA data analysts to address the challenges regarding the specific issue of BHB signals. These efforts include using a Markov Chain Monte Carlo approach with the freedom to model the BHB and the other signals present in the data stream simultaneously, rather than trying to remove other signals and risk biasing the remaining data. The Mock LISA Data Challenge is a community of LISA scientists who generate rounds of simulated LISA noise with increasingly difficult signal content, and invite the LISA data analysis community to exercise their methods, or develop new methods, in an attempt to extract the parameters for the signals embedded in the mock data. In addition to practical approaches such ,is this to assess the level of parameter accuracy, one can apply the Fisher matrix formalism to assess both the statistical errors from noise and the theoretical errors

  2. Impact of the galactic acceleration on the terrestrial reference frame and the scale factor in VLBI

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Titov, Oleg

    2017-04-01

    The relative motion of the solar system barycentre around the galactic centre can also be described as an acceleration of the solar system directed towards the centre of the Galaxy. So far, this effect has been omitted in the a priori modelling of the Very Long Baseline Interferometry (VLBI) observable. Therefore, it results in a systematic dipole proper motion (Secular Aberration Drift, SAD) of extragalactic radio sources building the celestial reference frame with a theoretical maximum magnitude of 5-7 microarcsec/year. In this work, we present our estimation of the SAD vector obtained within a global adjustment of the VLBI measurements (1979.0 - 2016.5) using the software VieVS. We focus on the influence of the observed radio sources with the maximum SAD effect on the terrestrial reference frame. We show that the scale factor from the VLBI measurements estimated for each source individually discloses a clear systematic aligned with the direction to the Galactic centre-anticentre. Therefore, the radio sources located near Galactic anticentre may cause a strong systematic effect, especially, in early VLBI years. For instance, radio source 0552+398 causes a difference up to 1 mm in the estimated baseline length. Furthermore, we discuss the scale factor estimated for each radio source after removal of the SAD systematic.

  3. Blind source separation of ex-vivo aorta tissue multispectral images

    PubMed Central

    Galeano, July; Perez, Sandra; Montoya, Yonatan; Botina, Deivid; Garzón, Johnson

    2015-01-01

    Blind Source Separation methods (BSS) aim for the decomposition of a given signal in its main components or source signals. Those techniques have been widely used in the literature for the analysis of biomedical images, in order to extract the main components of an organ or tissue under study. The analysis of skin images for the extraction of melanin and hemoglobin is an example of the use of BSS. This paper presents a proof of concept of the use of source separation of ex-vivo aorta tissue multispectral Images. The images are acquired with an interference filter-based imaging system. The images are processed by means of two algorithms: Independent Components analysis and Non-negative Matrix Factorization. In both cases, it is possible to obtain maps that quantify the concentration of the main chromophores present in aortic tissue. Also, the algorithms allow for spectral absorbance of the main tissue components. Those spectral signatures were compared against the theoretical ones by using correlation coefficients. Those coefficients report values close to 0.9, which is a good estimator of the method’s performance. Also, correlation coefficients lead to the identification of the concentration maps according to the evaluated chromophore. The results suggest that Multi/hyper-spectral systems together with image processing techniques is a potential tool for the analysis of cardiovascular tissue. PMID:26137366

  4. Thermal Image Sensing Model for Robotic Planning and Search

    PubMed Central

    Castro Jiménez, Lídice E.; Martínez-García, Edgar A.

    2016-01-01

    This work presents a search planning system for a rolling robot to find a source of infra-red (IR) radiation at an unknown location. Heat emissions are observed by a low-cost home-made IR passive visual sensor. The sensor capability for detection of radiation spectra was experimentally characterized. The sensor data were modeled by an exponential model to estimate the distance as a function of the IR image’s intensity, and, a polynomial model to estimate temperature as a function of IR intensities. Both theoretical models are combined to deduce a subtle nonlinear exact solution via distance-temperature. A planning system obtains feed back from the IR camera (position, intensity, and temperature) to lead the robot to find the heat source. The planner is a system of nonlinear equations recursively solved by a Newton-based approach to estimate the IR-source in global coordinates. The planning system assists an autonomous navigation control in order to reach the goal and avoid collisions. Trigonometric partial differential equations were established to control the robot’s course towards the heat emission. A sine function produces attractive accelerations toward the IR source. A cosine function produces repulsive accelerations against the obstacles observed by an RGB-D sensor. Simulations and real experiments of complex indoor are presented to illustrate the convenience and efficacy of the proposed approach. PMID:27509510

  5. Measurement of Phased Array Point Spread Functions for Use with Beamforming

    NASA Technical Reports Server (NTRS)

    Bahr, Chris; Zawodny, Nikolas S.; Bertolucci, Brandon; Woolwine, Kyle; Liu, Fei; Li, Juan; Sheplak, Mark; Cattafesta, Louis

    2011-01-01

    Microphone arrays can be used to localize and estimate the strengths of acoustic sources present in a region of interest. However, the array measurement of a region, or beam map, is not an accurate representation of the acoustic field in that region. The true acoustic field is convolved with the array s sampling response, or point spread function (PSF). Many techniques exist to remove the PSF's effect on the beam map via deconvolution. Currently these methods use a theoretical estimate of the array point spread function and perhaps account for installation offsets via determination of the microphone locations. This methodology fails to account for any reflections or scattering in the measurement setup and still requires both microphone magnitude and phase calibration, as well as a separate shear layer correction in an open-jet facility. The research presented seeks to investigate direct measurement of the array's PSF using a non-intrusive acoustic point source generated by a pulsed laser system. Experimental PSFs of the array are computed for different conditions to evaluate features such as shift-invariance, shear layers and model presence. Results show that experimental measurements trend with theory with regard to source offset. The source shows expected behavior due to shear layer refraction when observed in a flow, and application of a measured PSF to NACA 0012 aeroacoustic trailing-edge noise data shows a promising alternative to a classic shear layer correction method.

  6. TEM Cell Testing of Cable Noise Reduction Techniques from 2 MHz to 200 MHz -- Part 2

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Evans, William C.; Reed, Joshua L.; Shimp, Samuel K., III; Fitzpatrick, Fred D.

    2008-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated in a TEM cell operating with radiated fields from 2 - 200 MHz. It is the second part of a two-paper series. The first paper discussed cable types and shield connections. In this second paper, the effects of load and source resistances and chassis connections are examined. For each topic, well established theories are compared to data from a real-world physical system. Finally, recommendations for minimizing cable susceptibility (and thus cable emissions) are presented. There are numerous papers and textbooks that present theoretical analyses of cable noise reduction techniques. However, empirical data is often targeted to low frequencies (e.g. <50 KHz) or high frequencies (>100 MHz). Additionally, a comprehensive study showing the relative effects of various noise reduction techniques is needed. These include the use of dedicated return wires, twisted wiring, cable shielding, shield connections, changing load or source impedances, and implementing load- or source-to-chassis isolation. We have created an experimental setup that emulates a real-world electrical system, while still allowing us to independently vary a host of parameters. The goal of the experiment was to determine the relative effectiveness of various noise reduction techniques when the cable is in the presence of radiated emissions from 2 MHz to 200 MHz.

  7. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansil, Arun

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspectsmore » of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.« less

  8. Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph; Slane, Patrick; Hughes, John; Temim, Tea; Castro, Daniel; Rakowski, Cara

    Supernova remnant are believed to be the dominant source of cosmic rays protons below the "knee" in the energy spectrum. However, relatively few supernova remnants have been identified as efficient producers of cosmic ray protons. In this talk, I will present evidence that the production of cosmic ray protons is required to explain the broadband non-thermal spectrum of supernova remnant Kes 17 (SNR G304.6+0.1). Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 and similar sources are important for understanding how cosmic rays are accelerated in supernova remnants.

  9. Signal location using generalized linear constraints

    NASA Astrophysics Data System (ADS)

    Griffiths, Lloyd J.; Feldman, D. D.

    1992-01-01

    This report has presented a two-part method for estimating the directions of arrival of uncorrelated narrowband sources when there are arbitrary phase errors and angle independent gain errors. The signal steering vectors are estimated in the first part of the method; in the second part, the arrival directions are estimated. It should be noted that the second part of the method can be tailored to incorporate additional information about the nature of the phase errors. For example, if the phase errors are known to be caused solely by element misplacement, the element locations can be estimated concurrently with the DOA's by trying to match the theoretical steering vectors to the estimated ones. Simulation results suggest that, for general perturbation, the method can resolve closely spaced sources under conditions for which a standard high-resolution DOA method such as MUSIC fails.

  10. The advanced thermionic converter with microwave power as an auxiliary ionization source

    NASA Technical Reports Server (NTRS)

    Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.

    1978-01-01

    In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.

  11. Tutorial review of seismic surface waves' phenomenology

    NASA Astrophysics Data System (ADS)

    Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.

    2018-03-01

    In recent years, surface wave seismology has become one of the leading directions in seismological investigations of the Earth's structure and seismic sources. Various applications cover a wide spectrum of goals, dealing with differences in sources of seismic excitation, penetration depths, frequency ranges, and interpretation techniques. Observed seismic data demonstrates the great variability of phenomenology which can produce difficulties in interpretation for beginners. This tutorial review is based on the many years' experience of authors in processing and interpretation of seismic surface wave observations and the lectures of one of the authors (ALL) at Workshops on Seismic Wave Excitation, Propagation and Interpretation held at the Abdus Salam International Center for Theoretical Physics (Trieste, Italy) in 1990-2012. We present some typical examples of wave patterns which could be encountered in different applications and which can serve as a guide to analysis of observed seismograms.

  12. Ground-based plasma contractor characterization

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Aadland, Randall S.

    1987-01-01

    Presented are recent NASA Lewis Research Center (LeRC) plasma contractor experimental results, as well as a description of the plasma contractor test facility. The operation of a 24 cm diameter plasma source with hollow cathode was investigated in the lighted-mode regime of electron current collection from 0.1 to 7.0 A. These results are compared to those obtained with a 12 cm plasma source. Full two-dimensional plasma potential profiles were constructed from emissive probe traces of the contractor plume. The experimentally measured dimensions of the plume sheaths were then compared to those theoretically predicted using a model of a spherical double sheath. Results are consistent for currents up to approximately 1.0 A. For currents above 1.0 A, substantial deviations from theory occur. These deviations are due to sheath asphericity, and possibly volume ionization in the double-sheath region.

  13. Passive and active vibration isolation systems using inerter

    NASA Astrophysics Data System (ADS)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  14. A Proposal for a Subcritical Reactivity Meter based on Gandini and Salvatores' point kinetics equations for Multiplying Subcritical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Leticia N.; Dos Santos, Adimir

    2015-07-01

    Multiplying Subcritical Systems were for a long time poorly studied and its theoretical description remains with plenty open questions. Great interest on such systems arose partly due to the improvement of hybrid concepts, such as the Accelerator-Driven Systems (ADS). Along with the need for new technologies to be developed, further study and understanding of subcritical systems are essential also in more practical situations, such as in the case of a PWR criticalization in their physical startup tests. Point kinetics equations are fundamental to continuously monitor the reactivity behavior to a possible variation of external sources intensity. In this case, quicklymore » and accurately predicting power transients and reactivity becomes crucial. It is known that conventional Reactivity Meters cannot operate in subcritical levels nor describe the dynamics of multiplying systems in these conditions, by the very structure of the classical kinetic equations. Several theoretical models have been proposed to characterize the kinetics of such systems with special regard to the reactivity, as the one developed by Gandini and Salvatores among others. This work presents a discussion about the derivation of point kinetics equations for subcritical systems and the importance of considering the external source. From the point of view of the Gandini and Salvatores' point kinetics model and based on the experimental results provided by Lee and dos Santos, it was possible to develop an innovative approach. This article proposes an algorithm that describes the subcritical reactivity with external source, contributing to the advancement of studies in the field. (authors)« less

  15. Mass attenuation coefficient of chromium and manganese compounds around absorption edge.

    PubMed

    Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B

    2009-01-01

    The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.

  16. Humpback whale-generated ambient noise levels provide insight into singers' spatial densities.

    PubMed

    Seger, Kerri D; Thode, Aaron M; Urbán-R, Jorge; Martínez-Loustalot, Pamela; Jiménez-López, M Esther; López-Arzate, Diana

    2016-09-01

    Baleen whale vocal activity can be the dominant underwater ambient noise source for certain locations and seasons. Previous wind-driven ambient-noise formulations have been adjusted to model ambient noise levels generated by random distributions of singing humpback whales in ocean waveguides and have been combined to a single model. This theoretical model predicts that changes in ambient noise levels with respect to fractional changes in singer population (defined as the noise "sensitivity") are relatively unaffected by the source level distributions and song spectra of individual humpback whales (Megaptera novaeangliae). However, the noise "sensitivity" does depend on frequency and on how the singers' spatial density changes with population size. The theoretical model was tested by comparing visual line transect surveys with bottom-mounted passive acoustic data collected during the 2013 and 2014 humpback whale breeding seasons off Los Cabos, Mexico. A generalized linear model (GLM) estimated the noise "sensitivity" across multiple frequency bands. Comparing the GLM estimates with the theoretical predictions suggests that humpback whales tend to maintain relatively constant spacing between one another while singing, but that individual singers either slightly increase their source levels or song duration, or cluster more tightly as the singing population increases.

  17. Theoretical investigation of the microwave electron gun

    NASA Astrophysics Data System (ADS)

    Gao, J.

    1990-12-01

    In this article the microwave electron gun (rf gun) is investigated theoretically in a general way. After a brief review of the sources of emittance growth in a cavity, the optimization criteria are given and optimized electric field distributions on the axes of the cavities are found, from which cavities for a rf gun can be designed.

  18. Development of Theoretical and Computational Methods for Single-Source Bathymetric Data

    DTIC Science & Technology

    2016-09-15

    Methods for Single-Source N00014-16-1-2035 Bathymetric Data Sb. GRANT NUMBER 11893686 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER...A method is outlined for fusing the information inherent in such source documents, at different scales, into a single picture for the marine...algorithm reliability, which reflects the degree of inconsistency of the source documents, is also provided. A conceptual outline of the method , and a

  19. Magnitude, moment, and measurement: The seismic mechanism controversy and its resolution.

    PubMed

    Miyake, Teru

    This paper examines the history of two related problems concerning earthquakes, and the way in which a theoretical advance was involved in their resolution. The first problem is the development of a physical, as opposed to empirical, scale for measuring the size of earthquakes. The second problem is that of understanding what happens at the source of an earthquake. There was a controversy about what the proper model for the seismic source mechanism is, which was finally resolved through advances in the theory of elastic dislocations. These two problems are linked, because the development of a physically-based magnitude scale requires an understanding of what goes on at the seismic source. I will show how the theoretical advances allowed seismologists to re-frame the questions they were trying to answer, so that the data they gathered could be brought to bear on the problem of seismic sources in new ways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Exploring English Language Learners (ELL) experiences with scientific language and inquiry within a real life context

    NASA Astrophysics Data System (ADS)

    Algee, Lisa M.

