Sample records for source radiation detector

  1. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  2. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  3. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  4. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  5. Method and apparatus for shadow aperture backscatter radiography (SABR) system and protocol

    NASA Technical Reports Server (NTRS)

    Shedlock, Daniel (Inventor); Jacobs, Alan M. (Inventor); Jacobs, Sharon Auerback (Inventor); Dugan, Edward (Inventor)

    2010-01-01

    A shadow aperture backscatter radiography (SABR) system includes at least one penetrating radiation source for providing a penetrating radiation field, and at least one partially transmissive radiation detector, wherein the partially transmissive radiation detector is interposed between an object region to be interrogated and the radiation source. The partially transmissive radiation detector transmits a portion of the illumination radiation field. A shadow aperture having a plurality of radiation attenuating regions having apertures therebetween is disposed between the radiation source and the detector. The apertures provide illumination regions for the illumination radiation field to reach the object region, wherein backscattered radiation from the object is detected and generates an image by the detector in regions of the detector that are shadowed by the radiation attenuation regions.

  6. Device for calibrating a radiation detector system

    DOEpatents

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  7. Device for calibrating a radiation detector system

    DOEpatents

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  8. System for inspecting large size structural components

    DOEpatents

    Birks, Albert S.; Skorpik, James R.

    1990-01-01

    The present invention relates to a system for inspecting large scale structural components such as concrete walls or the like. The system includes a mobile gamma radiation source and a mobile gamma radiation detector. The source and detector are constructed and arranged for simultaneous movement along parallel paths in alignment with one another on opposite sides of a structural component being inspected. A control system provides signals which coordinate the movements of the source and detector and receives and records the radiation level data developed by the detector as a function of source and detector positions. The radiation level data is then analyzed to identify areas containing defects corresponding to unexpected variations in the radiation levels detected.

  9. Radiation detector having a multiplicity of individual detecting elements

    DOEpatents

    Whetten, Nathan R.; Kelley, John E.

    1985-01-01

    A radiation detector has a plurality of detector collection element arrays immersed in a radiation-to-electron conversion medium. Each array contains a multiplicity of coplanar detector elements radially disposed with respect to one of a plurality of positions which at least one radiation source can assume. Each detector collector array is utilized only when a source is operative at the associated source position, negating the necessity for a multi-element detector to be moved with respect to an object to be examined. A novel housing provides the required containment of a high-pressure gas conversion medium.

  10. Directional radiation detectors

    DOEpatents

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  11. Device and Method of Scintillating Quantum Dots for Radiation Imaging

    NASA Technical Reports Server (NTRS)

    Burke, Eric R. (Inventor); DeHaven, Stanton L. (Inventor); Williams, Phillip A. (Inventor)

    2017-01-01

    A radiation imaging device includes a radiation source and a micro structured detector comprising a material defining a surface that faces the radiation source. The material includes a plurality of discreet cavities having openings in the surface. The detector also includes a plurality of quantum dots disclosed in the cavities. The quantum dots are configured to interact with radiation from the radiation source, and to emit visible photons that indicate the presence of radiation. A digital camera and optics may be used to capture images formed by the detector in response to exposure to radiation.

  12. RADIATION WAVE DETECTION

    DOEpatents

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  13. Tomographic gamma ray apparatus and method

    DOEpatents

    Anger, Hal O.

    1976-09-07

    This invention provides a radiation detecting apparatus for imaging the distribution of radioactive substances in a three-dimensional subject such as a medical patient. Radiating substances introduced into the subject are viewed by a radiation image detector that provides an image of the distribution of radiating sources within its field of view. By viewing the area of interest from two or more positions, as by scanning the detector over the area, the radiating sources seen by the detector have relative positions that are a function of their depth in the subject. The images seen by the detector are transformed into first output signals which are combined in a readout device with second output signals that indicate the position of the detector relative to the subject. The readout device adjusts the signals and provides multiple radiation distribution readouts of the subject, each readout comprising a sharply resolved picture that shows the distribution and intensity of radiating sources lying in a selected plane in the subject, while sources lying on other planes are blurred in that particular readout.

  14. Method and system for determining radiation shielding thickness and gamma-ray energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klann, Raymond T.; Vilim, Richard B.; de la Barrera, Sergio

    2015-12-15

    A system and method for determining the shielding thickness of a detected radiation source. The gamma ray spectrum of a radiation detector is utilized to estimate the shielding between the detector and the radiation source. The determination of the shielding may be used to adjust the information from known source-localization techniques to provide improved performance and accuracy of locating the source of radiation.

  15. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  16. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  17. Collimator of multiple plates with axially aligned identical random arrays of apertures

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Underwood, J. H. (Inventor)

    1973-01-01

    A collimator is disclosed for examining the spatial location of distant sources of radiation and for imaging by projection, small, near sources of radiation. The collimator consists of a plurality of plates, all of which are pierced with an identical random array of apertures. The plates are mounted perpendicular to a common axis, with like apertures on consecutive plates axially aligned so as to form radiation channels parallel to the common axis. For near sources, the collimator is interposed between the source and a radiation detector and is translated perpendicular to the common axis so as to project radiation traveling parallel to the common axis incident to the detector. For far sources the collimator is scanned by rotating it in elevation and azimuth with a detector to determine the angular distribution of the radiation from the source.

  18. Real-time self-networking radiation detector apparatus

    DOEpatents

    Kaplan, Edward [Stony Brook, NY; Lemley, James [Miller Place, NY; Tsang, Thomas Y [Holbrook, NY; Milian, Laurence W [East Patchogue, NY

    2007-06-12

    The present invention is for a radiation detector apparatus for detecting radiation sources present in cargo shipments. The invention includes the features of integrating a bubble detector sensitive to neutrons and a GPS system into a miniaturized package that can wirelessly signal the presence of radioactive material in shipping containers. The bubble density would be read out if such indicated a harmful source.

  19. A source-attractor approach to network detection of radiation sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qishi; Barry, M. L..; Grieme, M.

    Radiation source detection using a network of detectors is an active field of research for homeland security and defense applications. We propose Source-attractor Radiation Detection (SRD) method to aggregate measurements from a network of detectors for radiation source detection. SRD method models a potential radiation source as a magnet -like attractor that pulls in pre-computed virtual points from the detector locations. A detection decision is made if a sufficient level of attraction, quantified by the increase in the clustering of the shifted virtual points, is observed. Compared with traditional methods, SRD has the following advantages: i) it does not requiremore » an accurate estimate of the source location from limited and noise-corrupted sensor readings, unlike the localizationbased methods, and ii) its virtual point shifting and clustering calculation involve simple arithmetic operations based on the number of detectors, avoiding the high computational complexity of grid-based likelihood estimation methods. We evaluate its detection performance using canonical datasets from Domestic Nuclear Detection Office s (DNDO) Intelligence Radiation Sensors Systems (IRSS) tests. SRD achieves both lower false alarm rate and false negative rate compared to three existing algorithms for network source detection.« less

  20. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Whitaker, Ross (Inventor); Turner, D. Clark (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  1. Mossbauer spectrometer radiation detector

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  2. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2004-04-27

    A radiation detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  3. An environmental dose experiment

    NASA Astrophysics Data System (ADS)

    Peralta, Luis

    2017-11-01

    Several radiation sources worldwide contribute to the delivered dose to the human population. This radiation also acts as a natural background when detecting radiation, for instance from radioactive sources. In this work a medium-sized plastic scintillation detector is used to evaluate the dose delivered by natural radiation sources. Calibration of the detector involved the use of radioactive sources and Monte Carlo simulation of the energy deposition per disintegration. A measurement of the annual dose due to background radiation to the body was then estimated. A dose value compatible with the value reported by the United Nations Scientific Committee on the Effects of Atomic Radiation was obtained.

  4. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  5. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  6. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K [Hinsdale, IL

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  7. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  8. 3-dimensional imaging system using crystal diffraction lenses

    DOEpatents

    Smither, R.K.

    1999-02-09

    A device for imaging a plurality of sources of x-ray and gamma-ray radiation is provided. Diffracting crystals are used for focusing the radiation and directing the radiation to a detector which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for a method for imaging x-ray and gamma radiation by supplying a plurality of sources of radiation; focusing the radiation onto a detector; analyzing the focused radiation to collect data as to the type and location of the radiation; and producing an image using the data. 18 figs.

  9. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  10. Methods for radiation detection and characterization using a multiple detector probe

    DOEpatents

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  11. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  12. Multiple Detector Optimization for Hidden Radiation Source Detection

    DTIC Science & Technology

    2015-03-26

    important in achieving operationally useful methods for optimizing detector emplacement, the 2-D attenuation model approach promises to speed up the...process of hidden source detection significantly. The model focused on detection of the full energy peak of a radiation source. Methods to optimize... radioisotope identification is possible without using a computationally intensive stochastic model such as the Monte Carlo n-Particle (MCNP) code

  13. Results of neutron irradiation of GEM detector for plasma radiation detection

    NASA Astrophysics Data System (ADS)

    Jednorog, S.; Bienkowska, B.; Chernyshova, M.; Łaszynska, E.; Prokopowicz, R.; Ziołkowski, A.

    2015-09-01

    The detecting devices dedicated for plasma monitoring will be exposed for massive fluxes of neutron, photons as well as other rays that are components of fusion reactions and their product interactions with plasma itself or surroundings. In result detecting module metallic components will be activated becoming a source of radiation. Moreover, electronics components could change their electronic properties. The prototype GEM detector constructed for monitoring soft X-ray radiation in ITER oriented tokamaks was used for plasma monitoring during experimental campaign on tokamak ASDEX Upgrade. After that it became a source of gamma radiation caused by neutrons. The present work contains description of detector activation in the laboratory conditions.

  14. Radiation Protection

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    Radiation protection is a very important aspect for the application of particle detectors in many different fields, like high energy physics, medicine, materials science, oil and mineral exploration, and arts, to name a few. The knowledge of radiation units, the experience with shielding, and information on biological effects of radiation are vital for scientists handling radioactive sources or operating accelerators or X-ray equipment. This article describes the modern radiation units and their conversions to older units which are still in use in many countries. Typical radiation sources and detectors used in the field of radiation protection are presented. The legal regulations in nearly all countries follow closely the recommendations of the International Commission on Radiological Protection (ICRP). Tables and diagrams with relevant information on the handling of radiation sources provide useful data for the researcher working in this field.

  15. Modeling radon daughter deposition rates for low background detectors

    NASA Astrophysics Data System (ADS)

    Westerdale, S.; Guiseppe, V. E.; Rielage, K.; Elliot, S. R.; Hime, A.

    2009-10-01

    Detectors such as those looking for dark matter and those working to detect neutrinoless double-beta decay require record low levels of background radiation. One major source of background radiation is from radon daughters that decay from airborne radon. In particular, ^222Rn decay products may be deposited on any detector materials that are exposed to environmental radon. Long-lasting daughters, especially ^210Pb, can pose a long-term background radiation source that can interfere with the detectors' measurements by emitting alpha particles into sensitive parts of the detectors. A better understanding of this radon daughter deposition will allow for preventative actions to be taken to minimize the amount of noise from this source. A test stand has therefore been set up to study the impact of various environmental factors on the rate of radon daughter deposition so that a model can be constructed. Results from the test stand and a model of radon daughter deposition will be presented.

  16. Characteristics of detectors for prevention of nuclear radiation terrorism

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. V.; Ryabeva, E. V.; Samosadny, V. T.

    2017-01-01

    There is description of one type of detectors in use for the task of nuclear terrorism cases prevention to determine the direction to the radioactive source and geometrical structure of radiation field. This type is a modular detector with anisotropic sensitivity. The principle of work of a modular detecting device is the simultaneous operation of several detecting modules with anisotropic sensitivity to gamma radiation.

  17. Apparatus and methods for determining gas saturation and porosity of a formation penetrated by a gas filled or liquid filled borehole

    DOEpatents

    Wilson, Robert D.

    2001-03-27

    Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, G P; Logan, C M

    We have estimated interference from external background radiation for a computed tomography (CT) scanner. Our intention is to estimate the interference that would be expected for the high-resolution SkyScan 1072 desk-top x-ray microtomography system. The SkyScan system uses a Microfocus x-ray source capable of a 10-{micro}m focal spot at a maximum current of 0.1 mA and a maximum energy of 130 kVp. All predictions made in this report assume using the x-ray source at the smallest spot size, maximum energy, and operating at the maximum current. Some of the systems basic geometry that is used for these estimates are: (1)more » Source-to-detector distance: 250 mm, (2) Minimum object-to-detector distance: 40 mm, and (3) Maximum object-to-detector distance: 230 mm. This is a first-order, rough estimate of the quantity of interference expected at the system detector caused by background radiation. The amount of interference is expressed by using the ratio of exposure expected at the detector of the CT system. The exposure values for the SkyScan system are determined by scaling the measured values of an x-ray source and the background radiation adjusting for the difference in source-to-detector distance and current. The x-ray source that was used for these measurements was not the SkyScan Microfocus x-ray tube. Measurements were made using an x-ray source that was operated at the same applied voltage but higher current for better statistics.« less

  19. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  20. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    PubMed Central

    Bircher, Chad; Shao, Yiping

    2012-01-01

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators’ internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm2 cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function in PET detectors, regardless of scintillator geometry or surface finish. Because an external radiation source is not needed, this method of DOI function measurement can be practically applied to individual PET detectors as well as assembled systems. PMID:22320787

  1. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.

    PubMed

    Bircher, Chad; Shao, Yiping

    2012-02-01

    Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm(2) cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function in PET detectors, regardless of scintillator geometry or surface finish. Because an external radiation source is not needed, this method of DOI function measurement can be practically applied to individual PET detectors as well as assembled systems.

  2. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bircher, Chad; Shao Yiping

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method couldmore » be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm{sup 2} cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function in PET detectors, regardless of scintillator geometry or surface finish. Because an external radiation source is not needed, this method of DOI function measurement can be practically applied to individual PET detectors as well as assembled systems.« less

  3. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  4. Coal-rock interface detector

    NASA Technical Reports Server (NTRS)

    Rose, S. D.; Crouch, C. E.; Jones, E. W. (Inventor)

    1979-01-01

    A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid.

  5. Organic Scintillation Detectors for Spectroscopic Radiation Portal Monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit

    Thousands of radiation portal monitors have been deployed worldwide to detect and deter the smuggling of nuclear and radiological materials that could be used in nefarious acts. Radiation portal monitors are often installed at bottlenecks where large amounts of people or goods must traverse. Examples of use include scanning cargo containers at shipping ports, vehicles at border crossings, and people at high profile functions and events. Traditional radiation portal monitors contain separate detectors for passively measuring neutron and gamma ray count rates. 3He tubes embedded in polyethylene and slabs of plastic scintillators are the most common detector materials used in radiation portal monitors. The radiation portal monitor alarm mechanism relies on measuring radiation count rates above user defined alarm thresholds. These alarm thresholds are set above natural background count rates. Minimizing false alarms caused by natural background and maximizing sensitivity to weakly emitting threat sources must be balanced when setting these alarm thresholds. Current radiation portal monitor designs suffer from frequent nuisance radiation alarms. These radiation nuisance alarms are most frequently caused by shipments of large quantities of naturally occurring radioactive material containing cargo, like kitty litter, as well as by humans who have recently undergone a nuclear medicine procedure, particularly 99mTc treatments. Current radiation portal monitors typically lack spectroscopic capabilities, so nuisance alarms must be screened out in time-intensive secondary inspections with handheld radiation detectors. Radiation portal monitors using organic liquid scintillation detectors were designed, built, and tested. A number of algorithms were developed to perform on-the-fly radionuclide identification of single and combination radiation sources moving past the portal monitor at speeds up to 2.2 m/s. The portal monitor designs were tested extensively with a variety of shielded and unshielded radiation sources, including special nuclear material, at the European Commission Joint Research Centre in Ispra, Italy. Common medical isotopes were measured at the C.S. Mott Children's Hospital and added to the radionuclide identification algorithms.

  6. Plural-wavelength flame detector that discriminates between direct and reflected radiation

    NASA Technical Reports Server (NTRS)

    Hall, Gregory H. (Inventor); Barnes, Heidi L. (Inventor); Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor); Smith, Harvey S. (Inventor)

    1997-01-01

    A flame detector employs a plurality of wavelength selective radiation detectors and a digital signal processor programmed to analyze each of the detector signals, and determine whether radiation is received directly from a small flame source that warrants generation of an alarm. The processor's algorithm employs a normalized cross-correlation analysis of the detector signals to discriminate between radiation received directly from a flame and radiation received from a reflection of a flame to insure that reflections will not trigger an alarm. In addition, the algorithm employs a Fast Fourier Transform (FFT) frequency spectrum analysis of one of the detector signals to discriminate between flames of different sizes. In a specific application, the detector incorporates two infrared (IR) detectors and one ultraviolet (UV) detector for discriminating between a directly sensed small hydrogen flame, and reflections from a large hydrogen flame. The signals generated by each of the detectors are sampled and digitized for analysis by the digital signal processor, preferably 250 times a second. A sliding time window of approximately 30 seconds of detector data is created using FIFO memories.

  7. Alpha-ray spectrometry at high temperature by using a compound semiconductor detector.

    PubMed

    Ha, Jang Ho; Kim, Han Soo

    2013-11-01

    The use of conventional radiation detectors in harsh environments is limited by radiation damage to detector materials and by temperature constraints. We fabricated a wide-band gap semiconductor radiation detector based on silicon carbide. All the detector components were considered for an application in a high temperature environment like a nuclear reactor core. The radiation response, especially to alpha particles, was measured using an (241)Am source at variable operating voltages at room temperature in the air. The temperature on detector was controlled from 30°C to 250°C. The alpha-particle spectra were measured at zero bias operation. Even though the detector is operated at high temperature, the energy resolution as a function of temperature is almost constant within 3.5% deviation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Nuclear fuel pin scanner

    DOEpatents

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  9. Fast coincidence counting with active inspection systems

    NASA Astrophysics Data System (ADS)

    Mullens, J. A.; Neal, J. S.; Hausladen, P. A.; Pozzi, S. A.; Mihalczo, J. T.

    2005-12-01

    This paper describes 2nd and 3rd order time coincidence distributions measurements with a GHz processor that synchronously samples 5 or 10 channels of data from radiation detectors near fissile material. On-line, time coincidence distributions are measured between detectors or between detectors and an external stimulating source. Detector-to-detector correlations are useful for passive measurements also. The processor also measures the number of times n pulses occur in a selectable time window and compares this multiplet distribution to a Poisson distribution as a method of determining the occurrence of fission. The detectors respond to radiation emitted in the fission process induced internally by inherent sources or by external sources such as LINACS, DT generators either pulsed or steady state with alpha detectors, etc. Data can be acquired from prompt emission during the source pulse, prompt emissions immediately after the source pulse, or delayed emissions between source pulses. These types of time coincidence measurements (occurring on the time scale of the fission chain multiplication processes for nuclear weapons grade U and Pu) are useful for determining the presence of these fissile materials and quantifying the amount, and are useful for counter terrorism and nuclear material control and accountability. This paper presents the results for a variety of measurements.

  10. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)

    2010-01-01

    The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.

  11. Radiograph and passive data analysis using mixed variable optimization

    DOEpatents

    Temple, Brian A.; Armstrong, Jerawan C.; Buescher, Kevin L.; Favorite, Jeffrey A.

    2015-06-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography analysis. For example, certain embodiments perform radiographic analysis using mixed variable computation techniques. One exemplary system comprises a radiation source, a two-dimensional detector for detecting radiation transmitted through a object between the radiation source and detector, and a computer. In this embodiment, the computer is configured to input the radiographic image data from the two-dimensional detector and to determine one or more materials that form the object by using an iterative analysis technique that selects the one or more materials from hierarchically arranged solution spaces of discrete material possibilities and selects the layer interfaces from the optimization of the continuous interface data.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera-Palmer, Belkis

    Predicting the performance of radiation detection systems at field sites based on measured performance acquired under controlled conditions at test locations, e.g., the Nevada National Security Site (NNSS), remains an unsolved and standing issue within DNDO’s testing methodology. Detector performance can be defined in terms of the system’s ability to detect and/or identify a given source or set of sources, and depends on the signal generated by the detector for the given measurement configuration (i.e., source strength, distance, time, surrounding materials, etc.) and on the quality of the detection algorithm. Detector performance is usually evaluated in the performance and operationalmore » testing phases, where the measurement configurations are selected to represent radiation source and background configurations of interest to security applications.« less

  13. Two-Step Calibration of a Multiwavelength Pyrometer for High Temperature Measurement Using a Quartz Lamp

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    2001-01-01

    There is no theoretical upper temperature limit for pyrometer application in temperature measurements. NASA Glenn's multiwavelength pyrometer can make measurements over wide temperature ranges. However, the radiation spectral response of the pyrometer's detector must be calibrated before any temperature measurement is attempted, and it is recommended that calibration be done at temperatures close to those for which measurements will be made. Calibration is a determination of the constants of proportionality at all wavelengths between the detector's output (voltage) and its input signals (usually from a blackbody radiation source) in order to convert detector output into radiation intensity. To measure high temperatures, the detectors are chosen to be sensitive in the spectral range from 0.4 to 2.5 micrometers. A blackbody furnace equilibrated at around 1000 C is often used for this calibration. Though the detector may respond sensitively to short wavelengths radiation, a blackbody furnace at 1000 C emits only feebly at very short wavelengths. As a consequence, the calibration constants that result may not be the most accurate. For pyrometry calibration, a radiation source emitting strongly at the short wavelengths is preferred. We have chosen a quartz halogen lamp for this purpose.

  14. Fabrication and characterization of a 3D Positive ion detector and its applications

    NASA Astrophysics Data System (ADS)

    Venkatraman, Pitchaikannu; Sureka, Chandrasekaran Senbagavadivoo

    2017-11-01

    There is a growing interest to experimentally evaluate the track structure induced by ionizing particles in order to characterize the radiobiological quality of ionizing radiation for applications in radiotherapy and radiation protection. To do so, a novel positive ion detector based on the multilayer printed circuit board (PCB) technology has been proposed previously, which works under the principle of ion induced impact ionization. Based on this, an upgraded 3D positive ion detector was fabricated in order to improve its efficiency and use it for various applications. To improve the efficiency of the detector, cathodes with different insulators (Bakelite plate and Steatite Ceramics) and conducting layers (ITO, FTO, and Gold coated cathode) were studied under various gaseous media (methane, nitrogen, and air) using Am-241, Co-60, Co-57, Na-22, Cs-137, and Ba-133 sources. From this study, it is confirmed that the novel 3D positive ion detector that has been upgraded using gold as strip material, tungsten (87%) coated copper (13%) as the core wire, gold coated ceramic as cathode, and thickness of 3.483 mm showed 9.2% efficiency under methane medium at 0.9 Torr pressure using an Am-241 source. It is also confirmed that when the conductivity of the cathode and thickness of the detector is increased, the performance of the detector is improved significantly. Further, the scope of the detector to use in the field of radiation protection, radiation dosimetry, gamma spectrometry, radiation biology, and oncology are reported here.

  15. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  16. Atmospheric scattering of middle uv radiation from an internal source.

    PubMed

    Meier, R R; Lee, J S; Anderson, D E

    1978-10-15

    A Monte Carlo model has been developed which simulates the multiple-scattering of middle-uv radiation in the lower atmosphere. The source of radiation is assumed to be monochromatic and located at a point. The physical effects taken into account in the model are Rayleigh and Mie scattering, pure absorption by particulates and trace atmospheric gases, and ground albedo. The model output consists of the multiply scattered radiance as a function of look-angle of a detector located within the atmosphere. Several examples are discussed, and comparisons are made with direct-source and single-scattered contributions to the signal received by the detector.

  17. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.

    PubMed

    Eichmann, Marion; Thomann, Benedikt

    2017-09-01

    Plastic scintillation detectors are used for dosimetry in small radiation fields with high dose gradients, e.g., provided by β-emitting sources like 106 Ru/ 106 Rh eye plaques. A drawback is a background signal caused by Cerenkov radiation generated by electrons passing the optical fibers (light guides) of this dosimetry system. Common approaches to correct for the Cerenkov signal are influenced by uncertainties resulting from detector positioning and calibration procedures. A different approach to avoid any correction procedure is to suppress the Cerenkov signal by replacing the solid core optical fiber with an air core light guide, previously shown for external beam therapy. In this study, the air core concept is modified and applied to the requirements of dosimetry in brachytherapy, proving its usability for measuring water energy doses in small radiation fields. Three air core detectors with different air core lengths are constructed and their performance in dosimetry for brachytherapy β-sources is compared with a standard two-fiber system, which uses a second fiber for Cerenkov correction. The detector systems are calibrated with a 90 Sr/ 90 Y secondary standard and tested for their angular dependence as well as their performance in depth dose measurements of 106 Ru/ 106 Rh sources. The signal loss relative to the standard detector increases with increasing air core length to a maximum value of 58.3%. At the same time, however, the percentage amount of Cerenkov light in the total signal is reduced from at least 12.1% to a value below 1.1%. There is a linear correlation between induced dose and measured signal current. The air core detectors determine the dose rates for 106 Ru/ 106 Rh sources without any form of correction for the Cerenkov signal. The air core detectors show advantages over the standard two-fiber system especially when measuring in radiation fields with high dose gradients. They can be used as simple one-fiber systems and allow for an almost Cerenkov-free scintillation dosimetry of brachytherapy β-sources. © 2017 American Association of Physicists in Medicine.

  18. SU-E-T-46: Application of a Twin-Detector Method for the Determination of the Mean Photon Energy Em at Points of Measurement in a Water Phantom Surrounding a GammaMed HDR 192Ir Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chofor, N; Poppe, B; Nebah, F

    Purpose: In a brachytherapy photon field in water the fluence-averaged mean photon energy Em at the point of measurement correlates with the radiation quality correction factor kQ of a non water-equivalent detector. To support the experimental assessment of Em, we show that the normalized signal ratio NSR of a pair of radiation detectors, an unshielded silicon diode and a diamond detector can serve to measure quantity Em in a water phantom at a Ir-192 unit. Methods: Photon fluence spectra were computed in EGSnrc based on a detailed model of the GammaMed source. Factor kQ was calculated as the ratio ofmore » the detector's spectrum-weighted responses under calibration conditions at a 60Co unit and under brachytherapy conditions at various radial distances from the source. The NSR was investigated for a pair of a p-type unshielded silicon diode 60012 and a synthetic single crystal diamond detector 60019 (both PTW Freiburg). Each detector was positioned according to its effective point of measurement, with its axis facing the source. Lateral signal profiles were scanned under complete scatter conditions, and the NSR was determined as the quotient of the signal ratio under application conditions x and that at position r-ref = 1 cm. Results: The radiation quality correction factor kQ shows a close correlation with the mean photon energy Em. The NSR of the diode/diamond pair changes by a factor of two from 0–18 cm from the source, while Em drops from 350 to 150 keV. Theoretical and measured NSR profiles agree by ± 2 % for points within 5 cm from the source. Conclusion: In the presence of the close correlation between radiation quality correction factor kQ and photon mean energy Em, the NSR provides a practical means of assessing Em under clinical conditions. Precise detector positioning is the major challenge.« less

  19. Setup and Calibration of SLAC's Peripheral Monitoring Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C.

    2004-09-03

    The goals of this project were to troubleshoot, repair, calibrate, and establish documentation regarding SLAC's (Stanford Linear Accelerator Center's) PMS (Peripheral Monitoring Station) system. The PMS system consists of seven PMSs that continuously monitor skyshine (neutron and photon) radiation levels in SLAC's environment. Each PMS consists of a boron trifluoride (BF{sub 3}) neutron detector (model RS-P1-0802-104 or NW-G-20-12) and a Geiger Moeller (GM) gamma ray detector (model TGM N107 or LND 719) together with their respective electronics. Electronics for each detector are housed in Nuclear Instrument Modules (NIMs) and are plugged into a NIM bin in the station. All communicationmore » lines from the stations to the Main Control Center (MCC) were tested prior to troubleshooting. To test communication with MCC, a pulse generator (Systron Donner model 100C) was connected to each channel in the PMS and data at MCC was checked for consistency. If MCC displayed no data, the communication cables to MCC or the CAMAC (Computer Automated Measurement and Control) crates were in need of repair. If MCC did display data, then it was known that the communication lines were intact. All electronics from each station were brought into the lab for troubleshooting. Troubleshooting usually consisted of connecting an oscilloscope or scaler (Ortec model 871 or 775) at different points in the circuit of each detector to record simulated pulses produced by a pulse generator; the input and output pulses were compared to establish the location of any problems in the circuit. Once any problems were isolated, repairs were done accordingly. The detectors and electronics were then calibrated in the field using radioactive sources. Calibration is a process that determines the response of the detector. Detector response is defined as the ratio of the number of counts per minute interpreted by the detector to the amount of dose equivalent rate (in mrem per hour, either calculated or measured). Detector response for both detectors is dependent upon the energy of the incident radiation; this trend had to be accounted for in the calibration of the BF{sub 3} detector. Energy dependence did not have to be taken into consideration when calibrating the GM detectors since GM detector response is only dependent on radiation energy below 100 keV; SLAC only produces a spectrum of gamma radiation above 100 keV. For the GM detector, calibration consisted of bringing a {sup 137}Cs source and a NIST-calibrated RADCAL Radiation Monitor Controller (model 9010) out to the field; the absolute dose rate was determined by the RADCAL device while simultaneously irradiating the GM detector to obtain a scaler reading corresponding to counts per minute. Detector response was then calculated. Calibration of the BF{sub 3} detector was done using NIST certified neutron sources of known emission rates and energies. Five neutron sources ({sup 238}PuBe, {sup 238}PuB, {sup 238}PuF4, {sup 238}PuLi and {sup 252}Cf) with different energies were used to account for the energy dependence of the response. The actual neutron dose rate was calculated by date-correcting NIST source data and considering the direct dose rate and scattered dose rate. Once the total dose rate (sum of the direct and scattered dose rates) was known, the response vs. energy curve was plotted. The first station calibrated (PMS6) was calibrated with these five neutron sources; all subsequent stations were calibrated with one neutron source and the energy dependence was assumed to be the same.« less

  20. SU-F-T-06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, F; Chofor, N; Schoenfeld, A

    2016-06-15

    Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, themore » energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be verified or even determined by measurement in a water phantom and comparison with dose distributions calculated using the TG43 dosimetry formalism. Project is supported by DIN Deutsches Institut fuer Normung.« less

  1. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2018-03-20

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  2. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  3. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique, called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF 2, CaF 2 and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.

  4. Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    NASA Astrophysics Data System (ADS)

    Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu

    2016-06-01

    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.

  5. Sources of Ionizing Radiation in Interplanetary Space

    NASA Image and Video Library

    2013-05-30

    This illustration depicts the two main types of radiation that NASA Radiation Assessment Detector RAD onboard Curiosity monitors, and how the magnetic field around Earth affects the radiation in space near Earth.

  6. The pyroelectric properties of TGS for application in infrared detection

    NASA Technical Reports Server (NTRS)

    Kroes, R. L.; Reiss, D.

    1981-01-01

    The pyroelectric property of triglycine sulfate and its application in the detection of infrared radiation are described. The detectivities of pyroelectric detectors and other types of infrared detectors are compared. The thermal response of a pyroelectric detector element and the resulting electrical response are derived in terms of the material parameters. The noise sources which limit the sensitivity of pyroelectric detectors are described, and the noise equivalent power for each noise source is given as a function of frequency and detector area.

  7. An Infrared Camera Simulation for Estimating Spatial Temperature Profiles and Signal-to-Noise Ratios of an Airborne Laser-Illuminated Target

    DTIC Science & Technology

    2007-06-01

    of SNR, she incorporated the effects that an InGaAs photovoltaic detector have in producing the signal along with the photon, Johnson, and shot noises ...the photovoltaic FPA detector modeled? • What detector noise sources limit the computed signal? 3.1 Modeling Methodology Two aspects in the IR camera...Another shot noise source in photovoltaic detectors is dark current. This current represents the current flowing in the detector when no optical radiation

  8. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface

    PubMed Central

    Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele

    2017-01-01

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source. PMID:28961198

  9. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface.

    PubMed

    Aleotti, Jacopo; Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele; Zappettini, Andrea

    2017-09-29

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source.

  10. Multiagency Urban Search Experiment Detector and Algorithm Test Bed

    NASA Astrophysics Data System (ADS)

    Nicholson, Andrew D.; Garishvili, Irakli; Peplow, Douglas E.; Archer, Daniel E.; Ray, William R.; Swinney, Mathew W.; Willis, Michael J.; Davidson, Gregory G.; Cleveland, Steven L.; Patton, Bruce W.; Hornback, Donald E.; Peltz, James J.; McLean, M. S. Lance; Plionis, Alexander A.; Quiter, Brian J.; Bandstra, Mark S.

    2017-07-01

    In order to provide benchmark data sets for radiation detector and algorithm development, a particle transport test bed has been created using experimental data as model input and validation. A detailed radiation measurement campaign at the Combined Arms Collective Training Facility in Fort Indiantown Gap, PA (FTIG), USA, provides sample background radiation levels for a variety of materials present at the site (including cinder block, gravel, asphalt, and soil) using long dwell high-purity germanium (HPGe) measurements. In addition, detailed light detection and ranging data and ground-truth measurements inform model geometry. This paper describes the collected data and the application of these data to create background and injected source synthetic data for an arbitrary gamma-ray detection system using particle transport model detector response calculations and statistical sampling. In the methodology presented here, HPGe measurements inform model source terms while detector response calculations are validated via long dwell measurements using 2"×4"×16" NaI(Tl) detectors at a variety of measurement points. A collection of responses, along with sampling methods and interpolation, can be used to create data sets to gauge radiation detector and algorithm (including detection, identification, and localization) performance under a variety of scenarios. Data collected at the FTIG site are available for query, filtering, visualization, and download at muse.lbl.gov.

  11. Systems and methods for neutron detection using scintillator nano-materials

    DOEpatents

    Letant, Sonia Edith; Wang, Tzu-Fang

    2016-03-08

    In one embodiment, a neutron detector includes a three dimensional matrix, having nanocomposite materials and a substantially transparent film material for suspending the nanocomposite materials, a detector coupled to the three dimensional matrix adapted for detecting a change in the nanocomposite materials, and an analyzer coupled to the detector adapted for analyzing the change detected by the detector. In another embodiment, a method for detecting neutrons includes receiving radiation from a source, converting neutrons in the radiation into alpha particles using converter material, converting the alpha particles into photons using quantum dot emitters, detecting the photons, and analyzing the photons to determine neutrons in the radiation.

  12. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use.

    PubMed

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  13. GADRAS Detector Response Function.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  14. GARLIC, A SHIELDING PROGRAM FOR GAMMA RADIATION FROM LINE- AND CYLINDER- SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, M.

    1959-06-01

    GARLlC is a program for computing the gamma ray flux or dose rate at a shielded isotropic point detector, due to a line source or the line equivalent of a cylindrical source. The source strength distribution along the line must be either uniform or an arbitrary part of the positive half-cycle of a cosine function The line source can be orierted arbitrarily with respect to the main shield and the detector, except that the detector must not be located on the line source or on its extensionThe main source is a homogeneous plane slab in which scattered radiation is accountedmore » for by multiplying each point element of the line source by a point source buildup factor inside the integral over the point elements. Between the main shield and the line source additional shields can be introduced, which are either plane slabs, parallel to the main shield, or cylindrical rings, coaxial with the line source. Scattered radiation in the additional shields can only be accounted for by constant build-up factors outside the integral. GARLlC-xyz is an extended version particularly suited for the frequently met problem of shielding a room containing a large number of line sources in diHerent positions. The program computes the angles and linear dimensions of a problem for GARLIC when the positions of the detector point and the end points of the line source are given as points in an arbitrary rectangular coordinate system. As an example the isodose curves in water are presented for a monoenergetic cosine-distributed line source at several source energies and for an operating fuel element of the Swedish reactor R3, (auth)« less

  15. [Clinical application of high-pitch excretory phase images during dual-source CT urography with stellar photon detector].

    PubMed

    Sun, Hao; Xue, Hua-dan; Jin, Zheng-yu; Wang, Xuan; Chen, Yu; He, Yong-lan; Zhang, Da-ming; Zhu, Liang; Wang, Yun; Qi, Bing; Xu, Kai; Wang, Ming

    2014-10-01

    To retrospectively evaluate the clinical feasibility of high-pitch excretory phase images during dual-source CT urography with Stellar photon detector. Totally 100 patients received dual-source CT high-pitch urinary excretory phase scanning with Stellar photon detector [80 kV, ref.92 mAs, CARE Dose 4D and CARE kV, pitch of 3.0, filter back projection reconstruction algorithm (FBP)] (group A). Another 100 patients received dual-source CT high-pitch urinary excretory phase scanning with common detector(100 kV, ref.140 mAs, CARE Dose 4D, pitch of 3.0, FBP) (group B). Quantitative measurement of CT value of urinary segments (Hounsfield units), image noise (Hounsfield units), and effective radiation dose (millisievert) were compared using independent-samples t test between two groups. Urinary system subjective opacification scores were compared using Mann-Whitney U test between two groups. There was no significant difference in subjective opacification score of intrarenal collecting system and ureters between two groups (all P>0.05). The group A images yielded significantly higher CT values of all urinary segments (all P<0.01). There was no significant difference in image noise (P>0.05). The effective radiation dose of group A (1.1 mSv) was significantly lower than that of group B (3.79 mSv) (P<0.01). High-pitch low-tube-voltage during excretory phase dual-source CT urography with Stellar photon detector is feasible, with acceptable image noise and lower radiation dose.

