Sample records for source real-time operating

  1. An approach to a real-time distribution system

    NASA Technical Reports Server (NTRS)

    Kittle, Frank P., Jr.; Paddock, Eddie J.; Pocklington, Tony; Wang, Lui

    1990-01-01

    The requirements of a real-time data distribution system are to provide fast, reliable delivery of data from source to destination with little or no impact to the data source. In this particular case, the data sources are inside an operational environment, the Mission Control Center (MCC), and any workstation receiving data directly from the operational computer must conform to the software standards of the MCC. In order to supply data to development workstations outside of the MCC, it is necessary to use gateway computers that prevent unauthorized data transfer back to the operational computers. Many software programs produced on the development workstations are targeted for real-time operation. Therefore, these programs must migrate from the development workstation to the operational workstation. It is yet another requirement for the Data Distribution System to ensure smooth transition of the data interfaces for the application developers. A standard data interface model has already been set up for the operational environment, so the interface between the distribution system and the application software was developed to match that model as closely as possible. The system as a whole therefore allows the rapid development of real-time applications without impacting the data sources. In summary, this approach to a real-time data distribution system provides development users outside of the MCC with an interface to MCC real-time data sources. In addition, the data interface was developed with a flexible and portable software design. This design allows for the smooth transition of new real-time applications to the MCC operational environment.

  2. StarBase: A Firm Real-Time Database Manager for Time-Critical Applications

    DTIC Science & Technology

    1995-01-01

    Mellon University [IO]. StarBase differs from previous RT-DBMS work [l, 2, 31 in that a) it relies on a real - time operating system which provides...simulation studies, StarBase uses a real - time operating system to provide basic real-time functionality and deals with issues beyond transaction...re- source scheduling provided by the underlying real - time operating system . Issues of data contention are dealt with by use of a priority

  3. Real-time solar magnetograph operation system software design and user's guide

    NASA Technical Reports Server (NTRS)

    Wang, C.

    1984-01-01

    The Real Time Solar Magnetograph (RTSM) Operation system software design on PDP11/23+ is presented along with the User's Guide. The RTSM operation software is for real time instrumentation control, data collection and data management. The data is used for vector analysis, plotting or graphics display. The processed data is then easily compared with solar data from other sources, such as the Solar Maximum Mission (SMM).

  4. Monitoring and Identifying in Real time Critical Patients Events.

    PubMed

    Chavez Mora, Emma

    2014-01-01

    Nowadays pervasive health care monitoring environments, as well as business activity monitoring environments, gather information from a variety of data sources. However it includes new challenges because of the use of body and wireless sensors, nontraditional operational and transactional sources. This makes the health data more difficult to monitor. Decision making in this environment is typically complex and unstructured as clinical work is essentially interpretative, multitasking, collaborative, distributed and reactive. Thus, the health care arena requires real time data management in areas such as patient monitoring, detection of adverse events and adaptive responses to operational failures. This research presents a new architecture that enables real time patient data management through the use of intelligent data sources.

  5. Computer program compatible with a laser nephelometer

    NASA Technical Reports Server (NTRS)

    Paroskie, R. M.; Blau, H. H., Jr.; Blinn, J. C., III

    1975-01-01

    The laser nephelometer data system was updated to provide magnetic tape recording of data, and real time or near real time processing of data to provide particle size distribution and liquid water content. Digital circuits were provided to interface the laser nephelometer to a Data General Nova 1200 minicomputer. Communications are via a teletypewriter. A dual Linc Magnetic Tape System is used for program storage and data recording. Operational programs utilize the Data General Real-Time Operating System (RTOS) and the ERT AIRMAP Real-Time Operating System (ARTS). The programs provide for acquiring data from the laser nephelometer, acquiring data from auxiliary sources, keeping time, performing real time calculations, recording data and communicating with the teletypewriter.

  6. The Raptor Real-Time Processing Architecture

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  7. Raptor -- Mining the Sky in Real Time

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Borozdin, K.; Casperson, D.; McGowan, K.; Starr, D.; White, R.; Wozniak, P.; Wren, J.

    2004-06-01

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback...) is implemented with a ``component'' aproach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally: the Raptor architecture is entirely based on free software (sometimes referred to as "open source" software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  8. A freely available real-time operating system well suited for astronomy and the physical sciences

    NASA Astrophysics Data System (ADS)

    Pedretti, Ettore; Monnier, John D.; Thureau, Nathalie D.; Berger, David H.

    2006-06-01

    This paper wants to be a practical example in building a real-time data-acquisition and control system from scratch using relatively non-expensive PC hardware and open-source software. The practical example of building the control system for the Michigan Infrared Combiner (MIRC) at the CHARA interferometer will be used to give the reader a 'hands-on' experience in installing and configuring the RTAI-Fusion real-time operating system and developing a complete control system with it.

  9. A near-real-time full-parallax holographic display for remote operations

    NASA Technical Reports Server (NTRS)

    Iavecchia, Helene P.; Huff, Lloyd; Marzwell, Neville I.

    1991-01-01

    A near real-time, full parallax holographic display system was developed that has the potential to provide a 3-D display for remote handling operations in hazardous environments. The major components of the system consist of a stack of three spatial light modulators which serves as the object source of the hologram; a near real-time holographic recording material (such as thermoplastic and photopolymer); and an optical system for relaying SLM images to the holographic recording material and to the observer for viewing.

  10. Evaluation of Open-Source Hard Real Time Software Packages

    NASA Technical Reports Server (NTRS)

    Mattei, Nicholas S.

    2004-01-01

    Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of replacing this somewhat costly implementation is the focus of one of the SA group s current research projects. The explosion of open source software in the last ten years has led to the development of a multitude of software solutions which were once only produced by major corporations. The benefits of these open projects include faster release and bug patching cycles as well as inexpensive if not free software solutions. The main packages for hard real time solutions under Linux are Real Time Application Interface (RTAI) and two varieties of Real Time Linux (RTL), RTLFree and RTLPro. During my time here at NASA I have been testing various hard real time solutions operating as layers on the Linux Operating System. All testing is being run on an Intel SBC 2590 which is a common embedded hardware platform. The test plan was provided to me by the Software Assurance group at the start of my internship and my job has been to test the systems by developing and executing the test cases on the hardware. These tests are constructed so that the Software Assurance group can get hard test data for a comparison between the open source and proprietary implementations of hard real time solutions.

  11. Tuning Linux to meet real time requirements

    NASA Astrophysics Data System (ADS)

    Herbel, Richard S.; Le, Dang N.

    2007-04-01

    There is a desire to use Linux in military systems. Customers are requesting contractors to use open source to the maximal possible extent in contracts. Linux is probably the best operating system of choice to meet this need. It is widely used. It is free. It is royalty free, and, best of all, it is completely open source. However, there is a problem. Linux was not originally built to be a real time operating system. There are many places where interrupts can and will be blocked for an indeterminate amount of time. There have been several attempts to bridge this gap. One of them is from RTLinux, which attempts to build a microkernel underneath Linux. The microkernel will handle all interrupts and then pass it up to the Linux operating system. This does insure good interrupt latency; however, it is not free [1]. Another is RTAI, which provides a similar typed interface; however, the PowerPC platform, which is used widely in real time embedded community, was stated as "recovering" [2]. Thus this is not suited for military usage. This paper provides a method for tuning a standard Linux kernel so it can meet the real time requirement of an embedded system.

  12. Domestic embedded reporter program: saving lives and securing tactical operations

    DTIC Science & Technology

    2017-03-01

    estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the...13. ABSTRACT (maximum 200 words) Advances in technology have provided journalists the tools to obtain and share real- time information during domestic...terrorist and mass-shooting incidents. This real- time information-sharing compromises the safety of first responders, victims, and reporters. Real

  13. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Miller, J. Scott; Minow, Joseph I.; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz, Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (less than 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system.

  14. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data sources that are used to protect the ACIS detector system from space weather events.

  15. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    NASA Astrophysics Data System (ADS)

    O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.

    2012-12-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra's high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system.

  16. GET REAL!

    EPA Science Inventory

    Combined sewer overflow (CSO) is a significant source of pollution in receiving waters. However, implementing a real-time control scheme operates automatic regulators more efficiently to maximize a collection system's storage, treatment, and transport capacities, reducing the vol...

  17. genRE: A Method to Extend Gridded Precipitation Climatology Data Sets in Near Real-Time for Hydrological Forecasting Purposes

    NASA Astrophysics Data System (ADS)

    van Osnabrugge, B.; Weerts, A. H.; Uijlenhoet, R.

    2017-11-01

    To enable operational flood forecasting and drought monitoring, reliable and consistent methods for precipitation interpolation are needed. Such methods need to deal with the deficiencies of sparse operational real-time data compared to quality-controlled offline data sources used in historical analyses. In particular, often only a fraction of the measurement network reports in near real-time. For this purpose, we present an interpolation method, generalized REGNIE (genRE), which makes use of climatological monthly background grids derived from existing gridded precipitation climatology data sets. We show how genRE can be used to mimic and extend climatological precipitation data sets in near real-time using (sparse) real-time measurement networks in the Rhine basin upstream of the Netherlands (approximately 160,000 km2). In the process, we create a 1.2 × 1.2 km transnational gridded hourly precipitation data set for the Rhine basin. Precipitation gauge data are collected, spatially interpolated for the period 1996-2015 with genRE and inverse-distance squared weighting (IDW), and then evaluated on the yearly and daily time scale against the HYRAS and EOBS climatological data sets. Hourly fields are compared qualitatively with RADOLAN radar-based precipitation estimates. Two sources of uncertainty are evaluated: station density and the impact of different background grids (HYRAS versus EOBS). The results show that the genRE method successfully mimics climatological precipitation data sets (HYRAS/EOBS) over daily, monthly, and yearly time frames. We conclude that genRE is a good interpolation method of choice for real-time operational use. genRE has the largest added value over IDW for cases with a low real-time station density and a high-resolution background grid.

  18. An environmental-level, real-time, pulsed photon dosemeter.

    PubMed

    Olsher, R H; Frymire, A; Gregoire, T

    2005-01-01

    Radiation sources producing short pulses of photon radiation are widespread. Such sources include electron linear accelerators and field emission impulse generators. It is often desirable to measure leakage and skyshine radiation for these sources in real time and at environmental levels as low as 0.02 microSv per pulse. This note provides an overview of the design and performance of a commercial, real-time, pulsed photon dosemeter (PPD) capable of single-pulse dose measurements over the range from 0.02 to 20 microSv. The PPD may also be operated in a multiple-pulse mode that integrates the dose from a train of pulses over a 3 s period. A pulse repetition rate of up to 300 Hz is accommodated.

  19. X-LUNA: Extending Free/Open Source Real Time Executive for On-Board Space Applications

    NASA Astrophysics Data System (ADS)

    Braga, P.; Henriques, L.; Zulianello, M.

    2008-08-01

    In this paper we present xLuna, a system based on the RTEMS [1] Real-Time Operating System that is able to run on demand a GNU/Linux Operating System [2] as RTEMS' lowest priority task. Linux runs in user-mode and in a different memory partition. This allows running Hard Real-Time tasks and Linux applications on the same system sharing the Hardware resources while keeping a safe isolation and the Real-Time characteristics of RTEMS. Communication between both Systems is possible through a loose coupled mechanism based on message queues. Currently only SPARC LEON2 processor with Memory Management Unit (MMU) is supported. The advantage in having two isolated systems is that non critical components are quickly developed or simply ported reducing time-to-market and budget.

  20. Intelligent and robust optimization frameworks for smart grids

    NASA Astrophysics Data System (ADS)

    Dhansri, Naren Reddy

    A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic optimization algorithm for smart grid automatic generation control.

  1. Introducing Real-Time AVHRR-APT Satellite Imagery in the Classroom Environment

    ERIC Educational Resources Information Center

    Moxey, Lucas; Tucker, Compton; Sloan, Jim; Chadwick, John

    2004-01-01

    A low-cost (US$350) satellite receiving station was assembled and operated within a classroom environment in Gainesville (Florida) on October 2001 for acquiring satellite data directly from the Advanced Very High Resolution Radiometer (AVHRR) satellites. The simplicity of the satellite signal makes this source of real-time satellite data readily…

  2. Novel Acoustic Techniques for Assessing Fish Schooling in the Context of an Operational Ocean Observatory

    DTIC Science & Technology

    2008-01-01

    which provides real-time data throughout the Mid-Atlantic Bight (MAB). The surveys will be positioned adaptively using real-time data collected with the...source was identified during the experiment as dense, monotypic aggregations of a pelagic gastropod were located during a 2-day period. These

  3. Novel Acoustic Techniques for Assessing Fish Schooling in the Context of an Operational Ocean Observatory

    DTIC Science & Technology

    2007-09-30

    which provides real-time data throughout the Mid-Atlantic Bight (MAB). The surveys will be positioned adaptively using real-time data collected with...scattering source was identified during the experiment as dense, monotypic aggregations of a pelagic gastropod were located during a 2-day period. These

  4. Visual Simultaneous Localization And Mapping (VSLAM) methods applied to indoor 3D topographical and radiological mapping in real-time

    NASA Astrophysics Data System (ADS)

    Hautot, Felix; Dubart, Philippe; Bacri, Charles-Olivier; Chagneau, Benjamin; Abou-Khalil, Roger

    2017-09-01

    New developments in the field of robotics and computer vision enables to merge sensors to allow fast realtime localization of radiological measurements in the space/volume with near-real time radioactive sources identification and characterization. These capabilities lead nuclear investigations to a more efficient way for operators' dosimetry evaluation, intervention scenarii and risks mitigation and simulations, such as accidents in unknown potentially contaminated areas or during dismantling operations

  5. Web-Based Real-Time Emergency Monitoring

    NASA Technical Reports Server (NTRS)

    Harvey, Craig A.; Lawhead, Joel

    2007-01-01

    The Web-based Real-Time Asset Monitoring (RAM) module for emergency operations and facility management enables emergency personnel in federal agencies and local and state governments to monitor and analyze data in the event of a natural disaster or other crisis that threatens a large number of people and property. The software can manage many disparate sources of data within a facility, city, or county. It was developed on industry-standard Geo- Spatial software and is compliant with open GIS standards. RAM View can function as a standalone system, or as an integrated plugin module to Emergency Operations Center (EOC) software suites such as REACT (Real-time Emergency Action Coordination Tool), thus ensuring the widest possible distribution among potential users. RAM has the ability to monitor various data sources, including streaming data. Many disparate systems are included in the initial suite of supported hardware systems, such as mobile GPS units, ambient measurements of temperature, moisture and chemical agents, flow meters, air quality, asset location, and meteorological conditions. RAM View displays real-time data streams such as gauge heights from the U.S. Geological Survey gauging stations, flood crests from the National Weather Service, and meteorological data from numerous sources. Data points are clearly visible on the map interface, and attributes as specified in the user requirements can be viewed and queried.

  6. Real Otto and Diesel Engine Cycles.

    ERIC Educational Resources Information Center

    Giedd, Ronald

    1983-01-01

    A thermodynamic analysis of the properties of otto/diesel engines during the time they operate with open chambers illustrates applicability of thermodynamics to real systems, demonstrates how delivered power is controlled, and explains the source of air pollution in terms of thermodynamic laws. (Author/JN)

  7. Real-time monitoring of a microbial electrolysis cell using an electrical equivalent circuit model.

    PubMed

    Hussain, S A; Perrier, M; Tartakovsky, B

    2018-04-01

    Efforts in developing microbial electrolysis cells (MECs) resulted in several novel approaches for wastewater treatment and bioelectrosynthesis. Practical implementation of these approaches necessitates the development of an adequate system for real-time (on-line) monitoring and diagnostics of MEC performance. This study describes a simple MEC equivalent electrical circuit (EEC) model and a parameter estimation procedure, which enable such real-time monitoring. The proposed approach involves MEC voltage and current measurements during its operation with periodic power supply connection/disconnection (on/off operation) followed by parameter estimation using either numerical or analytical solution of the model. The proposed monitoring approach is demonstrated using a membraneless MEC with flow-through porous electrodes. Laboratory tests showed that changes in the influent carbon source concentration and composition significantly affect MEC total internal resistance and capacitance estimated by the model. Fast response of these EEC model parameters to changes in operating conditions enables the development of a model-based approach for real-time monitoring and fault detection.

  8. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)

    PubMed Central

    George, Ansel; Dorval, Alan D.; Christini, David J.

    2017-01-01

    The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998

  9. Real-time multiplexed digital cavity-enhanced spectroscopy

    DOE PAGES

    Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; ...

    2015-10-01

    Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylatemore » and show parts-per-billion per root hertz sensitivity measured in real-time.« less

  10. Biomass burning source characterization requirements in air quality models with and without data assimilation: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Zhang, J. L.; Reid, J. S.; Curtis, C. A.; Westphal, D. L.

    2007-12-01

    Quantitative models of the transport and evolution of atmospheric pollution have graduated from the laboratory to become a part of the operational activity of forecast centers. Scientists studying the composition and variability of the atmosphere put great efforts into developing methods for accurately specifying sources of pollution, including natural and anthropogenic biomass burning. These methods must be adapted for use in operational contexts, which impose additional strictures on input data and methods. First, only input data sources available in near real-time are suitable for use in operational applications. Second, operational applications must make use of redundant data sources whenever possible. This is a shift in philosophy: in a research context, the most accurate and complete data set will be used, whereas in an operational context, the system must be designed with maximum redundancy. The goal in an operational context is to produce, to the extent possible, consistent and timely output, given sometimes inconsistent inputs. The Naval Aerosol Analysis and Prediction System (NAAPS), a global operational aerosol analysis and forecast system, recently began incorporating assimilation of satellite-derived aerosol optical depth. Assimilation of satellite AOD retrievals has dramatically improved aerosol analyses and forecasts from this system. The use of aerosol data assimilation also changes the strategy for improving the smoke source function. The absolute magnitude of emissions events can be refined through feedback from the data assimilation system, both in real- time operations and in post-processing analysis of data assimilation results. In terms of the aerosol source functions, the largest gains in model performance are now to be gained by reducing data latency and minimizing missed detections. In this presentation, recent model development work on the Fire Locating and Monitoring of Burning Emissions (FLAMBE) system that provides smoke aerosol boundary conditions for NAAPS is described, including redundant integration of multiple satellite platforms and development of feedback loops between the data assimilation system and smoke source.

  11. A first near real-time seismology-based landquake monitoring system.

    PubMed

    Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min

    2017-03-02

    Hazards from gravity-driven instabilities on hillslope (termed 'landquake' in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >10 6  m 3 and area > 0.20 km 2 ) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.

  12. A first near real-time seismology-based landquake monitoring system

    PubMed Central

    Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min

    2017-01-01

    Hazards from gravity-driven instabilities on hillslope (termed ‘landquake’ in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >106 m3 and area > 0.20 km2) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities. PMID:28252039

  13. Assessment of a demonstration project to supply near real-time sea ice information to end users

    NASA Astrophysics Data System (ADS)

    Blackford, C.; Howes, Sally; Whitelaw, Alan S.; Laxon, S.; Mantripp, D.

    1994-12-01

    Sea ice maps are required by a diverse range of users for scientific research and operational activities. Satellite remote sensing provides opportunities for monitoring and producing sea ice maps at a range of scales, in near real time. During March 1994 ESYS Limited and the University College London Mullard Space Science Laboratory (MSSL) operated a sea ice demonstration project to supply near real time sea ice maps in the southern ocean. The sea ice information was derived from a number of data sources: DMSP SSM/I data; ERS-1 SAR and Radar Altimeter fast delivery data; NOAA AVHRR data; and PoSAT-1 imagery. The maps were supplied to three users, two involved in yacht races in the southern ocean and a ship on an oceanographic research cruise in the waters of the Princess Elizabeth Trough region of Antarctica. The demonstration was successful, supplying the users with sea ice information which they had previously not received and combining data from various sources to produce sea ice maps. The demonstration also developed operational skills within ESYS and enabled the transfer of knowledge from MSSL to ESYS.

  14. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum.

  15. Aircraft laser sensing of sound velocity in water - Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.; Harding, John M.; Carnes, Michael; Pressman, AL; Kattawar, George W.; Fry, Edward S.

    1991-01-01

    A real-time data source for sound speed in the upper 100 m has been proposed for exploratory development. This data source is planned to be generated via a ship- or aircraft-mounted optical pulsed laser using the spontaneous Brillouin scattering technique. The system should be capable (from a single 10 ns 500 mJ pulse) of yielding range resolved sound speed profiles in water to depths of 75-100 m to an accuracy of 1 m/s. The 100 m profiles will provide the capability of rapidly monitoring the upper-ocean vertical structure. They will also provide an extensive, subsurface-data source for existing real-time, operational ocean nowcast/forecast systems.

  16. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  17. Real-Time Multiprocessor Programming Language (RTMPL) user's manual

    NASA Technical Reports Server (NTRS)

    Arpasi, D. J.

    1985-01-01

    A real-time multiprocessor programming language (RTMPL) has been developed to provide for high-order programming of real-time simulations on systems of distributed computers. RTMPL is a structured, engineering-oriented language. The RTMPL utility supports a variety of multiprocessor configurations and types by generating assembly language programs according to user-specified targeting information. Many programming functions are assumed by the utility (e.g., data transfer and scaling) to reduce the programming chore. This manual describes RTMPL from a user's viewpoint. Source generation, applications, utility operation, and utility output are detailed. An example simulation is generated to illustrate many RTMPL features.

  18. Evaluating the impact of improvements to the FLAMBE smoke source model on forecasts of aerosol distribution from NAAPS

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Reid, J. S.

    2006-12-01

    As more forecast models aim to include aerosol and chemical species, there is a need for source functions for biomass burning emissions that are accurate, robust, and operable in real-time. NAAPS is a global aerosol forecast model running every six hours and forecasting distributions of biomass burning, industrial sulfate, dust, and sea salt aerosols. This model is run operationally by the U.S. Navy as an aid to planning. The smoke emissions used as input to the model are calculated from the data collected by the FLAMBE system, driven by near-real-time active fire data from GOES WF_ABBA and MODIS Rapid Response. The smoke source function uses land cover data to predict properties of detected fires based on literature data from experimental burns. This scheme is very sensitive to the choice of land cover data sets. In areas of rapid land cover change, the use of static land cover data can produce artifactual changes in emissions unrelated to real changes in fire patterns. In South America, this change may be as large as 40% over five years. We demonstrate the impact of a modified land cover scheme on FLAMBE emissions and NAAPS forecasts, including a fire size algorithm developed using MODIS burned area data. We also describe the effects of corrections to emissions estimates for cloud and satellite coverage. We outline areas where existing data sources are incomplete and improvements are required to achieve accurate modeling of biomass burning emissions in real time.

  19. Multiple Solutions of Real-time Tsunami Forecasting Using Short-term Inundation Forecasting for Tsunamis Tool

    NASA Astrophysics Data System (ADS)

    Gica, E.

    2016-12-01

    The Short-term Inundation Forecasting for Tsunamis (SIFT) tool, developed by NOAA Center for Tsunami Research (NCTR) at the Pacific Marine Environmental Laboratory (PMEL), is used in forecast operations at the Tsunami Warning Centers in Alaska and Hawaii. The SIFT tool relies on a pre-computed tsunami propagation database, real-time DART buoy data, and an inversion algorithm to define the tsunami source. The tsunami propagation database is composed of 50×100km unit sources, simulated basin-wide for at least 24 hours. Different combinations of unit sources, DART buoys, and length of real-time DART buoy data can generate a wide range of results within the defined tsunami source. For an inexperienced SIFT user, the primary challenge is to determine which solution, among multiple solutions for a single tsunami event, would provide the best forecast in real time. This study investigates how the use of different tsunami sources affects simulated tsunamis at tide gauge locations. Using the tide gauge at Hilo, Hawaii, a total of 50 possible solutions for the 2011 Tohoku tsunami are considered. Maximum tsunami wave amplitude and root mean square error results are used to compare tide gauge data and the simulated tsunami time series. Results of this study will facilitate SIFT users' efforts to determine if the simulated tide gauge tsunami time series from a specific tsunami source solution would be within the range of possible solutions. This study will serve as the basis for investigating more historical tsunami events and tide gauge locations.

  20. Decision support system for outage management and automated crew dispatch

    DOEpatents

    Kang, Ning; Mousavi, Mirrasoul

    2018-01-23

    A decision support system is provided for utility operations to assist with crew dispatch and restoration activities following the occurrence of a disturbance in a multiphase power distribution network, by providing a real-time visualization of possible location(s). The system covers faults that occur on fuse-protected laterals. The system uses real-time data from intelligent electronics devices coupled with other data sources such as static feeder maps to provide a complete picture of the disturbance event, guiding the utility crew to the most probable location(s). This information is provided in real-time, reducing restoration time and avoiding more costly and laborious fault location finding practices.

  1. Methodology for Calculating Latency of GPS Probe Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhongxiang; Hamedi, Masoud; Young, Stanley

    Crowdsourced GPS probe data, such as travel time on changeable-message signs and incident detection, have been gaining popularity in recent years as a source for real-time traffic information to driver operations and transportation systems management and operations. Efforts have been made to evaluate the quality of such data from different perspectives. Although such crowdsourced data are already in widespread use in many states, particularly the high traffic areas on the Eastern seaboard, concerns about latency - the time between traffic being perturbed as a result of an incident and reflection of the disturbance in the outsourced data feed - havemore » escalated in importance. Latency is critical for the accuracy of real-time operations, emergency response, and traveler information systems. This paper offers a methodology for measuring probe data latency regarding a selected reference source. Although Bluetooth reidentification data are used as the reference source, the methodology can be applied to any other ground truth data source of choice. The core of the methodology is an algorithm for maximum pattern matching that works with three fitness objectives. To test the methodology, sample field reference data were collected on multiple freeway segments for a 2-week period by using portable Bluetooth sensors as ground truth. Equivalent GPS probe data were obtained from a private vendor, and their latency was evaluated. Latency at different times of the day, impact of road segmentation scheme on latency, and sensitivity of the latency to both speed-slowdown and recovery-from-slowdown episodes are also discussed.« less

  2. Capability of a Mobile Monitoring System to Provide Real-Time Data Broadcasting and Near Real-Time Source Attribution

    NASA Astrophysics Data System (ADS)

    Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.

    2014-12-01

    It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the origin of ambient exposure to hazardous air pollutants in an industrial fence line community near the Houston Ship Channel. Preliminary results derived from analysis of MARC observations during the BEE-TEX experiment will be presented.

  3. MR-based source localization for MR-guided HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Beld, E.; Moerland, M. A.; Zijlstra, F.; Viergever, M. A.; Lagendijk, J. J. W.; Seevinck, P. R.

    2018-04-01

    For the purpose of MR-guided high-dose-rate (HDR) brachytherapy, a method for real-time localization of an HDR brachytherapy source was developed, which requires high spatial and temporal resolutions. MR-based localization of an HDR source serves two main aims. First, it enables real-time treatment verification by determination of the HDR source positions during treatment. Second, when using a dummy source, MR-based source localization provides an automatic detection of the source dwell positions after catheter insertion, allowing elimination of the catheter reconstruction procedure. Localization of the HDR source was conducted by simulation of the MR artifacts, followed by a phase correlation localization algorithm applied to the MR images and the simulated images, to determine the position of the HDR source in the MR images. To increase the temporal resolution of the MR acquisition, the spatial resolution was decreased, and a subpixel localization operation was introduced. Furthermore, parallel imaging (sensitivity encoding) was applied to further decrease the MR scan time. The localization method was validated by a comparison with CT, and the accuracy and precision were investigated. The results demonstrated that the described method could be used to determine the HDR source position with a high accuracy (0.4–0.6 mm) and a high precision (⩽0.1 mm), at high temporal resolutions (0.15–1.2 s per slice). This would enable real-time treatment verification as well as an automatic detection of the source dwell positions.

  4. Earthquake forecasting studies using radon time series data in Taiwan

    NASA Astrophysics Data System (ADS)

    Walia, Vivek; Kumar, Arvind; Fu, Ching-Chou; Lin, Shih-Jung; Chou, Kuang-Wu; Wen, Kuo-Liang; Chen, Cheng-Hong

    2017-04-01

    For few decades, growing number of studies have shown usefulness of data in the field of seismogeochemistry interpreted as geochemical precursory signals for impending earthquakes and radon is idendified to be as one of the most reliable geochemical precursor. Radon is recognized as short-term precursor and is being monitored in many countries. This study is aimed at developing an effective earthquake forecasting system by inspecting long term radon time series data. The data is obtained from a network of radon monitoring stations eastblished along different faults of Taiwan. The continuous time series radon data for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. The data is also examined to evaluate earthquake precursory signals against environmental factors. An automated real-time database operating system has been developed recently to improve the data processing for earthquake precursory studies. In addition, the study is aimed at the appraisal and filtrations of these environmental parameters, in order to create a real-time database that helps our earthquake precursory study. In recent years, automatic operating real-time database has been developed using R, an open source programming language, to carry out statistical computation on the data. To integrate our data with our working procedure, we use the popular and famous open source web application solution, AMP (Apache, MySQL, and PHP), creating a website that could effectively show and help us manage the real-time database.

  5. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica (http://rmt.earth.sinica.edu.tw). The long-term goal of this system is to provide real-time source information for rapid seismic hazard assessment during large earthquakes.

  6. Automated Traffic Management System and Method

    NASA Technical Reports Server (NTRS)

    Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)

    2000-01-01

    A data management system and method that enables acquisition, integration, and management of real-time data generated at different rates, by multiple heterogeneous incompatible data sources. The system achieves this functionality by using an expert system to fuse data from a variety of airline, airport operations, ramp control, and air traffic control tower sources, to establish and update reference data values for every aircraft surface operation. The system may be configured as a real-time airport surface traffic management system (TMS) that electronically interconnects air traffic control, airline data, and airport operations data to facilitate information sharing and improve taxi queuing. In the TMS operational mode, empirical data shows substantial benefits in ramp operations for airlines, reducing departure taxi times by about one minute per aircraft in operational use, translating as $12 to $15 million per year savings to airlines at the Atlanta, Georgia airport. The data management system and method may also be used for scheduling the movement of multiple vehicles in other applications, such as marine vessels in harbors and ports, trucks or railroad cars in ports or shipping yards, and railroad cars in switching yards. Finally, the data management system and method may be used for managing containers at a shipping dock, stock on a factory floor or in a warehouse, or as a training tool for improving situational awareness of FAA tower controllers, ramp and airport operators, or commercial airline personnel in airfield surface operations.

  7. Vessel thermal map real-time system for the JET tokamak

    NASA Astrophysics Data System (ADS)

    Alves, D.; Felton, R.; Jachmich, S.; Lomas, P.; McCullen, P.; Neto, A.; Valcárcel, D. F.; Arnoux, G.; Card, P.; Devaux, S.; Goodyear, A.; Kinna, D.; Stephen, A.; Zastrow, K.-D.

    2012-05-01

    The installation of international thermonuclear experimental reactor-relevant materials for the plasma facing components (PFCs) in the Joint European Torus (JET) is expected to have a strong impact on the operation and protection of the experiment. In particular, the use of all-beryllium tiles, which deteriorate at a substantially lower temperature than the formerly installed carbon fiber composite tiles, imposes strict thermal restrictions on the PFCs during operation. Prompt and precise responses are therefore required whenever anomalous temperatures are detected. The new vessel thermal map real-time application collects the temperature measurements provided by dedicated pyrometers and infrared cameras, groups them according to spatial location and probable offending heat source, and raises alarms that will trigger appropriate protective responses. In the context of the JET global scheme for the protection of the new wall, the system is required to run on a 10 ms cycle communicating with other systems through the real-time data network. In order to meet these requirements a commercial off-the-shelf solution has been adopted based on standard x86 multicore technology. Linux and the multithreaded application real-time executor (MARTe) software framework were respectively the operating system of choice and the real-time framework used to build the application. This paper presents an overview of the system with particular technical focus on the configuration of its real-time capability and the benefits of the modular development approach and advanced tools provided by the MARTe framework.

  8. Improved traffic operations through real-time data collection and control.

    DOT National Transportation Integrated Search

    2016-05-01

    Intersections are a major source of delay in urban networks, and reservation-based intersection control for : autonomous vehicles has great potential to improve intersection throughput. However, despite the high : flexibility in reservations, existin...

  9. A demonstration of real-time connected element interferometry for spacecraft navigation

    NASA Technical Reports Server (NTRS)

    Edwards, C.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.

    1992-01-01

    Connected element interferometry is a technique of observing a celestial radio source at two spatially separated antennas, and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. A connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, CA tracking complex is developed. Fiber optic links are used to transmit the data at 112 Mbit/sec to a common site for processing. A real-time correlator to process these data in real-time is implemented. The architecture of the system is described, and observational data is presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.

  10. The goldstone real-time connected element interferometer

    NASA Technical Reports Server (NTRS)

    Edwards, C., Jr.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.

    1992-01-01

    Connected element interferometry (CEI) is a technique of observing a celestial radio source at two spatially separated antennas and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. This article describes a recently developed connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, California, tracking complex. Fiber-optic links are used to transmit the data to a common site for processing. The system incorporates a real-time correlator to process these data in real time. The architecture of the system is described, and observational data are presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.

  11. Fugitive Dust Emissions: Development of a Real-time Monitor

    DTIC Science & Technology

    2011-10-01

    the mechanical disturbance of soils which injects particles into the air. Common sources of FD include vehicles driving on unpaved roads...agricultural tilling, and heavy construction operations. For these sources the dust-generation process is caused by two basic physical phenomena...visibility, source apportionment , etc. The PM10 standard set by the U.S. Environmental Protection Agency in 1987 is an example of size-selective

  12. The software system development for the TAMU real-time fan beam scatterometer data processors

    NASA Technical Reports Server (NTRS)

    Clark, B. V.; Jean, B. R.

    1980-01-01

    A software package was designed and written to process in real-time any one quadrature channel pair of radar scatterometer signals form the NASA L- or C-Band radar scatterometer systems. The software was successfully tested in the C-Band processor breadboard hardware using recorded radar and NERDAS (NASA Earth Resources Data Annotation System) signals as the input data sources. The processor development program and the overall processor theory of operation and design are described. The real-time processor software system is documented and the results of the laboratory software tests, and recommendations for the efficient application of the data processing capabilities are presented.

  13. VERSE - Virtual Equivalent Real-time Simulation

    NASA Technical Reports Server (NTRS)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  14. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  15. Revamping Spacecraft Operational Intelligence

    NASA Technical Reports Server (NTRS)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  16. Crowded: a crowd-sourced perspective of events as they happen

    NASA Astrophysics Data System (ADS)

    Brantingham, Richard; Hossain, Aleem

    2013-05-01

    `Crowded' is a web-based application developed by the Defence Science & Technology Laboratory (Dstl) that collates imagery of a particular location from a variety of media sources to provide an operator with real-time situational awareness. Emergency services and other relevant agencies have detected or become aware of an event - a riot or an explosion, for instance - and its location or text associated with it. The ubiquity of mobile devices allows people to collect and upload media of the incident to the Internet, in real time. Crowded manages the interactions with online sources of media: Flickr; Instagram; YouTube; Twitter; and Transport for London traffic cameras, to retrieve imagery that is being uploaded at that point in time. In doing so, it aims to provide human operators with near-instantaneous `eyes-on' from a variety of different perspectives. The first instantiation of Crowded was implemented as a series of integrated web-services with the aim of rapidly understanding whether the approach was viable. In doing so, it demonstrated how non-traditional, open sources can be used to provide a richer current intelligence picture than can be obtained alone from classified sources. The development of Crowded also explored how open source technology and cloud-based services can be used in the modern intelligence and security environment to provide a multi-agency Common Operating Picture to help achieve a co-ordinated response. The lessons learned in building the prototype are currently being used to design and develop a second version, and identify options and priorities for future development.

  17. Objects Architecture: A Comprehensive Design Approach for Real-Time, Distributed, Fault-Tolerant, Reactive Operating Systems.

    DTIC Science & Technology

    1987-09-01

    real - time operating system should be efficient from the real-time point...5,8]) system naming scheme. 3.2 Protecting Objects Real-time embedded systems usually neglect protection mechanisms. However, a real - time operating system cannot...allocation mechanism should adhere to application constraints. This strong relationship between a real - time operating system and the application

  18. Evaluating the Real-time and Offline Performance of the Virtual Seismologist Earthquake Early Warning Algorithm

    NASA Astrophysics Data System (ADS)

    Cua, G.; Fischer, M.; Heaton, T.; Wiemer, S.

    2009-04-01

    The Virtual Seismologist (VS) algorithm is a Bayesian approach to regional, network-based earthquake early warning (EEW). Bayes' theorem as applied in the VS algorithm states that the most probable source estimates at any given time is a combination of contributions from relatively static prior information that does not change over the timescale of earthquake rupture and a likelihood function that evolves with time to take into account incoming pick and amplitude observations from the on-going earthquake. Potentially useful types of prior information include network topology or station health status, regional hazard maps, earthquake forecasts, and the Gutenberg-Richter magnitude-frequency relationship. The VS codes provide magnitude and location estimates once picks are available at 4 stations; these source estimates are subsequently updated each second. The algorithm predicts the geographical distribution of peak ground acceleration and velocity using the estimated magnitude and location and appropriate ground motion prediction equations; the peak ground motion estimates are also updated each second. Implementation of the VS algorithm in California and Switzerland is funded by the Seismic Early Warning for Europe (SAFER) project. The VS method is one of three EEW algorithms whose real-time performance is being evaluated and tested by the California Integrated Seismic Network (CISN) EEW project. A crucial component of operational EEW algorithms is the ability to distinguish between noise and earthquake-related signals in real-time. We discuss various empirical approaches that allow the VS algorithm to operate in the presence of noise. Real-time operation of the VS codes at the Southern California Seismic Network (SCSN) began in July 2008. On average, the VS algorithm provides initial magnitude, location, origin time, and ground motion distribution estimates within 17 seconds of the earthquake origin time. These initial estimate times are dominated by the time for 4 acceptable picks to be available, and thus are heavily influenced by the station density in a given region; these initial estimate times also include the effects of telemetry delay, which ranges between 6 and 15 seconds at the SCSN, and processing time (~1 second). Other relevant performance statistics include: 95% of initial real-time location estimates are within 20 km of the actual epicenter, 97% of initial real-time magnitude estimates are within one magnitude unit of the network magnitude. Extension of real-time VS operations to networks in Northern California is an on-going effort. In Switzerland, the VS codes have been run on offline waveform data from over 125 earthquakes recorded by the Swiss Digital Seismic Network (SDSN) and the Swiss Strong Motion Network (SSMS). We discuss the performance of the VS algorithm on these datasets in terms of magnitude, location, and ground motion estimation.

  19. Near real-time estimation of the seismic source parameters in a compressed domain

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ismael A. Vera

    Seismic events can be characterized by its origin time, location and moment tensor. Fast estimations of these source parameters are important in areas of geophysics like earthquake seismology, and the monitoring of seismic activity produced by volcanoes, mining operations and hydraulic injections in geothermal and oil and gas reservoirs. Most available monitoring systems estimate the source parameters in a sequential procedure: first determining origin time and location (e.g., epicentre, hypocentre or centroid of the stress glut density), and then using this information to initialize the evaluation of the moment tensor. A more efficient estimation of the source parameters requires a concurrent evaluation of the three variables. The main objective of the present thesis is to address the simultaneous estimation of origin time, location and moment tensor of seismic events. The proposed method displays the benefits of being: 1) automatic, 2) continuous and, depending on the scale of application, 3) of providing results in real-time or near real-time. The inversion algorithm is based on theoretical results from sparse representation theory and compressive sensing. The feasibility of implementation is determined through the analysis of synthetic and real data examples. The numerical experiments focus on the microseismic monitoring of hydraulic fractures in oil and gas wells, however, an example using real earthquake data is also presented for validation. The thesis is complemented with a resolvability analysis of the moment tensor. The analysis targets common monitoring geometries employed in hydraulic fracturing in oil wells. Additionally, it is presented an application of sparse representation theory for the denoising of one-component and three-component microseismicity records, and an algorithm for improved automatic time-picking using non-linear inversion constraints.

  20. Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain

    PubMed Central

    Kim, Min H.; Yoon, Hargsoon; Choi, Sang H.; Zhao, Fei; Kim, Jongsung; Song, Kyo D.; Lee, Uhn

    2016-01-01

    Real-time monitoring of extracellular neurotransmitter concentration offers great benefits for diagnosis and treatment of neurological disorders and diseases. This paper presents the study design and results of a miniaturized and wireless optical neurotransmitter sensor (MWONS) for real-time monitoring of brain dopamine concentration. MWONS is based on fluorescent sensing principles and comprises a microspectrometer unit, a microcontroller for data acquisition, and a Bluetooth wireless network for real-time monitoring. MWONS has a custom-designed application software that controls the operation parameters for excitation light sources, data acquisition, and signal processing. MWONS successfully demonstrated a measurement capability with a limit of detection down to a 100 nanomole dopamine concentration, and high selectivity to ascorbic acid (90:1) and uric acid (36:1). PMID:27834927

  1. Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain.

    PubMed

    Kim, Min H; Yoon, Hargsoon; Choi, Sang H; Zhao, Fei; Kim, Jongsung; Song, Kyo D; Lee, Uhn

    2016-11-10

    Real-time monitoring of extracellular neurotransmitter concentration offers great benefits for diagnosis and treatment of neurological disorders and diseases. This paper presents the study design and results of a miniaturized and wireless optical neurotransmitter sensor (MWONS) for real-time monitoring of brain dopamine concentration. MWONS is based on fluorescent sensing principles and comprises a microspectrometer unit, a microcontroller for data acquisition, and a Bluetooth wireless network for real-time monitoring. MWONS has a custom-designed application software that controls the operation parameters for excitation light sources, data acquisition, and signal processing. MWONS successfully demonstrated a measurement capability with a limit of detection down to a 100 nanomole dopamine concentration, and high selectivity to ascorbic acid (90:1) and uric acid (36:1).

  2. An efficient ASIC implementation of 16-channel on-line recursive ICA processor for real-time EEG system.

    PubMed

    Fang, Wai-Chi; Huang, Kuan-Ju; Chou, Chia-Ching; Chang, Jui-Chung; Cauwenberghs, Gert; Jung, Tzyy-Ping

    2014-01-01

    This is a proposal for an efficient very-large-scale integration (VLSI) design, 16-channel on-line recursive independent component analysis (ORICA) processor ASIC for real-time EEG system, implemented with TSMC 40 nm CMOS technology. ORICA is appropriate to be used in real-time EEG system to separate artifacts because of its highly efficient and real-time process features. The proposed ORICA processor is composed of an ORICA processing unit and a singular value decomposition (SVD) processing unit. Compared with previous work [1], this proposed ORICA processor has enhanced effectiveness and reduced hardware complexity by utilizing a deeper pipeline architecture, shared arithmetic processing unit, and shared registers. The 16-channel random signals which contain 8-channel super-Gaussian and 8-channel sub-Gaussian components are used to analyze the dependence of the source components, and the average correlation coefficient is 0.95452 between the original source signals and extracted ORICA signals. Finally, the proposed ORICA processor ASIC is implemented with TSMC 40 nm CMOS technology, and it consumes 15.72 mW at 100 MHz operating frequency.

  3. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall.

    PubMed

    Huber, V; Huber, A; Kinna, D; Balboa, I; Collins, S; Conway, N; Drewelow, P; Maggi, C F; Matthews, G F; Meigs, A G; Mertens, Ph; Price, M; Sergienko, G; Silburn, S; Wynn, A; Zastrow, K-D

    2016-11-01

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  4. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, V., E-mail: V.Huber@fz-juelich.de; Huber, A.; Mertens, Ph.

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  5. Real-Time CORBA

    DTIC Science & Technology

    2000-10-01

    control systems and prototyped the approach by porting the ILU ORB from Xerox to the Lynx real - time operating system . They then provided a distributed...compliant real - time operating system , a real-time ORB, and an ODMG-compliant real-time ODBMS [12]. The MITRE system is an infrastructure for...the server’s local operating system can handle. For instance, on a node controlled by the VXWorks real - time operating system with 256 local

  6. Real-time digital signal recovery for a multi-pole low-pass transfer function system.

    PubMed

    Lee, Jhinhwan

    2017-08-01

    In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.

  7. Open-Source RTOS Space Qualification: An RTEMS Case Study

    NASA Technical Reports Server (NTRS)

    Zemerick, Scott

    2017-01-01

    NASA space-qualification of reusable off-the-shelf real-time operating systems (RTOSs) remains elusive due to several factors notably (1) The diverse nature of RTOSs utilized across NASA, (2) No single NASA space-qualification criteria, lack of verification and validation (V&V) analysis, or test beds, and (3) different RTOS heritages, specifically open-source RTOSs and closed vendor-provided RTOSs. As a leader in simulation test beds, the NASA IV&V Program is poised to help jump-start and lead the space-qualification effort of the open source Real-Time Executive for Multiprocessor Systems (RTEMS) RTOS. RTEMS, as a case-study, can be utilized as an example of how to qualify all RTOSs, particularly the reusable non-commercial (open-source) ones that are gaining usage and popularity across NASA. Qualification will improve the overall safety and mission assurance of RTOSs for NASA-agency wide usage. NASA's involvement in space-qualification of an open-source RTOS such as RTEMS will drive the RTOS industry toward a more qualified and mature open-source RTOS product.

  8. Synthesis of Virtual Environments for Aircraft Community Noise Impact Studies

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.

    2005-01-01

    A new capability has been developed for the creation of virtual environments for the study of aircraft community noise. It is applicable for use with both recorded and synthesized aircraft noise. When using synthesized noise, a three-stage process is adopted involving non-real-time prediction and synthesis stages followed by a real-time rendering stage. Included in the prediction-based source noise synthesis are temporal variations associated with changes in operational state, and low frequency fluctuations that are present under all operating conditions. Included in the rendering stage are the effects of spreading loss, absolute delay, atmospheric absorption, ground reflections, and binaural filtering. Results of prediction, synthesis and rendering stages are presented.

  9. Functional Analysis in Long-Term Operation of High Power UV-LEDs in Continuous Fluoro-Sensing Systems for Hydrocarbon Pollution

    PubMed Central

    Arques-Orobon, Francisco Jose; Nuñez, Neftali; Vazquez, Manuel; Gonzalez-Posadas, Vicente

    2016-01-01

    This work analyzes the long-term functionality of HP (High-power) UV-LEDs (Ultraviolet Light Emitting Diodes) as the exciting light source in non-contact, continuous 24/7 real-time fluoro-sensing pollutant identification in inland water. Fluorescence is an effective alternative in the detection and identification of hydrocarbons. The HP UV-LEDs are more advantageous than classical light sources (xenon and mercury lamps) and helps in the development of a low cost, non-contact, and compact system for continuous real-time fieldwork. This work analyzes the wavelength, output optical power, and the effects of viscosity, temperature of the water pollutants, and the functional consistency for long-term HP UV-LED working operation. To accomplish the latter, an analysis of the influence of two types 365 nm HP UV-LEDs degradation under two continuous real-system working mode conditions was done, by temperature Accelerated Life Tests (ALTs). These tests estimate the mean life under continuous working conditions of 6200 h and for cycled working conditions (30 s ON & 30 s OFF) of 66,000 h, over 7 years of 24/7 operating life of hydrocarbon pollution monitoring. In addition, the durability in the face of the internal and external parameter system variations is evaluated. PMID:26927113

  10. Functional Analysis in Long-Term Operation of High Power UV-LEDs in Continuous Fluoro-Sensing Systems for Hydrocarbon Pollution.