    English Language Learners (ELL) are often at a distinct disadvantage from receiving authentic science learning opportunites. This study explored English Language Learners (ELL) learning experiences with scientific language and inquiry within a real life context. This research was theoretically informed by sociocultural theory and literature on student learning and science teaching for ELL. A qualitative, case study was used to explore students' learning experiences. Data from multiple sources was collected: student interviews, science letters, an assessment in another context, field-notes, student presentations, inquiry assessment, instructional group conversations, parent interviews, parent letters, parent homework, teacher-researcher evaluation, teacher-researcher reflective journal, and student ratings of learning activities. These data sources informed the following research questions: (1) Does participation in an out-of-school contextualized inquiry science project increase ELL use of scientific language? (2) Does participation in an out-of-school contextualized inquiry science project increase ELL understanding of scientific inquiry and their motivation to learn? (3) What are parents' funds of knowledge about the local ecology and does this inform students' experiences in the science project? All data sources concerning students were analyzed for similar patterns and trends and triangulation was sought through the use of these data sources. The remaining data sources concerning the teacher-researcher were used to inform and assess whether the pedagogical and research practices were in alignment with the proposed theoretical framework. Data sources concerning parental participation accessed funds of knowledge, which informed the curriculum in order to create continuity and connections between home and school. To ensure accuracy in the researchers' interpretations of student and parent responses during interviews, member checking was employed. The findings suggest that participation in an out-of-school contextualized inquiry science project increased ELL use of scientific language and understanding of scientific inquiry and motivation to learn. In addition, parent' funds of knowledge informed students' experiences in the science project. These findings suggest that the learning and teaching practices and the real life experiential learning contexts served as an effective means for increasing students' understandings and motivation to learn.

  1. Athlete leadership: a review of the theoretical, measurement, and empirical literature.

    PubMed

    Loughead, Todd M

    2017-08-01

    Athlete leadership is defined as an athlete who occupies a formal or informal leadership role within a team and influences team members to achieve a common objective. The area of athlete leadership has been shaped by theories and measurement tools from organizational and sport coaching literatures. The present article describes the conceptual developments within athlete leadership by providing an operational definition of this construct, followed by the theories and measurement tools used to examine athlete leadership. Finally, the present paper describes both qualitative and quantitative research that has emerged over the last decade. The results suggest the importance of this source of leadership within sport teams. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  2. Register of experts for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.

    1973-01-01

    A list of approximately 150 experts from approximately 60 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure is presented. Each author included is listed by organizational affiliation, address and principal field of expertise. The initial criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The Register includes two indexes: an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.

  3. Meterological correction of optical beam refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukin, V.P.; Melamud, A.E.; Mironov, V.L.

    1986-02-01

    At the present time laser reference systems (LRS's) are widely used in agrotechnology and in geodesy. The demands for accuracy in LRS's constantly increase, so that a study of error sources and means of considering and correcting them is of practical importance. A theoretical algorithm is presented for correction of the regular component of atmospheric refraction for various types of hydrostatic stability of the atmospheric layer adjacent to the earth. The algorithm obtained is compared to regression equations obtained by processing an experimental data base. It is shown that within admissible accuracy limits the refraction correction algorithm obtained permits constructionmore » of correction tables and design of optical systems with programmable correction for atmospheric refraction on the basis of rapid meteorological measurements.« less

  4. Vapor-screen technique for flow visualization in the Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Morris, O. A.; Corlett, W. A.; Wassum, D. L.; Babb, C. D.

    1985-01-01

    The vapor-screen technique for flow visualization, as developed for the Langley Unitary Plan Wind Tunnel, is described with evaluations of light sources and photographic equipment. Test parameters including dew point, pressure, and temperature were varied to determine optimum conditions for obtaining high-quality vapor-screen photographs. The investigation was conducted in the supersonic speed range for Mach numbers from 1.47 to 4.63 at model angles of attack up to 35 deg. Vapor-screen photographs illustrating various flow patterns are presented for several missile and aircraft configurations. Examples of vapor-screen results that have contributed to the understanding of complex flow fields and provided a basis for the development of theoretical codes are presented with reference to other research.

  5. Spectroscopic infrared extinction mapping as a probe of grain growth in IRDCs

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Carey, Sean J.

    2014-07-01

    We present photometric and spectroscopic tests of MIR to FIR extinction laws toward IRDC G028.36+00.07, a potential site of massive star formation. Lim & Tan (2014, hereafter LT14) developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 micron and Herschel-PACS 70 micron images, and extending the MIR 8 micron mapping methods of (Butler & Tan 2012, hereafter BT12), finding evidence for grain growth in the highest mass surface density regions. Here we present initial results of spectroscopic infrared extinction (SIREX) mapping using Spitzer-IRS (14 to 38 micron) data of the same IRDC. These methods allow us to measure the SED of the diffuse Galactic ISM, which we compare to theoretical models of Draine & Li (2007), as well as to search for opacity law variations with mass surface density within the IRDC. By comparison with theoretical dust models, e.g., Ossenkopf & Henning (1994) and Ormel et al. (2011), we are able to search for compositional signatures of the grain ices, such as water and methanol. We find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  6. THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER 'SUPER-EARTHS'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Alex R.; Burrows, Adam S., E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu

    2012-09-10

    We present new calculations of transit spectra of super-Earths that allow for atmospheres with arbitrary proportions of common molecular species and haze. We test this method with generic spectra, reproducing the expected systematics and absorption features, then apply it to the nearby super-Earth GJ 1214b, which has produced conflicting observational data, leaving the questions of a hydrogen-rich versus hydrogen-poor atmosphere and the water content of the atmosphere ambiguous. We present representative transit spectra for a range of classes of atmosphere models for GJ 1214b. Our analysis supports a hydrogen-rich atmosphere with a cloud or haze layer, although a hydrogen-poor modelmore » with {approx}<10% water is not ruled out. Several classes of models are ruled out, however, including hydrogen-rich atmospheres with no haze, hydrogen-rich atmospheres with a haze of {approx}0.01 {mu}m tholin particles, and hydrogen-poor atmospheres with major sources of absorption other than water. We propose an observational test to distinguish hydrogen-rich from hydrogen-poor atmospheres. Finally, we provide a library of theoretical transit spectra for super-Earths with a broad range of parameters to facilitate future comparison with anticipated data.« less

  7. The search for sterile neutrinos at reactors and underground laboratories

    NASA Astrophysics Data System (ADS)

    Langford, Thomas

    2017-01-01

    From the initial discovery of neutrinos to the observation of neutrino oscillations, unexpected results have lead to deeper understanding of physics. However, as experiments and theoretical predictions have improved, new anomalies have surfaced that could point to beyond the Standard Model physics. Leading hypotheses invoke a new form of matter, sterile neutrinos, as a possible resolution of these outstanding questions. New experimental efforts are underway to probe short-baseline neutrino oscillations with reactors and radioactive sources. This talk will highlight developments in current and next generation experiments and present possible outcomes for the next few years.

  8. Effects of high combustion chamber pressure on rocket noise environment

    NASA Technical Reports Server (NTRS)

    Pao, S. P.

    1972-01-01

    The acoustical environment for a high combustion chamber pressure engine was examined in detail, using both conventional and advanced theoretical analysis. The influence of elevated chamber pressure on the rocket noise environment was established, based on increase in exit velocity and flame temperature, and changes in basic engine dimensions. Compared to large rocket engines, the overall sound power level is found to be 1.5 dB higher, if the thrust is the same. The peak Strouhal number shifted about one octave lower to a value near 0.01. Data on apparent sound source location and directivity patterns are also presented.

  9. Deep inelastic neutron scattering on 207Pb and NaHF 2 as a test of a detectors array on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Senesi, R.

    2008-01-01

    A prototype array of resonance detectors for deep inelastic neutron scattering experiments has been installed on the VESUVIO spectrometer, at the ISIS spallation neutron source. Deep inelastic neutron scattering measurements on a reference lead sample and on NaHF 2 molecular system are presented. Despite on an explorative level, the results obtained for the values of mean kinetic energy are found in good agreement with the theoretical predictions, thus assessing the potential capability of the device for a routine use on the instrument.

  10. Rotational relaxation of molecular hydrogen at moderate temperatures

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.

    1994-01-01

    Using a coupled rotation-vibration-dissociation model the rotational relaxation times for molecular hydrogen as a function of final temperature (500-5000 K), in a hypothetical scenario of sudden compression, are computed. The theoretical model is based on a master equation solver. The bound-bound and bound-free transition rates have been computed using a quasiclassical trajectory method. A review of the available experimental data on the rotational relaxation of hydrogen is presented, with a critical overview of the method of measurements and data reduction, including the sources of errors. These experimental data are then compared with the computed results.

  11. Latest AMS Results on elementary particles in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kounine, Andrei; AMS Collaboration

    2017-01-01

    AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.

  12. Parallel Gaussian elimination of a block tridiagonal matrix using multiple microcomputers

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.

    1989-01-01

    The solution of a block tridiagonal matrix using parallel processing is demonstrated. The multiprocessor system on which results were obtained and the software environment used to program that system are described. Theoretical partitioning and resource allocation for the Gaussian elimination method used to solve the matrix are discussed. The results obtained from running 1, 2 and 3 processor versions of the block tridiagonal solver are presented. The PASCAL source code for these solvers is given in the appendix, and may be transportable to other shared memory parallel processors provided that the synchronization outlines are reproduced on the target system.

  13. Evaluation of multilayered pavement structures from measurements of surface waves

    USGS Publications Warehouse

    Ryden, N.; Lowe, M.J.S.; Cawley, P.; Park, C.B.

    2006-01-01

    A method is presented for evaluating the thickness and stiffness of multilayered pavement structures from guided waves measured at the surface. Data is collected with a light hammer as the source and an accelerometer as receiver, generating a synthetic receiver array. The top layer properties are evaluated with a Lamb wave analysis. Multiple layers are evaluated by matching a theoretical phase velocity spectrum to the measured spectrum. So far the method has been applied to the testing of pavements, but it may also be applicable in other fields such as ultrasonic testing of coated materials. ?? 2006 American Institute of Physics.

  14. Must is a Four Letter Word: The Role of Plasma Instabilities in the Intergalactic Magnetic Field Story

    NASA Astrophysics Data System (ADS)

    Broderick, Avery

    2014-06-01

    The detection of inverse Compton halos from cosmological TeV sources provide a direct means to constrain the putative intergalactic magnetic field. However, the converse may not be the case! The fate of the pairs generated by TeV gamma rays annihilating on the extragalactic background light is presently unclear, clouded by the possibility that cosmological scale plasma instabilities may dominate their energetic evolution. I will briefly motivate these plasma instabilities theoretically, summarize some empirical evidence that they may be occurring in practice, and assess their potential impact upon studies of intergalactic magnetic fields.

  15. Portable emittance measurement device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakin, D.; Seleznev, D.; Orlov, A.

    2010-02-15

    In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.

  16. A Mobile Sensing Approach for Regional Surveillance of Fugitive Methane Emissions in Oil and Gas Production.

    PubMed

    Albertson, John D; Harvey, Tierney; Foderaro, Greg; Zhu, Pingping; Zhou, Xiaochi; Ferrari, Silvia; Amin, M Shahrooz; Modrak, Mark; Brantley, Halley; Thoma, Eben D

    2016-03-01

    This paper addresses the need for surveillance of fugitive methane emissions over broad geographical regions. Most existing techniques suffer from being either extensive (but qualitative) or quantitative (but intensive with poor scalability). A total of two novel advancements are made here. First, a recursive Bayesian method is presented for probabilistically characterizing fugitive point-sources from mobile sensor data. This approach is made possible by a new cross-plume integrated dispersion formulation that overcomes much of the need for time-averaging concentration data. The method is tested here against a limited data set of controlled methane release and shown to perform well. We then present an information-theoretic approach to plan the paths of the sensor-equipped vehicle, where the path is chosen so as to maximize expected reduction in integrated target source rate uncertainty in the region, subject to given starting and ending positions and prevailing meteorological conditions. The information-driven sensor path planning algorithm is tested and shown to provide robust results across a wide range of conditions. An overall system concept is presented for optionally piggybacking of these techniques onto normal industry maintenance operations using sensor-equipped work trucks.

  17. Analysis of the load selection on the error of source characteristics identification for an engine exhaust system

    NASA Astrophysics Data System (ADS)

    Zheng, Sifa; Liu, Haitao; Dan, Jiabi; Lian, Xiaomin

    2015-05-01

    Linear time-invariant assumption for the determination of acoustic source characteristics, the source strength and the source impedance in the frequency domain has been proved reasonable in the design of an exhaust system. Different methods have been proposed to its identification and the multi-load method is widely used for its convenience by varying the load number and impedance. Theoretical error analysis has rarely been referred to and previous results have shown an overdetermined set of open pipes can reduce the identification error. This paper contributes a theoretical error analysis for the load selection. The relationships between the error in the identification of source characteristics and the load selection were analysed. A general linear time-invariant model was built based on the four-load method. To analyse the error of the source impedance, an error estimation function was proposed. The dispersion of the source pressure was obtained by an inverse calculation as an indicator to detect the accuracy of the results. It was found that for a certain load length, the load resistance at the frequency points of one-quarter wavelength of odd multiples results in peaks and in the maximum error for source impedance identification. Therefore, the load impedance of frequency range within the one-quarter wavelength of odd multiples should not be used for source impedance identification. If the selected loads have more similar resistance values (i.e., the same order of magnitude), the identification error of the source impedance could be effectively reduced.

  18. Surface hardening using cw CO2 laser: laser heat treatment, modelation, and experimental work

    NASA Astrophysics Data System (ADS)

    Muniz, German; Alum, Jorge

    1996-02-01

    In the present work are given the results of the application of laser metal surface hardening techniques using a cw carbon dioxide laser as an energy source on steel 65 G. The laser heat treatment results are presented theoretically and experimentally. Continuous wave carbon dioxide laser of 0.6, 0.3, and 0.4 kW were used. A physical model for the descriptions of the thermophysical laser metal interactions process is given and a numerical algorithm is used to solve this problem by means of the LHT code. The results are compared with the corresponding experimental ones and a very good agreement is observed. The LHT code is able to do predictions of transformation hardening by laser heating. These results will be completed with other ones concerning laser alloying and cladding presented in a second paper.

  19. Control Coordination of Multiple Agents Through Decision Theoretic and Economic Methods

    DTIC Science & Technology

    2003-02-01

    instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information...investigated the design of test data for benchmarking such optimization algorithms. Our other research on combinatorial auctions included I...average combination rule. We exemplified these theoretical results with experiments on stock market data , demonstrating how ensembles of classifiers can

  20. TRACC: An open source software for processing sap flux data from thermal dissipation probes

    DOE PAGES

    Ward, Eric J.; Domec, Jean-Christophe; King, John; ...

    2017-05-02

    Here, thermal dissipation probes (TDPs) have become a widely used method of monitoring plant water use in recent years. The use of TDPs requires calibration to a theoretical zero-flow value (ΔT0); usually based upon the assumption that at least some nighttime measurements represent zero-flow conditions. Fully automating the processing of data from TDPs is made exceedingly difficult due to errors arising from many sources. However, it is desirable to minimize variation arising from different researchers’ processing data, and thus, a common platform for processing data, including editing raw data and determination of ΔT0, is useful and increases the transparency andmore » replicability of TDP-based research. Here, we present the TDP data processing software TRACC (Thermal dissipation Review Assessment Cleaning and Conversion) to serve this purpose. TRACC is an open-source software written in the language R, using graphical presentation of data and on screen prompts with yes/no or simple numerical responses. It allows the user to select several important options, such as calibration coefficients and the exclusion of nights when vapor pressure deficit does not approach zero. Although it is designed for users with no coding experience, the outputs of TRACC could be easily incorporated into more complex models or software.« less

  1. A fiber-coupled incoherent light source for ultra-precise optical trapping

    NASA Astrophysics Data System (ADS)

    Menke, Tim; Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Kaufman, Adam M.; Greiner, Markus

    2017-04-01

    The ability to engineer arbitrary optical potentials using spatial light modulation has opened up exciting possibilities in ultracold quantum gas experiments. Yet, despite the high trap quality currently achievable, interference-induced distortions caused by scattering along the optical path continue to impede more sensitive measurements. We present a design of a high-power, spatially and temporally incoherent light source that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.