  16. Apparatus And Method For Osl-Based, Remote Radiation Monitoring And Spectrometry

    DOEpatents

    Miller, Steven D.; Smith, Leon Eric; Skorpik, James R.

    2006-03-07

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  17. Apparatus and method for OSL-based, remote radiation monitoring and spectrometry

    DOEpatents

    Smith, Leon Eric [Richland, WA; Miller, Steven D [Richland, WA; Bowyer, Theodore W [Oakton, VA

    2008-05-20

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  18. Method and apparatus for measuring spatial uniformity of radiation

    DOEpatents

    Field, Halden

    2002-01-01

    A method and apparatus for measuring the spatial uniformity of the intensity of a radiation beam from a radiation source based on a single sampling time and/or a single pulse of radiation. The measuring apparatus includes a plurality of radiation detectors positioned on planar mounting plate to form a radiation receiving area that has a shape and size approximating the size and shape of the cross section of the radiation beam. The detectors concurrently receive portions of the radiation beam and transmit electrical signals representative of the intensity of impinging radiation to a signal processor circuit connected to each of the detectors and adapted to concurrently receive the electrical signals from the detectors and process with a central processing unit (CPU) the signals to determine intensities of the radiation impinging at each detector location. The CPU displays the determined intensities and relative intensity values corresponding to each detector location to an operator of the measuring apparatus on an included data display device. Concurrent sampling of each detector is achieved by connecting to each detector a sample and hold circuit that is configured to track the signal and store it upon receipt of a "capture" signal. A switching device then selectively retrieves the signals and transmits the signals to the CPU through a single analog to digital (A/D) converter. The "capture" signal. is then removed from the sample-and-hold circuits. Alternatively, concurrent sampling is achieved by providing an A/D converter for each detector, each of which transmits a corresponding digital signal to the CPU. The sampling or reading of the detector signals can be controlled by the CPU or level-detection and timing circuit.

  19. SU-E-I-88: The Effect of System Dead Time On Real-Time Plastic and GOS Based Fiber-Optic Dosimetry Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerner, M; Hintenlang, D

    Purpose: A methodology is presented to correct for measurement inaccuracies at high detector count rates using a plastic and GOS scintillation fibers coupled to a photomultiplier tube with digital readout. This system allows temporal acquisition and manipulation of measured data. Methods: The detection system used was a plastic scintillator and a separate gadolinium scintillator, both (0.5 diameter) coupled to an optical fiber with a Hamamatsu photon counter with a built-in microcontroller and digital interface. Count rate performance of the system was evaluated using the nonparalzable detector model. Detector response was investigated across multiple radiation sources including: orthovoltage x-ray system, colbat-60more » gamma rays, proton therapy beam, and a diagnostic radiography x-ray tube. The dead time parameter was calculated by measuring the count rate of the system at different exposure rates using a reference detector. Results: The system dead time was evaluated for the following sources of radiation used clinically: diagnostic energy x-rays, cobalt-60 gamma rays, orthovoltage xrays, particle proton accelerator, and megavoltage x-rays. It was found that dead time increased significantly when exposing the detector to sources capable of generating Cerenkov radiation, all of the sources sans the diagnostic x-rays, with increasing prominence at higher photon energies. Percent depth dose curves generated by a dedicated ionization chamber and compared to the detection system demonstrated that correcting for dead time improves accuracy. On most sources, nonparalzable model fit provided an improved system response. Conclusion: Overall, the system dead time was variable across the investigated radiation particles and energies. It was demonstrated that the system response accuracy was greatly improved by correcting for dead time effects. Cerenkov radiation plays a significant role in the increase in the system dead time through transient absorption effects attributed to electron hole-pair creations within the optical waveguide.« less

  20. Multiple layer optical memory system using second-harmonic-generation readout

    DOEpatents

    Boyd, Gary T.; Shen, Yuen-Ron

    1989-01-01

    A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.

  1. Method of non-destructively inspecting a curved wall portion

    DOEpatents

    Fong, James T.

    1996-01-01

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  2. Beta-spectrometer with Si-detectors for the study of 144Ce-144Pr decays

    NASA Astrophysics Data System (ADS)

    Alexeev, I. E.; Bakhlanov, S. V.; Bazlov, N. V.; Chmel, E. A.; Derbin, A. V.; Drachnev, I. S.; Kotina, I. M.; Muratova, V. N.; Pilipenko, N. V.; Semyonov, D. A.; Unzhakov, E. V.; Yeremin, V. K.

    2018-05-01

    Here we present the specifications of a newly developed beta-spectrometer, based on full absorption Si(Li) detector and thin transmission detector, allowing one to perform efficient separation beta-radiation and accompanying X-rays and gamma radiation. Our method is based on registration of coincident events from both detectors. The spectrometer can be used for precision measurements of various beta-spectra, namely for the beta-spectrum shape study of 144Pr, which is considered to be an advantageous anti-neutrino source for sterile neutrino searches.

  3. Integration of a Fire Detector into a Spacecraft

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.

    1972-01-01

    A detector sensitive to only the ultraviolet radiation emitted by flames has been selected as the basic element of the NASA Skylab fire detection system. It is sensitive to approximately 10(exp -12)W of radiation and will detect small flames at distances in excess of 3m. The performance of the detector was verified by experiments in an aircraft flying zero-gravity parabolas to simulate the characteristics of a fire which the detector must sense. Extensive investigation and exacting design was necessary to exclude all possible sources of false alarms. Optical measurements were made on all the spacecraft windows to determine the amount of solar radiation transmitted. The lighting systems and the onboard experiments also were appraised for ultraviolet emissions. Proton-accelerator tests were performed to determine the interaction of the Earth's trapped radiation belts with the detectors and the design of the instrument was modified to negate these effects.

  4. CVD diamond detectors for ionizing radiation

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2×4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a testbeam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5×10 15 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics.

  5. A brachytherapy photon radiation quality index Q(BT) for probe-type dosimetry.

    PubMed

    Quast, Ulrich; Kaulich, Theodor W; Álvarez-Romero, José T; Carlsson Tedgren, Sa; Enger, Shirin A; Medich, David C; Mourtada, Firas; Perez-Calatayud, Jose; Rivard, Mark J; Zakaria, G Abu

    2016-06-01

    In photon brachytherapy (BT), experimental dosimetry is needed to verify treatment plans if planning algorithms neglect varying attenuation, absorption or scattering conditions. The detector's response is energy dependent, including the detector material to water dose ratio and the intrinsic mechanisms. The local mean photon energy E¯(r) must be known or another equivalent energy quality parameter used. We propose the brachytherapy photon radiation quality indexQ(BT)(E¯), to characterize the photon radiation quality in view of measurements of distributions of the absorbed dose to water, Dw, around BT sources. While the external photon beam radiotherapy (EBRT) radiation quality index Q(EBRT)(E¯)=TPR10(20)(E¯) is not applicable to BT, the authors have applied a novel energy dependent parameter, called brachytherapy photon radiation quality index, defined as Q(BT)(E¯)=Dprim(r=2cm,θ0=90°)/Dprim(r0=1cm,θ0=90°), utilizing precise primary absorbed dose data, Dprim, from source reference databases, without additional MC-calculations. For BT photon sources used clinically, Q(BT)(E¯) enables to determine the effective mean linear attenuation coefficient μ¯(E) and thus the effective energy of the primary photons Eprim(eff)(r0,θ0) at the TG-43 reference position Pref(r0=1cm,θ0=90°), being close to the mean total photon energy E¯tot(r0,θ0). If one has calibrated detectors, published E¯tot(r) and the BT radiation quality correction factor [Formula: see text] for different BT radiation qualities Q and Q0, the detector's response can be determined and Dw(r,θ) measured in the vicinity of BT photon sources. This novel brachytherapy photon radiation quality indexQ(BT) characterizes sufficiently accurate and precise the primary photon's penetration probability and scattering potential. Copyright © 2016. Published by Elsevier Ltd.

  6. Methods of in vivo radiation measurement

    DOEpatents

    Huffman, Dennis D.; Hughes, Robert C.; Kelsey, Charles A.; Lane, Richard; Ricco, Antonio J.; Snelling, Jay B.; Zipperian, Thomas E.

    1990-01-01

    Methods of and apparatus for in vivo radiation measurements relay on a MOSFET dosimeter of high radiation sensitivity with operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.

  7. EVALUATING THE SENSITIVITY OF RADIONUCLIDE DETECTORS FOR CONDUCTING A MARITIME ON-BOARD SEARCH USING MONTE CARLO SIMULATION IMPLEMENTED IN AVERT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S; Dave Dunn, D

    The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation implemented in AVERT{reg_sign}. AVERT{reg_sign}, short for the Automated Vulnerability Evaluation for Risk of Terrorism, is personal computer based vulnerability assessment software developed by the ARES Corporation. The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation. The detectors, a RadPack and also a Personal Radiation Detector (PRD), were chosen from the class of Human Portable Radiation Detection Systems (HPRDS). Human Portable Radiationmore » Detection Systems (HPRDS) serve multiple purposes. In the maritime environment, there is a need to detect, localize, characterize, and identify radiological/nuclear (RN) material or weapons. The RadPack is a commercially available broad-area search device used for gamma and also for neutron detection. The PRD is chiefly used as a personal radiation protection device. It is also used to detect contraband radionuclides and to localize radionuclide sources. Neither device has the capacity to characterize or identify radionuclides. The principal aim of this study was to investigate the sensitivity of both the RadPack and the PRD while being used under controlled conditions in a simulated maritime environment for detecting hidden RN contraband. The detection distance varies by the source strength and the shielding present. The characterization parameters of the source are not indicated in this report so the results summarized are relative. The Monte Carlo simulation results indicate the probability of detection of the RN source at certain distances from the detector which is a function of transverse speed and instrument sensitivity for the specified RN source.« less

  8. Methods of and apparatus for radiation measurement, and specifically for in vivo radiation measurement

    DOEpatents

    Huffman, D.D.; Hughes, R.C.; Kelsey, C.A.; Lane, R.; Ricco, A.J.; Snelling, J.B.; Zipperian, T.E.

    1986-08-29

    Methods of and apparatus for in vivo radiation measurements rely on a MOSFET dosimeter of high radiation sensitivity which operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.

  9. Reticle stage based linear dosimeter

    DOEpatents

    Berger, Kurt W [Livermore, CA

    2007-03-27

    A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

  10. Reticle stage based linear dosimeter

    DOEpatents

    Berger, Kurt W.

    2005-06-14

    A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen

    Accurate detector modeling is a requirement to design systems in many non-proliferation scenarios; by determining a Detector’s Response Function (DRF) to incident radiation, it is possible characterize measurements of unknown sources. DRiFT is intended to post-process MCNP® output and create realistic detector spectra. Capabilities currently under development include the simulation of semiconductor, gas, and (as is discussed in this work) scintillator detector physics. Energy spectra and pulse shape discrimination (PSD) trends for incident photon and neutron radiation have been reproduced by DRiFT.

  12. Nuclear Security Education Program at the Pennsylvania State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less

  13. Organic liquid scintillation detectors for on-the-fly neutron/gamma alarming and radionuclide identification in a pedestrian radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Ruch, Marc L.; Poitrasson-Riviere, Alexis; Sagadevan, Athena; Clarke, Shaun D.; Pozzi, Sara

    2015-07-01

    We present new experimental results from a radiation portal monitor based on the use of organic liquid scintillators. The system was tested as part of a 3He-free radiation portal monitor testing campaign at the European Commission's Joint Research Centre in Ispra, Italy, in February 2014. The radiation portal monitor was subjected to a wide range of test conditions described in ANSI N42.35, including a variety of gamma-ray sources and a 20,000 n/s 252Cf source. A false alarm test tested whether radiation portal monitors ever alarmed in the presence of only natural background. The University of Michigan Detection for Nuclear Nonproliferation Group's system triggered zero false alarms in 2739 trials. It consistently alarmed on a variety of gamma-ray sources travelling at 1.2 m/s at a 70 cm source to detector distance. The neutron source was detected at speeds up to 3 m/s and in configurations with up to 8 cm of high density polyethylene shielding. The success of on-the-fly radionuclide identification varied with the gamma-ray source measured as well as with which of two radionuclide identification methods was used. Both methods used a least squares comparison between the measured pulse height distributions to library spectra to pick the best match. The methods varied in how the pulse height distributions were modified prior to the least squares comparison. Correct identification rates were as high as 100% for highly enriched uranium, but as low as 50% for 241Am. Both radionuclide identification algorithms produced mixed results, but the concept of using liquid scintillation detectors for gamma-ray and neutron alarming in radiation portal monitor was validated.

  14. Wide Bandgap Semiconductor Detector Optimization for Flash X-Ray Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roecker, Caleb Daniel; Schirato, Richard C.

    2017-11-17

    Charge trapping, resulting in a decreased and spatially dependent electric field, has long been a concern for wide bandgap semiconductor detectors. While significant work has been performed to characterize this degradation at varying temperatures and radiation environments, this work concentrates upon examining the event-to-event response in a flash X-ray environment. The following work investigates if charge trapping is a problem for CZT detectors, with particular emphasis on flash X-ray radiation fields at cold temperatures. Results are compared to a non-flash radiation field, using an Am-241 alpha source and similar temperature transitions. Our ability to determine if a response change occurredmore » was hampered by the repeatability of our flash X-ray systems; a small response change was observed with the Am-241 source. Due to contrast of these results, we are in the process of revisiting the Am-241 measurements in the presence of a high radiation environment. If the response change is more pronounced in the high radiation environment, a similar test will be performed in the flash X-ray environment.« less

  15. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    PubMed

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-07

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  16. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  17. The Response of the BATSE LADs to Radiation From the Crab Nebula and Plans for Radioactivity Studies on Space Station

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1996-01-01

    The Burst And Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO) was designed to measure X-rays and gamma rays with energies from about 50 keV to above 2 MeV. As with many scientific investigations, the success of the original experiment lead to additional areas of research interest. In the case of BATSE the ability to observe the radiation from sources down to about 20 keV became readily apparent. This lead to a continuing program of measuring the spectrum of radiation from stellar objects at these lower energies. One of these, the Crab Nebula, has a very steady radiation flux and, thus, has become a "standard candle" for such measurements. The Large Area Detectors (LADS) on BATSE contain a 1.27-cm thick, 25.4-cm radius NaI(Tl) detector behind a 6.35-mm thick polystyrene Charged Particle Detector (CPD) used to "veto" charged particles signals. The detectors have been calibrated with a series of gamma and X-ray sources and the results carefully simulated with a Monte Carlo code. In the calibration process the computer simulation accounts for scattering from material in the counting room as well as the BATSE structure. For an orbiting detector, scattering from the entire spacecraft must be modeled as well as for all covering material over the detectors. Five years after CGRO was launched on April 5, 1991, a large body of observational data has been taken of the Crab Nebula. The technique used for these observations, and for many other X-ray sources, is Earth occultation. From the perspective of the spacecraft, the Earth occults most stellar objects once in orbit, i.e., the signal is lost as the source sets and is regained as the source rises. A careful analysis of the continuing signals from all sources measured allows for an accurate measurement of the spectrum of a given source. An analysis of this data from the Crab has indicated that the LADs are very responsive at energies as low as 20 keV-at energies below the range of calibration. While the model accounts for many of the interactions of the photons with the detectors, the observation of nonstatistical deviations at low energy and at small angles has suggested a need to recalibrate at energies where the attenuation effects are increasing exponentially.

  18. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  19. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  20. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  1. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  2. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  3. Measuring Optical Component Radiation Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzl, Derek; Tesarek, Richard

    2017-08-01

    Scintillator based detectors are used to monitor beam losses in the Fermilab accelerator complex. These detectors are approximately 500 times faster than traditional ionization chamber loss monitors and can see beam losses 20 nanoseconds apart. These fast loss monitors are used in areas of the accelerator known to be sources of heavy beam loss and as such, are exposed to high doses of radiation. Over time, radiation exposure reduces the ability of optical components to transmit light by darkening the material. The most dramatic effects are seen in the optical cement and light guide materials comprising the detector. We exploremore » this darkening effect by measuring the transmittance spectra of the detector materials for varying irradiation exposures. Presented here, are the optical transmittance spectra for a variety of radiation exposures and optical materials. The data has revealed an epoxy which withstands exposure far better than traditional optical cements.« less

  4. Modeling Urban Scenarios & Experiments: Fort Indiantown Gap Data Collections Summary and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Daniel E.; Bandstra, Mark S.; Davidson, Gregory G.

    This report summarizes experimental radiation detector, contextual sensor, weather, and global positioning system (GPS) data collected to inform and validate a comprehensive, operational radiation transport modeling framework to evaluate radiation detector system and algorithm performance. This framework will be used to study the influence of systematic effects (such as geometry, background activity, background variability, environmental shielding, etc.) on detector responses and algorithm performance using synthetic time series data. This work consists of performing data collection campaigns at a canonical, controlled environment for complete radiological characterization to help construct and benchmark a high-fidelity model with quantified system geometries, detector response functions,more » and source terms for background and threat objects. This data also provides an archival, benchmark dataset that can be used by the radiation detection community. The data reported here spans four data collection campaigns conducted between May 2015 and September 2016.« less

  5. Skyshine Contribution to Gamma Ray Background Between 0 and 4 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Allison L.; Borgardt, James D.; Kouzes, Richard T.

    2009-08-14

    Natural gamma-ray background is composed of four components; which include cosmic rays, cosmic ray produced atmospheric activity, terrestrial sources, and skyshine from terrestrial sources. Skyshine is radiation scattered from the air above a source that can produce a signal in radiation detection instrumentation. Skyshine has been studied for many years but its contribution to the natural background observed in a detector has not been studied. A large NaI(Tl) detector was used to investigate each of the four components of the natural background using a series of 48-hour measurements and appropriate lead shielding configured to discriminate contributions from each component. Itmore » was found that while the contribution from skyshine decreases rapidly with energy, it represents a significant portion of the background spectrum below ~500keV. A similar campaign of measurements using a HPGe detector is underway.« less

  6. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  7. Recent technologic advances in multi-detector row cardiac CT.

    PubMed

    Halliburton, Sandra Simon

    2009-11-01

    Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.

  8. Multi-directional radiation detector using photographic film

    NASA Astrophysics Data System (ADS)

    Junet, L. K.; Majid, Z. A. Abdul; Sapuan, A. H.; Sayed, I. S.; Pauzi, N. F.

    2014-11-01

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation.

  9. Integrating Wireless Networking for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Board, Jeremy; Barzilov, Alexander; Womble, Phillip; Paschal, Jon

    2006-10-01

    As wireless networking becomes more available, new applications are being developed for this technology. Our group has been studying the advantages of wireless networks of radiation detectors. With the prevalence of the IEEE 802.11 standard (``WiFi''), we have developed a wireless detector unit which is comprised of a 5 cm x 5 cm NaI(Tl) detector, amplifier and data acquisition electronics, and a WiFi transceiver. A server may communicate with the detector unit using a TCP/IP network connected to a WiFi access point. Special software on the server will perform radioactive isotope determination and estimate dose-rates. We are developing an enhanced version of the software which utilizes the receiver signal strength index (RSSI) to estimate source strengths and to create maps of radiation intensity.

  10. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data sources that are used to protect the ACIS detector system from space weather events.

  11. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  12. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  13. High-Rydberg Xenon Submillimeter-Wave Detector

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara

    1987-01-01

    Proposed detector for infrared and submillimeter-wavelength radiation uses excited xenon atoms as Rydberg sensors instead of customary beams of sodium, potassium, or cesium. Chemically inert xenon easily stored in pressurized containers, whereas beams of dangerously reactive alkali metals must be generated in cumbersome, unreliable ovens. Xenon-based detector potential for infrared astronomy and for Earth-orbiter detection of terrestrial radiation sources. Xenon atoms excited to high energy states in two stages. Doubly excited atoms sensitive to photons in submillimeter wavelength range, further excited by these photons, then ionized and counted.

  14. An integrated circuit/microsystem/nano-enhanced four species radiation sensor for inexpensive fissionable material detection

    NASA Astrophysics Data System (ADS)

    Waguespack, Randy Paul

    2011-12-01

    Small scale radiation detectors sensitive to alpha, beta, electromagnetic, neutron radiation are needed to combat the threat of nuclear terrorism and maintain national security. There are many types of radiation detectors on the market, and the type of detector chosen is usually determined by the type of particle to be detected. In the case of fissionable material, an ideal detector needs to detect all four types of radiation, which is not the focus of many detectors. For fissionable materials, the two main types of radiation that must be detected are gamma rays and neutrons. Our detector uses a glass or quartz scintillator doped with 10B nanoparticles to detect all four types of radiation particles. Boron-10 has a thermal neutron cross section of 3,840 barns. The interaction between the neutron and boron results in a secondary charge particle in the form of an alpha particle to be emitted, which is detectable by the scintillator. Radiation impinging on the scintillator matrix produces varying optical pulses dependent on the energy of the particles. The optical pulses are then detected by a photomultiplier (PM) tube, creating a current proportional to the energy of the particle. Current pulses from the PM tube are differentiated by on-chip pulse height spectroscopy, allowing for source discrimination. The pulse height circuitry has been fabricated with discrete circuits and designed into an integrated circuit package. The ability to replace traditional PM tubes with a smaller, less expensive photomultiplier will further reduce the size of the device and enhance the cost effectiveness and portability of the detector.

  15. Additional adjoint Monte Carlo studies of the shielding of concrete structures against initial gamma radiation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, M.; Cohen, M.O.

    1975-02-01

    The adjoint Monte Carlo method previously developed by MAGI has been applied to the calculation of initial radiation dose due to air secondary gamma rays and fission product gamma rays at detector points within buildings for a wide variety of problems. These provide an in-depth survey of structure shielding effects as well as many new benchmark problems for matching by simplified models. Specifically, elevated ring source results were obtained in the following areas: doses at on-and off-centerline detectors in four concrete blockhouse structures; doses at detector positions along the centerline of a high-rise structure without walls; dose mapping at basementmore » detector positions in the high-rise structure; doses at detector points within a complex concrete structure containing exterior windows and walls and interior partitions; modeling of the complex structure by replacing interior partitions by additional material at exterior walls; effects of elevation angle changes; effects on the dose of changes in fission product ambient spectra; and modeling of mutual shielding due to external structures. In addition, point source results yielding dose extremes about the ring source average were obtained. (auth)« less

  16. Development of 2D imaging of SXR plasma radiation by means of GEM detectors

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

    2014-11-01

    Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

  17. Digital Inject Book v. 1.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldridge, Bryce

    2016-10-05

    Digital Inject Book is a software program designed to generate and managed simulated data for radiation detectors, used to increase the realism of training where real radiation sources are impractical, expensive, or simply not available.

  18. Precision disablement aiming system

    DOEpatents

    Monda, Mark J.; Hobart, Clinton G.; Gladwell, Thomas Scott

    2016-02-16

    A disrupter to a target may be precisely aimed by positioning a radiation source to direct radiation towards the target, and a detector is positioned to detect radiation that passes through the target. An aiming device is positioned between the radiation source and the target, wherein a mechanical feature of the aiming device is superimposed on the target in a captured radiographic image. The location of the aiming device in the radiographic image is used to aim a disrupter towards the target.

  19. Advances in solar and cosmic X-ray astronomy - A survey of experimental techniques and observational results.

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Thomas, R. J.; Underwood, J. H.

    1972-01-01

    The current status of X-ray astronomy is surveyed by reviewing observational results and theoretical conclusions gained within the past two years in areas dealing with the quiet-sun, slowly-varying, and burst components of solar X-radiation and with the features of cosmic X-ray sources. Thermal and nonthermal processes responsible for a wide variety of X-ray emission mechanisms in nature are explained, and characteristics of X radiation from specific solar structures are described. Attention is given to the effects of interstellar and intergalactic matter on cosmic X-rays; the properties of galactic and extragalactic X-ray sources; and the specifications of such instruments as gas-filled ionization detectors, proportional counters, Geiger counters, scintillation detectors, photoelectric detectors, polarimeters, collimators, spectrometers, and imaging systems.

  20. Small unmanned aircraft system for remote contour mapping of a nuclear radiation field

    NASA Astrophysics Data System (ADS)

    Guss, Paul; McCall, Karen; Malchow, Russell; Fischer, Rick; Lukens, Michael; Adan, Mark; Park, Ki; Abbott, Roy; Howard, Michael; Wagner, Eric; Trainham, Clifford P.; Luke, Tanushree; Mukhopadhyay, Sanjoy; Oh, Paul; Brahmbhatt, Pareshkumar; Henderson, Eric; Han, Jinlu; Huang, Justin; Huang, Casey; Daniels, Jon

    2017-09-01

    For nuclear disasters involving radioactive contamination, small unmanned aircraft systems (sUASs) equipped with nuclear radiation detection and monitoring capability can be very important tools. Among the advantages of a sUAS are quick deployment, low-altitude flying that enhances sensitivity, wide area coverage, no radiation exposure health safety restriction, and the ability to access highly hazardous or radioactive areas. Additionally, the sUAS can be configured with the nuclear detecting sensor optimized to measure the radiation associated with the event. In this investigation, sUAS platforms were obtained for the installation of sensor payloads for radiation detection and electro-optical systems that were specifically developed for sUAS research, development, and operational testing. The sensor payloads were optimized for the contour mapping of a nuclear radiation field, which will result in a formula for low-cost sUAS platform operations with built-in formation flight control. Additional emphases of the investigation were to develop the relevant contouring algorithms; initiate the sUAS comprehensive testing using the Unmanned Systems, Inc. (USI) Sandstorm platforms and other acquired platforms; and both acquire and optimize the sensors for detection and localization. We demonstrated contour mapping through simulation and validated waypoint detection. We mounted a detector on a sUAS and operated it initially in the counts per second (cps) mode to perform field and flight tests to demonstrate that the equipment was functioning as designed. We performed ground truth measurements to determine the response of the detector as a function of source-to-detector distance. Operation of the radiation detector was tested using different unshielded sources.

  1. Environmental Monitoring and Characterization of Radiation Sources on UF Campus Using a Large Volume NaI Detector

    NASA Astrophysics Data System (ADS)

    Bruner, Jesse A.; Gardiner, Hannah E.; Jordan, Kelly A.; Baciak, James E.

    2016-09-01

    Environmental radiation surveys are important for applications such as safety and regulations. This is especially true for areas exposed to emissions from nuclear reactors, such as the University of Florida Training Reactor (UFTR). At the University of Florida, surveys are performed using the RSX-1 NaI detector, developed by Radiation Solutions Inc. The detector uses incoming gamma rays and an Advanced Digital Spectrometer module to produce a linear energy spectrum. These spectra can then be analyzed in real time with a personal computer using the built in software, RadAssist. We report on radiation levels around the University of Florida campus using two mobile detection platforms, car-borne and cart-borne. The car-borne surveys provide a larger, broader map of campus radiation levels. On the other hand, cart-borne surveys provide a more detailed radiation map because of its ability to reach places on campus cars cannot go. Throughout the survey data, there are consistent radon decay product energy peaks in addition to other sources such as medical I-131 found in a large crowd of people. Finally, we investigate further applications of this mobile detection platform, such as tracking the Ar-41 plume emitted from the UFTR and detection of potential environmental hazards.

  2. Monte Carlo modelling of large scale NORM sources using MCNP.

    PubMed

    Wallace, J D

    2013-12-01

    The representative Monte Carlo modelling of large scale planar sources (for comparison to external environmental radiation fields) is undertaken using substantial diameter and thin profile planar cylindrical sources. The relative impact of source extent, soil thickness and sky-shine are investigated to guide decisions relating to representative geometries. In addition, the impact of source to detector distance on the nature of the detector response, for a range of source sizes, has been investigated. These investigations, using an MCNP based model, indicate a soil cylinder of greater than 20 m diameter and of no less than 50 cm depth/height, combined with a 20 m deep sky section above the soil cylinder, are needed to representatively model the semi-infinite plane of uniformly distributed NORM sources. Initial investigation of the effect of detector placement indicate that smaller source sizes may be used to achieve a representative response at shorter source to detector distances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Effects of 1-MeV gamma radiation on a multi-anode microchannel array detector tube

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1979-01-01

    A multianode microchannel array (MAMA) detector tube without a photocathode was exposed to a total dose of 1,000,000 rads of 1-MeV gamma radiation from a Co-60 source. The high-voltage characteristic of the microchannel array plate, average dark count, gain, and resolution of pulse height distribution characteristics showed no degradation after this total dose. In fact, the degassing of the microchannels induced by the high radiation flux had the effect of cleaning up the array plate and improving its characteristics.

  4. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    NASA Astrophysics Data System (ADS)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On Production of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical Gravitational Wave Detectors * List of Participants

  5. Spectroscopic quantification of extremely rare molecular species in the presence of interfering optical absorption

    DOEpatents

    Ognibene, Ted; Bench, Graham; McCartt, Alan Daniel; Turteltaub, Kenneth; Rella, Chris W.; Tan, Sze; Hoffnagle, John A.; Crosson, Eric

    2017-05-09

    Optical spectrometer apparatus, systems, and methods for analysis of carbon-14 including a resonant optical cavity configured to accept a sample gas including carbon-14, an optical source configured to deliver optical radiation to the resonant optical cavity, an optical detector configured to detect optical radiation emitted from the resonant cavity and to provide a detector signal; and a processor configured to compute a carbon-14 concentration from the detector signal, wherein computing the carbon-14 concentration from the detector signal includes fitting a spectroscopic model to a measured spectrogram, wherein the spectroscopic model accounts for contributions from one or more interfering species that spectroscopically interfere with carbon-14.

  6. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.

    2016-02-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.

  7. Laser Spiderweb Sensor Used with Portable Handheld Devices

    NASA Technical Reports Server (NTRS)

    Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)

    2017-01-01

    A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.

  8. Monte Carlo simulation of simultaneous radiation detection in the hybrid tomography system ClearPET-XPAD3/CT

    NASA Astrophysics Data System (ADS)

    Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.

    2016-07-01

    Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.

  9. Measuring Charge Collection Efficiency in Diamond Vertex Detectors

    NASA Astrophysics Data System (ADS)

    Josey, Brian; Seidel, Sally; Hoeferkamp, Martin

    2011-10-01

    As currently used at the Large Hadron Collider, vertex detectors are composed primarily of silicon sensors that image particle tracks by detecting the creation of electron-hole pairs caused by the excitation of the silicon atoms. We are investigating replacing these silicon detectors with detectors made out of diamond. Diamond is advantageous due to its radiation hardness. We are measuring the charge collection efficiency of diamond as a function of fluence. We are building a characterization station. Diamond samples will be placed into the characterization station and exposed to a strontium-90 beta source, before and after I irradiate them with 800 MeV protons at LANL. The radiation from the Sr-90 source will create electron-hole pairs. These will be read out by applying an electric field across the sample. The system is triggered by a scintillator-photomultiplier tube assembly. The goal of this measurement is to record collected charge as a function of bias voltage. The diamond charge collection data will be compared to silicon and predictions about detector operation at the LHC will be made.

  10. MTS-6 detectors calibration by using 239Pu-Be neutron source.

    PubMed

    Wrzesień, Małgorzata; Albiniak, Łukasz; Al-Hameed, Hiba

    2017-10-17

    Thermoluminescent detectors, type MTS-6, containing isotope 6Li (lithium) are sensitive in the range of thermal neutron energy; the 239Pu-Be (plutonium-and-beryllium) source emits neutrons in the energy range from 1 to 11 MeV. These seemingly contradictory elements may be combined by using the paraffin moderator, a determined density of thermal neutrons in the paraffin block and a conversion coefficient neutron flux to kerma, not forgetting the simultaneous registration of the photon radiation inseparable from the companion neutron radiation. The main aim of this work is to present the idea of calibration of thermoluminescent detectors that consist of a 6Li isotope, by using 239Pu-Be neutron radiation source. In this work, MTS-6 and MTS-7 thermoluminescent detectors and a plutonium-and-beryllium (239Pu-Be) neutron source were used. Paraffin wax fills the block, acting as a moderator. The calibration idea was based on the determination of dose equivalent rate based on the average kerma rate calculated taking into account the empirically determined function describing the density of thermal neutron flux in the paraffin block and a conversion coefficient neutron flux to kerma. The calculated value of the thermal neutron flux density was 1817.5 neutrons/cm2/s and the average value of kerma rate determined on this basis amounted to 244 μGy/h, and the dose equivalent rate 610 μSv/h. The calculated value allowed for the assessment of the length of time of exposure of the detectors directly in the paraffin block. The calibration coefficient for the used batch of detectors is (6.80±0.42)×10-7 Sv/impulse. Med Pr 2017;68(6):705-710. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, D.M.; Coggins, T.L.; Marsh, J.

    Numerous efforts are funded by US agencies (DOE, DoD, DHS) for development of novel radiation sensing and measurement systems. An effort has been undertaken to develop a flexible shielding system compatible with a variety of sources (beta, X-ray, gamma, and neutron) that can be highly characterized using conventional radiation detection and measurement systems. Sources available for use in this system include americium-beryllium (AmBe), plutonium-beryllium (PuBe), strontium-90 (Sr-90), californium-252 (Cf-252), krypton-85 (Kr-85), americium-241 (Am-241), and depleted uranium (DU). Shielding can be varied by utilization of materials that include lexan, water, oil, lead, and polyethylene. Arrangements and geometries of source(s) and shieldingmore » can produce symmetrical or asymmetrical radiation fields. The system has been developed to facilitate accurately repeatable configurations. Measurement positions are similarly capable of being accurately re-created. Stand-off measurement positions can be accurately re-established using differential global positioning system (GPS) navigation. Instruments used to characterize individual measurement locations include a variety of sodium iodide (NaI(Tl)) (3 x 3 inch, 4 x 4 x 16 inch, Fidler) and lithium iodide (LiI(Eu)) detectors (for use with multichannel analyzer software) and detectors for use with traditional hand held survey meters such as boron trifluoride (BF{sub 3}), helium-3 ({sup 3}He), and Geiger-Mueller (GM) tubes. Also available are Global Dosimetry thermoluminescent dosimeters (TLDs), CR39 neutron chips, and film badges. Data will be presented comparing measurement techniques with shielding/source configurations. The system is demonstrated to provide a highly functional process for comparison/characterization of various detector types relative to controllable radiation types and levels. Particular attention has been paid to use of neutron sources and measurements. (authors)« less

  12. Differential phase contrast with a segmented detector in a scanning X-ray microprobe

    PubMed Central

    Hornberger, B.; de Jonge, M. D.; Feser, M.; Holl, P.; Holzner, C.; Jacobsen, C.; Legnini, D.; Paterson, D.; Rehak, P.; Strüder, L.; Vogt, S.

    2008-01-01

    Scanning X-ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing structures in the multi-keV range. In this paper the development of a segmented charge-integrating silicon detector which provides simultaneous absorption and differential phase contrast is reported. The detector can be used together with a fluorescence detector for the simultaneous acquisition of transmission and fluorescence data. It can be used over a wide range of photon energies, photon rates and exposure times at third-generation synchrotron radiation sources, and is currently operating at two beamlines at the Advanced Photon Source. Images obtained at around 2 keV and 10 keV demonstrate the superiority of phase contrast over absorption for specimens composed of light elements. PMID:18552427

  13. Organic Scintillator Detector Response Simulations with DRiFT

    DOE PAGES

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; ...

    2016-06-11

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR ®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discriminationmore » plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less

  14. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  15. Visible and near-infrared laser radiation in a biological tissue. A forward model for medical imaging by optical tomography.

    PubMed

    Trabelsi, H; Gantri, M; Sediki, E

    2010-01-01

    We present a numerical model for the study of a general, two-dimensional, time-dependent, laser radiation transfer problem in a biological tissue. The model is suitable for many situations, especially when the external laser source is pulsed or continuous. We used a control volume discrete-ordinate method associated with an implicit, three-level, second-order, time-differencing scheme. In medical imaging by laser techniques, this could be an optical tomography forward model. We considered a very thin rectangular biological tissue-like medium submitted to a visible or a near-infrared laser source. Different cases were treated numerically. The source was assumed to be monochromatic and collimated. We used either a continuous source or a short-pulsed source. The transmitted radiance was computed in detector points on the boundaries. Also, the distribution of the internal radiation intensity for different instants is presented. According to the source type, we examined either the steady-state response or the transient response of the medium. First, our model was validated by experimental results from the literature for a homogeneous biological tissue. The space and angular grid independency of our results is shown. Next, the proposed model was used to study changes in transmitted radiation for a homogeneous background medium in which were imbedded two heterogeneous objects. As a last investigation, we studied a multilayered biological tissue. We simulated near-infrared radiation in human skin, fat and muscle. Some results concerning the effects of fat thickness and positions of the detector source on the reflected radiation are presented.

