Sample records for source reconstruction problem

  1. Stable source reconstruction from a finite number of measurements in the multi-frequency inverse source problem

    NASA Astrophysics Data System (ADS)

    Karamehmedović, Mirza; Kirkeby, Adrian; Knudsen, Kim

    2018-06-01

    We consider the multi-frequency inverse source problem for the scalar Helmholtz equation in the plane. The goal is to reconstruct the source term in the equation from measurements of the solution on a surface outside the support of the source. We study the problem in a certain finite dimensional setting: from measurements made at a finite set of frequencies we uniquely determine and reconstruct sources in a subspace spanned by finitely many Fourier–Bessel functions. Further, we obtain a constructive criterion for identifying a minimal set of measurement frequencies sufficient for reconstruction, and under an additional, mild assumption, the reconstruction method is shown to be stable. Our analysis is based on a singular value decomposition of the source-to-measurement forward operators and the distribution of positive zeros of the Bessel functions of the first kind. The reconstruction method is implemented numerically and our theoretical findings are supported by numerical experiments.

  2. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2011-01-01

    Reconstruction algorithms are presented for two-step solutions of the bioluminescence tomography (BLT) and the fluorescence tomography (FT) problems. In the first step, a continuous wave (cw) diffuse optical tomography (DOT) algorithm is used to reconstruct the tissue optical properties assuming known anatomical information provided by x-ray computed tomography or other methods. Minimization problems are formed based on L1 norm objective functions, where normalized values for the light fluence rates and the corresponding Green’s functions are used. Then an iterative minimization solution shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. Throughout this process the permissible region shrinks from the entire object to just a few points. The optimum reconstructed bioluminescence and fluorescence distributions are chosen to be the results of the iteration corresponding to the permissible region where the objective function has its global minimum This provides efficient BLT and FT reconstruction algorithms without the need for a priori information about the bioluminescence sources or the fluorophore concentration. Multiple small sources and large distributed sources can be reconstructed with good accuracy for the location and the total source power for BLT and the total number of fluorophore molecules for the FT. For non-uniform distributed sources, the size and magnitude become degenerate due to the degrees of freedom available for possible solutions. However, increasing the number of data points by increasing the number of excitation sources can improve the accuracy of reconstruction for non-uniform fluorophore distributions. PMID:21326647

  3. Bayesian probabilistic approach for inverse source determination from limited and noisy chemical or biological sensor concentration measurements

    NASA Astrophysics Data System (ADS)

    Yee, Eugene

    2007-04-01

    Although a great deal of research effort has been focused on the forward prediction of the dispersion of contaminants (e.g., chemical and biological warfare agents) released into the turbulent atmosphere, much less work has been directed toward the inverse prediction of agent source location and strength from the measured concentration, even though the importance of this problem for a number of practical applications is obvious. In general, the inverse problem of source reconstruction is ill-posed and unsolvable without additional information. It is demonstrated that a Bayesian probabilistic inferential framework provides a natural and logically consistent method for source reconstruction from a limited number of noisy concentration data. In particular, the Bayesian approach permits one to incorporate prior knowledge about the source as well as additional information regarding both model and data errors. The latter enables a rigorous determination of the uncertainty in the inference of the source parameters (e.g., spatial location, emission rate, release time, etc.), hence extending the potential of the methodology as a tool for quantitative source reconstruction. A model (or, source-receptor relationship) that relates the source distribution to the concentration data measured by a number of sensors is formulated, and Bayesian probability theory is used to derive the posterior probability density function of the source parameters. A computationally efficient methodology for determination of the likelihood function for the problem, based on an adjoint representation of the source-receptor relationship, is described. Furthermore, we describe the application of efficient stochastic algorithms based on Markov chain Monte Carlo (MCMC) for sampling from the posterior distribution of the source parameters, the latter of which is required to undertake the Bayesian computation. The Bayesian inferential methodology for source reconstruction is validated against real dispersion data for two cases involving contaminant dispersion in highly disturbed flows over urban and complex environments where the idealizations of horizontal homogeneity and/or temporal stationarity in the flow cannot be applied to simplify the problem. Furthermore, the methodology is applied to the case of reconstruction of multiple sources.

  4. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2010-01-01

    Reconstruction algorithms are presented for a two-step solution of the bioluminescence tomography (BLT) problem. In the first step, a priori anatomical information provided by x-ray computed tomography or by other methods is used to solve the continuous wave (cw) diffuse optical tomography (DOT) problem. A Taylor series expansion approximates the light fluence rate dependence on the optical properties of each region where first and second order direct derivatives of the light fluence rate with respect to scattering and absorption coefficients are obtained and used for the reconstruction. In the second step, the reconstructed optical properties at different wavelengths are used to calculate the Green’s function of the system. Then an iterative minimization solution based on the L1 norm shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. This provides an efficient BLT reconstruction algorithm with the ability to determine relative source magnitudes and positions in the presence of noise. PMID:21258486

  5. Kernel temporal enhancement approach for LORETA source reconstruction using EEG data.

    PubMed

    Torres-Valencia, Cristian A; Santamaria, M Claudia Joana; Alvarez, Mauricio A

    2016-08-01

    Reconstruction of brain sources from magnetoencephalography and electroencephalography (M/EEG) data is a well known problem in the neuroengineering field. A inverse problem should be solved and several methods have been proposed. Low Resolution Electromagnetic Tomography (LORETA) and the different variations proposed as standardized LORETA (sLORETA) and the standardized weighted LORETA (swLORETA) have solved the inverse problem following a non-parametric approach, that is by setting dipoles in the whole brain domain in order to estimate the dipole positions from the M/EEG data and assuming some spatial priors. Errors in the reconstruction of sources are presented due the low spatial resolution of the LORETA framework and the influence of noise in the observable data. In this work a kernel temporal enhancement (kTE) is proposed in order to build a preprocessing stage of the data that allows in combination with the swLORETA method a improvement in the source reconstruction. The results are quantified in terms of three dipole error localization metrics and the strategy of swLORETA + kTE obtained the best results across different signal to noise ratio (SNR) in random dipoles simulation from synthetic EEG data.

  6. Forward model with space-variant of source size for reconstruction on X-ray radiographic image

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Liu, Jun; Jing, Yue-feng; Xiao, Bo; Wei, Cai-hua; Guan, Yong-hong; Zhang, Xuan

    2018-03-01

    The Forward Imaging Technique is a method to solve the inverse problem of density reconstruction in radiographic imaging. In this paper, we introduce the forward projection equation (IFP model) for the radiographic system with areal source blur and detector blur. Our forward projection equation, based on X-ray tracing, is combined with the Constrained Conjugate Gradient method to form a new method for density reconstruction. We demonstrate the effectiveness of the new technique by reconstructing density distributions from simulated and experimental images. We show that for radiographic systems with source sizes larger than the pixel size, the effect of blur on the density reconstruction is reduced through our method and can be controlled within one or two pixels. The method is also suitable for reconstruction of non-homogeneousobjects.

  7. Towards Complete, Geo-Referenced 3d Models from Crowd-Sourced Amateur Images

    NASA Astrophysics Data System (ADS)

    Hartmann, W.; Havlena, M.; Schindler, K.

    2016-06-01

    Despite a lot of recent research, photogrammetric reconstruction from crowd-sourced imagery is plagued by a number of recurrent problems. (i) The resulting models are chronically incomplete, because even touristic landmarks are photographed mostly from a few "canonical" viewpoints. (ii) Man-made constructions tend to exhibit repetitive structure and rotational symmetries, which lead to gross errors in the 3D reconstruction and aggravate the problem of incomplete reconstruction. (iii) The models are normally not geo-referenced. In this paper, we investigate the possibility of using sparse GNSS geo-tags from digital cameras to address these issues and push the boundaries of crowd-sourced photogrammetry. A small proportion of the images in Internet collections (≍ 10 %) do possess geo-tags. While the individual geo-tags are very inaccurate, they nevertheless can help to address the problems above. By providing approximate geo-reference for partial reconstructions they make it possible to fuse those pieces into more complete models; the capability to fuse partial reconstruction opens up the possibility to be more restrictive in the matching phase and avoid errors due to repetitive structure; and collectively, the redundant set of low-quality geo-tags can provide reasonably accurate absolute geo-reference. We show that even few, noisy geo-tags can help to improve architectural models, compared to puristic structure-from-motion only based on image correspondence.

  8. Single photon emission computed tomography-guided Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie

    2012-07-01

    Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.

  9. Computed inverse resonance imaging for magnetic susceptibility map reconstruction.

    PubMed

    Chen, Zikuan; Calhoun, Vince

    2012-01-01

    This article reports a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a 2-step computational approach. The forward T2*-weighted MRI (T2*MRI) process is broken down into 2 steps: (1) from magnetic susceptibility source to field map establishment via magnetization in the main field and (2) from field map to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes 2 inverse steps to reverse the T2*MRI procedure: field map calculation from MR-phase image and susceptibility source calculation from the field map. The inverse step from field map to susceptibility map is a 3-dimensional ill-posed deconvolution problem, which can be solved with 3 kinds of approaches: the Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from an MR-phase image with high fidelity (spatial correlation ≈ 0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by 2 computational steps: calculating the field map from the phase image and reconstructing the susceptibility map from the field map. The crux of CIMRI lies in an ill-posed 3-dimensional deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm.

  10. Computed inverse MRI for magnetic susceptibility map reconstruction

    PubMed Central

    Chen, Zikuan; Calhoun, Vince

    2015-01-01

    Objective This paper reports on a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a two-step computational approach. Methods The forward T2*-weighted MRI (T2*MRI) process is decomposed into two steps: 1) from magnetic susceptibility source to fieldmap establishment via magnetization in a main field, and 2) from fieldmap to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes two inverse steps to reverse the T2*MRI procedure: fieldmap calculation from MR phase image and susceptibility source calculation from the fieldmap. The inverse step from fieldmap to susceptibility map is a 3D ill-posed deconvolution problem, which can be solved by three kinds of approaches: Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Results Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from a MR phase image with high fidelity (spatial correlation≈0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. Conclusions The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by two computational steps: calculating the fieldmap from the phase image and reconstructing the susceptibility map from the fieldmap. The crux of CIMRI lies in an ill-posed 3D deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm. PMID:22446372

  11. Effective one-dimensional approach to the source reconstruction problem of three-dimensional inverse optoacoustics

    NASA Astrophysics Data System (ADS)

    Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.