  2. TRACC: An open source software for processing sap flux data from thermal dissipation probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Eric J.; Domec, Jean-Christophe; King, John

    Here, thermal dissipation probes (TDPs) have become a widely used method of monitoring plant water use in recent years. The use of TDPs requires calibration to a theoretical zero-flow value (ΔT0); usually based upon the assumption that at least some nighttime measurements represent zero-flow conditions. Fully automating the processing of data from TDPs is made exceedingly difficult due to errors arising from many sources. However, it is desirable to minimize variation arising from different researchers’ processing data, and thus, a common platform for processing data, including editing raw data and determination of ΔT0, is useful and increases the transparency andmore » replicability of TDP-based research. Here, we present the TDP data processing software TRACC (Thermal dissipation Review Assessment Cleaning and Conversion) to serve this purpose. TRACC is an open-source software written in the language R, using graphical presentation of data and on screen prompts with yes/no or simple numerical responses. It allows the user to select several important options, such as calibration coefficients and the exclusion of nights when vapor pressure deficit does not approach zero. Although it is designed for users with no coding experience, the outputs of TRACC could be easily incorporated into more complex models or software.« less

  3. Depth encoded three-beam swept source Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wartak, Andreas; Haindl, Richard; Trasischker, Wolfgang; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2016-03-01

    A novel approach for investigation of human retinal and choroidal blood flow by the means of multi-channel swept source Doppler optical coherence tomography (SS-D-OCT) system is being developed. We present preliminary in vitro measurement results for quantification of the 3D velocity vector of scatterers in a flow phantom. The absolute flow velocity of moving scatterers can be obtained without prior knowledge of flow orientation. In contrast to previous spectral domain (SD-) D-OCT investigations, that already proved the three-channel D-OCT approach to be suitable for in vivo retinal blood flow evaluation, this current work aims for a similar functional approach by means of a differing technique. To the best of our knowledge, this is the first three-channel D-OCT setup featuring a wavelength tunable laser source. Furthermore, we present a modification of our setup allowing a reduction of the former three active illumination channels to one active illumination channel and two passive channels, which only probe the illuminated sample. This joint aperture (JA) approach provides the advantage of not having to divide beam power among three beams to meet corresponding laser safety limits. The in vitro measurement results regarding the flow phantom show good agreement between theoretically calculated and experimentally obtained flow velocity values.

  4. A study of intrinsic statistical variation for low-energy nuclear recoils in liquid xenon detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wei, Wenzhao; Mei, Dongming; Cubed Collaboration

    2015-10-01

    Noble liquid xenon experiments, such as XENON100, LUX, XENON 1-Ton, and LZ are large dark matter experiments directly searches for weakly interacting massive particles (WIMPs). One of the most important features is to discriminate nuclear recoils from electronic recoils. Detector response is generally calibrated with different radioactive sources including 83mKr, tritiated methane, 241AmBe, 252Cf, and DD-neutrons. The electronic recoil and nuclear recoil bands have been determined by these calibrations. However, the width of nuclear recoil band needs to be fully understood. We derive a theoretical model to understand the correlation of the width of nuclear recoil band and intrinsic statistical variation. In addition, we conduct experiments to validate the theoretical model. In this paper, we present the study of intrinsic statistical variation contributing to the width of nuclear recoil band. DE-FG02-10ER46709 and the state of South Dakota.

  5. The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: theoretical basis

    NASA Astrophysics Data System (ADS)

    Loughman, Robert; Bhartia, Pawan K.; Chen, Zhong; Xu, Philippe; Nyaku, Ernest; Taha, Ghassan

    2018-05-01

    The theoretical basis of the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm is presented. The algorithm uses an assumed bimodal lognormal aerosol size distribution to retrieve aerosol extinction profiles at 675 nm from OMPS LP radiance measurements. A first-guess aerosol extinction profile is updated by iteration using the Chahine nonlinear relaxation method, based on comparisons between the measured radiance profile at 675 nm and the radiance profile calculated by the Gauss-Seidel limb-scattering (GSLS) radiative transfer model for a spherical-shell atmosphere. This algorithm is discussed in the context of previous limb-scattering aerosol extinction retrieval algorithms, and the most significant error sources are enumerated. The retrieval algorithm is limited primarily by uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction, which violate the spherical-shell atmosphere assumed in the version 1 algorithm, may also limit the quality of the retrieved aerosol extinction profiles significantly.

  6. A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes

    PubMed Central

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc

    2017-01-01

    Abstract Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof‐of‐concept of a membrane‐free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L−1, and is able to deliver 90 % of its theoretical capacity while showing excellent long‐term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). PMID:28658538

  7. Bibliography of spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  8. Theoretical Modeling of Electromagnetic Field from Electron Bunches in Periodic Wire Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuchurka, S.; Benediktovitch, A.; Galyamin, S. N.

    The interaction of relativistic electrons with periodic conducting structures results in radiation via a number of mechanisms. In case of crystals one obtains parametric X-ray radiation, its frequency is determined by the distance between crystallographic planes and the direction of electron beam. If instead of a crystal one considers a periodic structure of metallic wires with the spacing of the order of mm, it is plausible to expect the emission of radiation of a similar nature (“diffraction response”) at THz frequencies. Additionally, a “long-wave” radiation will occur in this case with wavelengths much larger then structure periods. In this contribution,more » we present different theoretical approaches for describing the electromagnetic radiation field from prolonged electron bunch propagated in the lattice of metallic wires. The validity of these analytical descriptions is checked by numerical simulations. We discuss the possible applications of aforementioned structure as sources of coherent THz radiation.« less

  9. Binocular disparities, motion parallax, and geometric perspective in Patrick Hughes's 'reverspectives': theoretical analysis and empirical findings.

    PubMed

    Rogers, Brian; Gyani, Alex

    2010-01-01

    Abstract. Patrick Hughes's 'reverspective' artworks provide a novel way of investigating the effectiveness of different sources of 3-D information for the human visual system. Our empirical findings show that the converging lines of simple linear perspective can be as effective as the rich array of 3-D cues present in natural scenes in determining what we see, even when these cues are in conflict with binocular disparities. Theoretical considerations reveal that, once the information provided by motion parallax transformations is correctly understood, there is no need to invoke higher-level processes or an interpretation based on familiarity or past experience in order to explain either the 'reversed' depth or the apparent, concomitant rotation of a reverspective artwork as the observer moves from side to side. What we see in reverspectives is the most likely real-world scenario (distal stimulus) that could have created the perspective and parallax transformations (proximal stimulus) that stimulate our visual systems.

  10. Theoretical analysis of tsunami generation by pyroclastic flows

    USGS Publications Warehouse

    Watts, P.; Waythomas, C.F.

    2003-01-01

    Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.

  11. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [economic analysis of ammonia production

    NASA Technical Reports Server (NTRS)

    Stokes, B. O.; Wallace, C. J.

    1978-01-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  12. Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Hongsong; Lyu, Hang; Liao, Ningfang; Wu, Wenmin

    2016-12-01

    The bidirectional reflectance distribution function (BRDF) data in the ultraviolet (UV) band are valuable for many applications including cultural heritage, material analysis, surface characterization, and trace detection. We present a BRDF measurement instrument working in the near- and middle-UV spectral range. The instrument includes a collimated UV light source, a rotation stage, a UV imaging spectrometer, and a control computer. The data captured by the proposed instrument describe spatial, spectral, and angular variations of the light scattering from a sample surface. Such a multidimensional dataset of an example sample is captured by the proposed instrument and analyzed by a k-mean clustering algorithm to separate surface regions with same material but different surface roughnesses. The clustering results show that the angular dimension of the dataset can be exploited for surface roughness characterization. The two clustered BRDFs are fitted to a theoretical BRDF model. The fitting results show good agreement between the measurement data and the theoretical model.

  13. The Sources of Self-Efficacy: Educational Research and Implications for Music

    ERIC Educational Resources Information Center

    Hendricks, Karin S.

    2016-01-01

    Music teachers can empower students with control over their own music ability development by helping them foster positive self-efficacy beliefs. This article reviews general education and music research concerning Bandura's theoretical four sources of self-efficacy (enactive mastery experience, vicarious experience, verbal/social persuasion, and…

  14. Electrochemistry of Interhalogen Cathodes

    DTIC Science & Technology

    sources. Chlorine trifluoride , with a theoretical 2120 whr/lb in combination with lithium, is also known to support substantial current densities when... chlorine trifluoride as a power source cathode material. A half-cell study was made on dilute ClF3 solutions at 5C in 1 M NaF-HF by the cyclic

  15. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  16. Marketing the Arts: A Selected and Annotated Bibliography.

    ERIC Educational Resources Information Center

    Nakamoto, Kent, Comp.; Levin, Kathi, Comp.

    Compiled from the marketing, arts, and arts management literature, this selected list includes materials ranging from theoretical articles and reports of studies to practical guides for marketing techniques. It consists of three sections: Primary Sources, Secondary Sources, and Surveys. Of particular interest to the arts administrator, the first…

  17. Correlation estimation and performance optimization for distributed image compression

    NASA Astrophysics Data System (ADS)

    He, Zhihai; Cao, Lei; Cheng, Hui

    2006-01-01

    Correlation estimation plays a critical role in resource allocation and rate control for distributed data compression. A Wyner-Ziv encoder for distributed image compression is often considered as a lossy source encoder followed by a lossless Slepian-Wolf encoder. The source encoder consists of spatial transform, quantization, and bit plane extraction. In this work, we find that Gray code, which has been extensively used in digital modulation, is able to significantly improve the correlation between the source data and its side information. Theoretically, we analyze the behavior of Gray code within the context of distributed image compression. Using this theoretical model, we are able to efficiently allocate the bit budget and determine the code rate of the Slepian-Wolf encoder. Our experimental results demonstrate that the Gray code, coupled with accurate correlation estimation and rate control, significantly improves the picture quality, by up to 4 dB, over the existing methods for distributed image compression.

  18. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Flannagain, Aidan M.; Gallagher, Peter T.; Brown, John C.

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as amore » solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.« less

  19. Theoretical analysis of degradation mechanisms in the formation of morphogen gradients

    NASA Astrophysics Data System (ADS)

    Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.

    2015-07-01

    Fundamental biological processes of development of tissues and organs in multicellular organisms are governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in the concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that linear degradation processes lead to a dynamic behavior specified by times to form the morphogen gradients that depend linearly on the distance from the source. This is because the effective potential due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a quadratic scaling in the morphogen gradients formation times since the effective potentials are much weaker. Physical-chemical explanations of these phenomena are presented.

  20. Exploration of resistive targets within shallow marine environments using the circular electrical dipole and the differential electrical dipole methods: a time-domain modelling study

    NASA Astrophysics Data System (ADS)

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent

    2016-05-01

    Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  1. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.

    PubMed

    Fricke, Moritz B; Rolfes, Raimund

    2013-11-01

    The installation of offshore wind farms in the German Exclusive Economic Zone requires the deployment of sonar transponders to prevent collisions with submarines. The general requirements for these systems have been previously worked out by the Research Department for Underwater Acoustics and Marine Geophysics of the Bundeswehr. In this article, the major results of the research project "Investigation of Sonar Transponders for Offshore Wind Farms" are presented. For theoretical investigations a hybrid approach was implemented using the boundary element method to calculate the source directivity and a three-dimensional ray-tracing algorithm to estimate the transmission loss. The angle-dependence of the sound field as well as the weather-dependence of the transmission loss are compared to experimental results gathered at the offshore wind farm alpha ventus, located 45 km north of the island Borkum. While theoretical and experimental results are in general agreement, the implemented model slightly underestimates scattering at the rough sea surface. It is found that the source level of 200 dB re 1 μPa at 1 m is adequate to satisfy the detectability of the warning sequence at distances up to 2 NM (≈3.7 km) within a horizontal sector of ±60° if realistic assumptions about signal-processing and noise are made. An arrangement to enlarge the angular coverage is discussed.

  2. Probing the Cosmological Principle in the counts of radio galaxies at different frequencies

    NASA Astrophysics Data System (ADS)

    Bengaly, Carlos A. P.; Maartens, Roy; Santos, Mario G.

    2018-04-01

    According to the Cosmological Principle, the matter distribution on very large scales should have a kinematic dipole that is aligned with that of the CMB. We determine the dipole anisotropy in the number counts of two all-sky surveys of radio galaxies. For the first time, this analysis is presented for the TGSS survey, allowing us to check consistency of the radio dipole at low and high frequencies by comparing the results with the well-known NVSS survey. We match the flux thresholds of the catalogues, with flux limits chosen to minimise systematics, and adopt a strict masking scheme. We find dipole directions that are in good agreement with each other and with the CMB dipole. In order to compare the amplitude of the dipoles with theoretical predictions, we produce sets of lognormal realisations. Our realisations include the theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated redshift distributions which fit the NVSS and TGSS source counts, and errors in flux calibration. The measured dipole for NVSS is ~2 times larger than predicted by the mock data. For TGSS, the dipole is almost ~ 5 times larger than predicted, even after checking for completeness and taking account of errors in source fluxes and in flux calibration. Further work is required to understand the nature of the systematics that are the likely cause of the anomalously large TGSS dipole amplitude.

  3. A multi-parameter optical fiber sensor with interrogation and discrimination capabilities

    NASA Astrophysics Data System (ADS)

    Zhan, Yage; Wu, Hua; Yang, Qinyu; Pei, Jincheng; Yang, Xichun

    2009-11-01

    A multi-parameter and multi-function, but low-cost, optical fiber grating sensor with self-interrogation and self-discrimination capabilities is presented theoretically and experimentally. The sensor bases on three fiber Bragg gratings (FBG) and one fiber long period grating (LPG). Strain, vibration, pressure, ordinary temperature (-10 to 100 °C) and high temperature (100-800 °C) can be measured by the sensor. When high temperature (100-800 °C) is measured, the LPG is used as a high temperture sensor head and FBG 1 is used as an interrogation element. Alternatively, when one of the other four measurands is measured, FBG 1 (or FBG 2) is used as a sensor head and LPG is used as an interrogation element. When two of the other four measurands are measured simultaneously, FBG 1 and FBG 2 are used as sensor heads and LPG is used as a shared interrogation element. FBG 3 is used as a reference element to eliminate the errors resulted from light source fluctuation and the cross-sensitivity between measurand and environmental temperature. The measurands can be interrogated according to the signals of the photodiodes (PDs), which are related to the relative wavelength shift of the LPG and the FBGs. Experimental results agree well with theoretical analyses. The interrogation scheme is immune to light source fluctuation and the cross-sensitivity between measurands and enviromental temperature, and also the dynamic range is large.