  16. Position sensitive detection of neutrons in high radiation background field.

    PubMed

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  17. Fast and broadband detector for laser radiation

    NASA Astrophysics Data System (ADS)

    Scorticati, Davide; Crapella, Giacomo; Pellegrino, Sergio

    2018-02-01

    We developed a fast detector (patent pending) based on the Laser Induced Transverse Voltage (LITV) effect. The advantage of detectors using the LITV effect over pyroelectric sensors and photodiodes for laser radiation measurements is the combination of an overall fast response time, broadband spectral acceptance, high saturation threshold to direct laser irradiation and the possibility to measure pulsed as well as cw-laser sources. The detector is capable of measuring the energy of single laser pulses with repetition frequencies up to the MHz range, adding the possibility to also measure the output power of cw-lasers. Moreover, the thermal nature of the sensor enables the capability to work in a broadband spectrum, from UV to THz as well as the possibility of operating in a broad-range (10-3-102 W/cm2 ) of incident average optical power densities of the laser radiation, without the need of adopting optical filters nor other precautions.

  18. Position sensitive detection of neutrons in high radiation background field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrik, D., E-mail: vavrik@itam.cas.cz; Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9; Jakubek, J.

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane)more » and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.« less

  19. A novel algorithm for solving the true coincident counting issues in Monte Carlo simulations for radiation spectroscopy.

    PubMed

    Guan, Fada; Johns, Jesse M; Vasudevan, Latha; Zhang, Guoqing; Tang, Xiaobin; Poston, John W; Braby, Leslie A

    2015-06-01

    Coincident counts can be observed in experimental radiation spectroscopy. Accurate quantification of the radiation source requires the detection efficiency of the spectrometer, which is often experimentally determined. However, Monte Carlo analysis can be used to supplement experimental approaches to determine the detection efficiency a priori. The traditional Monte Carlo method overestimates the detection efficiency as a result of omitting coincident counts caused mainly by multiple cascade source particles. In this study, a novel "multi-primary coincident counting" algorithm was developed using the Geant4 Monte Carlo simulation toolkit. A high-purity Germanium detector for ⁶⁰Co gamma-ray spectroscopy problems was accurately modeled to validate the developed algorithm. The simulated pulse height spectrum agreed well qualitatively with the measured spectrum obtained using the high-purity Germanium detector. The developed algorithm can be extended to other applications, with a particular emphasis on challenging radiation fields, such as counting multiple types of coincident radiations released from nuclear fission or used nuclear fuel.

  20. Measuring the activity of a {sup 51}Cr neutrino source based on the gamma-radiation spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbachev, V. V., E-mail: vvgor-gfb1@mail.ru; Gavrin, V. N.; Ibragimova, T. V.

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of {sup 51}Cr is presented.

  1. Biomedical nuclear and X-ray imager using high-energy grazing incidence mirrors

    DOEpatents

    Ziock, Klaus-Peter; Craig, William W.; Hasegawa, Bruce; Pivovaroff, Michael J.

    2005-09-27

    Imaging of radiation sources located in a subject is explored for medical applications. The approach involves using grazing-incidence optics to form images of the location of radiopharmaceuticals administered to a subject. The optics are "true focusing" optics, meaning that they project a real and inverted image of the radiation source onto a detector possessing spatial and energy resolution.

  2. Neutron radiative capture methods for surface elemental analysis

    USGS Publications Warehouse

    Trombka, J.I.; Senftle, F.; Schmadebeck, R.

    1970-01-01

    Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.

  3. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  4. A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Ashrafi, S.; Yazdansetad, F.

    2018-05-01

    Given a wide range application of NaI(Tl) detector in industrial and medical sectors, computation of the related detection efficiency in different distances of a radioactive source, especially for calibration purposes, is the subject of radiation detection studies. In this work, a 2in both in radius and height cylindrical NaI (Tl) scintillator was used, and by changing the radial, axial, and diagonal positions of an isotropic 137Cs point source relative to the detector, the solid angles and the interaction probabilities of gamma photons with the detector's sensitive area have been calculated. The calculations present the geometric and intrinsic efficiency as the functions of detector's dimensions and the position of the source. The calculation model is in good agreement with experiment, and MCNPX simulation.

  5. Basic design of a multi wire proportional counter using Garfield++ for ILSF

    NASA Astrophysics Data System (ADS)

    Ghahremani Gol, M.; Ashrafi, S.; Rahighi, J.

    2016-12-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV third generation synchrotron radiation facility in Middle East, which at the time being is in its design stage. An important aspect for the scientific success of this new source will be the availability of well adapted detectors. Position-sensitive X-ray detectors have played an important role in synchrotron radiation X-ray experiments for many years and are still in use. An operational one-dimensional multiwire position sensitive detector with delay line readout produced by ILSF showed a position resolution of 230 μm. In this paper, we introduce a 2-D position sensitive gas detector based on a multiwire proportional chamber which will be used in small/wide angle scattering and diffraction experiments with synchrotron radiation at the ILSF. The parameters of its components, including the gas filling, gas pressure, temperature, the geometry of anode and cathodes planes as well as the expected performance of the designed system will be described in the following. For the design and the simulation of MWPC the Elmer and Garfield++ codes have been employed. We have built and tested a MWPC as a prototype at ILSF. The results obtained so far show a good position sensing. After primary test the detector has been optimized and is now ready for test at Elettra.

  6. Web design and development for centralize area radiation monitoring system in Malaysian Nuclear Agency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Haris, Mohd Fauzi; Soh @ Shaari, Syirrazie Che; Azman, Azraf; Razalim, Faizal Azrin B. Abdul; Yapp, Raymond; Hasim, Harzawardi; Aslan, Mohd Dzul Aiman

    2017-01-01

    One of the applications for radiation detector is area monitoring which is crucial for safety especially at a place where radiation source is involved. An environmental radiation monitoring system is a professional system that combines flexibility and ease of use for data collection and monitoring. Nowadays, with the growth of technology, devices and equipment can be connected to the network and Internet to enable online data acquisition. This technology enables data from the area monitoring devices to be transmitted to any place and location directly and faster. In Nuclear Malaysia, area radiation monitor devices are located at several selective locations such as laboratories and radiation facility. This system utilizes an Ethernet as a communication media for data acquisition of the area radiation levels from radiation detectors and stores the data at a server for recording and analysis. This paper discusses on the design and development of website that enable all user in Nuclear Malaysia to access and monitor the radiation level for each radiation detectors at real time online. The web design also included a query feature for history data from various locations online. The communication between the server's software and web server is discussed in detail in this paper.

  7. Assessment of the Influence of the RaD-X Balloon Payload on the Onboard Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Gronoff, Guilluame; Mertens, Christopher J.; Norman, Ryan B.; Straume, Tore; Lusby, Terry C.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission, launched on 25 September 2015, provided dosimetric measurements above the Pfotzer maximum. The goal of taking these measurements is to improve aviation radiation models by providing a characterization of cosmic ray primaries, which are the source of radiation exposure at aviation altitudes. The RaD-X science payload consists of four instruments. The main science instrument is a tissue-equivalent proportional counter (TEPC). The other instruments consisted of three solid state silicon dosimeters: Liulin, Teledyne total ionizing dose (TID) and RaySure detectors. The instruments were housed in an aluminum structure protected by a foam cover. The structure partially shielded the detectors from cosmic rays but also created secondary particles, modifying the ambient radiation environment observed by the instruments. Therefore, it is necessary to account for the influence of the payload structure on the measured doses. In this paper, we present the results of modeling the effect of the balloon payload on the radiation detector measurements using a Geant-4 (GEometry ANd Tracking) application. Payload structure correction factors derived for the TEPC, Liulin, and TID instruments are provided as a function of altitude. Overall, the payload corrections are no more than a 7% effect on the radiation environment measurements.

  8. LDRD Final Review: Radiation Transport Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goorley, John Timothy; Morgan, George Lake; Lestone, John Paul

    2017-06-22

    Both high-fidelity & toy simulations are being used to understand measured signals and improve the Area 11 NDSE diagnostic. We continue to gain more and more confidence in the ability for MCNP to simulate neutron and photon transport from source to radiation detector.

  9. Calibration factors for the SNOOPY NP-100 neutron dosimeter

    NASA Astrophysics Data System (ADS)

    Moscu, D. F.; McNeill, F. E.; Chase, J.

    2007-10-01

    Within CANDU nuclear power facilities, only a small fraction of workers are exposed to neutron radiation. For these individuals, roughly 4.5% of the total radiation equivalent dose is the result of exposure to neutrons. When this figure is considered across all workers receiving external exposure of any kind, only 0.25% of the total radiation equivalent dose is the result of exposure to neutrons. At many facilities, the NP-100 neutron dosimeter, manufactured by Canberra Industries Incorporated, is employed in both direct and indirect dosimetry methods. Also known as "SNOOPY", these detectors undergo calibration, which results in a calibration factor relating the neutron count rate to the ambient dose equivalent rate, using a standard Am-Be neutron source. Using measurements presented in a technical note, readings from the dosimeter for six different neutron fields in six source-detector orientations were used, to determine a calibration factor for each of these sources. The calibration factor depends on the neutron energy spectrum and the radiation weighting factor to link neutron fluence to equivalent dose. Although the neutron energy spectra measured in the CANDU workplace are quite different than that of the Am-Be calibration source, the calibration factor remains constant - within acceptable limits - regardless of the neutron source used in the calibration; for the specified calibration orientation and current radiation weighting factors. However, changing the value of the radiation weighting factors would result in changes to the calibration factor. In the event of changes to the radiation weighting factors, it will be necessary to assess whether a change to the calibration process or resulting calibration factor is warranted.

  10. Measurement of wood/plant cell or composite material attributes with computer assisted tomography

    DOEpatents

    West, Darrell C.; Paulus, Michael J.; Tuskan, Gerald A.; Wimmer, Rupert

    2004-06-08

    A method for obtaining wood-cell attributes from cellulose containing samples includes the steps of radiating a cellulose containing sample with a beam of radiation. Radiation attenuation information is collected from radiation which passes through the sample. The source is rotated relative to the sample and the radiation and collecting steps repeated. A projected image of the sample is formed from the collected radiation attenuation information, the projected image including resolvable features of the cellulose containing sample. Cell wall thickness, cell diameter (length) and cell vacoule diameter can be determined. A system for obtaining physical measures from cellulose containing samples includes a radiation source, a radiation detector, and structure for rotating the source relative to said sample. The system forms an image of the sample from the radiation attenuation information, the image including resolvable features of the sample.

  11. Active noise canceling system for mechanically cooled germanium radiation detectors

    DOEpatents

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  12. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reference radionuclide intended for calibration of medical nuclear radiation detectors. (b) Classification... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source...

  13. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reference radionuclide intended for calibration of medical nuclear radiation detectors. (b) Classification... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source...

  14. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reference radionuclide intended for calibration of medical nuclear radiation detectors. (b) Classification... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source...

  15. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reference radionuclide intended for calibration of medical nuclear radiation detectors. (b) Classification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source...

  16. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reference radionuclide intended for calibration of medical nuclear radiation detectors. (b) Classification... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Jinzhong; Han Zhanwen; Zhang Fenghui

    Close double white dwarfs (CDWDs) are believed to dominate the Galactic gravitational wave (GW) radiation in the frequency range 10{sup -4} to 0.1 Hz, which will be detected by the Laser Interferometer Space Antenna (LISA) detector. The aim of this detector is to detect GW radiation from astrophysical sources in the universe and to help improve our understanding of the origin of the sources and their physical properties (masses and orbital periods). In this paper, we study the probable candidate sources in the Galaxy for the LISA detector: CDWDs. We use the binary population synthesis approach of CDWDs together withmore » the latest findings of the synthesis models from Han, who proposed three evolutionary channels: (1) stable Roche lobe overflow plus common envelope (RLOF+CE), (2) CE+CE, and (3) exposed core plus CE. As a result, we systematically investigate the detailed physical properties (the distributions of masses, orbital periods, and chirp masses) of the CDWD sources for the LISA detector, examine the importance of the three evolutionary channels for the formation of CDWDs, and carry out Monte Carlo simulations. Our results show that RLOF+CE and CE+CE are the main evolutionary scenarios leading to the formation of CDWDs. For the LISA detectable sources, we also explore and discuss the importance of these three evolutionary channels. Using the calculated birth rate, we compare our results to the LISA sensitivity curve and the foreground noise floor of CDWDs. We find that our estimate for the number of CDWD sources that can be detected by the LISA detector is greater than 10,000. We also find that the detectable CDWDs are produced via the CE+CE channel and we analyze the fraction of the detectable CDWDs that are double helium (He+He), or carbon-oxygen plus helium (CO+He) WD binary systems.« less

  18. Hybrid Monte Carlo/Deterministic Methods for Accelerating Active Interrogation Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplow, Douglas E.; Miller, Thomas Martin; Patton, Bruce W

    2013-01-01

    The potential for smuggling special nuclear material (SNM) into the United States is a major concern to homeland security, so federal agencies are investigating a variety of preventive measures, including detection and interdiction of SNM during transport. One approach for SNM detection, called active interrogation, uses a radiation source, such as a beam of neutrons or photons, to scan cargo containers and detect the products of induced fissions. In realistic cargo transport scenarios, the process of inducing and detecting fissions in SNM is difficult due to the presence of various and potentially thick materials between the radiation source and themore » SNM, and the practical limitations on radiation source strength and detection capabilities. Therefore, computer simulations are being used, along with experimental measurements, in efforts to design effective active interrogation detection systems. The computer simulations mostly consist of simulating radiation transport from the source to the detector region(s). Although the Monte Carlo method is predominantly used for these simulations, difficulties persist related to calculating statistically meaningful detector responses in practical computing times, thereby limiting their usefulness for design and evaluation of practical active interrogation systems. In previous work, the benefits of hybrid methods that use the results of approximate deterministic transport calculations to accelerate high-fidelity Monte Carlo simulations have been demonstrated for source-detector type problems. In this work, the hybrid methods are applied and evaluated for three example active interrogation problems. Additionally, a new approach is presented that uses multiple goal-based importance functions depending on a particle s relevance to the ultimate goal of the simulation. Results from the examples demonstrate that the application of hybrid methods to active interrogation problems dramatically increases their calculational efficiency.« less

  19. Investigation of the radiation background in the interaction region of the medium-energy electron relativisitic heavy ion collider (MeRHIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beebe-Wang,J.

    There are three main sources of the radiation background in MeRHIC: forward synchrotron radiation generated upstream of the detector, the direct backward radiation caused by the photons hitting beampipe downstream of the detector, and the indirect secondary radiation caused by hard photons hitting vacuum systems, masks, collimators, absorbers or any other elements in the interaction region. In this paper, we first calculate the primary radiation distribution by employing electromagnetic theory. Then we obtain the direct backward scattering rate by applying the kinematic Born approximation deduced from scattering dynamics. The diffuse scattering cross section is calculated as a function of themore » surface properties of the MeRHIC vacuum system. Finally, the dominating physical processes and minimization of indirect secondary radiation is presented and discussed.« less

  20. Recent Update on Radiation Dose Assessment for the State-of-the-Art Coronary Computed Tomography Angiography Protocols.

    PubMed

    Tan, Sock Keow; Yeong, Chai Hong; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah; Sun, Zhonghua

    2016-01-01

    This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE). Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region. Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor. The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners.

  1. Recent Update on Radiation Dose Assessment for the State-of-the-Art Coronary Computed Tomography Angiography Protocols

    PubMed Central

    Tan, Sock Keow; Yeong, Chai Hong; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah; Sun, Zhonghua

    2016-01-01

    Objectives This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE). Materials and Methods Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region. Results Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor. Conclusion The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners. PMID:27552224

  2. Umbra/penumbra detector

    DOEpatents

    Carner, Jr., Don C.

    1988-01-01

    A device which monitors the characteristics of an image cast upon a radiation sensitive substrate. This includes a shadow casting object or mask and at least one source of radiation disposed above the object or mask so that the image cast on the substrate can be analyzed.

  3. Empirical Assessment of a Model of Team Collaboration

    DTIC Science & Technology

    2007-01-01

    bananas , contain a small fraction of potassium -40 which emits ionizing radiation.” (ibid, p. 4). Technical expertise, provided by remotely-located...material against a background containing multiple benign radiation sources. “Smoke detectors, radiant signs, and a container load of bananas all

  4. Portable source identification device

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Gervais, Kevin L.

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. As the deployment of radiation detection systems proceeds, there is a need to adapt the baseline radiation portal monitor (RPM) system technology to operations at these diverse ports of entry. When screening produces an alarm in the primary inspection RPM, the alarming vehicle is removed from the flow of commerce and the alarm is typically confirmed in a secondary inspection RPM. The portable source identification device (PSID) is a radiation sensor panel (RSP), based on thallium-doped sodium iodide (NaI(Tl)) scintillation detector and gamma spectroscopic analysis hardware and software, mounted on a scissor lift on a small truck. The lift supports a box containing a commercial off-the-shelf (COTS) sodium iodide detector that provides real-time isotopic identification, including neutron detectors to interdict Weapons of Mass Destruction (WMD) and radiation dispersion devices (RDD). The scissor lift will lower the detectors to within a foot off the ground and raise them to approximately 24 feet (7.3 m) in the air, allowing a wide vertical scanning range.

  5. Time Resolved Phonon Spectroscopy, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goett, Johnny; Zhu, Brian

    TRPS code was developed for the project "Time Resolved Phonon Spectroscopy". Routines contained in this piece of software were specially created to model phonon generation and tracking within materials that interact with ionizing radiation, particularly applicable to the modeling of cryogenic radiation detectors for dark matter and neutrino research. These routines were created to link seamlessly with the open source Geant4 framework for the modeling of radiation transport in matter, with the explicit intent of open sourcing them for eventual integration into that code base.

  6. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment

    DOEpatents

    Pereverzev, Sergey

    2016-06-14

    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  7. Entangled γ-photons—classical laboratory exercise with modern detectors

    NASA Astrophysics Data System (ADS)

    Hetfleiš, Jakub; Lněnička, Jindřich; Šlégr, Jan

    2018-03-01

    This paper describes the application of modern semiconductor detectors of γ and β radiation, which can be used in undergraduate laboratory experiments and lecture demonstrations as a replacement for Geiger-Müller (GM) tubes. Unlike GM tubes, semiconductor detectors do not require a high voltage power source or shaping circuits. The principle of operation of semiconductor detectors is discussed briefly, and classical experiments from nuclear physics are described, ranging from the measurements of linear and mass attenuation coefficient to a demonstration of entangled γ-photons.

  8. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  9. Discovery of localized TeV gamma-ray sources and diffuse TeV gamma-ray emission from the galactic plane with Milagro using a new background rejection technique

    NASA Astrophysics Data System (ADS)

    Abdo, Aws Ahmad

    2007-08-01

    Very high energy gamma-rays can be used to probe some of the most powerful astrophysical objects in the universe, such as active galactic nuclei, supernova remnants and pulsar-powered nebulae. The diffuse gamma radiation arising from the interaction of cosmic-ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of cosmic- rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this thesis I present a new background rejection technique for the Milagro detector through the development of a new gamma hadron separation variable. The Abdo variable, A 4 , coupled with the weighting analysis technique significantly improves the sensitivity of the Milagro detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources of TeV gamma-ray emission have been discovered, three of which are in the Cygnus region of the Galaxy and one closer to the Galactic center. In addition to these localized sources, a diffuse emission of TeV gamma-rays has been discovered from the Cygnus region of the Galaxy as well. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region exceeds that predicted from a conventional model of cosmic-ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region. Other TeV gamma-ray source candidates with post-trial statistical significances of > 4s have also been observed in the Galactic plane.

  10. Detecting Shielded Special Nuclear Materials Using Multi-Dimensional Neutron Source and Detector Geometries

    NASA Astrophysics Data System (ADS)

    Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard

    2016-10-01

    A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.

  11. Distribution functions of air-scattered gamma rays above isotropic plane sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, J A; Lamonds, H A

    1967-06-01

    Using the moments method of Spencer and Fano and a reconstruction technique suggested by Berger, the authors have calculated energy and angular distribution functions for air-scattered gamma rays emitied from infinite-plane isotropic monoenergetic sources as iunctions of source energy, radiation incidence angle at the detector, and detector altitude. Incremental and total buildup factors have been calculated for both number and exposure. The results are presented in tabular form for a detector located at altitudes of 3, 50, 100, 200, 300, 400, 500, and 1000 feet above source planes of 15 discrete energies spanning the range of 0.1 to 3.0 MeV.more » Calculational techniques including results of sensitivity studies are discussed and plots of typical results are presented. (auth)« less

  12. Ionizing radiation measurements using low cost instruments for teaching in college or high-school in Brazil

    NASA Astrophysics Data System (ADS)

    Silva, M. C.; Vilela, D. C.; Migoto, V. G.; Gomes, M. P.; Martin, I. M.; Germano, J. S. E.

    2017-11-01

    Ionizing radiation one of modern physics experimental teaching in colleges and high school can be easily implemented today due to low coasts of detectors and also electronic circuits and data acquisition interfaces. First it is interesting to show to young’s students what is ionizing radiation and from where they appears near ground level? How it is possible to measure these radiations and how to check intensities variation during day, night, dry and wet periods in the same school? For increasing interest and stimulation in others students how to proceed in making the graphics of the ionizing radiation and presenting him in real time using Web internet facilities? Many others facilities like calibration of the detector using low intensities radioactive ionizing radiation sources, make comparison of the measurements and discussions of the results should be possible between many groups of students from several schools in the region of Brazil. This paper presents the experimental procedures including detectors and associated electronic including data acquisition, graphics elaboration and Web internet procedures to discuss and exchanging data measurements from several schools.

  13. In vivo dosimeters for HDR brachytherapy: a comparison of a diamond detector, MOSFET, TLD, and scintillation detector.

    PubMed

    Lambert, Jamil; Nakano, Tatsuya; Law, Sue; Elsey, Justin; McKenzie, David R; Suchowerska, Natalka

    2007-05-01

    The large dose gradients in brachytherapy necessitate a detector with a small active volume for accurate dosimetry. The dosimetric performance of a novel scintillation detector (BrachyFOD) is evaluated and compared to three commercially available detectors, a diamond detector, a MOSFET, and LiF TLDs. An 192Ir HDR brachytherapy source is used to measure the depth dependence, angular dependence, and temperature dependence of the detectors. Of the commercially available detectors, the diamond detector was found to be the most accurate, but has a large physical size. The TLDs cannot provide real time readings and have depth dependent sensitivity. The MOSFET used in this study was accurate to within 5% for distances of 20 to 50 mm from the 192Ir source in water but gave errors of 30%-40% for distances greater than 50 mm from the source. The BrachyFOD was found to be accurate to within 3% for distances of 10 to 100 mm from an HDR 192Ir brachytherapy source in water. It has an angular dependence of less than 2% and the background signal created by Cerenkov radiation and fluorescence of the plastic optical fiber is insignificant compared to the signal generated in the scintillator. Of the four detectors compared in this study the BrachyFOD has the most favorable combination of characteristics for dosimetry in HDR brachytherapy.

  14. Umbra/penumbra detector

    DOEpatents

    Carner, D.C. Jr.

    1988-10-11

    A device which monitors the characteristics of an image cast upon a radiation sensitive substrate. This includes a shadow casting object or mask and at least one source of radiation disposed above the object or mask so that the image cast on the substrate can be analyzed. 23 figs.

  15. The Effect of the Three-Dimensional Geometry of Cargo on the Detection of Radioactive Sources in Cargo Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweppe, John E.; Ely, James H.; McConn, Ronald J.

    Pacific Northwest National Laboratory has developed computer models to simulate the screening of vehicles and cargo with radiation portal monitors for the presence of illegitimate radioactive material. In addition, selected measurements have been conducted to validate the models. An important consideration in the modeling of realistic scenarios is the influence of the three-dimensional geometry of the cargo on the measured signature. This is particularly important for scenarios where the source and detector move with respect to each other. Two cases of the influence of the three-dimensional geometry of the cargo on the measured radiation signature are analyzed. In the first,more » measurements show that spectral data collected from moving sources so as to maximize the gross-counting signal-to-noise ratio has minimal spectral distortion, so that the spectral data can be summed over this time interval. In the second, modeling demonstrates that the ability to detect radioactive sources at all locations in a container full of cargo scales approximately linearly with the vertical height of the detector, suggesting that detectors should be approximately the same height as the container they scan.« less

  16. Portable light source unit for simulating fires having an adjustable aperture

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, John S. (Inventor); Strobel, James P. (Inventor)

    1997-01-01

    A portable, hand held light source unit is employed to check operation of fire detectors, such as hydrogen fire detectors. The unit emits radiation in a narrow band of wavelengths which are generated by the type of fire to be tested, but not by other light sources such as the sun or incandescent lamps. The unit can test fire detectors at different distances, and of different sensitivities. The intensity of the radiation emitted by the unit is adjustable for this purpose by means of a rotatable disk having a plurality of different sized apertures for selective placement between the light source and an output lens. The disk can also be rotated to a calibration position which causes a microprocessor circuit in the unit to initiate a calibration procedure. During this procedure, the lamp intensity is measured by a photodetector contained within the unit, and the microprocessor adjusts the lamp current to insure that its intensity remains within a preset range of values. A green and a red LED are mounted on the unit which indicate to an operator whether the calibration is successful, as well as the condition of the unit's battery power supply.

  17. Surface wave chemical detector using optical radiation

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  18. State-of-the-art radiation detectors for medical imaging: Demands and trends

    NASA Astrophysics Data System (ADS)

    Darambara, Dimitra G.

    2006-12-01

    Over the last half-century a variety of significant technical advances in several scientific fields has been pointing to an exploding growth in the field of medical imaging leading to a better interpretation of more specific anatomical, biochemical and molecular pathways. In particular, the development of novel imaging detectors and readout electronics has been critical to the advancement of medical imaging allowing the invention of breakthrough platforms for simultaneous acquisition of multi-modality images at molecular level. The present paper presents a review of the challenges, demands and constraints on radiation imaging detectors imposed by the nature of the modality and the physics of the imaging source. This is followed by a concise review and perspective on various types of state-of-the-art detector technologies that have been developed to meet these requirements. Trends, prospects and new concepts for future imaging detectors are also highlighted.

  19. Method and Apparatus for Accurately Calibrating a Spectrometer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Simmons, Stephen M. (Inventor)

    2013-01-01

    A calibration assembly for a spectrometer is provided. The assembly includes a spectrometer having n detector elements, where each detector element is assigned a predetermined wavelength value. A first source emitting first radiation is used to calibrate the spectrometer. A device is placed in the path of the first radiation to split the first radiation into a first beam and a second beam. The assembly is configured so that one of the first and second beams travels a path-difference distance longer than the other of the first and second beams. An output signal is generated by the spectrometer when the first and second beams enter the spectrometer. The assembly includes a controller operable for processing the output signal and adapted to calculate correction factors for the respective predetermined wavelength values assigned to each detector element.

  20. Multichannel Spectrometer of Time Distribution

    NASA Astrophysics Data System (ADS)

    Akindinova, E. V.; Babenko, A. G.; Vakhtel, V. M.; Evseev, N. A.; Rabotkin, V. A.; Kharitonova, D. D.

    2015-06-01

    For research and control of characteristics of radiation fluxes, radioactive sources in particular, for example, in paper [1], a spectrometer and methods of data measurement and processing based on the multichannel counter of time intervals of accident events appearance (impulses of particle detector) MC-2A (SPC "ASPECT") were created. The spectrometer has four independent channels of registration of time intervals of impulses appearance and correspondent amplitude and spectrometric channels for control along the energy spectra of the operation stationarity of paths of each of the channels from the detector to the amplifier. The registration of alpha-radiation is carried out by the semiconductor detectors with energy resolution of 16-30 keV. Using a spectrometer there have been taken measurements of oscillations of alpha-radiation 239-Pu flux intensity with a subsequent autocorrelative statistical analysis of the time series of readings.

  1. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Miller, J. Scott; Minow, Joseph I.; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz, Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (less than 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system.

  2. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    NASA Astrophysics Data System (ADS)

    O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.

    2012-12-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra's high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system.

  3. Time encoded radiation imaging

    DOEpatents

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  4. A beam radiation monitor based on CVD diamonds for SuperB

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  5. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhikov, V.; Grinyov, B.; Piven, L.

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions towards lower energies and the isotropic character of scattering of the secondary neutrons may lead to the observed limitation of the length of effective interaction, since a fraction of the secondary neutrons that propagate in the forward direction are not subject to further inelastic scattering because of their substantially lower energy. At these reduced energies, it is the capture cross-section (n, γ) that becomes predominant, resulting in lower detection efficiency. Based on these results, several types of detectors have been envisioned for application in detection systems for nuclear materials. The testing results for one such detector are presented in this work. We have studied the possibility of creation of a composite detector with scintillator granules placed inside a transparent polymer material. Because of the low transparency of such a dispersed scintillator, better light collection conditions are ensured by incorporation of a light guide between the scintillator layers. This guide is made of highly transparent polymer material. The use of a high-transparency hydrogen-containing polymer material for light guides not only ensures optimum conditions of light collection in the detector, but also allows certain deceleration of neutron radiation, increasing its interaction efficiency with the composite scintillation panels; accordingly, the detector signal is increased by 5-8%. When fast neutrons interact with the scintillator material, the resulting inelastic scattering gamma-quanta emerge, having different energies and different delay times with respect to the moment of the neutron interaction with the nucleus of the scintillator material (delay times ranging from 1x10{sup -9} to 1.3x10{sup -6} s). These internally generated gamma-quanta interact with the scintillator, and the resulting scintillation light is recorded by the photo-receiver. Since neutron sources are also strong sources of low-energy gamma-radiation, the use of dispersed ZnSe(Te) scintillator material provides high gamma-radiation detection efficiency in that energy range. This new type of gamma-neutron detector is based on a 'sandwich' structure using a ZnSe composite film and light guide with a fast neutron detection efficiency of about 6%. Its high detection efficiency of low-energy gamma-radiation allows a substantial increase (by an order of magnitude) in the efficiency of detection of neutron sources and transuranic materials by means of simultaneous detection of accompanying gamma-radiation. The design and fabrication technology of this detector allows the creation of gamma-neutron detectors characterized by high sensitivity at relatively low costs (as compared with analogs using oxide scintillators) for portable inspection systems. The sandwich structure can be comprised of any number of plates, with no limitations on thickness or area.« less

  6. Method and apparatus for making absolute range measurements

    DOEpatents

    Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN

    2002-09-24

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  7. LENS: μLENS Simulations, Analysis, and Results

    NASA Astrophysics Data System (ADS)

    Rasco, Charles

    2013-04-01

    Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.

  8. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  9. Photoconducting positions monitor and imaging detector

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    2000-01-01

    A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.

  10. Ultra-low-noise, high-impedance preamp for cryogenic detectors

    NASA Technical Reports Server (NTRS)

    Brown, E. R.

    1985-01-01

    A relatively simple room-temperature preamp design that satisfies both the low-noise and wideband requirements for the InSb Putley-mode detector and which is based on a common-drain JFET input, is presented. The design has an input capacitance of 28 pf which is much less than comparably noisy common-source amplifiers. It can be used for preamplification of 0.1 to 10 MHz signals from liquid-helium-cooled radiation detectors.

  11. Long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  12. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  13. Some Experimental and Monte Carlo Investigations of the Plastic Scintillators for the Current Mode Measurements at Pulsed Neutron Sources

    NASA Astrophysics Data System (ADS)

    Rogov, A.; Pepyolyshev, Yu.; Carta, M.; d'Angelo, A.

    Scintillation detector (SD) is widely used in neutron and gamma-spectrometry in a count mode. The organic scintillators for the count mode of the detector operation are investigated rather well. Usually, they are applied for measurement of amplitude and time distributions of pulses caused by single interaction events of neutrons or gamma's with scintillator material. But in a large area of scientific research scintillation detectors can alternatively be used on a current mode by recording the average current from the detector. For example,the measurements of the neutron pulse shape at the pulsed reactors or another pulsed neutron sources. So as to get a rather large volume of experimental data at pulsed neutron sources, it is necessary to use the current mode detector for registration of fast neutrons. Many parameters of the SD are changed with a transition from an accounting mode to current one. For example, the detector efficiency is different in counting and current modes. Many effects connected with time accuracy become substantial. Besides, for the registration of solely fast neutrons, as must be in many measurements, in the mixed radiation field of the pulsed neutron sources, SD efficiency has to be determined with a gamma-radiation shield present. Here is no calculations or experimental data on SD current mode operation up to now. The response functions of the detectors can be either measured in high-precision reference fields or calculated by a computer simulation. We have used the MCNP code [1] and carried out some experiments for investigation of the plastic performances in a current mode. There are numerous programs performing simulating similar to the MCNP code. For example, for neutrons there are [2-4], for photons - [5-8]. However, all known codes to use (SCINFUL, NRESP4, SANDYL, EGS49) have more stringent restrictions on the source, geometry and detector characteristics. In MCNP code a lot of these restrictions are absent and you need only to write special additions for proton and electron recoil and transfer energy to light output. These code modifications allow taking into account all processes in organic scintillator influence the light yield.

  14. Calibration of a time-resolved hard-x-ray detector using radioactive sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckl, C., E-mail: csto@lle.rochester.edu; Theobald, W.; Regan, S. P.

    A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.

  15. Radionuclide counting technique for measuring wind velocity and direction

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1984-01-01

    An anemometer utilizing a radionuclide counting technique for measuring both the velocity and the direction of wind is described. A pendulum consisting of a wire and a ball with a source of radiation on the lower surface of the ball is positioned by the wind. Detectors and are located in a plane perpendicular to pendulum (no wind). The detectors are located on the circumferene of a circle and are equidistant from each other as well as the undisturbed (no wind) source ball position.

  16. GADRAS-DRF 18.6 User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, Steve M.; Thoreson, Greg G.; Theisen, Lisa A.

    2016-05-01

    The Gamma Detector Response and Analysis Software–Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector canmore » be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6–20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.« less

  18. Apparatus and method for high dose rate brachytherapy radiation treatment

    DOEpatents

    Macey, Daniel J.; Majewski, Stanislaw; Weisenberger, Andrew G.; Smith, Mark Frederick; Kross, Brian James

    2005-01-25

    A method and apparatus for the in vivo location and tracking of a radioactive seed source during and after brachytherapy treatment. The method comprises obtaining multiple views of the seed source in a living organism using: 1) a single PSPMT detector that is exposed through a multiplicity of pinholes thereby obtaining a plurality of images from a single angle; 2) a single PSPMT detector that may obtain an image through a single pinhole or a plurality of pinholes from a plurality of angles through movement of the detector; or 3) a plurality of PSPMT detectors that obtain a plurality of views from different angles simultaneously or virtually simultaneously. The plurality of images obtained from these various techniques, through angular displacement of the various acquired images, provide the information required to generate the three dimensional images needed to define the location of the radioactive seed source within the body of the living organism.

  19. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  20. Radiative flux from a planar multiple point source within a cylindrical enclosure reaching a coaxial circular plane

    NASA Astrophysics Data System (ADS)

    Tryka, Stanislaw

    2007-04-01

    A general formula and some special integral formulas were presented for calculating radiative fluxes incident on a circular plane from a planar multiple point source within a coaxial cylindrical enclosure perpendicular to the source. These formula were obtained for radiation propagating in a homogeneous isotropic medium assuming that the lateral surface of the enclosure completely absorbs the incident radiation. Exemplary results were computed numerically and illustrated with three-dimensional surface plots. The formulas presented are suitable for determining fluxes of radiation reaching planar circular detectors, collectors or other planar circular elements from systems of laser diodes, light emitting diodes and fiber lamps within cylindrical enclosures, as well as small biological emitters (bacteria, fungi, yeast, etc.) distributed on planar bases of open nontransparent cylindrical containers.

  1. End-to-end system test for solid-state microdosemeters.

    PubMed

    Pisacane, V L; Dolecek, Q E; Malak, H; Dicello, J F

    2010-08-01

    The gold standard in microdosemeters has been the tissue equivalent proportional counter (TEPC) that utilises a gas cavity. An alternative is the solid-state microdosemeter that replaces the gas with a condensed phase (silicon) detector with microscopic sensitive volumes. Calibrations of gas and solid-state microdosemeters are generally carried out using radiation sources built into the detector that impose restrictions on their handling, transportation and licensing in accordance with the regulations from international, national and local nuclear regulatory bodies. Here a novel method is presented for carrying out a calibration and end-to-end system test of a microdosemeter using low-energy photons as the initiating energy source, thus obviating the need for a regulated ionising radiation source. This technique may be utilised to calibrate both a solid-state microdosemeter and, with modification, a TEPC with the higher average ionisation energy of a gas.

  2. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    NASA Astrophysics Data System (ADS)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  3. SiC detectors to monitor ionizing radiations emitted from nuclear events and plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cannavò, A.

    2016-09-01

    Silicon Carbide (SiC) semiconductor detectors are increasingly employed in Nuclear Physics for their advantages with respect to traditional silicon (Si). Such detectors show an energy resolution, charge mobility, response velocity and detection efficiency similar to Si detectors. However, the higher band gap (3.26 eV), the lower leakage current (∼10 pA) maintained also at room temperature, the higher radiation hardness and the higher density with respect to Si represent some indisputable advantages characterizing such detectors. The devices can be employed at high temperatures, at high absorbed doses and in the case of high visible light intensities, for example, in plasma, for limited exposition times without damage. Generally SiC Schottky diodes are employed in reverse polarization with an active region depth of the order of 100 µm, purity below 1014 cm-3 and an active area lower than 1 cm2. Measurements in the regime of proportionality with the radiation energy released in the active region and measurements in time-of-flight configuration are employed for nuclear emission events produced at both low and high fluences. Alpha spectra demonstrated an energy resolution of about 1.3% at 5.8 MeV. Radiation emission from laser-generated plasma can be monitored in terms of detected photons, electrons and ions, using the laser pulse as a start signal and the radiation detection as a stop signal, enabling to measure the ion velocity by knowing the target-detector flight distance. SiC spectra acquired in the Messina University laboratories using radioactive ion sources and at the PALS laboratory facility in Prague (Czech Republic) are presented. A preliminary study of the use of SiC detectors, embedded in a water equivalent polymer, as a dosimeter is presented and discussed.