    PubMed

    Arques-Orobon, Francisco Jose; Nuñez, Neftali; Vazquez, Manuel; Gonzalez-Posadas, Vicente

    2016-02-26

    This work analyzes the long-term functionality of HP (High-power) UV-LEDs (Ultraviolet Light Emitting Diodes) as the exciting light source in non-contact, continuous 24/7 real-time fluoro-sensing pollutant identification in inland water. Fluorescence is an effective alternative in the detection and identification of hydrocarbons. The HP UV-LEDs are more advantageous than classical light sources (xenon and mercury lamps) and helps in the development of a low cost, non-contact, and compact system for continuous real-time fieldwork. This work analyzes the wavelength, output optical power, and the effects of viscosity, temperature of the water pollutants, and the functional consistency for long-term HP UV-LED working operation. To accomplish the latter, an analysis of the influence of two types 365 nm HP UV-LEDs degradation under two continuous real-system working mode conditions was done, by temperature Accelerated Life Tests (ALTs). These tests estimate the mean life under continuous working conditions of 6200 h and for cycled working conditions (30 s ON & 30 s OFF) of 66,000 h, over 7 years of 24/7 operating life of hydrocarbon pollution monitoring. In addition, the durability in the face of the internal and external parameter system variations is evaluated.

  11. AMON: Transition to real-time operations

    NASA Astrophysics Data System (ADS)

    Cowen, D. F.; Keivani, A.; Tešić, G.

    2016-04-01

    The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.

  12. Specifications and implementation of the RT MHD control system for the EC launcher of FTU

    NASA Astrophysics Data System (ADS)

    Galperti, C.; Alessi, E.; Boncagni, L.; Bruschi, A.; Granucci, G.; Grosso, A.; Iannone, F.; Marchetto, C.; Nowak, S.; Panella, M.; Sozzi, C.; Tilia, B.

    2012-09-01

    To perform real time plasma control experiments using EC heating waves by using the new fast launcher installed on FTU a dedicated data acquisition and elaboration system has been designed recently. A prototypical version of the acquisition/control system has been recently developed and will be tested on FTU machine in its next experimental campaign. The open-source framework MARTe (Multi-threaded Application Real-Time executor) on Linux/RTAI real-time operating system has been chosen as software platform to realize the control system. Standard open-architecture industrial PCs, based either on VME bus and CompactPCI bus equipped with standard input/output cards are the chosen hardware platform.

  13. Advanced Hard Real-Time Operating System, the Maruti Project. Part 2.

    DTIC Science & Technology

    1997-01-01

    Real - Time Operating System , The Maruti Project DASG-60-92-C-0055 5b. Program Element # 62301E 6. Author(s...The maruti hard real - time " operating system . A CM SIGOPS, Operating Systems Review. 23:90-106, July 1989. 254 !1 110) C. L. Liu and J. Layland...February 14, 1995 Abstract The Maruti Real - Time Operating System was developed for applications that must meet hard real-time constraints. In order

  14. Simulation Training Versus Real Time Console Training for New Flight Controllers

    NASA Technical Reports Server (NTRS)

    Heaton, Amanda

    2010-01-01

    For new flight controllers, the two main learning tools are simulations and real time console performance training. These benefit the new flight controllers in different ways and could possibly be improved. Simulations: a) Allow for mistakes without serious consequences. b) Lets new flight controllers learn the working style of other new flight controllers. c) Lets new flight controllers eventually begin to feel like they have mastered the sim world, so therefore they must be competent in the real time world too. Real time: a) Shows new flight controllers some of the unique problems that develop and have to be accounted for when dealing with certain payloads or systems. b) Lets new flight controllers experience handovers - gathering information from the previous shift on what the room needs to be aware of and what still needs to be done. c) Gives new flight controllers confidence that they can succeed in the position they are training for when they can solve real anomalies. How Sims could be improved and more like real-time ops for the ISS Operations Controller position: a) Operations Change Requests to review. b) Fewer anomalies (but still more than real time for practice). c) Payload Planning Manager Handover sheet for the E-1 and E-3 reviews. d) Flight note in system with at least one comment to verify for the E-1 and E-3 reviews How the real time console performance training could be improved for the ISS Operations Controller position: a) Schedule the new flight controller to be on console for four days but with a different certified person each day. This will force them to be the source of knowledge about every OCR in progress, everything that has happened in those few days, and every activity on the timeline. Constellation program flight controllers will have to learn entirely from simulations, thereby losing some of the elements that they will need to have experience with for real time ops. It may help them to practice real time console performance training in the International Space Station or Space Shuttle to gather some general anomaly resolution and day-to-day task management skills.

  15. Real-time emissions from construction equipment compared with model predictions.

    PubMed

    Heidari, Bardia; Marr, Linsey C

    2015-02-01

    The construction industry is a large source of greenhouse gases and other air pollutants. Measuring and monitoring real-time emissions will provide practitioners with information to assess environmental impacts and improve the sustainability of construction. We employed a portable emission measurement system (PEMS) for real-time measurement of carbon dioxide (CO), nitrogen oxides (NOx), hydrocarbon, and carbon monoxide (CO) emissions from construction equipment to derive emission rates (mass of pollutant emitted per unit time) and emission factors (mass of pollutant emitted per unit volume of fuel consumed) under real-world operating conditions. Measurements were compared with emissions predicted by methodologies used in three models: NONROAD2008, OFFROAD2011, and a modal statistical model. Measured emission rates agreed with model predictions for some pieces of equipment but were up to 100 times lower for others. Much of the difference was driven by lower fuel consumption rates than predicted. Emission factors during idling and hauling were significantly different from each other and from those of other moving activities, such as digging and dumping. It appears that operating conditions introduce considerable variability in emission factors. Results of this research will aid researchers and practitioners in improving current emission estimation techniques, frameworks, and databases.

  16. Real-Time Embedded High Performance Computing: Communications Scheduling.

    DTIC Science & Technology

    1995-06-01

    real - time operating system must explicitly limit the degradation of the timing performance of all processes as the number of processes...adequately supported by a real - time operating system , could compound the development problems encountered in the past. Many experts feel that the... real - time operating system support for an MPP, although they all provide some support for distributed real-time applications. A distributed real

  17. Real time hardware implementation of power converters for grid integration of distributed generation and STATCOM systems

    NASA Astrophysics Data System (ADS)

    Jaithwa, Ishan

    Deployment of smart grid technologies is accelerating. Smart grid enables bidirectional flows of energy and energy-related communications. The future electricity grid will look very different from today's power system. Large variable renewable energy sources will provide a greater portion of electricity, small DERs and energy storage systems will become more common, and utilities will operate many different kinds of energy efficiency. All of these changes will add complexity to the grid and require operators to be able to respond to fast dynamic changes to maintain system stability and security. This thesis investigates advanced control technology for grid integration of renewable energy sources and STATCOM systems by verifying them on real time hardware experiments using two different systems: d SPACE and OPAL RT. Three controls: conventional, direct vector control and the intelligent Neural network control were first simulated using Matlab to check the stability and safety of the system and were then implemented on real time hardware using the d SPACE and OPAL RT systems. The thesis then shows how dynamic-programming (DP) methods employed to train the neural networks are better than any other controllers where, an optimal control strategy is developed to ensure effective power delivery and to improve system stability. Through real time hardware implementation it is proved that the neural vector control approach produces the fastest response time, low overshoot, and, the best performance compared to the conventional standard vector control method and DCC vector control technique. Finally the entrepreneurial approach taken to drive the technologies from the lab to market via ORANGE ELECTRIC is discussed in brief.

  18. Development of autonomous gamma dose logger for environmental monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.

    2012-03-15

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system ismore » totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.« less

  19. Development of autonomous gamma dose logger for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B.

    2012-03-01

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify 41Ar, proving its utility for real-time plume tracking and source term estimation.

  20. Real-time validation of receiver state information in optical space-time block code systems.

    PubMed

    Alamia, John; Kurzweg, Timothy

    2014-06-15

    Free space optical interconnect (FSOI) systems are a promising solution to interconnect bottlenecks in high-speed systems. To overcome some sources of diminished FSOI performance caused by close proximity of multiple optical channels, multiple-input multiple-output (MIMO) systems implementing encoding schemes such as space-time block coding (STBC) have been developed. These schemes utilize information pertaining to the optical channel to reconstruct transmitted data. The STBC system is dependent on accurate channel state information (CSI) for optimal system performance. As a result of dynamic changes in optical channels, a system in operation will need to have updated CSI. Therefore, validation of the CSI during operation is a necessary tool to ensure FSOI systems operate efficiently. In this Letter, we demonstrate a method of validating CSI, in real time, through the use of moving averages of the maximum likelihood decoder data, and its capacity to predict the bit error rate (BER) of the system.

  1. Real-Time Event Detection for Monitoring Natural and Source Waterways - Sacramento, CA

    EPA Science Inventory

    The use of event detection systems in finished drinking water systems is increasing in order to monitor water quality in both operational and security contexts. Recent incidents involving harmful algal blooms and chemical spills into watersheds have increased interest in monitori...

  2. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  3. A Network Architecture for Data-Driven Systems

    DTIC Science & Technology

    1985-07-01

    ELABORATION. ..... ..... 26 Real - Time Operating System . ....... ......... 26 Secondary Memory Utilization. ........ ....... 26 Data Flow Graphical...discussions followed by a flight simulator exam~ple. REAL - TIME OPERATING SYSTEM An operating system needs to be designed exclusively for real-time...Assessment. (SDWA) module. The SDWA module is tightly coupled to the real - time operating system . This module must determine the sensitivity to

  4. Column Store for GWAC: A High-cadence, High-density, Large-scale Astronomical Light Curve Pipeline and Distributed Shared-nothing Database

    NASA Astrophysics Data System (ADS)

    Wan, Meng; Wu, Chao; Wang, Jing; Qiu, Yulei; Xin, Liping; Mullender, Sjoerd; Mühleisen, Hannes; Scheers, Bart; Zhang, Ying; Nes, Niels; Kersten, Martin; Huang, Yongpan; Deng, Jinsong; Wei, Jianyan

    2016-11-01

    The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ˜175,600 extracted sources. For a modern time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is challenging to search for short timescale transients in both real-time and archived data, and to build long-term light curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive amount of archived data which will be used to generate a source catalog with more than 100 billion records during 10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as in its strategy of building complex light curves. The optimized source association function is accelerated by three orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of massive data.

  5. Flutrack.org: Open-source and linked data for epidemiology.

    PubMed

    Chorianopoulos, Konstantinos; Talvis, Karolos

    2016-12-01

    Epidemiology has made advances, thanks to the availability of real-time surveillance data and by leveraging the geographic analysis of incidents. There are many health information systems that visualize the symptoms of influenza-like illness on a digital map, which is suitable for end-users, but it does not afford further processing and analysis. Existing systems have emphasized the collection, analysis, and visualization of surveillance data, but they have neglected a modular and interoperable design that integrates high-resolution geo-location with real-time data. As a remedy, we have built an open-source project and we have been operating an open service that detects flu-related symptoms and shares the data in real-time with anyone who wants to built upon this system. An analysis of a small number of precisely geo-located status updates (e.g. Twitter) correlates closely with the Google Flu Trends and the Centers for Disease Control and Prevention flu-positive reports. We suggest that public health information systems should embrace an open-source approach and offer linked data, in order to facilitate the development of an ecosystem of applications and services, and in order to be transparent to the general public interest. © The Author(s) 2015.

  6. DEVELOPMENT OF REAL-TIME FLARE COMBUSTION EFFICIENCY MONITOR - PHASE I

    EPA Science Inventory

    There are approximately 7,000 flares in operation at industrial facilities across the United States. Flares are one of the largest Volatile Organic Compounds (VOCs) and air toxics emissions sources. Based on a special emission inventory required by the Texas Commission on E...

  7. Real-Time Joint Streaming Data Processing from Social and Physical Sensors

    NASA Astrophysics Data System (ADS)

    Kropivnitskaya, Y. Y.; Qin, J.; Tiampo, K. F.; Bauer, M.

    2014-12-01

    The results of the technological breakthroughs in computing that have taken place over the last few decades makes it possible to achieve emergency management objectives that focus on saving human lives and decreasing economic effects. In particular, the integration of a wide variety of information sources, including observations from spatially-referenced physical sensors and new social media sources, enables better real-time seismic hazard analysis through distributed computing networks. The main goal of this work is to utilize innovative computational algorithms for better real-time seismic risk analysis by integrating different data sources and processing tools into streaming and cloud computing applications. The Geological Survey of Canada operates the Canadian National Seismograph Network (CNSN) with over 100 high-gain instruments and 60 low-gain or strong motion seismographs. The processing of the continuous data streams from each station of the CNSN provides the opportunity to detect possible earthquakes in near real-time. The information from physical sources is combined to calculate a location and magnitude for an earthquake. The automatically calculated results are not always sufficiently precise and prompt that can significantly reduce the response time to a felt or damaging earthquake. Social sensors, here represented as Twitter users, can provide information earlier to the general public and more rapidly to the emergency planning and disaster relief agencies. We introduce joint streaming data processing from social and physical sensors in real-time based on the idea that social media observations serve as proxies for physical sensors. By using the streams of data in the form of Twitter messages, each of which has an associated time and location, we can extract information related to a target event and perform enhanced analysis by combining it with physical sensor data. Results of this work suggest that the use of data from social media, in conjunction with the development of innovative computing algorithms, when combined with sensor data can provide a new paradigm for real-time earthquake detection in order to facilitate rapid and inexpensive natural risk reduction.

  8. Managing a Real-Time Embedded Linux Platform with Buildroot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, J.; Martin, K.

    2015-01-01

    Developers of real-time embedded software often need to build the operating system, kernel, tools and supporting applications from source to work with the differences in their hardware configuration. The first attempts to introduce Linux-based real-time embedded systems into the Fermilab accelerator controls system used this approach but it was found to be time-consuming, difficult to maintain and difficult to adapt to different hardware configurations. Buildroot is an open source build system with a menu-driven configuration tool (similar to the Linux kernel build system) that automates this process. A customized Buildroot [1] system has been developed for use in the Fermilabmore » accelerator controls system that includes several hardware configuration profiles (including Intel, ARM and PowerPC) and packages for Fermilab support software. A bootable image file is produced containing the Linux kernel, shell and supporting software suite that varies from 3 to 20 megabytes large – ideal for network booting. The result is a platform that is easier to maintain and deploy in diverse hardware configurations« less

  9. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  10. The case for a Supersite for real-time GNSS hazard monitoring on a global scale

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2017-12-01

    Real-time measurements from many hundreds of GNSS tracking sites around the world are publicly available today, and the amount of streaming data is steadily increasing as national agencies densify their local and global infrastructure for natural hazard monitoring and a variety of geodetic, cadastral, and other civil applications. Thousands of such sites can soon be expected on a global scale. It is a challenge to manage and make optimal use of this massive amount of real-time data. We advocate the creation of Supersite(s), in the parlance of the U.N. Global Earth Observation System of Systems (https://www.earthobservations.org/geoss.php), to generate high level real-time data products from the raw GNSS measurements from all available sources (many thousands of sites). These products include: • High rate, real-time positioning time series for assessing rapid crustal motion due to Earthquakes, volcanic activities, land slides, etc. • Co-seismic displacement to help resolve earthquake mechanism and moment magnitude • Real-time total electron content (TEC) fluctuations to augment Dart buoy in detecting and tracking tsunamis • Aggregation of the many disparate raw data dispensation servers (Casters)Recognizing that natural hazards transcend national boundaries in terms of direct and indirect (e.g., economical, security) impact, the benefits from centralized, authoritative processing of GNSS measurements is manifold: • Offers a one-stop shop to less developed nations and institutions for raw and high-level products, in support of research and applications • Promotes the installation of tracking sites and the contribution of data from nations without the ability to process the data • Reduce dependency on local responsible agencies impacted by a natural disaster • Reliable 24/7 operations, independent of voluntary, best effort contributions from good-willing scientific organizationsThe JPL GNSS Real-Time Earthquake and Tsunami (GREAT) Alert has been operating as a prototype for such a Supersite for nearly a decade, processing in real-time data from hundreds of global and regional GNSS tracking sites. The existing operational infrastructure, complete self-sufficiency, and proven reliability can be leveraged at low cost to provide valuable natural hazard monitoring to the U.S. and the world.

  11. Real-Time Event Detection for Monitoring Natural and Source ...

    EPA Pesticide Factsheets

    The use of event detection systems in finished drinking water systems is increasing in order to monitor water quality in both operational and security contexts. Recent incidents involving harmful algal blooms and chemical spills into watersheds have increased interest in monitoring source water quality prior to treatment. This work highlights the use of the CANARY event detection software in detecting suspected illicit events in an actively monitored watershed in South Carolina. CANARY is an open source event detection software that was developed by USEPA and Sandia National Laboratories. The software works with any type of sensor, utilizes multiple detection algorithms and approaches, and can incorporate operational information as needed. Monitoring has been underway for several years to detect events related to intentional or unintentional dumping of materials into the monitored watershed. This work evaluates the feasibility of using CANARY to enhance the detection of events in this watershed. This presentation will describe the real-time monitoring approach used in this watershed, the selection of CANARY configuration parameters that optimize detection for this watershed and monitoring application, and the performance of CANARY during the time frame analyzed. Further, this work will highlight how rainfall events impacted analysis, and the innovative application of CANARY taken in order to effectively detect the suspected illicit events. This presentation d

  12. Near Real-Time Data Warehousing Using State-of-the-Art ETL Tools

    NASA Astrophysics Data System (ADS)

    Jörg, Thomas; Dessloch, Stefan

    Data warehouses are traditionally refreshed in a periodic manner, most often on a daily basis. Thus, there is some delay between a business transaction and its appearance in the data warehouse. The most recent data is trapped in the operational sources where it is unavailable for analysis. For timely decision making, today's business users asks for ever fresher data.

  13. Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis

    NASA Astrophysics Data System (ADS)

    Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.

    2000-03-01

    The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.

  14. Development and Evaluation of Real-Time Volumetric Compton Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Barnowski, Ross Wegner

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. The real-time tracking allows the imager to be moved throughout the environment or around a particular object of interest, obtaining the multiple perspectives necessary for standoff 3D imaging. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, can be incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and two different mobile gamma-ray imaging platforms. The first is a cart-based imaging platform known as the Volumetric Compton Imager (VCI), comprising two 3D position-sensitive high purity germanium (HPGe) detectors, exhibiting excellent gamma-ray imaging characteristics, but with limited mobility due to the size and weight of the cart. The second system is the High Efficiency Multimodal Imager (HEMI) a hand-portable gamma-ray imager comprising 96 individual cm3 CdZnTe crystals arranged in a two-plane, active-mask configuration. The HEMI instrument has poorer energy and angular resolution than the VCI, but is truly hand-portable, allowing the SDF concept to be tested in multiple environments and for more challenging imaging scenarios. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. Each of the two mobile imaging systems are used to demonstrate SDF for a variety of scenarios, including general search and mapping scenarios with several point gamma-ray sources over the range of energies relevant for Compton imaging. More specific imaging scenarios are also addressed, including directed search and object interrogation scenarios. Finally, the volumetric image quality is quantitatively investigated with respect to the number of Compton events acquired during a measurement, the list-mode uncertainty of the Compton cone data, and the uncertainty in the pose estimate from the real-time tracking algorithm. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractability of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  15. StreaMorph: A Case for Synthesizing Energy-Efficient Adaptive Programs Using High-Level Abstractions

    DTIC Science & Technology

    2013-08-12

    technique when switching from using eight cores to one core. 1. Introduction Real - time streaming of media data is growing in popularity. This includes...both capture and processing of real - time video and audio, and delivery of video and audio from servers; recent usage number shows over 800 million...source of data, when that source is a real - time source, and it is generally not necessary to get ahead of the sink. Even with real - time sources and sinks

  16. The Real-Time ObjectAgent Software Architecture for Distributed Satellite Systems

    DTIC Science & Technology

    2001-01-01

    real - time operating system selection are also discussed. The fourth section describes a simple demonstration of real-time ObjectAgent. Finally, the...experience with C++. After selecting the programming language, it was necessary to select a target real - time operating system (RTOS) and embedded...ObjectAgent software to run on the OSE Real Time Operating System . In addition, she is responsible for the integration of ObjectAgent

  17. Implementing a combined polar-geostationary algorithm for smoke emissions estimation in near real time

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Schmidt, C. C.; Hoffman, J.; Giglio, L.; Peterson, D. A.

    2013-12-01

    Polar and geostationary satellites are used operationally for fire detection and smoke source estimation by many near-real-time operational users, including operational forecast centers around the globe. The input satellite radiance data are processed by data providers to produce Level-2 and Level -3 fire detection products, but processing these data into spatially and temporally consistent estimates of fire activity requires a substantial amount of additional processing. The most significant processing steps are correction for variable coverage of the satellite observations, and correction for conditions that affect the detection efficiency of the satellite sensors. We describe a system developed by the Naval Research Laboratory (NRL) that uses the full raster information from the entire constellation to diagnose detection opportunities, calculate corrections for factors such as angular dependence of detection efficiency, and generate global estimates of fire activity at spatial and temporal scales suitable for atmospheric modeling. By incorporating these improved fire observations, smoke emissions products, such as NRL's FLAMBE, are able to produce improved estimates of global emissions. This talk provides an overview of the system, demonstrates the achievable improvement over older methods, and describes challenges for near-real-time implementation.

  18. OpenDA-WFLOW framework for improving hydrologic predictions using distributed hydrologic models

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; Kockx, Arno; Hummel, Stef

    2017-04-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions (Liu et al., 2012) and increase the potential for early warning and/or smart water management. However, advances in hydrologic DA research have not yet been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. The objective of this work is to highlight the development of a generic linkage of the open source OpenDA package and the open source community hydrologic modeling framework Openstreams/WFLOW and its application in operational hydrological forecasting on various spatial scales. The coupling between OpenDA and Openstreams/wflow framework is based on the emerging standard Basic Model Interface (BMI) as advocated by CSDMS using cross-platform webservices (i.e. Apache Thrift) developed by Hut et al. (2016). The potential application of the OpenDA-WFLOW for operational hydrologic forecasting including its integration with Delft-FEWS (used by more than 40 operational forecast centers around the world (Werner et al., 2013)) is demonstrated by the presented case studies. We will also highlight the possibility to give real-time insight into the working of the DA methods applied for supporting the forecaster as mentioned as one of the burning issues by Liu et al., (2012).

  19. Novel Acoustic Techniques for Assessing Fish Schooling in the Context of an Operational Ocean Observatory

    DTIC Science & Technology

    2008-09-30

    Atlantic Bight (MAB). The surveys will be positioned adaptively using real-time data collected with the international constellation of ocean color...and onshore waters. A unique acoustic scattering source was identified during the experiment as dense, monotypic aggregations of a pelagic gastropod

  20. Integrated Data Fusion and Mining Techniques for Monitoring Total Organic Carbon Concentrations in a Lake

    EPA Science Inventory

    Total organic carbon (TOC) in surface waters, markedly of seasonal variations, is a known precursor of disinfection byproducts such as Total Trihalomethanes (TTHM) in drinking water treatment. Real-time knowledge of TOC distribution in source water can help treatment operation to...

  1. Contributions to the Operating Systems Standards Working Group of the Navy Next Generation Computer Resources Program for FY 1989 - FY 1991

    DTIC Science & Technology

    1991-10-01

    Real - Time Operating System , Hide Tokuda, et al., Carnegie Mellon University "* MARUTI, Hard Real - Time Operating System , Ashok...Architecture, Fred J. Pollack and Kevin C. Kahn, BiiN 10:00 - 10:20 BREAK 10:20 - 12:20 Session VII - Chair: James G. Smith, ONR • A Real - Time Operating System for...Detailed Description * POSIX: Detailed Description * V: Detailed Description * Real - Time Operating System

  2. A digital combining-weight estimation algorithm for broadband sources with the array feed compensation system

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Rodemich, E. R.

    1994-01-01

    An algorithm for estimating the optimum combining weights for the Ka-band (33.7-GHz) array feed compensation system was developed and analyzed. The input signal is assumed to be broadband radiation of thermal origin, generated by a distant radio source. Currently, seven video converters operating in conjunction with the real-time correlator are used to obtain these weight estimates. The algorithm described here requires only simple operations that can be implemented on a PC-based combining system, greatly reducing the amount of hardware. Therefore, system reliability and portability will be improved.

  3. Toward real-time regional earthquake simulation of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  4. Operational Use of Near Real Time Remote sensing Data at the U.S. National Ice Center (NIC)

    NASA Astrophysics Data System (ADS)

    Clemente-Colon, P.

    2012-12-01

    The National Ice Center (NIC) is a U.S. Government agency that brings together the Department of Defense - Navy, Department of Commerce - National Oceanic and Atmospheric Administration (NOAA), and the Department of Homeland Security - U.S. Coast Guard (USCG) to support coastal and marine sea ice operations and research in the Polar Regions. The NIC provides specialized strategic and tactical ice analyses to meet the operational needs of the U.S. government and is the only operational ice service in the world that monitors sea ice in both the Arctic, Antarctic regions as well as in other ice infested waters. NIC utilizes multiple sources of near real time satellite and in-situ observations as well as NWP and ocean-sea ice model output to produce sea ice analyses. Key users of NIC products in the Arctic include the Navy submarine force, National Weather Service, USCG and Canadian Coast Guard icebreakers, Military Sealift Command on re-supply missions to Antarctica and Greenland, and NOAA research vessels operating near sea ice cover in both hemispheres as well. Time series of NIC weekly or bi-weekly ice analysis charts, daily marginal ice zone and ice edge routine products, as well as tactical support annotated imagery are generated by expert analysts with wide access to near real time satellite imagery from VIS/IR to passive and active microwave sensors. The status of these satellite data streams and the expected availability of new capabilities in the near future will be discussed.

  5. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis

    NASA Astrophysics Data System (ADS)

    Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C.

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (˜285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition.

  6. Real-Time N2O Gas Detection System for Agricultural Production Using a 4.6-μm-Band Laser Source Based on a Periodically Poled LiNbO3 Ridge Waveguide

    PubMed Central

    Tokura, Akio; Asobe, Masaki; Enbutsu, Koji; Yoshihara, Toshihiro; Hashida, Shin-nosuke; Takenouchi, Hirokazu

    2013-01-01

    This article describes a gas monitoring system for detecting nitrous oxide (N2O) gas using a compact mid-infrared laser source based on difference-frequency generation in a quasi-phase-matched LiNbO3 waveguide. We obtained a stable output power of 0.62 mW from a 4.6-μm-band continuous-wave laser source operating at room temperature. This laser source enabled us to detect atmospheric N2O gas at a concentration as low as 35 parts per billion. Using this laser source, we constructed a new real-time in-situ monitoring system for detecting N2O gas emitted from potted plants. A few weeks of monitoring with the developed detection system revealed a strong relationship between nitrogen fertilization and N2O emission. This system is promising for the in-situ long-term monitoring of N2O in agricultural production, and it is also applicable to the detection of other greenhouse gases. PMID:23921829

  7. Real-time N2O gas detection system for agricultural production using a 4.6-µm-band laser source based on a periodically poled LiNbO3 ridge waveguide.

    PubMed

    Tokura, Akio; Asobe, Masaki; Enbutsu, Koji; Yoshihara, Toshihiro; Hashida, Shin-nosuke; Takenouchi, Hirokazu

    2013-08-05

    This article describes a gas monitoring system for detecting nitrous oxide (N2O) gas using a compact mid-infrared laser source based on difference-frequency generation in a quasi-phase-matched LiNbO3 waveguide. We obtained a stable output power of 0.62 mW from a 4.6-μm-band continuous-wave laser source operating at room temperature. This laser source enabled us to detect atmospheric N2O gas at a concentration as low as 35 parts per billion. Using this laser source, we constructed a new real-time in-situ monitoring system for detecting N2O gas emitted from potted plants. A few weeks of monitoring with the developed detection system revealed a strong relationship between nitrogen fertilization and N2O emission. This system is promising for the in-situ long-term monitoring of N2O in agricultural production, and it is also applicable to the detection of other greenhouse gases.

  8. Real Time, On Line Crop Monitoring and Analysis with Near Global Landsat-class Mosaics

    NASA Astrophysics Data System (ADS)

    Varlyguin, D.; Hulina, S.; Crutchfield, J.; Reynolds, C. A.; Frantz, R.

    2015-12-01

    The presentation will discuss the current status of GDA technology for operational, automated generation of 10-30 meter near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A imagery will be added once it is operationally available. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world and 16 day time window. 2014-most current dates are supported. The mosaics are updated in real-time, as soon as GDA downloads Landsat imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics can be used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform. The imagery is of great value for improved, persistent monitoring of global croplands and for the operational in-season analysis and mapping of crops across the globe in USDA FAS purview as mandated by the US government. The presentation will overview operational processing of Landsat-class mosaics in support of USDA FAS efforts and will look into 2015 and beyond.

  9. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  10. Overview of the NASA Wallops Flight Facility Mobile Range Control System

    NASA Technical Reports Server (NTRS)

    Davis, Rodney A.; Semancik, Susan K.; Smith, Donna C.; Stancil, Robert K.

    1999-01-01

    The NASA GSFC's Wallops Flight Facility (WFF) Mobile Range Control System (MRCS) is based on the functionality of the WFF Range Control Center at Wallops Island, Virginia. The MRCS provides real time instantaneous impact predictions, real time flight performance data, and other critical information needed by mission and range safety personnel in support of range operations at remote launch sites. The MRCS integrates a PC telemetry processing system (TELPro), a PC radar processing system (PCDQS), multiple Silicon Graphics display workstations (IRIS), and communication links within a mobile van for worldwide support of orbital, suborbital, and aircraft missions. This paper describes the MRCS configuration; the TELPro's capability to provide single/dual telemetry tracking and vehicle state data processing; the PCDQS' capability to provide real time positional data and instantaneous impact prediction for up to 8 data sources; and the IRIS' user interface for setup/display options. With portability, PC-based data processing, high resolution graphics, and flexible multiple source support, the MRCS system is proving to be responsive to the ever-changing needs of a variety of increasingly complex missions.

  11. Double point source W-phase inversion: Real-time implementation and automated model selection

    USGS Publications Warehouse

    Nealy, Jennifer; Hayes, Gavin

    2015-01-01

    Rapid and accurate characterization of an earthquake source is an extremely important and ever evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa earthquake and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquake. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match published analyses of the same events.

  12. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  13. Real-time control using open source RTOS

    NASA Astrophysics Data System (ADS)

    Irwin, Philip C.; Johnson, Richard L., Jr.

    2002-12-01

    Complex telescope systems such as interferometers tend to rely heavily on hard real-time operating systems (RTOS). It has been standard practice at NASA's Jet Propulsion Laboratory (JPL) and many other institutions to use costly commercial RTOSs and hardware. After developing a real-time toolkit for VxWorks on the PowerPC platform (dubbed RTC), the interferometry group at JPL is porting this code to the real-time Application Interface (RTAI), an open source RTOS that is essentially an extension to the Linux kernel. This port has the potential to reduce software and hardware costs for future projects, while increasing the level of performance. The goals of this paper are to briefly describe the RTC toolkit, highlight the successes and pitfalls of porting the toolkit from VxWorks to Linux-RTAI, and to discuss future enhancements that will be implemented as a direct result of this port. The first port of any body of code is always the most difficult since it uncovers the OS-specific calls and forces "red flags" into those portions of the code. For this reason, It has also been a huge benefit that the project chose a generic, platform independent OS extension, ACE, and its CORBA counterpart, TAO. This port of RTC will pave the way for conversions to other environments, the most interesting of which is a non-real-time simulation environment, currently being considered by the Space Interferometry Mission (SIM) and the Terrestrial Planet Finder (TPF) Projects.

  14. Advanced Hard Real-Time Operating System, The Maruti Project. Part 1.

    DTIC Science & Technology

    1997-01-01

    REAL - TIME OPERATING SYSTEM , THE MARUTI PROJECT Part 1 of 2 Ashok K. Agrawala Satish K. Tripathi Department of Computer Science University of Maryland...Hard Real - Time Operating System , The Maruti Project DASG-60-92-C-0055 5b. Program Element # 62301E 6. Author(s) 5c. Project # DRPB Ashok K. Agrawala...SdSA94), a real - time operating system developed at the I3nversity of Maryland, and conducted extensive experiments under various task

  15. Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    PubMed Central

    Degenhart, Alan D.; Kelly, John W.; Ashmore, Robin C.; Collinger, Jennifer L.; Tyler-Kabara, Elizabeth C.; Weber, Douglas J.; Wang, Wei

    2011-01-01

    This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development. PMID:21687575

  16. Craniux: a LabVIEW-based modular software framework for brain-machine interface research.

    PubMed

    Degenhart, Alan D; Kelly, John W; Ashmore, Robin C; Collinger, Jennifer L; Tyler-Kabara, Elizabeth C; Weber, Douglas J; Wang, Wei

    2011-01-01

    This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

  17. The Swift/BAT Hard X-ray Transient Monitor: A Status Report

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Bloom, J. S.; Markwardt, C.; Miler-Jones, J.; Gehrels, N.; Kennea, J. A.; Holland, S.; Sivakoff, G. R.; Swift/BAT Team

    2013-04-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Seven years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes ~75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 223 sources have been detected in the monitor, 142 of them persistent and 81 detected only in outburst. From 2006-2013, fourteen new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.

  18. The Swift/BAT Hard X-ray Transient Monitor: A Status Report

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Swift/BAT Team

    2011-09-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Five years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes 75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 172 sources have been detected in the monitor, 89 of them persistent and 83 detected only in outburst. From 2006-2011, nine new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.

  19. A multiprocessor airborne lidar data system

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Bailey, S. A.; Heath, G. E.; Piazza, C. R.

    1988-01-01

    A new multiprocessor data acquisition system was developed for the existing Airborne Oceanographic Lidar (AOL). This implementation simultaneously utilizes five single board 68010 microcomputers, the UNIX system V operating system, and the real time executive VRTX. The original data acquisition system was implemented on a Hewlett Packard HP 21-MX 16 bit minicomputer using a multi-tasking real time operating system and a mixture of assembly and FORTRAN languages. The present collection of data sources produce data at widely varied rates and require varied amounts of burdensome real time processing and formatting. It was decided to replace the aging HP 21-MX minicomputer with a multiprocessor system. A new and flexible recording format was devised and implemented to accommodate the constantly changing sensor configuration. A central feature of this data system is the minimization of non-remote sensing bus traffic. Therefore, it is highly desirable that each micro be capable of functioning as much as possible on-card or via private peripherals. The bus is used primarily for the transfer of remote sensing data to or from the buffer queue.

  20. Paleotempestological Record of Intense Storms for the Northern Gulf of Mexico, United States

    NASA Astrophysics Data System (ADS)

    Bregy, J. C.; Wallace, D. J.

    2016-12-01

    Real-time measurements from many hundreds of GNSS tracking sites around the world are publicly available today, and the amount of streaming data is steadily increasing as national agencies densify their local and global infrastructure for natural hazard monitoring and a variety of geodetic, cadastral, and other civil applications. Thousands of such sites can soon be expected on a global scale. It is a challenge to manage and make optimal use of this massive amount of real-time data. We advocate the creation of Supersite(s), in the parlance of the U.N. Global Earth Observation System of Systems (https://www.earthobservations.org/geoss.php), to generate high level real-time data products from the raw GNSS measurements from all available sources (many thousands of sites). These products include: • High rate, real-time positioning time series for assessing rapid crustal motion due to Earthquakes, volcanic activities, land slides, etc. • Co-seismic displacement to help resolve earthquake mechanism and moment magnitude • Real-time total electron content (TEC) fluctuations to augment Dart buoy in detecting and tracking tsunamis • Aggregation of the many disparate raw data dispensation servers (Casters)Recognizing that natural hazards transcend national boundaries in terms of direct and indirect (e.g., economical, security) impact, the benefits from centralized, authoritative processing of GNSS measurements is manifold: • Offers a one-stop shop to less developed nations and institutions for raw and high-level products, in support of research and applications • Promotes the installation of tracking sites and the contribution of data from nations without the ability to process the data • Reduce dependency on local responsible agencies impacted by a natural disaster • Reliable 24/7 operations, independent of voluntary, best effort contributions from good-willing scientific organizationsThe JPL GNSS Real-Time Earthquake and Tsunami (GREAT) Alert has been operating as a prototype for such a Supersite for nearly a decade, processing in real-time data from hundreds of global and regional GNSS tracking sites. The existing operational infrastructure, complete self-sufficiency, and proven reliability can be leveraged at low cost to provide valuable natural hazard monitoring to the U.S. and the world.

  1. Novel Acoustic Techniques for Assessing Fish Schooling in the Context of an Operational Ocean Observatory

    DTIC Science & Technology

    2007-09-30

    adaptively using real-time data collected with the international constellation of ocean color satellites, a nested grid of HF radars, and an...scattering source was identified during the experiment as dense, monotypic aggregations of a pelagic gastropod were located during a 2-day period. These

  2. UNAVCO GPS High-Rate and Real-Time Products and Services: Building a next generation geodetic network.

    NASA Astrophysics Data System (ADS)

    Mencin, David; Meertens, Charles; Mattioli, Glen; Feaux, Karl; Looney, Sara; Sievers, Charles; Austin, Ken

    2013-04-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1-5 Hz) and low latency (<1 s). Broad community interest in these data is growing rapidly because these data will have the potential to improve our understanding in diverse areas of geophysics including properties of seismic, volcanic, magmatic and tsunami deformation sources, and moreover profoundly transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in the UNAVCO data center. Further, through the UNAVCO core proposal (GAGE), currently under review at NSF, UNAVCO has proposed upgrading a significant portion of the ~1100 GPS stations that PBO currently operates to real-time high-rate capability to address community science and operational needs. In addition, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. In preparation for this increased emphasis on high-rate GPS data, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, 2012, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time, high-rate GPS data over the next decade.

  3. Visualization of Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.

  4. A Taxonomy of Coordination Mechanisms Used in Real-Time Software Based on Domain Analysis

    DTIC Science & Technology

    1993-12-01

    real - time operating system . CMU/SEI-93-TR-34 3 1.3 Related Work Several taxonomies...coordination methods supported by a real - time operating system is presented by Ripps. The classification of the coordination methods rests upon a set...mechanisms avail- able today. The classification proposed by Ripps [Ripps 89] includes the mechanisms supported by a real - time operating system .

  5. The Power Plant Operating Data Based on Real-time Digital Filtration Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Ning; Chen, Ya-mi; Wang, Hui-jie

    2018-03-01

    Real-time monitoring of the data of the thermal power plant was the basis of accurate analyzing thermal economy and accurate reconstruction of the operating state. Due to noise interference was inevitable; we need real-time monitoring data filtering to get accurate information of the units and equipment operating data of the thermal power plant. Real-time filtering algorithm couldn’t be used to correct the current data with future data. Compared with traditional filtering algorithm, there were a lot of constraints. First-order lag filtering method and weighted recursive average filtering method could be used for real-time filtering. This paper analyzes the characteristics of the two filtering methods and applications for real-time processing of the positive spin simulation data, and the thermal power plant operating data. The analysis was revealed that the weighted recursive average filtering method applied to the simulation and real-time plant data filtering achieved very good results.

  6. Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cody, Robert B.; Dane, A. John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  7. Soft ionization of saturated hydrocarbons, alcohols and nonpolar compounds by negative-ion direct analysis in real-time mass spectrometry.

    PubMed

    Cody, Robert B; Dane, A John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾(•). No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  8. Toward transient finite element simulation of thermal deformation of machine tools in real-time

    NASA Astrophysics Data System (ADS)

    Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg

    2018-01-01

    Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.

  9. Real-Time Systems

    DTIC Science & Technology

    1992-02-01

    Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real - time operating system , real-time programming language, real-time system, soft real-time system.

  10. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis.

    PubMed

    Gann, E; Young, A T; Collins, B A; Yan, H; Nasiatka, J; Padmore, H A; Ade, H; Hexemer, A; Wang, C

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (∼285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition. © 2012 American Institute of Physics

  11. Testing the seismology-based landquake monitoring system

    NASA Astrophysics Data System (ADS)

    Chao, Wei-An

    2016-04-01

    I have developed a real-time landquake monitoring system (RLMs), which monitor large-scale landquake activities in the Taiwan using real-time seismic network of Broadband Array in Taiwan for Seismology (BATS). The RLM system applies a grid-based general source inversion (GSI) technique to obtain the preliminary source location and force mechanism. A 2-D virtual source-grid on the Taiwan Island is created with an interval of 0.2° in both latitude and longitude. The depth of each grid point is fixed on the free surface topography. A database is stored on the hard disk for the synthetics, which are obtained using Green's functions computed by the propagator matrix approach for 1-D average velocity model, at all stations from each virtual source-grid due to nine elementary source components: six elementary moment tensors and three orthogonal (north, east and vertical) single-forces. Offline RLM system was carried out for events detected in previous studies. An important aspect of the RLM system is the implementation of GSI approach for different source types (e.g., full moment tensor, double couple faulting, and explosion source) by the grid search through the 2-D virtual source to automatically identify landquake event based on the improvement in waveform fitness and evaluate the best-fit solution in the monitoring area. With this approach, not only the force mechanisms but also the event occurrence time and location can be obtained simultaneously about 6-8 min after an occurrence of an event. To improve the insufficient accuracy of GSI-determined lotion, I further conduct a landquake epicenter determination (LED) method that maximizes the coherency of the high-frequency (1-3 Hz) horizontal envelope functions to determine the final source location. With good knowledge about the source location, I perform landquake force history (LFH) inversion to investigate the source dynamics (e.g., trajectory) for the relatively large-sized landquake event. With providing aforementioned source information in real-time, the government and emergency response agencies have sufficient reaction time for rapid assessment and response to landquake hazards. Since 2016, the RLM system has operated online.

  12. The Development of an Open Hardware and Software System Onboard Unmanned Aerial Vehicles to Monitor Concentrated Solar Power Plants

    PubMed Central

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Pérez Porras, Fernando; Meroño-Larriva, José Emilio; García-Ferrer, Alfonso

    2017-01-01

    Concentrated solar power (CSP) plants are increasingly gaining interest as a source of renewable energy. These plants face several technical problems and the inspection of components such as absorber tubes in parabolic trough concentrators (PTC), which are widely deployed, is necessary to guarantee plant efficiency. This article presents a system for real-time industrial inspection of CSP plants using low-cost, open-source components in conjunction with a thermographic sensor and an unmanned aerial vehicle (UAV). The system, available in open-source hardware and software, is designed to be employed independently of the type of device used for inspection (laptop, smartphone, tablet or smartglasses) and its operating system. Several UAV flight missions were programmed as follows: flight altitudes at 20, 40, 60, 80, 100 and 120 m above ground level; and three cruising speeds: 5, 7 and 10 m/s. These settings were chosen and analyzed in order to optimize inspection time. The results indicate that it is possible to perform inspections by an UAV in real time at CSP plants as a means of detecting anomalous absorber tubes and improving the effectiveness of methodologies currently being utilized. Moreover, aside from thermographic sensors, this contribution can be applied to other sensors and can be used in a broad range of applications where real-time georeferenced data visualization is necessary. PMID:28594353

  13. The Development of an Open Hardware and Software System Onboard Unmanned Aerial Vehicles to Monitor Concentrated Solar Power Plants.

    PubMed

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Pérez Porras, Fernando; Meroño-Larriva, José Emilio; García-Ferrer, Alfonso

    2017-06-08

    Concentrated solar power (CSP) plants are increasingly gaining interest as a source of renewable energy. These plants face several technical problems and the inspection of components such as absorber tubes in parabolic trough concentrators (PTC), which are widely deployed, is necessary to guarantee plant efficiency. This article presents a system for real-time industrial inspection of CSP plants using low-cost, open-source components in conjunction with a thermographic sensor and an unmanned aerial vehicle (UAV). The system, available in open-source hardware and software, is designed to be employed independently of the type of device used for inspection (laptop, smartphone, tablet or smartglasses) and its operating system. Several UAV flight missions were programmed as follows: flight altitudes at 20, 40, 60, 80, 100 and 120 m above ground level; and three cruising speeds: 5, 7 and 10 m/s. These settings were chosen and analyzed in order to optimize inspection time. The results indicate that it is possible to perform inspections by an UAV in real time at CSP plants as a means of detecting anomalous absorber tubes and improving the effectiveness of methodologies currently being utilized. Moreover, aside from thermographic sensors, this contribution can be applied to other sensors and can be used in a broad range of applications where real-time georeferenced data visualization is necessary.

  14. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Xiong, C. Y.; Chen, J.; Li, Q.; Liu, Y.; Gao, L.

    2014-12-01

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (˜100-˜500 kHz/10 min) and decay of laser power (˜10%-˜20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  15. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak.

    PubMed

    Xiong, C Y; Chen, J; Li, Q; Liu, Y; Gao, L

    2014-12-01

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (∼100-∼500 kHz/10 min) and decay of laser power (∼10%-∼20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  16. Transmission line relay mis-operation detection based on time-synchronized field data

    DOE PAGES

    Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen

    2015-05-04

    In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such,more » it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.« less

  17. Hurricane Wave Topography and Directional Wave Spectra in Near Real-Time

    DTIC Science & Technology

    2005-09-30

    Develop and/or modify the real - time operating system and analysis techniques and programs of the NASA Scanning Radar Altimeter (SRA) to process the...Wayne Wright is responsible for the real - time operating system of the SRA and making whatever modifications are required to enable near real-time

  18. Convergence in full motion video processing, exploitation, and dissemination and activity based intelligence

    NASA Astrophysics Data System (ADS)

    Phipps, Marja; Lewis, Gina

    2012-06-01

    Over the last decade, intelligence capabilities within the Department of Defense/Intelligence Community (DoD/IC) have evolved from ad hoc, single source, just-in-time, analog processing; to multi source, digitally integrated, real-time analytics; to multi-INT, predictive Processing, Exploitation and Dissemination (PED). Full Motion Video (FMV) technology and motion imagery tradecraft advancements have greatly contributed to Intelligence, Surveillance and Reconnaissance (ISR) capabilities during this timeframe. Imagery analysts have exploited events, missions and high value targets, generating and disseminating critical intelligence reports within seconds of occurrence across operationally significant PED cells. Now, we go beyond FMV, enabling All-Source Analysts to effectively deliver ISR information in a multi-INT sensor rich environment. In this paper, we explore the operational benefits and technical challenges of an Activity Based Intelligence (ABI) approach to FMV PED. Existing and emerging ABI features within FMV PED frameworks are discussed, to include refined motion imagery tools, additional intelligence sources, activity relevant content management techniques and automated analytics.