  4. Demonstrations that the Solar Wind Is Not Accelerated by Waves

    NASA Technical Reports Server (NTRS)

    Roberts, Aaron

    2008-01-01

    The present work uses both observations and theoretical considerations to show that hydromagnetic waves cannot produce the acceleration of the fast solar wind and the related heating of the open solar corona. Waves do exist, and can play a role in the differential heating and acceleration of minor ions, but their amplitudes are not sufficient to power the wind, as demonstrated by extrapolation of magnetic spectra from Helios and Ulysses observations. Dissipation mechanisms invoked to circumvent this conclusion cannot be effective for a variety of reasons. In particular, turbulence does not play a strong role in the corona as shown by both observations of coronal striations and theoretical considerations of line-tying to a nonturbulent photosphere, nonlocality of interactions, and the nature of the kinetic dissipation. In the absence of wave heating and acceleration, the chromosphere and transition region become the natural source of open coronal energization. We suggest a variant of the 'velocity filtration' approach in which the emergence and complex churning of the magnetic flux in the chromosphere and transition region continuously and ubiquitously produces the nonthermal distributions required. These particles are then released by magnetic carpet reconnection at a wide range of scales and produce the wind as described in kinetic approaches. Since the carpet reconnection is not the main source of the energization of the plasma, there is no expectation of an observable release of energy in nanoflares.

  5. A theoretical model of fuselage pressure levels due to fan tones radiated from the intake of an installed turbofan aero-engine.

    PubMed

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2018-06-01

    An existing theoretical model to predict the pressure levels on an aircraft's fuselage is improved by incorporating a more physically realistic method to predict fan tone radiation from the intake of an installed turbofan aero-engine. Such a model can be used as part of a method to assess cabin noise. Fan tone radiation from a turbofan intake is modelled using the exact solution for the radiated pressure from a spinning mode exiting a semi-infinite cylindrical duct immersed in a uniform flow. This approach for a spinning duct mode incorporates scattering/diffraction by the intake lip, enabling predictions of the radiated pressure valid in both the forward and aft directions. The aircraft's fuselage is represented by an infinitely long, rigid cylinder. There is uniform flow aligned with the cylinder, except close to the cylinder's surface where there is a constant-thickness boundary layer. In addition to single mode calculations it is shown how the model may be used to rapidly calculate a multi-mode incoherent radiation from the engine intake. Illustrative results are presented which demonstrate the relative importance of boundary-layer shielding both upstream and downstream of the source, as well as examples of the fuselage pressure levels due to a multi-mode tonal source at high Helmholtz number.

  6. Surface response of a fractional order viscoelastic halfspace to surface and subsurface sources

    PubMed Central

    Meral, F. Can; Royston, Thomas J.; Magin, Richard L.

    2009-01-01

    Previous studies by the second author published in this journal focused on low audible frequency (40–400 Hz) shear and surface wave motion in and on a viscoelastic material representative of biological tissue. Specific cases considered were that of surface wave motion on a halfspace caused by a finite rigid circular disk located on the surface and oscillating normal to it [Royston et al., J. Acoust. Soc. Am. 106, 3678–3686 (1999)] and compression, shear, and surface wave motion in a halfspace generated by a subsurface finite dipole [Royston et al., J. Acoust. Soc. Am. 113, 1109–1121 (2003)]. In both studies, a Voigt model of viscoelasticity was assumed in the theoretical treatment, which resulted in agreement between theoretical predictions and experimental measurements over a limited frequency range. In the present article, the linear viscoelastic assumption in these two prior works is revisited to consider a (still linear) fractional order Voigt model, where the rate-dependent damping component that is dependent on the first derivative of time is replaced with a component that is dependent on a fractional derivative of time. It is shown that in both excitation source configurations, the fractional order Voigt model assumption improves the match of theory to experiment over a wider frequency range (in some cases up to the measured range of 700 Hz). PMID:20000941

  7. Comments on 'Anisotropic magnetic susceptibility in the continental lower crust and its implication for the shape of magnetic anomalies' by G. Florio et al.

    NASA Astrophysics Data System (ADS)

    Rochette, P.

    1994-12-01

    In their letter Lorio et al. (1993) recently explored the likelihood that the deflection with respect to present day magnetic North of dipolar lower crustal magnetic anomalies are caused by an induced magnetization deflected by strong anisotropy of magnetic susceptibility (AMS) rather than the usual explanation of an ancient natural remanent magnetization of a rotated body. Such an alternative would solve the theoretical problems raised by the stability of Natural Remanent Magnetization (NRM) at high temperature in the usually coarse grained magnetite bearing source rocks necessary to create large magnetic anomalies (Shive, 1989). They present a case study of two deep anomalies in southern Italy where the deflection is 30 to 40 deg. From a model of an anisotropic cubic source and an AMS dataset from representative deep crustal rocks from various part of the world, they conclude that no significant deflection of anomaly axis can be due to the average anisotropy ratio P(prime) = 1.5 observed in the dataset.

  8. Near L-edge Single and Multiple Photoionization of Singly Charged Iron Ions

    NASA Astrophysics Data System (ADS)

    Schippers, Stefan; Martins, Michael; Beerwerth, Randolf; Bari, Sadia; Holste, Kristof; Schubert, Kaja; Viefhaus, Jens; Savin, Daniel Wolf; Fritzsche, Stephan; Müller, Alfred

    2017-11-01

    Absolute cross-sections for m-fold photoionization (m=1, \\ldots , 6) of Fe+ by a single photon were measured employing the photon-ion merged-beams setup PIPE at the PETRA III synchrotron light source, operated by DESY in Hamburg, Germany. Photon energies were in the range 680-920 eV, which covers the photoionization resonances associated with 2p and 2s excitation to higher atomic shells as well as the thresholds for 2p and 2s ionization. The corresponding resonance positions were measured with an uncertainty of ±0.2 eV. The cross-section for Fe+ photoabsorption is derived as the sum of the individually measured cross-sections for m-fold ionization. Calculations of the Fe+ absorption cross-sections were carried out using two different theoretical approaches, Hartree-Fock including relativistic extensions and fully relativistic multiconfiguration Dirac-Fock. Apart from overall energy shifts of up to about 3 eV, the theoretical cross-sections are in good agreement with each other and with the experimental results. In addition, the complex de-excitation cascades after the creation of inner-shell holes in the Fe+ ion were tracked on the atomic fine-structure level. The corresponding theoretical results for the product charge-state distributions are in much better agreement with the experimental data than previously published configuration-average results. The present experimental and theoretical results are valuable for opacity calculations and are expected to pave the way to a more accurate determination of the iron abundance in the interstellar medium.

  9. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

  10. Sources of sound in fluid flows

    NASA Technical Reports Server (NTRS)

    Williams, J. E. F.

    1974-01-01

    Some features of a flow that produce acoustic radiation, particularly when the flow is turbulent and interacting with solid surfaces such as turbine or compressor blades are discussed. Early theoretical ideas on the subject are reviewed and are shown to be inadequate at high Mach number. Some recent theoretical developments that form the basis of a description of sound generation by supersonic flows interacting with surfaces are described. At high frequencies the problem is treated as one of describing the surface-induced diffraction field of adjacent aerodynamic quadrupole sources. This approach has given rise to distinctly new features of the problem that seem to have bearing on the radiating properties of relatively large aerodynamic surfaces.

  11. Mathematical design of a novel input/instruction device using a moving acoustic emitter

    NASA Astrophysics Data System (ADS)

    Wang, Xianchao; Guo, Yukun; Li, Jingzhi; Liu, Hongyu

    2017-10-01

    This paper is concerned with the mathematical design of a novel input/instruction device using a moving emitter. The emitter acts as a point source and can be installed on a digital pen or worn on the finger of the human being who desires to interact/communicate with the computer. The input/instruction can be recognized by identifying the moving trajectory of the emitter performed by the human being from the collected wave field data. The identification process is modelled as an inverse source problem where one intends to identify the trajectory of a moving point source. There are several salient features of our study which distinguish our result from the existing ones in the literature. First, the point source is moving in an inhomogeneous background medium, which models the human body. Second, the dynamical wave field data are collected in a limited aperture. Third, the reconstruction method is independent of the background medium, and it is totally direct without any matrix inversion. Hence, it is efficient and robust with respect to the measurement noise. Both theoretical justifications and computational experiments are presented to verify our novel findings.

  12. Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-11-01

    Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.

  13. Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction

    NASA Astrophysics Data System (ADS)

    Labousse, Matthieu; Perrard, Stéphane; Couder, Yves; Fort, Emmanuel

    2016-10-01

    The back-reaction of a radiated wave on the emitting source is a general problem. In the most general case, back-reaction on moving wave sources depends on their whole history. Here we study a model system in which a pointlike source is piloted by its own memory-endowed wave field. Such a situation is implemented experimentally using a self-propelled droplet bouncing on a vertically vibrated liquid bath and driven by the waves it generates along its trajectory. The droplet and its associated wave field form an entity having an intrinsic dual particle-wave character. The wave field encodes in its interference structure the past trajectory of the droplet. In the present article we show that this object can self-organize into a spinning state in which the droplet possesses an orbiting motion without any external interaction. The rotation is driven by the wave-mediated attractive interaction of the droplet with its own past. The resulting "memory force" is investigated and characterized experimentally, numerically, and theoretically. Orbiting with a radius of curvature close to half a wavelength is shown to be a memory-induced dynamical attractor for the droplet's motion.

  14. [Etiological and molecular characteristics of diarrhea caused Proteus mirabilis].

    PubMed

    Shi, Xiaolu; Hu, Qinghua; Lin, Yiman; Qiu, Yaqun; Li, Yinghui; Jiang, Min; Chen, Qiongcheng

    2014-06-01

    To analyze the etiological characteristics, virulence genes and plasmids that carrying diarrhea-causing Proteus mirabilis and to assess their relationship with drug resistance and pathogenicity. Proteus mirabilis coming from six different sources (food poisoning, external environment and healthy people) were analyzed biochemically, on related susceptibility and pulsed-field gel electrophoresis (PFGE). Virulence genes were detected by PCR. Plasmids were extracted and sequenced after gel electrophoresis purification. The biochemical characteristics of Proteus mirabilis from different sources seemed basically the same, and each of them showed having common virulence genes, as ureC, rsmA, hpmA and zapA. However, the PFGE patterns and susceptibility of these strains were different, so as the plasmids that they carried. Plasmid that presented in the sequenced strain showed that the 2 683 bp length plasmid encodes qnrD gene was associated with the quinolone resistance. Etiological characteristics and molecular characteristics of Proteus mirabilis gathered from different sources, were analyzed. Results indicated that traditional biochemical analysis and common virulence gene identification might be able to distinguish the strains with different sources. However, PFGE and plasmids analysis could distinguish the sources of strains and to identify those plasmids that commonly carried by the drug-resistant strains. These findings also provided theoretical basis for further study on the nature of resistance and pathogenicity in Proteus mirabilis.

  15. Experience of disused source management in Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimenta Mourao, R.

    2008-07-01

    The Centro de Desenvolvimento da Tecnologia Nuclear (Center for the Development of Nuclear Technology) - CDTN - has been actively engaged in cooperation programs for disused source management throughout the Latin American and the Caribbean region since 1996. The CDTN source conditioning team participated in the preparation of the technical procedures established for the different tasks involved in the radium sources conditioning operations, like preparation of the packaging for conditioning; sources conditioning; capsule welding; leak test in radium-containing capsule; and radiation protection planning for the conditioning of disused radium sources. The team also carried out twelve radium sources conditioning operationmore » in the region, besides in-house operations, which resulted in a total conditioned activity of approximately 525 GBq, or 14,200 mg of radium. Additionally, one operation was carried out in Nicaragua to safely condition three Cobalt teletherapy heads stored under very precarious conditions in the premises of an old hospital. More recently, the team started its participation in an IAEA- and US State Department-sponsored program for the repatriation of disused or excess transuranic sources presently stored at users' premises or under regulatory control in different countries in the region. In September 2007 the team attended a theoretical and practical training in transuranic sources management, including the participation in the conditioning of different neutron sources in certified packages. It is expected that the trained team will carry out similar operations in other Latin American countries. Finally, the team is expected be involved in the near future in the repatriation of US-origin teletherapy heads and industrial gauges. (authors)« less

  16. Bananas, Doughnuts and Seismic Traveltimes

    NASA Astrophysics Data System (ADS)

    Dahlen, F. A.

    2002-12-01

    Most of what we know about the 3-D seismic heterogeneity of the mantle is based upon ray-theoretical traveltime tomography. In this infinite-frequency approximation, a measured traveltime anomaly depends only upon the wavespeed along an infinitesimally thin geometrical ray between a seismic source and a seismographic station. In this lecture I shall describe a new formulation of the seismic traveltime inverse problem which accounts for the ability of a finite-frequency wave to ``feel'' 3-D structure off of the source-receiver ray. Finite-frequency diffraction effects associated with this off-ray sensitivity act to ``heal'' the corrugations that develop in a wavefront propagating through a heterogeneous medium. Ray-theoretical tomography is based upon the premise that a seismic wave ``remembers'' all of the traveltime advances or delays that it accrues along its path, whereas actual finite-frequency waves ``forget''. I shall describe a number of recent analytical and numerical investigations, which have led to an improved theoretical understanding of this phenomenon.

  17. An acoustic experimental and theoretical investigation of single disc propellers

    NASA Technical Reports Server (NTRS)

    Bumann, Elizabeth A.; Korkan, Kenneth D.

    1989-01-01

    An experimental study of the acoustic field associated with two, three, and four blade propeller configurations with a blade root angle of 50 deg was performed in the Texas A&M University 5 ft. x 6 ft. acoustically-insulated subsonic wind tunnel. A waveform analysis package was utilized to obtain experimental acoustic time histories, frequency spectra, and overall sound pressure level (OASPL) and served as a basis for comparison to the theoretical acoustic compact source theory of Succi (1979). Valid for subsonic tip speeds, the acoustic analysis replaced each blade by an array of spiraling point sources which exhibited a unique force vector and volume. The computer analysis of Succi was modified to include a propeller performance strip analysis which used a NACA 4-digit series airfoil data bank to calculate lift and drag for each blade segment given the geometry and motion of the propeller. Theoretical OASPL predictions were found to moderately overpredict experimental values for all operating conditions and propeller configurations studied.

  18. Stress and coping in Singaporean nurses: a literature review.

    PubMed

    Lim, Joanne; Bogossian, Fiona; Ahern, Kathy

    2010-06-01

    Stress is ubiquitous in the nursing profession and is also prevalent in Asian countries, particularly the "four tigers of Asia": Singapore, Hong Kong, Taiwan, and South Korea. Based on the theoretical framework of Lazarus and Folkman (1984), the present review of the nursing literature aims to identify sources and effects of stress in Singaporean nurses and the coping strategies they use. Nurses reported major stressors including shortage of staff, high work demands and conflict at work. Common coping strategies included problem orientation, social support and relaxation techniques. Several studies reported nurses' intent to leave the profession. Recommendations to minimize the impact of stress include in-service programs to facilitate a problem-solving approach to resolving work-related issues such as conflict. Relaxation therapy and debriefing sessions may also help in reducing negative effects of work stressors. Finally, nurses' emotional coping can be enhanced by strengthening sources of social support, particularly from family.

  19. A theoretical/experimental program to develop active optical pollution sensors: Quantitative remote Raman lidar measurements of pollutants from stationary sources

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.; Brumfield, M. L.; Siviter, J. S.

    1975-01-01

    Typical pollutant gas concentrations at the stack exits of stationary sources can be estimated to be about 500 ppm under the present emission standards. Raman lidar has a number of advantages which makes it a valuable tool for remote measurements of these stack emissions. Tests of the Langley Research Center Raman lidar at a calibration tank indicate that night measurements of SO2 concentrations and stack opacity are possible. Accuracies of 10 percent are shown to be achievable from a distance of 300 m within 30 min integration times for 500 ppm SO2 at the stack exits. All possible interferences were examined quantitatively (except for the fluorescence of aerosols in actual stack emissions) and found to have negligible effect on the measurements. An early test at an instrumented stack is strongly recommended.