  4. Sub-THz Imaging Using Non-Resonant HEMT Detectors.

    PubMed

    Delgado-Notario, Juan A; Velazquez-Perez, Jesus E; Meziani, Yahya M; Fobelets, Kristel

    2018-02-10

    Plasma waves in gated 2-D systems can be used to efficiently detect THz electromagnetic radiation. Solid-state plasma wave-based sensors can be used as detectors in THz imaging systems. An experimental study of the sub-THz response of II-gate strained-Si Schottky-gated MODFETs (Modulation-doped Field-Effect Transistor) was performed. The response of the strained-Si MODFET has been characterized at two frequencies: 150 and 300 GHz: The DC drain-to-source voltage transducing the THz radiation (photovoltaic mode) of 250-nm gate length transistors exhibited a non-resonant response that agrees with theoretical models and physics-based simulations of the electrical response of the transistor. When imposing a weak source-to-drain current of 5 μA, a substantial increase of the photoresponse was found. This increase is translated into an enhancement of the responsivity by one order of magnitude as compared to the photovoltaic mode, while the NEP (Noise Equivalent Power) is reduced in the subthreshold region. Strained-Si MODFETs demonstrated an excellent performance as detectors in THz imaging.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR ®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discriminationmore » plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less

  6. Editorial

    NASA Astrophysics Data System (ADS)

    Musilek, L.; Dunn, W. L.

    2017-08-01

    The selected proceedings of the 13th International Symposium on Radiation Physics (ISRP-13) are presented here across a broad range of important topics including: Fundamental processes in radiation physics, Theoretical investigations, New radiation sources, techniques & detectors, Absorption and fluorescence spectroscopy (XAFS, XANES, XRF Spectroscopy, Raman, Infrared …), Applications of radiation in material science, nano-science & nanotechnology, Applications of radiation in biology & medical science, Applications of radiation in space, earth, energy & environmental sciences, Applications of radiation in cultural heritage & art and Applications of radiation in industry. In total, 48 papers have been accepted for these proceedings.

  7. Radiant Temperature Nulling Radiometer

    NASA Technical Reports Server (NTRS)

    Ryan, Robert (Inventor)

    2003-01-01

    A self-calibrating nulling radiometer for non-contact temperature measurement of an object, such as a body of water, employs a black body source as a temperature reference, an optomechanical mechanism, e.g., a chopper, to switch back and forth between measuring the temperature of the black body source and that of a test source, and an infrared detection technique. The radiometer functions by measuring radiance of both the test and the reference black body sources; adjusting the temperature of the reference black body so that its radiance is equivalent to the test source; and, measuring the temperature of the reference black body at this point using a precision contact-type temperature sensor, to determine the radiative temperature of the test source. The radiation from both sources is detected by an infrared detector that converts the detected radiation to an electrical signal that is fed with a chopper reference signal to an error signal generator, such as a synchronous detector, that creates a precision rectified signal that is approximately proportional to the difference between the temperature of the reference black body and that of the test infrared source. This error signal is then used in a feedback loop to adjust the reference black body temperature until it equals that of the test source, at which point the error signal is nulled to zero. The chopper mechanism operates at one or more Hertz allowing minimization of l/f noise. It also provides pure chopping between the black body and the test source and allows continuous measurements.

  8. Polyethylene Naphthalate Scintillator: A Novel Detector for the Dosimetry of Radioactive Ophthalmic Applicators.

    PubMed

    Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion

    2015-09-01

    Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm(3) and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications.

  9. Optimized mounting of a polyethylene naphthalate scintillation material in a radiation detector.

    PubMed

    Nakamura, Hidehito; Yamada, Tatsuya; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Shidara, Zenichiro; Yokozuka, Takayuki; Nguyen, Philip; Kanayama, Masaya; Takahashi, Sentaro

    2013-10-01

    Polyethylene naphthalate (PEN) has great potential as a scintillation material for radiation detection. Here the optimum mounting conditions to maximize the light collection efficiency from PEN in a radiation detector are discussed. To this end, we have determined light yields emitted from irradiated PEN for various optical couplings between the substrate and the photodetector, and for various substrate surface treatments. The results demonstrate that light extraction from PEN is more sensitive to the optical couplings due to its high refractive index. We also assessed the extent of radioactive impurities in PEN as background sources and found that the impurities are equivalent to the environmental background level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Luis W. Alvarez - Patents

    Science.gov Websites

    SPECTROSCOPIC SYSTEM COMPRISING PLURAL SOURCES, FILTERS, FLUORESCENT RADIATORS, AND COMPARATIVE DETECTORS the element to be determined. Details of the design of the apparatus are described and diagrammed

  11. Solar flare and pulsar detection with small balloon borne scintillator detector

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar; Bhowmick, Debashis; Bhattacharya, Arnab

    2016-07-01

    We present radiation measurement data from the Sun and the Crab Pulsar using a very light weight payload comprising a scintillator detector from one of the ongoing missions carried out by Indian Centre for Space Physics, India. This is a unique observation in the sense that the payload containing the detector unit was carried off above the Earth atmosphere using small weather balloons in a very cost effective way and with severe weight constraints. In this Mission we have been able to observe two consecutive solar flares and radiation from the Crab pulsar when the payload was under 30 km altitude. We present a brief description of the mission strategy and the temporal and spectral analysis of the data from those sources.

  12. Next-generation materials for future synchrotron and free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assoufid, Lahsen; Graafsma, Heinz

    We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less

  13. Next-generation materials for future synchrotron and free-electron laser sources

    DOE PAGES

    Assoufid, Lahsen; Graafsma, Heinz

    2017-06-09

    We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less

  14. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  15. Integral measurements of neutron and gamma-ray leakage fluxes from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muckenthaler, F.J.

    This report presents integral measurements of neutron and gamma-ray leakage fluxes from a critical mockup of the Hiroshima bomb Little Boy at Los Alamos National Laobratory with detector systems developed by Oak Ridge National Laboratory. Bonner ball detectors were used to map the neutron fluxes in the horizontal midplane at various distances from the mockup and for selected polar angles, keeping the source-detector separation constant. Gamma-ray energy deposition measurements were made with thermoluminescent detectors at several locations on the iron shell of the source mockup. The measurements were performed as part of a larger progam to provide benchmark data formore » testing the methods used to calculate the radiation released from the Little Boy bomb over Hiroshima. 3 references, 10 figures.« less

  16. Interferometric direction finding with a metamaterial detector

    NASA Astrophysics Data System (ADS)

    Venkatesh, Suresh; Shrekenhamer, David; Xu, Wangren; Sonkusale, Sameer; Padilla, Willie; Schurig, David

    2013-12-01

    We present measurements and analysis demonstrating useful direction finding of sources in the S band (2-4 GHz) using a metamaterial detector. An augmented metamaterial absorber that supports magnitude and phase measurement of the incident electric field, within each unit cell, is described. The metamaterial is implemented in a commercial printed circuit board process with off-board back-end electronics. We also discuss on-board back-end implementation strategies. Direction finding performance is analyzed for the fabricated metamaterial detector using simulated data and the standard algorithm, MUtiple SIgnal Classification. The performance of this complete system is characterized by its angular resolution as a function of radiation density at the detector. Sources with power outputs typical of mobile communication devices can be resolved at kilometer distances with sub-degree resolution and high frame rates.

  17. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-,more » medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.« less

  18. Fiber optical assembly for fluorescence spectrometry

    DOEpatents

    Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry

    2010-12-07

    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  19. A line-source method for aligning on-board and other pinhole SPECT systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Susu; Bowsher, James; Yin, Fang-Fang

    2013-12-15

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignmentmore » parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.« less

  20. A line-source method for aligning on-board and other pinhole SPECT systems

    PubMed Central

    Yan, Susu; Bowsher, James; Yin, Fang-Fang

    2013-01-01

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist. Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. PMID:24320537

  1. A line-source method for aligning on-board and other pinhole SPECT systems.

    PubMed

    Yan, Susu; Bowsher, James; Yin, Fang-Fang

    2013-12-01

    In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system-to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)-is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist. Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.

  2. Use of the WNR spallation neutron source at LAMPF to determine the absolute efficiency of a neutron scintillation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staples, P.A.; Egan, J.J.; Kegel, G.H.R.

    1994-06-01

    Prompt fission neutron spectrum measurements at the University of Massachusetts Lowell 5.5 MV Van de Graaff accelerator laboratory require that the neutron detector efficiency be well known over a neutron energy range of 100 keV to 20 MeV. The efficiency of the detector, has been determined for energies greater than 5.0 MeV using the Weapons Neutron Research (WNR) white neutron source at the Los Alamos Meson Physics Facility (LAMPF) in a pulsed beam, time-of-flight (TOF) experiment. Carbon matched polyethylene and graphite scatterers were used to obtain a hydrogen spectrum. The detector efficiency was determined using the well known H(n,n) scatteringmore » cross section. Results are compared to the detector efficiency calculation program SCINFUL available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.« less

  3. NDFOM Description for DNDO Summer Internship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budden, Brent Scott

    2017-12-01

    Nuclear Detection Figure of Merit (NDFOM) is a DNDO-funded project at LANL to develop a software framework that allows a user to evaluate a radiation detection scenario of interest, quickly obtaining results on detector performance. It is intended as a “first step” in detector performance assessment, and meant to be easily employed by subject matter experts (SMEs) and non-SMEs alike. The generic scenario consists of a potential source moving past a detector at a relative velocity and with a distance of closest approach. Such a scenario is capable of describing, e.g., vehicles driving through portal monitors, border patrol scanning suspectedmore » illicit materials with a handheld instrument, and first responders with backpackor pager-based detectors (see Fig. 1). The backend library is prepopulated by the NDFOM developers to include sources and detectors of interest to DNDO and its community.« less

  4. Performance of mobile digital X-ray fluoroscopy using a novel flat panel detector for intraoperative use.

    PubMed

    Jeong, Chang-Won; Ryu, Jong-Hyun; Joo, Su-Chong; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha

    2015-01-01

    Technologies employing digital X-ray devices are developed for mobile settings. To develop a mobile digital X-ray fluoroscopy (MDF) for intraoperative guidance, using a novel flat panel detector to focus on diagnostics in outpatient clinics, operating and emergency rooms. An MDF for small-scale field diagnostics was configured using an X-ray source and a novel flat panel detector. The imager enabled frame rates reaching 30 fps in full resolution fluoroscopy with maximal running time of 5 minutes. Signal-to-noise (SNR), contrast-to-noise (CNR), and spatial resolution were analyzed. Stray radiation, exposure radiation dose, and effective absorption dose were measured for patients. The system was suitable for small-scale field diagnostics. SNR and CNR were 62.4 and 72.0. Performance at 10% of MTF was 9.6 lp/mm (53 μ m) in the no binned mode. Stray radiation at 100 cm and 150 cm from the source was below 0.2 μ Gy and 0.1 μ Gy. Exposure radiation in radiography and fluoroscopy (5 min) was 10.2 μ Gy and 82.6 mGy. The effective doses during 5-min-long fluoroscopy were 0.26 mSv (wrist), 0.28 mSv (elbow), 0.29 mSv (ankle), and 0.31 mSv (knee). The proposed MDF is suitable for imaging in operating rooms.

  5. Optical system for high resolution spectrometer/monochromator

    DOEpatents

    Hettrick, Michael C.; Underwood, James H.

    1988-01-01

    An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver.

  6. Predicting the response of a submillimeter bolometer to cosmic rays.

    PubMed

    Woodcraft, Adam L; Sudiwala, Rashmi V; Ade, Peter A R; Griffin, Matthew J; Wakui, Elley; Bhatia, Ravinder S; Lange, Andrew E; Bock, James J; Turner, Anthony D; Yun, Minhee H; Beeman, Jeffrey W

    2003-09-01

    Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.

  7. Predicting the response of a submillimeter bolometer to cosmic rays

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.; Sudiwala, Rashmi V.; Ade, Peter A. R.; Griffin, Matthew J.; Wakui, Elley; Bhatia, Ravinder S.; Lange, Andrew E.; Bock, James J.; Turner, Anthony D.; Yun, Minhee H.; Beeman, Jeffrey W.

    2003-09-01

    Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.

  8. Device and method for determining oxygen concentration and pressure in gases

    DOEpatents

    Ayers, Michael R.; Hunt, Arlon J.

    1999-01-01

    Disclosed are oxygen concentration and/or pressure sensing devices and methods which incorporate photoluminescent silica aerogels. Disclosed sensors include a light proof housing for holding the photoluminescent aerogel, a source of excitation radiation (e.g., a UV source), a detector for detecting radiation emitted by the aerogel, a system for delivering a sample gas to the aerogel, and a thermocouple. Also disclosed are water resistant oxygen sensors having a photoluminescent aerogel coated with a hydrophobic material.

  9. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    NASA Astrophysics Data System (ADS)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  10. Compound simulator IR radiation characteristics test and calibration

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Zhang, Li; Li, Fan; Tian, Yi; Yang, Yang; Li, Zhuo; Shi, Rui

    2015-10-01

    The Hardware-in-the-loop simulation can establish the target/interference physical radiation and interception of product flight process in the testing room. In particular, the simulation of environment is more difficult for high radiation energy and complicated interference model. Here the development in IR scene generation produced by a fiber array imaging transducer with circumferential lamp spot sources is introduced. The IR simulation capability includes effective simulation of aircraft signatures and point-source IR countermeasures. Two point-sources as interference can move in two-dimension random directions. For simulation the process of interference release, the radiation and motion characteristic is tested. Through the zero calibration for optical axis of simulator, the radiation can be well projected to the product detector. The test and calibration results show the new type compound simulator can be used in the hardware-in-the-loop simulation trial.

  11. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    PubMed

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  12. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Exceptions for radiation detectors. 173.310... for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  13. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Exceptions for radiation detectors. 173.310... for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  14. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Exceptions for radiation detectors. 173.310... for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  15. Simulation Model of Mobile Detection Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunds, T; Faissol, D; Yao, Y

    2009-01-27

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped withmore » 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains a constant range to the vessel being inspected. Finally, a variation of the sequential probability ratio test that is more appropriate when source and detector are not at constant range is available [Nelson 2005]. Each patrol boat in the fleet can be assigned a particular zone of the bay, or all boats can be assigned to monitor the entire bay. Boats assigned to a zone will only intercept and inspect other boats when they enter their zone. In our example simulation, each of two patrol boats operate in a 5 km by 5 km zone. Other parameters for this example include: (1) Detection range - 15 m range maintained between patrol boat and inspected boat; (2) Inbound boat arrival rate - Poisson process with mean arrival rate of 30 boats per hour; (3) Speed of boats to be inspected - Random between 4.5 and 9 knots; (4) Patrol boat speed - 10 knots; (5) Number of detectors per patrol boat - 4-2-inch x 4-inch x 16-inch NaI detectors; (6) Background radiation - 40 counts/sec per detector; and (7) Detector response due to radiation source at 1 meter - 1,589 counts/sec per detector. Simulation results indicate that two patrol boats are able to detect the source 81% of the time without zones and 90% of the time with zones. The average distances between the source and target at the end of the simulation is 5,866 km and 5,712 km for non-zoned and zoned patrols, respectively. Of those that did not reach the target, the average distance to the target is 7,305 km and 6,441 km respectively. Note that a design trade-off exists. While zoned patrols provide a higher probability of detection, the nonzoned patrols tend to detect the source farther from its target. Figure 1 displays the location of the source at the end of 1,000 simulations for the 5 x 10 km bay simulation. The simulation model and analysis described here can be used to determine the number of mobile detectors one would need to deploy in order to have a have reasonable chance of detecting a source in transit. By fixing the source speed to zero, the same model could be used to estimate how long it would take to detect a stationary source. For example, the model could predict how long it would take plant staff performing assigned duties carrying dosimeters to discover a contaminated spot in the facility.« less

  16. Investigation on Main Radiation Source at Operation Floor of Fukushima Daiichi Nuclear Power Station Unit 4

    NASA Astrophysics Data System (ADS)

    Hirayama, Hideo; Kondo, Kenjiro; Suzuki, Seishiro; Hamamoto, Shimpei; Iwanaga, Kohei

    2017-09-01

    Pulse height distributions were measured using a LaBr3 detector set in a 1 cm lead collimator to investigate main radiation source at the operation floor of Fukushima Daiichi Nuclear Power Station Unit 4. It was confirmed that main radiation source above the reactor well was Co-60 from the activated steam dryer in the DS pool (Dryer-Separator pool) and that at the standby area was Cs-134 and Cs-137 from contaminated buildings and debris at the lower floor. Full energy peak count rate of Co-60 was reduced about 1/3 by 12mm lead sheet placed on the floor of the fuel handling machine.

  17. Tritium-powered radiation sensor network

    NASA Astrophysics Data System (ADS)

    Litz, Marc S.; Russo, Johnny A.; Katsis, Dimos

    2016-05-01

    Isotope power supplies offer long-lived (100 years using 63Ni), low-power energy sources, enabling sensors or communications nodes for the lifetime of infrastructure. A tritium beta-source (12.5-year half-life) encapsulated in a phosphor-lined vial couples directly to a photovoltaic (PV) to generate a trickle current into an electrical load. An inexpensive design is described using commercial-of-the-shelf (COTS) components that generate 100 μWe for nextgeneration compact electronics/sensors. A matched radiation sensor has been built for long-duration missions utilizing microprocessor-controlled sleep modes, low-power electronic components, and a passive interrupt driven environmental wake-up. The low-power early-warning radiation detector network and isotope power source enables no-maintenance mission lifetimes.

  18. Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation

    DOEpatents

    Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.

    2012-11-06

    An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.

  19. Data Fusion for a Vision-Radiological System for Source Tracking and Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, Andreas; Koppal, Sanjeev

    2015-07-01

    A multidisciplinary approach to allow the tracking of the movement of radioactive sources by fusing data from multiple radiological and visual sensors is under development. The goal is to improve the ability to detect, locate, track and identify nuclear/radiological threats. The key concept is that such widely available visual and depth sensors can impact radiological detection, since the intensity fall-off in the count rate can be correlated to movement in three dimensions. To enable this, we pose an important question; what is the right combination of sensing modalities and vision algorithms that can best compliment a radiological sensor, for themore » purpose of detection and tracking of radioactive material? Similarly what is the best radiation detection methods and unfolding algorithms suited for data fusion with tracking data? Data fusion of multi-sensor data for radiation detection have seen some interesting developments lately. Significant examples include intelligent radiation sensor systems (IRSS), which are based on larger numbers of distributed similar or identical radiation sensors coupled with position data for network capable to detect and locate radiation source. Other developments are gamma-ray imaging systems based on Compton scatter in segmented detector arrays. Similar developments using coded apertures or scatter cameras for neutrons have recently occurred. The main limitation of such systems is not so much in their capability but rather in their complexity and cost which is prohibitive for large scale deployment. Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development on two separate calibration algorithms for characterizing the fused sensor system. The deviation from a simple inverse square-root fall-off of radiation intensity is explored and accounted for. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked. Infrared, laser or stereoscopic vision sensors are all options for computer-vision implementation depending on interior vs exterior deployment, resolution desired and other factors. Similarly the radiation sensors will be focused on gamma-ray or neutron detection due to the long travel length and ability to penetrate even moderate shielding. There is a significant difference between the vision sensors and radiation sensors in the way the 'source' or signals are generated. A vision sensor needs an external light-source to illuminate the object and then detects the re-emitted illumination (or lack thereof). However, for a radiation detector, the radioactive material is the source itself. The only exception to this is the field of active interrogations where radiation is beamed into a material to entice new/additional radiation emission beyond what the material would emit spontaneously. The aspect of the nuclear material being the source itself means that all other objects in the environment are 'illuminated' or irradiated by the source. Most radiation will readily penetrate regular material, scatter in new directions or be absorbed. Thus if a radiation source is located near a larger object that object will in turn scatter some radiation that was initially emitted in a direction other than the direction of the radiation detector, this can add to the count rate that is observed. The effect of these scatter is a deviation from the traditional distance dependence of the radiation signal and is a key challenge that needs a combined system calibration solution and algorithms. Thus both an algebraic approach as well as a statistical approach have been developed and independently evaluated to investigate the sensitivity to this deviation from the simplified radiation fall-off as a function of distance. The resulting calibrated system algorithms are used and demonstrated in various laboratory scenarios, and later in realistic tracking scenarios. The selection and testing of radiological and computer-vision sensors for the additional specific scenarios will be the subject of ongoing and future work. (authors)« less

  20. Characterizing Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  1. 10 CFR 36.61 - Inspection and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for radioactive contamination in pool water required by § 36.59(b) using a radiation check source, if... emergency source return control required by § 36.31(c). (7) Leak-tightness of systems through which pool water circulates (visual inspection). (8) Operability of the heat and smoke detectors and extinguisher...

  2. METHOD AND APPARATUS FOR THE DETECTION OF LEAKS IN PIPE LINES

    DOEpatents

    Jefferson, S.; Cameron, J.F.

    1961-11-28

    A method is described for detecting leaks in pipe lines carrying fluid. The steps include the following: injecting a radioactive solution into a fluid flowing in the line; flushing the line clear of the radioactive solution; introducing a detector-recorder unit, comprising a radioactivity radiation detector and a recorder which records the detector signal over a time period at a substantially constant speed, into the line in association with a go-devil capable of propelling the detector-recorder unit through the line in the direction of the fluid flow at a substantia1ly constant velocity; placing a series of sources of radioactivity at predetermined distances along the downstream part of the line to make a characteristic signal on the recorder record at intervals corresponding to the location of said sources; recovering the detector-recorder unit at a downstream point along the line; transcribing the recorder record of any radioactivity detected during the travel of the detector- recorder unit in terms of distance along the line. (AEC)

  3. Method and apparatus for imaging a sample on a device

    DOEpatents

    Trulson, Mark; Stern, David; Fiekowsky, Peter; Rava, Richard; Walton, Ian; Fodor, Stephen P. A.

    2001-01-01

    A method and apparatus for imaging a sample are provided. An electromagnetic radiation source generates excitation radiation which is sized by excitation optics to a line. The line is directed at a sample resting on a support and excites a plurality of regions on the sample. Collection optics collect response radiation reflected from the sample I and image the reflected radiation. A detector senses the reflected radiation and is positioned to permit discrimination between radiation reflected from a certain focal plane in the sample and certain other planes within the sample.

  4. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general discussion of the application of detectors for x-ray nuclear medicine and ion beam imaging and dosimetry is presented.

  5. Quantitative performance measurements of bent crystal Laue analyzers for X-ray fluorescence spectroscopy.

    PubMed

    Karanfil, C; Bunker, G; Newville, M; Segre, C U; Chapman, D

    2012-05-01

    Third-generation synchrotron radiation sources pose difficult challenges for energy-dispersive detectors for XAFS because of their count rate limitations. One solution to this problem is the bent crystal Laue analyzer (BCLA), which removes most of the undesired scatter and fluorescence before it reaches the detector, effectively eliminating detector saturation due to background. In this paper experimental measurements of BCLA performance in conjunction with a 13-element germanium detector, and a quantitative analysis of the signal-to-noise improvement of BCLAs are presented. The performance of BCLAs are compared with filters and slits.

  6. Device and method for determining oxygen concentration and pressure in gases

    DOEpatents

    Ayers, M.R.; Hunt, A.J.

    1999-03-23

    Disclosed are oxygen concentration and/or pressure sensing devices and methods which incorporate photoluminescent silica aerogels. Disclosed sensors include a light proof housing for holding the photoluminescent aerogel, a source of excitation radiation (e.g., a UV source), a detector for detecting radiation emitted by the aerogel, a system for delivering a sample gas to the aerogel, and a thermocouple. Also disclosed are water resistant oxygen sensors having a photoluminescent aerogel coated with a hydrophobic material. 6 figs.

  7. Thermal neutron radiative capture on cadmium as a counting technique at the INES beam line at ISIS: A preliminary investigation of detector cross-talk.

    PubMed

    Festa, G; Grazzi, F; Pietropaolo, A; Scherillo, A; Schooneveld, E M

    2017-12-01

    Experimental tests are presented that assess the cross-talk level among three scintillation detectors used as neutron counters exploiting the thermal neutron radiative capture on Cd. The measurements were done at the INES diffractometer operating at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK). These tests follow a preliminary set of measurements performed on the same instrument to study the effectiveness of this thermal neutron counting strategy in neutron diffraction measurements, typically performed on INES using squashed 3 He filled gas tubes. The experimental data were collected in two different geometrical configurations of the detectors and compared to results of Monte Carlo simulations, performed using the MCNP code. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Monitoring Energy Calibration Drift Using the Scintillator Background Radiation

    NASA Astrophysics Data System (ADS)

    Conti, Maurizio; Eriksson, Lars; Hayden, Charles

    2011-06-01

    Scintillating materials commonly used in nuclear medicine can contain traces of isotopes that naturally emit gamma or beta radiation. Examples of these are 138La contained in LaBr3 and other Lanthanum based scintillators, and 176Lu contained in LSO, LYSO, LuYAP and other Lutetium based scintillators. In particular,176Lu decays into 176Hf and emits a beta particle with maximum energy 589 keV, and a cascade of gamma rays of energies 307 keV, 202 keV and 88 keV. We propose to use the background radiation for monitoring of detector calibration drift and for self-calibration of detectors in complex detector systems. A calibration drift due to random or systematic changes in photomultiplier tube (PMT) gain was studied in a Siemens PET scanner, based on LSO blocks. Both a conventional radioactive source (68Ge, 511 keV photons from electron-positron annihilation) and the LSO background radiation were used for calibration. The difference in the calibration peak shift at 511 keV estimated with the two methods was less than 10%.

  9. High power THz sources for nonlinear imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-18

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source deliversmore » 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.« less

  10. High power THz sources for nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-01

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  11. Support of research in X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Garmire, G.

    1983-01-01

    Activities described include: (1) the evaluation of CCD detectors for X-ray astronomy applications; (2) contributions to the development of an imaging gas scintillation proportional counter; (3) the evaluation of certain metal oxide crystals as potential radiation detectors; (4) optical observations and searches for X-ray sources discovered by the HEAO-1 A2 experiment; and (5) theoretical modeling of nonequilibrium ionization structure of supernova remnants.

  12. A Model for Remote Depth Estimation of Buried Radioactive Wastes Using CdZnTe Detector.

    PubMed

    Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A

    2018-05-18

    This paper presents the results of an attenuation model for remote depth estimation of buried radioactive wastes using a Cadmium Zinc Telluride (CZT) detector. Previous research using an organic liquid scintillator detector system showed that the model is able to estimate the depth of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average count rate of 100 cps. The results presented in this paper showed that the use of the CZT detector extended the maximum detectable depth of the same radioactive source to 18 cm in sand with a significantly lower average count rate of 14 cps. Furthermore, the model also successfully estimated the depth of a 9-kBq Co-60 source buried up to 3 cm in sand. This confirms that this remote depth estimation method can be used with other radionuclides and wastes with very low activity. Finally, the paper proposes a performance parameter for evaluating radiation detection systems that implement this remote depth estimation method.

  13. Optical system for high resolution spectrometer/monochromator

    DOEpatents

    Hettrick, M.C.; Underwood, J.H.

    1988-10-11

    An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane is disclosed. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver. 11 figs.

  14. Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases

    DOEpatents

    Owen, Thomas E.

    2005-11-29

    A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.

  15. Natural Sources of Radiation Exposure and the Teaching of Radioecology

    ERIC Educational Resources Information Center

    Anjos, R. M.; Veiga, R.; Carvalho, C.; Sanches, N.; Estellita, L.; Zanuto, P.; Queiroz, E.; Macario, K.

    2008-01-01

    We have developed an experimental activity that introduces concepts of the natural ionizing radiation and its interaction with our contemporary environment that can be used with students from secondary to college level. The experiment is based on the use of traditional and cheap portable Geiger-Muller detectors as survey meters for "in situ"…

  16. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison.

    PubMed

    Mangold, Stefanie; De Cecco, Carlo N; Wichmann, Julian L; Canstein, Christian; Varga-Szemes, Akos; Caruso, Damiano; Fuller, Stephen R; Bamberg, Fabian; Nikolaou, Konstantin; Schoepf, U Joseph

    2016-05-01

    To compare, on an intra-individual basis, the effect of automated tube voltage selection (ATVS), integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of aortic CTA studies using 2nd and 3rd generation dual-source CT (DSCT). We retrospectively evaluated 32 patients who had undergone CTA of the entire aorta with both 2nd generation DSCT at 120kV using filtered back projection (FBP) (protocol 1) and 3rd generation DSCT using ATVS, an integrated circuit detector and advanced iterative reconstruction (protocol 2). Contrast-to-noise ratio (CNR) was calculated. Image quality was subjectively evaluated using a five-point scale. Radiation dose parameters were recorded. All studies were considered of diagnostic image quality. CNR was significantly higher with protocol 2 (15.0±5.2 vs 11.0±4.2; p<.0001). Subjective image quality analysis revealed no significant differences for evaluation of attenuation (p=0.08501) but image noise was rated significantly lower with protocol 2 (p=0.0005). Mean tube voltage and effective dose were 94.7±14.1kV and 6.7±3.9mSv with protocol 2; 120±0kV and 11.5±5.2mSv with protocol 1 (p<0.0001, respectively). Aortic CTA performed with 3rd generation DSCT, ATVS, integrated circuit detector, and advanced iterative reconstruction allow a substantial reduction of radiation exposure while improving image quality in comparison to 120kV imaging with FBP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Studies on new neutron-sensitive dosimeters using an optically stimulated luminescence technique

    NASA Astrophysics Data System (ADS)

    Kulkarni, M. S.; Luszik-Bhadra, M.; Behrens, R.; Muthe, K. P.; Rawat, N. S.; Gupta, S. K.; Sharma, D. N.

    2011-07-01

    The neutron response of detectors prepared using α-Al 2O 3:C phosphor developed using a melt processing technique and mixed with neutron converters was studied in monoenergetic neutron fields. The detector pellets were arranged in two different pairs: α-Al 2O 3:C + 6LiF/α-Al 2O 3:C + 7LiF and α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon, for neutron dosimetry using albedo and recoil proton techniques. The optically stimulated luminescence response of the Al 2O 3:C + 6,7LiF dosimeter to radiation from a 252Cf source was 0.21, in terms of personal dose equivalent Hp(10) and relative to radiation from a 137Cs source. This was comparable to results obtained with similar detectors prepared using commercially available α-Al 2O 3:C phosphor. The Hp(10) response of the α-Al 2O 3:C + 6,7LiF dosimeters was found to decrease by more than two orders of magnitude with increasing neutron energy, as expected for albedo dosimeters. The response of the α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon dosimeters was small, of the order of 1% to 2% in terms of Hp(10) and relative to radiation from a 137Cs source, for neutron energies greater than 1 MeV.

  18. Simple electronic apparatus for the analysis of radioactively labeled gel electrophoretograms

    DOEpatents

    Goulianos, Konstantin; Smith, Karen K.; White, Sebastian N.

    1982-01-01

    A high resolution position sensitive radiation detector for analyzing radiation emanating from a source, constructed of a thin plate having an elongated slot with conductive edges acting as a cathode, a charged anode wire positioned within 0.5 mm adjacent the source and running parallel to the slot and centered therein, an ionizable gas ionized by radiation emanating from the source provided surrounding the anode wire in the slot, a helical wire induction coil serving as a delay line and positioned beneath the anode wire for detecting gas ionization and for producing resulting ionization signals, and processing circuits coupled to the induction coil for receiving ionization signals induced therein after determining therefrom the location along the anode wire of any radiation emanating from the source. An ionization gas of 70% Ar, 29% Isobutane, 0.6% Freon 13BI, and 0.4% Methylal is used.

  19. Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations

    NASA Astrophysics Data System (ADS)

    Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.

    2017-11-01

    Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.

  20. Polyethylene Naphthalate Scintillator: A Novel Detector for the Dosimetry of Radioactive Ophthalmic Applicators

    PubMed Central

    Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion

    2015-01-01

    Background Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm3 and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Purpose, Materials and Methods Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. Results For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Conclusion Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications. PMID:27171681

  1. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  2. Method and apparatus for imaging a sample on a device

    DOEpatents

    Trulson, Mark; Stern, David; Fiekowsky, Peter; Rava, Richard; Walton, Ian; Fodor, Stephen P. A.

    1996-01-01

    The present invention provides methods and systems for detecting a labeled marker on a sample located on a support. The imaging system comprises a body for immobilizing the support, an excitation radiation source and excitation optics to generate and direct the excitation radiation at the sample. In response, labeled material on the sample emits radiation which has a wavelength that is different from the excitation wavelength, which radiation is collected by collection optics and imaged onto a detector which generates an image of the sample.

  3. Evaluation of Differences in Response of DOD Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component

    DTIC Science & Technology

    2014-03-01

    sources. 15. SUBJECT TERMS Operation Tomodachi, Radiation Dose, Department of Defense, Japan, Fukushima , Earthquake, Tsunami, Cosmic Radiation 16...were reported along with data collected after the releases from the Fukushima Daiichi Nuclear Power Station (FDNPS) began contributing to the...Araki, S.; Ohta, Y.; Ikeuchi, Y.; 2012. “Changes of Radionuclides in the Environment in Chiba, Japan, after the Fukushima Nuclear Power Plant Accident

  4. Consideration of the Protection Curtain's Shielding Ability after Identifying the Source of Scattered Radiation in the Angiography.

    PubMed

    Sato, Naoki; Fujibuchi, Toshioh; Toyoda, Takatoshi; Ishida, Takato; Ohura, Hiroki; Miyajima, Ryuichi; Orita, Shinichi; Sueyoshi, Tomonari

    2017-06-15

    To decrease radiation exposure to medical staff performing angiography, the dose distribution in the angiography was calculated in room using the particle and heavy ion transport code system (PHITS), which is based on Monte Carlo code, and the source of scattered radiation was confirmed using a tungsten sheet by considering the difference shielding performance among different sheet placements. Scattered radiation generated from a flat panel detector, X-ray tube and bed was calculated using the PHITS. In this experiment, the source of scattered radiation was identified as the phantom or acrylic window attached to the X-ray tube thus, a protection curtain was placed on the bed to shield against scattered radiation at low positions. There was an average difference of 20% between the measured and calculated values. The H*(10) value decreased after placing the sheet on the right side of the phantom. Thus, the curtain could decrease scattered radiation. © Crown copyright 2016.

  5. Characterization of a novel two dimensional diode array the "magic plate" as a radiation detector for radiation therapy treatment.

    PubMed

    Wong, J H D; Fuduli, I; Carolan, M; Petasecca, M; Lerch, M L F; Perevertaylo, V L; Metcalfe, P; Rosenfeld, A B

    2012-05-01

    Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the "magic plate" (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. The prototype MP is an 11 × 11 detector array based on thin (50 μm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary "drop-in" technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180°. Angular dependence was within 3.5% for the gantry angles ± 75°. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the surface dose increased by 12.1% for a 30 × 30 cm(2) field size at the source to detector distance (SDD) of 80 cm whilst the transmission for the MP was 99%. The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with "drop-in" packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.

  6. Fabrication of nanoscale patterns in lithium fluoride crystal using a 13.5 nm Schwarzschild objective and a laser produced plasma source.

    PubMed

    Wang, Xin; Mu, Baozhong; Jiang, Li; Zhu, Jingtao; Yi, Shengzhen; Wang, Zhanshan; He, Pengfei

    2011-12-01

    Lithium fluoride (LiF) crystal is a radiation sensitive material widely used as EUV and soft x-ray detector. The LiF-based detector has high resolution, in principle limited by the point defect size, large field of view, and wide dynamic range. Using LiF crystal as an imaging detector, a resolution of 900 nm was achieved by a projection imaging of test meshes with a Schwarzschild objective operating at 13.5 nm. In addition, by imaging of a pinhole illuminated by the plasma, an EUV spot of 1.5 μm diameter in the image plane of the objective was generated, which accomplished direct writing of color centers with resolution of 800 nm. In order to avoid sample damage and contamination due to the influence of huge debris flux produced by the plasma source, a spherical normal-incidence condenser was used to collect EUV radiation. Together with a description of experimental results, the development of the Schwarzschild objective, the influence of condenser on energy density and the alignment of the imaging system are also reported.

  7. Sub-THz Imaging Using Non-Resonant HEMT Detectors

    PubMed Central

    Delgado-Notario, Juan A.; Meziani, Yahya M.; Fobelets, Kristel

    2018-01-01

    Plasma waves in gated 2-D systems can be used to efficiently detect THz electromagnetic radiation. Solid-state plasma wave-based sensors can be used as detectors in THz imaging systems. An experimental study of the sub-THz response of II-gate strained-Si Schottky-gated MODFETs (Modulation-doped Field-Effect Transistor) was performed. The response of the strained-Si MODFET has been characterized at two frequencies: 150 and 300 GHz: The DC drain-to-source voltage transducing the THz radiation (photovoltaic mode) of 250-nm gate length transistors exhibited a non-resonant response that agrees with theoretical models and physics-based simulations of the electrical response of the transistor. When imposing a weak source-to-drain current of 5 μA, a substantial increase of the photoresponse was found. This increase is translated into an enhancement of the responsivity by one order of magnitude as compared to the photovoltaic mode, while the NEP (Noise Equivalent Power) is reduced in the subthreshold region. Strained-Si MODFETs demonstrated an excellent performance as detectors in THz imaging. PMID:29439437

  8. Testing of focal plane arrays at the AEDC

    NASA Astrophysics Data System (ADS)

    Nicholson, Randy A.; Mead, Kimberly D.; Smith, Robert W.