    2017-09-01

    The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.

  12. Localization of synchronous cortical neural sources.

    PubMed

    Zerouali, Younes; Herry, Christophe L; Jemel, Boutheina; Lina, Jean-Marc

    2013-03-01

    Neural synchronization is a key mechanism to a wide variety of brain functions, such as cognition, perception, or memory. High temporal resolution achieved by EEG recordings allows the study of the dynamical properties of synchronous patterns of activity at a very fine temporal scale but with very low spatial resolution. Spatial resolution can be improved by retrieving the neural sources of EEG signal, thus solving the so-called inverse problem. Although many methods have been proposed to solve the inverse problem and localize brain activity, few of them target the synchronous brain regions. In this paper, we propose a novel algorithm aimed at localizing specifically synchronous brain regions and reconstructing the time course of their activity. Using multivariate wavelet ridge analysis, we extract signals capturing the synchronous events buried in the EEG and then solve the inverse problem on these signals. Using simulated data, we compare results of source reconstruction accuracy achieved by our method to a standard source reconstruction approach. We show that the proposed method performs better across a wide range of noise levels and source configurations. In addition, we applied our method on real dataset and identified successfully cortical areas involved in the functional network underlying visual face perception. We conclude that the proposed approach allows an accurate localization of synchronous brain regions and a robust estimation of their activity.

  13. Discussion of Source Reconstruction Models Using 3D MCG Data

    NASA Astrophysics Data System (ADS)

    Melis, Massimo De; Uchikawa, Yoshinori

    In this study we performed the source reconstruction of magnetocardiographic signals generated by the human heart activity to localize the site of origin of the heart activation. The localizations were performed in a four compartment model of the human volume conductor. The analyses were conducted on normal subjects and on a subject affected by the Wolff-Parkinson-White syndrome. Different models of the source activation were used to evaluate whether a general model of the current source can be applied in the study of the cardiac inverse problem. The data analyses were repeated using normal and vector component data of the MCG. The results show that a distributed source model has the better accuracy in performing the source reconstructions, and that 3D MCG data allow finding smaller differences between the different source models.

  14. Atmospheric inverse modeling via sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  15. Iterative image reconstruction in elastic inhomogenous media with application to transcranial photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Poudel, Joemini; Matthews, Thomas P.; Mitsuhashi, Kenji; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-03-01

    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured data due to the propagation of the photoacoustic wavefields through the skull. To properly account for these effects, a wave equation-based inversion method should be employed that can model the heterogeneous elastic properties of the medium. In this study, an iterative image reconstruction method for 3D transcranial PACT is developed based on the elastic wave equation. To accomplish this, a forward model based on a finite-difference time-domain discretization of the elastic wave equation is established. Subsequently, gradient-based methods are employed for computing penalized least squares estimates of the initial source distribution that produced the measured photoacoustic data. The developed reconstruction algorithm is validated and investigated through computer-simulation studies.

  16. A multiwave range test for obstacle reconstructions with unknown physical properties

    NASA Astrophysics Data System (ADS)

    Potthast, Roland; Schulz, Jochen

    2007-08-01

    We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A `range test' for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533-547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhauser, Basel, 1986, pp. 93-102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Gottingen, 1999]. In particular, we propose a new version of the Kirsch-Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.

  17. Tomographic reconstruction of ionospheric electron density during the storm of 5-6 August 2011 using multi-source data

    PubMed Central

    Tang, Jun; Yao, Yibin; Zhang, Liang; Kong, Jian

    2015-01-01

    The insufficiency of data is the essential reason for ill-posed problem existed in computerized ionospheric tomography (CIT) technique. Therefore, the method of integrating multi-source data is proposed. Currently, the multiple satellite navigation systems and various ionospheric observing instruments provide abundant data which can be employed to reconstruct ionospheric electron density (IED). In order to improve the vertical resolution of IED, we do research on IED reconstruction by integration of ground-based GPS data, occultation data from the LEO satellite, satellite altimetry data from Jason-1 and Jason-2 and ionosonde data. We used the CIT results to compare with incoherent scatter radar (ISR) observations, and found that the multi-source data fusion was effective and reliable to reconstruct electron density, showing its superiority than CIT with GPS data alone. PMID:26266764

  18. Tomographic reconstruction of ionospheric electron density during the storm of 5-6 August 2011 using multi-source data.

    PubMed

    Tang, Jun; Yao, Yibin; Zhang, Liang; Kong, Jian

    2015-08-12

    The insufficiency of data is the essential reason for ill-posed problem existed in computerized ionospheric tomography (CIT) technique. Therefore, the method of integrating multi-source data is proposed. Currently, the multiple satellite navigation systems and various ionospheric observing instruments provide abundant data which can be employed to reconstruct ionospheric electron density (IED). In order to improve the vertical resolution of IED, we do research on IED reconstruction by integration of ground-based GPS data, occultation data from the LEO satellite, satellite altimetry data from Jason-1 and Jason-2 and ionosonde data. We used the CIT results to compare with incoherent scatter radar (ISR) observations, and found that the multi-source data fusion was effective and reliable to reconstruct electron density, showing its superiority than CIT with GPS data alone.

  19. A space-frequency multiplicative regularization for force reconstruction problems

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; De Smet, O.

    2018-05-01

    Dynamic forces reconstruction from vibration data is an ill-posed inverse problem. A standard approach to stabilize the reconstruction consists in using some prior information on the quantities to identify. This is generally done by including in the formulation of the inverse problem a regularization term as an additive or a multiplicative constraint. In the present article, a space-frequency multiplicative regularization is developed to identify mechanical forces acting on a structure. The proposed regularization strategy takes advantage of one's prior knowledge of the nature and the location of excitation sources, as well as that of their spectral contents. Furthermore, it has the merit to be free from the preliminary definition of any regularization parameter. The validity of the proposed regularization procedure is assessed numerically and experimentally. It is more particularly pointed out that properly exploiting the space-frequency characteristics of the excitation field to identify can improve the quality of the force reconstruction.

  20. Characterizing open and non-uniform vertical heat sources: towards the identification of real vertical cracks in vibrothermography experiments

    NASA Astrophysics Data System (ADS)

    Castelo, A.; Mendioroz, A.; Celorrio, R.; Salazar, A.; López de Uralde, P.; Gorosmendi, I.; Gorostegui-Colinas, E.

    2017-05-01

    Lock-in vibrothermography is used to characterize vertical kissing and open cracks in metals. In this technique the crack heats up during ultrasound excitation due mainly to friction between the defect's faces. We have solved the inverse problem, consisting in determining the heat source distribution produced at cracks under amplitude modulated ultrasound excitation, which is an ill-posed inverse problem. As a consequence the minimization of the residual is unstable. We have stabilized the algorithm introducing a penalty term based on Total Variation functional. In the inversion, we combine amplitude and phase surface temperature data obtained at several modulation frequencies. Inversions of synthetic data with added noise indicate that compact heat sources are characterized accurately and that the particular upper contours can be retrieved for shallow heat sources. The overall shape of open and homogeneous semicircular strip-shaped heat sources representing open half-penny cracks can also be retrieved but the reconstruction of the deeper end of the heat source loses contrast. Angle-, radius- and depth-dependent inhomogeneous heat flux distributions within these semicircular strips can also be qualitatively characterized. Reconstructions of experimental data taken on samples containing calibrated heat sources confirm the predictions from reconstructions of synthetic data. We also present inversions of experimental data obtained from a real welded Inconel 718 specimen. The results are in good qualitative agreement with the results of liquids penetrants testing.

  1. Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches

    PubMed Central

    Cicmil, Nela; Bridge, Holly; Parker, Andrew J.; Woolrich, Mark W.; Krug, Kristine

    2014-01-01

    Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer) and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals. PMID:24904268

  2. Ensemble-based data assimilation and optimal sensor placement for scalar source reconstruction

    NASA Astrophysics Data System (ADS)

    Mons, Vincent; Wang, Qi; Zaki, Tamer

    2017-11-01

    Reconstructing the characteristics of a scalar source from limited remote measurements in a turbulent flow is a problem of great interest for environmental monitoring, and is challenging due to several aspects. Firstly, the numerical estimation of the scalar dispersion in a turbulent flow requires significant computational resources. Secondly, in actual practice, only a limited number of observations are available, which generally makes the corresponding inverse problem ill-posed. Ensemble-based variational data assimilation techniques are adopted to solve the problem of scalar source localization in a turbulent channel flow at Reτ = 180 . This approach combines the components of variational data assimilation and ensemble Kalman filtering, and inherits the robustness from the former and the ease of implementation from the latter. An ensemble-based methodology for optimal sensor placement is also proposed in order to improve the condition of the inverse problem, which enhances the performances of the data assimilation scheme. This work has been partially funded by the Office of Naval Research (Grant N00014-16-1-2542) and by the National Science Foundation (Grant 1461870).

  3. The New Method of Tsunami Source Reconstruction With r-Solution Inversion Method

    NASA Astrophysics Data System (ADS)

    Voronina, T. A.; Romanenko, A. A.

    2016-12-01

    Application of the r-solution method to reconstructing the initial tsunami waveform is discussed. This methodology is based on the inversion of remote measurements of water-level data. The wave propagation is considered within the scope of a linear shallow-water theory. The ill-posed inverse problem in question is regularized by means of a least square inversion using the truncated Singular Value Decomposition method. As a result of the numerical process, an r-solution is obtained. The method proposed allows one to control the instability of a numerical solution and to obtain an acceptable result in spite of ill posedness of the problem. Implementation of this methodology to reconstructing of the initial waveform to 2013 Solomon Islands tsunami validates the theoretical conclusion for synthetic data and a model tsunami source: the inversion result strongly depends on data noisiness, the azimuthal and temporal coverage of recording stations with respect to the source area. Furthermore, it is possible to make a preliminary selection of the most informative set of the available recording stations used in the inversion process.

  4. A reconstruction method of intra-ventricular blood flow using color flow ultrasound: a simulation study

    NASA Astrophysics Data System (ADS)

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun

    2015-03-01

    A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.

  5. Complete Sets of Radiating and Nonradiating Parts of a Source and Their Fields with Applications in Inverse Scattering Limited-Angle Problems

    PubMed Central

    Louis, A. K.