  20. Attenuation of Scintillation of Discrete Cosmic Sources during Nonresonant HF Heating of the Upper Ionosphere

    NASA Astrophysics Data System (ADS)

    Bezrodny, V. G.; Watkins, B.; Charkina, O. V.; Yampolski, Y. M.

    2014-03-01

    The aim of the work is to experimentally investigate the response of scintillation spectra and indices of discrete cosmic sources (DCS) to modification of the ionospheric F-region by powerful electromagnetic fields with frequencies exceeding the Langmuir and upper hybrid ones. The results of a special experiment on the scintillations of radiation from DCS Cygnus A observed with using the 64-beam imaging riometer located near the Gakona village (Alaska, USA) are here presented. The ionosphere was artificially disturbed by powerful HAARP heater. Under the studied conditions of nonresonant heating of the ionospheric plasma, an earlier unknown effect of reducing the level of DCS scintillation was discovered. The theoretical interpretation has been given for the discovered effect, which using allowed the proposed technique of solving the inverse problem (recovery deviations of average electron density and temperature in the modified region from their unperturbed values).

  1. Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter

    NASA Astrophysics Data System (ADS)

    Moamaei, Parvin

    Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.

  2. Simulations towards optimization of a neutron/anti-neutron oscillation experiment at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Frost, Matthew; Kamyshkov, Yuri; Castellanos, Luis; Klinkby, Esben; US NNbar Collaboration

    2015-04-01

    The observation of Neutron/Anti-neutron oscillation would prove the existence of Baryon Number Violation (BNV), and thus an explanation for the dominance of matter over anti-matter in the universe. The latest experiments have shown the oscillation time to be greater than 8.6 x 107 seconds, whereas current theoretical predictions suggest times on the order of 108 to 109 seconds. A neutron oscillation experiment proposed at the European Spallation Source (ESS) would provide sensitivity of more than 1000 times previous experiments performed, thus providing a result well-suited to confirm or deny current theory. A conceptual design of the proposed experiment will be presented, as well as the optimization of key experiment components using Monte-Carlo simulation methods, including the McStas neutron ray-trace simulation package. This work is supported by the Organized Research Units Program funded by The University of Tennessee, Knoxville Office of Research and Engagement.

  3. Power relations and reciprocity: dialectics of knowledge construction.

    PubMed

    Ben-Ari, Adital; Enosh, Guy

    2013-03-01

    In this article we suggest a theoretical framework of knowledge construction by employing the concept of dialectics to power relationships between researcher and participants. Power distribution in research is perceived as dichotomous and asymmetrical in favor of the researcher, creating unequal power relations that make exploitation possible. Acknowledging such exploitation has led to a critical stance and attempts to bridge gaps through egalitarianism and empowerment of participants. Some scholars have focused on shifting expert knowledge differentials between researcher and participants throughout the research project. Others have evaluated such gaps as a source of knowledge construction. In the present work we applied a dialectical approach to understanding research relationships, suggesting reciprocity as their defining attribute, regardless of symmetry or asymmetry and as a source of knowledge construction. In this article we recommend avoiding a taken-for-granted attitude, because we see it as a direct obstacle to the construction of knowledge.

  4. Intrinsic and environmental effects on the interference properties of a high-performance quantum dot single-photon source

    NASA Astrophysics Data System (ADS)

    Gerhardt, Stefan; Iles-Smith, Jake; McCutcheon, Dara P. S.; He, Yu-Ming; Unsleber, Sebastian; Betzold, Simon; Gregersen, Niels; Mørk, Jesper; Höfling, Sven; Schneider, Christian

    2018-05-01

    We report a joint experimental and theoretical study of the interference properties of a single-photon source based on a In(Ga)As quantum dot embedded in a quasiplanar GaAs microcavity. Using resonant laser excitation with a pulse separation of 2 ns, we find near-perfect interference of the emitted photons, and a corresponding indistinguishability of I =(99.6 -1.4+0.4)% . For larger pulse separations, quasiresonant excitation conditions, increasing pump power, or with increasing temperature, the interference contrast is progressively and notably reduced. We present a systematic study of the relevant dephasing mechanisms and explain our results in the framework of a microscopic model of our system. For strictly resonant excitation, we show that photon indistinguishability is independent of pump power, but strongly influenced by virtual phonon-assisted processes which are not evident in excitonic Rabi oscillations.

  5. Softwall acoustical characteristics and measurement capabilities of the NASA Lewis 9x15 foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Rentz, P. E.

    1976-01-01

    Acoustical characteristics and source directionality measurement capabilities of the wind tunnel in the softwall configuration were evaluated, using aerodynamically clean microphone supports. The radius of measurement was limited by the size of the test section, instead of the 3.0 foot (1 m) limitation of the hardwall test section. The wind-on noise level in the test section was reduced 10 dB. Reflections from the microphone support boom, after absorptive covering, induced measurement errors in the lower frequency bands. Reflections from the diffuser back wall were shown to be significant. Tunnel noise coming up the diffuser was postulated as being responsible, at least partially, for the wind-on noise in the test section and settling chamber. The near field characteristics of finite-sized sources and the theoretical response of a porous strip sensor in the presence of wind are presented.

  6. Modification of electron beam ion source instability by longitudinal kinetic effects

    NASA Astrophysics Data System (ADS)

    Krafft, G. A.; Mark, J. W.-K.

    1982-07-01

    The electron beam ion source (EBIS) was proposed and subsequently realized by Donets. Further development has been done by the Orsay group and by the Berkeley group. Much theoretical work has been done on EBIS and, in particular, Litwin, Vella, and Sessler find that an electrostatic mode of the electron beam-ion system is unstable using a fluid calculation. The present work indicates that the inclusion of a longitudinal velocity spread in the electron beam decreases the instability growth rate, but their conclusions are not significantly modified. Numerically it is shown that substantial linear instability remains, even when sizeable longitudinal velocity spread is included. The principal result of the work is fig. 1; it gives the complex frequency of the mode as a function of σ/ υ0 z, σ being the spread and υ0 z being the average electron axial velocity.

  7. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds.

    PubMed

    Akman, F; Durak, R; Turhan, M F; Kaçal, M R

    2015-07-01

    The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Nutrient non-equivalence: Does restricting high-potassium plant foods help to prevent hyperkalemia in hemodialysis patients?

    PubMed Central

    St-Jules, DE; Goldfarb, DS; Sevick, MA

    2016-01-01

    Hemodialysis patients are often advised to limit their intake of high-potassium foods to help manage hyperkalemia. However, the benefits of this practice are entirely theoretical and not supported by rigorous randomized controlled trials. The hypothesis that potassium restriction is useful is based on the assumption that different sources of dietary potassium are therapeutically equivalent. In fact, animal and plant sources of potassium may differ in their potential to contribute to hyperkalemia. In this commentary, we summarize the historical research basis for limiting high-potassium foods. Ultimately, we conclude that this approach is not evidence-based and may actually present harm to patients. However, given the uncertainty arising from the paucity of conclusive data, we agree that until the appropriate intervention studies are conducted, practitioners should continue to advise restriction of high-potassium foods. PMID:26975777

  9. Mobile free-space optical communications: a feasibility study of various battlefield scenarios

    NASA Astrophysics Data System (ADS)

    Harris, Alan; Al-Akkoumi, Mouhammad K.; Sluss, James J., Jr.

    2012-06-01

    Free Space Optics (FSO) technology was originally envisioned to be a viable solution for the provision of high bandwidth optical connectivity in the last mile of today's telecommunications infrastructure. Due to atmospheric limitations inherent to FSO technology, FSO is now widely envisioned as a solution for the provision of high bandwidth, temporary mobile communications links. The need for FSO communications links will increase as mobility is introduced to this technology. In this paper, a theoretical solution for adding mobility to FSO communication links is introduced. Three-dimensional power estimation studies are presented to represent mobile FSO transmission under various weather conditions. Three wavelengths, 0.85, 1.55 and 10 um, are tested and compared to illustrate the pros and cons of each source wavelength used for transmission, depending on prevalent weather conditions and atmospheric turbulence conditions. A simulation analysis of the transmission properties of the source wavelengths used in the study is shown.

  10. Weak signal transmission in complex networks and its application in detecting connectivity.

    PubMed

    Liang, Xiaoming; Liu, Zonghua; Li, Baowen

    2009-10-01

    We present a network model of coupled oscillators to study how a weak signal is transmitted in complex networks. Through both theoretical analysis and numerical simulations, we find that the response of other nodes to the weak signal decays exponentially with their topological distance to the signal source and the coupling strength between two neighboring nodes can be figured out by the responses. This finding can be conveniently used to detect the topology of unknown network, such as the degree distribution, clustering coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we show that the features of network can be approximately given by investigating many fewer nodes than the network size, thus our approach to detect the topology of unknown network may be efficient in practical situations with large network size.

  11. NASA progress in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.; Padula, S. L.; Zorumski, W. E.

    1981-01-01

    Langley Research Center efforts to develop a methodology for predicting the effective perceived noise level (EPNL) produced by jet-powered CTOL aircraft to an accuracy of + or - 1.5 dB are summarized with emphasis on the aircraft noise prediction program (ANOPP) which contains a complete set of prediction methods for CTOL aircraft including propulsion system noise sources, aerodynamic or airframe noise sources, forward speed effects, a layered atmospheric model with molecular absorption, ground impedance effects including excess ground attenuation, and a received noise contouring capability. The present state of ANOPP is described and its accuracy and applicability to the preliminary aircraft design process is assessed. Areas are indicated where further theoretical and experimental research on noise prediction are needed. Topics covered include the elements of the noise prediction problem which are incorporated in ANOPP, results of comparisons of ANOPP calculations with measured noise levels, and progress toward treating noise as a design constraint in aircraft system studies.

  12. A Reconstruction Method for the Estimation of Temperatures of Multiple Sources Applied for Nanoparticle-Mediated Hyperthermia.

    PubMed

    Steinberg, Idan; Tamir, Gil; Gannot, Israel

    2018-03-16

    Solid malignant tumors are one of the leading causes of death worldwide. Many times complete removal is not possible and alternative methods such as focused hyperthermia are used. Precise control of the hyperthermia process is imperative for the successful application of such treatment. To that end, this research presents a fast method that enables the estimation of deep tissue heat distribution by capturing and processing the transient temperature at the boundary based on a bio-heat transfer model. The theoretical model is rigorously developed and thoroughly validated by a series of experiments. A 10-fold improvement is demonstrated in resolution and visibility on tissue mimicking phantoms. The inverse problem is demonstrated as well with a successful application of the model for imaging deep-tissue embedded heat sources. Thereby, allowing the physician then ability to dynamically evaluate the hyperthermia treatment efficiency in real time.

  13. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    DOE PAGES

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less

  14. Nutrient Non-equivalence: Does Restricting High-Potassium Plant Foods Help to Prevent Hyperkalemia in Hemodialysis Patients?

    PubMed

    St-Jules, David E; Goldfarb, David S; Sevick, Mary Ann

    2016-09-01

    Hemodialysis patients are often advised to limit their intake of high-potassium foods to help manage hyperkalemia. However, the benefits of this practice are entirely theoretical and not supported by rigorous randomized controlled trials. The hypothesis that potassium restriction is useful is based on the assumption that different sources of dietary potassium are therapeutically equivalent. In fact, animal and plant sources of potassium may differ in their potential to contribute to hyperkalemia. In this commentary, we summarize the historical research basis for limiting high-potassium foods. Ultimately, we conclude that this approach is not evidence-based and may actually present harm to patients. However, given the uncertainty arising from the paucity of conclusive data, we agree that until the appropriate intervention studies are conducted, practitioners should continue to advise restriction of high-potassium foods. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. Radioisotope experiments in physics, chemistry, and biology. Second revised edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, J.B.

    It is stated that the main object of the book is to show that a large number of experiments in chemistry, physics and biology can be safely carried out with a minimal amount of equipment. No sophisticated counting equipment is required, in most cases simple geiger counters or photographic emulsions are used, but a few experiments are included for use with other forms of detectors, such as pulse electroscopes, which are often found in schools. Using naturally occurring compounds, sealed sources and some unsealed sources of low specific activity, experiments are given of typical applications in statistics, electronics, photography, healthmore » physics, botany and so on. The necessary theoretical background is presented in the introductory chapters and typical problems are given at the end of the book. The book is intended for GCE and Advanced level students. (UK)« less

  16. Components of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Venters, Tonia M.

    2011-01-01

    We present new theoretical estimates of the relative contributions of unresolved blazars and star-forming galaxies to the extragalactic gamma-ray background (EGB) and discuss constraints on the contributions from alternative mechanisms such as dark matter annihilation and truly diffuse gamma-ray production. We find that the Fermi source count data do not rule out a scenario in which the EGB is dominated by emission from unresolved blazars, though unresolved star-forming galaxies may also contribute significantly to the background, within order-of-magnitude uncertainties. In addition, we find that the spectrum of the unresolved star-forming galaxy contribution cannot explain the EGB spectrum found by EGRET at energies between 50 and 200 MeV, whereas the spectrum of unresolved flat spectrum radio quasars, when accounting for the energy-dependent effects of source confusion, could be consistent with the combined spectrum of the low-energy EGRET EGB measurements and the Fermi-Large Area Telescope EGB measurements.

  17. Electron-beam dynamics for an advanced flash-radiography accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August Jr.

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth frommore » beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.« less

  18. Mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K fluorescence yield and Kβ/Kα relative X-ray emission rate for Ti, V, Fe, Co, Ni, Cu and Zn measured with a tunable monochromatic X-ray source

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Lépy, M.-C.

    2010-08-01

    This work presents new measurements of mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K-absorption jump-ratios, Kα and Kβ fluorescence yields for Ti, V, Fe, Co, Ni, Cu and Zn. We use the experimental facility SOLEX, a tunable monochromatic X-ray source combined with an energy-dispersive high-purity germanium detector. The results are compared with theoretical values as well as with other experimental data and show a relatively good agreement. However, the derived K-jump-ratios appear larger than those widely used in the XCOM database. The Kα and Kβ fluorescence yields and the corresponding relative emission rates Kβ/Kα are also derived, which was made possible by the use of energy-dispersive detectors with good spectral resolution.

  19. Theoretical methods for estimating moments of inertia of trees and boles.

    Treesearch

    John A. Sturos

    1973-01-01

    Presents a theoretical method for estimating the mass moments of inertia of full trees and boles about a transverse axis. Estimates from the theoretical model compared closely with experimental data on aspen and red pine trees obtained in the field by the pendulum method. The theoretical method presented may be used to estimate the mass moments of inertia and other...

  20. Photoionization of tungsten ions: experiment and theory for $${{\\rm{W}}}^{2+}$$ and $${{\\rm{W}}}^{3+}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, B. M.; Ballance, C. P.; Schippers, S.