    1992-07-01

    A facility was developed at the Arnold Engineering Development Center (AEDC) to provide complete radiometric characterization of focal plane arrays (FPAs). The highly versatile facility provides the capability to test single detectors, detector arrays, and hybrid FPAs. The primary component of the AEDC test facility is the Focal Plane Characterization Chamber (FPCC). The FPCC provides a cryogenic, low-background environment for the test focal plane. Focal plane testing in the FPCC includes flood source testing, during which the array is uniformly irradiated with IR radiation, and spot source testing, during which the target radiation is focused onto a single pixel or group of pixels. During flood source testing, performance parameters such as power consumption, responsivity, noise equivalent input, dynamic range, radiometric stability, recovery time, and array uniformity can be assessed. Crosstalk is evaluated during spot source testing. Spectral response testing is performed in a spectral response test station using a three-grating monochromator. Because the chamber can accommodate several types of testing in a single test installation, a high throughput rate and good economy of operation are possible.

  9. The New Status of Argon-37 Artificial Neutrino Source Project

    NASA Astrophysics Data System (ADS)

    Abdurashitov, J. N.; Gavrin, V. N.; Mirmov, I. N.; Veretenkin, E. P.; Yants, V. E.; Oshkanov, N. N.; Karpenko, A. I.; Maltsev, V. V.; Barsanov, V. I.; Trubin, K. S.; Zlokazov, S. B.; Khomyakov, Yu. S.; Poplavsky, V. M.; Saraeva, T. O.; Vasiliev, B. A.; Mishin, O. V.; Bowles, T. J.; Teasdale, W. A.; Lande, K.; Wildenhain, P.; Cleveland, B. T.; Elliott, S. R.; Haxton, W.; Wilkerson, J. F.; Suzuki, A.; Suzuki, Y.; Nakahata, M.

    2002-07-01

    Solution of the solar neutrino problem is significantly depends on the next generation of detectors that can measure the neutrino radiation from the Sun in intermediate energies. An intense (˜ 1 MCi) 37Ar source would be an ideal tool for the calibration of new solar neutrino detectors. The technology of the production of such a source is based on the irradiation of a large mass of a Ca-containing target in a high-flux fast-neutron reactor. Produced 37Ar extracted from this target, will be purified and encapsulated in a source holder. A joint scientific collaboration of Russian, US and Japanese institutions are researching and developing the initial steps of this work and are funded by ISTC and CRDF.

  10. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  11. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  12. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  13. Characterization of MOSkin detector for in vivo skin dose measurement during megavoltage radiotherapy

    PubMed Central

    Jong, Wei Loong; Wong, Jeannie Hsiu Ding; Ng, Kwan Hoong; Ho, Gwo Fuang; Cutajar, Dean L.; Rosenfeld, Anatoly B.

    2014-01-01

    In vivo dosimetry is important during radiotherapy to ensure the accuracy of the dose delivered to the treatment volume. A dosimeter should be characterized based on its application before it is used for in vivo dosimetry. In this study, we characterize a new MOSFET‐based detector, the MOSkin detector, on surface for in vivo skin dosimetry. The advantages of the MOSkin detector are its water equivalent depth of measurement of 0.07 mm, small physical size with submicron dosimetric volume, and the ability to provide real‐time readout. A MOSkin detector was calibrated and the reproducibility, linearity, and response over a large dose range to different threshold voltages were determined. Surface dose on solid water phantom was measured using MOSkin detector and compared with Markus ionization chamber and GAFCHROMIC EBT2 film measurements. Dependence in the response of the MOSkin detector on the surface of solid water phantom was also tested for different (i) source to surface distances (SSDs); (ii) field sizes; (iii) surface dose; (iv) radiation incident angles; and (v) wedges. The MOSkin detector showed excellent reproducibility and linearity for dose range of 50 cGy to 300 cGy. The MOSkin detector showed reliable response to different SSDs, field sizes, surface, radiation incident angles, and wedges. The MOSkin detector is suitable for in vivo skin dosimetry. PACS number: 87.55.Qr PMID:25207573

  14. A novel nanometric DNA thin film as a sensor for alpha radiation

    PubMed Central

    Kulkarni, Atul; Kim, Byeonghoon; Dugasani, Sreekantha Reddy; Joshirao, Pranav; Kim, Jang Ah; Vyas, Chirag; Manchanda, Vijay; Kim, Taesung; Park, Sung Ha

    2013-01-01

    The unexpected nuclear accidents have provided a challenge for scientists and engineers to develop sensitive detectors, especially for alpha radiation. Due to the high linear energy transfer value, sensors designed to detect such radiation require placement in close proximity to the radiation source. Here we report the morphological changes and optical responses of artificially designed DNA thin films in response to exposure to alpha radiation as observed by an atomic force microscope, a Raman and a reflectance spectroscopes. In addition, we discuss the feasibility of a DNA thin film as a radiation sensing material. The effect of alpha radiation exposure on the DNA thin film was evaluated as a function of distance from an 241Am source and exposure time. Significant reflected intensity changes of the exposed DNA thin film suggest that a thin film made of biomolecules can be one of promising candidates for the development of online radiation sensors. PMID:23792924

  15. Low Z total reflection X-ray fluorescence analysis — challenges and answers

    NASA Astrophysics Data System (ADS)

    Streli, C.; Kregsamer, P.; Wobrauschek, P.; Gatterbauer, H.; Pianetta, P.; Pahlke, S.; Fabry, L.; Palmetshofer, L.; Schmeling, M.

    1999-10-01

    Low Z elements, like C, O, ... Al are difficult to measure, due to the lack of suitable low-energy photons for efficient excitation using standard X-ray tubes, as well as difficult to detect with an energy dispersive detector, if the entrance window is not thin enough. Special excitation sources and special energy dispersive detectors are required to increase the sensitivity and to increase the detected fluorescence signal and so to improve the detection limits. Synchrotron radiation, due to its features like high intensity and wide spectral range covering also the low-energy region, is the ideal source for TXRF, especially of low-Z elements. Experiments at a specific beamline (BL 3-4) at SSRL, Stanford, designed for the exclusive use of low-energy photons has been used as an excitation source. Detection limits <100 fg for Al, Mg and Na have been achieved using quasimonochromatic radiation of 1.7 keV. A Ge(HP) detector with an ultra-thin NORWAR entrance window is used. One application is the determination of low-Z surface contamination on Si-wafers. Sodium, as well as Al, are elements of interest for the semiconductor industry, both influencing the yield of ICs negatively. A detection capacity of 10 10 atoms/cm 2 is required which can be reached using synchrotron radiation as excitation source. Another promising application is the determination of low-Z atoms implanted in Si wafers. Sodium, Mg and Al were implanted in Si-wafers at various depths. From measuring the dependence of the fluorescence signal on the glancing angle, characteristic shapes corresponding to the depth profile and the relevant implantation depth are found. Calculations are compared with measurements. Finally, aerosols sampled on polycarbonate plates in a Battelle impactor were analyzed with LZ-TXRF using multilayer monochromatized Cr-Kα radiation from a 1300-W fine-focus tube for excitation. Results are presented.

  16. A 220Rn source for the calibration of low-background experiments

    NASA Astrophysics Data System (ADS)

    Lang, R. F.; Brown, A.; Brown, E.; Cervantes, M.; Macmullin, S.; Masson, D.; Schreiner, J.; Simgen, H.

    2016-04-01

    We characterize two 40 kBq sources of electrodeposited 228Th for use in low-background experiments. The sources efficiently emanate 220Rn, a noble gas that can diffuse in a detector volume. 220Rn and its daughter isotopes produce α-, β-, and γ-radiation, which may used to calibrate a variety of detector responses and features, before decaying completely in only a few days. We perform various tests to place limits on the release of other long-lived isotopes. In particular, we find an emanation of < 0.008 atoms/min/kBq (90% CL) for 228Th and (1.53 ± 0.04) atoms/min/kBq for 224Ra. The sources lend themselves in particular to the calibration of detectors employing liquid noble elements such as argon and xenon. With the source mounted in a noble gas system, we demonstrate that filters are highly efficient in reducing the activity of these longer-lived isotopes further. We thus confirm the suitability of these sources even for use in next-generation experiments, such as XENON1T/XENONnT, LZ, and nEXO.

  17. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  18. Monopole, astrophysics and cosmic ray observatory at Gran Sasso

    NASA Technical Reports Server (NTRS)

    Demarzo, C.; Enriquez, O.; Giglietto, N.; Posa, F.; Attolini, M.; Baldetti, F.; Giacomelli, G.; Grianti, F.; Margiotta, A.; Serra, P.

    1985-01-01

    A new large area detector, MACRO was approved for installation at the Gran Sasso Laboratory in Italy. The detector will be dedicated to the study of naturally penetrating radiation deep underground. It is designed with the general philosophy of covering the largest possible area with a detector having both sufficient built-in redundancy and use of complementary techniques to study very rare phenomena. The detector capabilities will include monopole investigations significantly below the Parker bound; astrophysics studies of very high energy gamma ray and neutrino point sources; cosmic ray measurements of single and multimuons; and the general observation of rare new forms of matter in the cosmic rays.

  19. Biological particle identification apparatus

    DOEpatents

    Salzman, Gary C.; Gregg, Charles T.; Grace, W. Kevin; Hiebert, Richard D.

    1989-01-01

    An apparatus and method for making multiparameter light scattering measurements from suspensions of biological particles is described. Fourteen of the sixteen Mueller matrix elements describing the particles under investigation can be substantially individually determined as a function of scattering angle and probing radiations wavelength, eight elements simultaneously for each of two apparatus configurations using an apparatus which incluees, in its simplest form, two polarization modulators each operating at a chosen frequency, one polarizer, a source of monochromatic electromagnetic radiation, a detector sensitive to the wavelength of radiation employed, eight phase-sensitive detectors, and appropriate electronics. A database of known biological particle suspensions can be assembled, and unknown samples can be quickly identified once measurements are performed on it according to the teachings of the subject invention, and a comparison is made with the database.

  20. Noncontact localized internal infrared radiation measurement using an infrared point detector

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2017-12-01

    The techniques for temperature measurement within the human body are important for clinical applications. A method for noncontact local infrared (IR) radiation measurements was investigated deep within an object to simulate how the core human body temperature can be obtained. To isolate the IR light emitted from a specific area within the object from the external noise, the radiating IR light was detected using an IR point detector, which comprises a pinhole and a thermopile positioned at an imaging relation with the region of interest within the object. The structure of the helical filament radiating IR light inside a light bulb was thermally imaged by scanning the bulb in two dimensions. Moreover, this approach was used to effectively measure IR light in the range of human body temperature using a glass plate placed in front of the heat source, mimicking the ocular fundus.

  1. Noncontact localized internal infrared radiation measurement using an infrared point detector

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2018-06-01

    The techniques for temperature measurement within the human body are important for clinical applications. A method for noncontact local infrared (IR) radiation measurements was investigated deep within an object to simulate how the core human body temperature can be obtained. To isolate the IR light emitted from a specific area within the object from the external noise, the radiating IR light was detected using an IR point detector, which comprises a pinhole and a thermopile positioned at an imaging relation with the region of interest within the object. The structure of the helical filament radiating IR light inside a light bulb was thermally imaged by scanning the bulb in two dimensions. Moreover, this approach was used to effectively measure IR light in the range of human body temperature using a glass plate placed in front of the heat source, mimicking the ocular fundus.

  2. An x-ray-based capsule for colorectal cancer screening incorporating single photon counting technology

    NASA Astrophysics Data System (ADS)

    Lifshitz, Ronen; Kimchy, Yoav; Gelbard, Nir; Leibushor, Avi; Golan, Oleg; Elgali, Avner; Hassoon, Salah; Kaplan, Max; Smirnov, Michael; Shpigelman, Boaz; Bar-Ilan, Omer; Rubin, Daniel; Ovadia, Alex

    2017-03-01

    An ingestible capsule for colorectal cancer screening, based on ionizing-radiation imaging, has been developed and is in advanced stages of system stabilization and clinical evaluation. The imaging principle allows future patients using this technology to avoid bowel cleansing, and to continue the normal life routine during procedure. The Check-Cap capsule, or C-Scan ® Cap, imaging principle is essentially based on reconstructing scattered radiation, while both radiation source and radiation detectors reside within the capsule. The radiation source is a custom-made radioisotope encased in a small canister, collimated into rotating beams. While traveling along the human colon, irradiation occurs from within the capsule towards the colon wall. Scattering of radiation occurs both inside and outside the colon segment; some of this radiation is scattered back and detected by sensors onboard the capsule. During procedure, the patient receives small amounts of contrast agent as an addition to his/her normal diet. The presence of contrast agent inside the colon dictates the dominant physical processes to become Compton Scattering and X-Ray Fluorescence (XRF), which differ mainly by the energy of scattered photons. The detector readout electronics incorporates low-noise Single Photon Counting channels, allowing separation between the products of these different physical processes. Separating between radiation energies essentially allows estimation of the distance from the capsule to the colon wall, hence structural imaging of the intraluminal surface. This allows imaging of structural protrusions into the colon volume, especially focusing on adenomas that may develop into colorectal cancer.

  3. Image quality and radiation dose of lower extremity CT angiography at 70 kVp on an integrated circuit detector dual-source computed tomography.

    PubMed

    Qi, Li; Zhao, Yan'E; Zhou, Chang Sheng; Spearman, James V; Renker, Matthias; Schoepf, U Joseph; Zhang, Long Jiang; Lu, Guang Ming

    2015-06-01

    Despite the well-established requirement for radiation dose reduction there are few studies examining the potential for lower extremity CT angiography (CTA) at 70 kVp. To compare the image quality and radiation dose of lower extremity CTA at 70 kVp using a dual-source CT system with an integrated circuit detector to similar studies at 120 kVp. A total of 62 patients underwent lower extremity CTA. Thirty-one patients were examined at 70 kVp using a second generation dual-source CT with an integrated circuit detector (70 kVp group) and 31 patients were evaluated at 120 kVp using a first generation dual-source CT (120 kVp group). The attenuation and image noise were measured and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Two radiologists assessed image quality. Radiation dose was compared. The mean attenuation of the 70 kVp group was higher than the 120 kVp group (575 ± 149 Hounsfield units [HU] vs. 258 ± 38 HU, respectively, P < 0.001) as was SNR (44.0 ± 22.0 vs 32.7 ± 13.3, respectively, P = 0.017), CNR (39.7 ± 20.6 vs 26.6 ± 11.7, respectively, P = 0.003) and the mean image quality score (3.7 ± 0.1 vs. 3.2 ± 0.3, respectively, P < 0.001). The inter-observer agreement was good for the 70 kVp group and moderate for the 120 kVp group. The dose-length product was lower in the 70 kVp group (264.5 ± 63.1 mGy × cm vs. 412.4 ± 81.5 mGy × cm, P < 0.001). Lower extremity CTA at 70 kVp allows for lower radiation dose with higher SNR, CNR, and image quality when compared with standard 120 kVp. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Measuring ionizing radiation in the atmosphere with a new balloon-borne detector

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Briggs, A. A.; Harrison, R. G.; Marlton, G. J.

    2017-05-01

    Increasing interest in energetic particle effects on weather and climate has motivated development of a miniature scintillator-based detector intended for deployment on meteorological radiosondes or unmanned airborne vehicles. The detector was calibrated with laboratory gamma sources up to 1.3 MeV and known gamma peaks from natural radioactivity of up to 2.6 MeV. The specifications of our device in combination with the performance of similar devices suggest that it will respond to up to 17 MeV gamma rays. Laboratory tests show that the detector can measure muons at the surface, and it is also expected to respond to other ionizing radiation including, for example, protons, electrons (>100 keV), and energetic helium nuclei from cosmic rays or during space weather events. Its estimated counting error is ±10%. Recent tests, when the detector was integrated with a meteorological radiosonde system and carried on a balloon to 25 km altitude, identified the transition region between energetic particles near the surface, which are dominated by terrestrial gamma emissions, to higher-energy particles in the free troposphere.

  5. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.310 Exceptions for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  6. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.310 Exceptions for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  7. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualitiesmore » were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.« less

  8. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures.

    PubMed

    Safari, M J; Wong, J H D; Ng, K H; Jong, W L; Cutajar, D L; Rosenfeld, A B

    2015-05-01

    The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (± 1%), field size (± 1%), frame rate (± 3%), or beam energy (± 5%). The detector angular dependence was within ± 5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ± 3%. The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  9. Experimental Determination of the Low-Energy Spectral Component of Cobalt-60 Sources

    DTIC Science & Technology

    1986-04-01

    dependence of the TLD detectors and the dose enhancement due to the lack of electronic equilibrium have been included in the figure. A series of...energy spectrum of cobalt,60 ir- radiators is essential to the proper interpretation of dosimetry and device test data in radiation response testing...of electronic devices and circuits. It is shown that the relative magnitude of the low-energy spec- tral component of cobalt󈨀 gamma radiation can be

  10. Optimising the neutron environment of Radiation Portal Monitors: A computational study

    NASA Astrophysics Data System (ADS)

    Gilbert, Mark R.; Ghani, Zamir; McMillan, John E.; Packer, Lee W.

    2015-09-01

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model 3He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.

  11. Detection of bremsstrahlung radiation of 90Sr-90Y for emergency lung counting.

    PubMed

    Ho, A; Hakmana Witharana, S S; Jonkmans, G; Li, L; Surette, R A; Dubeau, J; Dai, X

    2012-09-01

    This study explores the possibility of developing a field-deployable (90)Sr detector for rapid lung counting in emergency situations. The detection of beta-emitters (90)Sr and its daughter (90)Y inside the human lung via bremsstrahlung radiation was performed using a 3″ × 3″ NaI(Tl) crystal detector and a polyethylene-encapsulated source to emulate human lung tissue. The simulation results show that this method is a viable technique for detecting (90)Sr with a minimum detectable activity (MDA) of 1.07 × 10(4) Bq, using a realistic dual-shielded detector system in a 0.25-µGy h(-1) background field for a 100-s scan. The MDA is sufficiently sensitive to meet the requirement for emergency lung counting of Type S (90)Sr intake. The experimental data were verified using Monte Carlo calculations, including an estimate for internal bremsstrahlung, and an optimisation of the detector geometry was performed. Optimisations in background reduction techniques and in the electronic acquisition systems are suggested.

  12. Common but unappreciated sources of error in one, two, and multiple-color pyrometry

    NASA Technical Reports Server (NTRS)

    Spjut, R. Erik

    1988-01-01

    The most common sources of error in optical pyrometry are examined. They can be classified as either noise and uncertainty errors, stray radiation errors, or speed-of-response errors. Through judicious choice of detectors and optical wavelengths the effect of noise errors can be minimized, but one should strive to determine as many of the system properties as possible. Careful consideration of the optical-collection system can minimize stray radiation errors. Careful consideration must also be given to the slowest elements in a pyrometer when measuring rapid phenomena.

  13. Fluctuations in the electron system of a superconductor exposed to a photon flux

    PubMed Central

    de Visser, P. J.; Baselmans, J. J. A.; Bueno, J.; Llombart, N.; Klapwijk, T. M.

    2014-01-01

    In a superconductor, in which electrons are paired, the density of unpaired electrons should become zero when approaching zero temperature. Therefore, radiation detectors based on breaking of pairs promise supreme sensitivity, which we demonstrate using an aluminium superconducting microwave resonator. Here we show that the resonator also enables the study of the response of the electron system of the superconductor to pair-breaking photons, microwave photons and varying temperatures. A large range in radiation power (at 1.54 THz) can be chosen by carefully filtering the radiation from a blackbody source. We identify two regimes. At high radiation power, fluctuations in the electron system caused by the random arrival rate of the photons are resolved, giving a straightforward measure of the optical efficiency (48±8%) and showing an unprecedented detector sensitivity. At low radiation power, fluctuations are dominated by excess quasiparticles, the number of which is measured through their recombination lifetime. PMID:24496036

  14. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    NASA Astrophysics Data System (ADS)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul

    2015-09-01

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.

  15. Modular optical detector system

    DOEpatents

    Horn, Brent A [Livermore, CA; Renzi, Ronald F [Tracy, CA

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  16. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC. Employing a Cerenkov detector for the thickness measurement of X-rays in a scattering background

    NASA Astrophysics Data System (ADS)

    Li, Shu-Wei; Kang, Ke-Jun; Wang, Yi; Li, Jin; Li, Yuan-Jing; Zhang, Qing-Jun

    2010-12-01

    The variation in environmental scattering background is a major source of systematic errors in X-ray inspection and measurement systems. As the energy of these photons consisting of environmental scattering background is much lower generally, the Cerenkov detectors having the detection threshold are likely insensitive to them and able to exclude their influence. A thickness measurement experiment is designed to verify the idea by employing a Cerenkov detector and an ionizing chamber for comparison. Furthermore, it is also found that the application of the Cerenkov detectors is helpful to exclude another systematic error from the variation of low energy components in the spectrum incident on the detector volume.

  17. Radiation damage effects by electrons, protons, and neutrons in Si/Li/ detectors.

    NASA Technical Reports Server (NTRS)

    Liu, Y. M.; Coleman, J. A.

    1972-01-01

    The degradation in performance of lithium-compensated silicon nuclear particle detectors induced by irradiation at room temperature with 0.6-MeV and 1.5-MeV electrons, 1.9-MeV protons, and fast neutrons from a plutonium-beryllium source has been investigated. With increasing fluence, the irradiations produced an increase of detector leakage current, noise, capacitance, and a degradation in the performance of the detector as a charged-particle energy spectrometer. Following the irradiations, annealing effects were observed when the detectors were reverse-biased at their recommended operating voltages. Upon removal of bias, a continuous degradation of detector performance characteristics occurred. Detectors which had been damaged by electrons and protons exhibited a stabilization in their characteristics within two weeks after irradiation, whereas detectors damaged by neutrons had a continuous degradation of performance over a period of several months.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkurt, Iskender; Guenoglu, Kadir

    The radiation is an essential phenomenon in daily life. There are various amounts of radioactivite substances in the underground and the earth was irradiated by this substances. Humans are exposed to various kind of radiation from these sources. The travertines are usually used as a coating material in buildings. In this study, the photon attenuation coefficients of some travertines have been measured using a gamma spectroscopy with NaI(Tl) detector. The measurements have been performed using {sup 60}Co source which gives 1173 and 1332 keV energies gamma rays and {sup 137}Cs source which gives 662 keV energy gamma rays and themore » results will be discussed.« less

  19. Area X-ray or UV camera system for high-intensity beams

    DOEpatents

    Chapman, Henry N.; Bajt, Sasa; Spiller, Eberhard A.; Hau-Riege, Stefan , Marchesini, Stefano

    2010-03-02

    A system in one embodiment includes a source for directing a beam of radiation at a sample; a multilayer mirror having a face oriented at an angle of less than 90 degrees from an axis of the beam from the source, the mirror reflecting at least a portion of the radiation after the beam encounters a sample; and a pixellated detector for detecting radiation reflected by the mirror. A method in a further embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample; not reflecting at least a majority of the radiation that is not diffracted by the sample; and detecting at least some of the reflected radiation. A method in yet another embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample using a multilayer mirror; and detecting at least some of the reflected radiation.

  20. Detector absorptivity measuring method and apparatus

    NASA Technical Reports Server (NTRS)

    Sheets, R. E. (Inventor)

    1976-01-01

    A method and apparatus for measuring the absorptivity of a radiation detector by making the detector an integral part of a cavity radiometer are described. By substituting the detector for the surface of the cavity upon which the radiation first impinges a comparison is made between the quantity of radiation incident upon the detector and the quantity reflected from the detector. The difference between the two is a measurement of the amount of radiation absorbed by the detector.

  1. Controlling alpha tracks registration in Makrofol DE 1-1 detector

    NASA Astrophysics Data System (ADS)

    Hassan, N. M.; Hanafy, M. S.; Naguib, A.; El-Saftawy, A. A.

    2017-09-01

    Makrofol DE 1-1 is a recent type of solid state nuclear track detectors could be used to measure radon concentration in the environment throughout the detection of α-particles emitted from radon decay. Thus, studying the physical parameters that control the formation of alpha tracks is vital for environmental radiation protection. Makrofol DE 1-1 polycarbonate detector was irradiated by α-particles of energies varied from 2 to 5 MeV emitted from the 241Am source of α-particle energy of 5.5 MeV. Then, the detector was etched in an optimum etching solution of mixed ethyl alcohol in KOH aqueous solution of (85% (Vol.) of 6 M KOH + 15% (Vol.) C2H5OH) at 50 °C for 3 h. Afterward, the bulk etch rate, etching sensitivity, and the registration efficiency of the detector, which control the tracks registration, were measured. The bulk etch rate of Makrofol detector was found to be 3.71 ± 0.71 μm h-1. The etching sensitivity and the detector registration efficiency were decreased exponentially with α-particles' energies following Bragg curve. A precise registration of α-particle was presented in this study. Therefore, Makrofol DE 1-1 can be applied as a radiation dosimeter as well as radon and thoron monitors.

  2. Rugged superconducting detector for monitoring infrared energy sources in harsh environments

    NASA Astrophysics Data System (ADS)

    Laviano, F.; Gerbaldo, R.; Ghigo, G.; Gozzelino, L.; Minetti, B.; Rovelli, A.; Mezzetti, E.

    2010-12-01

    Broadband electromagnetic characterization of hot plasmas, such as in nuclear fusion reactors and related experiments, requires detecting systems that must withstand high flux of particles and electromagnetic radiations. We propose a rugged layout of a high temperature superconducting detector aimed at 3 THz collective Thomson scattering (CTS) spectroscopy in hot fusion plasma. The YBa2Cu3O7 - x superconducting film is patterned by standard photolithography and the sensing area of the device is created by means of high-energy heavy ion irradiation, in order to modify the crystal structure both of the superconducting film and of the substrate. This method diminishes process costs and resulting device fragility due to membrane or air-bridge structures that are commonly needed for MIR and FIR radiation detection. Moreover the sensing area of the device is wired by the same superconducting material and thus excellent mechanical strength is exhibited by the whole device, due to the oxide substrate. Continuous wave operation of prototype devices is demonstrated at liquid nitrogen temperature, for selected infrared spectra of broadband thermal energy sources. Several solutions, which exploit the advantages coming from the robustness of this layout in terms of intrinsic radiation hardness of the superconducting material and of the needed optical components, are analysed with reference to applications of infrared electromagnetic detectors in a tokamak machine environment.

  3. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    NASA Astrophysics Data System (ADS)

    Bouchami, J.; Dallaire, F.; Gutiérrez, A.; Idarraga, J.; Král, V.; Leroy, C.; Picard, S.; Pospíšil, S.; Scallon, O.; Solc, J.; Suk, M.; Turecek, D.; Vykydal, Z.; Žemlièka, J.

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) — based on the ROOT application — allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons (252Cf and 241AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  4. GaSe and GaTe anisotropic layered semiconductors for radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Choi, Michael; Kang, Sung Hoon; Rauh, R. David; Wei, Jiuan; Zhang, Hui; Zheng, Lili; Cui, Y.; Groza, M.; Burger, A.

    2007-09-01

    High quality detector grade GaSe and GaTe single crystals have been grown by a modified vertical Bridgman technique using high purity Ga (7N) and in-house zone refined (ZR) precursor materials (Se and Te). A state-of-the-art computer model, MASTRAPP, is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown crystals. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The crystals harvested from ingots of 8-10 cm length and 2.5 cm diameter, have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, low temperature photoluminescence (PL), atomic force microscopy (AFM), and optical absorption/transmission measurements. Single element devices up to 1 cm2 in area have been fabricated from the crystals and tested as radiation detectors by measuring current-voltage (I-V) characteristics and pulse height spectra using 241Am source. The crystals have shown high promise as nuclear detectors with their high dark resistivity (>=10 9 Ω .cm), good charge transport properties (μτ e ~ 1.4x10 -5 cm2/V and μτ h ~ 1.5x10 -5 cm2/V), and relatively good energy resolution (~4% energy resolution at 60 keV). Details of numerical modeling and simulation, detector fabrication, and testing using a 241Am energy source (60 keV) is presented in this paper.

  5. Half-dose non-contrast CT in the investigation of urolithiasis: image quality improvement with third-generation integrated circuit CT detectors.

    PubMed

    Wang, Jun; Kang, Tony; Arepalli, Chesnal; Barrett, Sarah; O'Connell, Tim; Louis, Luck; Nicolaou, Savvakis; McLaughlin, Patrick

    2015-06-01

    The objective of this study is to establish the effect of third-generation integrated circuit (IC) CT detector on objective image quality in full- and half-dose non-contrast CT of the urinary tract. 51 consecutive patients with acute renal colic underwent non-contrast CT of the urinary tract using a 128-slice dual-source CT before (n = 24) and after (n = 27) the installation of third-generation IC detectors. Half-dose images were generated using projections from detector A using the dual-source RAW data. Objective image noise in the liver, spleen, right renal cortex, and right psoas muscle was compared between DC and IC cohorts for full-dose and half-dose images reconstructed with FBP and IR algorithms using 1 cm(2) regions of interest. Presence and size of obstructing ureteric calculi were also compared for full-dose and half-dose reconstructions using DC and IC detectors. No statistical difference in age and lateral body size was found between patients in the IC and DC cohorts. Radiation dose, as measured by size-specific dose estimates, did not differ significantly either between the two cohorts (10.02 ± 4.54 mGy IC vs. 12.28 ± 7.03 mGy DC). At full dose, objective image noise was not significantly lower in the IC cohort as compared to the DC cohort for the liver, spleen, and right psoas muscle. At half dose, objective image noise was lower in the IC cohort as compared to DC cohort at the liver (21.32 IC vs. 24.99 DC, 14.7% decrease, p < 0.001), spleen (19.33 IC vs. 20.83 DC, 7.20% decrease, p = 0.02), and right renal cortex (20.28 IC vs. 22.98 DC, 11.7% decrease, p = 0.005). Mean obstructing ureteric calculi size was not significantly different when comparison was made between full-dose and half-dose images, regardless of detector type (p > 0.05 for all comparisons). Third-generation IC detectors result in lower objective image noise at full- and half-radiation dose levels as compared with traditional DC detectors. The magnitude of noise reduction was greater at half-radiation dose indicating that the benefits of using novel IC detectors are greater in low and ultra-low-dose CT imaging.

  6. A Model for Remote Depth Estimation of Buried Radioactive Wastes Using CdZnTe Detector

    PubMed Central

    2018-01-01

    This paper presents the results of an attenuation model for remote depth estimation of buried radioactive wastes using a Cadmium Zinc Telluride (CZT) detector. Previous research using an organic liquid scintillator detector system showed that the model is able to estimate the depth of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average count rate of 100 cps. The results presented in this paper showed that the use of the CZT detector extended the maximum detectable depth of the same radioactive source to 18 cm in sand with a significantly lower average count rate of 14 cps. Furthermore, the model also successfully estimated the depth of a 9-kBq Co-60 source buried up to 3 cm in sand. This confirms that this remote depth estimation method can be used with other radionuclides and wastes with very low activity. Finally, the paper proposes a performance parameter for evaluating radiation detection systems that implement this remote depth estimation method. PMID:29783644

  7. Thallium bromide radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, K.S.; Lund, J.C.; Olschner, F.

    1989-02-01

    Radiation detectors have been fabricated from crystals of the semiconductor material thallium bromide (TlBr) and the performance of these detectors as room temperature photon spectrometers has been measured. These detectors exhibit improved energy resolution over previously reported TlBr detectors. These results indicate that TlBr is a very promising radiation detector material.

  8. Long-distance transmission of light in a scintillator-based radiation detector

    DOEpatents

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, R.P.; Lewis, J.M.; Murer, D.

    Previous work has measured the neutron response of pressurized {sup 4}He scintillation detectors, however these studies only examine the response as a function of incident neutron energy. Since the detection mechanism in {sup 4}He detectors is elastic scattering, and the interacting neutron will only deposit a fraction of its incident kinetic energy in the detector gas, an examination of the response of the detector output to deposited energy is necessary to transform these detectors into instruments for neutron spectrometry. Using a combined time-of-flight (TOF) and coincidence scattering method, this paper further characterizes the {sup 4}He light response to fast neutronsmore » by examining the scintillation light yield as a function of deposited energy, measuring the light response up to 5 MeV. These {sup 4}He detectors are simple in design, and are manufactured by Arktis Radiation Detectors in several sizes. The specific model used in this experiment had an active volume 20 cm long with an inner diameter of 4.4 cm, giving a total active volume of 304 cm{sup 3}. The key components include the active volume, filled with 150 bar of helium-4 gas, and photomultiplier tubes (PMTs) mounted at either end of the active volume. The detector body is made of stainless steel. The detector response was experimentally measured using a two-detector coincidence arrangement with a {sup 252}Cf source. Two {sup 4}He detectors were vertically mounted, and the source was placed at a horizontal distance from the center of the bottom detector, forming a right angle. By requiring coincidence between the two detectors, it was confirmed that each neutron interacting in the second (top) detector must first have undergone a scattering interaction in the first (bottom) detector, and the time-of-flight (TOF) technique could then be used to determine the energy of the neutron as it traveled between the two detectors by the difference in time between the two detector events. More importantly, with the scattering angle known, the amount of energy deposited by the neutron in the bottom detector (ER) was also calculated using kinematic scattering equations. This deposited recoil energy was then compared to the corresponding light output for each event to form a deposited energy scintillation light response matrix. Similarly, the system's insensitivity to gammas and its ability to reject gammas by pulse shape discrimination (PSD) are often cited as an important advantage, although a detailed analysis of these capabilities has not yet been performed. This work therefore quantified these parameters in order to further characterize these detectors for future mixed radiation field measurements. Gamma sources were measured spanning a range of gamma-ray energies from 0.122 MeV to 1.332 MeV, including {sup 57}Co, {sup 137}Cs, {sup 54}Mn, and {sup 60}Co. Each source was counted by the {sup 4}He detector and the background subtracted. Taking the ratio of the number of events detected during the experimental source measurement to the number of gammas predicted by MCNPX to pass through the detector volume yields the detector's intrinsic gamma efficiency. The difference between this fraction and unity is therefore a measure of the detector's ability to ignore interfering gamma rays, defined as its inherent gamma rejection rate. The ability of post-processing PSD algorithms to further reduce the number of gammas is also investigated and quantified. Finally, it has been noted that the scintillation signal from a single neutron event can be separated in time into two components: the fast component is a sharp peak that exists on the order of nanoseconds; the slow component is a series of smaller pulses, stretched out over four microseconds. Whereas previous research has exclusively focused on the energy information contained in the slow component, this work demonstrates that the fast component is also sensitive to neutron energy, and the entire scintillation signal can therefore be used. In conclusion, the relationship of fast neutron {sup 4}He scintillation detectors to deposited neutron energy was explored, and will be combined with previous works that measured the scintillation response to incident neutron energy in order to develop a neutron spectrometer. Similarly, the ability of these {sup 4}He detectors to reject interfering gamma rays was also quantified, and so will enable this spectrometer to be deployed in mixed radiation field measurements. Finally, while previous works with these detectors have focused on an analysis of the slow scintillation component, it was demonstrated in this work that the fast component also contains significant energy information.« less

  10. Naturally occurring 32Si and low-background silicon dark matter detectors

    DOE PAGES

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; ...

    2018-02-10

    Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  11. Naturally occurring 32Si and low-background silicon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  12. Naturally occurring 32Si and low-background silicon dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary

    Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  13. Naturally occurring 32 Si and low-background silicon dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary

    The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that productionmore » of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  14. Effects of Gain Changes on RPM Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lousteau, Angela L; York, Robbie Lynn; Livesay, Jake

    2012-03-01

    The mission of the U.S. Department of Energy/National Nuclear Security Administration's (DOE/NNSA's) Office of the Second Line of Defense (SLD) is to strengthen the capability of foreign governments to deter, detect, and interdict the illicit trafficking of special nuclear and other radioactive materials across international borders and through the global maritime shipping system. The goal of this mission is to reduce the probability of these materials being fashioned into a weapon of mass destruction or radiological dispersal device that could be used against the United States or its international partners. This goal is achieved primarily through the installation and operationmore » of radiation detection equipment at border crossings, airports, seaports, and other strategic locations around the world. In order to effectively detect the movement of radioactive material, the response of these radiation detectors to various materials in various configurations must be well characterized. Oak Ridge National Laboratory (ORNL) investigated two aspects of Radiation Portal Monitor (RPM) settings, based on a preliminary investigation done by the Los Alamos National Laboratory (LANL): source-to-detector distance effect on amplifier gain and optimized discriminator settings. This report discusses this investigation. A number of conclusions can be drawn from the ORNL testing. First, for increased distance between the source and the detector, thus illuminating the entire detector rather than just the center of the detector (as is done during detector alignments), an increase in gain may provide a 5-15% increase in sensitivity (Fig. 4). However, increasing the gain without adjusting the discriminator settings is not recommended as this makes the monitor more sensitive to electronic noise and temperature-induced fluctuations. Furthermore, if the discriminators are adjusted in relation to the increase in gain, thus appropriately discriminating against electronic noise, the sensitivity gains are less than 5% (Fig. 6). ORNL does not consider this slight increase in sensitivity to be a worthwhile pursuit. Second, increasing the ULD will increase sensitivity a few percent (Fig. 7); however, it is not clear that the slight increase in sensitivity is worth the effort required to make the change (e.g., reliability, cost, etc.). Additionally, while the monitor would be more sensitive to HEU, it would also be more sensitive to NORM. Third, the sensitivity of the system remains approximately the same whether it is calibrated to a small source on contact or a large source far away (Fig. 6). This affirms that no changes to the existing calibration procedure are necessary.« less

  15. Event counting alpha detector

    DOEpatents

    Bolton, Richard D.; MacArthur, Duncan W.