    2006-01-01

    Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060

  6. Spatio-temporal Reconstruction of Neural Sources Using Indirect Dominant Mode Rejection.

    PubMed

    Jafadideh, Alireza Talesh; Asl, Babak Mohammadzadeh

    2018-04-27

    Adaptive minimum variance based beamformers (MVB) have been successfully applied to magnetoencephalogram (MEG) and electroencephalogram (EEG) data to localize brain activities. However, the performance of these beamformers falls down in situations where correlated or interference sources exist. To overcome this problem, we propose indirect dominant mode rejection (iDMR) beamformer application in brain source localization. This method by modifying measurement covariance matrix makes MVB applicable in source localization in the presence of correlated and interference sources. Numerical results on both EEG and MEG data demonstrate that presented approach accurately reconstructs time courses of active sources and localizes those sources with high spatial resolution. In addition, the results of real AEF data show the good performance of iDMR in empirical situations. Hence, iDMR can be reliably used for brain source localization especially when there are correlated and interference sources.

  7. Acoustical source reconstruction from non-synchronous sequential measurements by Fast Iterative Shrinkage Thresholding Algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Liang; Antoni, Jerome; Leclere, Quentin; Jiang, Weikang

    2017-11-01

    Acoustical source reconstruction is a typical inverse problem, whose minimum frequency of reconstruction hinges on the size of the array and maximum frequency depends on the spacing distance between the microphones. For the sake of enlarging the frequency of reconstruction and reducing the cost of an acquisition system, Cyclic Projection (CP), a method of sequential measurements without reference, was recently investigated (JSV,2016,372:31-49). In this paper, the Propagation based Fast Iterative Shrinkage Thresholding Algorithm (Propagation-FISTA) is introduced, which improves CP in two aspects: (1) the number of acoustic sources is no longer needed and the only making assumption is that of a "weakly sparse" eigenvalue spectrum; (2) the construction of the spatial basis is much easier and adaptive to practical scenarios of acoustical measurements benefiting from the introduction of propagation based spatial basis. The proposed Propagation-FISTA is first investigated with different simulations and experimental setups and is next illustrated with an industrial case.

  8. SU-D-210-03: Limited-View Multi-Source Quantitative Photoacoustic Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J; Gao, H

    2015-06-15

    Purpose: This work is to investigate a novel limited-view multi-source acquisition scheme for the direct and simultaneous reconstruction of optical coefficients in quantitative photoacoustic tomography (QPAT), which has potentially improved signal-to-noise ratio and reduced data acquisition time. Methods: Conventional QPAT is often considered in two steps: first to reconstruct the initial acoustic pressure from the full-view ultrasonic data after each optical illumination, and then to quantitatively reconstruct optical coefficients (e.g., absorption and scattering coefficients) from the initial acoustic pressure, using multi-source or multi-wavelength scheme.Based on a novel limited-view multi-source scheme here, We have to consider the direct reconstruction of opticalmore » coefficients from the ultrasonic data, since the initial acoustic pressure can no longer be reconstructed as an intermediate variable due to the incomplete acoustic data in the proposed limited-view scheme. In this work, based on a coupled photo-acoustic forward model combining diffusion approximation and wave equation, we develop a limited-memory Quasi-Newton method (LBFGS) for image reconstruction that utilizes the adjoint forward problem for fast computation of gradients. Furthermore, the tensor framelet sparsity is utilized to improve the image reconstruction which is solved by Alternative Direction Method of Multipliers (ADMM). Results: The simulation was performed on a modified Shepp-Logan phantom to validate the feasibility of the proposed limited-view scheme and its corresponding image reconstruction algorithms. Conclusion: A limited-view multi-source QPAT scheme is proposed, i.e., the partial-view acoustic data acquisition accompanying each optical illumination, and then the simultaneous rotations of both optical sources and ultrasonic detectors for next optical illumination. Moreover, LBFGS and ADMM algorithms are developed for the direct reconstruction of optical coefficients from the acoustic data. Jing Feng and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  9. Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains

    NASA Astrophysics Data System (ADS)

    Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville

    2017-01-01

    In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.

  10. A new DOD and DOA estimation method for MIMO radar

    NASA Astrophysics Data System (ADS)

    Gong, Jian; Lou, Shuntian; Guo, Yiduo

    2018-04-01

    The battlefield electromagnetic environment is becoming more and more complex, and MIMO radar will inevitably be affected by coherent and non-stationary noise. To solve this problem, an angle estimation method based on oblique projection operator and Teoplitz matrix reconstruction is proposed. Through the reconstruction of Toeplitz, nonstationary noise is transformed into Gauss white noise, and then the oblique projection operator is used to separate independent and correlated sources. Finally, simulations are carried out to verify the performance of the proposed algorithm in terms of angle estimation performance and source overload.

  11. Inverse random source scattering for the Helmholtz equation in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Ming; Chen, Chuchu; Li, Peijun

    2018-01-01

    This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.

  12. Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craciunescu, Teddy, E-mail: teddy.craciunescu@jet.uk; Tiseanu, Ion; Zoita, Vasile

    The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been usedmore » to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.« less

  13. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  14. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    PubMed Central

    Cengiz, Kubra

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468

  15. On a full Bayesian inference for force reconstruction problems

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; De Smet, O.

    2018-05-01

    In a previous paper, the authors introduced a flexible methodology for reconstructing mechanical sources in the frequency domain from prior local information on both their nature and location over a linear and time invariant structure. The proposed approach was derived from Bayesian statistics, because of its ability in mathematically accounting for experimenter's prior knowledge. However, since only the Maximum a Posteriori estimate was computed, the posterior uncertainty about the regularized solution given the measured vibration field, the mechanical model and the regularization parameter was not assessed. To answer this legitimate question, this paper fully exploits the Bayesian framework to provide, from a Markov Chain Monte Carlo algorithm, credible intervals and other statistical measures (mean, median, mode) for all the parameters of the force reconstruction problem.

  16. Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Burman, Erik; Hansbo, Peter; Larson, Mats G.

    2018-03-01

    Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.

  17. Numerical reconstruction of tsunami source using combined seismic, satellite and DART data

    NASA Astrophysics Data System (ADS)

    Krivorotko, Olga; Kabanikhin, Sergey; Marinin, Igor

    2014-05-01

    Recent tsunamis, for instance, in Japan (2011), in Sumatra (2004), and at the Indian coast (2004) showed that a system of producing exact and timely information about tsunamis is of a vital importance. Numerical simulation is an effective instrument for providing such information. Bottom relief characteristics and the initial perturbation data (a tsunami source) are required for the direct simulation of tsunamis. The seismic data about the source are usually obtained in a few tens of minutes after an event has occurred (the seismic waves velocity being about five hundred kilometres per minute, while the velocity of tsunami waves is less than twelve kilometres per minute). A difference in the arrival times of seismic and tsunami waves can be used when operationally refining the tsunami source parameters and modelling expected tsunami wave height on the shore. The most suitable physical models related to the tsunamis simulation are based on the shallow water equations. The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate three different inverse problems of determining a tsunami source using three different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements, satellite wave-form images and seismic data. These problems are severely ill-posed. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of singular values of an inverse problem operator which is agreed with the error level in measured data is described and analyzed. In numerical experiment we used gradient methods (Landweber iteration and conjugate gradient method) for solving inverse tsunami problems. Gradient methods are based on minimizing the corresponding misfit function. To calculate the gradient of the misfit function, the adjoint problem is solved. The conservative finite-difference schemes for solving the direct and adjoint problems in the approximation of shallow water are constructed. Results of numerical experiments of the tsunami source reconstruction are presented and discussed. We show that using a combination of three different types of data allows one to increase the stability and efficiency of tsunami source reconstruction. Non-profit organization WAPMERR (World Agency of Planetary Monitoring and Earthquake Risk Reduction) in collaboration with Informap software development department developed the Integrated Tsunami Research and Information System (ITRIS) to simulate tsunami waves and earthquakes, river course changes, coastal zone floods, and risk estimates for coastal constructions at wave run-ups and earthquakes. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. This work was supported by the Russian Foundation for Basic Research (project No. 12-01-00773 'Theory and Numerical Methods for Solving Combined Inverse Problems of Mathematical Physics') and interdisciplinary project of SB RAS 14 'Inverse Problems and Applications: Theory, Algorithms, Software'.

  18. Network reconstruction via graph blending

    NASA Astrophysics Data System (ADS)

    Estrada, Rolando

    2016-05-01

    Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.

  19. A sparse equivalent source method for near-field acoustic holography.

    PubMed

    Fernandez-Grande, Efren; Xenaki, Angeliki; Gerstoft, Peter

    2017-01-01

    This study examines a near-field acoustic holography method consisting of a sparse formulation of the equivalent source method, based on the compressive sensing (CS) framework. The method, denoted Compressive-Equivalent Source Method (C-ESM), encourages spatially sparse solutions (based on the superposition of few waves) that are accurate when the acoustic sources are spatially localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is addressed. Numerical and experimental results on a classical guitar and on a highly reactive dipole-like source are presented. C-ESM is valid beyond the conventional sampling limits, making wide-band reconstruction possible. Spatially extended sources can also be addressed with C-ESM, although in this case the obtained solution does not recover the spatial extent of the source.

  20. Standardized shrinking LORETA-FOCUSS (SSLOFO): a new algorithm for spatio-temporal EEG source reconstruction.

    PubMed

    Liu, Hesheng; Schimpf, Paul H; Dong, Guoya; Gao, Xiaorong; Yang, Fusheng; Gao, Shangkai

    2005-10-01

    This paper presents a new algorithm called Standardized Shrinking LORETA-FOCUSS (SSLOFO) for solving the electroencephalogram (EEG) inverse problem. Multiple techniques are combined in a single procedure to robustly reconstruct the underlying source distribution with high spatial resolution. This algorithm uses a recursive process which takes the smooth estimate of sLORETA as initialization and then employs the re-weighted minimum norm introduced by FOCUSS. An important technique called standardization is involved in the recursive process to enhance the localization ability. The algorithm is further improved by automatically adjusting the source space according to the estimate of the previous step, and by the inclusion of temporal information. Simulation studies are carried out on both spherical and realistic head models. The algorithm achieves very good localization ability on noise-free data. It is capable of recovering complex source configurations with arbitrary shapes and can produce high quality images of extended source distributions. We also characterized the performance with noisy data in a realistic head model. An important feature of this algorithm is that the temporal waveforms are clearly reconstructed, even for closely spaced sources. This provides a convenient way to estimate neural dynamics directly from the cortical sources.