  19. Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation

    DTIC Science & Technology

    2016-03-17

    ARL-TR-7629 ● MAR 2016 US Army Research Laboratory Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time...ARL-TR-7629 ● MAR 2016 US Army Research Laboratory Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation...SUBTITLE Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  20. Managing Contention and Timing Constraints in a Real-Time Database System

    DTIC Science & Technology

    1995-01-01

    In order to realize many of these goals, StarBase is constructed on top of RT-Mach, a real - time operating system developed at Carnegie Mellon...University [ll]. StarBase differs from previous RT-DBMS work [l, 2, 31 in that a) it relies on a real - time operating system which provides priority...CPU and resource scheduling pro- vided by tlhe underlying real - time operating system . Issues of data contention are dealt with by use of a priority

  1. Performance Evaluation of a Firm Real-Time DataBase System

    DTIC Science & Technology

    1995-01-01

    after its deadline has passed. StarBase differs from previous real-time database work in that a) it relies on a real - time operating system which...StarBase, running on a real - time operating system kernel, RT-Mach. We discuss how performance was evaluated in StarBase using the StarBase workload

  2. Time-critical multirate scheduling using contemporary real-time operating system services

    NASA Technical Reports Server (NTRS)

    Eckhardt, D. E., Jr.

    1983-01-01

    Although real-time operating systems provide many of the task control services necessary to process time-critical applications (i.e., applications with fixed, invariant deadlines), it may still be necessary to provide a scheduling algorithm at a level above the operating system in order to coordinate a set of synchronized, time-critical tasks executing at different cyclic rates. The scheduling requirements for such applications and develops scheduling algorithms using services provided by contemporary real-time operating systems.

  3. A High-Speed, Real-Time Visualization and State Estimation Platform for Monitoring and Control of Electric Distribution Systems: Implementation and Field Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake; Gotseff, Peter; Giraldez, Julieta

    Continued deployment of renewable and distributed energy resources is fundamentally changing the way that electric distribution systems are controlled and operated; more sophisticated active system control and greater situational awareness are needed. Real-time measurements and distribution system state estimation (DSSE) techniques enable more sophisticated system control and, when combined with visualization applications, greater situational awareness. This paper presents a novel demonstration of a high-speed, real-time DSSE platform and related control and visualization functionalities, implemented using existing open-source software and distribution system monitoring hardware. Live scrolling strip charts of meter data and intuitive annotated map visualizations of the entire state (obtainedmore » via DSSE) of a real-world distribution circuit are shown. The DSSE implementation is validated to demonstrate provision of accurate voltage data. This platform allows for enhanced control and situational awareness using only a minimum quantity of distribution system measurement units and modest data and software infrastructure.« less

  4. Transient Turbine Engine Modeling with Hardware-in-the-Loop Power Extraction (PREPRINT)

    DTIC Science & Technology

    2008-07-01

    Furthermore, it must be compatible with a real - time operating system that is capable of running the simulation. For some models, especially those that use...problem of interfacing the engine/control model to a real - time operating system and associated lab hardware becomes a problem of interfacing these...model in real-time. This requires the use of a real - time operating system and a compatible I/O (input/output) board. Figure 1 illustrates the HIL

  5. Initial Demonstration of the Real-Time Safety Monitoring Framework for the National Airspace System Using Flight Data

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Daigle, Matthew; Goebel, Kai; Spirkovska, Lilly; Sankararaman, Shankar; Ossenfort, John; Kulkarni, Chetan; McDermott, William; Poll, Scott

    2016-01-01

    As new operational paradigms and additional aircraft are being introduced into the National Airspace System (NAS), maintaining safety in such a rapidly growing environment becomes more challenging. It is therefore desirable to have an automated framework to provide an overview of the current safety of the airspace at different levels of granularity, as well an understanding of how the state of the safety will evolve into the future given the anticipated flight plans, weather forecast, predicted health of assets in the airspace, and so on. Towards this end, as part of our earlier work, we formulated the Real-Time Safety Monitoring (RTSM) framework for monitoring and predicting the state of safety and to predict unsafe events. In our previous work, the RTSM framework was demonstrated in simulation on three different constructed scenarios. In this paper, we further develop the framework and demonstrate it on real flight data from multiple data sources. Specifically, the flight data is obtained through the Shadow Mode Assessment using Realistic Technologies for the National Airspace System (SMART-NAS) Testbed that serves as a central point of collection, integration, and access of information from these different data sources. By testing and evaluating using real-world scenarios, we may accelerate the acceptance of the RTSM framework towards deployment. In this paper we demonstrate the framework's capability to not only estimate the state of safety in the NAS, but predict the time and location of unsafe events such as a loss of separation between two aircraft, or an aircraft encountering convective weather. The experimental results highlight the capability of the approach, and the kind of information that can be provided to operators to improve their situational awareness in the context of safety.

  6. Resolving Peak Ground Displacements in Real-Time GNSS PPP Solutions

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K. M.; Mencin, D.; Mattioli, G. S.; Sievers, C.; Fox, O.

    2017-12-01

    The goal of early earthquake warning (EEW) systems is to provide warning of impending ground shaking to the public, infrastructure managers, and emergency responders. Shaking intensity can be estimated using Ground Motion Prediction Equations (GMPEs), but only if site characteristics, hypocentral distance and event magnitude are known. In recent years work has been done analyzing the first few seconds of the seismic P wave to derive event location and magnitude. While initial rupture locations seem to be sufficiently constrained, it has been shown that P-wave magnitude estimates tend to saturate at M>7. Regions where major and great earthquakes occur may therefore be vulnerable to an underestimation of shaking intensity if only P waves magnitudes are used. Crowell et al., (2013) first demonstrated that Peak Ground Displacement (PGD) from long-period surface waves recorded by GNSS receivers could provide a source-scaling relation that does not saturate with event magnitude. GNSS PGD derived magnitudes could improve the accuracy of EEW GMPE calculations. If such a source-scaling method were to be implemented in EEW algorithms it is critical that the noise levels in real-time GNSS processed time-series are low enough to resolve long-period surface waves. UNAVCO currently operates 770 real-time GNSS sites, most of which are located along the North American-Pacific Plate Boundary. In this study, we present an analysis of noise levels observed in the GNSS Precise Point Positioning (PPP) solutions generated and distributed in real-time by UNAVCO for periods from seconds to hours. The analysis is performed using the 770 sites in the real-time network and data collected through July 2017. We compare noise levels determined from various monument types and receiver-antenna configurations. This analysis gives a robust estimation of noise levels in PPP solutions because the solutions analyzed are those that were generated in real-time and thus contain all the problems observed in routine network operations e.g., data outages, high latencies and data from research-quality to less ideal monumentation. Using these noise estimates we can identify which sites are best able to resolve the PGDs for earthquakes over a range of focal distances and those that may not using their current configurations.

  7. A High Performance Computer Architecture for Embedded And/Or Multi-Computer Applications

    DTIC Science & Technology

    1990-09-01

    commercially available, real - time operating system . CHOICES and ARTS are real-time operating systems developed at the University of Illinois and CMU...respectively. Selection of a real - time operating system will be made in the next phase of the project. U BIBLIOGRAPHY U Wulf, Wm. A. The WM Computer

  8. Real time selective harmonic minimization for multilevel inverters using genetic algorithm and artifical neural network angle generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filho, Faete J; Tolbert, Leon M; Ozpineci, Burak

    2012-01-01

    The work developed here proposes a methodology for calculating switching angles for varying DC sources in a multilevel cascaded H-bridges converter. In this approach the required fundamental is achieved, the lower harmonics are minimized, and the system can be implemented in real time with low memory requirements. Genetic algorithm (GA) is the stochastic search method to find the solution for the set of equations where the input voltages are the known variables and the switching angles are the unknown variables. With the dataset generated by GA, an artificial neural network (ANN) is trained to store the solutions without excessive memorymore » storage requirements. This trained ANN then senses the voltage of each cell and produces the switching angles in order to regulate the fundamental at 120 V and eliminate or minimize the low order harmonics while operating in real time.« less

  9. Energy storage arbitrage under day-ahead and real-time price uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, Dheepak; Uckun, Canan; Zhou, Zhi

    Electricity markets must match real-time supply and demand of electricity. With increasing penetration of renewable resources, it is important that this balancing is done effectively, considering the high uncertainty of wind and solar energy. Storing electrical energy can make the grid more reliable and efficient and energy storage is proposed as a complement to highly variable renewable energy sources. However, for investments in energy storage to increase, participating in the market must become economically viable for owners. This paper proposes a stochastic formulation of a storage owner’s arbitrage profit maximization problem under uncertainty in day-ahead (DA) and real-time (RT) marketmore » prices. The proposed model helps storage owners in market bidding and operational decisions and in estimation of the economic viability of energy storage. Finally, case study results on realistic market price data show that the novel stochastic bidding approach does significantly better than the deterministic benchmark.« less

  10. Overview of the Benzene and Other Toxics Exposure (BEE-TEX) Field Study.

    PubMed

    Olaguer, Eduardo P

    2015-01-01

    The Benzene and other Toxics Exposure (BEE-TEX) field study was an experimental campaign designed to demonstrate novel methods for measuring ambient concentrations of hazardous air pollutants (HAPs) in real time and to attribute these concentrations to quantified releases from specific emission points in industrial facilities while operating outside facility fence lines. BEE-TEX was conducted in February 2015 at three neighboring communities in the Houston Ship Channel of Texas, where a large number of petrochemical facilities are concentrated. The novel technologies deployed during BEE-TEX included: (1) tomographic remote sensing based on differential optical absorption spectroscopy; (2) real-time broadcasting of ambient air monitoring data over the World Wide Web; (3) real-time source attribution and quantification of HAP emissions based on either tomographic or mobile measurement platforms; and (4) the use of cultured human lung cells in vitro as portable indicators of HAP exposure.

  11. Overview of the Benzene and Other Toxics Exposure (BEE-TEX) Field Study

    PubMed Central

    Olaguer, Eduardo P.

    2015-01-01

    The Benzene and other Toxics Exposure (BEE-TEX) field study was an experimental campaign designed to demonstrate novel methods for measuring ambient concentrations of hazardous air pollutants (HAPs) in real time and to attribute these concentrations to quantified releases from specific emission points in industrial facilities while operating outside facility fence lines. BEE-TEX was conducted in February 2015 at three neighboring communities in the Houston Ship Channel of Texas, where a large number of petrochemical facilities are concentrated. The novel technologies deployed during BEE-TEX included: (1) tomographic remote sensing based on differential optical absorption spectroscopy; (2) real-time broadcasting of ambient air monitoring data over the World Wide Web; (3) real-time source attribution and quantification of HAP emissions based on either tomographic or mobile measurement platforms; and (4) the use of cultured human lung cells in vitro as portable indicators of HAP exposure. PMID:26549972

  12. Energy storage arbitrage under day-ahead and real-time price uncertainty

    DOE PAGES

    Krishnamurthy, Dheepak; Uckun, Canan; Zhou, Zhi; ...

    2017-04-04

    Electricity markets must match real-time supply and demand of electricity. With increasing penetration of renewable resources, it is important that this balancing is done effectively, considering the high uncertainty of wind and solar energy. Storing electrical energy can make the grid more reliable and efficient and energy storage is proposed as a complement to highly variable renewable energy sources. However, for investments in energy storage to increase, participating in the market must become economically viable for owners. This paper proposes a stochastic formulation of a storage owner’s arbitrage profit maximization problem under uncertainty in day-ahead (DA) and real-time (RT) marketmore » prices. The proposed model helps storage owners in market bidding and operational decisions and in estimation of the economic viability of energy storage. Finally, case study results on realistic market price data show that the novel stochastic bidding approach does significantly better than the deterministic benchmark.« less

  13. High-fidelity real-time maritime scene rendering

    NASA Astrophysics Data System (ADS)

    Shyu, Hawjye; Taczak, Thomas M.; Cox, Kevin; Gover, Robert; Maraviglia, Carlos; Cahill, Colin

    2011-06-01

    The ability to simulate authentic engagements using real-world hardware is an increasingly important tool. For rendering maritime environments, scene generators must be capable of rendering radiometrically accurate scenes with correct temporal and spatial characteristics. When the simulation is used as input to real-world hardware or human observers, the scene generator must operate in real-time. This paper introduces a novel, real-time scene generation capability for rendering radiometrically accurate scenes of backgrounds and targets in maritime environments. The new model is an optimized and parallelized version of the US Navy CRUISE_Missiles rendering engine. It was designed to accept environmental descriptions and engagement geometry data from external sources, render a scene, transform the radiometric scene using the electro-optical response functions of a sensor under test, and output the resulting signal to real-world hardware. This paper reviews components of the scene rendering algorithm, and details the modifications required to run this code in real-time. A description of the simulation architecture and interfaces to external hardware and models is presented. Performance assessments of the frame rate and radiometric accuracy of the new code are summarized. This work was completed in FY10 under Office of Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP) funding and will undergo a validation process in FY11.

  14. openECA Platform and Analytics Alpha Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Russell

    The objective of the Open and Extensible Control and Analytics (openECA) Platform for Phasor Data project is to develop an open source software platform that significantly accelerates the production, use, and ongoing development of real-time decision support tools, automated control systems, and off-line planning systems that (1) incorporate high-fidelity synchrophasor data and (2) enhance system reliability while enabling the North American Electric Reliability Corporation (NERC) operating functions of reliability coordinator, transmission operator, and/or balancing authority to be executed more effectively.

  15. openECA Platform and Analytics Beta Demonstration Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Russell

    The objective of the Open and Extensible Control and Analytics (openECA) Platform for Phasor Data project is to develop an open source software platform that significantly accelerates the production, use, and ongoing development of real-time decision support tools, automated control systems, and off-line planning systems that (1) incorporate high-fidelity synchrophasor data and (2) enhance system reliability while enabling the North American Electric Reliability Corporation (NERC) operating functions of reliability coordinator, transmission operator, and/or balancing authority to be executed more effectively.

  16. Real-Time Microscopic Monitoring of Flow, Voltage and Current in the Proton Exchange Membrane Water Electrolyzer.

    PubMed

    Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan

    2018-03-15

    Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.

  17. Real-Time Microscopic Monitoring of Flow, Voltage and Current in the Proton Exchange Membrane Water Electrolyzer

    PubMed Central

    Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan

    2018-01-01

    Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life. PMID:29543734

  18. Visualization of multi-INT fusion data using Java Viewer (JVIEW)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Aved, Alex; Nagy, James; Scott, Stephen

    2014-05-01

    Visualization is important for multi-intelligence fusion and we demonstrate issues for presenting physics-derived (i.e., hard) and human-derived (i.e., soft) fusion results. Physics-derived solutions (e.g., imagery) typically involve sensor measurements that are objective, while human-derived (e.g., text) typically involve language processing. Both results can be geographically displayed for user-machine fusion. Attributes of an effective and efficient display are not well understood, so we demonstrate issues and results for filtering, correlation, and association of data for users - be they operators or analysts. Operators require near-real time solutions while analysts have the opportunities of non-real time solutions for forensic analysis. In a use case, we demonstrate examples using the JVIEW concept that has been applied to piloting, space situation awareness, and cyber analysis. Using the open-source JVIEW software, we showcase a big data solution for multi-intelligence fusion application for context-enhanced information fusion.

  19. Minimalist design of a robust real-time quantum random number generator

    NASA Astrophysics Data System (ADS)

    Kravtsov, K. S.; Radchenko, I. V.; Kulik, S. P.; Molotkov, S. N.

    2015-08-01

    We present a simple and robust construction of a real-time quantum random number generator (QRNG). Our minimalist approach ensures stable operation of the device as well as its simple and straightforward hardware implementation as a stand-alone module. As a source of randomness the device uses measurements of time intervals between clicks of a single-photon detector. The obtained raw sequence is then filtered and processed by a deterministic randomness extractor, which is realized as a look-up table. This enables high speed on-the-fly processing without the need of extensive computations. The overall performance of the device is around 1 random bit per detector click, resulting in 1.2 Mbit/s generation rate in our implementation.

  20. Real-Time IRI driven by GIRO data

    NASA Astrophysics Data System (ADS)

    Galkin, Ivan; Huang, Xueqin; Reinisch, Bodo; Bilitza, Dieter; Vesnin, Artem

    Real-time extensions of the empirical International Reference Ionosphere (IRI) model are based on assimilative techniques that preserve the IRI formalism which is optimized for the description of climatological ionospheric features. The Global Ionosphere Radio Observatory (GIRO) team has developed critical parts of an IRI Real Time Assimilative Model (IRTAM) for the global ionospheric plasma distribution using measured data available in real time from ~50 ionosondes of the GIRO network, The current assimilation results present global assimilative maps of foF2 and hmF2 that reproduce available data at the sensor sites and smoothly return to the climatological specifications when and where the data are missing, and are free from artificial sharp gradients and short-lived artifacts when viewed in time progression. Animated real-time maps of foF2 and hmF2 are published with a few minutes latency at http://giro.uml.edu/IRTAM/. Our real-time IRI modeling uses morphing, a technique that transforms the climatological ionospheric specifications to match the observations by iteratively computing corrections to the original coefficients of the diurnal/spatial expansions, used in IRI to map the key ionospheric characteristics, while keeping the IRI expansion basis formalism intact. Computation of the updated coefficient set for a given point in time includes analysis of the latest 24-hour history of observations, which allows the morphing technique to sense evolving ionospheric dynamics even with a sparse sensor network. A Non-linear Error Compensation Technique for Associative Restoration (NECTAR), one of the features in our morphing approach, has been in operation at the Lowell GIRO Data Center since 2013. The cornerstone of NECTAR is a recurrent neural network optimizer that is responsible for smoothing the transitions between the grid cells where observations are available. NECTAR has proved suitable for real-time operations that require the assimilation code to be considerate of data uncertainties (noise) and immune to data errors. Future IRTAM work is directed toward accepting a greater diversity of near-real-time sensor data, and the paper discusses potential new data sources and challenges associated with their assimilation.

  1. Real-Time Earthquake Analysis for Disaster Mitigation (READI) Network

    NASA Astrophysics Data System (ADS)

    Bock, Y.

    2014-12-01

    Real-time GNSS networks are making a significant impact on our ability to forecast, assess, and mitigate the effects of geological hazards. I describe the activities of the Real-time Earthquake Analysis for Disaster Mitigation (READI) working group. The group leverages 600+ real-time GPS stations in western North America operated by UNAVCO (PBO network), Central Washington University (PANGA), US Geological Survey & Scripps Institution of Oceanography (SCIGN project), UC Berkeley & US Geological Survey (BARD network), and the Pacific Geosciences Centre (WCDA project). Our goal is to demonstrate an earthquake and tsunami early warning system for western North America. Rapid response is particularly important for those coastal communities that are in the near-source region of large earthquakes and may have only minutes of warning time, and who today are not adequately covered by existing seismic and basin-wide ocean-buoy monitoring systems. The READI working group is performing comparisons of independent real time analyses of 1 Hz GPS data for station displacements and is participating in government-sponsored earthquake and tsunami exercises in the Western U.S. I describe a prototype seismogeodetic system using a cluster of southern California stations that includes GNSS tracking and collocation with MEMS accelerometers for real-time estimation of seismic velocity and displacement waveforms, which has advantages for improved earthquake early warning and tsunami forecasts compared to seismic-only or GPS-only methods. The READI working group's ultimate goal is to participate in an Indo-Pacific Tsunami early warning system that utilizes GNSS real-time displacements and ionospheric measurements along with seismic, near-shore buoys and ocean-bottom pressure sensors, where available, to rapidly estimate magnitude and finite fault slip models for large earthquakes, and then forecast tsunami source, energy scale, geographic extent, inundation and runup. This will require cooperation with other real-time efforts around the Pacific Rim in terms of sharing, analysis centers, and advisory bulletins to the responsible government agencies. The IAG's Global Geodetic Observing System (GGOS), in particular its natural hazards theme, provides a natural umbrella for achieving this objective.

  2. Rnomads: An R Interface with the NOAA Operational Model Archive and Distribution System

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.

    2014-12-01

    The National Oceanic and Atmospheric Administration Operational Model Archive and Distribution System (NOMADS) facilitates rapid delivery of real time and archived environmental data sets from multiple agencies. These data are distributed free to the scientific community, industry, and the public. The rNOMADS package provides an interface between NOMADS and the R programming language. Like R itself, rNOMADS is open source and cross platform. It utilizes server-side functionality on the NOMADS system to subset model outputs for delivery to client R users. There are currently 57 real time and 10 archived models available through rNOMADS. Atmospheric models include the Global Forecast System and North American Mesoscale. Oceanic models include WAVEWATCH III and U. S. Navy Operational Global Ocean Model. rNOMADS has been downloaded 1700 times in the year since it was released. At the time of writing, it is being used for wind and solar power modeling, climate monitoring related to food security concerns, and storm surge/inundation calculations, among others. We introduce this new package and show how it can be used to extract data for infrasonic waveform modeling in the atmosphere.

  3. Real-Time GPS Monitoring for Earthquake Rapid Assessment in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Guillemot, C.; Langbein, J. O.; Murray, J. R.

    2012-12-01

    The U.S. Geological Survey Earthquake Science Center has deployed a network of eight real-time Global Positioning System (GPS) stations in the San Francisco Bay area and is implementing software applications to continuously evaluate the status of the deformation within the network. Real-time monitoring of the station positions is expected to provide valuable information for rapidly estimating source parameters should a large earthquake occur in the San Francisco Bay area. Because earthquake response applications require robust data access, as a first step we have developed a suite of web-based applications which are now routinely used to monitor the network's operational status and data streaming performance. The web tools provide continuously updated displays of important telemetry parameters such as data latency and receive rates, as well as source voltage and temperature information within each instrument enclosure. Automated software on the backend uses the streaming performance data to mitigate the impact of outages, radio interference and bandwidth congestion on deformation monitoring operations. A separate set of software applications manages the recovery of lost data due to faulty communication links. Displacement estimates are computed in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations. We are currently comparing results from two software packages (one commercial and one open-source) used to process 1-Hz data on the fly and produce estimates of differential positions. The continuous monitoring of telemetry makes it possible to tune the network to minimize the impact of transient interruptions of the data flow, from one or more stations, on the estimated positions. Ongoing work is focused on using data streaming performance history to optimize the quality of the position, reduce drift and outliers by switching to the best set of stations within the network, and automatically select the "next best" station to use as reference. We are also working towards minimizing the loss of streamed data during concurrent data downloads by improving file management on the GPS receivers.

  4. IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments.

    PubMed

    Shumate, Justin; Baillargeon, Pierre; Spicer, Timothy P; Scampavia, Louis

    2018-04-01

    Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.

  5. Transitioning to Integrated Modular Avionics with a Mission Management System

    DTIC Science & Technology

    2000-10-01

    software structure, which is based on the use of a of interchangeable processing modules of a limited COTS Real - Time Operating System . number of...open standardised interfaces system hardware or the Real - Time Operating System directly supports the use of COTS components, which implementation, to...System RTOS Real - Time Operating System SMBP System Management Blueprint Interface SMOS System Management to Operating System Interface Figure 2: The ASAAC

  6. Research and application of embedded real-time operating system

    NASA Astrophysics Data System (ADS)

    Zhang, Bo

    2013-03-01

    In this paper, based on the analysis of existing embedded real-time operating system, the architecture of an operating system is designed and implemented. The experimental results show that the design fully complies with the requirements of embedded real-time operating system, can achieve the purposes of reducing the complexity of embedded software design and improving the maintainability, reliability, flexibility. Therefore, this design program has high practical value.

  7. Pirate Stealth or Inattentional Blindness? The Effects of Target Relevance and Sustained Attention on Security Monitoring for Experienced and Naïve Operators

    PubMed Central

    Näsholm, Erika; Rohlfing, Sarah; Sauer, James D.

    2014-01-01

    Closed Circuit Television (CCTV) operators are responsible for maintaining security in various applied settings. However, research has largely ignored human factors that may contribute to CCTV operator error. One important source of error is inattentional blindness – the failure to detect unexpected but clearly visible stimuli when attending to a scene. We compared inattentional blindness rates for experienced (84 infantry personnel) and naïve (87 civilians) operators in a CCTV monitoring task. The task-relevance of the unexpected stimulus and the length of the monitoring period were manipulated between participants. Inattentional blindness rates were measured using typical post-event questionnaires, and participants' real-time descriptions of the monitored event. Based on the post-event measure, 66% of the participants failed to detect salient, ongoing stimuli appearing in the spatial field of their attentional focus. The unexpected task-irrelevant stimulus was significantly more likely to go undetected (79%) than the unexpected task-relevant stimulus (55%). Prior task experience did not inoculate operators against inattentional blindness effects. Participants' real-time descriptions revealed similar patterns, ruling out inattentional amnesia accounts. PMID:24465932

  8. Applications of Kalman filtering to real-time trace gas concentration measurements

    NASA Technical Reports Server (NTRS)

    Leleux, D. P.; Claps, R.; Chen, W.; Tittel, F. K.; Harman, T. L.

    2002-01-01

    A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.

  9. Real-time source deformation modeling through GNSS permanent stations at Merapi volcano (Indonesia

    NASA Astrophysics Data System (ADS)

    Beauducel, F.; Nurnaning, A.; Iguchi, M.; Fahmi, A. A.; Nandaka, M. A.; Sumarti, S.; Subandriyo, S.; Metaxian, J. P.

    2014-12-01

    Mt. Merapi (Java, Indonesia) is one of the most active and dangerous volcano in the world. A first GPS repetition network was setup and periodically measured since 1993, allowing detecting a deep magma reservoir, quantifying magma flux in conduit and identifying shallow discontinuities around the former crater (Beauducel and Cornet, 1999;Beauducel et al., 2000, 2006). After the 2010 centennial eruption, when this network was almost completely destroyed, Indonesian and Japanese teams installed a new continuous GPS network for monitoring purpose (Iguchi et al., 2011), consisting of 3 stations located at the volcano flanks, plus a reference station at the Yogyakarta Observatory (BPPTKG).In the framework of DOMERAPI project (2013-2016) we have completed this network with 5 additional stations, which are located on the summit area and volcano surrounding. The new stations are 1-Hz sampling, GNSS (GPS + GLONASS) receivers, and near real-time data streaming to the Observatory. An automatic processing has been developed and included in the WEBOBS system (Beauducel et al., 2010) based on GIPSY software computing precise daily moving solutions every hour, and for different time scales (2 months, 1 and 5 years), time series and velocity vectors. A real-time source modeling estimation has also been implemented. It uses the depth-varying point source solution (Mogi, 1958; Williams and Wadge, 1998) in a systematic inverse problem model exploration that displays location, volume variation and 3-D probability map.The operational system should be able to better detect and estimate the location and volume variations of possible magma sources, and to follow magma transfer towards the surface. This should help monitoring and contribute to decision making during future unrest or eruption.

  10. The potential role of real-time geodetic observations in tsunami early warning

    NASA Astrophysics Data System (ADS)

    Tinti, Stefano; Armigliato, Alberto

    2016-04-01

    Tsunami warning systems (TWS) have the final goal to launch a reliable alert of an incoming dangerous tsunami to coastal population early enough to allow people to flee from the shore and coastal areas according to some evacuation plans. In the last decade, especially after the catastrophic 2004 Boxing Day tsunami in the Indian Ocean, much attention has been given to filling gaps in the existing TWSs (only covering the Pacific Ocean at that time) and to establishing new TWSs in ocean regions that were uncovered. Typically, TWSs operating today work only on earthquake-induced tsunamis. TWSs estimate quickly earthquake location and size by real-time processing seismic signals; on the basis of some pre-defined "static" procedures (either based on decision matrices or on pre-archived tsunami simulations), assess the tsunami alert level on a large regional scale and issue specific bulletins to a pre-selected recipients audience. Not unfrequently these procedures result in generic alert messages with little value. What usually operative TWSs do not do, is to compute earthquake focal mechanism, to calculate the co-seismic sea-floor displacement, to assess the initial tsunami conditions, to input these data into tsunami simulation models and to compute tsunami propagation up to the threatened coastal districts. This series of steps is considered nowadays too time consuming to provide the required timely alert. An equivalent series of steps could start from the same premises (earthquake focal parameters) and reach the same result (tsunami height at target coastal areas) by replacing the intermediate steps of real-time tsunami simulations with proper selection from a large archive of pre-computed tsunami scenarios. The advantage of real-time simulations and of archived scenarios selection is that estimates are tailored to the specific occurring tsunami and alert can be more detailed (less generic) and appropriate for local needs. Both these procedures are still at an experimental or testing stage and haven't been implemented yet in any standard TWS operations. Nonetheless, this is seen to be the future and the natural TWS evolving enhancement. In this context, improvement of the real-time estimates of tsunamigenic earthquake focal mechanism is of fundamental importance to trigger the appropriate computational chain. Quick discrimination between strike-slip and thrust-fault earthquakes, and equally relevant, quick assessment of co-seismic on-fault slip distribution, are exemplary cases to which a real-time geodetic monitoring system can contribute significantly. Robust inversion of geodetic data can help to reconstruct the sea floor deformation pattern especially if two conditions are met: the source is not too far from network stations and is well covered azimuthally. These two conditions are sometimes hard to satisfy fully, but in certain regions, like the Mediterranean and the Caribbean sea, this is quite possible due to the limited size of the ocean basins. Close cooperation between the Global Geodetic Observing System (GGOS) community, seismologists, tsunami scientists and TWS operators is highly recommended to obtain significant progresses in the quick determination of the earthquake source, which can trigger a timely estimation of the ensuing tsunami and a more reliable and detailed assessment of the tsunami size at the coast.

  11. High Availability Applications for NOMADS at the NOAA Web Operations Center Aimed at Providing Reliable Real Time Access to Operational Model Data

    NASA Astrophysics Data System (ADS)

    Alpert, J. C.; Rutledge, G.; Wang, J.; Freeman, P.; Kang, C. Y.

    2009-05-01

    The NOAA Operational Modeling Archive Distribution System (NOMADS) is now delivering high availability services as part of NOAA's official real time data dissemination at its Web Operations Center (WOC). The WOC is a web service used by all organizational units in NOAA and acts as a data repository where public information can be posted to a secure and scalable content server. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development efforts aimed at advancing modeling and GEO-related tasks. The services used to access the operational model data output are the Open-source Project for a Network Data Access Protocol (OPeNDAP), implemented with the Grid Analysis and Display System (GrADS) Data Server (GDS), and applications for slicing, dicing and area sub-setting the large matrix of real time model data holdings. This approach insures an efficient use of computer resources because users transmit/receive only the data necessary for their tasks including metadata. Data sets served in this way with a high availability server offer vast possibilities for the creation of new products for value added retailers and the scientific community. New applications to access data and observations for verification of gridded model output, and progress toward integration with access to conventional and non-conventional observations will be discussed. We will demonstrate how users can use NOMADS services to repackage area subsets either using repackaging of GRIB2 files, or values selected by ensemble component, (forecast) time, vertical levels, global horizontal location, and by variable, virtually a 6- Dimensional analysis services across the internet.

  12. Rotating-Disk-Based Hybridized Electromagnetic-Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors.

    PubMed

    Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-06-28

    Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.

  13. Development and human factors analysis of an augmented reality interface for multi-robot tele-operation and control

    NASA Astrophysics Data System (ADS)

    Lee, Sam; Lucas, Nathan P.; Ellis, R. Darin; Pandya, Abhilash

    2012-06-01

    This paper presents a seamlessly controlled human multi-robot system comprised of ground and aerial robots of semiautonomous nature for source localization tasks. The system combines augmented reality interfaces capabilities with human supervisor's ability to control multiple robots. The role of this human multi-robot interface is to allow an operator to control groups of heterogeneous robots in real time in a collaborative manner. It used advanced path planning algorithms to ensure obstacles are avoided and that the operators are free for higher-level tasks. Each robot knows the environment and obstacles and can automatically generate a collision-free path to any user-selected target. It displayed sensor information from each individual robot directly on the robot in the video view. In addition, a sensor data fused AR view is displayed which helped the users pin point source information or help the operator with the goals of the mission. The paper studies a preliminary Human Factors evaluation of this system in which several interface conditions are tested for source detection tasks. Results show that the novel Augmented Reality multi-robot control (Point-and-Go and Path Planning) reduced mission completion times compared to the traditional joystick control for target detection missions. Usability tests and operator workload analysis are also investigated.

  14. Data Telemetry and Acquisition System for Acoustic Signal Processing Investigations.

    DTIC Science & Technology

    1996-02-20

    were VME- based computer systems operating under the VxWorks real - time operating system . Each system shared a common hardware and software... real - time operating system . It interfaces to the Berg PCM Decommutator board, which searches for the embedded synchronization word in the data and re...software were built on top of this architecture. The multi-tasking, message queue and memory management facilities of the VxWorks real - time operating system are

  15. Commanding and Controlling Satellite Clusters (IEEE Intelligent Systems, November/December 2000)

    DTIC Science & Technology

    2000-01-01

    real - time operating system , a message-passing OS well suited for distributed...ground Flight processors ObjectAgent RTOS SCL RTOS RDMS Space command language Real - time operating system Rational database management system TS-21 RDMS...engineer with Princeton Satellite Systems. She is working with others to develop ObjectAgent software to run on the OSE Real Time Operating System .

  16. A real-time control framework for urban water reservoirs operation

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced computational requests and the capability of exploiting real-time hydro-meteorological information, which are crucial for an effective operation of these fast-varying hydrological systems. The framework is here demonstrated on the operation of Marina Reservoir (Singapore), whose recent construction in late 2008 increased the effective catchment area to about 50% of the total available. Its operation, which accounts for drinking water supply, flash floods control and water quality standards, is here designed by combining the MPC scheme with the process-based hydrological model SOBEK. Extensive simulation experiments show the validity of the proposed framework.

  17. Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural location in the Northeastern U.S.: URBAN INFLUENCE ON RURAL AEROSOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shan; Collier, Sonya; Xu, Jianzhong

    2016-05-19

    Continuous real-time measurements of atmospheric aerosol with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS) coupled with a fast temperature-stepping thermodenuder were carried out in summer 2011 at Brookhaven National Laboratory (BNL, 40.871°N, 72.89°W) during the DOE Aerosol Life Cycle Intensive Operational Period (ALC-IOP) campaign.

  18. Agent-based Large-Scale Emergency Evacuation Using Real-Time Open Government Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei; Liu, Cheng; Bhaduri, Budhendra L

    The open government initiatives have provided tremendous data resources for the transportation system and emergency services in urban areas. This paper proposes a traffic simulation framework using high temporal resolution demographic data and real time open government data for evacuation planning and operation. A comparison study using real-world data in Seattle, Washington is conducted to evaluate the framework accuracy and evacuation efficiency. The successful simulations of selected area prove the concept to take advantage open government data, open source data, and high resolution demographic data in emergency management domain. There are two aspects of parameters considered in this study: usermore » equilibrium (UE) conditions of traffic assignment model (simple Non-UE vs. iterative UE) and data temporal resolution (Daytime vs. Nighttime). Evacuation arrival rate, average travel time, and computation time are adopted as Measure of Effectiveness (MOE) for evacuation performance analysis. The temporal resolution of demographic data has significant impacts on urban transportation dynamics during evacuation scenarios. Better evacuation performance estimation can be approached by integrating both Non-UE and UE scenarios. The new framework shows flexibility in implementing different evacuation strategies and accuracy in evacuation performance. The use of this framework can be explored to day-to-day traffic assignment to support daily traffic operations.« less

  19. Use of REMPI-TOFMS for real-time measurement of trace aromatics during operation of aircraft ground equipment

    NASA Astrophysics Data System (ADS)

    Gullett, Brian; Touati, Abderrahmane; Oudejans, Lukas

    Emissions of aromatic air toxics from aircraft ground equipment (AGE) were measured with a resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) system consisting of a pulsed solid state laser for photoionization and a TOFMS for mass discrimination. This instrument was capable of characterizing turbine emissions and the effect of varying load operations on pollutant production. REMPI-TOFMS is capable of high selectivity and low detection limits (part per trillion to part per billion) in real time (1 s resolution). Hazardous air pollutants and criteria pollutants were measured during startups and idle and full load operations. Measurements of compounds such as benzene, toluene, ethylbenzene, xylenes, styrene, and polycyclic aromatic hydrocarbons compared well with standard methods. Startup emissions from the AGE data showed persistent concentrations of pollutants, unlike those from a diesel generator, where a sharp spike in emissions rapidly declined to steady state levels. The time-resolved responses of air toxics concentrations varied significantly by source, complicating efforts to minimize these emissions with common operating prescriptions. The time-resolved measurements showed that pollutant concentrations decline (up to 5×) in a species-specific manner over the course of multiple hours of operation, complicating determination of accurate and precise emission factors via standard extractive sampling. Correlations of air toxic concentrations with more commonly measured pollutants such as CO or PM were poor due to the relatively greater changes in the measured toxics' concentrations.

  20. NSTX-U Advances in Real-Time C++11 on Linux

    NASA Astrophysics Data System (ADS)

    Erickson, Keith G.

    2015-08-01

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11 standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) will serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.

  1. MARVEL: A knowledge-based productivity enhancement tool for real-time multi-mission and multi-subsystem spacecraft operations

    NASA Astrophysics Data System (ADS)

    Schwuttke, Ursula M.; Veregge, John, R.; Angelino, Robert; Childs, Cynthia L.

    1990-10-01

    The Monitor/Analyzer of Real-time Voyager Engineering Link (MARVEL) is described. It is the first automation tool to be used in an online mode for telemetry monitoring and analysis in mission operations. MARVEL combines standard automation techniques with embedded knowledge base systems to simultaneously provide real time monitoring of data from subsystems, near real time analysis of anomaly conditions, and both real time and non-real time user interface functions. MARVEL is currently capable of monitoring the Computer Command Subsystem (CCS), Flight Data Subsystem (FDS), and Attitude and Articulation Control Subsystem (AACS) for both Voyager spacecraft, simultaneously, on a single workstation. The goal of MARVEL is to provide cost savings and productivity enhancement in mission operations and to reduce the need for constant availability of subsystem expertise.

  2. Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations

    NASA Technical Reports Server (NTRS)

    Sharma, Shivanjli; Fergus, John

    2017-01-01

    A real time dashboard was developed in order to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users across a number of roles benefit from a real time system that enables common situational awareness. In addition to shared situational awareness the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial set of metrics computed on operational data. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017; Charlotte-Douglas International Airport. Analysis and metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of metrics across delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are explored. The potential of the real time tool to inform the predictability and efficiency of using a trajectory-based departure scheduling system is also discussed.

  3. Distributed Systems: Interconnection and Fault Tolerance Studies

    DTIC Science & Technology

    1992-01-01

    real - time operating system , a number of new techniques have to be...problem is at the heart of a successful implementation of a real - time operating system in a distributed environment. Our studies of the issues...land, College Park MD 20742, January 1991. [i1] 6 lafur Gudmundsson, Daniel Moss6, Ashok K. Agrawala, and Satish K. Tripathi. MARUTI a hard real - time operating system .

  4. Relations between continuous real-time physical properties and discrete water-quality constituents in the Little Arkansas River, south-central Kansas, 1998-2014

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Eslick, Patrick J.; Ziegler, Andrew C.

    2016-08-11

    Water from the Little Arkansas River is used as source water for artificial recharge of the Equus Beds aquifer, one of the primary water-supply sources for the city of Wichita, Kansas. The U.S. Geological Survey has operated two continuous real-time water-quality monitoring stations since 1995 on the Little Arkansas River in Kansas. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to compute concentrations of those constituents of interest. Site-specific regression models were originally published in 2000 for the near Halstead and near Sedgwick U.S. Geological Survey streamgaging stations and the site-specific regression models were then updated in 2003. This report updates those regression models using discrete and continuous data collected during May 1998 through August 2014. In addition to the constituents listed in the 2003 update, new regression models were developed for total organic carbon. The real-time computations of water-quality concentrations and loads are available at http://nrtwq.usgs.gov. The water-quality information in this report is important to the city of Wichita because water-quality information allows for real-time quantification and characterization of chemicals of concern (including chloride), in addition to nutrients, sediment, bacteria, and atrazine transported in the Little Arkansas River. The water-quality information in this report aids in the decision making for water treatment before artificial recharge.

  5. Development and testing of real-time PCR assays for determining fecal loading and source identification (cattle, human, etc.) in surface water and groundwater

    NASA Astrophysics Data System (ADS)

    McKay, L. D.; Layton, A.; Gentry, R.

    2004-12-01

    A multi-disciplinary group of researchers at the University of Tennessee is developing and testing a series of microbial assay methods based on real-time PCR to detect fecal bacterial concentrations and host sources in water samples. Real-time PCR is an enumeration technique based on the unique and conserved nucleic acid sequences present in all organisms. The first research task was development of an assay (AllBac) to detect total amount of Bacteroides, which represents up to 30 percent of fecal mass. Subsequent assays were developed to detect Bacteroides from cattle (BoBac) and humans (HuBac) using 16sRNA genes based on DNA sequences in the national GenBank, as well as sequences from local fecal samples. The assays potentially have significant advantages over conventional bacterial source tracking methods because: 1. unlike traditional enumeration methods, they do not require bacterial cultivation; 2. there are no known non-fecal sources of Bacteroides; 3. the assays are quantitative with results for total concentration and for each species expressed in mg/l; and 4. they show little regional variation within host species, meaning that they do not require development of extensive local gene libraries. The AllBac and BoBac assays have been used in a study of fecal contamination in a small rural watershed (Stock Creek) near Knoxville, TN, and have proven useful in identification of areas where cattle represent a significant fecal input and in development of BMPs. It is expected that these types of assays (and future assays for birds, hogs, etc.) could have broad applications in monitoring fecal impacts from Animal Feeding Operations, as well as from wildlife and human sources.

  6. Web Monitoring of EOS Front-End Ground Operations, Science Downlinks and Level 0 Processing

    NASA Technical Reports Server (NTRS)

    Cordier, Guy R.; Wilkinson, Chris; McLemore, Bruce

    2008-01-01

    This paper addresses the efforts undertaken and the technology deployed to aggregate and distribute the metadata characterizing the real-time operations associated with NASA Earth Observing Systems (EOS) high-rate front-end systems and the science data collected at multiple ground stations and forwarded to the Goddard Space Flight Center for level 0 processing. Station operators, mission project management personnel, spacecraft flight operations personnel and data end-users for various EOS missions can retrieve the information at any time from any location having access to the internet. The users are distributed and the EOS systems are distributed but the centralized metadata accessed via an external web server provide an effective global and detailed view of the enterprise-wide events as they are happening. The data-driven architecture and the implementation of applied middleware technology, open source database, open source monitoring tools, and external web server converge nicely to fulfill the various needs of the enterprise. The timeliness and content of the information provided are key to making timely and correct decisions which reduce project risk and enhance overall customer satisfaction. The authors discuss security measures employed to limit access of data to authorized users only.

  7. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.

    PubMed

    Robert, Clélia; Michau, Vincent; Fleury, Bruno; Magli, Serge; Vial, Laurent

    2012-07-02

    Adaptive optics provide real-time compensation for atmospheric turbulence. The correction quality relies on a key element: the wavefront sensor. We have designed an adaptive optics system in the mid-infrared range providing high spatial resolution for ground-to-air applications, integrating a Shack-Hartmann infrared wavefront sensor operating on an extended source. This paper describes and justifies the design of the infrared wavefront sensor, while defining and characterizing the Shack-Hartmann wavefront sensor camera. Performance and illustration of field tests are also reported.

  8. A real-time pulsed photon dosimeter

    NASA Astrophysics Data System (ADS)

    Brown, David; Olsher, Richard H.; Eisen, Yosef; Rodriguez, Joseph F.

    1996-02-01

    Radiation sources producing short pulses of photon radiation are now widespread. Such sources include electron and proton linear accelerators, betatrons, synchrotrons, and field-emission impulse generators. It is often desirable to measure leakage and skyshine radiation from such sources in real time, on a single-pulse basis as low as 8.7 nGy (1 μR) per pulse. This paper describes the design and performance of a prototype, real-time, pulsed photon dosimeter (PPD) capable of single-pulse dose measurements over the range from 3.5 nGy to 3.5 μGy (0.4 to 400 μR). The PPD may also be operated in a multiple-pulse mode that integrates the dose from a train of radiation pulses over a 3-s period. A pulse repetition rate of up to 300 Hz is accommodated. The design is eminently suitable for packaging as a lightweight, portable, survey meter. The PPD uses a CdWO 4 scintillator optically coupled to a photodiode to generate a charge at the diode output. A pulse amplifier converts the charge to a voltage pulse. A digitizer circuit generates a burst of logic pulses whose number is proportional to the peak value of the voltage pulse. The digitizer output is recorded by a pulse counter and suitably displayed. A prototype PPD was built for testing and evaluation purposes. The performance of the PPD was evaluated with a variety of pulsed photon sources. The dynamic range, energy response, and response to multiple pulses were characterized. The experimental data confirm the viability of the PPD for pulsed photon dosimetry.

  9. Kalman Filters for Time Delay of Arrival-Based Source Localization

    NASA Astrophysics Data System (ADS)

    Klee, Ulrich; Gehrig, Tobias; McDonough, John

    2006-12-01

    In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.

  10. AN OPTIMIZED 64X64 POINT TWO-DIMENSIONAL FAST FOURIER TRANSFORM

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1994-01-01

    Scientists at Goddard have developed an efficient and powerful program-- An Optimized 64x64 Point Two-Dimensional Fast Fourier Transform-- which combines the performance of real and complex valued one-dimensional Fast Fourier Transforms (FFT's) to execute a two-dimensional FFT and its power spectrum coefficients. These coefficients can be used in many applications, including spectrum analysis, convolution, digital filtering, image processing, and data compression. The program's efficiency results from its technique of expanding all arithmetic operations within one 64-point FFT; its high processing rate results from its operation on a high-speed digital signal processor. For non-real-time analysis, the program requires as input an ASCII data file of 64x64 (4096) real valued data points. As output, this analysis produces an ASCII data file of 64x64 power spectrum coefficients. To generate these coefficients, the program employs a row-column decomposition technique. First, it performs a radix-4 one-dimensional FFT on each row of input, producing complex valued results. Then, it performs a one-dimensional FFT on each column of these results to produce complex valued two-dimensional FFT results. Finally, the program sums the squares of the real and imaginary values to generate the power spectrum coefficients. The program requires a Banshee accelerator board with 128K bytes of memory from Atlanta Signal Processors (404/892-7265) installed on an IBM PC/AT compatible computer (DOS ver. 3.0 or higher) with at least one 16-bit expansion slot. For real-time operation, an ASPI daughter board is also needed. The real-time configuration reads 16-bit integer input data directly into the accelerator board, operating on 64x64 point frames of data. The program's memory management also allows accumulation of the coefficient results. The real-time processing rate to calculate and accumulate the 64x64 power spectrum output coefficients is less than 17.0 mSec. Documentation is included in the price of the program. Source code is written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly Languages. This program is available on a 5.25 inch 360K MS-DOS format diskette. IBM and IBM PC are registered trademarks of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  11. Application of the backward extrapolation method to pulsed neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, Alberto; Gohar, Yousry

    We report particle detectors operated in pulse mode are subjected to the dead-time effect. When the average of the detector counts is constant over time, correcting for the dead-time effect is simple and can be accomplished by analytical formulas. However, when the average of the detector counts changes over time it is more difficult to take into account the dead-time effect. When a subcritical nuclear assembly is driven by a pulsed neutron source, simple analytical formulas cannot be applied to the measured detector counts to correct for the dead-time effect because of the sharp change of the detector counts overmore » time. This work addresses this issue by using the backward extrapolation method. The latter can be applied not only to a continuous (e.g. californium) external neutron source but also to a pulsed external neutron source (e.g. by a particle accelerator) driving a subcritical nuclear assembly. Finally, the backward extrapolation method allows to obtain from the measured detector counts both the dead-time value and the real detector counts.« less

  12. Application of the backward extrapolation method to pulsed neutron sources

    DOE PAGES

    Talamo, Alberto; Gohar, Yousry

    2017-09-23

    We report particle detectors operated in pulse mode are subjected to the dead-time effect. When the average of the detector counts is constant over time, correcting for the dead-time effect is simple and can be accomplished by analytical formulas. However, when the average of the detector counts changes over time it is more difficult to take into account the dead-time effect. When a subcritical nuclear assembly is driven by a pulsed neutron source, simple analytical formulas cannot be applied to the measured detector counts to correct for the dead-time effect because of the sharp change of the detector counts overmore » time. This work addresses this issue by using the backward extrapolation method. The latter can be applied not only to a continuous (e.g. californium) external neutron source but also to a pulsed external neutron source (e.g. by a particle accelerator) driving a subcritical nuclear assembly. Finally, the backward extrapolation method allows to obtain from the measured detector counts both the dead-time value and the real detector counts.« less

  13. Hardware-In-The-Loop Power Extraction Using Different Real-Time Platforms (Postprint)

    DTIC Science & Technology

    2008-11-01

    each real - time operating system . However, discrepancies in test results obtained from the NI system can be resolved. This paper briefly details...same model in native Simulink. These results show that each real - time operating system can be configured to accurately run transient Simulink models

  14. Development of On-line Wildfire Emissions for the Operational Canadian Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, R.; Menard, S.; Chen, J.; Anselmo, D.; Paul-Andre, B.; Gravel, S.; Moran, M. D.; Davignon, D.