    1996-01-01

    An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.

  16. Event counting alpha detector

    DOEpatents

    Bolton, R.D.; MacArthur, D.W.

    1996-08-27

    An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.

  17. PET/CT alignment calibration with a non-radioactive phantom and the intrinsic 176Lu radiation of PET detector

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Ma, Tianyu; Wang, Shi; Liu, Yaqiang; Gu, Yu; Dai, Tiantian

    2016-11-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool for clinical studies and pre-clinical researches which provides both functional and anatomical images. To achieve high quality co-registered PET/CT images, alignment calibration of PET and CT scanner is a critical procedure. The existing methods reported use positron source phantoms imaged both by PET and CT scanner and then derive the transformation matrix from the reconstructed images of the two modalities. In this paper, a novel PET/CT alignment calibration method with a non-radioactive phantom and the intrinsic 176Lu radiation of the PET detector was developed. Firstly, a multi-tungsten-alloy-sphere phantom without positron source was designed and imaged by CT and the PET scanner using intrinsic 176Lu radiation included in LYSO. Secondly, the centroids of the spheres were derived and matched by an automatic program. Lastly, the rotation matrix and the translation vector were calculated by least-square fitting of the centroid data. The proposed method was employed in an animal PET/CT system (InliView-3000) developed in our lab. Experimental results showed that the proposed method achieves high accuracy and is feasible to replace the conventional positron source based methods.

  18. Multifunctional and multispectral biosensor devices and methods of use

    DOEpatents

    Vo-Dinh, Tuan

    2004-06-01

    An integrated biosensor system for the simultaneously detection of a plurality of different types of targets includes at least one sampling platform, the sampling platform including a plurality of receptors for binding to the targets. The plurality of receptors include at least one protein receptor and at least one nucleic acid receptor. At least one excitation source of electromagnetic radiation at a first frequency is provided for irradiating the receptors, wherein electromagnetic radiation at a second frequency different from the first frequency is emitted in response to irradiating when at least one of the different types of targets are bound to the receptor probes. An integrated circuit detector system having a plurality of detection channels is also provided for detecting electromagnetic radiation at said second frequency, the detection channels each including at least one detector.

  19. Network Algorithms for Detection of Radiation Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Brooks, Richard R; Wu, Qishi

    In support of national defense, Domestic Nuclear Detection Office s (DNDO) Intelligent Radiation Sensor Systems (IRSS) program supported the development of networks of radiation counters for detecting, localizing and identifying low-level, hazardous radiation sources. Industry teams developed the first generation of such networks with tens of counters, and demonstrated several of their capabilities in indoor and outdoor characterization tests. Subsequently, these test measurements have been used in algorithm replays using various sub-networks of counters. Test measurements combined with algorithm outputs are used to extract Key Measurements and Benchmark (KMB) datasets. We present two selective analyses of these datasets: (a) amore » notional border monitoring scenario that highlights the benefits of a network of counters compared to individual detectors, and (b) new insights into the Sequential Probability Ratio Test (SPRT) detection method, which lead to its adaptations for improved detection. Using KMB datasets from an outdoor test, we construct a notional border monitoring scenario, wherein twelve 2 *2 NaI detectors are deployed on the periphery of 21*21meter square region. A Cs-137 (175 uCi) source is moved across this region, starting several meters from outside and finally moving away. The measurements from individual counters and the network were processed using replays of a particle filter algorithm developed under IRSS program. The algorithm outputs from KMB datasets clearly illustrate the benefits of combining measurements from all networked counters: the source was detected before it entered the region, during its trajectory inside, and until it moved several meters away. When individual counters are used for detection, the source was detected for much shorter durations, and sometimes was missed in the interior region. The application of SPRT for detecting radiation sources requires choosing the detection threshold, which in turn requires a source strength estimate, typically specified as a multiplier of the background radiation level. A judicious selection of this source multiplier is essential to achieve optimal detection probability at a specified false alarm rate. Typically, this threshold is chosen from the Receiver Operating Characteristic (ROC) by varying the source multiplier estimate. ROC is expected to have a monotonically increasing profile between the detection probability and false alarm rate. We derived ROCs for multiple indoor tests using KMB datasets, which revealed an unexpected loop shape: as the multiplier increases, detection probability and false alarm rate both increase until a limit, and then both contract. Consequently, two detection probabilities correspond to the same false alarm rate, and the higher is achieved at a lower multiplier, which is the desired operating point. Using the Chebyshev s inequality we analytically confirm this shape. Then, we present two improved network-SPRT methods by (a) using the threshold off-set as a weighting factor for the binary decisions from individual detectors in a weighted majority voting fusion rule, and (b) applying a composite SPRT derived using measurements from all counters.« less

  20. Single and double grid long-range alpha detectors

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.

    1993-01-01

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  1. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V

    2013-08-31

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  2. Single and double grid long-range alpha detectors

    DOEpatents

    MacArthur, D.W.; Allander, K.S.

    1993-03-16

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  3. Qualification of coolants and cooling pipes for future high-energy-particle detectors

    NASA Astrophysics Data System (ADS)

    Ilie, Sorin; Tavlet, Marc

    2001-12-01

    In the next generation of high-energy-particle detectors to be installed at the Large Hadron Collider (LHC) at CERN, materials and components will be exposed to a significant level of ionising radiation. Silicon detectors and related electronics will have to be cooled down to -20 °C and therefore appropriate cooling fluids and cooling pipes have to be selected. Analytical methods such as UV-visible and FT-IR spectrometries, electronic microscopy and gas chromatography were used to characterise the radiation-induced effects on some organic coolants irradiated with both gamma and neutron fields. Some impurities were identified as a major source for radio-induced polymerisation and also for hydrofluoric acid (HF) evolution. Mechanical tests were performed to assess the operability of the rubber hoses and plastic pipes. Possible synergistic effects between the pipe material and the environment had to be considered.

  4. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  5. Environmental gamma radiation analysis for Ulsan city with the highest nuclear power plant density in Korea.

    PubMed

    Lee, UkJae; Bae, Jun Woo; Kim, Hee Reyoung

    2017-11-01

    This study presents a real-time measurement-based rapid radiation distribution visualization system for radionuclide recognition, which can quickly scan a contaminated environment. The system combines a portable detector with a digital map and a program for quick data treatment. Radiation information at the measurement location is transferred between a detector and a laptop. It includes environmental and artificial components, specific radionuclides, and total radionuclides. After scanning the area, the radiation distributions are comprehensively displayed in 2D and 3D maps corresponding to the measured area, all in a few tens of seconds. The proposed method was verified using the standard 137 Cs and 60 Co sources. The gamma radiation distribution of the areas measured in Ulsan city, which included non-destructive testing and radioisotope treatment facilities, hospitals, transportation spots, and residential and commercial areas, showed that Ulsan city has maintained safe levels of radiation. The system performed well. In addition, it was found that this system could detect unexpected hot spots quickly in affected environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Production, characterization and operation of Ge enriched BEGe detectors in GERDA

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-02-01

    The GERmanium Detector Array ( Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay () of Ge. Germanium detectors made of material with an enriched Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Sen, Satyabrata; Berry, M. L..

    Domestic Nuclear Detection Office s (DNDO) Intelligence Radiation Sensors Systems (IRSS) program supported the development of networks of commercial-off-the-shelf (COTS) radiation counters for detecting, localizing, and identifying low-level radiation sources. Under this program, a series of indoor and outdoor tests were conducted with multiple source strengths and types, different background profiles, and various types of source and detector movements. Following the tests, network algorithms were replayed in various re-constructed scenarios using sub-networks. These measurements and algorithm traces together provide a rich collection of highly valuable datasets for testing the current and next generation radiation network algorithms, including the ones (tomore » be) developed by broader R&D communities such as distributed detection, information fusion, and sensor networks. From this multiple TeraByte IRSS database, we distilled out and packaged the first batch of canonical datasets for public release. They include measurements from ten indoor and two outdoor tests which represent increasingly challenging baseline scenarios for robustly testing radiation network algorithms.« less

  8. Enhanced gamma ray sensitivity in bismuth triiodide sensors through volumetric defect control

    DOE PAGES

    Johns, Paul M.; Baciak, James E.; Nino, Juan C.

    2016-09-02

    In some of the more attractive semiconducting compounds for ambient temperature radiation detector applications are impacted by low charge collection efficiency due to the presence of point and volumetric defects. This has been particularly true in the case of BiI 3, which features very attractive properties (density, atomic number, band gap, etc.) to serve as a gamma ray detector, but has yet to demonstrate its full potential. Here, we show that by applying growth techniques tailored to reduce defects, the spectral performance of this promising semiconductor can be realized. Gamma ray spectra from >100 keV source emissions are now obtainedmore » from high quality Sb:BiI 3 bulk crystals with limited concentrations of defects (point and extended). The spectra acquired in these high quality crystals feature photopeaks with resolution of 2.2% at 662 keV. Infrared microscopy is used to compare the local microstructure between radiation sensitive and non-responsive crystals. Our work demonstrates that BiI 3 can be prepared in melt-grown detector-grade samples with superior quality and can acquire the spectra from a variety of gamma ray sources.« less

  9. Multi-anode wire two dimensional proportional counter for detecting Iron-55 X-Ray Radiation

    NASA Astrophysics Data System (ADS)

    Weston, Michael William James

    Radiation detectors in many applications use small sensor areas or large tubes which only collect one-dimensional information. There are some applications that require analyzing a large area and locating specific elements such as contamination on the heat tiles of a space shuttle or features on historical artifacts. The process can be time consuming and scanning a large area in a single pass is beneficial. The use of a two dimensional multi-wire proportional counter provides a large detection window presenting positional information in a single pass. This thesis described the design and implementation of an experimental detector to evaluate a specific design intended for use as a handheld instrument. The main effort of this research was to custom build a detector for testing purposes. The aluminum chamber and all circuit boards were custom designed and built specifically for this application. Various software and programmable logic algorithms were designed to analyze the raw data in real time and attempted to determine what data was useful and what could be discarded. The research presented here provides results useful for designing an improved second generation detector in the future. With the anode wire spacing chosen and the minimal collimation of the radiation source, detected events occurred all over the detection grid at any time. The raw event data did not make determining the source position easy and further data correlation was required. An abundance of samples had multiple wire hits which were not useful because it falsely reported the source to be all over the place and at different energy levels. By narrowing down the results to only use the largest signal pairs on different axes in each event, a much more accurate analysis of where the source existed above the grid was determined. The basic principle and construction method was shown to work, however the gas selection, geometry and anode wire constructs proved to be poor. To provide a system optimized for a specific application would require detailed Monte Carlo simulations. These simulation results together with the details and techniques implemented in this thesis would provide a final instrument of much higher accuracy.

  10. Monte Carlo study of a 60Co calibration field of the Dosimetry Laboratory Seibersdorf.

    PubMed

    Hranitzky, C; Stadtmann, H

    2007-01-01

    The gamma radiation fields of the reference irradiation facility of the Dosimetry Laboratory Seibersdorf with collimated beam geometry are used for calibrating radiation protection dosemeters. A close-to-reality simulation model of the facility including the complex geometry of a 60Co source was set up using the Monte Carlo code MCNP. The goal of this study is to characterise the radionuclide gamma calibration field and resulting air-kerma distributions inside the measurement hall with a total of 20 m in length. For the whole range of source-detector-distances (SDD) along the central beam axis, simulated and measured relative air-kerma values are within +/-0.6%. Influences on the accuracy of the simulation results are investigated, including e.g., source mass density effects or detector volume dependencies. A constant scatter contribution from the lead ring-collimator of approximately 1% and an increasing scatter contribution from the concrete floor for distances above 7 m are identified, resulting in a total air-kerma scatter contribution below 5%, which is in accordance to the ISO 4037-1 recommendations.

  11. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  12. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E [Livermore, CA; Beauchamp, Brock R [San Ramon, CA; Mauger, G Joseph [Livermore, CA; Nelson, Karl E [Livermore, CA; Mercer, Michael B [Manteca, CA; Pletcher, David C [Sacramento, CA; Riot, Vincent J [Berkeley, CA; Schek, James L [Tracy, CA; Knapp, David A [Livermore, CA

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  13. Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-09-01

    Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M⊙-25M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.

  14. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul, E-mail: khbasar@fi.itb.ac.id

    2015-09-30

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material aremore » simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Sterbinsky, G. E.

    Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  16. Study of Natural Radioactivity, Radon Exhalation Rate and Radiation Doses in Coal and Flyash Samples from Thermal Power Plants, India

    NASA Astrophysics Data System (ADS)

    Singh, Lalit Mohan; Kumar, Mukesh; Sahoo, B. K.; Sapra, B. K.; Kumar, Rajesh

    Coal is one of the most important source used for electrical power generation. Its combustion part known as fly ash is used in the manufacturing of bricks, sheets, cement, land filling etc. Coal and its by-products have significant amounts of radionuclide's including uranium, thorium which is the ultimate source of the radioactive gas radon and thoron respectively. Radiation hazard from airborne emissions of coal-fired power plants have been cited as possible causes of health in environmental. Assessment of the radiation exposure from coal burning is critically dependent on the concentration of radioactive elements in coal and in the fly ash. In the present study, samples of coal and flyash were collected from Rajghat Power Plant and Badarpur Thermal Power Plant, New Delhi, India. Radon exhalation is important parameter for the estimation of radiation risk from various materials. Solis State Nuclear Track Detector based sealed Can Technique (using LR-115 type II) has been used for measurement radon exhalation rate. Also accumulation chamber based Continuous Radon Monitor and Continuous Thoron Monitor have been used for radon masss exhalation and thoron surface exhalation rate respectively. Natural radioactivity has been measured using a low level NaI(Tl) detector based on gamma ray spectrometry.

  17. Beta radiation shielding with lead and plastic: effect on bremsstrahlung radiation when switching the shielding order.

    PubMed

    Van Pelt, Wesley R; Drzyzga, Michael

    2007-02-01

    Lead and plastic are commonly used to shield beta radiation. Radiation protection literature is ubiquitous in advising the placement of plastic first to absorb all the beta particles before any lead shielding is used. This advice is based on the well established theory that radiative losses (bremsstrahlung production) are more prevalent in higher atomic number (Z) materials than in low Z materials. Using 32P beta radiation, we measured bremsstrahlung photons transmitted through lead and plastic (Lucite) shielding in different test configurations to determine the relative efficacy of lead alone, plastic alone, and the positional order of lead and plastic. With the source (32P) and detector held at a constant separation distance, we inserted lead and/or plastic absorbers and measured the reduction in bremsstrahlung radiation level measured by the detector. With these test conditions, analysis of measured bremsstrahlung radiation in various thicknesses and configurations of lead and plastic shielding shows the following: placing plastic first vs. lead first reduces the transmitted radiation level only marginally (10% to 40%); 2 mm of additional lead is sufficient to correct the "mistake" of placing the lead first; and for equal thicknesses or weights of lead and plastic, lead is a more efficient radiation shield than plastic.

  18. Neutron Detection with Centrifugally-Tensioned Metastable Fluid Detectors (CMTFD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Smagacz, P.; Lapinskas, J.

    2006-07-01

    Tensioned metastable liquid states at room temperature were utilized to display sensitivity to impinging nuclear radiation, that manifests itself via audio-visual signals that one can see and hear. A centrifugally-tensioned metastable fluid detector (CTMFD), a diamond shaped spinning device rotating about its axis, was used to induce tension states, i.e. negative (sub-vacuum) pressures in liquids. In this device, radiation induced cavitation is audible due to liquid fracture and is visible from formed bubbles, so called hearing and seeing radiation. This type of detectors is selectively insensitive to Gamma rays and associated indication devices could be extremely simple, reliable and inexpensive.more » Furthermore, any liquids with large neutron interaction cross sections could be good candidates. Two liquids, isopentane and methanol, were tested with three neutron sources of Cf-252, PuBe and Pulsed Neutron Generator (PNG) under various configurations of neutron spectra and fluxes. The neutron count rates were measured using a liquid scintillation detector. The CTMFD was operated at preset values of rotating frequency and a response time was recorded when a cavitation occurred. Other parameters, including ambient temperature, ramp rate, delay time between two consecutive cavitations, were kept constant. The distance between the menisci of the liquid in the CTMFD was measured before and after each experiment. In general, the response of liquid molecules in a CTMFD varies with the neutron spectrum and flux. The response time follows an exponential trend with negative pressures for a given neutron count rate and spectra conditions. Isopentane was found to exhibit lower tension thresholds than methanol. On the other hand, methanol offered a larger tension metastability state variation for the various types of neutron sources, indicating the potential for offering significantly better energy resolution abilities for spectroscopic applications. (authors)« less

  19. Study of influence of plastic scintillators thicknesses to detect Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Pereira, Maria da Conceicao Costa

    2015-07-01

    The Nuclear and Energy Research Institute - IPEN, offers post-graduate programs, namely: Nuclear Technology - Applications (TNA), Nuclear Technology - Materials (TNM), Nuclear Technology - Reactors (TNR). The Institute programs mission is to form expert technicians, physicists and engineers with a strong knowledge in their discipline to work in the nuclear area. The course: 'Theoretical Fundamentals and Practices of the Instrumentation used in Nuclear Data Acquisition' covers the use of laboratory nuclear instrumentation and the accomplishment of experiments to obtain nuclear parameters. One of these experimental exercises is object of this work: 'Study of influence of plastic scintillators to detectmore » Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources'. The use of scintillators plastic for the detection has the advantage of low cost, high mechanical strength, is not hygroscopic and can be manufactured in large volumes. This work aims to present the analysis of relative efficiency of detection of plastic scintillators of various thicknesses for beta particles and gamma radiation by the spectrum of {sup 137}Cs and {sup 90}Sr. Due to lack of resolution of the detectors plastic scintillators we worked with relative efficiency. The evaluation was done by reading deposited energy, using the software MAESTRO, for each detector thickness. For beta particles was observed an ideal thickness around 3 mm and the better photon efficiency was observed with increasing the thickness of the detector. The present experiment does not intend to establish a new technique for this subject: it solely aims student's practical exercises in nuclear properties of elements and detectors being part of the nuclear experimental course. (authors)« less

  20. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2011-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less

  1. Alpha spectroscopy by the Φ25 mm×0.1 mm YAlO3:Ce scintillation detector under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Kvasnicka, Jiri; Urban, Tomas; Tous, Jan; Smejkal, Jan; Blazek, Karel; Nikl, Martin

    2017-06-01

    The YAlO3:Ce scintillation crystal has excellent mechanical properties and is not affected if used in chemically aggressive environments. The detector with the diameter of Φ25.4 mm and thickness of 0.1 mm was coupled with the PMT, associated electronics and the MCA in order to study its alpha spectroscopy properties. The measured alpha spectra of the surface calibration sources of 241Am and 230Th were compared with results of a Monte Carlo simulation. The experiment and the simulation were carried out for three distances between the detector and the surface alpha source in order to assess the effect of the distance on the detected energy of alpha radiation. Finally, the detector was used for the monitoring of radon (222Rn) decay products (radon daughters) in the air. It was concluded that the detector is suitable for the in-situ alpha spectroscopy monitoring under ambient atmospheric conditions. Nevertheless, in order to identify radionuclides and their activity from the measured alpha spectra a computer code would need to be developed.

  2. First principles pulse pile-up balance equation and fast deterministic solution

    NASA Astrophysics Data System (ADS)

    Sabbatucci, Lorenzo; Fernández, Jorge E.

    2017-08-01

    Pulse pile-up (PPU) is an always present effect which introduces a distortion into the spectrum measured with radiation detectors and that worsen with the increasing emission rate of the radiation source. It is fully ascribable to the pulse handling circuitry of the detector and it is not comprised in the detector response function which is well explained by a physical model. The PPU changes both the number and the height of the recorded pulses, which are related, respectively, with the number of detected particles and their energy. In the present work, it is derived a first principles balance equation for second order PPU to obtain a post-processing correction to apply to X-ray measurements. The balance equation is solved for the particular case of rectangular pulse shape using a deterministic iterative procedure for which it will be shown the convergence. The proposed method, deterministic rectangular PPU (DRPPU), requires minimum amount of information and, as example, it is applied to a solid state Si detector with active or off-line PPU suppression circuitry. A comparison shows that the results obtained with this fast and simple approach are comparable to those from the more sophisticated procedure using precise detector pulse shapes.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qishi; Berry, M. L..; Grieme, M.

    We propose a localization-based radiation source detection (RSD) algorithm using the Ratio of Squared Distance (ROSD) method. Compared with the triangulation-based method, the advantages of this ROSD method are multi-fold: i) source location estimates based on four detectors improve their accuracy, ii) ROSD provides closed-form source location estimates and thus eliminates the imaginary-roots issue, and iii) ROSD produces a unique source location estimate as opposed to two real roots (if any) in triangulation, and obviates the need to identify real phantom roots during clustering.

  4. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  5. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  6. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 104 photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm2 pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm2. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  7. Calibration of space instruments at the Metrology Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R., E-mail: roman.klein@ptb.de; Fliegauf, R.; Gottwald, A.

    2016-07-27

    PTB has more than 20 years of experience in the calibration of space-based instruments using synchrotron radiation to cover the UV, VUV and X-ray spectral range. New instrumentation at the electron storage ring Metrology Light Source (MLS) opens up extended calibration possibilities within this framework. In particular, the set-up of a large vacuum vessel that can accommodate entire space instruments opens up new prospects. Moreover, a new facility for the calibration of radiation transfer source standards with a considerably extended spectral range has been put into operation. Besides, characterization and calibration of single components like e.g. mirrors, filters, gratings, andmore » detectors is continued.« less

  8. Detection efficiency calculation for photons, electrons and positrons in a well detector. Part I: Analytical model

    NASA Astrophysics Data System (ADS)

    Pommé, S.

    2009-06-01

    An analytical model is presented to calculate the total detection efficiency of a well-type radiation detector for photons, electrons and positrons emitted from a radioactive source at an arbitrary position inside the well. The model is well suited to treat a typical set-up with a point source or cylindrical source and vial inside a NaI well detector, with or without lead shield surrounding it. It allows for fast absolute or relative total efficiency calibrations for a wide variety of geometrical configurations and also provides accurate input for the calculation of coincidence summing effects. Depending on its accuracy, it may even be applied in 4π-γ counting, a primary standardisation method for activity. Besides an accurate account of photon interactions, precautions are taken to simulate the special case of 511 keV annihilation quanta and to include realistic approximations for the range of (conversion) electrons and β -- and β +-particles.

  9. Computer simulation of the CSPAD, ePix10k, and RayonixMX170HS X-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tina, Adrienne

    2015-08-21

    The invention of free-electron lasers (FELs) has opened a door to an entirely new level of scientific research. The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is an X-ray FEL that houses several instruments, each with its own unique X-ray applications. This light source is revolutionary in that while its properties allow for a whole new range of scientific opportunities, it also poses numerous challenges. For example, the intensity of a focused X-ray beam is enough to damage a sample in one mere pulse; however, the pulse speed and extreme brightness of the source together are enoughmore » to obtain enough information about that sample, so that no further measurements are necessary. An important device in the radiation detection process, particularly for X-ray imaging, is the detector. The power of the LCLS X-rays has instigated a need for better performing detectors. The research conducted for this project consisted of the study of X-ray detectors to imitate their behaviors in a computer program. The analysis of the Rayonix MX170-HS, CSPAD, and ePix10k in particular helped to understand their properties. This program simulated the interaction of X-ray photons with these detectors to discern the patterns of their responses. A scientist’s selection process of a detector for a specific experiment is simplified from the characterization of the detectors in the program.« less

  10. Chromato-fluorographic drug detector. [device for detecting and recording fluorescent properties of materials

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Dimeff, J.; Heimbuch, A. H. (Inventor)

    1974-01-01

    A drug detecting apparatus which includes a chromatographic system for separating particular substances from a sample solution passed through it is described. A source of radiation causes the substance to emit fluorescent radiation as it moves through the chromatographic system. An optical system spectrally separates the fluorescent radiation according to wavelength and for focusing particular portions of the separated spectrum through an exit aperture. A photodetector which is responsive to the radiation passing through the exit aperture develops an electrical signal commensurate with the intensity of the radiation. The electrical signal is recorded to provide an indication of certain characteristics of the substance.

  11. A method to detect ultra high energy electrons using earth's magnetic field as a radiator

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Balasubrahmanyan, V. K.

    1983-01-01

    It is pointed out that the detection of electrons with energies exceeding a few TeV, which lose energy rapidly through synchrotron and inverse Compton processes, would provide valuable information on the distribution of sources and on the propagation of cosmic rays in the solar neighborhood. However, it would not be possible to measure the energy spectrum beyond a few TeV with any of the existing experimental techniques. The present investigation is, therefore concerned with the possibility of detecting electrons with energies exceeding a few TeV on the basis of the photons emitted through synchrotron radiation in the earth's magnetic field. Attention is given to the synchrotron radiation of electrons in the earth's magnetic field, detector response and energy estimation, and the characteristics of an ideal detector, capable of detecting photons with energies equal to or greater than 20 keV.

  12. GEM detectors development for radiation environment: neutron tests and simulations

    NASA Astrophysics Data System (ADS)

    Chernyshova, Maryna; Jednoróg, Sławomir; Malinowski, Karol; Czarski, Tomasz; Ziółkowski, Adam; Bieńkowska, Barbara; Prokopowicz, Rafał; Łaszyńska, Ewa; Kowalska-Strzeciwilk, Ewa; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Krawczyk, Rafał D.; Linczuk, Paweł; Potrykus, Paweł; Bajdel, Barcel

    2016-09-01

    One of the requests from the ongoing ITER-Like Wall Project is to have diagnostics for Soft X-Ray (SXR) monitoring in tokamak. Such diagnostics should be focused on tungsten emission measurements, as an increased attention is currently paid to tungsten due to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. In addition, such diagnostics should be able to withstand harsh radiation environment at tokamak during its operation. The presented work is related to the development of such diagnostics based on Gas Electron Multiplier (GEM) technology. More specifically, an influence of neutron radiation on performance of the GEM detectors is studied both experimentally and through computer simulations. The neutron induced radioactivity (after neutron source exposure) was found to be not pronounced comparing to an impact of other secondary neutron reaction products (during the exposure).

  13. Muon Telescope (MuTe): A first study using Geant4

    NASA Astrophysics Data System (ADS)

    Asorey, H.; Balaguera-Rojas, A.; Calderon-Ardila, R.; Núñez, L. A.; Sanabria-Gómez, J. D.; Súarez-Durán, M.; Tapia, A.

    2017-07-01

    Muon tomography is based on recording the difference of absorption of muons by matter, as ordinary radiography does for using X-rays. The interaction of cosmic rays with the atmosphere produces extensive air showers which provides an abundant source for atmospheric muons, benefiting various applications of muon tomography, particularly the study of the inner structure of volcanoes. The MuTe (for Muon Telescope) is a hybrid detector composed of scintillation bars and a water Cherenkov detector designed to measure cosmic muon flux crossing volcanic edifices. This detector consists of two scintillator plates (1.44 m2 with 30 x 30 pixels), with a maximum distance of 2.0m of separation. In this work we report the first simulation of the MuTe using GEANT4 -set of simulation tools, based in C++ - that provides information about the interaction between radiation and matter. This computational tool allows us to know the energy deposited by the muons and modeling the response of the scintillators and the water cherenkov detector to the passage of radiation which is crucial to compare to our data analysis.

  14. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286 μGy/day with dose equivalent values of 647 μSv/day.

  15. Ultraviolet Source For Testing Hydrogen-Fire Detectors

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Larson, William E.; Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Stout, Stephen J.; Strobel, James P.

    1995-01-01

    Hand-held portable unit emits ultraviolet light similar to that emitted by hydrogen burning in air. Developed for use in testing optoelectronic hydrogen-fire detectors, which respond to ultraviolet light at wavelengths from 180 to 240 nanometers. Wavelength range unique in that within it, hydrogen fires emit small but detectable amounts of radiation, light from incandescent lamps and Sun almost completely absent, and air sufficiently transmissive to enable detection of hydrogen fire from distance. Consequently, this spectral region favorable for detecting hydrogen fires while minimizing false alarms.

  16. Resolving small signal measurements in experimental plasma environments using calibrated subtraction of noise signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Demers, D. R.; Chen, X.

    2014-11-15

    The performance of many diagnostic and control systems within fusion and other fields of research are often detrimentally affected by spurious noise signals. This is particularly true for those (such as radiation or particle detectors) working with very small signals. Common sources of radiated and conducted noise in experimental fusion environments include the plasma itself and instrumentation. The noise complicates data analysis, as illustrated by noise on signals measured with the heavy ion beam probe (HIBP) installed on the Madison Symmetric Torus. The noise is time-varying and often exceeds the secondary ion beam current (in contrast with previous applications). Analysismore » of the noise identifies the dominant source as photoelectric emission from the detectors induced by ultraviolet light from the plasma. This has led to the development of a calibrated subtraction technique, which largely removes the undesired temporal noise signals from data. The advantages of the technique for small signal measurement applications are demonstrated through improvements realized on HIBP fluctuation measurements.« less

  17. Assessing noise sources at synchrotron infrared ports

    PubMed Central

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors. PMID:22186638

  18. SIMPLIFIED PRACTICAL TEST METHOD FOR PORTABLE DOSE METERS USING SEVERAL SEALED RADIOACTIVE SOURCES.

    PubMed

    Mikamoto, Takahiro; Yamada, Takahiro; Kurosawa, Tadahiro

    2016-09-01

    Sealed radioactive sources which have small activity were employed for the determination of response and tests for non-linearity and energy dependence of detector responses. Close source-to-detector geometry (at 0.3 m or less) was employed to practical tests for portable dose meters to accumulate statistically sufficient ionizing currents. Difference between response in the present experimentally studied field and in the reference field complied with ISO 4037 due to non-uniformity of radiation fluence at close geometry was corrected by use of Monte Carlo simulation. As a consequence, corrected results were consistent with the results obtained in the ISO 4037 reference field within their uncertainties. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Simulation of radiation environment for the LHeC detector

    NASA Astrophysics Data System (ADS)

    Nayaz, Abdullah; Piliçer, Ercan; Joya, Musa

    2017-02-01

    The detector response and simulation of radiation environment for the Large Hadron electron Collider (LHeC) baseline detector is estimated to predict its performance over the lifetime of the project. In this work, the geometry of the LHeC detector, as reported in LHeC Conceptual Design Report (CDR), built in FLUKA Monte Carlo tool in order to simulate the detector response and radiation environment. For this purpose, events of electrons and protons with high enough energy were sent isotropically from interaction point of the detector. As a result, the detector response and radiation background for the LHeC detector, with different USRBIN code (ENERGY, HADGT20M, ALL-CHAR, ALL-PAR) in FLUKA, are presented.

  20. A simulation study of fast neutron interrogation for standoff detection of improvised explosive devices

    NASA Astrophysics Data System (ADS)

    Heider, S. A.; Dunn, W. L.

    2015-11-01

    The signature-based radiation-scanning technique utilizes radiation detector responses, called "signatures," and compares these to "templates" in order to differentiate targets that contain certain materials, such as explosives or drugs, from those that do not. Our investigations are aimed at the detection of nitrogen-rich explosives contained in improvised explosive devices. We use the term "clutter" to refer to any non-explosive materials with which the interrogating radiation may interact between source and detector. To deal with the many target types and clutter configurations that may be encountered in the field, the use of "artificial templates" is proposed. The MCNP code was used to simulate 14.1 MeV neutron source beams incident on one type of target containing various clutter and sample materials. Signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, nitrogen, and oxygen and two scattered neutron signatures were considered. Targets containing explosive materials in the presence of clutter were able to be identified from targets that contained only non-explosive ("inert") materials. This study demonstrates that a finite number of artificial templates is sufficient for IED detection with fairly good sensitivity and specificity.

  1. Disposal of disused sealed radiation sources in Boreholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vicente, R.

    2007-07-01

    This paper gives a description of the concept of a geological repository for disposal of disused sealed radiation sources (DSRS) under development in the Institute of Energy and Nuclear Research (IPEN), in Brazil. DSRS represent a significant fraction of total activity of radioactive wastes to be managed. Most DSRS are collected and temporarily stored at IPEN. As of 2006, the total collected activity is 800 TBq in 7,508 industrial gauge or radiotherapy sources, 7.2 TBq in about 72,000 Americium-241 sources detached from lightning rods, and about 0,5 GBq in 20,857 sources from smoke detectors. The estimated inventory of sealed sourcesmore » in the country is 2.7 hundred thousand sources with 26 PBq. The proposed repository is designed to receive the total inventory of sealed sources. A description of the pre-disposal facilities at IPEN is also presented. (authors)« less

  2. A new design using GEM-based technology for the CMS experiment

    NASA Astrophysics Data System (ADS)

    Ressegotti, M.

    2017-07-01

    The muon system of the Compact Muon Solenoid (CMS) experiment at the LHC is currently not instrumented for pseudorapidity higher than |η|> 2.4. The main challenges to the installation of a detector in that position are the high particle flux to be sustained, a high level of radiation, and the ability to accomodate a multilevel detector into the small available space (less than 30 cm). A new back-to-back configuration of a Gas Electron Multiplier (GEM) detector is presented with the aim of developing a compact, multi-layer GEM detector. It is composed of two independent stacked triple-GEM detectors, positioned with the anodes toward the outside and sharing the same cathode plane, which is located at the center of the chamber, to reduce the total detector's thickness. A first prototype has been produced and tested with an X-Ray source and muon beam. First results on its performance are presented.

  3. Real-time measurements of radon activity with the Timepix-based RADONLITE and RADONPIX detectors

    NASA Astrophysics Data System (ADS)

    Caresana, M.; Garlati, L.; Murtas, F.; Romano, S.; Severino, C. T.; Silari, M.

    2014-11-01

    Radon gas is the most important source of ionizing radiation among those of natural origin. Two new systems for radon measurement based on the Timepix silicon detector were developed. The positively charged radon daughters are electrostatically collected on the surface of the Si detector and their energy spectrum measured. Pattern recognition of the tracks on the sensor and particle identification are used to determine number and energy of the alpha particles and to subtract the background, allowing for efficient radon detection. The systems include an algorithm for real-time measurement of the radon concentration and the calculation of the effective dose to the lungs.

  4. Analyzing Space-Based Interferometric Measurements of Stars and Network Measurements of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Taff, L. G.

    1998-01-01

    Since the announcement of the discovery of sources of bursts of gamma-ray radiation in 1973, hundreds more reports of such bursts have now been published. Numerous artificial satellites have been equipped with gamma-ray detectors including the very successful Compton Gamma Ray Observatory BATSE instrument. Unfortunately, we have made no progress in identifying the source(s) of this high energy radiation. We suspected that this was a consequence of the method used to define gamma-ray burst source "error boxes." An alternative procedure to compute gamma-ray burst source positions, with a purely physical underpinning, was proposed in 1988 by Taff. Since then we have also made significant progress in understanding the analytical nature of the triangulation problem and in computing actual gamma-ray burst positions and their corresponding error boxes. For the former, we can now mathematically illustrate the crucial role of the area occupied by the detectors, while for the latter, the Atteia et al. (1987) catalog has been completely re-reduced. There are very few discrepancies in locations between our results and those of the customary "time difference of arrival" procedure. Thus, we have numerically demonstrated that the end result, for the positions, of these two very different-looking procedures is the same. Finally, for the first time, we provide a sample of realistic "error boxes" whose non-simple shapes vividly portray the difficulty of burst source localization.

  5. Medical gamma ray imaging

    DOEpatents

    Osborne, Louis S.; Lanza, Richard C.

    1984-01-01

    A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.

  6. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adel Ghanem, Ph D

    2007-03-30

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  7. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.

  8. Rapid, autonomous analysis of He spectra I: Overview of the RadID program, user experience, and structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosnell, Thomas B.; Chavez, Joseph R.; Rowland, Mark S.

    2014-02-26

    RadID is a new gamma-ray spectrum analysis program for rapid screening of HPGe gamma-ray data to reveal the presence of radionuclide signatures. It is an autonomous, rule-based heuristic system that can identify well over 200 radioactive sources with particular interest in uranium and plutonium characteristics. It executes in about one second. RadID does not require knowledge of the detector efficiency, the source-to-detector distance, or the geometry of the inspected radiation source—including any shielding. In this first of a three-document series we sketch the RadID program’s origin, its minimal requirements, the user experience, and the program operation.

  9. Approaches on calibration of bolometer and establishment of bolometer calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong

    2015-10-01

    Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.

  10. Bunch by bunch beam monitoring in 3rd and 4th generation light sources by means of single crystal diamond detectors and quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2012-10-01

    New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.