  1. The Concentration Probability Density Function With Implications for Probabilistic Modeling of Chemical Warfare Agent Detector Responses for Source Reconstruction

    DTIC Science & Technology

    2008-05-01

    efforts de gestion rétroactive des situations d’urgence actuelles comportant l’mission cachée d’agents chi- miques, biologiques et radiologiques (CBR...Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2008 Original signed by E. Yee Original...context of the source reconstruction problem. DRDC Suffield TR 2008-077 i Résumé On a étudié les relations entre des moments variés de

  2. Study of run time errors of the ATLAS pixel detector in the 2012 data taking period

    NASA Astrophysics Data System (ADS)

    Gandrajula, Reddy Pratap

    The high resolution silicon Pixel detector is critical in event vertex reconstruction and in particle track reconstruction in the ATLAS detector. During the pixel data taking operation, some modules (Silicon Pixel sensor +Front End Chip+ Module Control Chip (MCC)) go to an auto-disable state, where the Modules don't send the data for storage. Modules become operational again after reconfiguration. The source of the problem is not fully understood. One possible source of the problem is traced to the occurrence of single event upset (SEU) in the MCC. Such a module goes to either a Timeout or Busy state. This report is the study of different types and rates of errors occurring in the Pixel data taking operation. Also, the study includes the error rate dependency on Pixel detector geometry.

  3. A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Yansong; Jha, Abhinav K.; Dreyer, Jakob K.; Le, Hanh N. D.; Kang, Jin U.; Roland, Per E.; Wong, Dean F.; Rahmim, Arman

    2017-02-01

    Fluorescence molecular tomography (FMT) is a promising tool for real time in vivo quantification of neurotransmission (NT) as we pursue in our BRAIN initiative effort. However, the acquired image data are noisy and the reconstruction problem is ill-posed. Further, while spatial sparsity of the NT effects could be exploited, traditional compressive-sensing methods cannot be directly applied as the system matrix in FMT is highly coherent. To overcome these issues, we propose and assess a three-step reconstruction method. First, truncated singular value decomposition is applied on the data to reduce matrix coherence. The resultant image data are input to a homotopy-based reconstruction strategy that exploits sparsity via l1 regularization. The reconstructed image is then input to a maximum-likelihood expectation maximization (MLEM) algorithm that retains the sparseness of the input estimate and improves upon the quantitation by accurate Poisson noise modeling. The proposed reconstruction method was evaluated in a three-dimensional simulated setup with fluorescent sources in a cuboidal scattering medium with optical properties simulating human brain cortex (reduced scattering coefficient: 9.2 cm-1, absorption coefficient: 0.1 cm-1 and tomographic measurements made using pixelated detectors. In different experiments, fluorescent sources of varying size and intensity were simulated. The proposed reconstruction method provided accurate estimates of the fluorescent source intensity, with a 20% lower root mean square error on average compared to the pure-homotopy method for all considered source intensities and sizes. Further, compared with conventional l2 regularized algorithm, overall, the proposed method reconstructed substantially more accurate fluorescence distribution. The proposed method shows considerable promise and will be tested using more realistic simulations and experimental setups.

  4. The inverse problem in electroencephalography using the bidomain model of electrical activity.

    PubMed

    Lopez Rincon, Alejandro; Shimoda, Shingo

    2016-12-01

    Acquiring information about the distribution of electrical sources in the brain from electroencephalography (EEG) data remains a significant challenge. An accurate solution would provide an understanding of the inner mechanisms of the electrical activity in the brain and information about damaged tissue. In this paper, we present a methodology for reconstructing brain electrical activity from EEG data by using the bidomain formulation. The bidomain model considers continuous active neural tissue coupled with a nonlinear cell model. Using this technique, we aim to find the brain sources that give rise to the scalp potential recorded by EEG measurements taking into account a non-static reconstruction. We simulate electrical sources in the brain volume and compare the reconstruction to the minimum norm estimates (MNEs) and low resolution electrical tomography (LORETA) results. Then, with the EEG dataset from the EEG Motor Movement/Imagery Database of the Physiobank, we identify the reaction to visual stimuli by calculating the time between stimulus presentation and the spike in electrical activity. Finally, we compare the activation in the brain with the registered activation using the LinkRbrain platform. Our methodology shows an improved reconstruction of the electrical activity and source localization in comparison with MNE and LORETA. For the Motor Movement/Imagery Database, the reconstruction is consistent with the expected position and time delay generated by the stimuli. Thus, this methodology is a suitable option for continuously reconstructing brain potentials. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  6. Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de; Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT; Brookes, Mike

    In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In thismore » paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole sources. • Inverse solutions are based on longitudinal and transverse line integral measurements. • Transverse line integral measurements are used as a sparsity constraint. • Numerical procedure to approximate the line integrals is described in detail. • Patterns of the studied electric fields are correctly estimated.« less

  7. Regularized two-step brain activity reconstruction from spatiotemporal EEG data

    NASA Astrophysics Data System (ADS)

    Alecu, Teodor I.; Voloshynovskiy, Sviatoslav; Pun, Thierry

    2004-10-01

    We are aiming at using EEG source localization in the framework of a Brain Computer Interface project. We propose here a new reconstruction procedure, targeting source (or equivalently mental task) differentiation. EEG data can be thought of as a collection of time continuous streams from sparse locations. The measured electric potential on one electrode is the result of the superposition of synchronized synaptic activity from sources in all the brain volume. Consequently, the EEG inverse problem is a highly underdetermined (and ill-posed) problem. Moreover, each source contribution is linear with respect to its amplitude but non-linear with respect to its localization and orientation. In order to overcome these drawbacks we propose a novel two-step inversion procedure. The solution is based on a double scale division of the solution space. The first step uses a coarse discretization and has the sole purpose of globally identifying the active regions, via a sparse approximation algorithm. The second step is applied only on the retained regions and makes use of a fine discretization of the space, aiming at detailing the brain activity. The local configuration of sources is recovered using an iterative stochastic estimator with adaptive joint minimum energy and directional consistency constraints.

  8. A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source

    PubMed Central

    Atwood, Robert C.; Bodey, Andrew J.; Price, Stephen W. T.; Basham, Mark; Drakopoulos, Michael

    2015-01-01

    Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an ‘orthogonal’ fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strategies to be optimized for users' purposes. In addition to the reconstruction algorithms themselves, it can include modules for identification of experimental problems, artefact correction, general image processing and data quality assessment. Savu is open source, open licensed and ‘facility-independent’: it can run on standard cluster infrastructure at any institution. PMID:25939626

  9. Computed myography: three-dimensional reconstruction of motor functions from surface EMG data

    NASA Astrophysics Data System (ADS)

    van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.

    2008-12-01

    We describe a methodology called computed myography to qualitatively and quantitatively determine the activation level of individual muscles by voltage measurements from an array of voltage sensors on the skin surface. A finite element model for electrostatics simulation is constructed from morphometric data. For the inverse problem, we utilize a generalized Tikhonov regularization. This imposes smoothness on the reconstructed sources inside the muscles and suppresses sources outside the muscles using a penalty term. Results from experiments with simulated and human data are presented for activation reconstructions of three muscles in the upper arm (biceps brachii, bracialis and triceps). This approach potentially offers a new clinical tool to sensitively assess muscle function in patients suffering from neurological disorders (e.g., spinal cord injury), and could more accurately guide advances in the evaluation of specific rehabilitation training regimens.

  10. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome.

    PubMed

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the "connectome". Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.

  11. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome

    PubMed Central

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the “connectome”. Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/. PMID:26379232

  12. Novel fusion for hybrid optical/microcomputed tomography imaging based on natural light surface reconstruction and iterated closest point

    NASA Astrophysics Data System (ADS)

    Ning, Nannan; Tian, Jie; Liu, Xia; Deng, Kexin; Wu, Ping; Wang, Bo; Wang, Kun; Ma, Xibo

    2014-02-01

    In mathematics, optical molecular imaging including bioluminescence tomography (BLT), fluorescence tomography (FMT) and Cerenkov luminescence tomography (CLT) are concerned with a similar inverse source problem. They all involve the reconstruction of the 3D location of a single/multiple internal luminescent/fluorescent sources based on 3D surface flux distribution. To achieve that, an accurate fusion between 2D luminescent/fluorescent images and 3D structural images that may be acquired form micro-CT, MRI or beam scanning is extremely critical. However, the absence of a universal method that can effectively convert 2D optical information into 3D makes the accurate fusion challengeable. In this study, to improve the fusion accuracy, a new fusion method for dual-modality tomography (luminescence/fluorescence and micro-CT) based on natural light surface reconstruction (NLSR) and iterated closest point (ICP) was presented. It consisted of Octree structure, exact visual hull from marching cubes and ICP. Different from conventional limited projection methods, it is 360° free-space registration, and utilizes more luminescence/fluorescence distribution information from unlimited multi-orientation 2D optical images. A mouse mimicking phantom (one XPM-2 Phantom Light Source, XENOGEN Corporation) and an in-vivo BALB/C mouse with implanted one luminescent light source were used to evaluate the performance of the new fusion method. Compared with conventional fusion methods, the average error of preset markers was improved by 0.3 and 0.2 pixels from the new method, respectively. After running the same 3D internal light source reconstruction algorithm of the BALB/C mouse, the distance error between the actual and reconstructed internal source was decreased by 0.19 mm.

  13. Reconstructing source terms from atmospheric concentration measurements: Optimality analysis of an inversion technique

    NASA Astrophysics Data System (ADS)

    Turbelin, Grégory; Singh, Sarvesh Kumar; Issartel, Jean-Pierre

    2014-12-01

    In the event of an accidental or intentional contaminant release in the atmosphere, it is imperative, for managing emergency response, to diagnose the release parameters of the source from measured data. Reconstruction of the source information exploiting measured data is called an inverse problem. To solve such a problem, several techniques are currently being developed. The first part of this paper provides a detailed description of one of them, known as the renormalization method. This technique, proposed by Issartel (2005), has been derived using an approach different from that of standard inversion methods and gives a linear solution to the continuous Source Term Estimation (STE) problem. In the second part of this paper, the discrete counterpart of this method is presented. By using matrix notation, common in data assimilation and suitable for numerical computing, it is shown that the discrete renormalized solution belongs to a family of well-known inverse solutions (minimum weighted norm solutions), which can be computed by using the concept of generalized inverse operator. It is shown that, when the weight matrix satisfies the renormalization condition, this operator satisfies the criteria used in geophysics to define good inverses. Notably, by means of the Model Resolution Matrix (MRM) formalism, we demonstrate that the renormalized solution fulfils optimal properties for the localization of single point sources. Throughout the article, the main concepts are illustrated with data from a wind tunnel experiment conducted at the Environmental Flow Research Centre at the University of Surrey, UK.