    2016-02-22

    Experimental and theoretical results are reported for single-photon single ionization of W 2+ and W 3+ tungsten ions. Experiments were performed at the photon-ion merged-beam setup of the Advanced Light Source in Berkeley. Absolute cross sections and detailed energy scans were measured over an energy range 20-90 eV at a bandwidth of 100 meV. Broad peak features with widths typically around 5 eV have been observed with almost no narrow resonances present in the investigated energy range. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach. The calculations were carried out for the lowest-energy terms of the investigated tungsten ionsmore » with levels 5s 25p 65d 4 5D J J = 0, 1, 2, 3, 4 for W 2+ and 5s 25p 65d 3 4F J' J ' = 3/2, 5/2, 7/2, 9/2 for W 3+. Assuming a statistically weighted distribution of ions in the initial ground-term levels there is good agreement of theory and experiment for W 3+ ions. However, for W 2+ ions at higher energies there is a factor of approximately two difference between experimental and theoretical cross sections.« less

  1. Global analysis of b → sℓℓ anomalies

    NASA Astrophysics Data System (ADS)

    Descotes-Genon, Sébastien; Hofer, Lars; Matias, Joaquim; Virto, Javier

    2016-06-01

    We present a detailed discussion of the current theoretical and experimental situation of the anomaly in the angular distribution of B → K * (→ Kπ) μ + μ -, observed at LHCb in the 1 fb-1 dataset and recently confirmed by the 3 fb-1 dataset. The impact of this data and other recent measurements on b → sℓ + ℓ - transitions ( ℓ = e, μ) is considered. We review the observables of interest, focusing on their theoretical uncertainties and their sensitivity to New Physics, based on an analysis employing the QCD factorisation approach including several sources of hadronic uncertainties (form factors, power corrections, charm-loop effects). We perform fits to New Physics contributions including experimental and theoretical correlations. The solution that we proposed in 2013 to solve the B → K * μ + μ - anomaly, with a contribution {mathcal{C}}_9^{NP}˜eq -1 , is confirmed and reinforced. A wider range of New-Physics scenarios with high significances (between 4 and 5 σ) emerges from the fit, some of them being particularly relevant for model building. More data is needed to discriminate among them conclusively. The inclusion of b → se + e - observables increases the significance of the favoured scenarios under the hypothesis of New Physics breaking lepton flavour universality. Several tests illustrate the robustness of our conclusions.

  2. Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei

    2018-04-01

    Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.

  3. The Role of Flow Diagnostic Techniques in Fan and Open Rotor Noise Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2016-01-01

    A principal source of turbomachinery noise is the interaction of the rotating and stationary blade rows with the perturbations in the airstream through the engine. As such, a lot of research has been devoted to the study of the turbomachinery noise generation mechanisms. This is particularly true of fan and open rotors, both of which are the major contributors to the overall noise output of modern aircraft engines. Much of the research in fan and open rotor noise has been focused on developing theoretical models for predicting their noise characteristics. These models, which run the gamut from the semi-empirical to fully computational ones, are, in one form or another, informed by the description of the unsteady flow-field in which the propulsors (i.e., the fan and open rotors) operate. Not surprisingly, the fidelity of the theoretical models is dependent, to a large extent, on capturing the nuances of the unsteady flowfield that have a direct role in the noise generation process. As such, flow diagnostic techniques have proven to be indispensible in identifying the shortcoming of theoretical models and in helping to improve them. This presentation will provide a few examples of the role of flow diagnostic techniques in assessing the fidelity and robustness of the fan and open rotor noise prediction models.

  4. A Computer Program for Practical Semivariogram Modeling and Ordinary Kriging: A Case Study of Porosity Distribution in an Oil Field

    NASA Astrophysics Data System (ADS)

    Mert, Bayram Ali; Dag, Ahmet

    2017-12-01

    In this study, firstly, a practical and educational geostatistical program (JeoStat) was developed, and then example analysis of porosity parameter distribution, using oilfield data, was presented. With this program, two or three-dimensional variogram analysis can be performed by using normal, log-normal or indicator transformed data. In these analyses, JeoStat offers seven commonly used theoretical variogram models (Spherical, Gaussian, Exponential, Linear, Generalized Linear, Hole Effect and Paddington Mix) to the users. These theoretical models can be easily and quickly fitted to experimental models using a mouse. JeoStat uses ordinary kriging interpolation technique for computation of point or block estimate, and also uses cross-validation test techniques for validation of the fitted theoretical model. All the results obtained by the analysis as well as all the graphics such as histogram, variogram and kriging estimation maps can be saved to the hard drive, including digitised graphics and maps. As such, the numerical values of any point in the map can be monitored using a mouse and text boxes. This program is available to students, researchers, consultants and corporations of any size free of charge. The JeoStat software package and source codes available at: http://www.jeostat.com/JeoStat_2017.0.rar.

  5. Theoretical overview and modeling of the sodium and potassium atmospheres of mercury

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Marconi, M. L.

    1995-01-01

    A general theoretical overview for the sources, sinks, gas-surface interactions, and transport dynamics of sodium and potassium in the exospheric atmsophere of Mercury is given. Information for these four factors, which control the spatial distribution of these two alkali-group gases about the planet, is incorporated in numerical models. The spatial nature and relative importance of the initial source atom atmosphere and the ambient (ballistic hopping) atom atmosphere are then examined and are shown to be controlled and coupled to a great extent by the extremely large and variable solar radiation acceleration experienced by sodium and potassium as they resonantly scatter solar photons. The lateral (antisunward) transport rate of thermally accommodated sodium and potassium ambient atoms is shown to be driven by the solar radiation acceleration and, over a significant portion of Mercury's orbit about the Sun, is sufficiently rapid to be competitive with the short photoionization lifetimes for these atoms when they are located on the summit surface near or within about 30 deg of the terminator. The lateral transport rate is characterized by a migration time determined by model calculations for an ensemble of atoms initially starting at a point source on the surface (i.e., a numerical spacetime dependent Green's function). Four animations for the spacetime evolution of the sodium (or potassium) atmosphere produced by a point source on the surface are presented on a videotape format. For extended surface sources for sodium and potassium, the local column density is determined by competition between the photoionization lifetimes and the lateral transport times of atoms originating from different surface source locations. Sodium surface source fluxes (referenced to Mercury at perihelion) that are required on the sunlit hemisphere to reproduce the typically observed several megarayleighs of D2 emission-line brightness and the inferred column densities of 1-2 x 10(exp 11) atoms per sq cm range from approximately 2-5 x 10(exp 7) atoms/sq cm/sec. The sodium model is applied to study observational data that document an anticorrelation in the average sodium column density and solar radiation acceleration. Lateral transport driven by the solar radiation acceleration is shown to produce this behavior for combinations of different sources and surface accomodation coefficients. The best fit model fits to the observational data require a significant degree of thermal accommodation of the ambient sodium atoms to the surface and a source rate that decreases as an inverse power of 1.5 to 2 in heliocentric distance.

  6. Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; Gair, Jonathan R.

    2009-04-01

    We present an improved numerical kludge waveform model for circular, equatorial extreme-mass-ratio inspirals (EMRIs). The model is based on true Kerr geodesics, augmented by radiative self-force corrections derived from perturbative calculations, and in this paper for the first time we include conservative self-force corrections that we derive by comparison to post-Newtonian results. We present results of a Monte Carlo simulation of parameter estimation errors computed using the Fisher matrix and also assess the theoretical errors that would arise from omitting the conservative correction terms we include here. We present results for three different types of system, namely, the inspirals of black holes, neutron stars, or white dwarfs into a supermassive black hole (SMBH). The analysis shows that for a typical source (a 10M⊙ compact object captured by a 106M⊙ SMBH at a signal to noise ratio of 30) we expect to determine the two masses to within a fractional error of ˜10-4, measure the spin parameter q to ˜10-4.5, and determine the location of the source on the sky and the spin orientation to within 10-3 steradians. We show that, for this kludge model, omitting the conservative corrections leads to a small error over much of the parameter space, i.e., the ratio R of the theoretical model error to the Fisher matrix error is R<1 for all ten parameters in the model. For the few systems with larger errors typically R<3 and hence the conservative corrections can be marginally ignored. In addition, we use our model and first-order self-force results for Schwarzschild black holes to estimate the error that arises from omitting the second-order radiative piece of the self-force. This indicates that it may not be necessary to go beyond first order to recover accurate parameter estimates.

  7. Advancing further the history of Soviet psychology: moving forward from dominant representations in Western and Soviet psychology.

    PubMed

    González Rey, Fernando L

    2014-02-01

    This article discusses the works of some Soviet scholars of psychology, their theoretical positions, and the times within which their works were developed. Dominant representations of Soviet psychology and some of the main Soviet authors are revisited in the light of a blending of facts actively associated with their emergence in both Soviet and Western psychology. From the beginning, Soviet psychology was founded upon Marxism. However, the ways by which that psychology pretended to become Marxist in its philosophical basis were diverse and often contradictory. Other philosophical and theoretical positions also influenced Soviet psychologists. Different moments of that contradictory process are discussed in this article, and through this, I bring to light their interrelations and the consequences for the development of Soviet psychology. This article reinterprets several myths found within Soviet psychology, in which different theoretical representations have become institutionalized for long periods in both Soviet and Western psychology. Particular attention is given to identifying the conditions that presented Vygotsky, Luria, and Leontiev as part of the same paradigm, and which paved the way for a perception of Leontiev and his group as paralleling Vygotsky's importance among American psychologists. Many of the sources that are used in this article were published in Soviet psychology only after the 1970s. Unlike the different and interesting works that began to appear on diverse trends in Soviet psychology, this article details in depth the articulation of topics and questions that still now are presented as different chapters in the analysis of Soviet psychology.

  8. Informational Sources, Self-Efficacy and Achievement: A Temporally Displaced Approach

    ERIC Educational Resources Information Center

    Phan, Huy Phuong

    2012-01-01

    Personal self-efficacy is an important theoretical orientation that helps to explain students' learning and academic achievements. One area of research inquiry has involved the four major sources of information and their predictive effects on self-efficacy. As an extension for examination, the purpose of our investigation was to explore the…

  9. Examining Validity of Sources of Mathematics Self-Efficacy Scale in Turkey

    ERIC Educational Resources Information Center

    Kandemir, Mehmet Ali; Akbas-Perkmen, Rahile

    2017-01-01

    The main purpose of the current study is to examine the construct, convergent and discriminant validity of the Sources of Mathematics Self-Efficacy Scale (Usher & Pajares, 2009) in a Turkish sample. Bandura's Social Cognitive Theory (1986) served as the theoretical framework for the current study. According to Bandura (1986), people's…

  10. Evaluating and mapping sources and temporary storage areas of sediment

    Treesearch

    Leslie M. Reid

    1982-01-01

    Legislation to regulate forest practices, water quality, and management of federal lands has increased the land managers' need for efficient methods of identifying and mapping sources of sediment in forested basins. At the same time, theoretical analysis of landscape evolution has led research geomorphologists to the consideration of many of the same...

  11. Modular Object-Oriented Dynamic Learning Environment: What Open Source Has to Offer

    ERIC Educational Resources Information Center

    Antonenko, Pavlo; Toy, Serkan; Niederhauser, Dale

    2004-01-01

    Open source online learning environments have emerged and developed over the past 10 years. In this paper we will analyze the underlying philosophy and features of MOODLE based on the theoretical framework developed by Hannafin and Land (2000). Psychological, pedagogical, technological, cultural, and pragmatic foundations comprise the framework…

  12. Boiler Tube Corrosion Characterization with a Scanning Thermal Line

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Jacobstein, Ronald; Reilly, Thomas

    2001-01-01

    Wall thinning due to corrosion in utility boiler water wall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler water walls. A theoretical basis for the technique will be presented to establish the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of the application of this technology to actual water wall tubing samples and in-situ inspections will be presented.

  13. Criteria for Yielding of Dispersion-Strengthened Alloys

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Lenel, F. V.

    1960-01-01

    A dislocation model is presented in order to account for the yield behavior of alloys with a finely dispersed second-phase. The criteria for yielding used in the model, is that appreciable yielding occurs in these alloys when the shear stress due to piled-up groups of dislocations is sufficient to fracture or plastically deform the dispersed second-phase particles, relieving the back stress on the dislocation sources. Equations derived on the basis of this model, predict that the yield stress of the alloys varies as the reciprocal square root of the mean free path between dispersed particles. Experimental data is presented for several SAP-Type alloys, precipitation-hardened alloys and steels which are in good agreement with the yield strength variation as a function of dispersion spacing predicted by this theoretical treatment.

  14. Models of Jovian decametric radiation. [astronomical models of decametric waves

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1975-01-01

    A critical review is presented of theoretical models of Jovian decametric radiation, with particular emphasis on the Io-modulated emission. The problem is divided into three broad aspects: (1) the mechanism coupling Io's orbital motion to the inner exosphere, (2) the consequent instability mechanism by which electromagnetic waves are amplified, and (3) the subsequent propagation of the waves in the source region and the Jovian plasmasphere. At present there exists no comprehensive theory that treats all of these aspects quantitatively within a single framework. Acceleration of particles by plasma sheaths near Io is proposed as an explanation for the coupling mechanism, while most of the properties of the emission may be explained in the context of cyclotron instability of a highly anisotropic distribution of streaming particles.

  15. Comprehensive analysis of the optical Kerr coefficient of graphene

    DOE PAGES

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-25

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition,more » self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.« less

  16. Electronic Excitation of Furan by Low Energy Electrons

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh R.; Khakoo, Murtadha A.; Lopes, Maria Cristina A.; da Costa, Romarly; Bettega, Marcio H. F.; Lima, Marco A. P.

    2011-10-01

    We present absolute differential cross section (DCS) measurements and calculations of electron impact excitation of the lowest lying triplet 3B2 and 3A1 electronic states of furan. The incident electron energy range of the present study was 5-15eV. The experimental data were normalized to the elastic DCS data of. The cross sections were determined by unfolding electron energy loss spectra, using an open source data analysis package and the spectroscopic assignments of. The calculations employ a Multichannel Schwinger method with a 9-state closed coupling CI configuration including polarized pseudo-potentials. The preliminary theoretical results show reasonable agreement with experiment below 10eV, but differ at higher energies. Funded by the US NSF and the Brazilian funding agencies CNPq, CAPES and FAPESP.

  17. Laboratory Rotational Spectroscopy in the Era of ALMA: Applications to Disks and Circumstellar Outflows

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.; McCarthy, Michael C.; Stancil, Phillip C.; Halfen, DeWayne; Burton, Mark; Gottlieb, Carl A.; Lee, Kelvin

    2018-06-01

    The enormous leap in sensitivity and angular resolution offered by the Atacama Large Millimeter Array (ALMA) has revealed the presence of ever greater chemical complexity in astronomical sources, with an increasing number of unidentified lines. The need for supporting laboratory spectroscopy has become more urgent to fully exploit the scientific impact of ALMA. Rotational transition measurements are particularly important in this regard, as are the evaluation of line strengths, collisional cross sections, and dipole moments. Here we present new spectroscopic data concerning a wide range of potential interstellar and circumstellar molecules, including silicon and metal-bearing species, lines arising from vibrationally-excited molecules, and supporting theoretical calculations. Recent work concerning AlC2, KO, and vibrationally-excited AlO will be presented.

  18. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  19. A simple theoretical model for ⁶³Ni betavoltaic battery.