    2013-12-01

    An emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the USA, including Alaska, fire location information is needed for both of these large countries. Near-real-time satellite data are obtained and processed separately for the two countries for organizational reasons. Fire location and fuel consumption data for Canada are provided by the Canadian Forest Service's Canadian Wild Fire Information System (CWFIS) while fire location and emissions data for the U.S. are provided by the SMARTFIRE (Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation) system via the on-line BlueSky Gateway. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This 'on the fly' approach to the insertion of emissions provides greater flexibility since on-line meteorology is used and reduces computational overhead in emission pre-processing. An experimental wildfire version of GEM-MACH was run in real-time mode for the summers of 2012 and 2013. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions, computed objective scores, and subjective evaluations by AQ forecasters will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions within the operational air quality forecast system.

  15. Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models.

    PubMed

    Lee, Giljae; Matsunaga, Andréa; Dura-Bernal, Salvador; Zhang, Wenjie; Lytton, William W; Francis, Joseph T; Fortes, José Ab

    2014-11-01

    Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints.

  16. ISHN Ion Source Control System. First Steps Toward an EPICS Based ESS-Bilbao Accelerator Control System

    NASA Astrophysics Data System (ADS)

    Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.

    2013-04-01

    ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.

  17. Real-time data acquisition of commercial microwave link networks for hydrometeorological applications

    NASA Astrophysics Data System (ADS)

    Chwala, Christian; Keis, Felix; Kunstmann, Harald

    2016-03-01

    The usage of data from commercial microwave link (CML) networks for scientific purposes is becoming increasingly popular, in particular for rain rate estimation. However, data acquisition and availability is still a crucial problem and limits research possibilities. To overcome this issue, we have developed an open-source data acquisition system based on the Simple Network Management Protocol (SNMP). It is able to record transmitted and received signal levels of a large number of CMLs simultaneously with a temporal resolution of up to 1 s. We operate this system at Ericsson Germany, acquiring data from 450 CMLs with minutely real-time transfer to our database. Our data acquisition system is not limited to a particular CML hardware model or manufacturer, though. We demonstrate this by running the same system for CMLs of a different manufacturer, operated by an alpine ski resort in Germany. There, the data acquisition is running simultaneously for four CMLs with a temporal resolution of 1 s. We present an overview of our system, describe the details of the necessary SNMP requests and show results from its operational application.

  18. Real time data acquisition of commercial microwave link networks for hydrometeorological applications

    NASA Astrophysics Data System (ADS)

    Chwala, C.; Keis, F.; Kunstmann, H.

    2015-11-01

    The usage of data from commercial microwave link (CML) networks for scientific purposes is becoming increasingly popular, in particular for rain rate estimation. However, data acquisition and availability is still a crucial problem and limits research possibilities. To overcome this issue, we have developed an open source data acquisition system based on the Simple Network Management Protocol (SNMP). It is able to record transmitted- and received signal levels of a large number of CMLs simultaneously with a temporal resolution of up to one second. We operate this system at Ericsson Germany, acquiring data from 450 CMLs with minutely real time transfer to our data base. Our data acquisition system is not limited to a particular CML hardware model or manufacturer, though. We demonstrate this by running the same system for CMLs of a different manufacturer, operated by an alpine skiing resort in Germany. There, the data acquisition is running simultaneously for four CMLs with a temporal resolution of one second. We present an overview of our system, describe the details of the necessary SNMP requests and show results from its operational application.

  19. Worldwide differential GPS for Space Shuttle landing operations

    NASA Technical Reports Server (NTRS)

    Loomis, Peter V. W.; Denaro, Robert P.; Saunders, Penny

    1990-01-01

    Worldwide differential Global Positioning System (WWDGPS) is viewed as an effective method of offering continuous high-quality navigation worldwide. The concept utilizes a network with as few as 33 ground stations to observe most of the error sources of GPS and provide error corrections to users on a worldwide basis. The WWDGPS real-time GPS tracking concept promises a threefold or fourfold improvement in accuracy for authorized dual-frequency users, and in addition maintains an accurate and current ionosphere model for single-frequency users. A real-time global tracking network also has the potential to reverse declarations of poor health on marginal satellites, increasing the number of satellites in the constellation and lessening the probability of GPS navigation outage. For Space Shuttle operations, the use of WWDGPS-aided P-code equipment promises performance equal to or better than other current landing guidance systems in terms of accuracy and reliability. This performance comes at significantly less cost to NASA, which will participate as a customer in a system designed as a commercial operation serving the global civil navigation community.

  20. Detection of Mental State and Reduction of Artifacts Using Functional Near Infrared Spectroscopy (FNIRS)

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela (Inventor); Hearn, Tristan (Inventor)

    2017-01-01

    fNIRS may be used in real time or near-real time to detect the mental state of individuals. Phase measurement can be applied to drive an adaptive filter for the removal of motion artifacts in real time or near-real time. In this manner, the application of fNIRS may be extended to practical non-laboratory environments. For example, the mental state of an operator of a vehicle may be monitored, and alerts may be issued and/or an autopilot may be engaged when the mental state of the operator indicates that the operator is inattentive.

  1. Achieving AFRL Universal FADEC Vision With Open Architecture Addressing Capability and Obsolescence for Military and Commercial Applications (Preprint)

    DTIC Science & Technology

    2006-11-01

    engines will involve a family of common components. It will consist of a real - time operating system and partitioned application software (AS...system will employ a standard hardware and software architecture. It will consist of a real time operating system and partitioned application...Inputs - Enables Large Cost Reduction 3. Software - FAA Certified Auto Code - Real Time Operating System - Commercial

  2. Overview of the Smart Network Element Architecture and Recent Innovations

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Mata, Carlos T.; Oostdyk, Rebecca L.

    2008-01-01

    In industrial environments, system operators rely on the availability and accuracy of sensors to monitor processes and detect failures of components and/or processes. The sensors must be networked in such a way that their data is reported to a central human interface, where operators are tasked with making real-time decisions based on the state of the sensors and the components that are being monitored. Incorporating health management functions at this central location aids the operator by automating the decision-making process to suggest, and sometimes perform, the action required by current operating conditions. Integrated Systems Health Management (ISHM) aims to incorporate data from many sources, including real-time and historical data and user input, and extract information and knowledge from that data to diagnose failures and predict future failures of the system. By distributing health management processing to lower levels of the architecture, there is less bandwidth required for ISHM, enhanced data fusion, make systems and processes more robust, and improved resolution for the detection and isolation of failures in a system, subsystem, component, or process. The Smart Network Element (SNE) has been developed at NASA Kennedy Space Center to perform intelligent functions at sensors and actuators' level in support of ISHM.

  3. Performance of a segmented HPGe detector at KRISS.

    PubMed

    Han, Jubong; Lee, K B; Lee, Jong-Man; Lee, S H; Park, Tae Soon; Oh, J S

    2018-04-01

    A 24 segmented HPGe coaxial detector was set up with a digitized data acquisition system (DAQ). The DAQ was composed of a digitizer (5 × 10 7 sampling/s), a Field-Programmable Gate Array (FPGA), and a real time operating system. The Full Width Half Maximum (FWHM), rise time, signal characteristics, and spectra of a 137 Cs source were evaluated. The data were processed using an in-house developed gamma-ray tracking system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A study on the operation analysis of the power conditioning system with real HTS SMES coil

    NASA Astrophysics Data System (ADS)

    Kim, A. R.; Jung, H. Y.; Kim, J. H.; Ali, Mohd. Hasan; Park, M.; Yu, I. K.; Kim, H. J.; Kim, S. H.; Seong, K. C.

    2008-09-01

    Voltage sag from sudden increasing loads is one of the major problems in the utility network. In order to compensate the voltage sag problem, power compensation devices have widely been developed. In the case of voltage sag, it needs an energy source to overcome the energy caused by voltage sag. According as the SMES device is characterized by its very high response time of charge and discharge, it has widely been researched and developed for more than 20 years. However, before the installation of SMES into utility, the system analysis has to be carried out with a certain simulation tool. This paper presents a real-time simulation algorithm for the SMES system by using the miniaturized SMES model coil whose properties are same as those of real size SMES coil. With this method, researchers can easily analyse the performance of SMES connected into utility network by abstracting the properties from the real modeled SMES coil and using the virtual simulated power network in RSCAD/RTDS.

  5. Fast interrupt platform for extended DOS

    NASA Technical Reports Server (NTRS)

    Duryea, T. W.

    1995-01-01

    Extended DOS offers the unique combination of a simple operating system which allows direct access to the interrupt tables, 32 bit protected mode access to 4096 MByte address space, and the use of industry standard C compilers. The drawback is that fast interrupt handling requires both 32 bit and 16 bit versions of each real-time process interrupt handler to avoid mode switches on the interrupts. A set of tools has been developed which automates the process of transforming the output of a standard 32 bit C compiler to 16 bit interrupt code which directly handles the real mode interrupts. The entire process compiles one set of source code via a make file, which boosts productivity by making the management of the compile-link cycle very simple. The software components are in the form of classes written mostly in C. A foreground process written as a conventional application which can use the standard C libraries can communicate with the background real-time classes via a message passing mechanism. The platform thus enables the integration of high performance real-time processing into a conventional application framework.

  6. Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube

    NASA Astrophysics Data System (ADS)

    IceCube Collaboration; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Franke, R.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Góra, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schultz, C.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, .; VERITAS Collaboration; Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Buchovecky, M.; Bugaev, V.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Dumm, J.; Eisch, J. D.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Hütten, J. Grube M.; Håkansson, N.; Hervet, O.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2016-11-01

    We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e.g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.

  7. 23 CFR 511.311 - Real-time information program establishment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... INFRASTRUCTURE MANAGEMENT REAL-TIME SYSTEM MANAGEMENT INFORMATION PROGRAM Real-Time System Management Information... operated by the State. In addition, the real-time information program shall complement current... 23 Highways 1 2011-04-01 2011-04-01 false Real-time information program establishment. 511.311...

  8. 23 CFR 511.311 - Real-time information program establishment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... INFRASTRUCTURE MANAGEMENT REAL-TIME SYSTEM MANAGEMENT INFORMATION PROGRAM Real-Time System Management Information... operated by the State. In addition, the real-time information program shall complement current... 23 Highways 1 2014-04-01 2014-04-01 false Real-time information program establishment. 511.311...

  9. 23 CFR 511.311 - Real-time information program establishment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... INFRASTRUCTURE MANAGEMENT REAL-TIME SYSTEM MANAGEMENT INFORMATION PROGRAM Real-Time System Management Information... operated by the State. In addition, the real-time information program shall complement current... 23 Highways 1 2013-04-01 2013-04-01 false Real-time information program establishment. 511.311...

  10. 23 CFR 511.311 - Real-time information program establishment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... INFRASTRUCTURE MANAGEMENT REAL-TIME SYSTEM MANAGEMENT INFORMATION PROGRAM Real-Time System Management Information... operated by the State. In addition, the real-time information program shall complement current... 23 Highways 1 2012-04-01 2012-04-01 false Real-time information program establishment. 511.311...

  11. NSTX-U Advances in Real-Time C++11 on Linux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Keith G.

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) willmore » serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.« less

  12. NSTX-U Advances in Real-Time C++11 on Linux

    DOE PAGES

    Erickson, Keith G.

    2015-08-14

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) willmore » serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.« less

  13. Real-time reflectometry measurement validation in H-mode regimes for plasma position control.

    PubMed

    Santos, J; Guimarais, L; Manso, M

    2010-10-01

    It has been shown that in H-mode regimes, reflectometry electron density profiles and an estimate for the density at the separatrix can be jointly used to track the separatrix within the precision required for plasma position control on ITER. We present a method to automatically remove, from the position estimation procedure, measurements performed during collapse and recovery phases of edge localized modes (ELMs). Based on the rejection mechanism, the method also produces an estimate confidence value to be fed to the position feedback controller. Preliminary results show that the method improves the real-time experimental separatrix tracking capabilities and has the potential to eliminate the need for an external online source of ELM event signaling during control feedback operation.

  14. A human factors methodology for real-time support applications

    NASA Technical Reports Server (NTRS)

    Murphy, E. D.; Vanbalen, P. M.; Mitchell, C. M.

    1983-01-01

    A general approach to the human factors (HF) analysis of new or existing projects at NASA/Goddard is delineated. Because the methodology evolved from HF evaluations of the Mission Planning Terminal (MPT) and the Earth Radiation Budget Satellite Mission Operations Room (ERBS MOR), it is directed specifically to the HF analysis of real-time support applications. Major topics included for discussion are the process of establishing a working relationship between the Human Factors Group (HFG) and the project, orientation of HF analysts to the project, human factors analysis and review, and coordination with major cycles of system development. Sub-topics include specific areas for analysis and appropriate HF tools. Management support functions are outlined. References provide a guide to sources of further information.

  15. Autopilot regulation for the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Voulgarakis, G.; Lettry, J.; Mattei, S.; Lefort, B.; Costa, V. J. Correia

    2017-08-01

    Linac4 is a 160 MeV H- linear accelerator part of the upgrade of the LHC injector chain. Its cesiated surface H- source is designed to provide a beam intensity of 40-50mA. It is operated with periodical Cs-injection at typically 30 days intervals [1] and this implies that the beam parameters will slowly evolve during operation. Autopilot is a control software package extending CERN developed Inspector framework. The aim of Autopilot is to automatize the mandatory optimization and cesiation processes and to derive performance indicators, thus keeping human intervention minimal. Autopilot has been developed by capitalizing on the experience from manually operating the source. It comprises various algorithms running in real-time, which have been devised to: • Optimize the ion source performance by regulation of H2 injection, RF power and frequency. • Describe the performance of the source with performance indicators, which can be easily understood by operators. • Identify failures, try to recover the nominal operation and send warning in case of deviation from nominal operation. • Make the performance indicators remotely available through Web pages.Autopilot is at the same level of hierarchy as an operator, in the CERN infrastructure. This allows the combination of all ion source devices, providing the required flexibility. Autopilot is executed in a dedicated server, ensuring unique and centralized control, yet allowing multiple operators to interact at runtime, always coordinating between them. Autopilot aims at flexibility, adaptability, portability and scalability, and can be extended to other components of CERN's accelerators. In this paper, a detailed description of the Autopilot algorithms is presented, along with first results of operating the Linac4 H- Ion Source with Autopilot.

  16. Evaluating Real-Time Platforms for Aircraft Prognostic Health Management Using Hardware-In-The-Loop

    DTIC Science & Technology

    2008-08-01

    obtained when using HIL and a simulated load. Initially, noticeable differences are seen when comparing the results from each real - time operating system . However...same model in native Simulink. These results show that each real - time operating system can be configured to accurately run transient Simulink

  17. EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Essick, R. B.; Grass, J.; Johnston, G.; Kenny, K.; Russo, V.

    1986-01-01

    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing.

  18. Real time implementation and control validation of the wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Sattar, Adnan

    The purpose of the thesis is to analyze dynamic and transient characteristics of wind energy conversion systems including the stability issues in real time environment using the Real Time Digital Simulator (RTDS). There are different power system simulation tools available in the market. Real time digital simulator (RTDS) is one of the powerful tools among those. RTDS simulator has a Graphical User Interface called RSCAD which contains detail component model library for both power system and control relevant analysis. The hardware is based upon the digital signal processors mounted in the racks. RTDS simulator has the advantage of interfacing the real world signals from the external devices, hence used to test the protection and control system equipments. Dynamic and transient characteristics of the fixed and variable speed wind turbine generating systems (WTGSs) are analyzed, in this thesis. Static Synchronous Compensator (STATCOM) as a flexible ac transmission system (FACTS) device is used to enhance the fault ride through (FRT) capability of the fixed speed wind farm. Two level voltage source converter based STATCOM is modeled in both VSC small time-step and VSC large time-step of RTDS. The simulation results of the RTDS model system are compared with the off-line EMTP software i.e. PSCAD/EMTDC. A new operational scheme for a MW class grid-connected variable speed wind turbine driven permanent magnet synchronous generator (VSWT-PMSG) is developed. VSWT-PMSG uses fully controlled frequency converters for the grid interfacing and thus have the ability to control the real and reactive powers simultaneously. Frequency converters are modeled in the VSC small time-step of the RTDS and three phase realistic grid is adopted with RSCAD simulation through the use of optical analogue digital converter (OADC) card of the RTDS. Steady state and LVRT characteristics are carried out to validate the proposed operational scheme. Simulation results show good agreement with real time simulation software and thus can be used to validate the controllers for the real time operation. Integration of the Battery Energy Storage System (BESS) with wind farm can smoothen its intermittent power fluctuations. The work also focuses on the real time implementation of the Sodium Sulfur (NaS) type BESS. BESS is integrated with the STATCOM. The main advantage of this system is that it can also provide the reactive power support to the system along with the real power exchange from BESS unit. BESS integrated with STATCOM is modeled in the VSC small time-step of the RTDS. The cascaded vector control scheme is used for the control of the STATCOM and suitable control is developed to control the charging/discharging of the NaS type BESS. Results are compared with Laboratory standard power system software PSCAD/EMTDC and the advantages of using RTDS in dynamic and transient characteristics analyses of wind farm are also demonstrated clearly.

  19. The UTMOST: A Hybrid Digital Signal Processor Transforms the Molonglo Observatory Synthesis Telescope

    NASA Astrophysics Data System (ADS)

    Bailes, M.; Jameson, A.; Flynn, C.; Bateman, T.; Barr, E. D.; Bhandari, S.; Bunton, J. D.; Caleb, M.; Campbell-Wilson, D.; Farah, W.; Gaensler, B.; Green, A. J.; Hunstead, R. W.; Jankowski, F.; Keane, E. F.; Krishnan, V. Venkatraman; Murphy, Tara; O'Neill, M.; Osłowski, S.; Parthasarathy, A.; Ravi, V.; Rosado, P.; Temby, D.

    2017-10-01

    The Molonglo Observatory Synthesis Telescope (MOST) is an 18000 m2 radio telescope located 40 km from Canberra, Australia. Its operating band (820-851 MHz) is partly allocated to telecommunications, making radio astronomy challenging. We describe how the deployment of new digital receivers, Field Programmable Gate Array-based filterbanks, and server-class computers equipped with 43 Graphics Processing Units, has transformed the telescope into a versatile new instrument (UTMOST) for studying the radio sky on millisecond timescales. UTMOST has 10 times the bandwidth and double the field of view compared to the MOST, and voltage record and playback capability has facilitated rapid implementaton of many new observing modes, most of which operate commensally. UTMOST can simultaneously excise interference, make maps, coherently dedisperse pulsars, and perform real-time searches of coherent fan-beams for dispersed single pulses. UTMOST operates as a robotic facility, deciding how to efficiently target pulsars and how long to stay on source via real-time pulsar folding, while searching for single pulse events. Regular timing of over 300 pulsars has yielded seven pulsar glitches and three Fast Radio Bursts during commissioning. UTMOST demonstrates that if sufficient signal processing is applied to voltage streams, innovative science remains possible even in hostile radio frequency environments.

  20. The use of remotely sensed data for operational fisheries oceanography

    NASA Technical Reports Server (NTRS)

    Fiuza, Armando F. G.

    1992-01-01

    Satellite remote sensing data are used under two contexts in fisheries: as a tool for fisheries research and as a means to provide operational support to fishing activities. Fishing operations need synoptic data provided timely; fisheries research needs that type of data and, also, good short-term climatologies. A description is given of several experiences conducted around the world which have employed or are using satellite data for operational fisheries problems. An overview is included of the Portuguese program for fisheries support using remotely sensed data provided by satellites and in situ observations conducted by fishermen. Environmental products useful for fisheries necessarily combine satellite and in situ data. The role of fishermen as a source of good, near-real-time in situ environmental data is stressed; so far, this role seems to have been largely overlooked.

  1. The University of Colorado OSO-8 spectrometer experiment. IV - Mission operations

    NASA Technical Reports Server (NTRS)

    Hansen, E. R.; Bruner, E. C., Jr.

    1979-01-01

    The remote operation of two high-resolution ultraviolet spectrometers on the OSO-8 satellite is discussed. Mission operations enabled scientific observers to plan observations based on current solar data, interact with the observing program using real- or near real-time data and commands, evaluate quick-look instrument data, and analyze the observations for publication. During routine operations, experiments were planned a day prior to their execution, and the data from these experiments received a day later. When a shorter turnaround was required, a real-time mode was available. Here, the real-time data and command links into the remote control center were used to evaluate experiment operation and make satellite pointing or instrument configuration changes with a 1-90 minute turnaround.

  2. Operational Products Archived at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Fetterer, F. M.; Ballagh, L.; Gergely, K.; Kovarik, J.; Wallace, A.; Windnagel, A.

    2009-12-01

    Sea ice charts for shipping interests from the Navy/NOAA/Coast Guard National Ice Center are often laboriously produced by manually interpreting and synthesizing data from many sources, both satellite and in situ. They are generally more accurate than similar products from single sources. Upward looking sonar data from U.S. Navy submarines operating in the Arctic provides information on ice thickness. Similarly extensive data were available from no other source prior to the recently established reliability of ice thickness estimates from polar orbiting instruments like the Geoscience Laser Altimeter System (GLAS). Snow Data Assimilation System (SNODAS) products from the NOAA NWS National Operational Hydrologic Remote Sensing Center give researchers the best possible estimates of snow cover and associated variables to support hydrologic modeling and analysis for the continental U.S. These and other snow and ice data products are produced by the U.S. Navy, the NOAA National Weather Service, and other agency entities to serve users who have an operational need: to get a ship safely to its destination, for example, or to predict stream flow. NOAA supports work at NSIDC with data from operational sources that can be used for climate research and change detection. We make these products available to a new user base, by archiving operational data, making data available online, providing documentation, and fielding questions from researchers about the data. These data demand special consideration: often they are advantageous because they are available on a schedule in near real time, but their use in climate studies is problematic since many are produced with regard for ‘best now’ and without regard for time series consistency. As arctic climate changes rapidly, operational and semi-operational products have an expanding science support role to play.

  3. The expanded role of computers in Space Station Freedom real-time operations

    NASA Technical Reports Server (NTRS)

    Crawford, R. Paul; Cannon, Kathleen V.

    1990-01-01

    The challenges that NASA and its international partners face in their real-time operation of the Space Station Freedom necessitate an increased role on the part of computers. In building the operational concepts concerning the role of the computer, the Space Station program is using lessons learned experience from past programs, knowledge of the needs of future space programs, and technical advances in the computer industry. The computer is expected to contribute most significantly in real-time operations by forming a versatile operating architecture, a responsive operations tool set, and an environment that promotes effective and efficient utilization of Space Station Freedom resources.

  4. Integrated radiologist's workstation enabling the radiologist as an effective clinical consultant

    NASA Astrophysics Data System (ADS)

    McEnery, Kevin W.; Suitor, Charles T.; Hildebrand, Stan; Downs, Rebecca; Thompson, Stephen K.; Shepard, S. Jeff

    2002-05-01

    Since February 2000, radiologists at the M. D. Anderson Cancer Center have accessed clinical information through an internally developed radiologist's clinical interpretation workstation called RadStation. This project provides a fully integrated digital dictation workstation with clinical data review. RadStation enables the radiologist as an effective clinical consultant with access to pertinent sources of clinical information at the time of dictation. Data sources not only include prior radiology reports from the radiology information system (RIS) but access to pathology data, laboratory data, history and physicals, clinic notes, and operative reports. With integrated clinical information access, a radiologists's interpretation not only comments on morphologic findings but also can enable evaluation of study findings in the context of pertinent clinical presentation and history. Image access is enabled through the integration of an enterprise image archive (Stentor, San Francisco). Database integration is achieved by a combination of real time HL7 messaging and queries to SQL-based legacy databases. A three-tier system architecture accommodates expanding access to additional databases including real-time patient schedule as well as patient medications and allergies.

  5. Design of a portable, intrinsically safe multichannel acquisition system for high-resolution, real-time processing HD-sEMG.

    PubMed

    Barone, Umberto; Merletti, Roberto

    2013-08-01

    A compact and portable system for real-time, multichannel, HD-sEMG acquisition is presented. The device is based on a modular, multiboard approach for scalability and to optimize power consumption for battery operating mode. The proposed modular approach allows us to configure the number of sEMG channels from 64 to 424. A plastic-optical-fiber-based 10/100 Ethernet link is implemented on a field-programmable gate array (FPGA)-based board for real-time, safety data transmission toward a personal computer or laptop for data storage and offline analysis. The high-performance A/D conversion stage, based on 24-bit ADC, allows us to automatically serialize the samples and transmits them on a single SPI bus connecting a sequence of up to 14 ADC chips in chain mode. The prototype is configured to work with 64 channels and a sample frequency of 2.441 ksps (derived from 25-MHz clock source), corresponding to a real data throughput of 3 Mbps. The prototype was assembled to demonstrate the available features (e.g., scalability) and evaluate the expected performances. The analog front end board could be dynamically configured to acquire sEMG signals in monopolar or single differential mode by means of FPGA I/O interface. The system can acquire continuously 64 channels for up to 5 h with a lightweight battery pack of 7.5 Vdc/2200 mAh. A PC-based application was also developed, by means of the open source Qt Development Kit from Nokia, for prototype characterization, sEMG measurements, and real-time visualization of 2-D maps.

  6. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    NASA Astrophysics Data System (ADS)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  7. Climate Signals: An On-Line Digital Platform for Mapping Climate Change Impacts in Real Time

    NASA Astrophysics Data System (ADS)

    Cutting, H.

    2016-12-01

    Climate Signals is an on-line digital platform for cataloging and mapping the impacts of climate change. The CS platform specifies and details the chains of connections between greenhouse gas emissions and individual climate events. Currently in open-beta release, the platform is designed to to engage and serve the general public, news media, and policy-makers, particularly in real-time during extreme climate events. Climate Signals consists of a curated relational database of events and their links to climate change, a mapping engine, and a gallery of climate change monitors offering real-time data. For each event in the database, an infographic engine provides a custom attribution "tree" that illustrates the connections to climate change. In addition, links to key contextual resources are aggregated and curated for each event. All event records are fully annotated with detailed source citations and corresponding hyper links. The system of attribution used to link events to climate change in real-time is detailed here. This open-beta release is offered for public user testing and engagement. Launched in May 2016, the operation of this platform offers lessons for public engagement in climate change impacts.

  8. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs.

    PubMed

    Zhong, Dongzhou; Xu, Geliang; Luo, Wei; Xiao, Zhenzhen

    2017-09-04

    According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.

  9. Real-Time Processing Library for Open-Source Hardware Biomedical Sensors

    PubMed Central

    Castro-García, Juan A.; Lebrato-Vázquez, Clara

    2018-01-01

    Applications involving data acquisition from sensors need samples at a preset frequency rate, the filtering out of noise and/or analysis of certain frequency components. We propose a novel software architecture based on open-software hardware platforms which allows programmers to create data streams from input channels and easily implement filters and frequency analysis objects. The performances of the different classes given in the size of memory allocated and execution time (number of clock cycles) were analyzed in the low-cost platform Arduino Genuino. In addition, 11 people took part in an experiment in which they had to implement several exercises and complete a usability test. Sampling rates under 250 Hz (typical for many biomedical applications) makes it feasible to implement filters, sliding windows and Fourier analysis, operating in real time. Participants rated software usability at 70.2 out of 100 and the ease of use when implementing several signal processing applications was rated at just over 4.4 out of 5. Participants showed their intention of using this software because it was percieved as useful and very easy to use. The performances of the library showed that it may be appropriate for implementing small biomedical real-time applications or for human movement monitoring, even in a simple open-source hardware device like Arduino Genuino. The general perception about this library is that it is easy to use and intuitive. PMID:29596394

  10. Real-Time Processing Library for Open-Source Hardware Biomedical Sensors.

    PubMed

    Molina-Cantero, Alberto J; Castro-García, Juan A; Lebrato-Vázquez, Clara; Gómez-González, Isabel M; Merino-Monge, Manuel

    2018-03-29

    Applications involving data acquisition from sensors need samples at a preset frequency rate, the filtering out of noise and/or analysis of certain frequency components. We propose a novel software architecture based on open-software hardware platforms which allows programmers to create data streams from input channels and easily implement filters and frequency analysis objects. The performances of the different classes given in the size of memory allocated and execution time (number of clock cycles) were analyzed in the low-cost platform Arduino Genuino. In addition, 11 people took part in an experiment in which they had to implement several exercises and complete a usability test. Sampling rates under 250 Hz (typical for many biomedical applications) makes it feasible to implement filters, sliding windows and Fourier analysis, operating in real time. Participants rated software usability at 70.2 out of 100 and the ease of use when implementing several signal processing applications was rated at just over 4.4 out of 5. Participants showed their intention of using this software because it was percieved as useful and very easy to use. The performances of the library showed that it may be appropriate for implementing small biomedical real-time applications or for human movement monitoring, even in a simple open-source hardware device like Arduino Genuino. The general perception about this library is that it is easy to use and intuitive.

  11. The development of data acquisition and processing application system for RF ion source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Wang, Xiaoying; Hu, Chundong; Jiang, Caichao; Xie, Yahong; Zhao, Yuanzhe

    2017-07-01

    As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi-threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.

  12. Applications of Experimental Suomi-NPP VIIRS Flood Inundation Maps in Operational Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Deweese, M. M.

    2017-12-01

    Flooding is the most costly natural disaster across the globe. In 2016 flooding caused more fatalities than any other natural disaster in the United States. The U.S. National Weather Service (NWS) is mandated to forecast rivers for the protection of life and property and the enhancement of the national economy. Since 2014, the NWS North Central River Forecast Center has utilized experimental near real time flood mapping products from the JPSS Suomi-NPP VIIRS satellite. These products have been demonstrated to provide reliable and high value information for forecasters in ice jam and snowmelt flooding in data sparse regions of the northern plains. In addition, they have proved valuable in rainfall induced flooding within the upper Mississippi River basin. Aerial photography and ground observations have validated the accuracy of the products. Examples are provided from numerous flooding events to demonstrate the operational application of this satellite derived information as a remotely sensed observational data source and it's utility in real time flood forecasting.

  13. A COMPACTRIO-BASED BEAM LOSS MONITOR FOR THE SNS RF TEST CAVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokland, Willem; Armstrong, Gary A

    2009-01-01

    An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to themore » threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results« less

  14. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    PubMed

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-12-05

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  15. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques

    PubMed Central

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595

  16. Real-Time Imaging with a Pulsed Coherent CO, Laser Radar

    DTIC Science & Technology

    1997-01-01

    30 joule) transmitted energy levels has just begun. The FLD program will conclude in 1997 with the demonstration of a full-up, real - time operating system . This...The master system and VMEbus controller is an off-the-shelf controller based on the Motorola 68040 processor running the VxWorks real time operating system . Application

  17. Intelligence Community Forum

    DTIC Science & Technology

    2008-11-05

    Description Operationally Feasible? EEG ms ms cm Measures electrical activity in the brain. Practical tool for applications - real time monitoring or...Cognitive Systems Device Development & Processing Methods Brain activity can be monitored in real-time in operational environments with EEG Brain...biological and cognitive findings about the user to customize the learning environment Neurofeedback • Present the user with real-time feedback

  18. AERIS - applications for the environment : real-time information synthesis : eco-lanes operational scenario modeling report.

    DOT National Transportation Integrated Search

    2014-12-01

    This report constitutes the detailed modeling and evaluation results of the Eco-Lanes Operational Scenario defined by the Applications for the Environment: Real-Time Information Synthesis (AERIS) Program. The Operational Scenario constitutes six appl...

  19. Real-time operating system timing jitter and its impact on motor control

    NASA Astrophysics Data System (ADS)

    Proctor, Frederick M.; Shackleford, William P.

    2001-12-01

    General-purpose microprocessors are increasingly being used for control applications due to their widespread availability and software support for non-control functions like networking and operator interfaces. Two classes of real-time operating systems (RTOS) exist for these systems. The traditional RTOS serves as the sole operating system, and provides all OS services. Examples include ETS, LynxOS, QNX, Windows CE and VxWorks. RTOS extensions add real-time scheduling capabilities to non-real-time OSes, and provide minimal services needed for the time-critical portions of an application. Examples include RTAI and RTL for Linux, and HyperKernel, OnTime and RTX for Windows NT. Timing jitter is an issue in these systems, due to hardware effects such as bus locking, caches and pipelines, and software effects from mutual exclusion resource locks, non-preemtible critical sections, disabled interrupts, and multiple code paths in the scheduler. Jitter is typically on the order of a microsecond to a few tens of microseconds for hard real-time operating systems, and ranges from milliseconds to seconds in the worst case for soft real-time operating systems. The question of its significance on the performance of a controller arises. Naturally, the smaller the scheduling period required for a control task, the more significant is the impact of timing jitter. Aside from this intuitive relationship is the greater significance of timing on open-loop control, such as for stepper motors, than for closed-loop control, such as for servo motors. Techniques for measuring timing jitter are discussed, and comparisons between various platforms are presented. Techniques to reduce jitter or mitigate its effects are presented. The impact of jitter on stepper motor control is analyzed.

  20. The Situational Awareness Sensor Suite for the ISS (SASSI): A Mission Concept to Investigate ISS Charging and Wake Effects

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Minow, J. I.; Coffey, V. N.; Gilchrist, Brian E.; Hoegy, W. R.

    2014-01-01

    The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for real-time monitoring. Space environment data collected in real-time (or near-real time) can be used operationally for both real-time alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for long-term "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for short-term "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wake-induced ion waves in both electrostatic (i.e. particles) and electromagnetic modes. SASSI will advance the understanding of plasma-boundary interaction phenomena, demonstrate a suite a sensors acting in concert to provide effective SSA, and validate and/or calibrate existing ISS space environment instruments and models.

  1. Adaptively Reevaluated Bayesian Localization (ARBL). A Novel Technique for Radiological Source Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Robinson, Sean M.; Anderson, Kevin K.

    2015-01-19

    Here we present a novel technique for the localization of radiological sources in urban or rural environments from an aerial platform. The technique is based on a Bayesian approach to localization, in which measured count rates in a time series are compared with predicted count rates from a series of pre-calculated test sources to define likelihood. Furthermore, this technique is expanded by using a localized treatment with a limited field of view (FOV), coupled with a likelihood ratio reevaluation, allowing for real-time computation on commodity hardware for arbitrarily complex detector models and terrain. In particular, detectors with inherent asymmetry ofmore » response (such as those employing internal collimation or self-shielding for enhanced directional awareness) are leveraged by this approach to provide improved localization. Our results from the localization technique are shown for simulated flight data using monolithic as well as directionally-aware detector models, and the capability of the methodology to locate radioisotopes is estimated for several test cases. This localization technique is shown to facilitate urban search by allowing quick and adaptive estimates of source location, in many cases from a single flyover near a source. In particular, this method represents a significant advancement from earlier methods like full-field Bayesian likelihood, which is not generally fast enough to allow for broad-field search in real time, and highest-net-counts estimation, which has a localization error that depends strongly on flight path and cannot generally operate without exhaustive search« less

  2. The Real Time Display Builder (RTDB)

    NASA Technical Reports Server (NTRS)

    Kindred, Erick D.; Bailey, Samuel A., Jr.

    1989-01-01

    The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed.

  3. Real-time Transmission and Distribution of NOAA Tail Doppler Radar Data and Other Data Products

    NASA Astrophysics Data System (ADS)

    Carswell, J.; Chang, P.; Robinson, D.; Gamache, J.; Hill, J.

    2011-12-01

    The NOAA WP-3D and G-IV aircraft have conducted and continue to conduct numerous research and operational measurement missions. However, typically only a fraction of the data collected aboard each flight is transmitted to the ground in near real-time utilizing low bandwidth satellite data links. The advancements in aircraft satellite phones have increased available bandwidth and reliability to a point where these systems can be utilized for near real-time data flow in support of decision making. A robust and flexible data delivery system has been developed by Remote Sensing Solutions with support from NOAA's National Environmental Satellite, Data and Information Service (NESDIS), Aircraft Operations Center (AOC) and Hurricane Forecast Improvement Project (HFIP). X-band Doppler/reflectivity measurements of tropical storms and cyclones collected from the NOAA WP-3D aircraft have been the most recent focus. Doppler measurements from volume backscatter precipitation profiles can provide critical observations of the horizontal winds as the precipitation advects with these winds. The data delivery system captures these profiles and send the radial Doppler profile observations to National Weather Service in near real-time over satellite communication data link. The design of this transmission system included features to enhance the reliability and robustness of the data flow from the P-3 aircraft to the end user. Routine real-time transmission, using this system, of the full resolution Tail Doppler Radar profile data to the ground and distribution to the NOAA's Hurricane Research Division for analysis and processing in support of initializing the operational HWRF model is planned. The end objective is to provide these Doppler profiles in a routine fashion to NWS and others in the forecasting community for operational utilization in support of hurricane forecasting and warning. Other data sources that are being collected and transmitted to the ground with this system for distribution in near real-time, include but are not limited to, the NOAA Lower Fuselage Radar reflectivity profiles, SFMR retrievals, flight level data, AXBT profiles and Imaging Wind and Rain Airborne Profiler data. The transmission and distribution of these data has a latency of only several seconds from initial acquisition on the aircraft to end users accessing the data through the Internet enabling end users to have a virtual seat on the aircraft and quick dissemination critical observations to the hurricane research, forecasting and modeling communities. In this presentation, the system capabilities and architecture will be described. Examples of the data products and data visualization tools (client applications) will be shown.

  4. Real-time LMR control parameter generation using advanced adaptive synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, R.W.; Mott, J.E.

    1990-01-01

    The reactor delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups.more » A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to {plus}/{minus}1{percent}. 5 refs., 7 figs.« less

  5. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    NASA Astrophysics Data System (ADS)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of mass movements and other environmental sources at the local, regional and even global scale.

  6. Real-time implementation of logo detection on open source BeagleBoard

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  7. Real-time monitoring and massive inversion of source parameters of very long period seismic signals: An application to Stromboli Volcano, Italy

    USGS Publications Warehouse

    Auger, E.; D'Auria, L.; Martini, M.; Chouet, B.; Dawson, P.

    2006-01-01

    We present a comprehensive processing tool for the real-time analysis of the source mechanism of very long period (VLP) seismic data based on waveform inversions performed in the frequency domain for a point source. A search for the source providing the best-fitting solution is conducted over a three-dimensional grid of assumed source locations, in which the Green's functions associated with each point source are calculated by finite differences using the reciprocal relation between source and receiver. Tests performed on 62 nodes of a Linux cluster indicate that the waveform inversion and search for the best-fitting signal over 100,000 point sources require roughly 30 s of processing time for a 2-min-long record. The procedure is applied to post-processing of a data archive and to continuous automatic inversion of real-time data at Stromboli, providing insights into different modes of degassing at this volcano. Copyright 2006 by the American Geophysical Union.

  8. A Distributed Operating System for BMD Applications.

    DTIC Science & Technology

    1982-01-01

    Defense) applications executing on distributed hardware with local and shared memories. The objective was to develop real - time operating system functions...make the Basic Real - Time Operating System , and the set of new EPL language primitives that provide BMD application processes with efficient mechanisms

  9. PILOT: An intelligent distributed operations support system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Arthur N.

    1993-01-01

    The Real-Time Data System (RTDS) project is exploring the application of advanced technologies to the real-time flight operations environment of the Mission Control Centers at NASA's Johnson Space Center. The system, based on a network of engineering workstations, provides services such as delivery of real time telemetry data to flight control applications. To automate the operation of this complex distributed environment, a facility called PILOT (Process Integrity Level and Operation Tracker) is being developed. PILOT comprises a set of distributed agents cooperating with a rule-based expert system; together they monitor process operation and data flows throughout the RTDS network. The goal of PILOT is to provide unattended management and automated operation under user control.

  10. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast

  11. Advanced visualization platform for surgical operating room coordination: distributed video board system.

    PubMed

    Hu, Peter F; Xiao, Yan; Ho, Danny; Mackenzie, Colin F; Hu, Hao; Voigt, Roger; Martz, Douglas

    2006-06-01

    One of the major challenges for day-of-surgery operating room coordination is accurate and timely situation awareness. Distributed and secure real-time status information is key to addressing these challenges. This article reports on the design and implementation of a passive status monitoring system in a 19-room surgical suite of a major academic medical center. Key design requirements considered included integrated real-time operating room status display, access control, security, and network impact. The system used live operating room video images and patient vital signs obtained through monitors to automatically update events and operating room status. Images were presented on a "need-to-know" basis, and access was controlled by identification badge authorization. The system delivered reliable real-time operating room images and status with acceptable network impact. Operating room status was visualized at 4 separate locations and was used continuously by clinicians and operating room service providers to coordinate operating room activities.

  12. Analysis of Interactive Graphics Display Equipment for an Automated Photo Interpretation System.

    DTIC Science & Technology

    1982-06-01

    System provides the hardware and software for a range of graphics processor tasks. The IMAGE System employs the RSX- II M real - time operating . system in...One hard copy unit serves up to four work stations. The executive program of the IMAGE system is the DEC RSX- 11 M real - time operating system . In...picture controller. The PDP 11/34 executes programs concurrently under the RSX- I IM real - time operating system . Each graphics program consists of a

  13. Single-shot, high-resolution, fiber-based phase-diversity photodetection of optical pulses

    NASA Astrophysics Data System (ADS)

    Dorrer, C.; Waxer, L. J.; Kalb, A.; Hill, E. M.; Bromage, J.

    2016-03-01

    Temporally characterizing optical pulses is an important task when building, optimizing, and using optical sources. Direct photodetection with high-bandwidth photodiodes and real-time oscilloscopes is only adequate for optical pulses longer than ~10 ps; diagnostics based on indirect strategies are required to characterize femtosecond and sub-10-ps coherent sources. Most of these diagnostics are based on nonlinear optics and can be difficult to implement for the single-shot characterization of nonrepetitive events. A temporal diagnostic based on phase diversity is demonstrated in the context of picosecond high-energy laser systems, where single-shot pulse measurements are required for system safety and interpretation of experimental results. A plurality of ancillary optical pulses obtained by adding known amounts of chromatic dispersion to the pulse under test are directly measured by photodetection and processed to reconstruct the input pulse shape. This high-sensitivity (~50-pJ) diagnostic is based on a pulse replicator composed of fiber splitters and delay fibers, making it possible to operate with fiber sources and free-space sources after fiber coupling. Experimental data obtained with a high-bandwidth real-time oscilloscope demonstrate accurate characterization of pulses from a high-energy chirped-pulse amplification system, even for pulses shorter than the photodetection impulse response.

  14. Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.

    2010-01-01

    A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.

  15. Novel algorithm implementations in DARC: the Durham AO real-time controller

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Bitenc, Urban; Jenkins, David

    2016-07-01

    The Durham AO Real-time Controller has been used on-sky with the CANARY AO demonstrator instrument since 2010, and is also used to provide control for several AO test-benches, including DRAGON. Over this period, many new real-time algorithms have been developed, implemented and demonstrated, leading to performance improvements for CANARY. Additionally, the computational performance of this real-time system has continued to improve. Here, we provide details about recent updates and changes made to DARC, and the relevance of these updates, including new algorithms, to forthcoming AO systems. We present the computational performance of DARC when used on different hardware platforms, including hardware accelerators, and determine the relevance and potential for ELT scale systems. Recent updates to DARC have included algorithms to handle elongated laser guide star images, including correlation wavefront sensing, with options to automatically update references during AO loop operation. Additionally, sub-aperture masking options have been developed to increase signal to noise ratio when operating with non-symmetrical wavefront sensor images. The development of end-user tools has progressed with new options for configuration and control of the system. New wavefront sensor camera models and DM models have been integrated with the system, increasing the number of possible hardware configurations available, and a fully open-source AO system is now a reality, including drivers necessary for commercial cameras and DMs. The computational performance of DARC makes it suitable for ELT scale systems when implemented on suitable hardware. We present tests made on different hardware platforms, along with the strategies taken to optimise DARC for these systems.

  16. Real-world emissions of in-use off-road vehicles in Mexico.

    PubMed

    Zavala, Miguel; Huertas, Jose Ignacio; Prato, Daniel; Jazcilevich, Aron; Aguilar, Andrés; Balam, Marco; Misra, Chandan; Molina, Luisa T

    2017-09-01

    Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO 2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20-60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off-road vehicles in emissions inventories. Measurements of off-road vehicles used in construction and agricultural activities in Mexico using on-board portable emissions measurements systems (PEMS) showed that these vehicles can be major sources of black carbon and NO X . Emission factors varied significantly under real-world operating conditions, suggesting the need for detailed vehicle operation data for accurately estimating emissions inventories. Tests conducted in a selected number of sampled vehicles indicated that diesel particle filters (DPFs) are an effective technology for control of diesel particulate emissions and can provide potentially large emissions reduction in Mexico if widely implemented.