  14. Inverse Electrocardiographic Source Localization of Ischemia: An Optimization Framework and Finite Element Solution

    PubMed Central

    Wang, Dafang; Kirby, Robert M.; MacLeod, Rob S.; Johnson, Chris R.

    2013-01-01

    With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained optimization framework that enables various physically-based constraints in both equality and inequality forms. We formulated the optimality conditions rigorously in the continuum before deriving finite element discretization, thereby making the optimization independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov regularization and the total variation minimization. The subsequent numerical optimization was fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much finer than any inverse models previously reported. With synthetic ischemia data we localized ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under conditions up to 5% input noise. With ischemia data measured from animal experiments, we reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating the TMP in general cases remains an open problem, our study shows the feasibility of reconstructing TMP during the ST interval as a means of ischemia localization. PMID:23913980

  15. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  16. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method.

    PubMed

    He, Xiaowei; Liang, Jimin; Wang, Xiaorui; Yu, Jingjing; Qu, Xiaochao; Wang, Xiaodong; Hou, Yanbin; Chen, Duofang; Liu, Fang; Tian, Jie

    2010-11-22

    In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing (ℓ1 norm) regularization term with a quadratic error term in the IVTCG-based framework for solving the inverse problem. By limiting the number of variables updated at each iterative and combining a variable splitting strategy to find the search direction more efficiently, it obtains fast and stable source reconstruction, even without a priori information of the permissible source region and multispectral measurements. Numerical experiments on a mouse atlas validate the effectiveness of the method. In vivo mouse experimental results further indicate its potential for a practical BLT system.

  17. Effectiveness of focused source generation methods with consideration of interaural time and level difference.

    PubMed

    Zheng, Jianwen; Lu, Jing; Chen, Kai

    2013-07-01

    Several methods have been proposed for the generation of the focused source, usually a virtual monopole source positioned in between the loudspeaker array and the listener. The problem of pre-echoes of the common analytical methods has been noticed, and the most concise method to cope with this problem is the angular weight method. In this paper, the interaural time and level difference, which are well related to the localization cues of human auditory systems, will be used to further investigate the effectiveness of the focused source generation methods. It is demonstrated that the combination of angular weight method and the numerical pressure matching method has comparatively better performance in a given reconstructed area.

  18. Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties.

    PubMed

    Ohyu, Shigeharu; Okamoto, Yoshiwo; Kuriki, Shinya

    2002-06-01

    A novel magnetocardiographic inverse method for reconstructing the action potential amplitude (APA) and the activation time (AT) on the ventricular myocardium is proposed. This method is based on the propagated excitation model, in which the excitation is propagated through the ventricle with nonuniform height of action potential. Assumption of stepwise waveform on the transmembrane potential was introduced in the model. Spatial gradient of transmembrane potential, which is defined by APA and AT distributed in the ventricular wall, is used for the computation of a current source distribution. Based on this source model, the distributions of APA and AT are inversely reconstructed from the QRS interval of magnetocardiogram (MCG) utilizing a maximum a posteriori approach. The proposed reconstruction method was tested through computer simulations. Stability of the methods with respect to measurement noise was demonstrated. When reference APA was provided as a uniform distribution, root-mean-square errors of estimated APA were below 10 mV for MCG signal-to-noise ratios greater than, or equal to, 20 dB. Low-amplitude regions located at several sites in reference APA distributions were correctly reproduced in reconstructed APA distributions. The goal of our study is to develop a method for detecting myocardial ischemia through the depression of reconstructed APA distributions.

  19. An example of problems in dose reconstruction from doses formed by electromagnetic irradiation by different energy sources.

    PubMed

    Kirillov, Vladimir; Kuchuro, Joseph; Tolstik, Sergey; Leonova, Tatyana

    2010-02-01

    Dose reconstruction for citizens of Belarus affected by the Chernobyl accident showed an unexpectedly wide range of doses. Using the EPR tooth enamel dosimetry method, it has been demonstrated that when the tooth enamel dose was formed due to x-rays with effective energy of 34 keV and the additional irradiation of enamel samples was performed by gamma radiation with mean energy of 1,250 keV, it led to a considerable increase in the reconstructed absorbed dose as compared with the applied. In the case when the dose was formed due to gamma radiation and the additional irradiation was performed by x-rays, it led to a considerable decrease in the reconstructed dose as compared with the applied. When the dose formation and the additional irradiation were carried out from external sources of electromagnetic radiation of equal energy, the reconstructed dose value was close to that of the applied. The obtained data show that for adequate reconstruction of individual absorbed doses by the EPR tooth enamel spectra, it is necessary to take into account the contribution from diagnostic x-ray examination of the teeth, jaw, and skull of some individuals who were exposed to a combined effect of the external gamma radiation and x-rays.

  20. Lp-Norm Regularization in Volumetric Imaging of Cardiac Current Sources

    PubMed Central

    Rahimi, Azar; Xu, Jingjia; Wang, Linwei

    2013-01-01

    Advances in computer vision have substantially improved our ability to analyze the structure and mechanics of the heart. In comparison, our ability to observe and analyze cardiac electrical activities is much limited. The progress to computationally reconstruct cardiac current sources from noninvasive voltage data sensed on the body surface has been hindered by the ill-posedness and the lack of a unique solution of the reconstruction problem. Common L2- and L1-norm regularizations tend to produce a solution that is either too diffused or too scattered to reflect the complex spatial structure of current source distribution in the heart. In this work, we propose a general regularization with Lp-norm (1 < p < 2) constraint to bridge the gap and balance between an overly smeared and overly focal solution in cardiac source reconstruction. In a set of phantom experiments, we demonstrate the superiority of the proposed Lp-norm method over its L1 and L2 counterparts in imaging cardiac current sources with increasing extents. Through computer-simulated and real-data experiments, we further demonstrate the feasibility of the proposed method in imaging the complex structure of excitation wavefront, as well as current sources distributed along the postinfarction scar border. This ability to preserve the spatial structure of source distribution is important for revealing the potential disruption to the normal heart excitation. PMID:24348735

  1. Iterative Region-of-Interest Reconstruction from Limited Data Using Prior Information

    NASA Astrophysics Data System (ADS)

    Vogelgesang, Jonas; Schorr, Christian

    2017-12-01

    In practice, computed tomography and computed laminography applications suffer from incomplete data. In particular, when inspecting large objects with extremely different diameters in longitudinal and transversal directions or when high resolution reconstructions are desired, the physical conditions of the scanning system lead to restricted data and truncated projections, also known as the interior or region-of-interest (ROI) problem. To recover the searched-for density function of the inspected object, we derive a semi-discrete model of the ROI problem that inherently allows the incorporation of geometrical prior information in an abstract Hilbert space setting for bounded linear operators. Assuming that the attenuation inside the object is approximately constant, as for fibre reinforced plastics parts or homogeneous objects where one is interested in locating defects like cracks or porosities, we apply the semi-discrete Landweber-Kaczmarz method to recover the inner structure of the object inside the ROI from the measured data resulting in a semi-discrete iteration method. Finally, numerical experiments for three-dimensional tomographic applications with both an inherent restricted source and ROI problem are provided to verify the proposed method for the ROI reconstruction.

  2. Self-calibration for lensless color microscopy.

    PubMed

    Flasseur, Olivier; Fournier, Corinne; Verrier, Nicolas; Denis, Loïc; Jolivet, Frédéric; Cazier, Anthony; Lépine, Thierry

    2017-05-01

    Lensless color microscopy (also called in-line digital color holography) is a recent quantitative 3D imaging method used in several areas including biomedical imaging and microfluidics. By targeting cost-effective and compact designs, the wavelength of the low-end sources used is known only imprecisely, in particular because of their dependence on temperature and power supply voltage. This imprecision is the source of biases during the reconstruction step. An additional source of error is the crosstalk phenomenon, i.e., the mixture in color sensors of signals originating from different color channels. We propose to use a parametric inverse problem approach to achieve self-calibration of a digital color holographic setup. This process provides an estimation of the central wavelengths and crosstalk. We show that taking the crosstalk phenomenon into account in the reconstruction step improves its accuracy.

  3. A Rotating Scatter Mask for Inexpensive Gamma-Ray Imaging in Orphan Source Search: Simulation Results

    NASA Astrophysics Data System (ADS)

    FitzGerald, Jack G. M.

    2015-02-01

    The Rotating Scatter Mask (RSM) system is an inexpensive retrofit that provides imaging capabilities to scintillating detectors. Unlike traditional collimator systems that primarily absorb photons in order to form an image, this system primarily scatters the photons. Over a single rotation, there is a unique, smooth response curve for each defined source position. Testing was conducted using MCNPX simulations. Image reconstruction was performed using a chi-squared reconstruction technique. A simulated 100 uCi, Cs-137 source at 10 meters was detected after a single, 50-second rotation when a uniform terrestrial background was present. A Cs-137 extended source was also tested. The RSM field-of-view is 360 degrees azimuthally as well as 54 degrees above and 54 degrees below the horizontal plane. Since the RSM is built from polyethylene, the overall cost and weight of the system is low. The system was designed to search for lost or stolen radioactive material, also known as the orphan source problem.

  4. A 3D reconstruction algorithm for magneto-acoustic tomography with magnetic induction based on ultrasound transducer characteristics.

    PubMed

    Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng

    2016-12-21

    In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the reconstructed image. This study can be applied to analyse the effect of the position of the transducer and the scanning geometry on imaging. It may provide a more precise method to reconstruct the conductivity distribution in MAT-MI.

  5. Polyquant CT: direct electron and mass density reconstruction from a single polyenergetic source

    NASA Astrophysics Data System (ADS)

    Mason, Jonathan H.; Perelli, Alessandro; Nailon, William H.; Davies, Mike E.