    PubMed

    Zuo, Guoping; Zhou, Jianliang; Ke, Guotu

    2013-12-01

    A numerical simulation of the energy deposition distribution in semiconductors is performed for ⁶³Ni beta particles. Results show that the energy deposition distribution exhibits an approximate exponential decay law. A simple theoretical model is developed for ⁶³Ni betavoltaic battery based on the distribution characteristics. The correctness of the model is validated by two literature experiments. Results show that the theoretical short-circuit current agrees well with the experimental results, and the open-circuit voltage deviates from the experimental results in terms of the influence of the PN junction defects and the simplification of the source. The theoretical model can be applied to ⁶³Ni and ¹⁴⁷Pm betavoltaic batteries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Using the VLBA to Uncover AGN in Dwarf Galaxies Exhibiting Nuclear Radio Emission

    NASA Astrophysics Data System (ADS)

    Dieck, Christopher; Johnson, Megan; Reines, Amy; Greene, Jenny

    2018-01-01

    The formation mechanism of billion solar mass black holes found in massive galaxies in the early universe is not yet understood. Investigation of black holes in dwarf galaxies in the local universe can help to constrain theoretical formation mechanisms and masses of black hole seeds for these supermassive black holes. The pilot study discussed herein used the Very Long Baseline Array (VLBA) to observe three nearby low mass (~109 M⊙) dwarf galaxies detected with the Jansky Very Large Array (JVLA). However, the JVLA does not have sufficient spatial resolution to discriminate between emission from various processes (e.g. supernova remnants and active galactic nuclei). Due to the high spatial resolution of the VLBA and the proximity of the targets, the physical scales probed are on the order of unity parsecs. Imaging of this small physical region should allow us to differentiate the source of the JVLA detected emission between a single nuclear source and multiple discreet sources, depending on whether the emission is resolved by the VLBA or not. Here we present preliminary results of our VLBA imaging and future plans.

  1. Swirling plumes and spinning tops

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Landel, Julien; Dalziel, Stuart; Linden, Paul

    2017-11-01

    Motivated by potential effects of the Earth's rotation on the dynamics of the oil plume resulting from the Deepwater Horizon disaster in 2010, we conducted laboratory experiments on saltwater and bubble axisymmetric point plumes in a homogeneous rotating environment. The effect of rotation is conventionally characterized by a Rossby number, based on the source buoyancy flux, the rotation rate of the system and the total water depth and which ranged from 0.02 to 1.3 in our experiments. In the range of parameters studied, we report a striking new physical instability in the plume dynamics near the source. After approximately one rotation period, the plume axis tilts away laterally from the centreline and the plume starts to precess in the anticyclonic direction. We find that the mean precession frequency of the plume scales linearly with the rotation rate of the environment. Surprisingly, the precession frequency is found to be independent of the diameter of the plume nozzle, the source buoyancy flux, the water depth and the geometry of the domain. In this talk, we present our experimental results and develop simple theoretical toy models to explain the observed plume behaviour.

  2. Near real-time estimation of the seismic source parameters in a compressed domain

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ismael A. Vera

    Seismic events can be characterized by its origin time, location and moment tensor. Fast estimations of these source parameters are important in areas of geophysics like earthquake seismology, and the monitoring of seismic activity produced by volcanoes, mining operations and hydraulic injections in geothermal and oil and gas reservoirs. Most available monitoring systems estimate the source parameters in a sequential procedure: first determining origin time and location (e.g., epicentre, hypocentre or centroid of the stress glut density), and then using this information to initialize the evaluation of the moment tensor. A more efficient estimation of the source parameters requires a concurrent evaluation of the three variables. The main objective of the present thesis is to address the simultaneous estimation of origin time, location and moment tensor of seismic events. The proposed method displays the benefits of being: 1) automatic, 2) continuous and, depending on the scale of application, 3) of providing results in real-time or near real-time. The inversion algorithm is based on theoretical results from sparse representation theory and compressive sensing. The feasibility of implementation is determined through the analysis of synthetic and real data examples. The numerical experiments focus on the microseismic monitoring of hydraulic fractures in oil and gas wells, however, an example using real earthquake data is also presented for validation. The thesis is complemented with a resolvability analysis of the moment tensor. The analysis targets common monitoring geometries employed in hydraulic fracturing in oil wells. Additionally, it is presented an application of sparse representation theory for the denoising of one-component and three-component microseismicity records, and an algorithm for improved automatic time-picking using non-linear inversion constraints.

  3. Estimating the Effective System Dead Time Parameter for Correlated Neutron Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, Stephen; Cleveland, Steve; Favalli, Andrea

    We present that neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correctingmore » these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it yields consistent results as a function of the order of the moment used to extract the dead time parameter. In addition, this latter observation is reassuring in that it suggests the assumptions underpinning the theoretical analysis are fit for practical application purposes. However, we found that the effective dead time parameter obtained is not constant, as might be expected for a parameter that in the dead time model is characteristic of the detector system, but rather, varies systematically with gate width.« less

  4. Estimating the Effective System Dead Time Parameter for Correlated Neutron Counting

    DOE PAGES

    Croft, Stephen; Cleveland, Steve; Favalli, Andrea; ...

    2017-04-29

    We present that neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correctingmore » these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it yields consistent results as a function of the order of the moment used to extract the dead time parameter. In addition, this latter observation is reassuring in that it suggests the assumptions underpinning the theoretical analysis are fit for practical application purposes. However, we found that the effective dead time parameter obtained is not constant, as might be expected for a parameter that in the dead time model is characteristic of the detector system, but rather, varies systematically with gate width.« less

  5. The plasmatron: Advanced mode thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    Hansen, L. K.; Hatch, G. L.; Rasor, N. S.

    1976-01-01

    A theory of the plasmatron was developed. Also, a wide range of measurements were obtained with two versatile, research devices. To gain insight into plasmatron performance, the experimental results are compared with calculations based on the theoretical model of plasmatron operation. Results are presented which show that the plasma arc drop of the conventional arc (ignited) mode converter can be suppressed by use of an auxiliary ion source. The improved performance, however, is presently limited to low current densities because of voltage losses due to plasma resistance. This resistance loss could be suppressed by an increase in the plasma electron temperature or a decrease in spacing. Plasmatron performance characteristics for both argon and cesium are reported. The argon plasmatron has superior performance. Results are also presented for magnetic cutoff effects and for current distributing effects. These are shown to be important factors for the design of practical devices.

  6. Fatal Attractions: Attachment to Smartphones Predicts Anthropomorphic Beliefs and Dangerous Behaviors.

    PubMed

    Bodford, Jessica E; Kwan, Virginia S Y; Sobota, David S

    2017-05-01

    As technology's presence grows increasingly concrete in global societies, so too do our relationships with the devices we keep close at hand from day to day. Whereas research has, in the past, framed smartphone addiction in terms of possessional attachment, the present research hypothesizes that anxious smartphone attachment stems from human attachment, in which Anxiously attached individuals may be more likely to generalize their anxious attachment style to communication devices. In the present study, we found support for this hypothesis and showed that anxious smartphone attachment predicts (1) anthropomorphic beliefs, (2) reliance on-or "clinginess" toward-smartphones, and (3) a seemingly compulsive urge to answer one's phone, even in dangerous situations (e.g., while driving). Taken together, we seek to provide a theoretical framework and methodological tools to identify the sources of technology attachment and those most at risk of engaging in dangerous or inappropriate behaviors as a result of attachment to ever-present mobile devices.

  7. Causal inference and the data-fusion problem

    PubMed Central

    Bareinboim, Elias; Pearl, Judea

    2016-01-01

    We review concepts, principles, and tools that unify current approaches to causal analysis and attend to new challenges presented by big data. In particular, we address the problem of data fusion—piecing together multiple datasets collected under heterogeneous conditions (i.e., different populations, regimes, and sampling methods) to obtain valid answers to queries of interest. The availability of multiple heterogeneous datasets presents new opportunities to big data analysts, because the knowledge that can be acquired from combined data would not be possible from any individual source alone. However, the biases that emerge in heterogeneous environments require new analytical tools. Some of these biases, including confounding, sampling selection, and cross-population biases, have been addressed in isolation, largely in restricted parametric models. We here present a general, nonparametric framework for handling these biases and, ultimately, a theoretical solution to the problem of data fusion in causal inference tasks. PMID:27382148

  8. Pendulum Underwater - An Approach for Quantifying Viscosity

    NASA Astrophysics Data System (ADS)

    Leme, José Costa; Oliveira, Agostinho

    2017-12-01

    The purpose of the experiment presented in this paper is to quantify the viscosity of a liquid. Viscous effects are important in the flow of fluids in pipes, in the bloodstream, in the lubrication of engine parts, and in many other situations. In the present paper, the authors explore the oscillations of a physical pendulum in the form of a long and lightweight wire that carries a ball at its lower end, which is totally immersed in water, so as to determine the water viscosity. The system used represents a viscous damped pendulum and we tried different theoretical models to describe it. The experimental part of the present paper is based on a very simple and low-cost image capturing apparatus that can easily be replicated in a physics classroom. Data on the pendulum's amplitude as a function of time were acquired using digital video analysis with the open source software Tracker.

  9. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.

  10. Seismic interferometry by crosscorrelation and by multidimensional deconvolution: a systematic comparison

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; van der Neut, Joost; Ruigrok, Elmer; Draganov, Deyan; Hunziker, Juerg; Slob, Evert; Thorbecke, Jan; Snieder, Roel

    2010-05-01

    In recent years, seismic interferometry (or Green's function retrieval) has led to many applications in seismology (exploration, regional and global), underwater acoustics and ultrasonics. One of the explanations for this broad interest lies in the simplicity of the methodology. In passive data applications a simple crosscorrelation of responses at two receivers gives the impulse response (Green's function) at one receiver as if there were a source at the position of the other. In controlled-source applications the procedure is similar, except that it involves in addition a summation along the sources. It has also been recognized that the simple crosscorrelation approach has its limitations. From the various theoretical models it follows that there are a number of underlying assumptions for retrieving the Green's function by crosscorrelation. The most important assumptions are that the medium is lossless and that the waves are equipartitioned. In heuristic terms the latter condition means that the receivers are illuminated isotropically from all directions, which is for example achieved when the sources are regularly distributed along a closed surface, the sources are mutually uncorrelated and their power spectra are identical. Despite the fact that in practical situations these conditions are at most only partly fulfilled, the results of seismic interferometry are generally quite robust, but the retrieved amplitudes are unreliable and the results are often blurred by artifacts. Several researchers have proposed to address some of the shortcomings by replacing the correlation process by deconvolution. In most cases the employed deconvolution procedure is essentially 1-D (i.e., trace-by-trace deconvolution). This compensates the anelastic losses, but it does not account for the anisotropic illumination of the receivers. To obtain more accurate results, seismic interferometry by deconvolution should acknowledge the 3-D nature of the seismic wave field. Hence, from a theoretical point of view, the trace-by-trace process should be replaced by a full 3-D wave field deconvolution process. Interferometry by multidimensional deconvolution is more accurate than the trace-by-trace correlation and deconvolution approaches but the processing is more involved. In the presentation we will give a systematic analysis of seismic interferometry by crosscorrelation versus multi-dimensional deconvolution and discuss applications of both approaches.

  11. Observational Signatures of Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2014-01-01

    Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.

  12. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  13. Gravitational wave searches using the DSN (Deep Space Network)

    NASA Technical Reports Server (NTRS)

    Nelson, S. J.; Armstrong, J. W.

    1988-01-01

    The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed.

  14. Analysis on Causes of Employees' Damaged Rights in Perspective of Property Rights

    NASA Astrophysics Data System (ADS)

    Zheng, Xiuzhi; Lin, Lijie

    An employment contract is a contract of human capital property rights transaction between employees and employer. Due to its incompleteness, the employees' rights can not be fully defined in the employment contract. Therefore, some rights of employees lie in "Public Domain". Due to the rule of "Power Defining Property" in the prosperity dealing, employers with great power are able to grab at employees' rights in "Public Domain". In this paper, the theoretical foundation on the source of violations to employees' rights, the value of labor contract law and the role of labor union playing in the labor relationship are presented in perspective of property rights.

  15. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    NASA Astrophysics Data System (ADS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-08-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm-2 of Nickle-63 (63Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure.

  16. Error reduction and parameter optimization of the TAPIR method for fast T1 mapping.

    PubMed

    Zaitsev, M; Steinhoff, S; Shah, N J

    2003-06-01

    A methodology is presented for the reduction of both systematic and random errors in T(1) determination using TAPIR, a Look-Locker-based fast T(1) mapping technique. The relations between various sequence parameters were carefully investigated in order to develop recipes for choosing optimal sequence parameters. Theoretical predictions for the optimal flip angle were verified experimentally. Inversion pulse imperfections were identified as the main source of systematic errors in T(1) determination with TAPIR. An effective remedy is demonstrated which includes extension of the measurement protocol to include a special sequence for mapping the inversion efficiency itself. Copyright 2003 Wiley-Liss, Inc.

  17. Advanced turboprop noise prediction based on recent theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Padula, S. L.; Dunn, M. H.

    1987-01-01

    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

  18. The social welfare function and individual responsibility: some theoretical issues and empirical evidence.

    PubMed

    Dolan, Paul; Tsuchiya, Aki

    2009-01-01

    The literature on income distribution has attempted to evaluate different degrees of inequality using a social welfare function (SWF) approach. However, it has largely ignored the source of such inequalities, and has thus failed to consider different degrees of inequity. The literature on egalitarianism has addressed issues of equity, largely in relation to individual responsibility. This paper builds upon these two literatures, and introduces individual responsibility into the SWF. Results from a small-scale study of people's preferences in relation to the distribution of health benefits are presented to illustrate how the parameter values of a SWF might be determined.

  19. Review of recent research of interior noise of propeller aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Powell, C. A.

    1984-01-01

    Publications on the topics of propeller source noise, airborne noise transmission, and passenger comfort response to noise and vibration are reviewed. Of the 187 publications referenced, 140 have appeared since 1978. Examples of research accomplishments are presented to illustrate the state of the art. Emphasis is on comparisons of theoretical and measured results, but the description of the theories is left to the references. This review shows that substantial progress has been made in understanding the characteristics of propeller noise, airborne noise, and passenger response, and in the development of prediction methods. Application of the technology to cabin noise control and possible future research directions are discussed.

  20. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    PubMed

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  1. An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.

  2. Theoretical study of the effect of ionospheric return currents on the electron temperature

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Sojka, J. J.; Bowline, M. D.

    1987-01-01

    A time-dependent, three-dimensional model of the high-altitude ionosphere is presently used to study the effects of field-aligned ionospheric return currents on auroral electron temperatures for different seasonal and solar cycle conditions, as well as for different upper boundary heat fluxes. The average, large scale, return current densities, which are a few microamps/sq m, are too small to affect auroral electron temperatures. The thermoelectric effect exhibits a pronounced solar cycle and seasonal dependence, and its heat transport corresponds to an upward flow of electron energy which can be either a source or sink of electron energy depending on altitude and geophysical conditions.

  3. Electrophysical and optophysical properties of air ionized by a short pulse of fast electrons

    NASA Astrophysics Data System (ADS)

    Vagin, Iu. P.; Stal', N. L.; Khokhlov, V. D.; Chernoiarskii, A. A.

    A method for solving the nonstationary kinetic equation of electron deceleration is developed which is based on the multigroup approximation. The electron distribution function in air ionized by nonstationary sources of primary electrons is determined, and the avalanche formation of secondary electrons is considered. Theoretical and experimental results are presented on the time dependence of the air luminescence intensity in two spectral intervals, one including the 391.4 nm N2(+) band and the other including the 337.1 nm N2 band, for different values of gas pressure under the effect of a short beam of electrons with energies of 100 keV.