  17. Developing infrared array controller with software real time operating system

    NASA Astrophysics Data System (ADS)

    Sako, Shigeyuki; Miyata, Takashi; Nakamura, Tomohiko; Motohara, Kentaro; Uchimoto, Yuka Katsuno; Onaka, Takashi; Kataza, Hirokazu

    2008-07-01

    Real-time capabilities are required for a controller of a large format array to reduce a dead-time attributed by readout and data transfer. The real-time processing has been achieved by dedicated processors including DSP, CPLD, and FPGA devices. However, the dedicated processors have problems with memory resources, inflexibility, and high cost. Meanwhile, a recent PC has sufficient resources of CPUs and memories to control the infrared array and to process a large amount of frame data in real-time. In this study, we have developed an infrared array controller with a software real-time operating system (RTOS) instead of the dedicated processors. A Linux PC equipped with a RTAI extension and a dual-core CPU is used as a main computer, and one of the CPU cores is allocated to the real-time processing. A digital I/O board with DMA functions is used for an I/O interface. The signal-processing cores are integrated in the OS kernel as a real-time driver module, which is composed of two virtual devices of the clock processor and the frame processor tasks. The array controller with the RTOS realizes complicated operations easily, flexibly, and at a low cost.

  18. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    USGS Publications Warehouse

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  19. Ada Compiler Validation Summary Report: Certificate Number: 900121S1. 10251 Computer Sciences Corporation MC Ada V1.2.Beta/Concurrent Computer Corporation Concurrent/Masscomp 5600 Host To Concurrent/Masscomp 5600 (Dual 68020 Processor Configuration) Target

    DTIC Science & Technology

    1990-04-23

    developed Ada Real - Time Operating System (ARTOS) for bare machine environments(Target), ACW 1.1I0. " ; - -M.UIECTTERMS Ada programming language, Ada...configuration) Operating System: CSC developed Ada Real - Time Operating System (ARTOS) for bare machine environments Memory Size: 4MB 2.2...Test Method Testing of the MC Ado V1.2.beta/ Concurrent Computer Corporation compiler and the CSC developed Ada Real - Time Operating System (ARTOS) for

  20. Optimal Reservoir Operation using Stochastic Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sahu, R.; McLaughlin, D.

    2016-12-01

    Hydropower operations are typically designed to fulfill contracts negotiated with consumers who need reliable energy supplies, despite uncertainties in reservoir inflows. In addition to providing reliable power the reservoir operator needs to take into account environmental factors such as downstream flooding or compliance with minimum flow requirements. From a dynamical systems perspective, the reservoir operating strategy must cope with conflicting objectives in the presence of random disturbances. In order to achieve optimal performance, the reservoir system needs to continually adapt to disturbances in real time. Model Predictive Control (MPC) is a real-time control technique that adapts by deriving the reservoir release at each decision time from the current state of the system. Here an ensemble-based version of MPC (SMPC) is applied to a generic reservoir to determine both the optimal power contract, considering future inflow uncertainty, and a real-time operating strategy that attempts to satisfy the contract. Contract selection and real-time operation are coupled in an optimization framework that also defines a Pareto trade off between the revenue generated from energy production and the environmental damage resulting from uncontrolled reservoir spills. Further insight is provided by a sensitivity analysis of key parameters specified in the SMPC technique. The results demonstrate that SMPC is suitable for multi-objective planning and associated real-time operation of a wide range of hydropower reservoir systems.

  1. Real-Time Nonlinear Optical Information Processing.

    DTIC Science & Technology

    1979-06-01

    operations aree presented. One approach realizes the halftone method of nonlinear optical processing in real time by replacing the conventional...photographic recording medium with a real-time image transducer. In the second approach halftoning is eliminated and the real-time device is used directly

  2. A report on SHARP (Spacecraft Health Automated Reasoning Prototype) and the Voyager Neptune encounter

    NASA Technical Reports Server (NTRS)

    Martin, R. G. (Editor); Atkinson, D. J.; James, M. L.; Lawson, D. L.; Porta, H. J.

    1990-01-01

    The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations.

  3. Implementation of an Intelligent Control System

    DTIC Science & Technology

    1992-05-01

    there- fore implemented in a portable equipment rack. The controls computer consists of a microcomputer running a real time operating system , interface...circuit boards are mounted in an industry standard Multibus I chassis. The microcomputer runs the iRMX real time operating system . This operating system

  4. A robust and non-obtrusive automatic event tracking system for operating room management to improve patient care.

    PubMed

    Huang, Albert Y; Joerger, Guillaume; Salmon, Remi; Dunkin, Brian; Sherman, Vadim; Bass, Barbara L; Garbey, Marc

    2016-08-01

    Optimization of OR management is a complex problem as each OR has different procedures throughout the day inevitably resulting in scheduling delays, variations in time durations and overall suboptimal performance. There exists a need for a system that automatically tracks procedural progress in real time in the OR. This would allow for efficient monitoring of operating room states and target sources of inefficiency and points of improvement. We placed three wireless sensors (floor-mounted pressure sensor, ventilator-mounted bellows motion sensor and ambient light detector, and a general room motion detector) in two ORs at our institution and tracked cases 24 h a day for over 4 months. We collected data on 238 total cases (107 laparoscopic cases). A total of 176 turnover times were also captured, and we found that the average turnover time between cases was 35 min while the institutional goal was 30 min. Deeper examination showed that 38 % of laparoscopic cases had some aspect of suboptimal activity with the time between extubation and patient exiting the OR being the biggest contributor (16 %). Our automated system allows for robust, wireless real-time OR monitoring as well as data collection and retrospective data analyses. We plan to continue expanding our system and to project the data in real time for all OR personnel to see. At the same time, we plan on adding key pieces of technology such as RFID and other radio-frequency systems to track patients and physicians to further increase efficiency and patient safety.

  5. Real-Time Operation of the International Space Station

    NASA Astrophysics Data System (ADS)

    Suffredini, M. T.

    2002-01-01

    The International Space Station is on orbit and real-time operations are well underway. Along with the assembly challenges of building and operating the International Space Station , scientific activities are also underway. Flight control teams in three countries are working together as a team to plan, coordinate and command the systems on the International Space Station.Preparations are being made to add the additional International Partner elements including their operations teams and facilities. By October 2002, six Expedition crews will have lived on the International Space Station. Management of real-time operations has been key to these achievements. This includes the activities of ground teams in control centers around the world as well as the crew on orbit. Real-time planning is constantly challenged with balancing the requirements and setting the priorities for the assembly, maintenance, science and crew health functions on the International Space Station. It requires integrating the Shuttle, Soyuz and Progress requirements with the Station. It is also necessary to be able to respond in case of on-orbit anomalies and to set plans and commands in place to ensure the continues safe operation of the Station. Bringing together the International Partner operations teams has been challenging and intensely rewarding. Utilization of the assets of each partner has resulted in efficient solutions to problems. This paper will describe the management of the major real-time operations processes, significant achievements, and future challenges.

  6. Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Gregory Francis; Zhang, Jinghe

    2014-06-10

    Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuitiesmore » caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.« less

  7. Real-time color measurement using active illuminant

    NASA Astrophysics Data System (ADS)

    Tominaga, Shoji; Horiuchi, Takahiko; Yoshimura, Akihiko

    2010-01-01

    This paper proposes a method for real-time color measurement using active illuminant. A synchronous measurement system is constructed by combining a high-speed active spectral light source and a high-speed monochrome camera. The light source is a programmable spectral source which is capable of emitting arbitrary spectrum in high speed. This system is the essential advantage of capturing spectral images without using filters in high frame rates. The new method of real-time colorimetry is different from the traditional method based on the colorimeter or the spectrometers. We project the color-matching functions onto an object surface as spectral illuminants. Then we can obtain the CIE-XYZ tristimulus values directly from the camera outputs at every point on the surface. We describe the principle of our colorimetric technique based on projection of the color-matching functions and the procedure for realizing a real-time measurement system of a moving object. In an experiment, we examine the performance of real-time color measurement for a static object and a moving object.

  8. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  9. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity.

    PubMed

    Martin, Nathan; Lombard, Melissa; Jensen, Kirk R; Kelley, Patrick; Pratt, Tara; Traviss, Nora

    2017-05-15

    Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (p<0.05) in a BEAS-2B cell line. This study contributes novel data on real-world, nonroad engine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure, composition and toxicity are not straightforward. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fundamental Scaling of Microplasmas and Tunable UV Light Generation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manginell, Ronald P.; Sillerud, Colin Halliday; Hopkins, Matthew M.

    2016-11-01

    The temporal evolution of spectral lines from microplasma devices (MD) was studied, including impurity transitions. Long-wavelength emission diminishes more rapidly than deep UV with decreasing pulse width and RF operation. Thus, switching from DC to short pulsed or RF operation, UV emissions can be suppressed, allowing for real-time tuning of the ionization energy of a microplasma photo-ionization source, which is useful for chemical and atomic physics. Scaling allows MD to operate near atmospheric pressure where excimer states are efficiently created and emit down to 65 nm; laser emissions fall off below 200 nm, making MD light sources attractive for deepmore » UV use. A first fully-kinetic three-dimensional model was developed that explicitly calculates electron-energy distribution function. This, and non-continuum effects, were studied with the model and how they are impacted by geometry and transient or DC operation. Finally, a global non-dimensional model was developed to help explain general trends MD physics.« less

  11. Low-cost wireless voltage & current grid monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, Jacqueline

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distributionmore » grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.« less

  12. PRAIS: Distributed, real-time knowledge-based systems made easy

    NASA Technical Reports Server (NTRS)

    Goldstein, David G.

    1990-01-01

    This paper discusses an architecture for real-time, distributed (parallel) knowledge-based systems called the Parallel Real-time Artificial Intelligence System (PRAIS). PRAIS strives for transparently parallelizing production (rule-based) systems, even when under real-time constraints. PRAIS accomplishes these goals by incorporating a dynamic task scheduler, operating system extensions for fact handling, and message-passing among multiple copies of CLIPS executing on a virtual blackboard. This distributed knowledge-based system tool uses the portability of CLIPS and common message-passing protocols to operate over a heterogeneous network of processors.

  13. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Urnes, James M., Sr. (Inventor); Smith, Timothy A. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  14. A curriculum for real-time computer and control systems engineering

    NASA Technical Reports Server (NTRS)

    Halang, Wolfgang A.

    1990-01-01

    An outline of a syllabus for the education of real-time-systems engineers is given. This comprises the treatment of basic concepts, real-time software engineering, and programming in high-level real-time languages, real-time operating systems with special emphasis on such topics as task scheduling, hardware architectures, and especially distributed automation structures, process interfacing, system reliability and fault-tolerance, and integrated project development support systems. Accompanying course material and laboratory work are outlined, and suggestions for establishing a laboratory with advanced, but low-cost, hardware and software are provided. How the curriculum can be extended into a second semester is discussed, and areas for possible graduate research are listed. The suitable selection of a high-level real-time language and supporting operating system for teaching purposes is considered.

  15. A real-time monitoring system for the facial nerve.

    PubMed

    Prell, Julian; Rachinger, Jens; Scheller, Christian; Alfieri, Alex; Strauss, Christian; Rampp, Stefan

    2010-06-01

    Damage to the facial nerve during surgery in the cerebellopontine angle is indicated by A-trains, a specific electromyogram pattern. These A-trains can be quantified by the parameter "traintime," which is reliably correlated with postoperative functional outcome. The system presented was designed to monitor traintime in real-time. A dedicated hardware and software platform for automated continuous analysis of the intraoperative facial nerve electromyogram was specifically designed. The automatic detection of A-trains is performed by a software algorithm for real-time analysis of nonstationary biosignals. The system was evaluated in a series of 30 patients operated on for vestibular schwannoma. A-trains can be detected and measured automatically by the described method for real-time analysis. Traintime is monitored continuously via a graphic display and is shown as an absolute numeric value during the operation. It is an expression of overall, cumulated length of A-trains in a given channel; a high correlation between traintime as measured by real-time analysis and functional outcome immediately after the operation (Spearman correlation coefficient [rho] = 0.664, P < .001) and in long-term outcome (rho = 0.631, P < .001) was observed. Automated real-time analysis of the intraoperative facial nerve electromyogram is the first technique capable of reliable continuous real-time monitoring. It can critically contribute to the estimation of functional outcome during the course of the operative procedure.

  16. U.S. Geological Survey Real-Time River Data Applications

    USGS Publications Warehouse

    Morlock, Scott E.

    1998-01-01

    Real-time river data provided by the USGS originate from streamflow-gaging stations. The USGS operates and maintains a network of more than 7,000 such stations across the nation (Mason and Wieger, 1995). These gaging stations, used to produce records of stage and streamflow data, are operated in cooperation with local, state, and other federal agencies. The USGS office in Indianapolis operates a statewide network of more than 170 gaging stations. The instrumentation at USGS gaging stations monitors and records river information, primarily river stage (fig. 1). As technological advances are made, many USGS gaging stations are being retrofitted with electronic instrumentation to monitor and record river data. Electronic instrumentation facilitates transmission of real-time or near real-time river data for use by government agencies in such flood-related tasks as operating flood-control structures and ordering evacuations.

  17. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    NASA Astrophysics Data System (ADS)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  18. A new generation of real-time DOS technology for mission-oriented system integration and operation

    NASA Technical Reports Server (NTRS)

    Jensen, E. Douglas

    1988-01-01

    Information is given on system integration and operation (SIO) requirements and a new generation of technical approaches for SIO. Real-time, distribution, survivability, and adaptability requirements and technical approaches are covered. An Alpha operating system program management overview is outlined.

  19. Attention focussing and anomaly detection in real-time systems monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.; Chien, Steve A.; Fayyad, Usama M.; Porta, Harry J.

    1993-01-01

    In real-time monitoring situations, more information is not necessarily better. When faced with complex emergency situations, operators can experience information overload and a compromising of their ability to react quickly and correctly. We describe an approach to focusing operator attention in real-time systems monitoring based on a set of empirical and model-based measures for determining the relative importance of sensor data.

  20. Development and use of interactive displays in real-time ground support research facilities

    NASA Technical Reports Server (NTRS)

    Rhea, Donald C.; Hammons, Kvin R.; Malone, Jacqueline C.; Nesel, Michael C.

    1989-01-01

    The NASA Western Aeronautical Test Range (WATR) is one of the world's most advanced aeronautical research flight test support facilities. A variety of advanced and often unique real-time interactive displays has been developed for use in the mission control centers (MCC) to support research flight and ground testing. These dispalys consist of applications operating on systems described as real-time interactive graphics super workstations and real-time interactive PC/AT compatible workstations. This paper reviews these two types of workstations and the specific applications operating on each display system. The applications provide examples that demonstrate overall system capability applicable for use in other ground-based real-time research/test facilities.

  1. Development and operation of a real-time simulation at the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Sweeney, Christopher; Sheppard, Shirin; Chetelat, Monique

    1993-01-01

    The Vertical Motion Simulator (VMS) facility at the NASA Ames Research Center combines the largest vertical motion capability in the world with a flexible real-time operating system allowing research to be conducted quickly and effectively. Due to the diverse nature of the aircraft simulated and the large number of simulations conducted annually, the challenge for the simulation engineer is to develop an accurate real-time simulation in a timely, efficient manner. The SimLab facility and the software tools necessary for an operating simulation will be discussed. Subsequent sections will describe the development process through operation of the simulation; this includes acceptance of the model, validation, integration and production phases.

  2. Development of a coastal information system for the management of Jeddah coastal waters in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.

    2016-04-01

    This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.

  3. The embedded operating system project

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.

    1985-01-01

    The design and construction of embedded operating systems for real-time advanced aerospace applications was investigated. The applications require reliable operating system support that must accommodate computer networks. Problems that arise in the construction of such operating systems, reconfiguration, consistency and recovery in a distributed system, and the issues of real-time processing are reported. A thesis that provides theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based system is included. The following items are addressed: (1) atomic actions and fault-tolerance issues; (2) operating system structure; (3) program development; (4) a reliable compiler for path Pascal; and (5) mediators, a mechanism for scheduling distributed system processes.

  4. Large-scale machine learning and evaluation platform for real-time traffic surveillance

    NASA Astrophysics Data System (ADS)

    Eichel, Justin A.; Mishra, Akshaya; Miller, Nicholas; Jankovic, Nicholas; Thomas, Mohan A.; Abbott, Tyler; Swanson, Douglas; Keller, Joel

    2016-09-01

    In traffic engineering, vehicle detectors are trained on limited datasets, resulting in poor accuracy when deployed in real-world surveillance applications. Annotating large-scale high-quality datasets is challenging. Typically, these datasets have limited diversity; they do not reflect the real-world operating environment. There is a need for a large-scale, cloud-based positive and negative mining process and a large-scale learning and evaluation system for the application of automatic traffic measurements and classification. The proposed positive and negative mining process addresses the quality of crowd sourced ground truth data through machine learning review and human feedback mechanisms. The proposed learning and evaluation system uses a distributed cloud computing framework to handle data-scaling issues associated with large numbers of samples and a high-dimensional feature space. The system is trained using AdaBoost on 1,000,000 Haar-like features extracted from 70,000 annotated video frames. The trained real-time vehicle detector achieves an accuracy of at least 95% for 1/2 and about 78% for 19/20 of the time when tested on ˜7,500,000 video frames. At the end of 2016, the dataset is expected to have over 1 billion annotated video frames.

  5. EOS: A project to investigate the design and construction of real-time distributed Embedded Operating Systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Essick, Ray B.; Johnston, Gary; Kenny, Kevin; Russo, Vince

    1987-01-01

    Project EOS is studying the problems of building adaptable real-time embedded operating systems for the scientific missions of NASA. Choices (A Class Hierarchical Open Interface for Custom Embedded Systems) is an operating system designed and built by Project EOS to address the following specific issues: the software architecture for adaptable embedded parallel operating systems, the achievement of high-performance and real-time operation, the simplification of interprocess communications, the isolation of operating system mechanisms from one another, and the separation of mechanisms from policy decisions. Choices is written in C++ and runs on a ten processor Encore Multimax. The system is intended for use in constructing specialized computer applications and research on advanced operating system features including fault tolerance and parallelism.

  6. MARTe: A Multiplatform Real-Time Framework

    NASA Astrophysics Data System (ADS)

    Neto, André C.; Sartori, Filippo; Piccolo, Fabio; Vitelli, Riccardo; De Tommasi, Gianmaria; Zabeo, Luca; Barbalace, Antonio; Fernandes, Horacio; Valcarcel, Daniel F.; Batista, Antonio J. N.

    2010-04-01

    Development of real-time applications is usually associated with nonportable code targeted at specific real-time operating systems. The boundary between hardware drivers, system services, and user code is commonly not well defined, making the development in the target host significantly difficult. The Multithreaded Application Real-Time executor (MARTe) is a framework built over a multiplatform library that allows the execution of the same code in different operating systems. The framework provides the high-level interfaces with hardware, external configuration programs, and user interfaces, assuring at the same time hard real-time performances. End-users of the framework are required to define and implement algorithms inside a well-defined block of software, named Generic Application Module (GAM), that is executed by the real-time scheduler. Each GAM is reconfigurable with a set of predefined configuration meta-parameters and interchanges information using a set of data pipes that are provided as inputs and required as output. Using these connections, different GAMs can be chained either in series or parallel. GAMs can be developed and debugged in a non-real-time system and, only once the robustness of the code and correctness of the algorithm are verified, deployed to the real-time system. The software also supplies a large set of utilities that greatly ease the interaction and debugging of a running system. Among the most useful are a highly efficient real-time logger, HTTP introspection of real-time objects, and HTTP remote configuration. MARTe is currently being used to successfully drive the plasma vertical stabilization controller on the largest magnetic confinement fusion device in the world, with a control loop cycle of 50 ?s and a jitter under 1 ?s. In this particular project, MARTe is used with the Real-Time Application Interface (RTAI)/Linux operating system exploiting the new ?86 multicore processors technology.

  7. Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic of GPS data: application to the Tohoku 2011 tsunami

    USGS Publications Warehouse

    Yong, Wei; Newman, Andrew V.; Hayes, Gavin P.; Titov, Vasily V.; Tang, Liujuan

    2014-01-01

    Correctly characterizing tsunami source generation is the most critical component of modern tsunami forecasting. Although difficult to quantify directly, a tsunami source can be modeled via different methods using a variety of measurements from deep-ocean tsunameters, seismometers, GPS, and other advanced instruments, some of which in or near real time. Here we assess the performance of different source models for the destructive 11 March 2011 Japan tsunami using model–data comparison for the generation, propagation, and inundation in the near field of Japan. This comparative study of tsunami source models addresses the advantages and limitations of different real-time measurements with potential use in early tsunami warning in the near and far field. The study highlights the critical role of deep-ocean tsunami measurements and rapid validation of the approximate tsunami source for high-quality forecasting. We show that these tsunami measurements are compatible with other real-time geodetic data, and may provide more insightful understanding of tsunami generation from earthquakes, as well as from nonseismic processes such as submarine landslide failures.

  8. Self-balanced real-time photonic scheme for ultrafast random number generation

    NASA Astrophysics Data System (ADS)

    Li, Pu; Guo, Ya; Guo, Yanqiang; Fan, Yuanlong; Guo, Xiaomin; Liu, Xianglian; Shore, K. Alan; Dubrova, Elena; Xu, Bingjie; Wang, Yuncai; Wang, Anbang

    2018-06-01

    We propose a real-time self-balanced photonic method for extracting ultrafast random numbers from broadband randomness sources. In place of electronic analog-to-digital converters (ADCs), the balanced photo-detection technology is used to directly quantize optically sampled chaotic pulses into a continuous random number stream. Benefitting from ultrafast photo-detection, our method can efficiently eliminate the generation rate bottleneck from electronic ADCs which are required in nearly all the available fast physical random number generators. A proof-of-principle experiment demonstrates that using our approach 10 Gb/s real-time and statistically unbiased random numbers are successfully extracted from a bandwidth-enhanced chaotic source. The generation rate achieved experimentally here is being limited by the bandwidth of the chaotic source. The method described has the potential to attain a real-time rate of 100 Gb/s.

  9. Comparison of real-time BTEX flux measurements to reported emission inventories in the Upper Green River Basin, Wyoming.

    NASA Astrophysics Data System (ADS)

    Edie, R.; Robertson, A.; Murphy, S. M.; Soltis, J.; Field, R. A.; Zimmerle, D.; Bell, C.

    2017-12-01

    Other Test Method 33a (OTM-33a) is an EPA-developed near-source measurement technique that utilizes a Gaussian plume inversion to calculate the flux of a point source 20 to 200 meters away. In 2014, the University of Wyoming mobile laboratory—equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction Time of Flight Mass Spectrometer—measured methane and BTEX fluxes from oil and gas operations in the Upper Green River Basin (UGRB), Wyoming. In this study, OTM-33a BTEX flux measurements are compared to BTEX emissions reported by operators in the Wyoming Department of Environmental Quality (WY-DEQ) emission inventory. On average, OTM-33a measured BTEX fluxes are almost twice as high as those reported in the emission inventory. To further constrain errors in the OTM-33a method, methane test releases were performed at the Colorado State University Methane Emissions Test and Evaluation Center (METEC) in June of 2017. The METEC facility contains decommissioned oil and gas equipment arranged in realistic well pad layouts. Each piece of equipment has a multitude of possible emission points. A Gaussian fit of measurement error from these 29 test releases indicate the median OTM-33a measurement quantified 55% of the metered flowrate. BTEX results from the UGRB campaign and inventory analysis will be presented, along with a discussion of errors associated with the OTM-33a measurement technique. Real-time BTEX and methane mixing ratios at the measurement locations (which show a lack of correlation between VOC and methane sources in 20% of sites sampled) will also be discussed.

  10. Clock and carrier recovery in high-speed coherent optical communication systems

    NASA Astrophysics Data System (ADS)

    Amado, Sofia B.; Ferreira, Ricardo; Costa, Pedro S.; Guiomar, Fernando P.; Ziaie, Somayeh; Teixeira, António L.; Muga, Nelson J.; Pinto, Armando N.

    2014-08-01

    In this paper, the implementations of clock and carrier recovery in digital domain are analyzed. Hardware implementation details, resources estimation and real-time results are presented. Analog-to-Digital Converters (ADC), operating at 1.25Gsa/s, and a Virtex-6 Field-Programmable Gate Array (FPGA), have been used, allowing the implementation of a real-time Quadrature Phase Shift Keying (QPSK) system operating at 1.25Gb/s. The real-time mode operation is successfully demonstrated over 80 km of Standard Single Mode Fiber (SSMF).

  11. EVALUATION OF REAL-TIME INNOVATIVE BIOLOGICAL AND CHEMICAL MONITORING SYSTEMS TO PROTECT SOURCE WATERS

    EPA Science Inventory

    Evaluation of Real-Time Innovative Biological and Chemical Monitoring Systems
    To Protect Source Waters

    Drinking water supplies have in recent years come under increasing pressure from regulatory concerns regarding TMDL designations and restoration strategies as well ...

  12. Aerodyne Research mobile infrared methane monitor

    NASA Technical Reports Server (NTRS)

    Mcmanus, J. B.; Kebabian, P. L.; Kolb, C. E.

    1991-01-01

    An improved real-time methane monitor based on infrared absorption of the 3.39 micron line of a HeNe laser is described. Real time in situ measurement of methane has important applications in stratospheric and tropospheric chemistry, especially when high accuracy measurements can be made rapidly, providing fine spatial-scale information. The methane instrument provides 5 ppb resolution in a 1 sec averaging time. A key feature in this instrument is the use of magnetic (Zeeman) broadening to achieve continuous tunability with constant output power over a range of 0.017/cm. The instruments optical absorption path length is 47 m through sampled air held at 50 torr in a multipass cell of the Herriott (off-axis resonator) type. A microprocessor controls laser frequency and amplitude and collects data with minimal operator attention. The instrument recently has been used to measure methane emissions from a variety of natural and artificial terrestrial sources.

  13. Graphic Server: A real time system for displaying and monitoring telemetry data of several satellites

    NASA Technical Reports Server (NTRS)

    Douard, Stephane

    1994-01-01

    Known as a Graphic Server, the system presented was designed for the control ground segment of the Telecom 2 satellites. It is a tool used to dynamically display telemetry data within graphic pages, also known as views. The views are created off-line through various utilities and then, on the operator's request, displayed and animated in real time as data is received. The system was designed as an independent component, and is installed in different Telecom 2 operational control centers. It enables operators to monitor changes in the platform and satellite payloads in real time. It has been in operation since December 1991.

  14. Using RADFET for the real-time measurement of gamma radiation dose rate

    NASA Astrophysics Data System (ADS)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  15. Intraoperative visualization and assessment of electromagnetic tracking error

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor

    2015-03-01

    Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.

  16. Rapid screening of 35 new psychoactive substances by ion mobility spectrometry (IMS) and direct analysis in real time (DART) coupled to quadrupole time-of-flight mass spectrometry (QTOF-MS).

    PubMed

    Gwak, Seongshin; Almirall, Jose R

    2015-10-01

    The recent propagation of new psychoactive substances (NPS) has led to the development of new techniques for the rapid characterization of controlled substances in this category. A commercial bench-top ion mobility spectrometer (IMS) with a (63) Ni ionization source and a direct analysis in real time (DART) coupled to quadrupole time-of-flight (QTOF) were used for the rapid characterization of 35 NPS. The advantages of these techniques are fast response, ease of operation, and minimal sample preparation. The characteristic reduced mobilities of each substance are reported as are the mass spectra of the 35 compounds. The acquired product ion scan mass spectra were also compared to a library database constructed by QTOF with a electrospray ionization (ESI) source and showed a consistent relative abundance for each peak over time. A total of four seized drug samples provided by the local forensic laboratory were analyzed in order to demonstrate the utility of this approach. The results of this study suggest that both IMS and DART-QTOF are promising alternatives for the rapid screening and characterization of these new psychoactive substances. Copyright © 2015 John Wiley & Sons, Ltd.

  17. A real-time biomimetic acoustic localizing system using time-shared architecture

    NASA Astrophysics Data System (ADS)

    Nourzad Karl, Marianne; Karl, Christian; Hubbard, Allyn

    2008-04-01

    In this paper a real-time sound source localizing system is proposed, which is based on previously developed mammalian auditory models. Traditionally, following the models, which use interaural time delay (ITD) estimates, the amount of parallel computations needed by a system to achieve real-time sound source localization is a limiting factor and a design challenge for hardware implementations. Therefore a new approach using a time-shared architecture implementation is introduced. The proposed architecture is a purely sample-base-driven digital system, and it follows closely the continuous-time approach described in the models. Rather than having dedicated hardware on a per frequency channel basis, a specialized core channel, shared for all frequency bands is used. Having an optimized execution time, which is much less than the system's sample rate, the proposed time-shared solution allows the same number of virtual channels to be processed as the dedicated channels in the traditional approach. Hence, the time-shared approach achieves a highly economical and flexible implementation using minimal silicon area. These aspects are particularly important in efficient hardware implementation of a real time biomimetic sound source localization system.

  18. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    NASA Astrophysics Data System (ADS)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  19. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  20. Transforming administrative data into real-time information in the Department of Surgery.

    PubMed

    Beaulieu, Peter A; Higgins, John H; Dacey, Lawrence J; Nugent, William C; DeFoe, Gordon R; Likosky, Donald S

    2010-10-01

    Cardiothoracic surgical programmes face increasingly more complex procedures performed on evermore challenging patients. Public and private stakeholders are demanding these programmes report process-level and clinical outcomes as a mechanism for enabling quality assurance and informed clinical decision-making. Increasingly these measures are being tied to reimbursement and institutional accreditation. The authors developed a system for linking administrative and clinical registries, in real-time, to track performance in satisfying the needs of the patients and stakeholders, as well as helping to drive continuous quality improvement. A relational surgical database was developed to link prospectively collected clinical data to administrative data sources at Dartmouth-Hitchcock Medical Center. Institutional performance was displayed over time using process control charts, and compared with both internal and regional benchmarks. Quarterly reports have been generated and automated for five surgical cohorts. Data are displayed externally on our dedicated website, and internally in the cardiothoracic surgical office suites, operating room theatre and nursing units. Monthly discussions are held with the clinical staff and have resulted in the development of quality-improvement projects. The delivery of clinical care in isolation of data and information is no longer prudent or acceptable. The present study suggests that an automated and real-time computer system may provide rich sources of data that may be used to drive improvements in the quality of care. Current and future work will be focused on identifying opportunities to integrate these data into the fabric of the delivery of care to drive process improvement.

  1. SINQ layout, operation, applications and R&D to high power

    NASA Astrophysics Data System (ADS)

    Bauer, G. S.; Dai, Y.; Wagner, W.

    2002-09-01

    Since 1997, the Paul Scherrer Institut (PSI) is operating a 1 MW class research spallation neutron source, named SINQ. SINQ is driven by a cascade of three accelerators, the final stage being a 590 MeV isochronous ring cyclotron which delivers a beam current of 1.8 mA at an rf-frequency of 51 MHz. Since for neutron production this is essentially a dc-device, SINQ is a continuous neutron source and is optimized in its design for high time average neutron flux. This makes the facility similar to a research reactor in terms of utilization, but, in terms of beam power, it is, by a large margin, the most powerful spallation neutron source currently in operation world wide. As a consequence, target load levels prevail in SINQ which are beyond the realm of existing experience, demanding a careful approach to the design and operation of a high power target. While the best neutronic performance of the source is expected for a liquid lead-bismuth eutectic target, no experience with such systems exists. For this reason a staged approach has been embarked upon, starting with a heavy water cooled rod target of Zircaloy-2 and proceeding via steel clad lead rods towards the final goal of a target optimised in both, neutronic performance and service life time. Experience currently accruing with a test target containing sample rods with different materials specimens will help to select the proper structural material and make dependable life time estimates accounting for the real operating conditions that prevail in the facility. In parallel, both theoretical and experimental work is going on within the MEGAPIE (MEGAwatt Pilot Experiment) project, a joint initiative by six European research institutions and JAERI (Japan), DOE (USA) and KAERI (Korea), to design, build, operate and explore a liquid lead-bismuth spallation target for 1MW of beam power, taking advantage of the existing spallation neutron facility SINQ.

  2. Machine-Checkable Timed CSP

    NASA Technical Reports Server (NTRS)

    Goethel, Thomas; Glesner, Sabine

    2009-01-01

    The correctness of safety-critical embedded software is crucial, whereas non-functional properties like deadlock-freedom and real-time constraints are particularly important. The real-time calculus Timed Communicating Sequential Processes (CSP) is capable of expressing such properties and can therefore be used to verify embedded software. In this paper, we present our formalization of Timed CSP in the Isabelle/HOL theorem prover, which we have formulated as an operational coalgebraic semantics together with bisimulation equivalences and coalgebraic invariants. Furthermore, we apply these techniques in an abstract specification with real-time constraints, which is the basis for current work in which we verify the components of a simple real-time operating system deployed on a satellite.

  3. Temporal and modal characterization of DoD source air toxic emission factors: final report

    EPA Science Inventory

    This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for o...

  4. Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations

    NASA Technical Reports Server (NTRS)

    Sharma, Shivanjli; Fergus, John

    2017-01-01

    To address the Integrated Arrival, Departure, and Surface (IADS) challenge, NASA is developing and demonstrating trajectory-based departure automation under a collaborative effort with the FAA and industry known Airspace Technology Demonstration 2 (ATD-2). ATD-2 builds upon and integrates previous NASA research capabilities that include the Spot and Runway Departure Advisor (SARDA), the Precision Departure Release Capability (PDRC), and the Terminal Sequencing and Spacing (TSAS) capability. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users of the tools across a number of roles benefit from a real time system that enables common situational awareness. A real time dashboard was developed to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. In addition to shared situational awareness, the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial proposed set of metrics. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017: Charlotte-Douglas International Airport (CLT). The architecture of implementing such a tool as well as potential uses are presented for operations at CLT. Metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of system delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are explored. The potential of the real time tool to inform users of the predictability and efficiency of using a trajectory-based departure scheduling system is also discussed.

  5. Real-time realizations of the Bayesian Infrasonic Source Localization Method

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.

    2015-12-01

    The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.

  6. Tsunami simulation method initiated from waveforms observed by ocean bottom pressure sensors for real-time tsunami forecast; Applied for 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Tanioka, Yuichiro

    2017-04-01

    After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami simulation. By assuming that this computed tsunami is a real tsunami and observed at ocean bottom sensors, new tsunami simulation is carried out using the above method. The station distribution (each station is separated by 15 min., about 30 km) observed tsunami waveforms which were actually computed from the source model. Tsunami height distributions are estimated from the above method at 40, 80, and 120 seconds after the origin time of the earthquake. The Near-field Tsunami Inundation forecast method (Gusman et al. 2014) was used to estimate the tsunami inundation along the Sanriku coast. The result shows that the observed tsunami inundation was well explained by those estimated inundation. This also shows that it takes about 10 minutes to estimate the tsunami inundation from the origin time of the earthquake. This new method developed in this paper is very effective for a real-time tsunami forecast.

  7. Cluster Computing For Real Time Seismic Array Analysis.

    NASA Astrophysics Data System (ADS)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by a pro- gram which reads data from disk files and send them to a remote host by using the Internet protocols.

  8. Quantification of Nitrous Oxide from Fugitive Emissions by Tracer Dilution Method using a Mobile Real-time Nitrous Oxide Analyzer

    NASA Astrophysics Data System (ADS)

    Mønster, J.; Rella, C.; Jacobson, G. A.; He, Y.; Hoffnagle, J.; Scheutz, C.

    2012-12-01

    Nitrous oxide is a powerful greenhouse gas considered 298 times stronger than carbon dioxide on a hundred years term (Solomon et al. 2007). The increasing global concentration is of great concern and is receiving increasing attention in various scientific and industrial fields. Nitrous oxide is emitted from both natural and anthropogenic sources. Inventories of source specific fugitive nitrous oxide emissions are often estimated on the basis of modeling and mass balance. While these methods are well-developed, actual measurements for quantification of the emissions can be a useful tool for verifying the existing estimation methods as well as providing validation for initiatives targeted at lowering unwanted nitrous oxide emissions. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001), in which a tracer gas is released at the source location at a known flow. The ratio of downwind concentrations of both the tracer gas and nitrous oxide gives the ratios of the emissions rates. This tracer dilution method can be done with both stationary and mobile measurements; in either case, real-time measurements of both tracer and analyte gas is required, which places high demands on the analytical detection method. To perform the nitrous oxide measurements, a novel, robust instrument capable of real-time nitrous oxide measurements has been developed, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. We present the results of the laboratory and field tests of this instrument in both California and Denmark. Furthermore, results are presented from measurements using the mobile plume method with a tracer gas (acetylene) to quantify the nitrous oxide and methane emissions from known sources such as waste water treatment plants and composting facilities. Nitrous oxide (blue) and methane (yellow) plumes downwind from a waste water treatment facility.

  9. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises.

    PubMed

    Cannavò, Flavio; Camacho, Antonio G; González, Pablo J; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-06-09

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes.

  10. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises

    PubMed Central

    Cannavò, Flavio; Camacho, Antonio G.; González, Pablo J.; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-01-01

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes. PMID:26055494

  11. Real-time Tsunami Inundation Prediction Using High Performance Computers

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the earthquake occurs took about 2 minutes, which would be sufficient for a practical tsunami inundation predictions. In the presentation, the computational performance of our faster-than-real-time tsunami inundation model will be shown, and preferable tsunami wave source analysis for an accurate inundation prediction will also be discussed.

  12. Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation

    PubMed Central

    Biedermann, Benjamin R.; Wieser, Wolfgang; Eigenwillig, Christoph M.; Palte, Gesa; Adler, Desmond C.; Srinivasan, Vivek J.; Fujimoto, James G.; Huber, Robert

    2009-01-01

    We demonstrate en face swept source optical coherence tomography (ss-OCT) without requiring a Fourier transformation step. The electronic optical coherence tomography (OCT) interference signal from a k-space linear Fourier domain mode-locked laser is mixed with an adjustable local oscillator, yielding the analytic reflectance signal from one image depth for each frequency sweep of the laser. Furthermore, a method for arbitrarily shaping the spectral intensity profile of the laser is presented, without requiring the step of numerical apodization. In combination, these two techniques enable sampling of the in-phase and quadrature signal with a slow analog-to-digital converter and allow for real-time display of en face projections even for highest axial scan rates. Image data generated with this technique is compared to en face images extracted from a three-dimensional OCT data set. This technique can allow for real-time visualization of arbitrarily oriented en face planes for the purpose of alignment, registration, or operator-guided survey scans while simultaneously maintaining the full capability of high-speed volumetric ss-OCT functionality. PMID:18978919

  13. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  14. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  15. Real-time identification of indoor pollutant source positions based on neural network locator of contaminant sources and optimized sensor networks.

    PubMed

    Vukovic, Vladimir; Tabares-Velasco, Paulo Cesar; Srebric, Jelena

    2010-09-01

    A growing interest in security and occupant exposure to contaminants revealed a need for fast and reliable identification of contaminant sources during incidental situations. To determine potential contaminant source positions in outdoor environments, current state-of-the-art modeling methods use computational fluid dynamic simulations on parallel processors. In indoor environments, current tools match accidental contaminant distributions with cases from precomputed databases of possible concentration distributions. These methods require intensive computations in pre- and postprocessing. On the other hand, neural networks emerged as a tool for rapid concentration forecasting of outdoor environmental contaminants such as nitrogen oxides or sulfur dioxide. All of these modeling methods depend on the type of sensors used for real-time measurements of contaminant concentrations. A review of the existing sensor technologies revealed that no perfect sensor exists, but intensity of work in this area provides promising results in the near future. The main goal of the presented research study was to extend neural network modeling from the outdoor to the indoor identification of source positions, making this technology applicable to building indoor environments. The developed neural network Locator of Contaminant Sources was also used to optimize number and allocation of contaminant concentration sensors for real-time prediction of indoor contaminant source positions. Such prediction should take place within seconds after receiving real-time contaminant concentration sensor data. For the purpose of neural network training, a multizone program provided distributions of contaminant concentrations for known source positions throughout a test building. Trained networks had an output indicating contaminant source positions based on measured concentrations in different building zones. A validation case based on a real building layout and experimental data demonstrated the ability of this method to identify contaminant source positions. Future research intentions are focused on integration with real sensor networks and model improvements for much more complicated contamination scenarios.

  16. Applications for the environment : real-time information synthesis (AERIS). Eco-lanes : operational concept.

    DOT National Transportation Integrated Search

    2013-10-01

    This document serves as an Operational Concept for the Applications for the Environment: Real-Time Information Synthesis (AERIS) Eco-Lanes Transformative Concept. The Eco-Lanes Transformative Concept features dedicated lanes on freeways optimized for...

  17. A Real-Time Linux for Multicore Platforms

    DTIC Science & Technology

    2013-12-20

    under ARO support) to obtain a fully-functional OS for supporting real-time workloads on multicore platforms. This system, called LITMUS -RT...to be specified as plugin components. LITMUS -RT is open-source software (available at The views, opinions and/or findings contained in this report... LITMUS -RT (LInux Testbed for MUltiprocessor Scheduling in Real-Time systems), allows different multiprocessor real-time scheduling and

  18. Ada 9X Project Report: Ada 9X Revision Issues. Release 1

    DTIC Science & Technology

    1990-04-01

    interrupts in Ada. Users are using specialized run-time executives which promote semaphores , monitors , etc ., as well as interrupt support, are using...The focus here is on two specific problems: 1. lack of time-out on operations . 2. no efficient way to program a shared-variable monitor for the... operation . 43 !Issue implementation [3 - Remote Operations for Real-Time Systems ] The real-time implementation standards should define various remote

  19. Adding Support to the ALMA Common Software for Real-Time Operations through the Usage of a POSIX-Compliant RTOS

    NASA Astrophysics Data System (ADS)

    Tobar, R. J.; von Brand, H.; Araya, M. A.; Juerges, T.

    2010-12-01

    The ALMA Common Software (ACS) framework lacks of the real-time capabilities to control the antennas’ instrumentation — as has been probed by previous works — which has lead to non-portable workarounds to the problem. Indeed, the time service used in ACS, based in the Container/Component model, presents plenty of results that confirm this statement. This work addresses the problem of design and integrate a real-time service for ACS, providing to the framework an implementation such that the control operations over the different instruments could be done within real-time constraints. This implementation is compared with the current time service, showing the difference between the two systems when subjecting them to common scenarios. Also, the new implementation is done following the POSIX specification, ensuring interoperability and portability through different operating systems.

  20. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  1. NEAR-REAL-TIME MEASUREMENT OF TRACE VOLATILE ORGANIC COMPOUNDS FROM COMBUSTION PROCESSES USING AN ON-LINE GAS CHROMATOGRAPH

    EPA Science Inventory

    The U.S. EPA's current regulatory approach for combustion and incineration sources emphasizes the use of real-time continuous emission monitors (CEMs) for particulate, Metals, and volatile, semivolatile, and of nonvolatile organic compounds to monitor source emissions. Currently...

  2. Using Citizen Science and Crowdsourcing via Aurorasaurus as a Near Real Time Data Source for Space Weather Applications

    NASA Astrophysics Data System (ADS)

    MacDonald, E.; Heavner, M.; Hall, M.; Tapia, A.; Lalone, N.; Clayon, J.; Case, N.

    2014-12-01

    Aurorasaurus is on the cutting edge of space science, citizen science, and computer science simultaneously with the broad goals to develop a real-time citizen science network, educate the general public about the northern lights, and revolutionize real-time space weather nowcasting of the aurora for the public. We are currently in the first solar maximum with social media, which enables the technological roots to connect users, citizen scientists, and professionals around a shared global, rare interest. We will introduce the project which has been in a prototype mode since 2012 and recently relaunched with a new mobile and web presence and active campaigns. We will showcase the interdisciplinary advancements which include a more educated public, disaster warning system applications, and improved real-time ground truth data including photographs and observations of the Northern Lights. We will preview new data which validates the proof of concept for significant improvements in real-time space weather nowcasting. Our aim is to provide better real-time notifications of the visibility of the Northern Lights to the interested public via the combination of noisy crowd-sourced ground truth with noisy satellite-based predictions. The latter data are available now but are often delivered with significant jargon and uncertainty, thus reliable, timely interpretation of such forecasts by the public are problematic. The former data show real-time characteristic significant rises (in tweets for instance) that correlate with other non-real-time indices of auroral activity (like the Kp index). We will discuss the source of 'noise' in each data source. Using citizen science as a platform to provide a basis for deeper understanding is one goal; secondly we want to improve understanding of and appreciation for the dynamics and beauty of the Northern Lights by the public and scientists alike.

  3. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Muratore, John F.

    1991-01-01

    Lessons learned from operational real time expert systems are examined. The basic system architecture is discussed. An expert system is any software that performs tasks to a standard that would normally require a human expert. An expert system implies knowledge contained in data rather than code. And an expert system implies the use of heuristics as well as algorithms. The 15 top lessons learned by the operation of a real time data system are presented.

  4. The French contribution to the voluntary observing ships network of sea surface salinity

    NASA Astrophysics Data System (ADS)

    Alory, G.; Delcroix, T.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; Maes, C.; Morrow, R.; Perrier, J.; Reverdin, G.; Roubaud, F.

    2015-11-01

    Sea Surface Salinity (SSS) is an essential climate variable that requires long term in situ observation. The French SSS Observation Service (SSS-OS) manages a network of Voluntary Observing Ships equipped with thermosalinographs (TSG). The network is global though more concentrated in the tropical Pacific and North Atlantic oceanic basins. The acquisition system is autonomous with real time transmission and is regularly serviced at harbor calls. There are distinct real time and delayed time processing chains. Real time processing includes automatic alerts to detect potential instrument problems, in case raw data are outside of climatic limits, and graphical monitoring tools. Delayed time processing relies on a dedicated software for attribution of data quality flags by visual inspection, and correction of TSG time series by comparison with daily water samples and collocated Argo data. A method for optimizing the automatic attribution of quality flags in real time, based on testing different thresholds for data deviation from climatology and retroactively comparing the resulting flags to delayed time flags, is presented. The SSS-OS real time data feed the Coriolis operational oceanography database, while the research-quality delayed time data can be extracted for selected time and geographical ranges through a graphical web interface. Delayed time data have been also combined with other SSS data sources to produce gridded files for the Pacific and Atlantic oceans. A short review of the research activities conducted with such data is given. It includes observation-based process-oriented and climate studies from regional to global scale as well as studies where in situ SSS is used for calibration/validation of models, coral proxies or satellite data.

  5. The French Contribution to the Voluntary Observing Ships Network of Sea Surface Salinity

    NASA Astrophysics Data System (ADS)

    Delcroix, T. C.; Alory, G.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S. E.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; Maes, C.; Morrow, R.; Perrier, J.; Reverdin, G. P.; Roubaud, F.

    2016-02-01

    Sea Surface Salinity (SSS) is an essential climate variable that requires long term in situ observation. The French SSS Observation Service (SSS-OS) manages a network of Voluntary Observing Ships equipped with thermosalinographs (TSG). The network is global though more concentrated in the tropical Pacific and North Atlantic oceanic basins. The acquisition system is autonomous with real time transmission and is regularly serviced at harbor calls. There are distinct real time and delayed time processing chains. Real time processing includes automatic alerts to detect potential instrument problems, in case raw data are outside of climatic limits, and graphical monitoring tools. Delayed time processing relies on a dedicated software for attribution of data quality flags by visual inspection, and correction of TSG time series by comparison with daily water samples and collocated Argo data. A method for optimizing the automatic attribution of quality flags in real time, based on testing different thresholds for data deviation from climatology and retroactively comparing the resulting flags to delayed time flags, is presented. The SSS-OS real time data feed the Coriolis operational oceanography database, while the research-quality delayed time data can be extracted for selected time and geographical ranges through a graphical web interface. Delayed time data have been also combined with other SSS data sources to produce gridded files for the Pacific and Atlantic oceans. A short review of the research activities conducted with such data is given. It includes observation-based process-oriented and climate studies from regional to global scale as well as studies where in situ SSS is used for calibration/validation of models, coral proxies or satellite data.