    2017-11-01

    Quantifying material mass and electron density from computed tomography (CT) reconstructions can be highly valuable in certain medical practices, such as radiation therapy planning. However, uniquely parameterising the x-ray attenuation in terms of mass or electron density is an ill-posed problem when a single polyenergetic source is used with a spectrally indiscriminate detector. Existing approaches to single source polyenergetic modelling often impose consistency with a physical model, such as water-bone or photoelectric-Compton decompositions, which will either require detailed prior segmentation or restrictive energy dependencies, and may require further calibration to the quantity of interest. In this work, we introduce a data centric approach to fitting the attenuation with piecewise-linear functions directly to mass or electron density, and present a segmentation-free statistical reconstruction algorithm for exploiting it, with the same order of complexity as other iterative methods. We show how this allows both higher accuracy in attenuation modelling, and demonstrate its superior quantitative imaging, with numerical chest and metal implant data, and validate it with real cone-beam CT measurements.

  6. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆

    PubMed Central

    López, J.D.; Litvak, V.; Espinosa, J.J.; Friston, K.; Barnes, G.R.

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. PMID:24041874

  7. Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography.

    PubMed

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  8. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  9. Hybrid light transport model based bioluminescence tomography reconstruction for early gastric cancer detection

    NASA Astrophysics Data System (ADS)

    Chen, Xueli; Liang, Jimin; Hu, Hao; Qu, Xiaochao; Yang, Defu; Chen, Duofang; Zhu, Shouping; Tian, Jie

    2012-03-01

    Gastric cancer is the second cause of cancer-related death in the world, and it remains difficult to cure because it has been in late-stage once that is found. Early gastric cancer detection becomes an effective approach to decrease the gastric cancer mortality. Bioluminescence tomography (BLT) has been applied to detect early liver cancer and prostate cancer metastasis. However, the gastric cancer commonly originates from the gastric mucosa and grows outwards. The bioluminescent light will pass through a non-scattering region constructed by gastric pouch when it transports in tissues. Thus, the current BLT reconstruction algorithms based on the approximation model of radiative transfer equation are not optimal to handle this problem. To address the gastric cancer specific problem, this paper presents a novel reconstruction algorithm that uses a hybrid light transport model to describe the bioluminescent light propagation in tissues. The radiosity theory integrated with the diffusion equation to form the hybrid light transport model is utilized to describe light propagation in the non-scattering region. After the finite element discretization, the hybrid light transport model is converted into a minimization problem which fuses an l1 norm based regularization term to reveal the sparsity of bioluminescent source distribution. The performance of the reconstruction algorithm is first demonstrated with a digital mouse based simulation with the reconstruction error less than 1mm. An in situ gastric cancer-bearing nude mouse based experiment is then conducted. The primary result reveals the ability of the novel BLT reconstruction algorithm in early gastric cancer detection.

  10. Time-jittered marine seismic data acquisition via compressed sensing and sparsity-promoting wavefield reconstruction

    NASA Astrophysics Data System (ADS)

    Wason, H.; Herrmann, F. J.; Kumar, R.

    2016-12-01

    Current efforts towards dense shot (or receiver) sampling and full azimuthal coverage to produce high resolution images have led to the deployment of multiple source vessels (or streamers) across marine survey areas. Densely sampled marine seismic data acquisition, however, is expensive, and hence necessitates the adoption of sampling schemes that save acquisition costs and time. Compressed sensing is a sampling paradigm that aims to reconstruct a signal--that is sparse or compressible in some transform domain--from relatively fewer measurements than required by the Nyquist sampling criteria. Leveraging ideas from the field of compressed sensing, we show how marine seismic acquisition can be setup as a compressed sensing problem. A step ahead from multi-source seismic acquisition is simultaneous source acquisition--an emerging technology that is stimulating both geophysical research and commercial efforts--where multiple source arrays/vessels fire shots simultaneously resulting in better coverage in marine surveys. Following the design principles of compressed sensing, we propose a pragmatic simultaneous time-jittered time-compressed marine acquisition scheme where single or multiple source vessels sail across an ocean-bottom array firing airguns at jittered times and source locations, resulting in better spatial sampling and speedup acquisition. Our acquisition is low cost since our measurements are subsampled. Simultaneous source acquisition generates data with overlapping shot records, which need to be separated for further processing. We can significantly impact the reconstruction quality of conventional seismic data from jittered data and demonstrate successful recovery by sparsity promotion. In contrast to random (sub)sampling, acquisition via jittered (sub)sampling helps in controlling the maximum gap size, which is a practical requirement of wavefield reconstruction with localized sparsifying transforms. We illustrate our results with simulations of simultaneous time-jittered marine acquisition for 2D and 3D ocean-bottom cable survey.

  11. Study on the Spatial Resolution of Single and Multiple Coincidences Compton Camera

    NASA Astrophysics Data System (ADS)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2012-10-01

    In this paper we study the image resolution that can be obtained from the Multiple Coincidences Compton Camera (MCCC). The principle of MCCC is based on a simultaneous acquisition of several gamma-rays emitted in cascade from a single nucleus. Contrary to a standard Compton camera, MCCC can theoretically provide the exact location of a radioactive source (based only on the identification of the intersection point of three cones created by a single decay), without complicated tomographic reconstruction. However, practical implementation of the MCCC approach encounters several problems, such as low detection sensitivities result in very low probability of coincident triple gamma-ray detection, which is necessary for the source localization. It is also important to evaluate how the detection uncertainties (finite energy and spatial resolution) influence identification of the intersection of three cones, thus the resulting image quality. In this study we investigate how the spatial resolution of the reconstructed images using the triple-cone reconstruction (TCR) approach compares to images reconstructed from the same data using standard iterative method based on single-cone. Results show, that FWHM for the point source reconstructed with TCR was 20-30% higher than the one obtained from the standard iterative reconstruction based on expectation maximization (EM) algorithm and conventional single-cone Compton imaging. Finite energy and spatial resolutions of the MCCC detectors lead to errors in conical surfaces definitions (“thick” conical surfaces) which only amplify in image reconstruction when intersection of three cones is being sought. Our investigations show that, in spite of being conceptually appealing, the identification of triple cone intersection constitutes yet another restriction of the multiple coincidence approach which limits the image resolution that can be obtained with MCCC and TCR algorithm.

  12. Simultaneous source and attenuation reconstruction in SPECT using ballistic and single scattering data

    NASA Astrophysics Data System (ADS)

    Courdurier, M.; Monard, F.; Osses, A.; Romero, F.

    2015-09-01

    In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.

  13. Unclassified Information Sharing and Coordination in Security, Stabilization, Transition and Reconstruction Efforts

    DTIC Science & Technology

    2008-03-01

    is implemented using the Drupal (2007) content management system (CMS) and many of the baseline information sharing and collaboration tools have...been contributed through the Dru- pal open source community. Drupal is a very modular open source software written in PHP hypertext processor...needed to suit the particular problem domain. While other frameworks have the potential to provide similar advantages (“Ruby,” 2007), Drupal was

  14. Hyper-X Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Tartabini, Paul V.; Blanchard, RobertC.; Kirsch, Michael; Toniolo, Matthew D.

    2004-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X{43A/Hyper{X high speed research vehicle, and its implementation for the reconstruction and analysis of ight test data. Extended Kalman ltering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the ltering routines. Additionally, smoothing algorithms have been implemented in which the nal value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from ight data.

  15. Gender differences in the processing of standard emotional visual stimuli: integrating ERP and fMRI results

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Tian, Jie; Wang, Xiaoxiang; Hu, Jin

    2005-04-01

    The comprehensive understanding of human emotion processing needs consideration both in the spatial distribution and the temporal sequencing of neural activity. The aim of our work is to identify brain regions involved in emotional recognition as well as to follow the time sequence in the millisecond-range resolution. The effect of activation upon visual stimuli in different gender by International Affective Picture System (IAPS) has been examined. Hemodynamic and electrophysiological responses were measured in the same subjects. Both fMRI and ERP study were employed in an event-related study. fMRI have been obtained with 3.0 T Siemens Magnetom whole-body MRI scanner. 128-channel ERP data were recorded using an EGI system. ERP is sensitive to millisecond changes in mental activity, but the source localization and timing is limited by the ill-posed 'inversed' problem. We try to investigate the ERP source reconstruction problem in this study using fMRI constraint. We chose ICA as a pre-processing step of ERP source reconstruction to exclude the artifacts and provide a prior estimate of the number of dipoles. The results indicate that male and female show differences in neural mechanism during emotion visual stimuli.

  16. Fiber tracking of brain white matter based on graph theory.

    PubMed

    Lu, Meng

    2015-01-01

    Brain white matter tractography is reconstructed via diffusion-weighted magnetic resonance images. Due to the complex structure of brain white matter fiber bundles, fiber crossing and fiber branching are abundant in human brain. And regular methods with diffusion tensor imaging (DTI) can't accurately handle this problem. the biggest problems of the brain tractography. Therefore, this paper presented a novel brain white matter tractography method based on graph theory, so the fiber tracking between two voxels is transformed into locating the shortest path in a graph. Besides, the presented method uses Q-ball imaging (QBI) as the source data instead of DTI, because QBI can provide accurate information about multiple fiber crossing and branching in one voxel using orientation distribution function (ODF). Experiments showed that the presented method can accurately handle the problem of brain white matter fiber crossing and branching, and reconstruct brain tractograhpy both in phantom data and real brain data.

  17. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.

    PubMed

    Cai, C; Rodet, T; Legoupil, S; Mohammad-Djafari, A

    2013-11-01

    Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images. This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed. The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the accurate spectrum information about the source-detector system. When dealing with experimental data, the spectrum can be predicted by a Monte Carlo simulator. For the materials between water and bone, less than 5% separation errors are observed on the estimated decomposition fractions. The proposed approach is a statistical reconstruction approach based on a nonlinear forward model counting the full beam polychromaticity and applied directly to the projections without taking negative-log. Compared to the approaches based on linear forward models and the BHA correction approaches, it has advantages in noise robustness and reconstruction accuracy.

  18. Analytical study and numerical solution of the inverse source problem arising in thermoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Holman, Benjamin R.