  11. A Penning discharge source for extreme ultraviolet calibration

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    A Penning discharge lamp for use in the calibration of instruments and components for the extreme ultraviolet has been developed. This source is sufficiently light and compact to make it suitable for mounting on the movable slit assembly of a grazing incidence Rowland circle monochromator. Because this is a continuous discharge source, it is suitable for use with photon counting detectors. Line radiation is provided both by the gas and by atoms sputtered off the interchangeable metal cathodes. Usable lines are produced by species as highly ionized as Ne IV and Al V. The wavelength coverage provided is such that a good density of emission lines is available down to wavelengths as short as 100A. This source fills the gap between 100 and 300A, which is inadequately covered by the other available compact continuous radiation sources.

  12. The Mobile Dosimetric Telescope - A Small Size Active Personal Dosimeter for Application at High Altitudes and Onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Ritter, B.; Marsalek, K.; Berger, T.; Burmeister, S.; Reitz, G.; Heber, B.

    2012-12-01

    The radiation environment at cruising altitudes, as well as in Low Earth Orbit - like on the International Space Station - differs significantly from the natural radiation environment on Earth. Especially in Low Earth Orbit it poses one of the main health risks for long duration human missions. Therefore, it is essential to monitor the properties of the radiation field in such environments. The Mobile Dosimetric Telescope MDT, is a small size battery driven personal dosimeter based on silicon detector technology that has been developed to observe absorbed dose and dose rate in real time. Two silicon diodes are arranged in a telescope configuration, which allows the measurement of the ionizing constituents of the radiation field and partially the neutral contribution to the dose. The absorbed dose is obtained by considering every particle in either of the detectors. Particles traversing both diodes are detected as coincidence events that enable to derive linear energy transfer (LET) spectra. From these the quality factor of the field is determined, which is necessary for the estimation of the dose equivalent. The detection range of the device covers energy depositions from minimal ionizing particles up to relativistic heavy ions. Calibrations of the detector system have been performed with various radioactive sources and with heavy ions at the Heavy Ion Medical Accelerator (HIMAC) facility at the National Institute for Radiological Sciences (NIRS) in Chiba, Japan. Additionally, the MDT has been successfully tested onboard aircraft. The results of these measurements are in good agreement with those from other radiation detectors. The presentation will focus on data taken during long haul flights in the northern hemisphere.

  13. Calculating the Responses of Self-Powered Radiation Detectors.

    NASA Astrophysics Data System (ADS)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual response mechanisms.

  14. Evidence for age-related performance degradation of (241)Am foil sources commonly used in UK schools.

    PubMed

    Whitcher, R; Page, R D; Cole, P R

    2014-06-01

    The characteristics of alpha radiation have for decades been demonstrated in UK schools using small sealed (241)Am sources. There is a small but steady number of schools who report a considerable reduction in the alpha count rate detected by an end-window GM detector compared with when the source was new. This cannot be explained by incorrect apparatus or set-up, foil surface contamination, or degradation of the GM detector. The University of Liverpool and CLEAPSS collaborated to research the cause of this performance degradation. The aim was to find what was causing the performance degradation and the ramifications for both the useful and safe service life of the sources. The research shows that these foil sources have greater energy straggling with a corresponding reduction in spectral peak energy. A likely cause for this increase in straggling is a significant diffusion of the metals over time. There was no evidence to suggest the foils have become unsafe, but precautionary checks should be made on old sources.

  15. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  16. Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klumpp, John

    We propose a radiation detection system which generates its own discrete sampling distribution based on past measurements of background. The advantage to this approach is that it can take into account variations in background with respect to time, location, energy spectra, detector-specific characteristics (i.e. different efficiencies at different count rates and energies), etc. This would therefore be a 'machine learning' approach, in which the algorithm updates and improves its characterization of background over time. The system would have a 'learning mode,' in which it measures and analyzes background count rates, and a 'detection mode,' in which it compares measurements frommore » an unknown source against its unique background distribution. By characterizing and accounting for variations in the background, general purpose radiation detectors can be improved with little or no increase in cost. The statistical and computational techniques to perform this kind of analysis have already been developed. The necessary signal analysis can be accomplished using existing Bayesian algorithms which account for multiple channels, multiple detectors, and multiple time intervals. Furthermore, Bayesian machine-learning techniques have already been developed which, with trivial modifications, can generate appropriate decision thresholds based on the comparison of new measurements against a nonparametric sampling distribution. (authors)« less

  17. Gadolinium Oxide / Silicon Thin Film Heterojunction Solid-State Neutron Detector

    DTIC Science & Technology

    2010-03-01

    PRODUCED AS A MEDICAL APPLICATOR SHOWN IN „A‟. THE SOURCE, PICTURED IN „B‟ HAS A PLASTIC SHIELD THAT SLIDES UP AND DOWN THE SHAFT WHICH IS DESIGNED TO...down the shaft which is designed to shield the operator from radiation. The source is sitting head-down and is covered by a thick aluminum shield for...EXPERIMENT, RESULTS, AND ANALYSIS ........................................................ 37 4.1 Experimental Design & Apparatus

  18. A remotely triggered fast neutron detection instrument based on a plastic organic scintillator

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Aspinall, M. D.; Joyce, M. J.

    2018-02-01

    A detector system for the characterization of radiation fields of both fast neutrons and γ rays is described comprising of a gated photomultiplier tube (PMT), an EJ299-33 solid organic scintillator detector, and an external trigger circuit. The objective of this development was to conceive a means by which the PMT in such a system can be actuated remotely during the high-intensity bursts of pulsed γ-ray contamination that can arise during active interrogation procedures. The system is used to detect neutrons and γ rays using established pulse-shape discrimination (PSD) techniques. The gating circuit enables the PMT to be switched off remotely. This is compatible with use during intense radiation transients to avoid saturation and the disruption of the operation of the PMT during the burst. Data are presented in the form of pulse-height spectra and PSD scatter plots for the system triggered with a strobed light source. These confirm that the gain of the system and the throughput for both triggered and un-triggered scenarios are as expected, given the duty cycle of the stimulating radiation. This demonstrates that the triggering function does not perturb the system response of the detector.

  19. A remotely triggered fast neutron detection instrument based on a plastic organic scintillator.

    PubMed

    Jones, A R; Aspinall, M D; Joyce, M J

    2018-02-01

    A detector system for the characterization of radiation fields of both fast neutrons and γ rays is described comprising of a gated photomultiplier tube (PMT), an EJ299-33 solid organic scintillator detector, and an external trigger circuit. The objective of this development was to conceive a means by which the PMT in such a system can be actuated remotely during the high-intensity bursts of pulsed γ-ray contamination that can arise during active interrogation procedures. The system is used to detect neutrons and γ rays using established pulse-shape discrimination (PSD) techniques. The gating circuit enables the PMT to be switched off remotely. This is compatible with use during intense radiation transients to avoid saturation and the disruption of the operation of the PMT during the burst. Data are presented in the form of pulse-height spectra and PSD scatter plots for the system triggered with a strobed light source. These confirm that the gain of the system and the throughput for both triggered and un-triggered scenarios are as expected, given the duty cycle of the stimulating radiation. This demonstrates that the triggering function does not perturb the system response of the detector.

  20. Sub-micrometer resolution proximity X-ray microscope with digital image registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chkhalo, N. I.; Salashchenko, N. N.; Sherbakov, A. V., E-mail: SherbakovAV@ipm.sci-nnov.ru

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector’s design allows the use of lensesmore » with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.« less

  1. Verification of Minimum Detectable Activity for Radiological Threat Source Search

    NASA Astrophysics Data System (ADS)

    Gardiner, Hannah; Myjak, Mitchell; Baciak, James; Detwiler, Rebecca; Seifert, Carolyn

    2015-10-01

    The Department of Homeland Security's Domestic Nuclear Detection Office is working to develop advanced technologies that will improve the ability to detect, localize, and identify radiological and nuclear sources from airborne platforms. The Airborne Radiological Enhanced-sensor System (ARES) program is developing advanced data fusion algorithms for analyzing data from a helicopter-mounted radiation detector. This detector platform provides a rapid, wide-area assessment of radiological conditions at ground level. The NSCRAD (Nuisance-rejection Spectral Comparison Ratios for Anomaly Detection) algorithm was developed to distinguish low-count sources of interest from benign naturally occurring radiation and irrelevant nuisance sources. It uses a number of broad, overlapping regions of interest to statistically compare each newly measured spectrum with the current estimate for the background to identify anomalies. We recently developed a method to estimate the minimum detectable activity (MDA) of NSCRAD in real time. We present this method here and report on the MDA verification using both laboratory measurements and simulated injects on measured backgrounds at or near the detection limits. This work is supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-12-X-00376. This support does not constitute an express or implied endorsement on the part of the Gov't.

  2. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Key, William S.; Sanders, Alvin J.; Earl, Dennis D.

    1999-01-01

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a "beamsplitter"), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beamsplitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention.

  3. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, S.W.; Cates, M.R.; Key, W.S.; Sanders, A.J.; Earl, D.D.

    1999-06-22

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a beam splitter''), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beam splitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention. 9 figs.

  4. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  5. Bioenvironmental Engineer’s Guide to Ionizing Radiation

    DTIC Science & Technology

    2005-10-01

    mercury x-rays 186 (4 % ) - y Ra -226 radon x-rays Luminous Products, Neutron (tl/2: 1600 y) Alpha photons from daughters: Sources (w/ Be ) Rn-222, Po...Radioisotope Thermoelectric (t1,2: 88 y) Generators Pu-239 Alpha uranium x-rays Nuclear Weapons, Neutron (t1 /2: 2.4 x 104 y) Sources (w/ Be ...Calibration Am-241 .60 (36 %) - Static Eliminators, Chemical (h2: 432 y) Alpha n Agent Detectors, Neutron neptunium x-rays Sources (w/ Be ) 11 October 2005

  6. A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source.

    PubMed

    Kunz, Martin; MacDowell, Alastair A; Caldwell, Wendel A; Cambie, Daniella; Celestre, Richard S; Domning, Edward E; Duarte, Robert M; Gleason, Arianna E; Glossinger, James M; Kelez, Nicholas; Plate, David W; Yu, Tony; Zaug, Joeseph M; Padmore, Howard A; Jeanloz, Raymond; Alivisatos, A Paul; Clark, Simon M

    2005-09-01

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 T superconducting bending magnet (superbend). Useful X-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness-preserving optics of the beamline. These optics are comprised of a plane parabola collimating mirror, followed by a Kohzu monochromator vessel with Si(111) crystals (E/DeltaE approximately equal 7000) and W/B4C multilayers (E/DeltaE approximately equal 100), and then a toroidal focusing mirror with variable focusing distance. The experimental enclosure contains an automated beam-positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detector (CCD or image-plate detector). Future developments aim at the installation of a second endstation dedicated to in situ laser heating and a dedicated high-pressure single-crystal station, applying both monochromatic and polychromatic techniques.

  7. Determination of Moisture Content in Coke with 239Pu-Be Neutron Source and BGO Scintillation Gamma Detector

    NASA Astrophysics Data System (ADS)

    Grozdanov, D. N.; Aliyev, F. A.; Hramco, C.; Kopach, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Gundorin, N. A.; Ruskov, I. N.

    2018-03-01

    A series of experiments has been conducted at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in order to study the possibility of determining the moisture content of coke using a standard neutron source. The proposed method is based on a measurement of the spectrum of prompt γ rays emitted when samples are irradiated by fast and/or thermal neutrons. The moisture content is determined from the area of the peaks of characteristic γ rays produced in the radiative capture of thermal neutrons by the proton ( E γ = 2.223 MeV) and inelastic scattering of fast neutrons by 16O (Eγ = 6.109 MeV). The 239Pu-Be neutron source (< E n > 4.5 MeV) with an intensity of 5 × 106 n/s was used to irradiate the samples under study. A scintillation detector based on a BGO crystal was used to register the characteristic γ radiation from the inelastic fast neutron scattering and slow (thermal) neutron capture. This paper presents the results of humidity measurement in the range of 2-50% [1, 2].

  8. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  9. Properties of thin film radiation detectors and their application to dosimetry and quality assurance in x-ray imaging

    NASA Astrophysics Data System (ADS)

    Elshahat, Bassem

    The characteristics of two different types of thin-film radiation detectors are experimentally investigated: organic photovoltaic cells (OPV) and a new self-powered detector that operates based on high-energy secondary electrons (HEC). Although their working principles are substantially different, they both can be used for radiation detection and image formation in medical applications. OPVs with different active layer material thicknesses and aluminum electrode areas were fabricated. The OPV cell consisted of P3HT: PCBM photoactive materials, composed of donor and acceptor semiconducting organic materials, sandwiched between an aluminum electrode as anode and an indium tin oxide (ITO) electrode as a cathode. The detectors were exposed to 60150 kVp x rays, which generated photocurrent in the active layer. The electric charge production in the OPV cells was measured. The net current as function of beam energy (kVp) was proportional to ~1/kVp0.45 when adjusted for x-ray beam output. The best combination of parameters for these cells was 270-nm active layer thicknesses for 0.7cm-2 electrode area. The measured current ranged from about 0.7 to 2.4 nA/cm2 for 60-150 kVp, corresponding to about 0.09 -- 0.06 nA/cm2/mGy, respectively, when adjusted for the output x-ray source flux. The HEC detection concept was recently proposed and experimentally demonstrated by a UML/HMS research group. HEC detection employs direct conversion of high-energy electron current to detector signal without external power and amplification. The potential of using HEC detectors for diagnostic imaging application was investigated by using a heterogeneous phantom consisting of a water cylinder with Al and wax rod inserts.

  10. Thermally emissive sensing materials for chemical spectroscopy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Zsolt; Ohodnicki, Paul R.

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to themore » material.« less

  11. Apparatus for determining past-service conditions and remaining life of thermal barrier coatings and components having such coatings

    DOEpatents

    Srivastava, Alok Mani; Setlur, Anant Achyut; Comanzo, Holly Ann; Devitt, John William; Ruud, James Anthony; Brewer, Luke Nathaniel

    2004-05-04

    An apparatus for determining past-service conditions and/or remaining useful life of a component of a combustion engine and/or a thermal barrier coating ("TBC") of the component comprises a radiation source that provides the exciting radiation to the TBC to excite a photoluminescent ("PL") material contained therein, a radiation detector for detecting radiation emitted by the PL material, and means for relating a characteristic of an emission spectrum of the PL material to the amount of a crystalline phase in the TBC, thereby inferring the past-service conditions or the remaining useful life of the component or the TBC.

  12. Comparative Response of Microchannel Plate and Channel Electron Multiplier Detectors to Penetrating Radiation in Space

    DOE PAGES

    Funsten, Herbert O.; Harper, Ronnie W.; Dors, Eric E.; ...

    2015-10-02

    Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Here, our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use 662 keV γ-rays as a proxy for penetrating radiation such as γ-rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We find that MCP detectors are ~20 times more sensitive to 662 keV γ-rays than CEM detectors. This is attributed to the larger total area ofmore » multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum efficiency ε γ for 662 keVγ -rays is found to be 0.00175 and largely independent of detector bias, the quantum efficiency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Lastly, background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.« less

  13. A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Breskin, A.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Shchemelinin, S.; Chechik, R.; Dangendorf, V.; Bromberger, B.; Vartsky, D.

    2012-06-01

    A new detector concept is presented for combined imaging and spectroscopy of fast-neutrons and gamma rays. It comprises a liquid-Xenon (LXe) converter and scintillator coupled to a UV-sensitive gaseous imaging photomultiplier (GPM). Radiation imaging is obtained by localization of the scintillation-light from LXe with the position-sensitive GPM. The latter comprises a cascade of Thick Gas Electron Multipliers (THGEM), where the first element is coated with a CsI UV-photocathode. We present the concept and provide first model-simulation results of the processes involved and the expected performances of a detector having a LXe-filled capillaries converter. The new detector concept has potential applications in combined fast-neutron and gamma-ray screening of hidden explosives and fissile materials with pulsed sources.

  14. Field test of optical and electrical fire detectors in simulated fire scenes in a cable tunnel

    NASA Astrophysics Data System (ADS)

    Fan, Dian; Ding, Hongjun; Wang, Dorothy Y.; Jiang, Desheng

    2014-06-01

    This paper presents the testing results of three types of fire detectors: electrical heat sensing cable, optical fiber Raman temperature sensing detector, and optical fiber Bragg grating (FBG) temperature sensing detector, in two simulated fire scenes in a cable tunnel. In the small-scale fire with limited thermal radiation and no flame, the fire alarm only comes from the heat sensors which directly contact with the heat source. In the large-scale fire with about 5 °C/min temperature rising speed within a 3-m span, the fire alarm response time of the fiber Raman sensor and FBG sensors was about 30 seconds. The test results can be further used for formulating regulation for early fire detection in cable tunnels.

  15. [Analysis of the effect of detector's operating temperature on SNR in space-based remote sensor].

    PubMed

    Li, Zhan-feng; Wang, Shu-rong; Huang, Yu

    2012-03-01

    Limb viewing is a new viewing geometry for space-based atmospheric remote sensing, but the spectral radiance of atmosphere scattering reduces rapidly with limb height. So the signal-noise-ratio (SNR) is a key performance parameter of limb remote sensor. A SNR model varying with detector's temperature is proposed, based on analysis of spectral radiative transfer and noise' source in representative instruments. The SNR at limb height 70 km under space conditions was validated by simulation experiment on limb remote sensing spectrometer prototype. Theoretic analysis and experiment's results indicate congruously that when detector's temperature reduces to some extent, a maximum SNR will be reached. After considering the power consumption, thermal conductivity and other issues, optimal operating temperature of detector can be decided.

  16. Radiation detector device for rejecting and excluding incomplete charge collection events

    DOEpatents

    Bolotnikov, Aleksey E.; De Geronimo, Gianluigi; Vernon, Emerson; Yang, Ge; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B.

    2016-05-10

    A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.

  17. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  18. A compact soft x-ray (0.1-1.2 keV) calibration bench for radiometric measurements using an original versatile Rowland circle grazing incidence monochromator

    NASA Astrophysics Data System (ADS)

    Hubert, S.

    2017-05-01

    This paper describes an original Rowland circle grazing incidence spectrometer used as a monochromator for a soft x-ray Manson source in order to calibrate both the source and detectors over the 0.1-1.2 keV spectral range. The originality of the instrument lies on a patented vacuum manipulator which allows the simultaneous boarding of two detectors, one (reference) for measuring the monochromatic radiation and the second to be calibrated. In order to achieve this, the vacuum manipulator is able to interchange, in vacuum, one detector with the other in front of the exit slit of the monochromatizing stage. One purpose of this apparatus was to completely eliminate the intrinsic bremsstrahlung emission of the x-ray diode source and isolate each characteristic line for quantitative detector calibrations. Obtained spectral resolution (Δλ/λ<10-2) and spectral purity (>98%) fully meet this objective. Initially dimensioned to perform calibration of bulky x-ray cameras unfolded on the Laser MégaJoule Facility, other kinds of detector can be obviously calibrated using this instrument. A brief presentation of the first calibration of an x-ray CCD through its quantum efficiency (QE) measurement is included in this paper as example. Comparison with theoretical model for QE and previous measurements at higher energy are finally presented and discussed.

  19. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOEpatents

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  20. Characterization of a new dosimeter for the development of a position-sensitive detector of radioactive sources in industrial NDT equipment

    NASA Astrophysics Data System (ADS)

    Kim, K. T.; Kim, J. H.; Han, M. J.; Heo, Y. J.; Park, S. K.

    2018-02-01

    Imaging technology based on gamma-ray sources has been extensively used in non-destructive testing (NDT) to detect any possible internal defects in products without changing their shapes or functions. However, such technology has been subject to increasingly stricter regulations, and an international radiation-safety management system has been recently established. Consequently, radiation source location in NDT systems has become an essential process, given that it can prevent radiation accidents. In this study, we focused on developing a monitoring system that can detect, in real time, the position of a radioactive source in the source guide tube of a projector. We fabricated a lead iodide (PbI2) dosimeter based on the particle-in-binder method, which has a high production yield and facilitates thickness and shape adjustment. Using a gamma-ray source, we then tested the reproducibility, linearity of the dosimeter response, and the dosimeter's percentage interval distance (PID). It was found that the fabricated PbI2 dosimeter yields highly accurate, reproducible, and linear dose measurements. The PID analysis—conducted to investigate the possibility of developing a monitoring system based on the proposed dosimeter—indicated that the valid detection distance was approximately 11.3 cm. The results of this study are expected to contribute to the development of an easily usable radiation monitoring system capable of significantly reducing the risk of radiation accidents.

  1. Measurement of the mass attenuation coefficient from 81 keV to 1333 keV for elemental materials Al, Cu and Pb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gjorgieva, Slavica, E-mail: slavicagjorgieva89@gmail.com; Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, POB 162, 1000 Skopje; Barandovski, Lambe, E-mail: lambe@pmf.ukim.mk

    The mass attenuation coefficients (μ/ρ) for 3 high purity elemental materials Al, Cu and Pb were measured in the γ-ray energy range from 81 keV up to 1333 keV using {sup 22}Na, {sup 60}Co {sup 133}Ba and {sup 133}Cs as sources of gamma radiation. Well shielded detector (NaI (Tl) semiconductor detector) was used to measure the intensity of the transmitted beam. The measurements were made under condition of good geometry, assuring that any photon absorbed or deflected appreciably does not reach the detector. The measured values are compared with the theoretical ones obtained by Seltzer (1993).

  2. Scintillator Detector Development at Central Michigan University

    NASA Astrophysics Data System (ADS)

    McClain, David; Estrade, Alfredo; Neupane, Shree

    2017-09-01

    Experimental nuclear physics relies both on the accuracy and precision of the instruments for radiation detection used in experimental setups. At Central Michigan University we have setup a lab to work with scintillator detectors for radioactive ion beam experiments, using a Picosecond Laser and radioactive sources for testing. We have tested the resolution for prototypes of large area scintillators that could be used for fast timing measurements in the focal plane of spectrometers, such as the future High Rigidity Spectrometer at the Facility for Rare Isotope Beams (FRIB). We measured the resolution as a function of the length of the detector, and also the position of the beam along the scintillator. We have also designed a scintillating detector to veto light ion background in beta-decay experiments with the Advanced Implantation Detector Array (AIDA) at RIKEN in Japan. We tested different configurations of Silicon Photomultipliers and scintillating fiber optics to find the best detection efficiency.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel ofmore » our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.« less

  4. Dual-sided coded-aperture imager

    DOEpatents

    Ziock, Klaus-Peter [Clinton, TN

    2009-09-22

    In a vehicle, a single detector plane simultaneously measures radiation coming through two coded-aperture masks, one on either side of the detector. To determine which side of the vehicle a source is, the two shadow masks are inverses of each other, i.e., one is a mask and the other is the anti-mask. All of the data that is collected is processed through two versions of an image reconstruction algorithm. One treats the data as if it were obtained through the mask, the other as though the data is obtained through the anti-mask.

  5. Gamma-Ray Background Variability in Mobile Detectors

    NASA Astrophysics Data System (ADS)

    Aucott, Timothy John

    Gamma-ray background radiation significantly reduces detection sensitivity when searching for radioactive sources in the field, such as in wide-area searches for homeland security applications. Mobile detector systems in particular must contend with a variable background that is not necessarily known or even measurable a priori. This work will present measurements of the spatial and temporal variability of the background, with the goal of merging gamma-ray detection, spectroscopy, and imaging with contextual information--a "nuclear street view" of the ubiquitous background radiation. The gamma-ray background originates from a variety of sources, both natural and anthropogenic. The dominant sources in the field are the primordial isotopes potassium-40, uranium-238, and thorium-232, as well as their decay daughters. In addition to the natural background, many artificially-created isotopes are used for industrial or medical purposes, and contamination from fission products can be found in many environments. Regardless of origin, these backgrounds will reduce detection sensitivity by adding both statistical as well as systematic uncertainty. In particular, large detector arrays will be limited by the systematic uncertainty in the background and will suffer from a high rate of false alarms. The goal of this work is to provide a comprehensive characterization of the gamma-ray background and its variability in order to improve detection sensitivity and evaluate the performance of mobile detectors in the field. Large quantities of data are measured in order to study their performance at very low false alarm rates. Two different approaches, spectroscopy and imaging, are compared in a controlled study in the presence of this measured background. Furthermore, there is additional information that can be gained by correlating the gamma-ray data with contextual data streams (such as cameras and global positioning systems) in order to reduce the variability in the background. This is accomplished by making many hours of background measurements with a truck-mounted system, which utilizes high-purity germanium detectors for spectroscopy and sodium iodide detectors for coded aperture imaging. This system also utilizes various peripheral sensors, such as panoramic cameras, laser ranging systems, global positioning systems, and a weather station to provide context for the gamma-ray data. About three hundred hours of data were taken in the San Francisco Bay Area, covering a wide variety of environments that might be encountered in operational scenarios. These measurements were used in a source injection study to evaluate the sensitivity of different algorithms (imaging and spectroscopy) and hardware (sodium iodide and high-purity germanium detectors). These measurements confirm that background distributions in large, mobile detector systems are dominated by systematic, not statistical variations, and both spectroscopy and imaging were found to substantially reduce this variability. Spectroscopy performed better than the coded aperture for the given scintillator array (one square meter of sodium iodide) for a variety of sources and geometries. By modeling the statistical and systematic uncertainties of the background, the data can be sampled to simulate the performance of a detector array of arbitrary size and resolution. With a larger array or lower resolution detectors, however imaging was better able to compensate for background variability.

  6. Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors

    NASA Astrophysics Data System (ADS)

    Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart

    2018-06-01

    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.

  7. Quantum noise in the mirror-field system: A field theoretic approach

    NASA Astrophysics Data System (ADS)

    Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien

    2013-02-01

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror.

  8. SOGRO (Superconducting Omni-directional Gravitational Radiation Observatory)

    NASA Astrophysics Data System (ADS)

    Paik, Ho Jung

    2018-01-01

    Detection of gravitational waves (GWs) from merging binary black holes (BHs) by Advanced LIGO has ushered in the new era of GW astronomy. Many conceivable sources such as intermediate-mass BH binaries and white dwarf binaries, as well as stellar-mass BH inspirals, would emit GWs below 10 Hz. It is highly desirable to open a new window for GW astronomy in the infrasound frequency band. A low-frequency tensor detector could be constructed by combining six magnetically levitated superconducting test masses. Such a detector would be equally sensitive to GWs coming from anywhere in the sky, and would be capable of resolving the source direction and wave polarization. I will present the design concept of a new terrestrial GW detector, named SOGRO, which could reach a strain sensitivity of 10-19-10-21 Hz-1/2 at 0.1-10 Hz. Seismic and Newtonian gravity noises are serious obstacles in constructing terrestrial GW detectors at frequencies below 10 Hz. I will explain how these noises are rejected in SOGRO. I will also report the progress made in designing the platform and modelling its thermal noise.

  9. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI.

    PubMed

    Mascali, D; Celona, L; Maimone, F; Maeder, J; Castro, G; Romano, F P; Musumarra, A; Altana, C; Caliri, C; Torrisi, G; Neri, L; Gammino, S; Tinschert, K; Spaedtke, K P; Rossbach, J; Lang, R; Ciavola, G

    2014-02-01

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  10. Monte Carlo simulation of gamma-ray interactions in an over-square high-purity germanium detector for in-vivo measurements

    NASA Astrophysics Data System (ADS)

    Saizu, Mirela Angela

    2016-09-01

    The developments of high-purity germanium detectors match very well the requirements of the in-vivo human body measurements regarding the gamma energy ranges of the radionuclides intended to be measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Body Counter (WBC) from IFIN-HH is based on an “over-square” high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV-1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an alternative to the experimental efficiency calibration method consisting of using reference calibration sources with gamma energy lines that cover all the considered energy range, it is proposed to use the Monte Carlo method for the efficiency calibration of the WBC using the radiation transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of 241Am, 57Co, 133Ba, 137Cs, 60Co, and 152Eu were simulated in order to obtain the virtual efficiency calibration curve of the WBC. The Monte Carlo method was validated by comparing the simulated results with the experimental measurements using point-like sources. For their optimum matching, the impact of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector’s model was refined. In order to perform the WBC efficiency calibration for realistic people monitoring, more numerical calculations were generated simulating extended sources of specific shape according to the standard man characteristics.

  11. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  12. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics.

    PubMed

    Czarski, T; Chernyshova, M; Malinowski, K; Pozniak, K T; Kasprowicz, G; Kolasinski, P; Krawczyk, R; Wojenski, A; Zabolotny, W

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  13. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Variable-Temperature Cryostat For Radiation-Damage Testing Of Germanium Detectors

    NASA Technical Reports Server (NTRS)

    Floyd, Samuel R.; Puc, Bernard P.

    1992-01-01

    Variable-temperature cryostats developed to study radiation damage to, and annealing of, germanium gamma-ray detectors. Two styles: one accommodates large single detector and one accommodates two medium-sized detectors. New cryostats allow complete testing of large-volume germanium gamma-ray detectors without breaking cryostat vacuum and removing detectors for annealing.

  15. Thermal Design to Meet Stringent Temperature Gradient/Stability Requirements of SWIFT BAT Detectors

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    The Burst Alert Telescope (BAT) is an instrument on the National Aeronautics and Space Administration (NASA) SWIFT spacecraft. It is designed to detect gamma ray burst over a broad region of the sky and quickly align the telescopes on the spacecraft to the gamma ray source. The thermal requirements for the BAT detector arrays are very stringent. The maximum allowable temperature gradient of the 256 cadmium zinc telluride (CZT) detectors is PC. Also, the maximum allowable rate of temperature change of the ASICs of the 256 Detector Modules (DMs) is PC on any time scale. The total power dissipation of the DMs and Block Command & Data Handling (BCDH) is 180 W. This paper presents a thermal design that uses constant conductance heat pipes (CCHPs) to minimize the temperature gradient of the DMs, and loop heat pipes (LHPs) to transport the waste heat to the radiator. The LHPs vary the effective thermal conductance from the DMs to the radiator to minimize heater power to meet the heater power budget, and to improve the temperature stability. The DMs are cold biased, and active heater control is used to meet the temperature gradient and stability requirements.

  16. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  17. Soft x-ray submicron imaging detector based on point defects in LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldacchini, G.; Bollanti, S.; Bonfigli, F.

    2005-11-15

    The use of lithium fluoride (LiF) crystals and films as imaging detectors for EUV and soft-x-ray radiation is discussed. The EUV or soft-x-ray radiation can generate stable color centers, emitting in the visible spectral range an intense fluorescence from the exposed areas. The high dynamic response of the material to the received dose and the atomic scale of the color centers make this detector extremely interesting for imaging at a spatial resolution which can be much smaller than the light wavelength. Experimental results of contact microscopy imaging of test meshes demonstrate a resolution of the order of 400 nm. Thismore » high spatial resolution has been obtained in a wide field of view, up to several mm{sup 2}. Images obtained on different biological samples, as well as an investigation of a soft x-ray laser beam are presented. The behavior of the generated color centers density as a function of the deposited x-ray dose and the advantages of this new diagnostic technique for both coherent and noncoherent EUV sources, compared with CCDs detectors, photographic films, and photoresists are discussed.« less

  18. Radiation dosimeter

    DOEpatents

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  19. Radiation dosimeter

    DOEpatents

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  20. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  1. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hep, J.; Konecna, A.; Krysl, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weightingmore » is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)« less

  2. Multispectral variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.

  3. The perturbation of backscattered fast neutrons spectrum caused by the resonances of C, N and O for possible use in pyromaterial detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedin, Ahmad Firdaus Zainal, E-mail: firdaus087@gmail.com; Ibrahim, Noorddin; Zabidi, Noriza Ahmad

    2015-04-29

    Neutron radiation is able to determine the signature of land mine detection based on backscattering energy spectrum of landmine. In this study, the Monte Carlo simulation of backscattered fast neutrons was performed on four basic elements of land mine; hydrogen, nitrogen, oxygen and carbon. The moderation of fast neutrons to thermal neutrons and their resonances cross-section between 0.01 eV until 14 MeV were analysed. The neutrons energies were divided into 29 groups and ten million neutrons particles histories were used. The geometries consist of four main components: neutrons source, detectors, landmine and soil. The neutrons source was placed at the originmore » coordinate and shielded with carbon and polyethylene. Americium/Beryllium neutron source was placed inside lead casing of 1 cm thick and 2.5 cm height. Polyethylene was used to absorb and disperse radiation and was placed outside the lead shield of width 10 cm and height 7 cm. Two detectors were placed between source with distance of 8 cm and radius of 1.9 cm. Detectors of Helium-3 was used for neutron detection as it has high absorption cross section for thermal neutrons. For the anomaly, the physical is in cylinder form with radius of 10 cm and 8.9 cm height. The anomaly is buried 5 cm deep in the bed soil measured 80 cm radius and 53.5 cm height. The results show that the energy spectrum for the four basic elements of landmine with specific pattern which can be used as indication for the presence of landmines.« less

  4. A proposed method for electronic feedback compensation of damping in ferromagnetic resonance

    DOE PAGES

    Zohar, S.; Sterbinsky, G. E.

    2017-07-10

    Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  5. A proposed method for electronic feedback compensation of damping in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zohar, S.; Sterbinsky, G. E.

    2017-12-01

    We propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π / 2 , amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  6. MicroCT with energy-resolved photon-counting detectors

    PubMed Central

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C

    2011-01-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  7. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-07

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  8. 2D mapping of the MV photon fluence and 3D dose reconstruction in real time for quality assurance during radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Alrowaili, Z. A.; Lerch, M. L. F.; Carolan, M.; Fuduli, I.; Porumb, C.; Petasecca, M.; Metcalfe, P.; Rosenfeld, A. B.

    2015-09-01

    Summary: the photon irradiation response of a 2D solid state transmission detector array mounted in a linac block tray is used to reconstruct the projected 2D dose map in a homogenous phantom along rays that diverge from the X-ray source and pass through each of the 121 detector elements. A unique diode response-to-dose scaling factor, applied to all detectors, is utilised in the reconstruction to demonstrate that real time QA during radiotherapy treatment is feasible. Purpose: to quantitatively demonstrate reconstruction of the real time radiation dose from the irradiation response of the 11×11 silicon Magic Plate (MP) detector array operated in Transmission Mode (MPTM). Methods and Materials: in transmission mode the MP is positioned in the block tray of a linac so that the central detector of the array lies on the central axis of the radiation beam. This central detector is used to determine the conversion factor from measured irradiation response to reconstructed dose at any point on the central axis within a homogenous solid water phantom. The same unique conversion factor is used for all MP detector elements lying within the irradiation field. Using the two sets of data, the 2D or 3D dose map is able to be reconstructed in the homogenous phantom. The technique we have developed is illustrated here for different depths and irradiation field sizes, (5 × 5 cm2 to 40 × 40 cm2) as well as a highly non uniform irradiation field. Results: we find that the MPTM response is proportional to the projected 2D dose map measured at a specific phantom depth, the "sweet depth". A single factor, for several irradiation field sizes and depths, is derived to reconstruct the dose in the phantom along rays projected from the photon source through each MPTM detector element. We demonstrate that for all field sizes using the above method, the 2D reconstructed and measured doses agree to within ± 2.48% (2 standard deviation) for all in-field MP detector elements. Conclusions: a 2D detector system and method to reconstruct the dose in a homogeneous phantom and in real time has been demonstrated. The success of this work is an exciting development toward real time QA during radiotherapy treatment.

  9. Proportional counter radiation camera

    DOEpatents

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  10. The Implementation and Demonstration of Flame Detection and Wireless Communications in a Consumer Appliance to Improve Fire Detection Capabilities

    DTIC Science & Technology

    2007-06-08

    Temperature Detectors (RTDs), thermistors , bimetallic devices, liquid expansion devices, and change-of-state devices. Liquid expansion, change-of...sterilization lamps, halogen lamps, direct or reflected sunlight on the sensor, electrical or welding sparks, radiation sources and high 7 Figure 1, Standard

  11. Production, characterization and operation of $$^{76}$$Ge enriched BEGe detectors in GERDA

    DOE PAGES

    Agostini, M.; Allardt, M.; Andreotti, E.; ...

    2015-02-03

    The GERmanium Detector Array (Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of 76Ge. Germanium detectors made of material with an enriched 76Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new 76 Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present article reviews the complete production chain of these BEGe detectors including isotopic enrichment,more » purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the 76Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. Lastly, the detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.« less

  12. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; McEvoy, A. M.

    2016-11-15

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clustersmore » to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.« less

  13. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10{sup 2-4}), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavrov, Andrei; Yamamoto, Eugene

    Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection formore » source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the authors and based on some experimental test results. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co-57, Ba-133 and other). New variant of ASIA is based on physical principles and does not require a lot of special tests to attain statistical data for its parameters. That is why this system can be easily installed into any RPM with plastic detectors. This algorithm was tested for 1,395 passages of different transports (cars, trucks and trailers) without radioactive sources. It also was tested for 4,015 passages of these transports with radioactive sources of different activity (Co-57, Ba-133, Cs-137, Co-60, Ra-226, Th-232) and these sources masked by NORM (K-40) as well. (authors)« less

  15. Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1977-01-01

    A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.

  16. Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm.