  6. Methodology for Time-Domain Estimation of Storm-Time Electric Fields Using the 3D Earth Impedance

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Balch, C. C.; Pulkkinen, A. A.; Egbert, G. D.; Love, J. J.; Rigler, E. J.; Fujii, I.

    2016-12-01

    Magnetic storms can induce geoelectric fields in the Earth's electrically conducting interior, interfering with the operations of electric-power grid industry. The ability to estimate these electric fields at Earth's surface in close to real-time and to provide local short-term predictions would improve the ability of the industry to protect their operations. At any given time, the electric field at the Earth's surface is a function of the time-variant magnetic activity (driven by the solar wind), and the local electrical conductivity structure of the Earth's crust and mantle. For this reason, implementation of an operational electric field estimation service requires an interdisciplinary, collaborative effort between space science, real-time space weather operations, and solid Earth geophysics. We highlight in this talk an ongoing collaboration between USGS, NOAA, NASA, Oregon State University, and the Japan Meteorological Agency, to develop algorithms that can be used for scenario analyses and which might be implemented in a real-time, operational setting. We discuss the development of a time domain algorithm that employs discrete time domain representation of the impedance tensor for a realistic 3D Earth, known as the discrete time impulse response (DTIR), convolved with the local magnetic field time series, to estimate the local electric field disturbances. The algorithm is validated against measured storm-time electric field data collected in the United States and Japan. We also discuss our plans for operational real-time electric field estimation using 3D Earth impedances.

  7. Near Real-Time Imaging of the Galactic Plane with BATSE

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Zhang, S. N.; Robinson, C. R.; Paciesas, W. S.; Barret, D.; Grindlay, J.; Bloser, P.; Monnelly, C.

    1997-01-01

    The discovery of new transient or persistent sources in the hard X-ray regime with the BATSE Earth occultation Technique has been limited previously to bright sources of about 200 mCrab or more. While monitoring known source locations is not a problem to a daily limiting sensitivity of about 75 mCrab, the lack of a reliable background model forces us to use more intensive computer techniques to find weak, previously unknown emission from hard X-ray/gamma sources. The combination of Radon transform imaging of the galactic plane in 10 by 10 degree fields and the Harvard/CFA-developed Image Search (CBIS) allows us to straightforwardly search the sky for candidate sources in a +/- 20 degree latitude band along the plane. This procedure has been operating routinely on a weekly basis since spring 1997. We briefly describe the procedure, then concentrate on the performance aspects of the technique and candidate source results from the search.

  8. Parallel detecting, spectroscopic ellipsometers/polarimeters

    DOEpatents

    Furtak, Thomas E.

    2002-01-01

    The parallel detecting spectroscopic ellipsometer/polarimeter sensor has no moving parts and operates in real-time for in-situ monitoring of the thin film surface properties of a sample within a processing chamber. It includes a multi-spectral source of radiation for producing a collimated beam of radiation directed towards the surface of the sample through a polarizer. The thus polarized collimated beam of radiation impacts and is reflected from the surface of the sample, thereby changing its polarization state due to the intrinsic material properties of the sample. The light reflected from the sample is separated into four separate polarized filtered beams, each having individual spectral intensities. Data about said four individual spectral intensities is collected within the processing chamber, and is transmitted into one or more spectrometers. The data of all four individual spectral intensities is then analyzed using transformation algorithms, in real-time.

  9. Integrated payload and mission planning, phase 3. Volume 3: Ground real-time mission operations

    NASA Technical Reports Server (NTRS)

    White, W. J.

    1977-01-01

    The payloads tentatively planned to fly on the first two Spacelab missions were analyzed to examine the cost relationships of providing mission operations support from onboard vs the ground-based Payload Operations Control Center (POCC). The quantitative results indicate that use of a POCC, with data processing capability, to support real-time mission operations is the most cost effective case.

  10. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.

    PubMed

    Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G

    1999-01-01

    An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.

  11. Teachers guide for building and operating weather satellite ground stations for high school science

    NASA Technical Reports Server (NTRS)

    Summers, R. J.; Gotwald, T.

    1981-01-01

    A number of colleges and universities are operating APT direct readout stations. However, high school science teachers have often failed to realize the potential of meteorological satellites and their products as unique instructional tools. The ability to receive daily pictures from these satellites offers exciting opportunities for secondary school teachers and students to assemble the electronic hardware and to view real time pictures of Earth from outer space. The station and pictures can be used in the classroom to develop an approach to science teaching that could span many scientific disciplines and offer many opportunities for student research and participation in scientific processes. This can be accomplished with relatively small expenditures of funds for equipment. In most schools some of the equipment may already be available. Others can be constructed by teachers and/or students. Yet another source might be the purchase of used equipment from industry or through the government surplus channels. The information necessary for individuals unfamiliar with these systems to construct a direct readout for receiving real time APT photographs on a daily basis in the classroom is presented.

  12. Integration of ultrasonography and endoscopy into transsphenoidal surgery with a "picture-in-picture" viewing system--technical note.

    PubMed

    Yamasaki, Toshiki; Moritake, Kouzo; Nagai, Hidemasa; Kimura, Yoriyoshi

    2002-06-01

    A technique to integrate ultrasonography and endoscopy is described for transsphenoidal surgery to prevent intraoperative internal carotid artery (ICA)-related, life-threatening complications such as aneurysmal formation and carotid-cavernous fistula. The ultrasound unit helps avoid direct injury to the ICA. The technical advantage of this system is the miniature 1-mm diameter microvascular probe, which does not disturb the operative field. An arterial or venous flow source of even an invisible vessel can be detected easily, noninvasively, and reproducibly. Real-time information with a 100% detection rate for the ICA is helpful for predicting localization even in the intracavernous portion, where the ICA is invisible. The endoscope unit can visualize the dead angle areas of the operating microscope by varying the endoscopic gateways and display on a "picture-in-picture" system. The advantage of both devices is the integration with a video processor, so that the real-time information from each unit can be switched intraoperatively onto the display as required. This method is of particular help for removing lesions with intracavernous invasion or encasement of the ICA.

  13. Applications for the environment : real-time information synthesis low emissions zones : operational concept.

    DOT National Transportation Integrated Search

    2013-10-01

    This document serves as an Operational Concept for the Applications for the Environment: Real-Time Information Synthesis (AERIS) Low Emissions Zones Transformative Concept. The Low Emissions Zone Transformative Concept includes the ability for an ent...

  14. Simplifying operations with an uplink/downlink integration toolkit

    NASA Technical Reports Server (NTRS)

    Murphy, Susan C.; Miller, Kevin J.; Guerrero, Ana Maria; Joe, Chester; Louie, John J.; Aguilera, Christine

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed a simple, generic toolkit to integrate the uplink/downlink processes, (often called closing the loop), in JPL's Multimission Ground Data System. This toolkit provides capabilities for integrating telemetry verification points with predicted spacecraft commands and ground events in the Mission Sequence Of Events (SOE) document. In the JPL ground data system, the uplink processing functions and the downlink processing functions are separate subsystems that are not well integrated because of the nature of planetary missions with large one-way light times for spacecraft-to-ground communication. Our new closed-loop monitoring tool allows an analyst or mission controller to view and save uplink commands and ground events with their corresponding downlinked telemetry values regardless of the delay in downlink telemetry and without requiring real-time intervention by the user. An SOE document is a time-ordered list of all the planned ground and spacecraft events, including all commands, sequence loads, ground events, significant mission activities, spacecraft status, and resource allocations. The SOE document is generated by expansion and integration of spacecraft sequence files, ground station allocations, navigation files, and other ground event files. This SOE generation process has been automated within the OEL and includes a graphical, object-oriented SOE editor and real-time viewing tool running under X/Motif. The SOE toolkit was used as the framework for the integrated implementation. The SOE is used by flight engineers to coordinate their operations tasks, serving as a predict data set in ground operations and mission control. The closed-loop SOE toolkit allows simple, automated integration of predicted uplink events with correlated telemetry points in a single SOE document for on-screen viewing and archiving. It automatically interfaces with existing real-time or non real-time sources of information, to display actual values from the telemetry data stream. This toolkit was designed to greatly simplify the user's ability to access and view telemetry data, and also provide a means to view this data in the context of the commands and ground events that are used to interpret it. A closed-loop system can prove especially useful in small missions with limited resources requiring automated monitoring tools. This paper will discuss the toolkit implementation, including design trade-offs and future plans for enhancing the automated capabilities.

  15. Simplifying operations with an uplink/downlink integration toolkit

    NASA Astrophysics Data System (ADS)

    Murphy, Susan C.; Miller, Kevin J.; Guerrero, Ana Maria; Joe, Chester; Louie, John J.; Aguilera, Christine

    1994-11-01

    The Operations Engineering Lab (OEL) at JPL has developed a simple, generic toolkit to integrate the uplink/downlink processes, (often called closing the loop), in JPL's Multimission Ground Data System. This toolkit provides capabilities for integrating telemetry verification points with predicted spacecraft commands and ground events in the Mission Sequence Of Events (SOE) document. In the JPL ground data system, the uplink processing functions and the downlink processing functions are separate subsystems that are not well integrated because of the nature of planetary missions with large one-way light times for spacecraft-to-ground communication. Our new closed-loop monitoring tool allows an analyst or mission controller to view and save uplink commands and ground events with their corresponding downlinked telemetry values regardless of the delay in downlink telemetry and without requiring real-time intervention by the user. An SOE document is a time-ordered list of all the planned ground and spacecraft events, including all commands, sequence loads, ground events, significant mission activities, spacecraft status, and resource allocations. The SOE document is generated by expansion and integration of spacecraft sequence files, ground station allocations, navigation files, and other ground event files. This SOE generation process has been automated within the OEL and includes a graphical, object-oriented SOE editor and real-time viewing tool running under X/Motif. The SOE toolkit was used as the framework for the integrated implementation. The SOE is used by flight engineers to coordinate their operations tasks, serving as a predict data set in ground operations and mission control. The closed-loop SOE toolkit allows simple, automated integration of predicted uplink events with correlated telemetry points in a single SOE document for on-screen viewing and archiving. It automatically interfaces with existing real-time or non real-time sources of information, to display actual values from the telemetry data stream. This toolkit was designed to greatly simplify the user's ability to access and view telemetry data, and also provide a means to view this data in the context of the commands and ground events that are used to interpret it. A closed-loop system can prove especially useful in small missions with limited resources requiring automated monitoring tools. This paper will discuss the toolkit implementation, including design trade-offs and future plans for enhancing the automated capabilities.

  16. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  17. On the Potential Uses of Static Offsets Derived From Low-Cost Community Instruments and Crowd-Sourcing for Earthquake Monitoring and Rapid Response

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Brooks, B. A.; Murray, J. R.; Iannucci, R. A.

    2013-12-01

    We explore the efficacy of low-cost community instruments (LCCIs) and crowd-sourcing to produce rapid estimates of earthquake magnitude and rupture characteristics which can be used for earthquake loss reduction such as issuing tsunami warnings and guiding rapid response efforts. Real-time high-rate GPS data are just beginning to be incorporated into earthquake early warning (EEW) systems. These data are showing promising utility including producing moment magnitude estimates which do not saturate for the largest earthquakes and determining the geometry and slip distribution of the earthquake rupture in real-time. However, building a network of scientific-quality real-time high-rate GPS stations requires substantial infrastructure investment which is not practicable in many parts of the world. To expand the benefits of real-time geodetic monitoring globally, we consider the potential of pseudorange-based GPS locations such as the real-time positioning done onboard cell phones or on LCCIs that could be distributed in the same way accelerometers are distributed as part of the Quake Catcher Network (QCN). While location information from LCCIs often have large uncertainties, their low cost means that large numbers of instruments can be deployed. A monitoring network that includes smartphones could collect data from potentially millions of instruments. These observations could be averaged together to substantially decrease errors associated with estimated earthquake source parameters. While these data will be inferior to data recorded by scientific-grade seismometers and GPS instruments, there are features of community-based data collection (and possibly analysis) that are very attractive. This approach creates a system where every user can host an instrument or download an application to their smartphone that both provides them with earthquake and tsunami warnings while also providing the data on which the warning system operates. This symbiosis helps to encourage people to both become users of the warning system and to contribute data to the system. Further, there is some potential to take advantage of the LCCI hosts' computing and communications resources to do some of the analysis required for the warning system. We will present examples of the type of data which might be observed by pseudorange-based positioning for both actual earthquakes and laboratory tests as well as performance tests of potential earthquake source modeling derived from pseudorange data. A highlight of these performance tests is a case study of the 2011 Mw 9 Tohoku-oki earthquake.

  18. Coordinating Transit Transfers in Real Time

    DOT National Transportation Integrated Search

    2016-05-06

    Transfers are a major source of travel time variability for transit passengers. Coordinating transfers between transit routes in real time can reduce passenger waiting times and travel time variability, but these benefits need to be contrasted with t...

  19. On the Development of Multi-Hazard Early Warning Networks: Practical experiences from North and Central America.

    NASA Astrophysics Data System (ADS)

    Mencin, David; Hodgkinson, Kathleen; Braun, John; Meertens, Charles; Mattioli, Glen; Phillips, David; Blume, Fredrick; Berglund, Henry; Fox, Otina; Feaux, Karl

    2015-04-01

    The GAGE facility, managed by UNAVCO, maintains and operates about 1300 GNSS stations distributed across North and Central America as part of the EarthScope Plate Boundary Observatory (PBO) and the Continuously Operating Caribbean GPS Observational Network (COCONet). UNAVCO has upgraded about 450 stations in these networks to real-time and high-rate (RT-GNSS) and included surface meteorological instruments. The majority of these streaming stations are part of the PBO but also include approximately 50 RT-GNSS stations in the Caribbean and Central American region as part of the COCONet and TLALOCNet projects. Based on community input UNAVCO has been exploring ways to increase the capability and utility of these resources to improve our understanding in diverse areas of geophysics including seismic, volcanic, magmatic and tsunami deformation sources, extreme weather events such as hurricanes and storms, and space weather. The RT-GNSS networks also have the potential to profoundly transform our ability to rapidly characterize geophysical events, provide early warning, as well as improve hazard mitigation and response. Specific applications currently under development with university, commercial, non-profit and government collaboration on national and international scales include earthquake and tsunami early warning systems and near real-time tropospheric modeling of hurricanes and precipitable water vapor estimate assimilation. Using tsunami early warning as an example, an RT-GNSS network can provide multiple inputs in an operational system starting with rapid assessment of earthquake sources and associated deformation which informs the initial modeled tsunami. The networks can then can also provide direct measurements of the tsunami wave heights and propagation by tracking the associated ionospheric disturbance from several 100's of km away as the waves approaches the shoreline. These GNSS based constraints can refine the tsunami and inundation models and potentially mitigate hazards. Other scientific and operational applications for high-rate GPS include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. Our operational system has multiple communities that use and depend on a Pan-Pacific real-time open data set. The ability to merge existing data sets and user communities, seismic and tide gauge observations, with GNSS and Met data products has proven complicated because of issues related to meta-data, appropriate data formats, data quality assessment in real-time and specific issues related to using these products in operational forecasting. Additional issues related to data access across national borders and cognizant government sanctioned "early warning" agencies, some committed to specific technologies, methodologies, internal structure and further constrained by data policies make a truly operational system an on-going work in progress. We present a short history of evolving a very large and expensive RT-GNSS network originally designed to answer specific long term scientific questions about structure and evolution of North American plate boundaries into a much needed national hazard system while continuing to serve our core community in long term scientific studies. Out primary focus in this presentation is an analysis of our current goals and impediments to achieving these broader objectives.

  20. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  1. Versatile analog pulse height computer performs real-time arithmetic operations

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Strauss, M. G.

    1967-01-01

    Multipurpose analog pulse height computer performs real-time arithmetic operations on relatively fast pulses. This computer can be used for identification of charged particles, pulse shape discrimination, division of signals from position sensitive detectors, and other on-line data reduction techniques.

  2. Real-time modeling and simulation of distribution feeder and distributed resources

    NASA Astrophysics Data System (ADS)

    Singh, Pawan

    The analysis of the electrical system dates back to the days when analog network analyzers were used. With the advent of digital computers, many programs were written for power-flow and short circuit analysis for the improvement of the electrical system. Real-time computer simulations can answer many what-if scenarios in the existing or the proposed power system. In this thesis, the standard IEEE 13-Node distribution feeder is developed and validated on a real-time platform OPAL-RT. The concept and the challenges of the real-time simulation are studied and addressed. Distributed energy resources include some of the commonly used distributed generation and storage devices like diesel engine, solar photovoltaic array, and battery storage system are modeled and simulated on a real-time platform. A microgrid encompasses a portion of an electric power distribution which is located downstream of the distribution substation. Normally, the microgrid operates in paralleled mode with the grid; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. The microgrid can operate in grid connected and islanded mode, both the operating modes are studied in the last chapter. Towards the end, a simple microgrid controller modeled and simulated on the real-time platform is developed for energy management and protection for the microgrid.

  3. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  4. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  5. Real-time UNIX in HEP data acquisition

    NASA Astrophysics Data System (ADS)

    Buono, S.; Gaponenko, I.; Jones, R.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P. Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Aguer, M.; Huet, M.

    1994-12-01

    Today's experimentation in high energy physics is characterized by an increasing need for sensitivity to rare phenomena and complex physics signatures, which require the use of huge and sophisticated detectors and consequently a high performance readout and data acquisition. Multi-level triggering, hierarchical data collection and an always increasing amount of processing power, distributed throughout the data acquisition layers, will impose a number of features on the software environment, especially the need for a high level of standardization. Real-time UNIX seems, today, the best solution for the platform independence, operating system interface standards and real-time features necessary for data acquisition in HEP experiments. We present the results of the evaluation, in a realistic application environment, of a Real-Time UNIX operating system: the EP/LX real-time UNIX system.

  6. Remote mission specialist - A study in real-time, adaptive planning

    NASA Technical Reports Server (NTRS)

    Rokey, Mark J.

    1990-01-01

    A high-level planning architecture for robotic operations is presented. The remote mission specialist integrates high-level directives with low-level primitives executable by a run-time controller for command of autonomous servicing activities. The planner has been designed to address such issues as adaptive plan generation, real-time performance, and operator intervention.

  7. Low-cost, portable open-source gas monitoring device based on chemosensory technology

    NASA Astrophysics Data System (ADS)

    Gotor, Raúl; Gaviña, Pablo; Costero, Ana M.

    2015-08-01

    We report herein the construction of an electronic device to perform the real-time digitalization of the color state of the optical chemosensors used in the detection of dangerous gases. To construct the device, we used open-source modular electronics, such as Arduino and Sparkfun components, as well as free and open-source software (FOSS). The basic principle of the operation of this device is the continuous color measurement of a chemosensor-doped sensing film, whose color changes in the presence of a specific gas. The chemosensor-sensing film can be prepared by using any of the widely available chemosensors for the desired gas. Color measurement is taken by two TCS230 color sensor ICs, reported to the microcontroller, and the results are displayed on an LCD display and pushed through a USB serial port. By using a cyanide optical chemosensor, we demonstrated the operation of the device as a HCN gas detector at low concentrations.

  8. Microseismic Event Location Improvement Using Adaptive Filtering for Noise Attenuation

    NASA Astrophysics Data System (ADS)

    de Santana, F. L., Sr.; do Nascimento, A. F.; Leandro, W. P. D. N., Sr.; de Carvalho, B. M., Sr.

    2017-12-01

    In this work we show how adaptive filtering noise suppression improves the effectiveness of the Source Scanning Algorithm (SSA; Kao & Shan, 2004) in microseism location in the context of fracking operations. The SSA discretizes the time and region of interest in a 4D vector and, for each grid point and origin time, a brigthness value (seismogram stacking) is calculated. For a given set of velocity model parameters, when origin time and hypocenter of the seismic event are correct, a maximum value for coherence (or brightness) is achieved. The result is displayed on brightness maps for each origin time. Location methods such as SSA are most effective when the noise present in the seismograms is incoherent, however, the method may present false positives when the noise present in the data is coherent as occurs in fracking operations. To remove from the seismograms, the coherent noise from the pump and engines used in the operation, we use an adaptive filter. As the noise reference, we use the seismogram recorded at the station closest to the machinery employed. Our methodology was tested on semi-synthetic data. The microseismic was represented by Ricker pulses (with central frequency of 30Hz) on synthetics seismograms, and to simulate real seismograms on a surface microseismic monitoring situation, we added real noise recorded in a fracking operation to these synthetics seismograms. The results show that after the filtering of the seismograms, we were able to improve our detection threshold and to achieve a better resolution on the brightness maps of the located events.

  9. Development, Implementation, and Skill Assessment of the NOAA/NOS Great Lakes Operational Forecast System

    DTIC Science & Technology

    2011-01-01

    USA) 2011 Abstract The NOAA Great Lakes Operational Forecast System ( GLOFS ) uses near-real-time atmospheric observa- tions and numerical weather...Operational Oceanographic Products and Services (CO-OPS) in Silver Spring, MD. GLOFS has been making operational nowcasts and forecasts at CO-OPS... GLOFS ) uses near-real-time atmospheric observations and numerical weather prediction forecast guidance to produce three-dimensional forecasts of water

  10. Ford Motor Company NDE facility shielding design.

    PubMed

    Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H

    2005-01-01

    Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.

  11. Surgery scheduling optimization considering real life constraints and comprehensive operation cost of operating room.

    PubMed

    Xiang, Wei; Li, Chong

    2015-01-01

    Operating Room (OR) is the core sector in hospital expenditure, the operation management of which involves a complete three-stage surgery flow, multiple resources, prioritization of the various surgeries, and several real-life OR constraints. As such reasonable surgery scheduling is crucial to OR management. To optimize OR management and reduce operation cost, a short-term surgery scheduling problem is proposed and defined based on the survey of the OR operation in a typical hospital in China. The comprehensive operation cost is clearly defined considering both under-utilization and overutilization. A nested Ant Colony Optimization (nested-ACO) incorporated with several real-life OR constraints is proposed to solve such a combinatorial optimization problem. The 10-day manual surgery schedules from a hospital in China are compared with the optimized schedules solved by the nested-ACO. Comparison results show the advantage using the nested-ACO in several measurements: OR-related time, nurse-related time, variation in resources' working time, and the end time. The nested-ACO considering real-life operation constraints such as the difference between first and following case, surgeries priority, and fixed nurses in pre/post-operative stage is proposed to solve the surgery scheduling optimization problem. The results clearly show the benefit of using the nested-ACO in enhancing the OR management efficiency and minimizing the comprehensive overall operation cost.

  12. Metallurgical Plant Optimization Through the use of Flowsheet Simulation Modelling

    NASA Astrophysics Data System (ADS)

    Kennedy, Mark William

    Modern metallurgical plants typically have complex flowsheets and operate on a continuous basis. Real time interactions within such processes can be complex and the impacts of streams such as recycles on process efficiency and stability can be highly unexpected prior to actual operation. Current desktop computing power, combined with state-of-the-art flowsheet simulation software like Metsim, allow for thorough analysis of designs to explore the interaction between operating rate, heat and mass balances and in particular the potential negative impact of recycles. Using plant information systems, it is possible to combine real plant data with simple steady state models, using dynamic data exchange links to allow for near real time de-bottlenecking of operations. Accurate analytical results can also be combined with detailed unit operations models to allow for feed-forward model-based-control. This paper will explore some examples of the application of Metsim to real world engineering and plant operational issues.

  13. Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis

    PubMed Central

    Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2016-01-01

    Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257

  14. Controlling Real-Time Processes On The Space Station With Expert Systems

    NASA Astrophysics Data System (ADS)

    Leinweber, David; Perry, John

    1987-02-01

    Many aspects of space station operations involve continuous control of real-time processes. These processes include electrical power system monitoring, propulsion system health and maintenance, environmental and life support systems, space suit checkout, on-board manufacturing, and servicing of attached vehicles such as satellites, shuttles, orbital maneuvering vehicles, orbital transfer vehicles and remote teleoperators. Traditionally, monitoring of these critical real-time processes has been done by trained human experts monitoring telemetry data. However, the long duration of space station missions and the high cost of crew time in space creates a powerful economic incentive for the development of highly autonomous knowledge-based expert control procedures for these space stations. In addition to controlling the normal operations of these processes, the expert systems must also be able to quickly respond to anomalous events, determine their cause and initiate corrective actions in a safe and timely manner. This must be accomplished without excessive diversion of system resources from ongoing control activities and any events beyond the scope of the expert control and diagnosis functions must be recognized and brought to the attention of human operators. Real-time sensor based expert systems (as opposed to off-line, consulting or planning systems receiving data via the keyboard) pose particular problems associated with sensor failures, sensor degradation and data consistency, which must be explicitly handled in an efficient manner. A set of these systems must also be able to work together in a cooperative manner. This paper describes the requirements for real-time expert systems in space station control, and presents prototype implementations of space station expert control procedures in PICON (process intelligent control). PICON is a real-time expert system shell which operates in parallel with distributed data acquisition systems. It incorporates a specialized inference engine with a specialized scheduling portion specifically designed to match the allocation of system resources with the operational requirements of real-time control systems. Innovative knowledge engineering techniques used in PICON to facilitate the development of real-time sensor-based expert systems which use the special features of the inference engine are illustrated in the prototype examples.

  15. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  16. Development of Targeting UAVs Using Electric Helicopters and Yamaha RMAX

    DTIC Science & Technology

    2007-05-17

    including the QNX real - time operating system . The video overlay board is useful to display the onboard camera’s image with important information such as... real - time operating system . Fully utilizing the built-in multi-processing architecture with inter-process synchronization and communication

  17. A COTS-Based Replacement Strategy for Aging Avionics Computers

    DTIC Science & Technology

    2001-12-01

    Communication Control Unit. A COTS-Based Replacement Strategy for Aging Avionics Computers COTS Microprocessor Real Time Operating System New Native Code...Native Code Objec ts Native Code Thread Real - Time Operating System Legacy Function x Virtual Component Environment Context Switch Thunk Add-in Replace

  18. Method and system for spatial data input, manipulation and distribution via an adaptive wireless transceiver

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.

  19. Validation of GOES-9 Satellite-Derived Cloud Properties over the Tropical Western Pacific Region

    NASA Technical Reports Server (NTRS)

    Khaiyer, Mandana M.; Nordeen, Michele L.; Doeling, David R.; Chakrapani, Venkatasan; Minnis, Patrick; Smith, William L., Jr.

    2004-01-01

    Real-time processing of hourly GOES-9 images in the ARM TWP region began operationally in October 2003 and is continuing. The ARM sites provide an excellent source for validating this new satellitederived cloud and radiation property dataset. Derived cloud amounts, heights, and broadband shortwave fluxes are compared with similar quantities derived from ground-based instrumentation. The results will provide guidance for estimating uncertainties in the GOES-9 products and to develop improvements in the retrieval methodologies and input.

  20. Nanosurveyor: a framework for real-time data processing

    DOE PAGES

    Daurer, Benedikt J.; Krishnan, Hari; Perciano, Talita; ...

    2017-01-31

    Background: The ever improving brightness of accelerator based sources is enabling novel observations and discoveries with faster frame rates, larger fields of view, higher resolution, and higher dimensionality. Results: Here we present an integrated software/algorithmic framework designed to capitalize on high-throughput experiments through efficient kernels, load-balanced workflows, which are scalable in design. We describe the streamlined processing pipeline of ptychography data analysis. Conclusions: The pipeline provides throughput, compression, and resolution as well as rapid feedback to the microscope operators.

  1. Application of Synchrophasor Measurements for Improving Situational Awareness of the Power System

    NASA Astrophysics Data System (ADS)

    Obushevs, A.; Mutule, A.

    2018-04-01

    The paper focuses on the application of synchrophasor measurements that present unprecedented benefits compared to SCADA systems in order to facilitate the successful transformation of the Nordic-Baltic-and-European electric power system to operate with large amounts of renewable energy sources and improve situational awareness of the power system. The article describes new functionalities of visualisation tools to estimate a grid inertia level in real time with monitoring results between Nordic and Baltic power systems.

  2. Current and emerging laser sensors for greenhouse gas sensing and leak detection

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.

    2014-05-01

    To reduce atmospheric accumulation of the greenhouse gases methane and carbon dioxide, networks of continuously operating sensors that monitor and map their sources are desirable. In this paper, we discuss advances in laser-based open-path leak detectors, as well as technical and economic challenges inhibiting widespread sensor deployment for "ubiquitous monitoring". We describe permanently-installed, wireless, solar-powered sensors that overcome previous installation and maintenance difficulties while providing autonomous real-time leak reporting without false alarms.

  3. Operating system for a real-time multiprocessor propulsion system simulator

    NASA Technical Reports Server (NTRS)

    Cole, G. L.

    1984-01-01

    The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.

  4. Model documentation for relations between continuous real-time and discrete water-quality constituents in Indian Creek, Johnson County, Kansas, June 2004 through May 2013

    USGS Publications Warehouse

    Stone, Mandy L.; Graham, Jennifer L.

    2014-01-01

    Johnson County is the fastest growing county in Kansas, with a population of about 560,000 people in 2012. Urban growth and development can have substantial effects on water quality, and streams in Johnson County are affected by nonpoint-source pollutants from stormwater runoff and point-source discharges such as municipal wastewater effluent. Understanding of current (2014) water-quality conditions and the effects of urbanization is critical for the protection and remediation of aquatic resources in Johnson County, Kansas and downstream reaches located elsewhere. The Indian Creek Basin is 194 square kilometers and includes parts of Johnson County, Kansas and Jackson County, Missouri. Approximately 86 percent of the Indian Creek Basin is located in Johnson County, Kansas. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, operated a series of six continuous real-time water-quality monitoring stations in the Indian Creek Basin during June 2011 through May 2013; one of these sites has been operating since February 2004. Five monitoring sites were located on Indian Creek and one site was located on Tomahawk Creek. The purpose of this report is to document regression models that establish relations between continuously measured water-quality properties and discretely collected water-quality constituents. Continuously measured water-quality properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, turbidity, and nitrate. Discrete water-quality samples were collected during June 2011 through May 2013 at five new sites and June 2004 through May 2013 at a long-term site and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to estimate concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models for 28 water-quality constituents were developed and documented. The water-quality information in this report is important to Johnson County Wastewater because it allows the concentrations of many potential pollutants of interest, including nutrients and sediment, to be estimated in real time and characterized during conditions and time scales that would not be possible otherwise.

  5. An expert system for benzole recovery plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, H.; Matsumura, S.; Kawashima, A.

    1993-01-01

    In the By-Product Plant of NKK's Keihin Works, systematization efforts were made in 1988, including integration of the control rooms, introduction of computers and installation of automatic analyzers. This has however increased the burden on operators with a huge volume of data, and a delay in coping with an operational abnormality might expand risk and extent of damages. There is, on the other hand, a pressing need to take measures to accommodate sophisticated operations resulting from the pursuit of high productivity operation. For the purpose of avoiding these possible inconveniences, development of a real-time operation system has been tried inmore » an attempt to improve safety and operating techniques and productivity in the benzole recovery plant. An offline system based on manual entry of operating data for diagnosis of operation and abnormality was developed in 1990, and an online real-time system operating by incorporating real-time operating data was developed in 1991, which is now smoothly operating in commercial operations. This report presents an outline of the benzole recovery operation diagnosis control expert system.« less

  6. Real-time determination of the worst tsunami scenario based on Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Furuya, Takashi; Koshimura, Shunichi; Hino, Ryota; Ohta, Yusaku; Inoue, Takuya

    2016-04-01

    In recent years, real-time tsunami inundation forecasting has been developed with the advances of dense seismic monitoring, GPS Earth observation, offshore tsunami observation networks, and high-performance computing infrastructure (Koshimura et al., 2014). Several uncertainties are involved in tsunami inundation modeling and it is believed that tsunami generation model is one of the great uncertain sources. Uncertain tsunami source model has risk to underestimate tsunami height, extent of inundation zone, and damage. Tsunami source inversion using observed seismic, geodetic and tsunami data is the most effective to avoid underestimation of tsunami, but needs to expect more time to acquire the observed data and this limitation makes difficult to terminate real-time tsunami inundation forecasting within sufficient time. Not waiting for the precise tsunami observation information, but from disaster management point of view, we aim to determine the worst tsunami source scenario, for the use of real-time tsunami inundation forecasting and mapping, using the seismic information of Earthquake Early Warning (EEW) that can be obtained immediately after the event triggered. After an earthquake occurs, JMA's EEW estimates magnitude and hypocenter. With the constraints of earthquake magnitude, hypocenter and scaling law, we determine possible multi tsunami source scenarios and start searching the worst one by the superposition of pre-computed tsunami Green's functions, i.e. time series of tsunami height at offshore points corresponding to 2-dimensional Gaussian unit source, e.g. Tsushima et al., 2014. Scenario analysis of our method consists of following 2 steps. (1) Searching the worst scenario range by calculating 90 scenarios with various strike and fault-position. From maximum tsunami height of 90 scenarios, we determine a narrower strike range which causes high tsunami height in the area of concern. (2) Calculating 900 scenarios that have different strike, dip, length, width, depth and fault-position. Note that strike is limited with the range obtained from 90 scenarios calculation. From 900 scenarios, we determine the worst tsunami scenarios from disaster management point of view, such as the one with shortest travel time and the highest water level. The method was applied to a hypothetical-earthquake, and verified if it can effectively search the worst tsunami source scenario in real-time, to be used as an input of real-time tsunami inundation forecasting.

  7. Transfer of Real-time Dynamic Radiation Environment Assimilation Model; Research to Operation

    NASA Astrophysics Data System (ADS)

    Cho, K. S. F.; Hwang, J.; Shin, D. K.; Kim, G. J.; Morley, S.; Henderson, M. G.; Friedel, R. H.; Reeves, G. D.

    2015-12-01

    Real-time Dynamic Radiation Environment Assimilation Model (rtDREAM) was developed by LANL for nowcast of energetic electrons' flux at the radiation belt to quantify potential risks from radiation damage at the satellites. Assimilated data are from multiple sources including LANL assets (GEO, GPS). For transfer from research to operation of the rtDREAM code, LANL/KSWC/NOAA makes a Memorandum Of Understanding (MOU) on the collaboration between three parts. By this MOU, KWSC/RRA provides all the support for transitioning the research version of DREAM to operations. KASI is primarily responsible for providing all the interfaces between the current scientific output formats of the code and useful space weather products that can be used and accessed through the web. In the second phase, KASI will be responsible in performing the work needed to transform the Van Allen Probes beacon data into "DREAM ready" inputs. KASI will also provide the "operational" code framework and additional data preparation, model output, display and web page codes back to LANL and SWPC. KASI is already a NASA partnering ground station for the Van Allen Probes' space weather beacon data and can here show use and utility of these data for comparison between rtDREAM and observations by web. NOAA has offered to take on some of the data processing tasks specific to the GOES data.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information aboutmore » actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.« less

  9. Stochastic Industrial Source Detection Using Lower Cost Methods

    NASA Astrophysics Data System (ADS)

    Thoma, E.; George, I. J.; Brantley, H.; Deshmukh, P.; Cansler, J.; Tang, W.

    2017-12-01

    Hazardous air pollutants (HAPs) can be emitted from a variety of sources in industrial facilities, energy production, and commercial operations. Stochastic industrial sources (SISs) represent a subcategory of emissions from fugitive leaks, variable area sources, malfunctioning processes, and improperly controlled operations. From the shared perspective of industries and communities, cost-effective detection of mitigable SIS emissions can yield benefits such as safer working environments, cost saving through reduced product loss, lower air shed pollutant impacts, and improved transparency and community relations. Methods for SIS detection can be categorized by their spatial regime of operation, ranging from component-level inspection to high-sensitivity kilometer scale surveys. Methods can be temporally intensive (providing snap-shot measures) or sustained in both time-integrated and continuous forms. Each method category has demonstrated utility, however, broad adoption (or routine use) has thus far been limited by cost and implementation viability. Described here are a subset of SIS methods explored by the U.S EPA's next generation emission measurement (NGEM) program that focus on lower cost methods and models. An emerging systems approach that combines multiple forms to help compensate for reduced performance factors of lower cost systems is discussed. A case study of a multi-day HAP emission event observed by a combination of low cost sensors, open-path spectroscopy, and passive samplers is detailed. Early field results of a novel field gas chromatograph coupled with a fast HAP concentration sensor is described. Progress toward near real-time inverse source triangulation assisted by pre-modeled facility profiles using the Los Alamos Quick Urban & Industrial Complex (QUIC) model is discussed.

  10. ARPA-E: Advancing the Electric Grid

    ScienceCinema

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2018-06-07

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  11. Embedded real-time operating system micro kernel design

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-hui; Li, Ming-qiang; Wang, Xin-zheng

    2005-12-01

    Embedded systems usually require a real-time character. Base on an 8051 microcontroller, an embedded real-time operating system micro kernel is proposed consisting of six parts, including a critical section process, task scheduling, interruption handle, semaphore and message mailbox communication, clock managent and memory managent. Distributed CPU and other resources are among tasks rationally according to the importance and urgency. The design proposed here provides the position, definition, function and principle of micro kernel. The kernel runs on the platform of an ATMEL AT89C51 microcontroller. Simulation results prove that the designed micro kernel is stable and reliable and has quick response while operating in an application system.

  12. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  13. Common spaceborne multicomputer operating system and development environment

    NASA Technical Reports Server (NTRS)

    Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.

    1994-01-01

    A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.

  14. Real-Time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells.

    PubMed

    Dorval, A D; Christini, D J; White, J A

    2001-10-01

    We describe a system for real-time control of biological and other experiments. This device, based around the Real-Time Linux operating system, was tested specifically in the context of dynamic clamping, a demanding real-time task in which a computational system mimics the effects of nonlinear membrane conductances in living cells. The system is fast enough to represent dozens of nonlinear conductances in real time at clock rates well above 10 kHz. Conductances can be represented in deterministic form, or more accurately as discrete collections of stochastically gating ion channels. Tests were performed using a variety of complex models of nonlinear membrane mechanisms in excitable cells, including simulations of spatially extended excitable structures, and multiple interacting cells. Only in extreme cases does the computational load interfere with high-speed "hard" real-time processing (i.e., real-time processing that never falters). Freely available on the worldwide web, this experimental control system combines good performance. immense flexibility, low cost, and reasonable ease of use. It is easily adapted to any task involving real-time control, and excels in particular for applications requiring complex control algorithms that must operate at speeds over 1 kHz.

  15. Time-domain Surveys and Data Shift: Case Study at the intermediate Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Rebbapragada, Umaa; Bue, Brian; Wozniak, Przemyslaw R.

    2015-01-01

    Next generation time-domain surveys are susceptible to the problem of data shift that is caused by upgrades to data processing pipelines and instruments. Data shift degrades the performance of automated machine learning classifiers that vet detections and classify source types because fundamental assumptions are violated when classifiers are built in one data regime but are deployed on data from another. This issue is not currently discussed within the astronomical community, but will be increasingly pressing over the next decade with the advent of new time domain surveys.We look at the problem of data shift that was caused by a data pipeline upgrade when the intermediate Palomar Transient Factory (iPTF) succeeded the Palomar Transient Factory (PTF) in January 2013. iPTF relies upon machine-learned Real-Bogus classifiers to vet sources extracted from subtracted images on a scale of zero to one where zero indicates a bogus (image artifact) and one indicates a real astronomical transient, with the overwhelming majority of candidates are scored as bogus. An effective Real-Bogus system filters all but the most promising candidates, which are presented to human scanners who make decisions about triggering follow up assets.The Real-Bogus systems currently in operation at iPTF (RB4 and RB5) solve the data shift problem. The statistical models of RB4 and RB5 were built from the ground up using examples from iPTF alone, whereas an older system, RB2, was built using PTF data, but was deployed after iPTF launched. We discuss the machine learning assumptions that are violated when a system is trained on one domain (PTF) but deployed on another (iPTF) that experiences data shift. We provide illustrative examples of data parameters and statistics that experienced shift. Finally, we show results comparing the three systems in operation, demonstrating that systems that solve domain shift (RB4 and RB5) are superior to those that don't (RB2).Research described in this abstract was carried out at the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration. US Government Support Acknowledged.

  16. Integrating Clarus data in traffic signal system operation : a survivable real-time weather-responsive system.

    DOT National Transportation Integrated Search

    2011-07-11

    This report presents a prototype of a secure, dependable, real-time weather-responsive traffic signal system. The prototype executes two tasks: 1) accesses weather information that provides near real-time atmospheric and pavement surface condition ob...

  17. 45 CFR 162.920 - Availability of implementation specifications and operating rules.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Eligibility and Benefit Real Time Companion Guide Rule, version 1.1.0, March 2011, as referenced in § 162.1203...: Eligibility and Benefits Real Time Response Time Rule, version 1.1.0, March 2011, as referenced in § 162.1203... operating rules. 162.920 Section 162.920 Public Welfare Department of Health and Human Services...

  18. 45 CFR 162.920 - Availability of implementation specifications and operating rules.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Eligibility and Benefit Real Time Companion Guide Rule, version 1.1.0, March 2011, as referenced in § 162.1203...: Eligibility and Benefits Real Time Response Time Rule, version 1.1.0, March 2011, as referenced in § 162.1203... operating rules. 162.920 Section 162.920 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  19. Managed lane operations--adjusted time of day pricing vs. near-real time dynamic pricing : volume I, dynamic pricing and operations of managed lanes.

    DOT National Transportation Integrated Search

    2012-02-12

    In 2008, the Florida Department of Transportation began implementing the 95 Express, a segment of I-95 in Miami with high occupancy toll (HOT) lanes. Some vehicles use HOT lanes free, but most vehicles pay a toll based on real-time traffic conditions...

  20. Dependable Real-Time Systems

    DTIC Science & Technology

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  1. Evaluation report for ITS for voluntary emission reduction : an ITS operational test for real-time vehicle emissions detection

    DOT National Transportation Integrated Search

    1997-05-01

    The Intelligent Transport Systems (ITS) Operation Test Project was designed to assess the potential of ITS to support cleaner air by providing real-time vehicle tailpipe emissions information (carbon monoxide levels) to the driving public. It made...

  2. An evaluation of retrofit engineering control interventions to reduce perchloroethylene exposures in commercial dry-cleaning shops.

    PubMed

    Earnest, G Scott; Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Kovein, Ronald J

    2002-02-01

    Real-time monitoring was used to evaluate the ability of engineering control devices retrofitted on two existing dry-cleaning machines to reduce worker exposures to perchloroethylene. In one dry-cleaning shop, a refrigerated condenser was installed on a machine that had a water-cooled condenser to reduce the air temperature, improve vapor recovery, and lower exposures. In a second shop, a carbon adsorber was retrofitted on a machine to adsorb residual perchloroethylene not collected by the existing refrigerated condenser to improve vapor recovery and reduce exposures. Both controls were successful at reducing the perchloroethylene exposures of the dry-cleaning machine operator. Real-time monitoring was performed to evaluate how the engineering controls affected exposures during loading and unloading the dry-cleaning machine, a task generally considered to account for the highest exposures. The real-time monitoring showed that dramatic reductions occurred in exposures during loading and unloading of the dry-cleaning machine due to the engineering controls. Peak operator exposures during loading and unloading were reduced by 60 percent in the shop that had a refrigerated condenser installed on the dry-cleaning machine and 92 percent in the shop that had a carbon adsorber installed. Although loading and unloading exposures were dramatically reduced, drops in full-shift time-weighted average (TWA) exposures were less dramatic. TWA exposures to perchloroethylene, as measured by conventional air sampling, showed smaller reductions in operator exposures of 28 percent or less. Differences between exposure results from real-time and conventional air sampling very likely resulted from other uncontrolled sources of exposure, differences in shop general ventilation before and after the control was installed, relatively small sample sizes, and experimental variability inherent in field research. Although there were some difficulties and complications with installation and maintenance of the engineering controls, this study showed that retrofitting engineering controls may be a feasible option for some dry-cleaning shop owners to reduce worker exposures to perchloroethylene. By installing retrofit controls, a dry-cleaning facility can reduce exposures, in some cases dramatically, and bring operators into compliance with the Occupational Safety and Health Administration (OSHA) peak exposure limit of 300 ppm. Retrofit engineering controls are also likely to enable many dry-cleaning workers to lower their overall personal TWA exposures to perchloroethylene.

  3. Optimization of active distribution networks: Design and analysis of significative case studies for enabling control actions of real infrastructure

    NASA Astrophysics Data System (ADS)

    Moneta, Diana; Mora, Paolo; Viganò, Giacomo; Alimonti, Gianluca

    2014-12-01

    The diffusion of Distributed Generation (DG) based on Renewable Energy Sources (RES) requires new strategies to ensure reliable and economic operation of the distribution networks and to support the diffusion of DG itself. An advanced algorithm (DISCoVER - DIStribution Company VoltagE Regulator) is being developed to optimize the operation of active network by means of an advanced voltage control based on several regulations. Starting from forecasted load and generation, real on-field measurements, technical constraints and costs for each resource, the algorithm generates for each time period a set of commands for controllable resources that guarantees achievement of technical goals minimizing the overall cost. Before integrating the controller into the telecontrol system of the real networks, and in order to validate the proper behaviour of the algorithm and to identify possible critical conditions, a complete simulation phase has started. The first step is concerning the definition of a wide range of "case studies", that are the combination of network topology, technical constraints and targets, load and generation profiles and "costs" of resources that define a valid context to test the algorithm, with particular focus on battery and RES management. First results achieved from simulation activity on test networks (based on real MV grids) and actual battery characteristics are given, together with prospective performance on real case applications.

  4. The X-33 range Operations Control Center

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Norman, Cynthia L.

    1998-01-01

    This paper describes the capabilities and features of the X-33 Range Operations Center at NASA Dryden Flight Research Center. All the unprocessed data will be collected and transmitted over fiber optic lines to the Lockheed Operations Control Center for real-time flight monitoring of the X-33 vehicle. By using the existing capabilities of the Western Aeronautical Test Range, the Range Operations Center will provide the ability to monitor all down-range tracking sites for the Extended Test Range systems. In addition to radar tracking and aircraft telemetry data, the Telemetry and Radar Acquisition and Processing System is being enhanced to acquire vehicle command data, differential Global Positioning System corrections and telemetry receiver signal level status. The Telemetry and Radar Acquisition Processing System provides the flexibility to satisfy all X-33 data processing requirements quickly and efficiently. Additionally, the Telemetry and Radar Acquisition Processing System will run a real-time link margin analysis program. The results of this model will be compared in real-time with actual flight data. The hardware and software concepts presented in this paper describe a method of merging all types of data into a common database for real-time display in the Range Operations Center in support of the X-33 program. All types of data will be processed for real-time analysis and display of the range system status to ensure public safety.