    In recent years, revolutionary "hybrid" or "multi-physics" methods of medical imaging have emerged. By combining two or three different types of waves these methods overcome limitations of classical tomography techniques and deliver otherwise unavailable, potentially life-saving diagnostic information. Thermoacoustic (and photoacoustic) tomography is the most developed multi-physics imaging modality. Thermo- and photo- acoustic tomography require reconstructing initial acoustic pressure in a body from time series of pressure measured on a surface surrounding the body. For the classical case of free space wave propagation, various reconstruction techniques are well known. However, some novel measurement schemes place the object of interest between reflecting walls that form a de facto resonant cavity. In this case, known methods cannot be used. In chapter 2 we present a fast iterative reconstruction algorithm for measurements made at the walls of a rectangular reverberant cavity with a constant speed of sound. We prove the convergence of the iterations under a certain sufficient condition, and demonstrate the effectiveness and efficiency of the algorithm in numerical simulations. In chapter 3 we consider the more general problem of an arbitrarily shaped resonant cavity with a non constant speed of sound and present the gradual time reversal method for computing solutions to the inverse source problem. It consists in solving back in time on the interval [0, T] the initial/boundary value problem for the wave equation, with the Dirichlet boundary data multiplied by a smooth cutoff function. If T is sufficiently large one obtains a good approximation to the initial pressure; in the limit of large T such an approximation converges (under certain conditions) to the exact solution.

  19. Mathematics of tsunami: modelling and identification

    NASA Astrophysics Data System (ADS)

    Krivorotko, Olga; Kabanikhin, Sergey

    2015-04-01

    Tsunami (long waves in the deep water) motion caused by underwater earthquakes is described by shallow water equations ( { ηtt = div (gH (x,y)-gradη), (x,y) ∈ Ω, t ∈ (0,T ); η|t=0 = q(x,y), ηt|t=0 = 0, (x,y) ∈ Ω. ( (1) Bottom relief H(x,y) characteristics and the initial perturbation data (a tsunami source q(x,y)) are required for the direct simulation of tsunamis. The main difficulty problem of tsunami modelling is a very big size of the computational domain (Ω = 500 × 1000 kilometres in space and about one hour computational time T for one meter of initial perturbation amplitude max|q|). The calculation of the function η(x,y,t) of three variables in Ω × (0,T) requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height S(x,y) which is based on kinematic-type approach and analytical representation of fundamental solution. Proposed algorithm of determining the function of two variables S(x,y) reduces the number of operations in 1.5 times than solving problem (1). If all functions does not depend on the variable y (one dimensional case), then the moving tsunami wave height satisfies of the well-known Airy-Green formula: S(x) = S(0)° --- 4H (0)/H (x). The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate two different inverse problems of determining a tsunami source q(x,y) using two different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements and satellite altimeters wave-form images. These problems are severely ill-posed. The main idea consists of combination of two measured data to reconstruct the source parameters. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of singular values of an inverse problem operator which is agreed with the error level in measured data is described and analysed. In numerical experiment we used conjugate gradient method for solving inverse tsunami problems. Gradient methods are based on minimizing the corresponding misfit function. To calculate the gradient of the misfit function, the adjoint problem is solved. The conservative finite-difference schemes for solving the direct and adjoint problems in the approximation of shallow water are constructed. Results of numerical experiments of the tsunami source reconstruction are presented and discussed. We show that using a combination of two types of data allows one to increase the stability and efficiency of tsunami source reconstruction. Non-profit organization WAPMERR (World Agency of Planetary Monitoring and Earthquake Risk Reduction) in collaboration with Institute of Computational Mathematics and Mathematical Geophysics of SB RAS developed the Integrated Tsunami Research and Information System (ITRIS) to simulate tsunami waves and earthquakes, river course changes, coastal zone floods, and risk estimates for coastal constructions at wave run-ups and earthquakes. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. We demonstrate the tsunami simulation plug-in for historical tsunami events (2004 Indian Ocean tsunami, Simushir tsunami 2006 and others). This work was supported by the Ministry of Education and Science of the Russian Federation.

  20. Parameterizations for ensemble Kalman inversion

    NASA Astrophysics Data System (ADS)

    Chada, Neil K.; Iglesias, Marco A.; Roininen, Lassi; Stuart, Andrew M.

    2018-05-01

    The use of ensemble methods to solve inverse problems is attractive because it is a derivative-free methodology which is also well-adapted to parallelization. In its basic iterative form the method produces an ensemble of solutions which lie in the linear span of the initial ensemble. Choice of the parameterization of the unknown field is thus a key component of the success of the method. We demonstrate how both geometric ideas and hierarchical ideas can be used to design effective parameterizations for a number of applied inverse problems arising in electrical impedance tomography, groundwater flow and source inversion. In particular we show how geometric ideas, including the level set method, can be used to reconstruct piecewise continuous fields, and we show how hierarchical methods can be used to learn key parameters in continuous fields, such as length-scales, resulting in improved reconstructions. Geometric and hierarchical ideas are combined in the level set method to find piecewise constant reconstructions with interfaces of unknown topology.

  1. A Fast and Accurate Sparse Continuous Signal Reconstruction by Homotopy DCD with Non-Convex Regularization

    PubMed Central

    Wang, Tianyun; Lu, Xinfei; Yu, Xiaofei; Xi, Zhendong; Chen, Weidong

    2014-01-01

    In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis. PMID:24675758

  2. Passing messages between biological networks to refine predicted interactions.

    PubMed

    Glass, Kimberly; Huttenhower, Curtis; Quackenbush, John; Yuan, Guo-Cheng

    2013-01-01

    Regulatory network reconstruction is a fundamental problem in computational biology. There are significant limitations to such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple, independent datasets obtained from complementary sources, but methods for this integration are lacking. We developed PANDA (Passing Attributes between Networks for Data Assimilation), a message-passing model using multiple sources of information to predict regulatory relationships, and used it to integrate protein-protein interaction, gene expression, and sequence motif data to reconstruct genome-wide, condition-specific regulatory networks in yeast as a model. The resulting networks were not only more accurate than those produced using individual data sets and other existing methods, but they also captured information regarding specific biological mechanisms and pathways that were missed using other methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of the PANDA algorithm is available at www.sourceforge.net/projects/panda-net.

  3. Source localization in electromyography using the inverse potential problem

    NASA Astrophysics Data System (ADS)

    van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.

    2011-02-01

    We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting.

  4. Tomographic diagnostics of nonthermal plasmas

    NASA Astrophysics Data System (ADS)

    Denisova, Natalia

    2009-10-01

    In the previous work [1], we discussed a ``technology'' of tomographic method and relations between the tomographic diagnostics in thermal (equilibrium) and nonthermal (nonequilibrium) plasma sources. The conclusion has been made that tomographic reconstruction in thermal plasma sources is the standard procedure at present, which can provide much useful information on the plasma structure and its evolution in time, while the tomographic reconstruction of nonthermal plasma has a great potential at making a contribution to understanding the fundamental problem of substance behavior in strongly nonequilibrium conditions. Using medical terminology, one could say, that tomographic diagnostics of the equilibrium plasma sources studies their ``anatomic'' structure, while reconstruction of the nonequilibrium plasma is similar to the ``physiological'' examination: it is directed to study the physical mechanisms and processes. The present work is focused on nonthermal plasma research. The tomographic diagnostics is directed to study spatial structures formed in the gas discharge plasmas under the influence of electrical and gravitational fields. The ways of plasma ``self-organization'' in changing and extreme conditions are analyzed. The analysis has been made using some examples from our practical tomographic diagnostics of nonthermal plasma sources, such as low-pressure capacitive and inductive discharges. [0pt] [1] Denisova N. Plasma diagnostics using computed tomography method // IEEE Trans. Plasma Sci. 2009 37 4 502.

  5. Fault gouge evolution during rupture and healing: Continual active-seismic observations across laboratory-scale fault zones

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Kusmierczyk-Michulec, J.; Nikkinen, M.; Carter, J. A.

    2011-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of, respectively, seismic, infrasound, hydroacoustic sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. One of the aspects of associating detections with emitters is the problem of inferring the sources of radionuclides from the detections made at CTBTO radionuclide network stations. This task is particularly challenging because the average transport distance between a release point and detectors is large. Complex processes of turbulent diffusion are responsible for efficient mixing and consequently for decreasing the information content of detections with an increasing distance from the source. The problem is generally addressed in a two-step process. In the first step, an atmospheric transport model establishes a link between the detections and the regions of possible source location. In the second step this link is inverted to infer source information from the detections. In this presentation, we will discuss enhancements of the presently used regression-based inversion algorithm to reconstruct a source of radionuclides. To this aim, modern inversion algorithms accounting for prior information and appropriately regularizing an under-determined reconstruction problem will be briefly introduced. Emphasis will be on the CTBTO context and the choice of inversion methods. An illustration of the first tests will be provided using a framework of twin experiments, i.e. fictitious detections in the CTBTO radionuclide network generated with an atmospheric transport model.

  6. A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Sup; Cho, Dae-Seung; Kim, Kookhyun; Jeon, Jae-Jin; Jung, Woo-Jin; Kang, Myeng-Hwan; Kim, Jae-Ho

    2015-01-01

    Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

  7. Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles

    NASA Astrophysics Data System (ADS)

    Chang, Jenghwa; Aronson, Raphael; Graber, Harry L.; Barbour, Randall L.

    1995-05-01

    We present results examining the dependence of image quality for imaging in dense scattering media as influenced by the choice of parameters pertaining to the physical measurement and factors influencing the efficiency of the computation. The former includes the density of the weight matrix as affected by the target volume, view angle, and source condition. The latter includes the density of the weight matrix and type of algorithm used. These were examined by solving a one-step linear perturbation equation derived from the transport equation using three different algorithms: POCS, CGD, and SART algorithms with contraints. THe above were explored by evaluating four different 3D cylindrical phantom media: a homogeneous medium, an media containing a single black rod on the axis, a single black rod parallel to the axis, and thirteen black rods arrayed in the shape of an 'X'. Solutions to the forward problem were computed using Monte Carlo methods for an impulse source, from which was calculated time- independent and time harmonic detector responses. The influence of target volume on image quality and computational efficiency was studied by computing solution to three types of reconstructions: 1) 3D reconstruction, which considered each voxel individually, 2) 2D reconstruction, which assumed that symmetry along the cylinder axis was know a proiri, 3) 2D limited reconstruction, which assumed that only those voxels in the plane of the detectors contribute information to the detecot readings. The effect of view angle was explored by comparing computed images obtained from a single source, whose position was varied, as well as for the type of tomographic measurement scheme used (i.e., radial scan versus transaxial scan). The former condition was also examined for the dependence of the above on choice of source condition [ i.e., cw (2D reconstructions) versus time-harmonic (2D limited reconstructions) source]. The efficiency of the computational effort was explored, principally, by conducting a weight matrix 'threshold titration' study. This involved computing the ratio of each matrix element to the maximum element of its row and setting this to zero if the ratio was less than a preselected threshold. Results obtained showed that all three types of reconstructions provided good image quality. The 3D reconstruction outperformed the other two reconstructions. The time required for 2D and 2D limited reconstruction is much less (< 10%) than that for the 3D reconstruction. The 'threshold titration' study shows that artifacts were present when the threshold was 5% or higher, and no significant differences of image quality were observed when the thresholds were less tha 1%, in which case 38% (21,849 of 57,600) of the total weight elements were set to zero. Restricting the view angle produced degradation in image quality, but, in all cases, clearly recognizable images were obtained.