    PubMed

    Kück, Stefan; Brandt, Friedhelm; Taddeo, Mario

    2005-04-20

    A new standard detector for high-accuracy measurements of F2 laser radiation at 157 nm is presented. This gold-coated copper cone detector permits the measurement of average powers up to 2 W with an uncertainty of approximately 1%. To the best of our knowledge, this is the first highly accurate standard detector for F2 laser radiation for this power level. It is fully characterized according to Guide to the Expression of Uncertainty in Measurement of the International Organization for Standardization and is connected to the calibration chain for laser radiation established by the German National Metrology Institute.

  17. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    PubMed

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging from 500 to 800°C. The characterization techniques that will be used to quantify the effects of the post-growth annealing experiments include: 1) 3D infrared transmission microscopy to measure the size, distribution, and concentration of Tellurium inclusions; 2) current-voltage measurements to determine the effect of post-growth annealing on the resistivity of CdZnTe crystals; and 3) X-ray diffraction topography, available at the National Synchrotron Light Source (NSLS) facilities at Brookhaven National Laboratory (BNL), to measure the correlation between device performance and annealing conditions

  19. Microtron MT 25 as a source of neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kralik, M.; Solc, J.; Chvatil, D.

    2012-08-15

    The objective was to describe Microtron MT25 as a source of neutrons generated by bremsstrahlung induced photonuclear reactions in U and Pb targets. Bremsstrahlung photons were produced by electrons accelerated at energy 21.6 MeV. Spectral fluence of the generated neutrons was calculated with MCNPX code and then experimentally determined at two positions by means of a Bonner spheres spectrometer in which the detector of thermal neutrons was replaced by activation Mn tablets or track detectors CR-39 with a {sup 10}B radiator. The measured neutron spectral fluence and the calculated anisotropy served for the estimation of neutron yield from the targetsmore » and for the determination of ambient dose equivalent rate at the place of measurement. Microtron MT25 is intended as one of the sources for testing neutron sensitive devices which will be sent into the space.« less

  20. The beam stop array method to measure object scatter in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lee, Haeng-hwa; Kim, Ye-seul; Park, Hye-Suk; Kim, Hee-Joung; Choi, Jae-Gu; Choi, Young-Wook

    2014-03-01

    Scattered radiation is inevitably generated in the object. The distribution of the scattered radiation is influenced by object thickness, filed size, object-to-detector distance, and primary energy. One of the investigations to measure scatter intensities involves measuring the signal detected under the shadow of the lead discs of a beam-stop array (BSA). The measured scatter by BSA includes not only the scattered radiation within the object (object scatter), but also the external scatter source. The components of external scatter source include the X-ray tube, detector, collimator, x-ray filter, and BSA. Excluding background scattered radiation can be applied to different scanner geometry by simple parameter adjustments without prior knowledge of the scanned object. In this study, a method using BSA to differentiate scatter in phantom (object scatter) from external background was used. Furthermore, this method was applied to BSA algorithm to correct the object scatter. In order to confirm background scattered radiation, we obtained the scatter profiles and scatter fraction (SF) profiles in the directions perpendicular to the chest wall edge (CWE) with and without scattering material. The scatter profiles with and without the scattering material were similar in the region between 127 mm and 228 mm from chest wall. This result indicated that the measured scatter by BSA included background scatter. Moreover, the BSA algorithm with the proposed method could correct the object scatter because the total radiation profiles of object scatter correction corresponded to original image in the region between 127 mm and 228 mm from chest wall. As a result, the BSA method to measure object scatter could be used to remove background scatter. This method could apply for different scanner geometry after background scatter correction. In conclusion, the BSA algorithm with the proposed method is effective to correct object scatter.

  1. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funsten, Herbert O.; Harper, Ronnie W.; Dors, Eric E.

    Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Here, our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use 662 keV γ-rays as a proxy for penetrating radiation such as γ-rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We find that MCP detectors are ~20 times more sensitive to 662 keV γ-rays than CEM detectors. This is attributed to the larger total area ofmore » multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum efficiency ε γ for 662 keVγ -rays is found to be 0.00175 and largely independent of detector bias, the quantum efficiency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Lastly, background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.« less

  3. Phase contrast tomography of the mouse cochlea at microfocus x-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartels, Matthias; Krenkel, Martin; Hernandez, Victor H.

    2013-08-19

    We present phase contrast x-ray tomography of functional soft tissue within the bony cochlear capsule of mice, carried out at laboratory microfocus sources with well-matched source, detector, geometry, and reconstruction algorithms at spatial resolutions down to 2 μm. Contrast, data quality and resolution enable the visualization of thin membranes and nerve fibers as well as automated segmentation of surrounding bone. By complementing synchrotron radiation imaging techniques, a broad range of biomedical applications becomes possible as demonstrated for optogenetic cochlear implant research.

  4. Novel system for picosecond photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.; Lilie, M. I.

    1988-09-01

    This article describes a laser-based source and detection scheme for performing time-resolved photoemission studies of materials. The pulsed laser source produces intense picosecond pulses of coherent radiation that are nearly continuously tunable from the near infrared to photon energies up to 13 eV. To achieve high sensitivity, a novel multianode time-of-flight spectrometer has been built that generates an angularly resolved intensity versus kinetic energy spectrum with better than 100-meV resolution. The source and detector provide an opportunity to study the electronic dynamics of excited systems on a picosecond time scale.

  5. Shielding calculations for the National Synchrotron Light Source-II experimental beamlines

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2013-01-01

    Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.

  6. A Radiation Laboratory Curriculum Development at Western Kentucky University

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  7. Development of optical monitor of alpha radiations based on CR-39.

    PubMed

    Joshirao, Pranav M; Shin, Jae Won; Vyas, Chirag K; Kulkarni, Atul D; Kim, Hojoong; Kim, Taesung; Hong, Seung-Woo; Manchanda, Vijay K

    2013-11-01

    Fukushima accident has highlighted the need to intensify efforts to develop sensitive detectors to monitor the release of alpha emitting radionuclides in the environment caused by the meltdown of the discharged spent fuel. Conventionally, proportional counting, scintillation counting and alpha spectrometry are employed to assay the alpha emitting radionuclides but these techniques are difficult to be configured for online operations. Solid State Nuclear Track Detectors (SSNTDs) offer an alternative off line sensitive technique to measure alpha emitters as well as fissile radionuclides at ultra-trace level in the environment. Recently, our group has reported the first ever attempt to use reflectance based fiber optic sensor (FOS) to quantify the alpha radiations emitted from (232)Th. In the present work, an effort has been made to develop an online FOS to monitor alpha radiations emitted from (241)Am source employing CR-39 as detector. Here, we report the optical response of CR-39 (on exposure to alpha radiations) employing techniques such as Atomic Force Microscopy (AFM) and Reflectance Spectroscopy. In the present work GEANT4 simulation of transport of alpha particles in the detector has also been carried out. Simulation includes validation test wherein the projected ranges of alpha particles in the air, polystyrene and CR-39 were calculated and were found to agree with the literature values. An attempt has been further made to compute the fluence as a function of the incidence angle and incidence energy of alphas. There was an excellent correlation in experimentally observed track density with the simulated fluence. The present work offers a novel approach to design an online CR-39 based fiber optic sensor (CRFOS) to measure the release of nanogram quantity of (241)Am in the environment. © 2013 Elsevier Ltd. All rights reserved.

  8. Printable organometallic perovskite enables large-area, low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-01

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGyair-1 cm-2) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  9. Printable organometallic perovskite enables large-area, low-dose X-ray imaging.

    PubMed

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-04

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGy air -1 cm -2 ) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  10. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  11. The 124Sb activity standardization by gamma spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Iwahara, A.; Delgado, J. U.; Poledna, R.; da Silva, R. L.

    2010-07-01

    This work describes a metrological activity determination of 124Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. 124Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. 124Sb decays by β-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point 124Sb solid sources were obtained from a 166mHo standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of 124Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% ( k=2) were obtained.

  12. Scoping estimates of the LDEF satellite induced radioactivity

    NASA Technical Reports Server (NTRS)

    Armstrong, Tony W.; Colborn, B. L.

    1990-01-01

    The Long Duration Exposure Facility (LDEF) satellite was recovered after almost six years in space. It was well-instrumented with ionizing radiation dosimeters, including thermoluminescent dosimeters, plastic nuclear track detectors, and a variety of metal foil samples for measuring nuclear activation products. The extensive LDEF radiation measurements provide the type of radiation environments and effects data needed to evaluate and help resolve uncertainties in present radiation models and calculational methods. A calculational program was established to aid in LDEF data interpretation and to utilize LDEF data for assessing the accuracy of current models. A summary of the calculational approach is presented. The purpose of the reported calculations is to obtain a general indication of: (1) the importance of different space radiation sources (trapped, galactic, and albedo protons, and albedo neutrons); (2) the importance of secondary particles; and (3) the spatial dependence of the radiation environments and effects expected within the spacecraft. The calculational method uses the High Energy Transport Code (HETC) to estimate the importance of different sources and secondary particles in terms of fluence, absorbed dose in tissue and silicon, and induced radioactivity as a function of depth in aluminum.

  13. Radiography by selective detection of scatter field velocity components

    NASA Technical Reports Server (NTRS)

    Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Shedlock, Daniel (Inventor)

    2007-01-01

    A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.

  14. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    DOEpatents

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  15. Solid-state detector system for measuring concentrations of tritiated water vapour and other radioactive gases

    NASA Astrophysics Data System (ADS)

    Nunes, J. C.; Surette, R. A.; Wood, M. J.

    1999-08-01

    A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.

  16. Sources and measurement of ultraviolet radiation.

    PubMed

    Diffey, Brian L

    2002-09-01

    Ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further subdivided into three regions: UVA, UVB, and UVC. Quantities of UV radiation are expressed using radiometric terminology. A particularly important term in clinical photobiology is the standard erythema dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. UV radiation is produced either by heating a body to an incandescent temperature, as is the case with solar UV, or by passing an electric current through a gas, usually vaporized mercury. The latter process is the mechanism whereby UV radiation is produced artificially. Both the quality (spectrum) and quantity (intensity) of terrestrial UV radiation vary with factors including the elevation of the sun above the horizon and absorption and scattering by molecules in the atmosphere, notably ozone, and by clouds. For many experimental studies in photobiology it is simply not practicable to use natural sunlight and so artificial sources of UV radiation designed to simulate the UV component of sunlight are employed; these are based on either optically filtered xenon arc lamps or fluorescent lamps. The complete way to characterize an UV source is by spectroradiometry, although for most practical purposes a detector optically filtered to respond to a limited portion of the UV spectrum normally suffices.

  17. Radiation damage effects on solid state detectors

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.

    1972-01-01

    Totally depleted silicon diodes are discussed which are used as nuclear particle detectors in investigations of galactic and solar cosmic radiation and trapped radiation. A study of radiation and chemical effects on the diodes was conducted. Work on electron and proton irradiation of surface barrier detectors with thicknesses up to 1 mm was completed, and work on lithium-drifted silicon devices with thicknesses of several millimeters was begun.

  18. MEMS-based IR-sources

    NASA Astrophysics Data System (ADS)

    Weise, Sebastian; Steinbach, Bastian; Biermann, Steffen

    2016-03-01

    The series JSIR350 sources are MEMS based infrared emitters. These IR sources are characterized by a high radiation output. Thus, they are excellent for NDIR gas analysis and are ideally suited for using with our pyro-electric or thermopile detectors. The MEMS chips used in Micro-Hybrid's infrared emitters consist of nano-amorphous carbon (NAC). The MEMS chips are produced in the USA. All Micro-Hybrid Emitter are designed and specified to operate up to 850°C. The improvements we have made in the source's packaging enable us to provide IR sources with the best performance on the market. This new technology enables us to seal the housings of infrared radiation sources with soldered infrared filters or windows and thus cause the parts to be impenetrable to gases. Micro-Hybrid provide various ways of adapting our MEMS based infrared emitter JSIR350 to customer specifications, like specific burn-in parameters/characteristic, different industrial standard housings, producible with customized cap, reflector or pin-out.

  19. Characterisation of flash X-ray source generated by Kali-1000 Pulse Power System

    NASA Astrophysics Data System (ADS)

    Satyanarayana, N.; Durga Prasada Rao, A.; Mittal, K. C.

    2016-02-01

    The electron beam-driven Rod Pinch Diode (RPD) is presently fielded on KALI-1000 Pulse Power System at Bhabha Atomic Research Centre, Visakhapatnam and is a leading candidate for future flash X-ray radiographic sources. The diode is capable of producing less than 2-mm radiation spot sizes and greater than 350 milli rads of dose measured at 1 m from the X-ray source. KALI-1000 Pulse Power Source is capable of delivering up to 600 kV using a Tesla Transformer with Demineralized Insulated Transmission Line (DITL), the diode typically operates between 250-330 kV . Since the radiation dose has a power-law dependence on diode voltage, this limits the dose production on KALI-1000 system. Radiation dose with angular variation is measured using thermoluminescent detectors (TLD's) and the X-ray spot size is measured using pin hole arrangement with image plate (IP) to obtain the time-integrated source profile as well as a time-resolved spot diagnostic. An X-ray pinhole camera was used to pick out where the energetic e-beam connects to the anode. Ideally the diode should function such that the radiation is emitted from the tip. The camera was mounted perpendicular to the machine's axis to view the radiation from the tip. Comparison of the spot sizes of the X-ray sources obtained by the pin hole and rolled edge arrangements was carried and results obtained by both the techniques are with in ± 10% of the average values.

  20. A new transition radiation detector to detect heavy nuclei around the knee

    NASA Astrophysics Data System (ADS)

    Boyle, Patrick J.; Swordy, Simon P.; Wakely, Scott P.

    2003-02-01

    The overall cosmic ray intensity spectrum falls as a constant power law over at least 11 decades of particle energy. One of the only features in this spectrum is the slight change in power law index near 1015 eV, often called the ‘knee" of the spectrum. Accurate measurements of cosmic ray elemental abundances into this energy region are expected to reveal the origin of this feature, and possibly the nature of cosmic ray sources. The extremely low intensity of particles at these energies (a few per m2 per year) makes the detection challenging. Since only direct measurements have so far proved reliable for the accurate determination of elemental composition, a large-area, light weight, device is needed to achieve long exposures above the atmosphere either on high-altitude balloons or spacecraft. Here we report on a detector which uses the x-ray transition radiation yield from plastic foams to provide a response into the knee region for heavy elements. We use individual xenon-filled gas proportional tubes as detectors, combined with Amplex ASIC chip electronics for readout. The construction of this type of detector, and its implementation in the upcoming NASA CREAM 100 day high-altitude balloon payload is described. Also discussed is the calibration of the detector in an accelerator beam at CERN and a comparison with GEANT4 Monet Carlo simulations.

  1. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated.more » Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.« less

  2. Calibration and Readiness of the ISS-RAD Charged Particle Detector

    NASA Technical Reports Server (NTRS)

    Rios, R.

    2015-01-01

    The International Space Station (ISS) Radiation Assessment Detector (RAD) is an intravehicular energetic particle detector designed to measure a broad spectrum of charged particle and neutron radiation unique to the ISS radiation environment. In this presentation, a summary of calibration and readiness of the RAD Sensor Head (RSH) - also referred to as the Charged Particle Detector (CPD) - for ISS will be presented. Calibration for the RSH consists of p, He, C, O, Si, and Fe ion data collected at the NASA Space Radiation Laboratory (NSRL) and Indiana University Cyclotron Facility (IUCF). The RSH consists of four detectors used in measuring the spectroscopy of charged particles - A, B, C, and D; high-energy neutral particles and charged particles are measured in E; and the last detector - F - is an anti-coincidence detector. A, B, and C are made from Si; D is made from BGO; E and F are made from EJ260XL plastic scintillator.

  3. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipenko, M.; Ripani, M.; Ricco, G.

    2015-07-01

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a {sup 6}Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based onmore » conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of 10{sup 8} n/cm{sup 2}s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of 10{sup 6} n/cm{sup 2}s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10{sup 9} n/cm{sup 2}s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4. (authors)« less

  4. Development of autonomous gamma dose logger for environmental monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.

    2012-03-15

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system ismore » totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.« less

  5. Development of autonomous gamma dose logger for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B.

    2012-03-01

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify 41Ar, proving its utility for real-time plume tracking and source term estimation.

  6. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarski, T., E-mail: tomasz.czarski@ifpilm.pl; Chernyshova, M.; Malinowski, K.

    2016-11-15

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals,more » and cluster charge values corresponding to the energy spectra.« less

  7. Evaluation of clinical use of OneDose™ metal oxide semiconductor field-effect transistor detectors compared to thermoluminescent dosimeters to measure skin dose for adult patients with acute lymphoblastic leukemia

    PubMed Central

    Al-Mohammed, Huda Ibrahim

    2011-01-01

    Background: Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to their bone marrow transplant. It involves the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore, it is important to measure and monitor the skin dose during the treatment. Thermoluminescent dosimeters (TLDs) and the OneDose™ metal oxide semiconductor field effect transistor (MOSFET) detectors are used during treatment delivery to measure the radiation dose and compare it with the target prescribed dose. Aims: The primary goal of this study was to measure the variation of skin dose using OneDose MOSFET detectors and TLD detectors, and compare the results with the target prescribed dose. The secondary aim was to evaluate the simplicity of use and determine if one system was superior to the other in clinical use. Material and Methods: The measurements involved twelve adult patients diagnosed with acute lymphoblastic leukemia. TLD and OneDose MOSFET dosimetry were performed at ten different anatomical sites of each patient. Results: The results showed that there was a variation between skin dose measured with OneDose MOSFET detectors and TLD in all patients. However, the variation was not significant. Furthermore, the results showed for every anatomical site there was no significant different between the prescribed dose and the dose measured by either TLD or OneDose MOSFET detectors. Conclusion: There were no significant differences between the OneDose MOSFET and TLDs in comparison to the target prescribed dose. However, OneDose MOSFET detectors give a direct read-out immediately after the treatment, and their simplicity of use to compare with TLD detectors may make them preferred for clinical use. PMID:22171243

  8. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  9. Challenges in photon-starved space astronomy in a harsh radiation environment using CCDs

    NASA Astrophysics Data System (ADS)

    Hall, David J.; Bush, Nathan; Murray, Neil; Gow, Jason; Clarke, Andrew; Burgon, Ross; Holland, Andrew

    2015-09-01

    The Charge Coupled Device (CCD) has a long heritage for imaging and spectroscopy in many space astronomy missions. However, the harsh radiation environment experienced in orbit creates defects in the silicon that capture the signal being transferred through the CCD. This radiation damage has a detrimental impact on the detector performance and requires carefully planned mitigation strategies. The ESA Gaia mission uses 106 CCDs, now orbiting around the second Lagrange point as part of the largest focal-plane ever launched. Following readout, signal electrons will be affected by the traps generated in the devices from the radiation environment and this degradation will be corrected for using a charge distortion model. ESA's Euclid mission will contain a focal plane of 36 CCDs in the VIS instrument. Moving further forwards, the World Space Observatory (WSO) UV spectrographs and the WFIRST-AFTA coronagraph intend to look at very faint sources in which mitigating the impact of traps on the transfer of single electron signals will be of great interest. Following the development of novel experimental and analysis techniques, one is now able to study the impact of radiation on the detector to new levels of detail. Through a combination of TCAD simulations, defect studies and device testing, we are now probing the interaction of single electrons with individual radiation-induced traps to analyse the impact of radiation in photon-starved applications.

  10. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, Geoff R.; Gordon, Neil T.; Hall, David J.; Little, J. Chris; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, Martin T.; Ashley, Tim

    2004-02-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source" of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very higher performance imaging is anticipated from systems which require no mechanical cooling.

  11. Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Ashley, Tim

    2003-03-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.

  12. LYRA, solar uv radiometer on the technology demonstration platform PROBA-2

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hochedez, J.-F.; Schmutz, W.; BenMoussa, A.; Defise, J.-M.; Denis, F.; D'Olieslaeger, M.; Dominique, M.; Haenen, K.; Halain, J.-P.; Koller, S.; Koizumi, S.; Mortet, V.; Rochus, P.; Schühle, U.; Soltani, A.; Theissen, A.

    2017-11-01

    LYRA is a solar radiometer part of the PROBA 2 micro satellite payload. LYRA will monitor the solar irradiance in four soft X-Ray - VUV passbands. They have been chosen for their relevance to Solar Physics, Aeronomy and SpaceWeather: 1/ Lyman Alpha channel, 2/ Herzberg continuum range, 3/ Aluminium filter channel (including He II at 30.4 nm) and 4/ Zirconium filter channel. The radiometric calibration is traceable to synchrotron source standards. The stability will be monitored by on-board calibration sources (LEDs), which allow us to distinguish between potential degradations of the detectors and filters. Additionally, a redundancy strategy maximizes the accuracy and the stability of the measurements. LYRA will benefit from wide bandgap detectors based on diamond: it will be the first space assessment of revolutionary UV detectors. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to visible light) and therefore, make dispensable visible light blocking filters. To correlate the data of this new detector technology, well known technology, such as Si detectors are also embarked. The SWAP EUV imaging telescope will operate next to LYRA on PROBA-2. Together, they will provide a high performance solar monitor for operational space weather nowcasting and research. LYRA demonstrates technologies important for future missions such as the ESA Solar Orbiter.

  13. Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Guerra, J. G.; Rubiano, J. G.; Winter, G.; Guerra, A. G.; Alonso, H.; Arnedo, M. A.; Tejera, A.; Martel, P.; Bolivar, J. P.

    2017-06-01

    In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs.

  14. Signatures of dark radiation in neutrino and dark matter detectors

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  15. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation.

    PubMed

    Hahn, C; Weber, G; Märtin, R; Höfer, S; Kämpfer, T; Stöhlker, Th

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays - such as laser-generated plasmas - is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  16. Design and feasibility of a multi-detector neutron spectrometer for radiation protection applications based on thermoluminescent 6LiF:Ti,Mg (TLD-600) detectors

    NASA Astrophysics Data System (ADS)

    Lis, M.; Gómez-Ros, J. M.; Bedogni, R.; Delgado, A.

    2008-01-01

    The design of a neutron detector with spectrometric capability based on thermoluminescent (TL) 6LiF:Ti,Mg (TLD-600) dosimeters located along three perpendicular axis within a single polyethylene (PE) sphere has been analyzed. The neutron response functions have been calculated in the energy range from 10 -8 to 100 MeV with the Monte Carlo (MC) code MCNPX 2.5 and their shape and behaviour have been used to discuss a suitable configuration for an actual instrument. The feasibility of such a device has been preliminary evaluated by the simulation of exposure to 241Am-Be, bare 252Cf and Fe-PE moderated 252Cf sources. The expected accuracy in the evaluation of energy quantities has been evaluated using the unfolding code FRUIT. The obtained results together with additional calculations performed using MAXED and GRAVEL codes show the spectrometric capability of the proposed design for radiation protection applications, especially in the range 1 keV-20 MeV.

  17. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Weber, G.; Märtin, R.; Höfer, S.; Kämpfer, T.; Stöhlker, Th.

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  18. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, C., E-mail: christoph.hahn@uni-jena.de; Höfer, S.; Kämpfer, T.

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy.more » Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.« less

  19. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  20. Monte Carlo study of microdosimetric diamond detectors

    NASA Astrophysics Data System (ADS)

    Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona

    2015-09-01

    Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy.

  1. The EIGER detector for low-energy electron microscopy and photoemission electron microscopy.

    PubMed

    Tinti, G; Marchetto, H; Vaz, C A F; Kleibert, A; Andrä, M; Barten, R; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Franz, T; Fröjdh, E; Greiffenberg, D; Lopez-Cuenca, C; Mezza, D; Mozzanica, A; Nolting, F; Ramilli, M; Redford, S; Ruat, M; Ruder, Ch; Schädler, L; Schmidt, Th; Schmitt, B; Schütz, F; Shi, X; Thattil, D; Vetter, S; Zhang, J

    2017-09-01

    EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.

  2. Timepix Device Efficiency for Pattern Recognition of Tracks Generated by Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Leroy, Claude; Asbah, Nedaa; Gagnon, Louis-Guilaume; Larochelle, Jean-Simon; Pospisil, Stanislav; Soueid, Paul

    2014-06-01

    A hybrid silicon pixelated TIMEPIX detector (256 × 256 pixels with 55 μm pitch) operated in Time Over Threshold (TOT) mode was exposed to radioactive sources (241Am, 106Ru, 137Cs), protons and alpha-particles after Rutherford Backscattering on a thin gold foil of protons and alpha-particles beams delivered by the Tandem Accelerator of Montreal University. Measurements were also performed with different mixed radiation fields of heavy charged particles (protons and alpha-particles), photons and electrons produced by simultaneous exposure of TIMEPIX to the radioactive sources and to protons beams on top of the radioactive sources. All measurements were performed in vacuum. The TOT mode of operation has allowed the direct measurement of the energy deposited in each pixel. The efficiency of track recognition with this device was tested by comparing the experimental activities (determined from number of tracks measurements) of the radioactive sources with their expected activities. The efficiency of track recognition of incident protons and alpha-particles of different energies as a function of the incidence angle was measured. The operation of TIMEPIX in TOT mode has allowed a 3D mapping of the charge sharing effect in the whole volume of the silicon sensor. The effect of the bias voltage on charge sharing was investigated as the level of charge sharing is related to the local profile of the electric field in the sensor. The results of the present measurements demonstrate the TIMEPIX capability of differentiating between different types of particles species from mixed radiation fields and measuring their energy deposition. Single track analysis gives a good precision (significantly better than the 55 μm size of one detector pixel) on the coordinates of the impact point of protons interacting in the TIMEPIX silicon layer.

  3. Quadruple Axis Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Bausenwein, Dominik

    Neutron computed tomography takes more time for a full tomography than X-rays or Synchrotron radiation, because the source intensity is limited. Most neutron imaging detectors have a square field of view, so if tomography of elongated, narrow samples, e.g. fuel rods, sword blades is recorded, much of the detector area is wasted. Using multiple rotation axes, several samples can be placed inside the field of view, and multiple tomographies can be recorded at the same time by later splitting the recorded images into separate tomography data sets. We describe a new multiple-axis setup using four independent miniaturized rotation tables.

  4. Science & Technology Review January/February 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearinger, J P

    2009-11-30

    This month's issue has the following articles: (1) Innovative Materials Rise to the Radiation Challenge - Commentary by Bruce Warner; (2) The Hunt for Better Radiation Detection - New materials will help radiation detectors pick up weak signals and accurately identify illicit radioactive sources; (3) Time-Critical Technology Identifies Deadly Bloodborne Pathogens - A portable device can simultaneously distinguish up to five bloodborne pathogens in just minutes; (4) Defending Computer Networks against Attack - A Laboratory effort takes a new approach to detecting increasingly sophisticated cyber attacks; and (5) Imaging Cargo's Inner Secrets - Livermore-University of California collaborators are modeling amore » new radiographic technique for identifying nuclear materials concealed inside cargo containers.« less

  5. A Self-Powered Thin-Film Radiation Detector Using Intrinsic High-Energy Current (HEC) (Author’s Final Version)

    DTIC Science & Technology

    2016-09-08

    10.1118/1.4935531. A new radiation detection method relies on high-energy current (HEC) formed by secondary charged particles in the detector material...photocurrent, radiation detection , self-powered, thin-film U U U SAR 17 Dr. Joseph Wander Reset A Self-powered thin-film radiation detector using intrinsic...Program, Lowell, MA 01854 Purpose: We introduce a radiation detection method that relies on high-energy current (HEC) formed by secondary 10 charged

  6. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K [Hinsdale, IL

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  7. Calibration techniques and results in the soft X-ray and extreme ultraviolet for components of the Extreme Ultraviolet Explorer Satellite

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Jelinsky, Patrick; Bowyer, Stuart

    1986-01-01

    The calibration facilities and techniques for the Extreme Ultraviolet Explorer (EUVE) from 44 to 2500 A are described. Key elements include newly designed radiation sources and a collimated monochromatic EUV beam. Sample results for the calibration of the EUVE filters, detectors, gratings, collimators, and optics are summarized.

  8. Flame detector operable in presence of proton radiation

    NASA Technical Reports Server (NTRS)

    Walker, D. J.; Turnage, J. E.; Linford, R. M. F.; Cornish, S. D. (Inventor)

    1974-01-01

    A detector of ultraviolet radiation for operation in a space vehicle which orbits through high intensity radiation areas is described. Two identical ultraviolet sensor tubes are mounted within a shield which limits to acceptable levels the amount of proton radiation reaching the sensor tubes. The shield has an opening which permits ultraviolet radiation to reach one of the sensing tubes. The shield keeps ultraviolet radiation from reaching the other sensor tube, designated the reference tube. The circuitry of the detector subtracts the output of the reference tube from the output of the sensing tube, and any portion of the output of the sensing tube which is due to proton radiation is offset by the output of the reference tube. A delay circuit in the detector prevents false alarms by keeping statistical variations in the proton radiation sensed by the two sensor tubes from developing an output signal.

  9. Simulation of angular and energy distributions of the PTB beta secondary standard.

    PubMed

    Faw, R E; Simons, G G; Gianakon, T A; Bayouth, J E

    1990-09-01

    Calculations and measurements have been performed to assess radiation doses delivered by the PTB Secondary Standard that employs 147Pm, 204Tl, and 90Sr:90Y sources in prescribed geometries, and features "beam-flattening" filters to assure uniformity of delivered doses within a 5-cm radius of the axis from source to detector plane. Three-dimensional, coupled, electron-photon Monte Carlo calculations, accounting for transmission through the source encapsulation and backscattering from the source mounting, led to energy spectra and angular distributions of electrons penetrating the source encapsulation that were used in the representation of pseudo sources of electrons for subsequent transport through the atmosphere, filters, and detectors. Calculations were supplemented by measurements made using bare LiF TLD chips on a thick polymethyl methacrylate phantom. Measurements using the 204Tl and 90Sr:90Y sources revealed that, even in the absence of the beam-flattening filters, delivered dose rates were very uniform radially. Dosimeter response functions (TLD:skin dose ratios) were calculated and confirmed experimentally for all three beta-particle sources and for bare LiF TLDs ranging in mass thickness from 10 to 235 mg cm-2.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen E.; Moses, William W.

    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method ofmore » liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.« less

  11. Design of a portable dose rate detector based on a double Geiger-Mueller counter

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Tang, Xiao-Bin; Gong, Pin; Huang, Xi; Wen, Liang-Sheng; Han, Zhen-Yang; He, Jian-Ping

    2018-01-01

    A portable dose rate detector was designed to monitor radioactive pollution and radioactive environments. The portable dose detector can measure background radiation levels (0.1 μSv/h) to nuclear accident radiation levels (>10 Sv/h). Both automatic switch technology of a double Geiger-Mueller counter and time-to-count technology were adopted to broaden the measurement range of the instrument. Global positioning systems and the 3G telecommunication protocol were installed to prevent radiation damage to the human body. In addition, the Monte Carlo N-Particle code was used to design the thin layer of metal for energy compensation, which was used to flatten energy response The portable dose rate detector has been calibrated by the standard radiation field method, and it can be used alone or in combination with additional radiation detectors.

  12. Numerical convergence and validation of the DIMP inverse particle transport model

    DOE PAGES

    Nelson, Noel; Azmy, Yousry

    2017-09-01

    The data integration with modeled predictions (DIMP) model is a promising inverse radiation transport method for solving the special nuclear material (SNM) holdup problem. Unlike previous methods, DIMP is a completely passive nondestructive assay technique that requires no initial assumptions regarding the source distribution or active measurement time. DIMP predicts the most probable source location and distribution through Bayesian inference and quasi-Newtonian optimization of predicted detector re-sponses (using the adjoint transport solution) with measured responses. DIMP performs well with for-ward hemispherical collimation and unshielded measurements, but several considerations are required when using narrow-view collimated detectors. DIMP converged well to themore » correct source distribution as the number of synthetic responses increased. DIMP also performed well for the first experimental validation exercise after applying a collimation factor, and sufficiently reducing the source search vol-ume's extent to prevent the optimizer from getting stuck in local minima. DIMP's simple point detector response function (DRF) is being improved to address coplanar false positive/negative responses, and an angular DRF is being considered for integration with the next version of DIMP to account for highly collimated responses. Overall, DIMP shows promise for solving the SNM holdup inverse problem, especially once an improved optimization algorithm is implemented.« less

  13. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  14. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  15. Characterizing scintillator detector response for correlated fission experiments with MCNP and associated packages

    DOE PAGES

    Andrews, M. T.; Rising, M. E.; Meierbachtol, K.; ...

    2018-06-15

    Wmore » hen multiple neutrons are emitted in a fission event they are correlated in both energy and their relative angle, which may impact the design of safeguards equipment and other instrumentation for non-proliferation applications. The most recent release of MCNP 6 . 2 contains the capability to simulate correlated fission neutrons using the event generators CGMF and FREYA . These radiation transport simulations will be post-processed by the detector response code, DRiFT , and compared directly to correlated fission measurements. DRiFT has been previously compared to single detector measurements, its capabilities have been recently expanded with correlated fission simulations in mind. Finally, this paper details updates to DRiFT specific to correlated fission measurements, including tracking source particle energy of all detector events (and non-events), expanded output formats, and digitizer waveform generation.« less

  16. Characterizing scintillator detector response for correlated fission experiments with MCNP and associated packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M. T.; Rising, M. E.; Meierbachtol, K.

    Wmore » hen multiple neutrons are emitted in a fission event they are correlated in both energy and their relative angle, which may impact the design of safeguards equipment and other instrumentation for non-proliferation applications. The most recent release of MCNP 6 . 2 contains the capability to simulate correlated fission neutrons using the event generators CGMF and FREYA . These radiation transport simulations will be post-processed by the detector response code, DRiFT , and compared directly to correlated fission measurements. DRiFT has been previously compared to single detector measurements, its capabilities have been recently expanded with correlated fission simulations in mind. Finally, this paper details updates to DRiFT specific to correlated fission measurements, including tracking source particle energy of all detector events (and non-events), expanded output formats, and digitizer waveform generation.« less

  17. Precision Neutron Time-of-Flight Detectors Provide Insight into NIF Implosion Dynamics

    NASA Astrophysics Data System (ADS)

    Schlossberg, David; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Moore, A. S.; Waltz, C. S.

    2017-10-01

    During inertial confinement fusion, higher-order moments of neutron time-of-flight (nToF) spectra can provide essential information for optimizing implosions. The nToF diagnostic suite at the National Ignition Facility (NIF) was recently upgraded to include novel, quartz Cherenkov detectors. These detectors exploit the rapid Cherenkov radiation process, in contrast with conventional scintillator decay times, to provide high temporal-precision measurements that support higher-order moment analyses. Preliminary measurements have been made on the NIF during several implosions and initial results are presented here. Measured line-of-sight asymmetries, for example in ion temperatures, will be discussed. Finally, advanced detector optimization is shown to advance accessible physics, with possibilities for energy discrimination, gamma source identification, and further reduction in quartz response times. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  18. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Celona, L.; Castro, G.

    2014-02-15

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source – operating at GSI, Darmstadt – has been carried out. Two different detectors (a SDD – Silicon Drift Detector and a HpGe – hyper-pure Germanium detector) have been used to characterize the warm (2–30 keV) and hot (30–500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract themore » plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.« less

  19. Development of a Compton suppressed gamma spectrometer using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Britton, Richard

    Gamma ray spectroscopy is routinely used to measure radiation in a number of situations. These include security applications, nuclear forensics studies, characterisation of radioactive sources, and environmental monitoring. For routine studies of environmental materials, the amount of radioactivity present is often very low, requiring spectroscopy systems which have to monitor the source for up to 7 days to achieve the required sensitivity. Recent developments in detector technology and data processing techniques have opened up the possibility of developing a highly efficient Compton Suppressed system, that was previously the preserve of large experimental collaborations. The accessibility of Monte-Carlo toolkits such as GEANT4 also provide the opportunity to optimise these systems using computer simulations, greatly reducing the need for expensive (and inefficient) testing in the laboratory. This thesis details the development of such a Compton Suppressed, planar HPGe detector system. Using the GEANT4 toolkit in combination with the experimental facilities at AWE, Aldermaston (which include HPGe detection systems, scintillator based detector systems, advanced shielding materials and gamma-gamma coincidence systems), simulations were built and validated to reproduce the detector response seen in the 'real-life' systems. This resulted in several improvements to the current system; for the shielding materials used, terrestrial and cosmic radiation were minimised, while reducing the X-ray fluorescence seen in the primary HPGe detector by an order of magnitude. With respect to the HPGe detector itself, an optimum thickness was identified for low energy (<300 keV) radiation, which maximised the efficiency for the energy range of interest while minimising the interaction probability for higher energy radionuclides (which are the primary cause of the Compton continuum that obscures lower energy decays). A combination of secondary detectors were then optimised to design a Compton Suppression system for the primary detector, which could improve the performance of the current Compton Suppression system by an order of magnitude. This equates to a reduction of the continuum by up to a factor of 240 for a nuclide such as Co-60, which is crucial for the detection of low-energy, low-activity emitters typically swamped by such a continuum. Finally, thoroughly optimised acquisition and analysis software has also been written to process data created by future high sensitivity gamma coincidence systems. This includes modules for the creation of histograms, coincidence matrices, and an ASCII to binary converter (for historical data) that has resulted in an analysis speed increase of up to 20000 times when compared to the software originally used for the extraction of coincidence information. Modules for low-energy time-walk correction and the removal of accidental coincidences are also included, which represent a capability that was not previously available.

  20. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

Top