  5. Real time data acquisition for expert systems in Unix workstations at Space Shuttle Mission Control

    NASA Technical Reports Server (NTRS)

    Muratore, John F.; Heindel, Troy A.; Murphy, Terri B.; Rasmussen, Arthur N.; Gnabasik, Mark; Mcfarland, Robert Z.; Bailey, Samuel A.

    1990-01-01

    A distributed system of proprietary engineering-class workstations is incorporated into NASA's Space Shuttle Mission-Control Center to increase the automation of mission control. The Real-Time Data System (RTDS) allows the operator to utilize expert knowledge in the display program for system modeling and evaluation. RTDS applications are reviewed including: (1) telemetry-animated communications schematics; (2) workstation displays of systems such as the Space Shuttle remote manipulator; and (3) a workstation emulation of shuttle flight instrumentation. The hard and soft real-time constraints are described including computer data acquisition, and the support techniques for the real-time expert systems include major frame buffers for logging and distribution as well as noise filtering. The incorporation of the workstations allows smaller programming teams to implement real-time telemetry systems that can improve operations and flight testing.

  6. A FORTRAN source library for quaternion algebra. Application to multicomponent seismic data

    NASA Astrophysics Data System (ADS)

    Benaïssa, A.; Benaïssa, Z.; Ouadfeul, S.

    2012-04-01

    The quaternions, named also hypercomplex numbers, constituted of a real part and three imaginary parts, allow a representation of multi-component physical signals in geophysics. In FORTRAN, the need for programming new applications and extend programs to quaternions requires to enhance capabilities of this language. In this study, we develop, in FORTRAN 95, a source library which provides functions and subroutines making development and maintenance of programs devoted to quaternions, equivalent to those developed for the complex plane. The systematic use of generic functions and generic operators: 1/ allows using FORTRAN statements and operators extended to quaternions without renaming them and 2/ makes use of this statements transparent to the specificity of quaternions. The portability of this library is insured by the standard FORTRAN 95 strict norm which is independent of operating systems (OS). The execution time of quaternion applications, sometimes crucial for huge data sets, depends, generally, of compilers optimizations by the use of in lining and parallelisation. To show the use of the library, Fourier transform of a real one dimensional quaternionic seismic signal is presented. Furthermore, a FORTRAN code, which computes the quaternionic singular values decomposition (QSVD), is developed using the proposed library and applied to wave separation in multicomponent vertical seismic profile (VSP) synthetic and real data. The extracted wavefields have been highly enhanced, compared to those obtained with median filter, due to QSVD which takes into account the correlation between the different components of the seismic signal. Taken in total, these results demonstrate that use of quaternions can bring a significant improvement for some processing on three or four components seismic data. Keywords: Quaternion - FORTRAN - Vectorial processing - Multicomponent signal - VSP - Fourier transform.

  7. Grid Stability Awareness System (GSAS) Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuerborn, Scott; Ma, Jian; Black, Clifton

    The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less

  8. Efficient implementation of real-time programs under the VAX/VMS operating system

    NASA Technical Reports Server (NTRS)

    Johnson, S. C.

    1985-01-01

    Techniques for writing efficient real-time programs under the VAX/VMS oprating system are presented. Basic operations are presented for executing at real-time priority and for avoiding needlless processing delays. A highly efficient technique for accessing physical devices by mapping to the input/output space and accessing the device registrs directly is described. To illustrate the application of the technique, examples are included of different uses of the technique on three devices in the Langley Avionics Integration Research Lab (AIRLAB): the KW11-K dual programmable real-time clock, the Parallel Communications Link (PCL11-B) communication system, and the Datacom Synchronization Network. Timing data are included to demonstrate the performance improvements realized with these applications of the technique.

  9. Continuous country-wide rainfall observation using a large network of commercial microwave links: Challenges, solutions and applications

    NASA Astrophysics Data System (ADS)

    Chwala, Christian; Boose, Yvonne; Smiatek, Gerhard; Kunstmann, Harald

    2017-04-01

    Commercial microwave link (CML) networks have proven to be a valuable source for rainfall information over the last years. However, up to now, analysis of CML data was always limited to certain snapshots of data for historic periods due to limited data access. With the real-time availability of CML data in Germany (Chwala et al. 2016) this situation has improved significantly. We are continuously acquiring and processing data from 3000 CMLs in Germany in near real-time with one minute temporal resolution. Currently the data acquisition system is extended to 10000 CMLs so that the whole of Germany is covered and a continuous country-wide rainfall product can be provided. In this contribution we will elaborate on the challenges and solutions regarding data acquisition, data management and robust processing. We will present the details of our data acquisition system that we run operationally at the network of the CML operator Ericsson Germany to solve the problem of limited data availability. Furthermore we will explain the implementation of our data base, its web-frontend for easy data access and present our data processing algorithms. Finally we will showcase an application of our data in hydrological modeling and its potential usage to improve radar QPE. Bibliography: Chwala, C., Keis, F., and Kunstmann, H.: Real-time data acquisition of commercial microwave link networks for hydrometeorological applications, Atmos. Meas. Tech., 9, 991-999, doi:10.5194/amt-9-991-2016, 2016

  10. Real Time Integration of Field Data Into a GIS Platform for the Management of Hydrological Emergencies

    NASA Astrophysics Data System (ADS)

    Mangiameli, M.; Mussumeci, G.

    2013-01-01

    A wide series of events requires immediate availability of information and field data to be provided to decision-makers. An example is the necessity of quickly transferring the information acquired from monitoring and alerting sensors or the data of the reconnaissance of damage after a disastrous event to an Emergency Operations Center. To this purpose, we developed an integrated GIS and WebGIS system to dynamically create and populate via Web a database with spatial features. In particular, this work concerns the gathering and transmission of spatial data and related information to the desktop GIS so that they can be displayed and analyzed in real time to characterize the operational scenario and to decide the rescue interventions. As basic software, we used only free and open source: QuantumGIS and Grass as Desktop GIS, Map Server with PMapper application for the Web-Gis functionality and PostGreSQL/PostGIS as Data Base Management System (DBMS). The approach has been designed, developed and successfully tested in the management of GIS-based navigation of an autonomous robot, both to map its trajectories and to assign optimal paths. This paper presents the application of our system to a simulated hydrological event that could interest the province of Catania, in Sicily. In particular, assuming that more teams draw up an inventory of the damage, we highlight the benefits of real-time transmission of the information collected from the field to headquarters.

  11. Integration of satellite data with other data for nowcasting

    NASA Astrophysics Data System (ADS)

    Birkenheuer, Daniel L.

    The Program for Regional Observing and Forecasting Services (PROFS) operates its own Geostationary Operational Environmental Satellite (GOES) mode AA and mode A groundstations and generates both VISSR (Visible and Infrared Spin-Scan Radiometer) and VAS (VISSR Atmospheric Sounder) image products for its advanced meteorological workstation in real time. Derived VAS temperature soundings are received daily from the University of Wisconsin-Madison. PROFS has been improving its real-time workstation since 1981 and has used it to study mesoscale nowcasting. The workstation provides efficient access, display, and loop control of satellite products and other conventional and advanced meteorological data. Data are integrated by displaying products on standard map projections so that imagery and graphics can be combined at the workstation, by using data from a variety of sources to compute image products, and through machine analysis and modeling. The workstation's capabilities have been assessed during PROFS real-time nowcasting experiments. Nowcasts are made with the workstation, and chase teams track and observe severe weather to evaluate these nowcasts. Five-minute rapid scan visible imagery was found to be quite useful in conjunction with Doppler radar data for nowcasting. In contrast, 30-minute infrared (IR) and VAS data were beneficial for short-range forecasts. Loops of VAS water vapor imagery along with conventional IR imagery at national and regional scales showed the greatest overall utility of the satellite imagery studied. Processed sounding data showed some success depicting unstable regions prior to convection.

  12. Runtime verification of embedded real-time systems.

    PubMed

    Reinbacher, Thomas; Függer, Matthias; Brauer, Jörg

    We present a runtime verification framework that allows on-line monitoring of past-time Metric Temporal Logic (ptMTL) specifications in a discrete time setting. We design observer algorithms for the time-bounded modalities of ptMTL, which take advantage of the highly parallel nature of hardware designs. The algorithms can be translated into efficient hardware blocks, which are designed for reconfigurability, thus, facilitate applications of the framework in both a prototyping and a post-deployment phase of embedded real-time systems. We provide formal correctness proofs for all presented observer algorithms and analyze their time and space complexity. For example, for the most general operator considered, the time-bounded Since operator, we obtain a time complexity that is doubly logarithmic both in the point in time the operator is executed and the operator's time bounds. This result is promising with respect to a self-contained, non-interfering monitoring approach that evaluates real-time specifications in parallel to the system-under-test. We implement our framework on a Field Programmable Gate Array platform and use extensive simulation and logic synthesis runs to assess the benefits of the approach in terms of resource usage and operating frequency.

  13. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    NASA Technical Reports Server (NTRS)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  14. Crew Field Notes: A New Tool for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Evans, Cynthia; Eppler, Dean; Gernhardt, Michael; Bluethmann, William; Graf, Jodi; Bleisath, Scott

    2011-01-01

    The Desert Research and Technology Studies (DRATS) field tests of 2010 focused on the simultaneous operation of two rovers, a historical first. The complexity and data volume of two rovers operating simultaneously presented significant operational challenges for the on-site Mission Control Center, including the real time science support function. The latter was split into two "tactical" back rooms, one for each rover, that supported the real time traverse activities; in addition, a "strategic" science team convened overnight to synthesize the day's findings, and to conduct the strategic forward planning of the next day or days as detailed in [1, 2]. Current DRATS simulations and operations differ dramatically from those of Apollo, including the most evolved Apollo 15-17 missions, due to the advent of digital technologies. Modern digital still and video cameras, combined with the capability for real time transmission of large volumes of data, including multiple video streams, offer the prospect for the ground based science support room(s) in Mission Control to witness all crew activities in unprecedented detail and in real time. It was not uncommon during DRATS 2010 that each tactical science back room simultaneously received some 4-6 video streams from cameras mounted on the rover or the crews' backpacks. Some of the rover cameras are controllable PZT (pan, zoom, tilt) devices that can be operated by the crews (during extensive drives) or remotely by the back room (during EVAs). Typically, a dedicated "expert" and professional geologist in the tactical back room(s) controls, monitors and analyses a single video stream and provides the findings to the team, commonly supported by screen-saved images. It seems obvious, that the real time comprehension and synthesis of the verbal descriptions, extensive imagery, and other information (e.g. navigation data; time lines etc) flowing into the science support room(s) constitute a fundamental challenge to future mission operations: how can one analyze, comprehend and synthesize -in real time- the enormous data volume coming to the ground? Real time understanding of all data is needed for constructive interaction with the surface crews, and it becomes critical for the strategic forward planning process.

  15. Operational rate-distortion performance for joint source and channel coding of images.

    PubMed

    Ruf, M J; Modestino, J W

    1999-01-01

    This paper describes a methodology for evaluating the operational rate-distortion behavior of combined source and channel coding schemes with particular application to images. In particular, we demonstrate use of the operational rate-distortion function to obtain the optimum tradeoff between source coding accuracy and channel error protection under the constraint of a fixed transmission bandwidth for the investigated transmission schemes. Furthermore, we develop information-theoretic bounds on performance for specific source and channel coding systems and demonstrate that our combined source-channel coding methodology applied to different schemes results in operational rate-distortion performance which closely approach these theoretical limits. We concentrate specifically on a wavelet-based subband source coding scheme and the use of binary rate-compatible punctured convolutional (RCPC) codes for transmission over the additive white Gaussian noise (AWGN) channel. Explicit results for real-world images demonstrate the efficacy of this approach.

  16. Summary Report of Mission Acceleration Measurement for STS-87: Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  17. Real-time neutron imaging of gas turbines

    NASA Astrophysics Data System (ADS)

    Stewart, P. A. E.

    1987-06-01

    The current status of real-time neutron radiography imaging is briefly reviewed, and results of tests carried out on cold neutron sources are reported. In particular, attention is given to demonstrations of neutron radiography on a running gas turbine engine. The future role of real-time neutron imaging in engineering diagnostics is briefly discussed.

  18. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  19. RAID Disk Arrays for High Bandwidth Applications

    NASA Technical Reports Server (NTRS)

    Moren, Bill

    1996-01-01

    High bandwidth applications require large amounts of data transferred to/from storage devices at extremely high data rates. Further, these applications often are 'real time' in which access to the storage device must take place on the schedule of the data source, not the storage. A good example is a satellite downlink - the volume of data is quite large and the data rates quite high (dozens of MB/sec). Further, a telemetry downlink must take place while the satellite is overhead. A storage technology which is ideally suited to these types of applications is redundant arrays of independent discs (RAID). Raid storage technology, while offering differing methodologies for a variety of applications, supports the performance and redundancy required in real-time applications. Of the various RAID levels, RAID-3 is the only one which provides high data transfer rates under all operating conditions, including after a drive failure.

  20. In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, H.; Gerasopoulos, K.; Gnerlich, Markus

    This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of both mechanical and chemical structure evolutions in a V2O5 lithium-ion battery (LIB) cathode during battery operation. A reflective membrane forms one side of a Fabry-Perot (FP) interferometer, while the other side is coated with V2O5 and exposed to electrolyte in a half-cell LIB. Using one microscope and two laser sources, both the induced membrane deflection and the corresponding Raman intensity changes are observed during lithium cycling. Results are in good agreement with the expected mechanical behavior and disorder change of the V2O5 layers, highlightingmore » the significant potential of MEMS as enabling tools for advanced scientific investigations.« less

  1. PlanetSense: A Real-time Streaming and Spatio-temporal Analytics Platform for Gathering Geo-spatial Intelligence from Open Source Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, Gautam S; Bhaduri, Budhendra L; Piburn, Jesse O

    Geospatial intelligence has traditionally relied on the use of archived and unvarying data for planning and exploration purposes. In consequence, the tools and methods that are architected to provide insight and generate projections only rely on such datasets. Albeit, if this approach has proven effective in several cases, such as land use identification and route mapping, it has severely restricted the ability of researchers to inculcate current information in their work. This approach is inadequate in scenarios requiring real-time information to act and to adjust in ever changing dynamic environments, such as evacuation and rescue missions. In this work, wemore » propose PlanetSense, a platform for geospatial intelligence that is built to harness the existing power of archived data and add to that, the dynamics of real-time streams, seamlessly integrated with sophisticated data mining algorithms and analytics tools for generating operational intelligence on the fly. The platform has four main components i) GeoData Cloud a data architecture for storing and managing disparate datasets; ii) Mechanism to harvest real-time streaming data; iii) Data analytics framework; iv) Presentation and visualization through web interface and RESTful services. Using two case studies, we underpin the necessity of our platform in modeling ambient population and building occupancy at scale.« less

  2. Implementation, reliability, and feasibility test of an Open-Source PACS.

    PubMed

    Valeri, Gianluca; Zuccaccia, Matteo; Badaloni, Andrea; Ciriaci, Damiano; La Riccia, Luigi; Mazzoni, Giovanni; Maggi, Stefania; Giovagnoni, Andrea

    2015-12-01

    To implement a hardware and software system able to perform the major functions of an Open-Source PACS, and to analyze it in a simulated real-world environment. A small home network was implemented, and the Open-Source operating system Ubuntu 11.10 was installed in a laptop containing the Dcm4chee suite with the software devices needed. The Open-Source PACS implemented is compatible with Linux OS, Microsoft OS, and Mac OS X; furthermore, it was used with operating systems that guarantee the operation in portable devices (smartphone, tablet) Android and iOS. An OSS PACS is useful for making tutorials and workshops on post-processing techniques for educational and training purposes.

  3. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    PubMed

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  4. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A.

    2016-02-15

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the samemore » authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.« less

  5. Integrating Low-Cost Mems Accelerometer Mini-Arrays (mama) in Earthquake Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Nof, R. N.; Chung, A. I.; Rademacher, H.; Allen, R. M.

    2016-12-01

    Current operational Earthquake Early Warning Systems (EEWS) acquire data with networks of single seismic stations, and compute source parameters assuming earthquakes to be point sources. For large events, the point-source assumption leads to an underestimation of magnitude, and the use of single stations leads to large uncertainties in the locations of events outside the network. We propose the use of mini-arrays to improve EEWS. Mini-arrays have the potential to: (a) estimate reliable hypocentral locations by beam forming (FK-analysis) techniques; (b) characterize the rupture dimensions and account for finite-source effects, leading to more reliable estimates for large magnitudes. Previously, the high price of multiple seismometers has made creating arrays cost-prohibitive. However, we propose setting up mini-arrays of a new seismometer based on low-cost (<$150), high-performance MEMS accelerometer around conventional seismic stations. The expected benefits of such an approach include decreasing alert-times, improving real-time shaking predictions and mitigating false alarms. We use low-resolution 14-bit Quake Catcher Network (QCN) data collected during Rapid Aftershock Mobilization Program (RAMP) in Christchurch, NZ following the M7.1 Darfield earthquake in September 2010. As the QCN network was so dense, we were able to use small sub-array of up to ten sensors spread along a maximum area of 1.7x2.2 km2 to demonstrate our approach and to solve for the BAZ of two events (Mw4.7 and Mw5.1) with less than ±10° error. We will also present the new 24-bit device details, benchmarks, and real-time measurements.

  6. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION AND MAINTENANCE OF THE ECOCHEM REAL-TIME AMBIENT AIR PAH MONITOR (UA-F-24.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the general procedures to be followed for the operation and maintenance of the EcoChem real-time ambient air PAH monitor. This procedure was followed to ensure consistent data retrieval of PAH measurements during the Arizona NHEXAS project ...

  7. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  8. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  9. Real time evolution at finite temperatures with operator space matrix product states

    NASA Astrophysics Data System (ADS)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  10. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  11. Ionization based multi-directional flow sensor

    DOEpatents

    Chorpening, Benjamin T [Morgantown, WV; Casleton, Kent H [Morgantown, WV

    2009-04-28

    A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.

  12. Developing a Near Real-time System for Earthquake Slip Distribution Inversion

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen

    2016-04-01

    Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.

  13. RTSPM: real-time Linux control software for scanning probe microscopy.

    PubMed

    Chandrasekhar, V; Mehta, M M

    2013-01-01

    Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.

  14. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  15. Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data

    USGS Publications Warehouse

    Minson, Sarah E.; Murray, Jessica R.; Langbein, John O.; Gomberg, Joan S.

    2015-01-01

    We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry.

  16. Operational, Real-Time, Sun-to-Earth Interplanetary Shock Predictions During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Dryer, M.; Sun, W.; Deehr, C. S.; Smith, Z.; Akasofu, S.

    2002-05-01

    We report on our progress in predicting interplanetary shock arrival time (SAT) in real-time, using three forecast models: the Hakamada-Akasofu-Fry (HAF) modified kinematic model, the Interplanetary Shock Propagation Model (ISPM) and the Shock Time of Arrival (STOA) model. These models are run concurrently to provide real-time predictions of the arrival time at Earth of interplanetary shocks caused by solar events. These "fearless forecasts" are the first, and presently only, publicly distributed predictions of SAT and are undergoing quantitative evaluation for operational utility and scientific benchmarking. All three models predict SAT, but the HAF model also provides a global view of the propagation of interplanetary shocks through the pre-existing, non-uniform heliospheric structure. This allows the forecaster to track the propagation of the shock and to differentiate between shocks caused by solar events and those associated with co-rotating interaction regions (CIRs). This study includes 173 events during the period February, 1997 to October, 2000. Shock predictions were compared with spacecraft observations at the L1 location to determine how well the models perform. Sixty-eight shocks were observed at L1 within 120 hours of an event. We concluded that 6 of these observed shocks were caused by CIRs, and the remainder were caused by solar events. The forecast skill of the models are presented in terms of RMS errors, contingency tables and skill scores commonly used by the weather forecasting community. The false alarm rate for HAF was higher than for ISPM or STOA but much lower than for predictions based upon empirical studies or climatology. Of the parameters used to characterize a shock source at the Sun, the initial speed of the coronal shock, as represented by the observed metric type II speed, has the largest influence on the predicted SAT. We also found that HAF model predictions based upon type II speed are generally better for shocks originating from sites near central meridian, and worse for limb events. This tendency suggests that the observed type II speed is more representative of the interplanetary shock speed for events occurring near central meridian. In particular, the type II speed appears to underestimate the actual Earth-directed IP shock speed when the source of the event is near the limb. Several of the most interesting events (Bastille Day epoch (2000), April Fools Day epoch (2001))will be discussed in more detail with the use of real-time animations.

  17. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  18. Real-time GPS integration for prototype earthquake early warning and near-field imaging of the earthquake rupture process

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Given, D.; King, N. E.; Lisowski, M.; Langbein, J. O.; Murray-Moraleda, J. R.; Gomberg, J. S.

    2011-12-01

    Over the past several years, USGS has developed the infrastructure for integrating real-time GPS with seismic data in order to improve our ability to respond to earthquakes and volcanic activity. As part of this effort, we have tested real-time GPS processing software components , and identified the most robust and scalable options. Simultaneously, additional near-field monitoring stations have been built using a new station design that combines dual-frequency GPS with high quality strong-motion sensors and dataloggers. Several existing stations have been upgraded in this way, using USGS Multi-Hazards Demonstration Project and American Recovery and Reinvestment Act funds in southern California. In particular, existing seismic stations have been augmented by the addition of GPS and vice versa. The focus of new instrumentation as well as datalogger and telemetry upgrades to date has been along the southern San Andreas fault in hopes of 1) capturing a large and potentially damaging rupture in progress and augmenting inputs to earthquake early warning systems, and 2) recovering high quality recordings on scale of large dynamic displacement waveforms, static displacements and immediate and long-term post-seismic transient deformation. Obtaining definitive records of large ground motions close to a large San Andreas or Cascadia rupture (or volcanic activity) would be a fundamentally important contribution to understanding near-source large ground motions and the physics of earthquakes, including the rupture process and friction associated with crack propagation and healing. Soon, telemetry upgrades will be completed in Cascadia and throughout the Plate Boundary Observatory as well. By collaborating with other groups on open-source automation system development, we will be ready to process the newly available real-time GPS data streams and to fold these data in with existing strong-motion and other seismic data. Data from these same stations will also serve the very practical purpose of enabling earthquake early warning and greatly improving rapid finite-fault source modeling. Multiple uses of the effectively very broad-band data obtained by these stations, for operational and research purposes, are bound to occur especially because all data will be freely, openly and instantly available.

  19. Using Near Real-Time Mission Data for Education and Public Outreach: Strategies from the Life in the Atacama E/PO Effort

    NASA Technical Reports Server (NTRS)

    Myers, E.; Coppin, P.; Wagner, M.; Fischer, K.; Lu, L.; McCloskey, R.; Seneker, D.; Cabrol, N.; Wettergreen, D.; Waggoner, A.

    2005-01-01

    The EventScope educational telepresence project has been involved with education and public outreach for a number of NASA-sponsored missions including the Mars Exploration Rovers, the Odyssey Mission, and the Life in the Atacama project. However, during the second year of operations in the Atacama, a modified version of the EventScope public interface was used as the remote science operations interface. In addition, the EventScope lab hosted remote science operations. This intimate connection with the mission operations allowed the EventScope team to bring the experience of the mission to the public in near real-time. Playing to this strength, the lab developed strategies for releasing E/PO content as close to real-time as possible.

  20. The Brave New World of Real-time GPS for Hazards Mitigation

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.

    2015-12-01

    Over 600 continuously-operating, real-time telemetered GPS receivers operate throughout California, Oregon, Washington and Alaska. These receivers straddle active crustal faults, volcanoes and landslides, the magnitude-9 Cascadia and northeastern Alaskan subduction zones and their attendant tsunamigenic regions along the Pacific coast. Around the circum-Pacific, there are hundreds more and the number is growing steadily as real-time networks proliferate. Despite offering the potential for sub-cm positioning accuracy in real-time useful for a broad array of hazards mitigation, these GPS stations are only now being incorporated into routine seismic, tsunami, volcanic, land-slide, space-weather, or meterologic monitoring. We will discuss NASA's READI (Real-time Earthquake Analysis for DIsasters) initiative. This effort is focussed on developing all aspects of real-time GPS for hazards mitigation, from establishing international data-sharing agreements to improving basic positioning algorithms. READI's long-term goal is to expand real-time GPS monitoring throughout the circum-Pacific as overseas data become freely available, so that it may be adopted by NOAA, USGS and other operational agencies responsible for natural hazards monitoring. Currently ~100 stations are being jointly processed by CWU and Scripps Inst. of Oceanography for algorithm comparison and downstream merging purposes. The resultant solution streams include point-position estimates in a global reference frame every second with centimeter accuracy, ionospheric total electron content and tropospheric zenith water content. These solutions are freely available to third-party agencies over several streaming protocols to enable their incorporation and use in hazards monitoring. This number will ramp up to ~400 stations over the next year. We will also discuss technical efforts underway to develop a variety of downstream applications of the real-time position streams, including the ability to broadcast solutions to thousands of users in real time, earthquake finite-fault and tsunami excitation estimations, and several user interfaces, both stand-alone client and browser-based, that allow interaction with both real-time position streams and their derived products.

  1. CompactPCI/Linux Platform in FTU Slow Control System

    NASA Astrophysics Data System (ADS)

    Iannone, F.; Wang, L.; Centioli, C.; Panella, M.; Mazza, G.; Vitale, V.

    2004-12-01

    In large fusion experiments, such as tokamak devices, there is a common trend for slow control systems. Because of complexity of the plants, the so-called `Standard Model' (SM) in slow control has been adopted on several tokamak machines. This model is based on a three-level hierarchical control: 1) High-Level Control (HLC) with a supervisory function; 2) Medium-Level Control (MLC) to interface and concentrate I/O field equipments; 3) Low-Level Control (LLC) with hard real-time I/O function, often managed by PLCs. FTU control system designed with SM concepts has underwent several stages of developments in its fifteen years duration of runs. The latest evolution was inevitable, due to the obsolescence of the MLC CPUs, based on VME-MOTOROLA 68030 with OS9 operating system. A large amount of C code was developed for that platform to route the data flow from LLC, which is constituted by 24 Westinghouse Numalogic PC-700 PLCs with about 8000 field-points, to HLC, based on a commercial Object-Oriented Real-Time database on Alpha/CompaqTru64 platform. Therefore, we have to look for cost-effective solutions and finally a CompactPCI-Intel x86 platform with Linux operating system was chosen. A software porting has been done, taking into account the differences between OS9 and Linux operating system in terms of Inter/Network Processes Communications and I/O multi-ports serial driver. This paper describes the hardware/software architecture of the new MLC system, emphasizing the reliability and the low costs of the open source solutions. Moreover, a huge amount of software packages available in open source environment will assure a less painful maintenance, and will open the way to further improvements of the system itself.

  2. Real-time polarization-sensitive optical coherence tomography data processing with parallel computing

    PubMed Central

    Liu, Gangjun; Zhang, Jun; Yu, Lingfeng; Xie, Tuqiang; Chen, Zhongping

    2010-01-01

    With the increase of the A-line speed of optical coherence tomography (OCT) systems, real-time processing of acquired data has become a bottleneck. The shared-memory parallel computing technique is used to process OCT data in real time. The real-time processing power of a quad-core personal computer (PC) is analyzed. It is shown that the quad-core PC could provide real-time OCT data processing ability of more than 80K A-lines per second. A real-time, fiber-based, swept source polarization-sensitive OCT system with 20K A-line speed is demonstrated with this technique. The real-time 2D and 3D polarization-sensitive imaging of chicken muscle and pig tendon is also demonstrated. PMID:19904337

  3. Developing an emergency department crowding dashboard: A design science approach.

    PubMed

    Martin, Niels; Bergs, Jochen; Eerdekens, Dorien; Depaire, Benoît; Verelst, Sandra

    2017-08-30

    As an emergency department (ED) is a complex adaptive system, the analysis of continuously gathered data is valuable to gain insight in the real-time patient flow. To support the analysis and management of ED operations, relevant data should be provided in an intuitive way. Within this context, this paper outlines the development of a dashboard which provides real-time information regarding ED crowding. The research project underlying this paper follows the principles of design science research, which involves the development and study of artifacts which aim to solve a generic problem. To determine the crowding indicators that are desired in the dashboard, a modified Delphi study is used. The dashboard is implemented using the open source Shinydashboard package in R. A dashboard is developed containing the desired crowding indicators, together with general patient flow characteristics. It is demonstrated using a dataset of a Flemish ED and fulfills the requirements which are defined a priori. The developed dashboard provides real-time information on ED crowding. This information enables ED staff to judge whether corrective actions are required in an effort to avoid the adverse effects of ED crowding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Use of a FORTH-based PROLOG for real-time expert systems. 1: Spacelab life sciences experiment application

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Odette, Louis L.; Krever, Alfred J.; West, Allison K.

    1987-01-01

    A real-time expert system is being developed to serve as the astronaut interface for a series of Spacelab vestibular experiments. This expert system is written in a version of Prolog that is itself written in Forth. The Prolog contains a predicate that can be used to execute Forth definitions; thus, the Forth becomes an embedded real-time operating system within the Prolog programming environment. The expert system consists of a data base containing detailed operational instructions for each experiment, a rule base containing Prolog clauses used to determine the next step in an experiment sequence, and a procedure base containing Prolog goals formed from real-time routines coded in Forth. In this paper, we demonstrate and describe the techniques and considerations used to develop this real-time expert system, and we conclude that Forth-based Prolog provides a viable implementation vehicle for this and similar applications.

  5. Characteristics of Operational Space Weather Forecasting: Observations and Models

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim

    2015-04-01

    In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.

  6. The IRIS DMC: Perspectives on Real-Time Data Management and Open Access From a Large Seismological Archive: Challenges, Tools, and Quality Assurance

    NASA Astrophysics Data System (ADS)

    Benson, R. B.

    2007-05-01

    The IRIS Data Management Center, located in Seattle, WA, is the largest openly accessible geophysical archive in the world, and has a unique perspective on data management and operational practices that gets the most out of your network. Networks scale broad domains in time and space, from finite needs to monitor bridges and dams to national and international networks like the GSN and the FDSN that establish a baseline for global monitoring and research, the requirements that go into creating a well-tuned DMC archive treat these the same, building a collaborative network of networks that generations of users rely on and adds value to the data. Funded by the National Science Foundation through the Division of Earth Sciences, IRIS is operated through member universities and in cooperation with the USGS, and the DMS facility is a bridge between a globally distributed collaboration of seismic networks and an equally distributed network of users that demand a high standard for data quality, completeness, and ease of access. I will describe the role that a perpetual archive has in the life cycle of data, and how hosting real-time data performs a dual role of being a hub for continuous data from approximately 59 real-time networks, and distributing these (along with other data from the 40-year library of available time-series data) to researchers, while simultaneously providing shared data back to networks in real- time that benefits monitoring activities. I will describe aspects of our quality-assurance framework that are both passively and actively performed on 1100 seismic stations, generating over 6,000 channels of regularly sampled data arriving daily, that data providers can use as aids in operating their network, and users can likewise use when requesting suitable data for research purposes. The goal of the DMC is to eliminate bottlenecks in data discovery and shortening the steps leading to analysis. This includes many challenges, including keeping metadata current, tools for evaluating and viewing them, along with measuring and creating databases of other performance metrics and how monitoring them closer to real- time helps reduce operation costs, creates a richer repository, and eliminates problems over generations of duty cycles of data usage. I will describe a new resource, called the Nominal Response Library, which hopes to provide accurate and representative examples of sensor and data logger configurations that are hosted at the DMC and constitute a high-graded subset for crafting your own metadata. Finally, I want to encourage all network operators who do not currently submit SEED format data to an archive to consider these benefits, and briefly discuss how robust transfer mechanisms that include Earthworm, LISS, Antelope, NRTS and SeisComp, to name a few, can assist you in contributing your network data and help create this enabling virtual network of networks. In this era of high performance Internet capacity, the process that enables others to share your data and allows you to utilize external sources of data is nearly seamless with your current mission of network operation.

  7. A Survey of Recent MARTe Based Systems

    NASA Astrophysics Data System (ADS)

    Neto, André C.; Alves, Diogo; Boncagni, Luca; Carvalho, Pedro J.; Valcarcel, Daniel F.; Barbalace, Antonio; De Tommasi, Gianmaria; Fernandes, Horácio; Sartori, Filippo; Vitale, Enzo; Vitelli, Riccardo; Zabeo, Luca

    2011-08-01

    The Multithreaded Application Real-Time executor (MARTe) is a data driven framework environment for the development and deployment of real-time control algorithms. The main ideas which led to the present version of the framework were to standardize the development of real-time control systems, while providing a set of strictly bounded standard interfaces to the outside world and also accommodating a collection of facilities which promote the speed and ease of development, commissioning and deployment of such systems. At the core of every MARTe based application, is a set of independent inter-communicating software blocks, named Generic Application Modules (GAM), orchestrated by a real-time scheduler. The platform independence of its core library provides MARTe the necessary robustness and flexibility for conveniently testing applications in different environments including non-real-time operating systems. MARTe is already being used in several machines, each with its own peculiarities regarding hardware interfacing, supervisory control configuration, operating system and target control application. This paper presents and compares the most recent results of systems using MARTe: the JET Vertical Stabilization system, which uses the Real Time Application Interface (RTAI) operating system on Intel multi-core processors; the COMPASS plasma control system, driven by Linux RT also on Intel multi-core processors; ISTTOK real-time tomography equilibrium reconstruction which shares the same support configuration of COMPASS; JET error field correction coils based on VME, PowerPC and VxWorks; FTU LH reflected power system running on VME, Intel with RTAI.

  8. Development of a support software system for real-time HAL/S applications

    NASA Technical Reports Server (NTRS)

    Smith, R. S.

    1984-01-01

    Methodologies employed in defining and implementing a software support system for the HAL/S computer language for real-time operations on the Shuttle are detailed. Attention is also given to the management and validation techniques used during software development and software maintenance. Utilities developed to support the real-time operating conditions are described. With the support system being produced on Cyber computers and executable code then processed through Cyber or PDP machines, the support system has a production level status and can serve as a model for other software development projects.

  9. Interactive signal analysis and ultrasonic data collection system user's manual

    NASA Technical Reports Server (NTRS)

    Smith, G. R.

    1978-01-01

    The interactive signal analysis and ultrasonic data collection system (ECHO1) is a real time data acquisition and display system. ECHO1 executed on a PDP-11/45 computer under the RT11 real time operating system. Extensive operator interaction provided the requisite parameters to the data collection, calculation, and data modules. Data were acquired in real time from a pulse echo ultrasonic system using a Biomation Model 8100 transient recorder. The data consisted of 2084 intensity values representing the amplitude of pulses transmitted and received by the ultrasonic unit.

  10. Temporal Proof Methodologies for Real-Time Systems,

    DTIC Science & Technology

    1990-09-01

    real time systems that communicate either through shared variables or by message passing and real time issues such as time-outs, process priorities (interrupts) and process scheduling. The authors exhibit two styles for the specification of real - time systems . While the first approach uses bounded versions of temporal operators the second approach allows explicit references to time through a special clock variable. Corresponding to two styles of specification the authors present and compare two fundamentally different proof

  11. Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics

    NASA Astrophysics Data System (ADS)

    Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.

    2015-12-01

    Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in NetCDF format has been implemented and will be demonstrated at AGU.

  12. A new diagnostic real-time PCR method for huanglongbing detection in citrus root tissue

    USDA-ARS?s Scientific Manuscript database

    Citrus fibrous root tissue was evaluated as an alternative source material for Huanglongbing (HLB) diagnosis by real-time PCR using primer-probe set TXCChlb, developed in the present study based on 16S rDNA of “Candidatus Liberibacter asiaticus” (CLas). Real-time PCR data obtained with DNA samples p...

  13. Use of high performance networks and supercomputers for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  14. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGES

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; ...

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  15. NOAA’s Physical Oceanographic Real-Time Systems (PORTS(Registered))

    DTIC Science & Technology

    2010-06-01

    1 NOAA’s Physical Oceanographic Real - Time Systems (PORTS®) Darren Wright and Robert Bassett National Oceanic and Atmospheric Administration...operation of several Physical Oceanographic Real - Time Systems (PORTS®). 0-933957-38-1 ©2009 MTS Report Documentation Page Form ApprovedOMB No. 0704-0188...TITLE AND SUBTITLE NOAAs Physical Oceanographic Real - Time Systems (PORTS®) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  16. Kurtosis-Based Blind Source Extraction of Complex Non-Circular Signals with Application in EEG Artifact Removal in Real-Time

    PubMed Central

    Javidi, Soroush; Mandic, Danilo P.; Took, Clive Cheong; Cichocki, Andrzej

    2011-01-01

    A new class of complex domain blind source extraction algorithms suitable for the extraction of both circular and non-circular complex signals is proposed. This is achieved through sequential extraction based on the degree of kurtosis and in the presence of non-circular measurement noise. The existence and uniqueness analysis of the solution is followed by a study of fast converging variants of the algorithm. The performance is first assessed through simulations on well understood benchmark signals, followed by a case study on real-time artifact removal from EEG signals, verified using both qualitative and quantitative metrics. The results illustrate the power of the proposed approach in real-time blind extraction of general complex-valued sources. PMID:22319461

  17. The RACE (Research and Development in Advanced Technologies for Europe) Program in 1988

    DTIC Science & Technology

    1989-03-30

    Sys- cated hardware and on top of a telecommunications spe- tem Requirements on Specification. The BEST project cific real - time operating system . will...provide a service to the RACE Main Program Part I A real - time operating system will be defined for the consortia by defining methods and specifying

  18. 78 FR 65641 - Midcontinent Independent System Operator, Inc.; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... the allocation of real-time Revenue Sufficiency Guarantee (RSG) costs.\\1\\ In its order, the Commission... to discuss the issues raised by MISO's proposed revisions to its real-time RSG cost allocation... Independent System Operator, Inc.; Notice of Technical Conference By order dated October 16, 2013, in Docket...

  19. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2014-10-01 2014-10-01 false Operator systems equipment-Category 1. 36.123...

  20. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2013-10-01 2013-10-01 false Operator systems equipment-Category 1. 36.123...

  1. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2012-10-01 2012-10-01 false Operator systems equipment-Category 1. 36.123...

  2. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2011-10-01 2011-10-01 false Operator systems equipment-Category 1. 36.123...

  3. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2010-10-01 2010-10-01 false Operator systems equipment-Category 1. 36.123...

  4. Real-time solution of linear computational problems using databases of parametric reduced-order models with arbitrary underlying meshes

    NASA Astrophysics Data System (ADS)

    Amsallem, David; Tezaur, Radek; Farhat, Charbel

    2016-12-01

    A comprehensive approach for real-time computations using a database of parametric, linear, projection-based reduced-order models (ROMs) based on arbitrary underlying meshes is proposed. In the offline phase of this approach, the parameter space is sampled and linear ROMs defined by linear reduced operators are pre-computed at the sampled parameter points and stored. Then, these operators and associated ROMs are transformed into counterparts that satisfy a certain notion of consistency. In the online phase of this approach, a linear ROM is constructed in real-time at a queried but unsampled parameter point by interpolating the pre-computed linear reduced operators on matrix manifolds and therefore computing an interpolated linear ROM. The proposed overall model reduction framework is illustrated with two applications: a parametric inverse acoustic scattering problem associated with a mockup submarine, and a parametric flutter prediction problem associated with a wing-tank system. The second application is implemented on a mobile device, illustrating the capability of the proposed computational framework to operate in real-time.

  5. Model documentation for relations between continuous real-time and discrete water-quality constituents in the North Fork Ninnescah River upstream from Cheney Reservoir, south-central Kansas, 1999--2009

    USGS Publications Warehouse

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir in south-central Kansas is one of the primary sources of water for the city of Wichita. The North Fork Ninnescah River is the largest contributing tributary to Cheney Reservoir. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to estimate concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on a different dataset collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for five new constituents, including additional nutrient species and indicator bacteria. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that would not be possible otherwise.

  6. Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data

    NASA Technical Reports Server (NTRS)

    Johnson, Marty E.; Lalime, Aimee L.; Grosveld, Ferdinand W.; Rizzi, Stephen A.; Sullivan, Brenda M.

    2003-01-01

    Applying binaural simulation techniques to structural acoustic data can be very computationally intensive as the number of discrete noise sources can be very large. Typically, Head Related Transfer Functions (HRTFs) are used to individually filter the signals from each of the sources in the acoustic field. Therefore, creating a binaural simulation implies the use of potentially hundreds of real time filters. This paper details two methods of reducing the number of real-time computations required by: (i) using the singular value decomposition (SVD) to reduce the complexity of the HRTFs by breaking them into dominant singular values and vectors and (ii) by using equivalent source reduction (ESR) to reduce the number of sources to be analyzed in real-time by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. The ESR and SVD reduction methods can be combined to provide an estimated computation time reduction of 99.4% for the structural acoustic data tested. In addition, preliminary tests have shown that there is a 97% correlation between the results of the combined reduction methods and the results found with the current binaural simulation techniques

  7. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Maddox, Marlo M.; Mullinix, Richard; Mays, M. Leila; Kuznetsova, Maria; Zheng, Yihua; Pulkkinen, Antti; Rastaetter, Lutz

    2013-03-01

    Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Research Center at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 300 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities including the utilization of data from the Solar Dynamics Observatory mission. http://iswa.gsfc.nasa.gov/

  8. Development of a prototype real-time automated filter for operational deep space navigation

    NASA Technical Reports Server (NTRS)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  9. Steps Towards an Operational Service Using Near Real-Time Altimeter Data

    NASA Astrophysics Data System (ADS)

    Ash, E. R.

    2006-07-01

    Thanks largely to modern computing power, numerical forecasts of w inds and waves over the oceans ar e ev er improving, offering greater accuracy and finer resolution in time and sp ace. Howev er, it is recognized that met-ocean models still have difficulty in accurately forecasting sever e w eather conditions, conditions that cause the most damag e and difficulty in mar itime operations. Ther efore a key requir emen t is to provid e improved information on sever e conditions. No individual measur emen t or prediction system is perfect. Offshore buoys provide a continuous long-ter m record of wind and wave conditions, but only at a limited numb er of sites. Satellite data offer all-weath er global cov erage, but with relatively infrequen t samp ling. Forecasts rely on imperf ect numerical schemes and the ab ility to manage a vast quantity of input data. Therefore the best system is one that integr ates information from all available sources, taking advantage of the benef its that each can offer. We report on an initiative supported by the European Space Agen cy (ESA) which investig ated how satellite data could be used to enhan ce systems to provide Near Real Time mon itor ing of met-ocean conditions.

  10. Real-time attitude determination and gyro calibration

    NASA Technical Reports Server (NTRS)

    Challa, M.; Filla, O.; Sedlak, J.; Chu, D.

    1993-01-01

    We present results for two real-time filters prototyped for the Compton Gamma Ray Observatory (GRO), the Extreme Ultraviolet Explorer (EUVE), the Cosmic Background Explorer (COBE), and the next generation of Geostationary Operational Environmental Satellites (GOES). Both real and simulated data were used to solve for attitude and gyro biases. These filters promise advantages over single-frame and batch methods for missions like GOES, where startup and transfer-orbit operations require quick knowledge of attitude and gyro biases.

  11. A Pro-active Real-time Forecasting and Decision Support System for Daily Management of Marine Works

    NASA Astrophysics Data System (ADS)

    Bollen, Mark; Leyssen, Gert; Smets, Steven; De Wachter, Tom

    2016-04-01

    Marine Works involving turbidity generating activities (eg. dredging, dredge spoil placement) can generate environmental stress in and around a project area in the form of sediment plumes causing light reduction and sedimentation. If these works are situated near sensitive habitats like sea-grass beds, coral reefs or sensitive human activities eg. aquaculture farms or water intakes, or if contaminants are present in the water soil environmental scrutiny is advised. Environmental Regulations can impose limitations to these activities in the form of turbidity thresholds, spill budgets, contaminant levels. Breaching environmental regulations can result in increased monitoring, adaptation of the works planning and production rates and ultimately in a (temporary) stop of activities all of which entail time and cost impacts for a contractor and/or client. Sediment plume behaviour is governed by the dredging process, soil properties and ambient conditions (currents, water depth) and can be modelled. Usually this is done during the preparatory EIA phase of a project, for estimation of environmental impact based on climatic scenarios. An operational forecasting tool is developed to adapt marine work schedules to the real-time circumstances and thus evade exceedance of critical threshold levels at sensitive areas. The forecasting system is based on a Python-based workflow manager with a MySQL database and a Django frontend web tool for user interaction and visualisation of the model results. The core consists of a numerical hydrodynamic model with sediment transport module (Mike21 from DHI). This model is driven by space and time varying wind fields and wave boundary conditions, and turbidity inputs (suspended sediment source terms) based on marine works production rates and soil properties. The resulting threshold analysis allows the operator to indicate potential impact at the sensitive areas and instigate an adaption of the marine work schedule if needed. In order to use this toolbox in real-time situations and facilitate forecasting of impacts of planned dredge works, the following operational online functionalities are implemented: • Automated fetch and preparation of the input data, including 7 day forecast wind and wave fields and real-time measurements, and user defined the turbidity inputs based on scheduled marine works. • Generate automated forecasts and running user configurable scenarios at the same time in parallel. • Export and convert the model results, time series and maps, into a standardized format (netcdf). • Automatic analysis and processing of model results, including the calculation of indicator turbidity values and the exceedance analysis of threshold levels at the different sensitive areas. Data assimilation with the real time on site turbidity measurements is implemented in this threshold analysis. • Pre-programmed generation of animated sediment plumes, specific charts and pdf reports to allow a rapid interpretation of the model results by the operators and facilitating decision making in the operational planning. The performed marine works, resulting from the marine work schedule proposed by the forecasting system, are evaluated by a threshold analysis on the validated turbidity measurements on the sensitive sites. This machine learning loop allows a check of the system in order to evaluate forecast and model uncertainties.

  12. Assimilation of Real-Time Satellite And Human Sensor Networks for Modeling Natural Disasters

    NASA Astrophysics Data System (ADS)

    Aulov, O.; Halem, M.; Lary, D. J.