  4. A theoretical analysis of vacuum arc thruster performance

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Sekerak, Mike; Ziemer, John K.; Schein, Jochen; Qi, Niansheng; Binder, Robert; Anders, Andre

    2001-01-01

    In vacuum arc discharges the current is conducted through vapor evaporated from the cathode surface. In these devices very dense, highly ionized plasmas can be created from any metallic or conducting solid used as the cathode. This paper describes theoretical models of performance for several thruster configurations which use vacuum arc plasma sources. This analysis suggests that thrusters using vacuum arc sources can be operated efficiently with a range of propellant options that gives great flexibility in specific impulse. In addition, the efficiency of plasma production in these devices appears to be largely independent of scale because the metal vapor is ionized within a few microns of the cathode electron emission sites, so this approach is well-suited for micropropulsion.

  5. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    PubMed

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  6. Spiked Models of Large Dimensional Random Matrices Applied to Wireless Communications and Array Signal Processing

    DTIC Science & Technology

    2013-12-14

    population covariance matrix with application to array signal processing; and 5) a sample covariance matrix for which a CLT is studied on linear...Applications , (01 2012): 1150004. doi: Walid Hachem, Malika Kharouf, Jamal Najim, Jack W. Silverstein. A CLT FOR INFORMATION- THEORETIC STATISTICS...for Multi-source Power Estimation, (04 2010) Malika Kharouf, Jamal Najim, Jack W. Silverstein, Walid Hachem. A CLT FOR INFORMATION- THEORETIC

  7. Transitions theory: a trajectory of theoretical development in nursing.

    PubMed

    Im, Eun-Ok

    2011-01-01

    There have been very few investigations into how any single nursing theory has actually evolved historically. In this paper, a trajectory of theoretical development in nursing is explored through reviewing the theoretical development of a single nursing theory-transitions theory. The literature related to transitions theory was searched and retrieved using multiple databases. Ninety-nine papers were analyzed according to type of theory, populations of interest, sources of theorizing, and theoretical methods. Transitions theory originated in research but was initially borrowed. It also arose in research with immigrants and from national and international collaborative research efforts. A product of mentoring, transitions theory is used widely in nursing education, research, and practice. Diverse thoughts related to transitions theory coexist. For future theoretical development in nursing, we need to remain open to new ideas and continue to engage in multiple collaborative efforts. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Theoretical Grounding: The "Missing Link" in Suicide Research.

    ERIC Educational Resources Information Center

    Rogers, James R.

    2001-01-01

    Discusses the strengths and limitations of the current pragmatic focus of research in suicidology and presents an argument for theoretical grounding as a precursor for continued advancement in this area. Presents an existential-constructivist framework of "meaning creation" as a theoretical heuristic for understanding suicide. Outlines general…

  9. Seismic Source Identification Techniques

    DTIC Science & Technology

    various fields of endeavor in theoretical and experimental seismology and the establishment of a modern geophysical observatory near Eilat, Israel, which includes strainmeters, tiltmeters and high-gain displacement-meters.

  10. Polarisation of auroral emission lines in the Earth's upper atmosphere : first results and perspectives

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Barthelemy, M.; Simon Wedlund, C.; Lilensten, J.; Bommier, V.

    2011-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Following the pioneering and controversial work of Duncan in 1959, the polarisation of auroral emission lines in the Earth's upper atmosphere has been overlooked for a long time, even though the red intense auroral line (6300Å) produced by collisional impacts with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated again by Lilensten et al (2006) and observations were obtained by Lilensten et al (2008) confirming that the red auroral emission line is polarised. More recent measurements obtained by Barthélemy et al (2011) are presented and discussed. The results are compared to predictions of the theoretical work of Bommier et al (2011) and are in good agreement. Following these encouraging results, a new dedicated spectropolarimeter is currently under construction between BIRA-IASB and IPAG to provide simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... Perspectives regarding the theoretical polarisation of some of these lines will be presented. The importance of these polarisation measurements in the framework of atmospheric modeling and geomagnetic activity will be discussed.

  11. The rank correlated FSK model for prediction of gas radiation in non-uniform media, and its relationship to the rank correlated SLW model

    NASA Astrophysics Data System (ADS)

    Solovjov, Vladimir P.; Webb, Brent W.; Andre, Frederic

    2018-07-01

    Following previous theoretical development based on the assumption of a rank correlated spectrum, the Rank Correlated Full Spectrum k-distribution (RC-FSK) method is proposed. The method proves advantageous in modeling radiation transfer in high temperature gases in non-uniform media in two important ways. First, and perhaps most importantly, the method requires no specification of a reference gas thermodynamic state. Second, the spectral construction of the RC-FSK model is simpler than original correlated FSK models, requiring only two cumulative k-distributions. Further, although not exhaustive, example problems presented here suggest that the method may also yield improved accuracy relative to prior methods, and may exhibit less sensitivity to the blackbody source temperature used in the model predictions. This paper outlines the theoretical development of the RC-FSK method, comparing the spectral construction with prior correlated spectrum FSK method formulations. Further the RC-FSK model's relationship to the Rank Correlated Spectral Line Weighted-sum-of-gray-gases (RC-SLW) model is defined. The work presents predictions using the Rank Correlated FSK method and previous FSK methods in three different example problems. Line-by-line benchmark predictions are used to assess the accuracy.

  12. N III Bowen Lines and Fluorescence Mechanism in the Symbiotic Star AG Peg

    NASA Astrophysics Data System (ADS)

    Hyung, Siek; Lee, Seong-Jae; Lee, Kang Hwan

    2018-03-01

    We have investigated the intensities and full width at half maximum (FWHM) of the high dispersion spectroscopic N III emission lines of AG Peg, observed with the Hamilton Echelle Spectrograph (HES) in three different epochs at Mt. Hamilton's Lick Observatory. The earlier theoretical Bowen line study assumed the continuum fluorescence effect, presenting a large discrepancy with the present data. Hence, we analyzed the observed N III lines assuming line fluorescence as the only suitable source: (1) The O III and N III resonance line profiles near λ 374 were decomposed, using the Gaussian function, and the contributions from various O III line components were determined. (2) Based on the theoretical resonant N III intensities, the expected N III Bowen intensities were obtained to fit the observed values. Our study shows that the incoming line photon number ratio must be considered to balance at each N III Bowen line level in the ultraviolet radiation according to the observed lines in the optical zone. We also found that the average FWHM of the N III Bowen lines was about 5 km·s-1 greater than that of the O III Bowen lines, perhaps due to the inherently different kinematic characteristics of their emission zones.

  13. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalosh, R.G.; Bajpai, S.N.; Short, T.P.

    1980-04-01

    An evaluation of the hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries is presented. Since commercial batteries are not yet available, this hazard assessment is based both on theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate. Six spill tests involving chlorine hydrate indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm road surface. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion modelmore » and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model has been combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fatality rates are several times higher in a city with a warm and calm climate than in a colder and windier city. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatility rates due to fires and asphyxiations.« less

  14. A novel computational approach towards the certification of large-scale boson sampling

    NASA Astrophysics Data System (ADS)

    Huh, Joonsuk

    Recent proposals of boson sampling and the corresponding experiments exhibit the possible disproof of extended Church-Turning Thesis. Furthermore, the application of boson sampling to molecular computation has been suggested theoretically. Till now, however, only small-scale experiments with a few photons have been successfully performed. The boson sampling experiments of 20-30 photons are expected to reveal the computational superiority of the quantum device. A novel theoretical proposal for the large-scale boson sampling using microwave photons is highly promising due to the deterministic photon sources and the scalability. Therefore, the certification protocol of large-scale boson sampling experiments should be presented to complete the exciting story. We propose, in this presentation, a computational protocol towards the certification of large-scale boson sampling. The correlations of paired photon modes and the time-dependent characteristic functional with its Fourier component can show the fingerprint of large-scale boson sampling. This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2015R1A6A3A04059773), the ICT R&D program of MSIP/IITP [2015-019, Fundamental Research Toward Secure Quantum Communication] and Mueunjae Institute for Chemistry (MIC) postdoctoral fellowship.

  15. A time-dependent anisotropic plasma chemistry model of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.

    2016-12-01

    The physics of the Io plasma torus is typically modelled using one box neutral-plasma chemistry models, often referred to as neutral cloud theory models (e.g., Barbosa 1994; Delamere and Bagenal 2003). These models incorporate electron impact and photoionisation, charge exchange, molecular dissociation/recombination reactions, atomic radiatiative losses and Coulomb collisional heating. Isotropic Maxwellian distributions are usually assumed in the implementation of these models. Observationally a population of suprathermal electrons has been identified in the plasma torus and theoretically they have been shown to be important in reproducing the observed ionisation balance in the torus (e.g., Barbosa 1994). In this paper we describe an anisotropic plasma chemistry model for the Io torus that is inspired by ion cyclotron wave observations (Huddleston et al. 1994; Leisner et al. 2011), ion anisotropies due to pick up (Wilson et al. 2008), and theoretical ideas on the maintenance of the suprathermal electron population (Barbosa 1994). We present both steady state calculations and also time varying solutions (e.g., Delamere et al. 2004) where increases in the neutral source rate in the torus generates perturbations in ion anisotropies that subsequently decay over a timescale much longer than the duration of the initial perturbation. We also present a method for incorporating uncertainties in reaction rates into the model.

  16. Spectroscopic characterization of low dose rate brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Beach, Stephen M.

    The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these analogs. Several dosimetrically-relevant water-equivalent plastics were also investigated for their transmission properties within a liquid water environment, as well as in air. The framework for the accurate spectrometry of LDR sources is established as a result of this dissertation work. In addition to the measurement and analysis methods, this work presents the basic measured spectroscopic characteristics of each LDR seed currently in use in the clinic today.

  17. The ionization length in plasmas with finite temperature ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelic, N.; Kos, L.; Duhovnik, J.

    2009-12-15

    The ionization length is an important quantity which up to now has been precisely determined only in plasmas which assume that the ions are born at rest, i.e., in discharges known as 'cold ion-source' plasmas. Presented here are the results of our calculations of the ionization lengths in plasmas with an arbitrary ion source temperature. Harrison and Thompson (H and T) [Proc. Phys. Soc. 74, 145 (1959)] found the values of this quantity for the cases of several ion strength potential profiles in the well-known Tonks-Langmuir [Phys. Rev. 34, 876 (1929)] discharge, which is characterized by 'cold' ion temperature. Thismore » scenario is also known as the 'singular' ion-source discharge. The H and T analytic result covers cases of ion sources proportional to exp(betaPHI) with PHI the normalized plasma potential and beta=0,1,2 values, which correspond to particular physical scenarios. Many years following H and T's work, Bissell and Johnson (B and J) [Phys. Fluids 30, 779 (1987)] developed a model with the so-called 'warm' ion-source temperature, i.e., 'regular' ion source, under B and J's particular assumption that the ionization strength is proportional to the local electron density. However, it appears that B and J were not interested in determining the ionization length at all. The importance of this quantity to theoretical modeling was recognized by Riemann, who recently answered all the questions of the most advanced up-to-date plasma-sheath boundary theory with cold ions [K.-U. Riemann, Phys. Plasmas 13, 063508 (2006)] but still without the stiff warm ion-source case solution, which is highly resistant to solution via any available analytic method. The present article is an extension of H and T's results obtained for a single point only with ion source temperature T{sub n}=0 to arbitrary finite ion source temperatures. The approach applied in this work is based on the method recently developed by Kos et al. [Phys. Plasmas 16, 093503 (2009)].« less

  18. Quantum noise in the mirror-field system: A field theoretic approach

    NASA Astrophysics Data System (ADS)

    Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien

    2013-02-01

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror.

  19. Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit.

    PubMed

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chen, Jie; Yin, Linmao; Chew, Jia Wei

    2017-04-01

    Because the standard lattice Boltzmann (LB) method is proposed for Cartesian Navier-Stokes (NS) equations, additional source terms are necessary in the axisymmetric LB method for representing the axisymmetric effects. Therefore, the accuracy and applicability of the axisymmetric LB models depend on the forcing schemes adopted for discretization of the source terms. In this study, three forcing schemes, namely, the trapezium rule based scheme, the direct forcing scheme, and the semi-implicit centered scheme, are analyzed theoretically by investigating their derived macroscopic equations in the diffusive scale. Particularly, the finite difference interpretation of the standard LB method is extended to the LB equations with source terms, and then the accuracy of different forcing schemes is evaluated for the axisymmetric LB method. Theoretical analysis indicates that the discrete lattice effects arising from the direct forcing scheme are part of the truncation error terms and thus would not affect the overall accuracy of the standard LB method with general force term (i.e., only the source terms in the momentum equation are considered), but lead to incorrect macroscopic equations for the axisymmetric LB models. On the other hand, the trapezium rule based scheme and the semi-implicit centered scheme both have the advantage of avoiding the discrete lattice effects and recovering the correct macroscopic equations. Numerical tests applied for validating the theoretical analysis show that both the numerical stability and the accuracy of the axisymmetric LB simulations are affected by the direct forcing scheme, which indicate that forcing schemes free of the discrete lattice effects are necessary for the axisymmetric LB method.

  20. Discrete X-Ray Source Populations and Star-Formation History in Nearby Galaxies

    NASA Technical Reports Server (NTRS)

    Zezas, Andreas

    2004-01-01

    This program aims in understanding the connection between the discrete X-ray source populations observed in nearby galaxies and the history of star-formation in these galaxies. The ultimate goal is to use this knowledge in order to constrain X-ray binary evolution channels. For this reason although the program is primarily observational it has a significant modeling component. During the first year of this study we focused on the definition of a pilot sample of galaxies with well know star-formation histories. A small part of this sample has already been observed and we performed initial analysis of the data. However, the majority of the objects in our sample either have not been observed at all, or the detection limit of the existing observations is not low enough to probe the bulk of their young X-ray binary populations. For this reason we successfully proposed for additional Chandra observations of three targets in Cycle-5. These observations are currently being performed. The analysis of the (limited) archival data for this sample indicated that the X-ray luminosity functions (XLF) of the discrete sources in these galaxies may not have the same shape as is widely suggested. However, any solid conclusions are hampered by the small number of detected sources. For this reason during the second year of this study, we will try to extend the sample in order to include more objects in each evolutionary stage. In addition we are completing the analysis of the Chandra monitoring observations of the Antennae galaxies. The results from this work, apart from important clues on the nature of the most luminous sources (Ultra-luminous X-ray sources; ULXs) provide evidence that source spectral and/or temporal variability does not significantly affect the shape of their X-ray luminosity functions. This is particularly important for comparisons between the XLFs of different galaxies and comparisons with predictions from theoretical models. Results from this work have been presented in several conferences. Refereed journal papers presenting these conclusions are currently in preparation. An important part of this study is the Chandra survey of the Small Magellanic Cloud, our second nearest star- forming galaxy. So far we have been awarded 5 Chandra observations of the central youngest part of the galaxy. These observations will help to study the very faint end of the young X-ray binary populations which is not possible to probe in more distant objects. Results from this study have been presented in several conferences and two papers are in preparation. In addition during year-2 we are planning of undertaking the task of identifying optical counterparts to the X-ray sources, which will help us to isolate interlopers (sources not associated with the SMC) and classify the X-ray binaries which are found to be associated with the SMC. In the theoretical front, the Star-Track X-ray binary population synthesis code which will be used for the modeling of the X-ray binary populations (led by co-I V. Kalogera and C. Belczynski), is complete. A first test using the XLF of the star-forming galaxy NGC-1569 showed remarkable agreement between the observed and the modeled XLF. These results are presented in an ApJ. Letters paper (Belczynski et al, 2004, 601, 147). During year-2 of this study we are planning of performing a parameter study in order to investigate which parameters are most important for the shape of the XLF. In addition we will perform comparisons with observations of other galaxies from our sample as they become available.

Top