    2011-12-01

    We describe the development of underlying technologies needed to address the merging of a web of real time satellite sensor Web (SSW) and Human Sensor Web (HSW) needed to augment the US response to extreme events. As an initial prototyping step and use case scenario, we consider the development of two major system tools that can be transitioned from research to the responding operational agency for mitigating coastal oil spills. These tools consist of the capture of Situation Aware (SA) Social Media (SM) Data, and assimilation of the processed information into forecasting models to provide incident decision managers with interactive virtual spatial temporal animations superimposed with probabilistic data estimates. The system methodologies are equally applicable to the wider class of extreme events such as plume dispersions from volcanoes or massive fires, major floods, hurricane impacts, radioactive isotope dispersions from nuclear accidents, etc. A successful feasibility demonstration of this technology has been shown in the case of the Deepwater Horizon Oil Spill where Human Sensor Networks have been combined with a geophysical model to perform parameter assessments. Flickr images of beached oil were mined from the spill area, geolocated and timestamped and converted into geophysical data. This data was incorporated into General NOAA Operational Modeling Environment (GNOME), a Lagrangian forecast model that uses near real-time surface winds, ocean currents, and satellite shape profiles of oil to generate a forecast of plume movement. As a result, improved estimates of diffusive coefficients and rates of oil spill were determined. Current approaches for providing satellite derived oil distributions are collected from a satellite sensor web of operational and research sensors from many countries, and a manual analysis is performed by NESDIS. A real time SA HSW processing system based on geolocated SM data from sources such as Twitter, Flickr, YouTube etc., greatly supplements the current operational practice of sending out teams of humans to gather samples of tarballs reaching coastal locations. We show that ensemble Kalman filter assimilation of the combination of SM data with model forecast background data fields can minimize the false positive cases of satellite observations alone. Our future framework consists of two parts, a real time SA HSW processing system and an on-demand SSW processing system. HSW processing system uses a geolocated SM data to provide observations of coastal oil contact. SSW system is composed of selected instruments from NASA EOS, NPP and available Decadal Survey mission satellites along with other in situ data to form a real time regional oil spill observing system. We will automate the NESDIS manual process of providing oil spill maps by using Self Organizing Feature Map (SOFM) algorithm. We use the LETKF scheme for assimilating the satellite sensor web and HSW observations into the GNOME model to reduce the uncertainty of the observations. We intend to infuse these developments in an SOA implementation for execution of event driven model forecast assimilation cycles in a dedicated HPC cloud.

  13. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  14. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  15. An integrated development framework for rapid development of platform-independent and reusable satellite on-board software

    NASA Astrophysics Data System (ADS)

    Ziemke, Claas; Kuwahara, Toshinori; Kossev, Ivan

    2011-09-01

    Even in the field of small satellites, the on-board data handling subsystem has become complex and powerful. With the introduction of powerful CPUs and the availability of considerable amounts of memory on-board a small satellite it has become possible to utilize the flexibility and power of contemporary platform-independent real-time operating systems. Especially the non-commercial sector such like university institutes and community projects such as AMSAT or SSETI are characterized by the inherent lack of financial as well as manpower resources. The opportunity to utilize such real-time operating systems will contribute significantly to achieve a successful mission. Nevertheless the on-board software of a satellite is much more than just an operating system. It has to fulfill a multitude of functional requirements such as: Telecommand interpretation and execution, execution of control loops, generation of telemetry data and frames, failure detection isolation and recovery, the communication with peripherals and so on. Most of the aforementioned tasks are of generic nature and have to be conducted on any satellite with only minor modifications. A general set of functional requirements as well as a protocol for communication is defined in the SA ECSS-E-70-41A standard "Telemetry and telecommand packet utilization". This standard not only defines the communication protocol of the satellite-ground link but also defines a set of so called services which have to be available on-board of every compliant satellite and which are of generic nature. In this paper, a platform-independent and reusable framework is described which is implementing not only the ECSS-E-70-41A standard but also functionalities for interprocess communication, scheduling and a multitude of tasks commonly performed on-board of a satellite. By making use of the capabilities of the high-level programming language C/C++, the powerful open source library BOOST, the real-time operating system RTEMS and finally by providing generic functionalities compliant to the ECSS-E-70-41A standard the proposed framework can provide a great boost in productivity. Together with open source tools such like the GNU tool-chain, Eclipse SDK, the simulation framework OpenSimKit, the emulator QEMU, the proposed on-board software framework forms an integrated development framework. It is possible to design, code and build the on-board software together with the operating system and then run it on a simulated satellite for performance analysis and debugging purposes. This makes it possible to rapidly develop and deploy a full-fledged satellite on-board software with minimal cost and in a limited time frame.

  16. A Real-Time Offshore Weather Risk Advisory System

    NASA Astrophysics Data System (ADS)

    Jolivet, Samuel; Zemskyy, Pavlo; Mynampati, Kalyan; Babovic, Vladan

    2015-04-01

    Offshore oil and gas operations in South East Asia periodically face extended downtime due to unpredictable weather conditions, including squalls that are accompanied by strong winds, thunder, and heavy rains. This downtime results in financial losses. Hence, a real time weather risk advisory system is developed to provide the offshore Oil and Gas (O&G) industry specific weather warnings in support of safety and environment security. This system provides safe operating windows based on sensitivity of offshore operations to sea state. Information products for safety and security include area of squall occurrence for the next 24 hours, time before squall strike, and heavy sea state warning for the next 3, 6, 12 & 24 hours. These are predicted using radar now-cast, high resolution Numerical Weather Prediction (NWP) and Data Assimilation (DA). Radar based now-casting leverages the radar data to produce short term (up to 3 hours) predictions of severe weather events including squalls/thunderstorms. A sea state approximation is provided through developing a translational model based on these predictions to risk rank the sensitivity of operations. A high resolution Weather Research and Forecasting (WRF, an open source NWP model) is developed for offshore Brunei, Malaysia and the Philippines. This high resolution model is optimized and validated against the adaptation of temperate to tropical met-ocean parameterization. This locally specific parameters are calibrated against federated data to achieve a 24 hour forecast of high resolution Convective Available Potential Energy (CAPE). CAPE is being used as a proxy for the risk of squall occurrence. Spectral decomposition is used to blend the outputs of the now-cast and the forecast in order to assimilate near real time weather observations as an implementation of the integration of data sources. This system uses the now-cast for the first 3 hours and then the forecast prediction horizons of 3, 6, 12 & 24 hours. The output is a 24 hour window of high resolution/accuracy forecasts leveraging available data-model integration and CAPE prediction. The systems includes dissemination of WRF outputs over the World Wide Web. Components of the system (including WRF computational engine and results dissemination modules) are deployed in to computational cloud. This approach tends to increase system robustness and sustainability. The creation of such a system to share information between the public and private sectors and across territorial boundaries is an important step towards the next generation of governance for climate risk and extreme weather offshore. The system benefits offshore operators by reducing downtime related to accidents and incidents; eliminate unnecessary hiring costs related to waiting on weather; and improve the efficiency and planning of transport and logistics by providing a rolling weather risk advisory.

  17. A Distributed Computing Framework for Real-Time Detection of Stress and of Its Propagation in a Team.

    PubMed

    Pandey, Parul; Lee, Eun Kyung; Pompili, Dario

    2016-11-01

    Stress is one of the key factor that impacts the quality of our daily life: From the productivity and efficiency in the production processes to the ability of (civilian and military) individuals in making rational decisions. Also, stress can propagate from one individual to other working in a close proximity or toward a common goal, e.g., in a military operation or workforce. Real-time assessment of the stress of individuals alone is, however, not sufficient, as understanding its source and direction in which it propagates in a group of people is equally-if not more-important. A continuous near real-time in situ personal stress monitoring system to quantify level of stress of individuals and its direction of propagation in a team is envisioned. However, stress monitoring of an individual via his/her mobile device may not always be possible for extended periods of time due to limited battery capacity of these devices. To overcome this challenge a novel distributed mobile computing framework is proposed to organize the resources in the vicinity and form a mobile device cloud that enables offloading of computation tasks in stress detection algorithm from resource constrained devices (low residual battery, limited CPU cycles) to resource rich devices. Our framework also supports computing parallelization and workflows, defining how the data and tasks divided/assigned among the entities of the framework are designed. The direction of propagation and magnitude of influence of stress in a group of individuals are studied by applying real-time, in situ analysis of Granger Causality. Tangible benefits (in terms of energy expenditure and execution time) of the proposed framework in comparison to a centralized framework are presented via thorough simulations and real experiments.

  18. Real-time visual communication to aid disaster recovery in a multi-segment hybrid wireless networking system

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Wang, Qi; Grecos, Christos

    2012-06-01

    When natural disasters or other large-scale incidents occur, obtaining accurate and timely information on the developing situation is vital to effective disaster recovery operations. High-quality video streams and high-resolution images, if available in real time, would provide an invaluable source of current situation reports to the incident management team. Meanwhile, a disaster often causes significant damage to the communications infrastructure. Therefore, another essential requirement for disaster management is the ability to rapidly deploy a flexible incident area communication network. Such a network would facilitate the transmission of real-time video streams and still images from the disrupted area to remote command and control locations. In this paper, a comprehensive end-to-end video/image transmission system between an incident area and a remote control centre is proposed and implemented, and its performance is experimentally investigated. In this study a hybrid multi-segment communication network is designed that seamlessly integrates terrestrial wireless mesh networks (WMNs), distributed wireless visual sensor networks, an airborne platform with video camera balloons, and a Digital Video Broadcasting- Satellite (DVB-S) system. By carefully integrating all of these rapidly deployable, interworking and collaborative networking technologies, we can fully exploit the joint benefits provided by WMNs, WSNs, balloon camera networks and DVB-S for real-time video streaming and image delivery in emergency situations among the disaster hit area, the remote control centre and the rescue teams in the field. The whole proposed system is implemented in a proven simulator. Through extensive simulations, the real-time visual communication performance of this integrated system has been numerically evaluated, towards a more in-depth understanding in supporting high-quality visual communications in such a demanding context.

  19. Network Design and Performance of the System Integration Test, Linked Simulators Phase.

    DTIC Science & Technology

    1998-01-01

    community has primarily used UNIX systems. UNIX is not a real - time operating system and thus very accurate time stamping, i.e., millisecond accuracy, is... time operating system works against us. The clock time on the UNIX workstations drifts from the UTC standard over time and this drift varies from...loggers at each site use the Network Time Protocol to synchronize to the master clock on a workstation in the TCAC. Again, the fact that UNIX is not a real

  20. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    DOE PAGES

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.; ...

    2018-01-25

    Here, the upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgradedmore » to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.« less

  1. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.

    Here, the upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgradedmore » to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.« less

  2. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry

    PubMed Central

    2016-01-01

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  3. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.

    2018-03-01

    The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.

  4. Integrated Plasma Control for Alternative Plasma Shape on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Bingjia

    2017-10-01

    To support long pulse plasma operation in high performance, a set of plasma control algorithms such as PEFIT real-time equilibrium reconstruction, radiation feedback, Beta and loop voltage feedback and quasi-snowflake shape f control have been implemented on EAST Plasma Control system (PCS) which was adapted from DIII-D PCS. PEFIT is a parallelized version of EFIT by using GPU with highest computation acceleration ratio up to 100 with respect to EFIT. It demonstrated high performance both in DIII-D data analysis and in the real-time shape control on EAST plasma either in normal or quasi-snowflake shape. Loop voltage has been successfully controlled by Low Hybrid Wave (LHW) while the plasma current is maintained by poloidal field coil set. Beta control has been also demonstrated by using LHW and it will be extended to other heating sources because the PCS interface is ready. Radiation feedback control has been achieved by Neon seeding by Super-Sonic Molecular Beam Injection (SMBI). For the plasma operation in quasi-snowflake, we have reached 20 s ELMy free high confinement non-inductive discharges with betap 2, H98 1.1 and plasma current 250 kA. EAST orals.

  5. Digital Intermediate Frequency Receiver Module For Use In Airborne Sar Applications

    DOEpatents

    Tise, Bertice L.; Dubbert, Dale F.

    2005-03-08

    A digital IF receiver (DRX) module directly compatible with advanced radar systems such as synthetic aperture radar (SAR) systems. The DRX can combine a 1 G-Sample/sec 8-bit ADC with high-speed digital signal processor, such as high gate-count FPGA technology or ASICs to realize a wideband IF receiver. DSP operations implemented in the DRX can include quadrature demodulation and multi-rate, variable-bandwidth IF filtering. Pulse-to-pulse (Doppler domain) filtering can also be implemented in the form of a presummer (accumulator) and an azimuth prefilter. An out of band noise source can be employed to provide a dither signal to the ADC, and later be removed by digital signal processing. Both the range and Doppler domain filtering operations can be implemented using a unique pane architecture which allows on-the-fly selection of the filter decimation factor, and hence, the filter bandwidth. The DRX module can include a standard VME-64 interface for control, status, and programming. An interface can provide phase history data to the real-time image formation processors. A third front-panel data port (FPDP) interface can send wide bandwidth, raw phase histories to a real-time phase history recorder for ground processing.

  6. Early warning by near-real time disturbance monitoring (Invited)

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Zeileis, A.; Herold, M.

    2013-12-01

    Near real-time monitoring of ecosystem disturbances is critical for rapidly assessing and addressing impacts on carbon dynamics, biodiversity, and socio-ecological processes. Satellite remote sensing enables cost-effective and accurate monitoring at frequent time steps over large areas. Yet, generic methods to detect disturbances within newly captured satellite images are lacking. We propose a multi-purpose time-series-based disturbance detection approach that identifies and models stable historical variation to enable change detection within newly acquired data. Satellite image time series of vegetation greenness provide a global record of terrestrial vegetation productivity over the past decades. Here, we assess and demonstrate the method by applying it to (1) real-world satellite greenness image time series between February 2000 and July 2011 covering Somalia to detect drought-related vegetation disturbances (2) landsat image time series to detect forest disturbances. First, results illustrate that disturbances are successfully detected in near real-time while being robust to seasonality and noise. Second, major drought-related disturbance corresponding with most drought-stressed regions in Somalia are detected from mid-2010 onwards. Third, the method can be applied to landsat image time series having a lower temporal data density. Furthermore the method can analyze in-situ or satellite data time series of biophysical indicators from local to global scale since it is fast, does not depend on thresholds and does not require time series gap filling. While the data and methods used are appropriate for proof-of-concept development of global scale disturbance monitoring, specific applications (e.g., drought or deforestation monitoring) mandates integration within an operational monitoring framework. Furthermore, the real-time monitoring method is implemented in open-source environment and is freely available in the BFAST package for R software. Information illustrating how to apply the method on satellite image time series are available at http://bfast.R-Forge.R-project.org/ and the example section of the bfastmonitor() function within the BFAST package.

  7. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1993-01-01

    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.

  8. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery.

    PubMed

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-09-01

    To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  9. Real-time data collection in Linux: a case study.

    PubMed

    Finney, S A

    2001-05-01

    Multiuser UNIX-like operating systems such as Linux are often considered unsuitable for real-time data collection because of the potential for indeterminate timing latencies resulting from preemptive scheduling. In this paper, Linux is shown to be fully adequate for precisely controlled programming with millisecond resolution or better. The Linux system calls that subserve such timing control are described and tested and then utilized in a MIDI-based program for tapping and music performance experiments. The timing of this program, including data input and output, is shown to be accurate at the millisecond level. This demonstrates that Linux, with proper programming, is suitable for real-time experiment software. In addition, the detailed description and test of both the operating system facilities and the application program itself may serve as a model for publicly documenting programming methods and software performance on other operating systems.

  10. Source attribution and quantification of benzene event emissions in a Houston ship channel community based on real-time mobile monitoring of ambient air.

    PubMed

    Olaguer, Eduardo P; Erickson, Matthew H; Wijesinghe, Asanga; Neish, Bradley S

    2016-02-01

    A mobile laboratory equipped with a proton transfer reaction mass spectrometer (PTR-MS) operated in Galena Park, Texas, near the Houston Ship Channel during the Benzene and other Toxics Exposure Study (BEE-TEX). The mobile laboratory measured transient peaks of benzene of up to 37 ppbv in the afternoon and evening of February 19, 2015. Plume reconstruction and source attribution were performed using the four-dimensional (4D) variational data assimilation technique and a three-dimensional (3D) micro-scale forward and adjoint air quality model based on mobile PTR-MS data and nearby stationary wind measurements at the Galena Park Continuous Air Monitoring Station (CAMS). The results of inverse modeling indicate that significant pipeline emissions of benzene may at least partly explain the ambient concentration peaks observed in Galena Park during BEE-TEX. Total pipeline emissions of benzene inferred within the 16-km(2) model domain exceeded point source emissions by roughly a factor of 2 during the observational episode. Besides pipeline leaks, the model also inferred significant benzene emissions from marine, railcar, and tank truck loading/unloading facilities, consistent with the presence of a tanker and barges in the Kinder Morgan port terminal during the afternoon and evening of February 19. Total domain emissions of benzene exceeded corresponding 2011 National Emissions Inventory (NEI) estimates by a factor of 2-6. Port operations involving petrochemicals may significantly increase emissions of air toxics from the transfer and storage of materials. Pipeline leaks, in particular, can lead to sporadic emissions greater than in emission inventories, resulting in higher ambient concentrations than are sampled by the existing monitoring network. The use of updated methods for ambient monitoring and source attribution in real time should be encouraged as an alternative to expanding the conventional monitoring network.

  11. A Tale of Two Observing Systems: Interoperability in the World of Microsoft Windows

    NASA Astrophysics Data System (ADS)

    Babin, B. L.; Hu, L.

    2008-12-01

    Louisiana Universities Marine Consortium's (LUMCON) and Dauphin Island Sea Lab's (DISL) Environmental Monitoring System provide a unified coastal ocean observing system. These two systems are mirrored to maintain autonomy while offering an integrated data sharing environment. Both systems collect data via Campbell Scientific Data loggers, store the data in Microsoft SQL servers, and disseminate the data in real- time on the World Wide Web via Microsoft Internet Information Servers and Active Server Pages (ASP). The utilization of Microsoft Windows technologies presented many challenges to these observing systems as open source tools for interoperability grow. The current open source tools often require the installation of additional software. In order to make data available through common standards formats, "home grown" software has been developed. One example of this is the development of software to generate xml files for transmission to the National Data Buoy Center (NDBC). OOSTethys partners develop, test and implement easy-to-use, open-source, OGC-compliant software., and have created a working prototype of networked, semantically interoperable, real-time data systems. Partnering with OOSTethys, we are developing a cookbook to implement OGC web services. The implementation will be written in ASP, will run in a Microsoft operating system environment, and will serve data via Sensor Observation Services (SOS). This cookbook will give observing systems running Microsoft Windows the tools to easily participate in the Open Geospatial Consortium (OGC) Oceans Interoperability Experiment (OCEANS IE).

  12. Real time test bed development for power system operation, control and cyber security

    NASA Astrophysics Data System (ADS)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  13. A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Fletcher, Malise

    1993-01-01

    The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.

  14. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  15. Dopant-assisted direct analysis in real time mass spectrometry with argon gas.

    PubMed

    Cody, Robert B; Dane, A John

    2016-05-30

    Dopants used with Atmospheric Pressure Photoionization (APPI) were examined with the Direct Analysis in Real Time (DART ® ) ion source operated with argon gas. Charge-exchange and proton transfer reactions were observed by adding toluene, anisole, chlorobenzene and acetone to the DART gas stream, complementing the information obtained by helium DART. Mass spectra were acquired with a time-of-flight mass spectrometer equipped with a DART ion source operated with argon gas. A syringe pump was used to introduce dopants directly into the DART gas stream through deactivated fused-silica capillary tubing. Samples including polycyclic aromatic hydrocarbons (PAHs), diesel fuel, trinitrotoluene and cannabinoids were deposited onto the sealed end of melting tube, allowed to dry, and the tube was then suspended in the dopant-enhanced DART gas stream. PAHs could be detected as molecular ions at concentrations in the low parts-per-billion range by using a solution of 0.5% anisole in toluene as a dopant. Argon DART analysis of a diesel fuel sample with the same dopant mixture showed a simpler mass spectrum than obtained by using helium DART. The argon DART mass spectrum was dominated by molecular ions for aromatic compounds, whereas the helium DART mass spectrum showed both molecular ions and protonated molecules. In contrast O 2 - attachment DART showed saturated hydrocarbons and oxygen-containing species. Mass spectra for trinitrotoluene with argon DART in negative-ion mode showed a prominent [M - H] - peak, whereas conventional helium DART showed both M - and [M - H] - . Lastly, in analogy to a report in the literature using APPI, positive ions produced by argon DART ionization for delta-9-tetrahydrocannabinol (THC) and cannabidiol showed distinctive product-ion mass spectra. Dopant-assisted argon DART operates by a mechanism that is analogous to those proposed for dopant-assisted atmospheric-pressure photoionization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Initial operation of the NSTX-Upgrade real-time velocity diagnostic

    DOE PAGES

    Podestà, M.; Bell, R. E.

    2016-11-03

    A real-time velocity (RTV) diagnostic based on active charge-exchange recombination spectroscopy is now operational on the National Spherical Torus Experiment-Upgrade (NSTX-U) spherical torus (Menard et al 2012 Nucl. Fusion 52 083015). We designed the system in order to supply plasma velocity data in real time to the NSTX-U plasma control system, as required for the implementation of toroidal rotation control. Our measurements are available from four radii at a maximum sampling frequency of 5 kHz. Post-discharge analysis of RTV data provides additional information on ion temperature, toroidal velocity and density of carbon impurities. Furthermore, examples of physics studies enabled bymore » RTV measurements from initial operations of NSTX-U are discussed.« less

  17. Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1983-01-01

    Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, D.; Dubrovin, M.; Gaponenko, I.

    Psana(Photon Science Analysis) is a software package that is used to analyze data produced by the Linac Coherent Light Source X-ray free-electron laser at the SLAC National Accelerator Laboratory. The project began in 2011, is written primarily in C++ with some Python, and provides user interfaces in both C++ and Python. Most users use the Python interface. The same code can be run in real time while data are being taken as well as offline, executing on many nodes/cores using MPI for parallelization. It is publicly available and installable on the RHEL5/6/7 operating systems.

  19. Application of a real-time three-dimensional navigation system to various oral and maxillofacial surgical procedures.

    PubMed

    Ohba, Seigo; Yoshimura, Hitoshi; Ishimaru, Kyoko; Awara, Kousuke; Sano, Kazuo

    2015-09-01

    The aim of this study was to confirm the effectiveness of a real-time three-dimensional navigation system for use during various oral and maxillofacial surgeries. Five surgeries were performed with this real-time three-dimensional navigation system. For mandibular surgery, patients wore acrylic surgical splints when they underwent computed tomography examinations and the operation to maintain the mandibular position. The incidence of complications during and after surgery was assessed. No connection with the nasal cavity or maxillary sinus was observed at the maxilla during the operation. The inferior alveolar nerve was not injured directly, and any paresthesia around the lower lip and mental region had disappeared within several days after the surgery. In both maxillary and mandibular cases, there was no abnormal hemorrhage during or after the operation. Real-time three-dimensional computer-navigated surgery allows minimally invasive, safe procedures to be performed with precision. It results in minimal complications and early recovery.

  20. Using crowdsourced web content for informing water systems operations in snow-dominated catchments

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero

    2016-12-01

    Snow is a key component of the hydrologic cycle in many regions of the world. Despite recent advances in environmental monitoring that are making a wide range of data available, continuous snow monitoring systems that can collect data at high spatial and temporal resolution are not well established yet, especially in inaccessible high-latitude or mountainous regions. The unprecedented availability of user-generated data on the web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available. The operational value of the obtained virtual snow indexes is assessed for a real-world water-management problem, the regulation of Lake Como, where we use these indexes for informing the daily operations of the lake. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.

  1. Assessing Operational Total Lightning Visualization Products

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Darden, Christopher B.; Nadler, David J.

    2010-01-01

    In May 2003, NASA's Short-term Prediction Research and Transition (SPoRT) program successfully provided total lightning data from the North Alabama Lightning Mapping Array (NALMA) to the National Weather Service (NWS) office in Huntsville, Alabama. The major accomplishment was providing the observations in real-time to the NWS in the native Advanced Weather Interactive Processing System (AWIPS) decision support system. Within days, the NALMA data were used to issue a tornado warning initiating seven years of ongoing support to the NWS' severe weather and situational awareness operations. With this success, SPoRT now provides real-time NALMA data to five forecast offices as well as working to transition data from total lightning networks at Kennedy Space Center and the White Sands Missile Range to the surrounding NWS offices. The only NALMA product that has been transitioned to SPoRT's partner NWS offices is the source density product, available at a 2 km resolution in 2 min intervals. However, discussions with users of total lightning data from other networks have shown that other products are available, ranging from spatial and temporal variations of the source density product to the creation of a flash extent density. SPoRT and the Huntsville, Alabama NWS are evaluating the utility of these variations as this has not been addressed since the initial transition in 2003. This preliminary analysis will focus on what products will best support the operational warning decision process. Data from 19 April 2009 are analyzed. On this day, severe thunderstorms formed ahead of an approaching cold front. Widespread severe weather was observed, primarily south of the Tennessee River with multiple, weak tornadoes, numerous severe hail reports, and wind. This preliminary analysis is the first step in evaluation which product(s) are best suited for operations. The ultimate goal is selecting a single product for use with all total lightning networks to streamline training and science sharing.

  2. Development of laser-induced breakdown spectroscopy sensor to assess groundwater quality impacts resulting from geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Carson, Cantwell G.; Goueguel, Christian; Jain, Jinesh; McIntyre, Dustin

    2015-05-01

    The injection of CO2 into deep aquifers can potentially affect the quality of groundwater supplies were leakage to occur from the injection formation or fluids. Therefore, the detection of CO2 and/or entrained contaminants that migrate into shallow groundwater aquifers is important both to assess storage permanence and to evaluate impacts on water resources. Naturally occurring elements (i.e., Li, Sr) in conjunction with isotope ratios can be used to detect such leakage. We propose the use of laser induced breakdown spectroscopy (LIBS) as an analytical technique to detect a suite of elements in water samples. LIBS has real time monitoring capabilities and can be applied for elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of probe design and use of fiber optics make it a suitable technique for real time measurements in harsh conditions and in hard to reach places. The laboratory scale experiments to measure Li, K, Ca, and Sr composition of water samples indicate that the technique produces rapid and reliable data. Since CO2 leakage from saline aquifers may accompany a brine solution, we studied the effect of sodium salts on the accuracy of LIBS analysis. This work specifically also details the fabrication and application of a miniature ruggedized remotely operated diode pumped solid state passively Q-switched laser system for use as the plasma excitation source for a real time LIBS analysis. This work also proposes the optical distribution of many laser spark sources across a wide area for widespread leak detection and basin monitoring.

  3. SU-E-J-197: A Novel Optical Interstitial Fiber Spectroscopic System for Real-Time Tissue Micro-Vascular Hemodynamics Monitoring.

    PubMed

    Zhao, D; Campos, D; Yan, Y; Kimple, R; Jacques, S; van der Kogel, A; Kissick, M

    2012-06-01

    To demonstrate a novel interstitial optical fiber spectroscopic system, based on diffuse optical spectroscopies with spectral fitting, for the simultaneous monitoring of tumor blood volume and oxygen tension. The technique provides real-time, minimally-invasive and quantification of tissue micro-vascular hemodynamics. An optical fiber prototype probe characterizesthe optical transport in tissue between two large Numerical Aperture (NA) fibers of 200μm core diameter (BFH37-200, ThorLabs) spaced 3-mm apart. Two 21-Ga medical needles are used to protect fiber ends and to facilitate tissue penetration with minimum local blunt trauma in nude mice with xenografts. A 20W white light source (HL-2000-HP, Ocean Optics) is coupled to one fiber with SMA adapter. The other fiber is used to collect light, which is coupled into the spectrometer (QE65000 with Spectrasuite Operating software and OmniDriver, Ocean Optics). The wavelength response of the probe depends on the wavelength dependence of the light source, and of the light signal collection that includes considerable scatter, modeled with Monte-Carlo techniques (S. Jacques 2010 J. of Innov. Opt. Health Sci. 2 123-9). Measured spectra of tissue are normalized by a measured spectrum of a white standard, yielding the transmission spectrum. A head-and-neck xenograft on the flank of a live mouse is used for development. The optical fiber probe delivers and collects light at an arbitrary depth in the tumor. By spectral fitting of the measured transmission spectrum, an analysis of blood volume and oxygen tension is obtained from the fitting parameters in real time. A newly developed optical fiber spectroscopic system with an optical fiber probe takes spectroscopic techniques to a much deeper level in a tumor, which has potential applications for real-time monitoring hypoxic cell population dynamics for an eventual adaptive therapy metric of particular use in hypofractionated radiotherapy. © 2012 American Association of Physicists in Medicine.

  4. FIT-MART: Quantum Magnetism with a Gentle Learning Curve

    NASA Astrophysics Data System (ADS)

    Engelhardt, Larry; Garland, Scott C.; Rainey, Cameron; Freeman, Ray A.

    We present a new open-source software package, FIT-MART, that allows non-experts to quickly get started sim- ulating quantum magnetism. FIT-MART can be downloaded as a platform-idependent executable Java (JAR) file. It allows the user to define (Heisenberg) Hamiltonians by electronically drawing pictures that represent quantum spins and operators. Sliders are automatically generated to control the values of the parameters in the model, and when the values change, several plots are updated in real time to display both the resulting energy spectra and the equilibruim magnetic properties. Several experimental data sets for real magnetic molecules are included in FIT-MART to allow easy comparison between simulated and experimental data, and FIT-MART users can also import their own data for analysis and compare the goodness of fit for different models.

  5. Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten

    2014-05-01

    In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.

  6. Improving Mid-Course Flight Through an Application of Real-Time Optimal Control

    DTIC Science & Technology

    2017-12-01

    COURSE FLIGHT THROUGH AN APPLICATION OF REAL- TIME OPTIMAL CONTROL by Mark R. Roncoroni December 2017 Thesis Advisor: Ronald Proulx Co...collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources...AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVING MID-COURSE FLIGHT THROUGH AN APPLICATION OF REAL- TIME OPTIMAL CONTROL 5. FUNDING

  7. Reachability Analysis in Probabilistic Biological Networks.

    PubMed

    Gabr, Haitham; Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2015-01-01

    Extra-cellular molecules trigger a response inside the cell by initiating a signal at special membrane receptors (i.e., sources), which is then transmitted to reporters (i.e., targets) through various chains of interactions among proteins. Understanding whether such a signal can reach from membrane receptors to reporters is essential in studying the cell response to extra-cellular events. This problem is drastically complicated due to the unreliability of the interaction data. In this paper, we develop a novel method, called PReach (Probabilistic Reachability), that precisely computes the probability that a signal can reach from a given collection of receptors to a given collection of reporters when the underlying signaling network is uncertain. This is a very difficult computational problem with no known polynomial-time solution. PReach represents each uncertain interaction as a bi-variate polynomial. It transforms the reachability problem to a polynomial multiplication problem. We introduce novel polynomial collapsing operators that associate polynomial terms with possible paths between sources and targets as well as the cuts that separate sources from targets. These operators significantly shrink the number of polynomial terms and thus the running time. PReach has much better time complexity than the recent solutions for this problem. Our experimental results on real data sets demonstrate that this improvement leads to orders of magnitude of reduction in the running time over the most recent methods. Availability: All the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/PReach/.

  8. Evaporometer | A Wireless Mesh of Open-Source Rainfall/Evaporation Gauge and Sensor Suite for In Situ Near-Real-Time Environmental Data

    NASA Astrophysics Data System (ADS)

    Kwon, M.; Lopez Alcala, J. M.; DeBell, T. C.; Udell, C.; Selker, J. S.

    2017-12-01

    Access to in situ near real-time environmental sensor data in remote locations provides invaluable utility in the fields of agricultural and environmental sciences. For studies where data needs to be gathered frequently, it could be costly and dangerous to take numerous trips into the field to collect this information and to inspect multitudes of distributed devices to ensure proper operation. One solution is to develop remote sensors capable of transmitting data and status updates (like battery level) over long distances from unserviced locations to a receiver hub to be accessed in near real-time online. The Openly Published Environmental Sensing Lab at Oregon State University (OPEnS Lab) produced a low-cost Open Source environmental sensing station called the Evaporometer that collects data at precisely timed intervals including rainfall amount, rate of evaporation, temperature, humidity and light (IR and Visible spectra), while CO2 and other sensors are also being evaluated for inclusion. This project focuses on the development and deployment of the prototype Evaporometer in HJ Andrew's Experimental Forest located in Blue River Oregon. The Evaporometer was designed for efficiency and succeeds in systematically collecting environmental data in hard to reach places over long periods of time. A real time clock interrupt enables the device to enter and exit "sleep mode", allowing Evaporometers to remain in the field over long periods of time and controlling the how frequently data should be collected. A load cell measures the weight of collected water in a container. This container is tightly packed with a fiberglass wick, which draws water from the bottom to the surface for efficient evaporation. A siphon has been designed into the container to prevent any possible water overflow situations and lost collected rainfall. All data collection and transmission processes are handled by an Adafruit Feather development board equipped with a long range, low power wireless (LoRa) radio that sends encrypted data via 900MHz ISM band. This data can be transmitted up to 20km to a receiver hub with an internet connection, and uploaded directly to Google cloud storage or other online data services for convenience.

  9. The SMART-NAS Testbed

    NASA Technical Reports Server (NTRS)

    Aquilina, Rudolph A.

    2015-01-01

    The SMART-NAS Testbed for Safe Trajectory Based Operations Project will deliver an evaluation capability, critical to the ATM community, allowing full NextGen and beyond-NextGen concepts to be assessed and developed. To meet this objective a strong focus will be placed on concept integration and validation to enable a gate-to-gate trajectory-based system capability that satisfies a full vision for NextGen. The SMART-NAS for Safe TBO Project consists of six sub-projects. Three of the sub-projects are focused on exploring and developing technologies, concepts and models for evolving and transforming air traffic management operations in the ATM+2 time horizon, while the remaining three sub-projects are focused on developing the tools and capabilities needed for testing these advanced concepts. Function Allocation, Networked Air Traffic Management and Trajectory Based Operations are developing concepts and models. SMART-NAS Test-bed, System Assurance Technologies and Real-time Safety Modeling are developing the tools and capabilities to test these concepts. Simulation and modeling capabilities will include the ability to assess multiple operational scenarios of the national airspace system, accept data feeds, allowing shadowing of actual operations in either real-time, fast-time and/or hybrid modes of operations in distributed environments, and enable integrated examinations of concepts, algorithms, technologies, and NAS architectures. An important focus within this project is to enable the development of a real-time, system-wide safety assurance system. The basis of such a system is a continuum of information acquisition, analysis, and assessment that enables awareness and corrective action to detect and mitigate potential threats to continuous system-wide safety at all levels. This process, which currently can only be done post operations, will be driven towards "real-time" assessments in the 2035 time frame.

  10. A Multi-layer, Data-driven Advanced Reasoning Tool for Intelligent Data Mining and Analysis for Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Du, Pengwei; Greitzer, Frank L.

    2012-12-31

    This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning “triage” of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over today’s grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individualmore » data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.« less

  11. The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Masci, Frank J.; Laher, Russ R.; Rebbapragada, Umaa D.; Doran, Gary B.; Miller, Adam A.; Bellm, Eric; Kasliwal, Mansi; Ofek, Eran O.; Surace, Jason; Shupe, David L.; Grillmair, Carl J.; Jackson, Ed; Barlow, Tom; Yan, Lin; Cao, Yi; Cenko, S. Bradley; Storrie-Lombardi, Lisa J.; Helou, George; Prince, Thomas A.; Kulkarni, Shrinivas R.

    2017-01-01

    We describe the near real-time transient-source discovery engine for the intermediate Palomar Transient Factory (iPTF), currently in operations at the Infrared Processing and Analysis Center (IPAC), Caltech. We coin this system the IPAC/iPTF Discovery Engine (or IDE). We review the algorithms used for PSF-matching, image subtraction, detection, photometry, and machine-learned (ML) vetting of extracted transient candidates. We also review the performance of our ML classifier. For a limiting signal-to-noise ratio of 4 in relatively unconfused regions, bogus candidates from processing artifacts and imperfect image subtractions outnumber real transients by ≃10:1. This can be considerably higher for image data with inaccurate astrometric and/or PSF-matching solutions. Despite this occasionally high contamination rate, the ML classifier is able to identify real transients with an efficiency (or completeness) of ≃97% for a maximum tolerable false-positive rate of 1% when classifying raw candidates. All subtraction-image metrics, source features, ML probability-based real-bogus scores, contextual metadata from other surveys, and possible associations with known Solar System objects are stored in a relational database for retrieval by the various science working groups. We review our efforts in mitigating false-positives and our experience in optimizing the overall system in response to the multitude of science projects underway with iPTF.

  12. The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory

    NASA Technical Reports Server (NTRS)

    Masci, Frank J.; Laher, Russ R.; Rebbapragada, Umaa D.; Doran, Gary B.; Miller, Adam A.; Bellm, Eric; Kasliwal, Mansi; Ofek, Eran O.; Surace, Jason; Shupe, David L.; hide

    2016-01-01

    We describe the near real-time transient-source discovery engine for the intermediate Palomar Transient Factory (iPTF), currently in operations at the Infrared Processing and Analysis Center (IPAC), Caltech. We coin this system the IPAC/iPTF Discovery Engine (or IDE). We review the algorithms used for PSF-matching, image subtraction, detection, photometry, and machine-learned (ML) vetting of extracted transient candidates. We also review the performance of our ML classifier. For a limiting signal-to-noise ratio of 4 in relatively unconfused regions, bogus candidates from processing artifacts and imperfect image subtractions outnumber real transients by approximately equal to 10:1. This can be considerably higher for image data with inaccurate astrometric and/or PSF-matching solutions. Despite this occasionally high contamination rate, the ML classifier is able to identify real transients with an efficiency (or completeness) of approximately equal to 97% for a maximum tolerable false-positive rate of 1% when classifying raw candidates. All subtraction-image metrics, source features, ML probability-based real-bogus scores, contextual metadata from other surveys, and possible associations with known Solar System objects are stored in a relational database for retrieval by the various science working groups. We review our efforts in mitigating false-positives and our experience in optimizing the overall system in response to the multitude of science projects underway with iPTF.

  13. Improved operative efficiency using a real-time MRI-guided stereotactic platform for laser amygdalohippocampotomy.

    PubMed

    Ho, Allen L; Sussman, Eric S; Pendharkar, Arjun V; Le, Scheherazade; Mantovani, Alessandra; Keebaugh, Alaine C; Drover, David R; Grant, Gerald A; Wintermark, Max; Halpern, Casey H

    2018-04-01

    OBJECTIVE MR-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive method for thermal destruction of benign or malignant tissue that has been used for selective amygdalohippocampal ablation for the treatment of temporal lobe epilepsy. The authors report their initial experience adopting a real-time MRI-guided stereotactic platform that allows for completion of the entire procedure in the MRI suite. METHODS Between October 2014 and May 2016, 17 patients with mesial temporal sclerosis were selected by a multidisciplinary epilepsy board to undergo a selective amygdalohippocampal ablation for temporal lobe epilepsy using MRgLITT. The first 9 patients underwent standard laser ablation in 2 phases (operating room [OR] and MRI suite), whereas the next 8 patients underwent laser ablation entirely in the MRI suite with the ClearPoint platform. A checklist specific to the real-time MRI-guided laser amydalohippocampal ablation was developed and used for each case. For both cohorts, clinical and operative information, including average case times and accuracy data, was collected and analyzed. RESULTS There was a learning curve associated with using this real-time MRI-guided system. However, operative times decreased in a linear fashion, as did total anesthesia time. In fact, the total mean patient procedure time was less in the MRI cohort (362.8 ± 86.6 minutes) than in the OR cohort (456.9 ± 80.7 minutes). The mean anesthesia time was significantly shorter in the MRI cohort (327.2 ± 79.9 minutes) than in the OR cohort (435.8 ± 78.4 minutes, p = 0.02). CONCLUSIONS The real-time MRI platform for MRgLITT can be adopted in an expedient manner. Completion of MRgLITT entirely in the MRI suite may lead to significant advantages in procedural times.

  14. Real-time calibration-free C-scan images of the eye fundus using Master Slave swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Fred; Garway-Heath, David F.; Rajendram, Ranjan; Keane, Pearce; Podoleanu, Adrian G.

    2015-03-01

    Recently, we introduced a novel Optical Coherence Tomography (OCT) method, termed as Master Slave OCT (MS-OCT), specialized for delivering en-face images. This method uses principles of spectral domain interfereometry in two stages. MS-OCT operates like a time domain OCT, selecting only signals from a chosen depth only while scanning the laser beam across the eye. Time domain OCT allows real time production of an en-face image, although relatively slowly. As a major advance, the Master Slave method allows collection of signals from any number of depths, as required by the user. The tremendous advantage in terms of parallel provision of data from numerous depths could not be fully employed by using multi core processors only. The data processing required to generate images at multiple depths simultaneously is not achievable with commodity multicore processors only. We compare here the major improvement in processing and display, brought about by using graphic cards. We demonstrate images obtained with a swept source at 100 kHz (which determines an acquisition time [Ta] for a frame of 200×200 pixels2 of Ta =1.6 s). By the end of the acquired frame being scanned, using our computing capacity, 4 simultaneous en-face images could be created in T = 0.8 s. We demonstrate that by using graphic cards, 32 en-face images can be displayed in Td 0.3 s. Other faster swept source engines can be used with no difference in terms of Td. With 32 images (or more), volumes can be created for 3D display, using en-face images, as opposed to the current technology where volumes are created using cross section OCT images.

  15. Digging Back In Time: Integrating Historical Data Into an Operational Ocean Observing System

    NASA Astrophysics Data System (ADS)

    McCammon, M.

    2016-02-01

    Modern technologies allow reporting and display of data near real-time from in situ instrumentation live on the internet. This has given users fast access to critical information for scientific applications, marine safety, planning, and numerous other activities. Equally as valuable is having access to historical data sets. However, it is challenging to identify sources and access of historical data of interest as it exists in many different locations, depending on the funding source and provider. Also, time-varying formats can make it difficult to data-mine and display historical data. There is also the issue of data quality, and having a systematic means of assessing credibility of historical data sets. The Alaska Ocean Observing System (AOOS) data management system demonstrates the successful ingestion of historical data, both old and new (as recent as yesterday) and has integrated numerous historical data streams into user friendly data portals, available for data upload and display on the AOOS Website. An example is the inclusion of non-real-time (e.g. day old) AIS (Automatic Identification System) ship tracking data, important for scientists working in marine mammal migration regions. Other examples include historical sea ice data, and various data streams from previous research projects (e.g. moored time series, HF Radar surface currents, weather, shipboard CTD). Most program or project websites only offer access to data specific to their agency or project alone, but do not have the capacity to provide access to the plethora of other data that might be available for the region and be useful for integration, comparison and synthesis. AOOS offers end users access to a one stop-shop for data in the area they want to research, helping them identify other sources of information and access. Demonstrations of data portals using historical data illustrate these benefits.

  16. Real-time multi-DSP control of three-phase current-source unity power factor PWM rectifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Wang; Boon-Teck Ooi

    1993-07-01

    The design of a real-time multi-DSP controller for a high-quality six-valve three-phase current-source unity power factor PWM rectifier is discussed in this paper. With the decoupler preprocessor and the dynamic trilogic PWM trigger scheme, each of the three input currents can be controlled independently. Based on the a-b-c frame system model and the fast parallel computer control, the pole-placement control method is implemented successfully to achieve fast response in the ac currents. The low-frequency resonance in the ac filter L-C networks has been damped effectively. The experimental results are obtained from a 1-kVA bipolar transistor current-source PWM rectifier with amore » real-time controller using three TMS320C25 DSP's.« less

  17. A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Wong, Edmond; Simon, Donald L.

    1994-01-01

    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.

  18. Mitigation of volcanic hazards to aviation: The need for real-time integration of multiple data sources (Invited)

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.

    2009-12-01

    The successful mitigation of volcanic hazards to aviation requires rapid interpretation and coordination of data from multiple sources, and communication of information products to a variety of end users. This community of information providers and information users include volcano observatories, volcanic ash advisory centers, meteorological watch offices, air traffic control centers, airline dispatch and military flight operations centers, and pilots. Each of these entities has capabilities and needs that are unique to their situations that evolve over a range of time spans. Prior to an eruption, information about probable eruption scenarios are needed in order to allow for contingency planning. Once a hazardous eruption begins, the immediate questions are where, when, how high, and how long will the eruption last? Following the initial detection of an eruption, the need for information changes to forecasting the movement of the volcanic cloud, determining whether ground operations will be affected by ash fall, and estimating how long the drifting volcanic cloud will remain hazardous. A variety of tools have been developed and/or improved over the past several years that provide additional data sources about volcanic hazards that is pertinent to the aviation sector. These include seismic and pressure sensors, ground-based radar and lidar, web cameras, ash dispersion models, and more sensitive satellite sensors that are capable of better detecting volcanic ash, gases and aerosols. Along with these improved capabilities come increased challenges in rapidly assimilating the available data sources, which come from a variety of data providers. In this presentation, examples from the recent large eruptions of Okmok, Kasatochi, and Sarychev Peak volcanoes will be used to demonstrate the challenges faced by hazard response agencies. These eruptions produced volcanic clouds that were dispersed over large regions of the Northern Hemisphere and were observed by pilots and detected by various satellite sensors for several weeks. The disruption to aviation caused by these eruptions further emphasizes the need to improve the real-time characterization of volcanic clouds (altitude, composition, particle size, and concentration) and to better understand the impacts of volcanic ash, gases and aerosols on aircraft, flight crews, and passengers.

  19. Characterization and application of droplet spray ionization for real-time reaction monitoring.

    PubMed

    Zhang, Hong; Li, Na; Li, Xiao-di; Jiang, Jie; Zhao, Dan-Dan; You, Hong

    2016-08-01

    The ionization source for real-time reaction monitoring has attracted tremendous interest in recent years. We have previously reported a reliable approach in which droplet spray ionization (DSI) was used for monitoring chemical reactions in real-time. Herein, we systematically investigated the characterization and application of DSI for real-time reaction monitoring. Analyte ions are generated by loading a sample solution onto a corner of a microscope cover glass positioned in front of the MS inlet and applying a high voltage to the sample. The tolerance to positioning, solvent effect, spray angle and spray time were investigated. Extension to real-time monitoring of macromolecule reactions was also demonstrated by the charge state change of cytochrome c in the presence of acetic acid. The corner could be positioned within an area of approximately 10 × 6 × 5 mm (x, y, z) in front of the MS inlet. The broad polarities of solvents from methanol to PhF were suitable for DSI. It featured monitoring real-time changes in reactions on the time scale of seconds to minutes. A real-time charge state change of cytochrome c was captured. DSI-MS features ease of use, durability of the spray platform and reusability of the ion source. Eliminating the need for a sample transport capillary, DSI opens a new avenue for the in situ analysis and real-time monitoring of short-lived key reaction intermediates even at subsecond dead times. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Comparison of two SVD-based color image compression schemes.

    PubMed

    Li, Ying; Wei, Musheng; Zhang, Fengxia; Zhao, Jianli

    2017-01-01

    Color image compression is a commonly used process to represent image data as few bits as possible, which removes redundancy in the data while maintaining an appropriate level of quality for the user. Color image compression algorithms based on quaternion are very common in recent years. In this paper, we propose a color image compression scheme, based on the real SVD, named real compression scheme. First, we form a new real rectangular matrix C according to the red, green and blue components of the original color image and perform the real SVD for C. Then we select several largest singular values and the corresponding vectors in the left and right unitary matrices to compress the color image. We compare the real compression scheme with quaternion compression scheme by performing quaternion SVD using the real structure-preserving algorithm. We compare the two schemes in terms of operation amount, assignment number, operation speed, PSNR and CR. The experimental results show that with the same numbers of selected singular values, the real compression scheme offers higher CR, much less operation time, but a little bit smaller PSNR than the quaternion compression scheme. When these two schemes have the same CR, the real compression scheme shows more prominent advantages both on the operation time and PSNR.

Top