  8. Breast ultrasound computed tomography using waveform inversion with source encoding

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  9. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.

    PubMed

    López, J D; Litvak, V; Espinosa, J J; Friston, K; Barnes, G R

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. © 2013. Published by Elsevier Inc. All rights reserved.

  10. Modeling and image reconstruction in spectrally resolved bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Dehghani, Hamid; Pogue, Brian W.; Davis, Scott C.; Patterson, Michael S.

    2007-02-01

    Recent interest in modeling and reconstruction algorithms for Bioluminescence Tomography (BLT) has increased and led to the general consensus that non-spectrally resolved intensity-based BLT results in a non-unique problem. However, the light emitted from, for example firefly Luciferase, is widely distributed over the band of wavelengths from 500 nm to 650 nm and above, with the dominant fraction emitted from tissue being above 550 nm. This paper demonstrates the development of an algorithm used for multi-wavelength 3D spectrally resolved BLT image reconstruction in a mouse model. It is shown that using a single view data, bioluminescence sources of up to 15 mm deep can be successfully recovered given correct information about the underlying tissue absorption and scatter.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chao

    Sparx, a new environment for Cryo-EM image processing; Cryo-EM, Single particle reconstruction, principal component analysis; Hardware Req.: PC, MAC, Supercomputer, Mainframe, Multiplatform, Workstation. Software Req.: operating system is Unix; Compiler C++; type of files: source code, object library, executable modules, compilation instructions; sample problem input data. Location/transmission: http://sparx-em.org; User manual & paper: http://sparx-em.org;

  12. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Saunier, Olivier; Mathieu, Anne

    2012-03-01

    A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativity of the measurements, those that are instrumental, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. We propose to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We apply the method to the estimation of the Fukushima Daiichi source term using activity concentrations in the air. The results are compared to an L-curve estimation technique and to Desroziers's scheme. The total reconstructed activities significantly depend on the chosen method. Because of the poor observability of the Fukushima Daiichi emissions, these methods provide lower bounds for cesium-137 and iodine-131 reconstructed activities. These lower bound estimates, 1.2 × 1016 Bq for cesium-137, with an estimated standard deviation range of 15%-20%, and 1.9 - 3.8 × 1017 Bq for iodine-131, with an estimated standard deviation range of 5%-10%, are of the same order of magnitude as those provided by the Japanese Nuclear and Industrial Safety Agency and about 5 to 10 times less than the Chernobyl atmospheric releases.

  13. Hyper-X Mach 10 Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Martin, John G.; Tartabini, Paul V.; Thornblom, Mark N.

    2005-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X-43A/Hyper-X high speed research vehicle, and its implementation for the reconstruction and analysis of flight test data. Extended Kalman filtering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the filtering routines. Additionally, smoothing algorithms have been implemented in which the final value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from data obtained during the Mach 10 test flight, which occurred on November 16th 2004.

  14. Blur kernel estimation with algebraic tomography technique and intensity profiles of object boundaries

    NASA Astrophysics Data System (ADS)

    Ingacheva, Anastasia; Chukalina, Marina; Khanipov, Timur; Nikolaev, Dmitry

    2018-04-01

    Motion blur caused by camera vibration is a common source of degradation in photographs. In this paper we study the problem of finding the point spread function (PSF) of a blurred image using the tomography technique. The PSF reconstruction result strongly depends on the particular tomography technique used. We present a tomography algorithm with regularization adapted specifically for this task. We use the algebraic reconstruction technique (ART algorithm) as the starting algorithm and introduce regularization. We use the conjugate gradient method for numerical implementation of the proposed approach. The algorithm is tested using a dataset which contains 9 kernels extracted from real photographs by the Adobe corporation where the point spread function is known. We also investigate influence of noise on the quality of image reconstruction and investigate how the number of projections influence the magnitude change of the reconstruction error.

  15. Phase retrieval for crystalline specimens

    NASA Astrophysics Data System (ADS)

    Arnal, Romain A.; Millane, Rick P.

    2017-09-01

    The recent availability of ultra-bright and ultra-short X-rays pulses from new sources called x-ray free-electron lasers (XFELs) has introduced a new paradigm in X-ray crystallography. Called "diffraction-before-destruction," this paradigm addresses the main problems that plague crystallography using synchrotron sources. However, the phase problem of coherent diffraction imaging remains: one has to retrieve the phase of the measured diffraction amplitude in order to reconstruct the object. Fibrous and membrane proteins that crystallize in 1D and 2D crystals can now potentially be used for data collection with free-electron lasers. The crystallographic phase problem with such crystalline specimens is eased as the Fourier amplitude can be sampled more finely than at the Bragg sampling along one or two directions. Here we characterise uniqueness of the phase problem for different types of crystalline specimen. Simulated ab initio phase retrieval using iterative projection algorithms for 2D crystals is presented.

  16. Linear SFM: A hierarchical approach to solving structure-from-motion problems by decoupling the linear and nonlinear components

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Huang, Shoudong; Dissanayake, Gamini

    2018-07-01

    This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM.

  17. Return of the Leith-Upatnieks transmission hologram

    NASA Astrophysics Data System (ADS)

    Jeong, Tung H.; Ro, Raymond J.; Aumiller, Riley W.

    2000-10-01

    Two fundamental problems have prevented the Leith-Upatnieks Transmission Hologram (LUTH) from popular public display enjoyed by reflection holograms. 1, A laser light source is needed for illumination, which should not exceed five milliwatts in output for the sake of eye safety; and 2, much space is needed behind the hologram for the reconstruction beam. Herein we discuss methods for creating a LUTH display system which is arbitrarily thin regardless of the size of the hologram and arbitrarily bright without safety problems.

  18. Uncertainty principles for inverse source problems for electromagnetic and elastic waves

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland; Sylvester, John

    2018-06-01

    In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.

  19. Contemporary Perspectives on Social Learning in Early Childhood Education. Contemporary Perspectives in Early Childhood Education

    ERIC Educational Resources Information Center

    Saracho, Olivia, Ed.; Spodek, Bernard, Ed.

    2007-01-01

    Social epistemology is a broad set of approaches to the study of knowledge and to gain information about the social dimensions. This intellectual movement of wide cross-disciplinary sources reconstructs the problems of epistemology when knowledge is considered to be intrinsically social. In the first chapter, "Social Epistemology and Social…

  20. UV Reconstruction Algorithm And Diurnal Cycle Variability

    NASA Astrophysics Data System (ADS)

    Curylo, Aleksander; Litynska, Zenobia; Krzyscin, Janusz; Bogdanska, Barbara

    2009-03-01

    UV reconstruction is a method of estimation of surface UV with the use of available actinometrical and aerological measurements. UV reconstruction is necessary for the study of long-term UV change. A typical series of UV measurements is not longer than 15 years, which is too short for trend estimation. The essential problem in the reconstruction algorithm is the good parameterization of clouds. In our previous algorithm we used an empirical relation between Cloud Modification Factor (CMF) in global radiation and CMF in UV. The CMF is defined as the ratio between measured and modelled irradiances. Clear sky irradiance was calculated with a solar radiative transfer model. In the proposed algorithm, the time variability of global radiation during the diurnal cycle is used as an additional source of information. For elaborating an improved reconstruction algorithm relevant data from Legionowo [52.4 N, 21.0 E, 96 m a.s.l], Poland were collected with the following instruments: NILU-UV multi channel radiometer, Kipp&Zonen pyranometer, radiosonde profiles of ozone, humidity and temperature. The proposed algorithm has been used for reconstruction of UV at four Polish sites: Mikolajki, Kolobrzeg, Warszawa-Bielany and Zakopane since the early 1960s. Krzyscin's reconstruction of total ozone has been used in the calculations.

  1. Photon migration in non-scattering tissue and the effects on image reconstruction

    NASA Astrophysics Data System (ADS)

    Dehghani, H.; Delpy, D. T.; Arridge, S. R.

    1999-12-01

    Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.

  2. Self-expressive Dictionary Learning for Dynamic 3D Reconstruction.

    PubMed

    Zheng, Enliang; Ji, Dinghuang; Dunn, Enrique; Frahm, Jan-Michael

    2017-08-22

    We target the problem of sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning, where the dictionary is defined as an aggregation of the temporally varying 3D structures. Given the smooth motion of dynamic objects, we observe any element in the dictionary can be well approximated by a sparse linear combination of other elements in the same dictionary (i.e. self-expression). Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. We further analyze the reconstructability of our approach under different capture scenarios, and its comparison and relation to existing methods. Experimental results on large amounts of synthetic data as well as real imagery demonstrate the effectiveness of our approach.

  3. Passing Messages between Biological Networks to Refine Predicted Interactions

    PubMed Central

    Glass, Kimberly; Huttenhower, Curtis; Quackenbush, John; Yuan, Guo-Cheng

    2013-01-01

    Regulatory network reconstruction is a fundamental problem in computational biology. There are significant limitations to such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple, independent datasets obtained from complementary sources, but methods for this integration are lacking. We developed PANDA (Passing Attributes between Networks for Data Assimilation), a message-passing model using multiple sources of information to predict regulatory relationships, and used it to integrate protein-protein interaction, gene expression, and sequence motif data to reconstruct genome-wide, condition-specific regulatory networks in yeast as a model. The resulting networks were not only more accurate than those produced using individual data sets and other existing methods, but they also captured information regarding specific biological mechanisms and pathways that were missed using other methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of the PANDA algorithm is available at www.sourceforge.net/projects/panda-net. PMID:23741402

  4. Ambient Noise Interferometry and Surface Wave Array Tomography: Promises and Problems

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Yao, H.; de Hoop, M. V.; Campman, X.; Solna, K.

    2008-12-01

    In the late 1990ies most seismologists would have frowned at the possibility of doing high-resolution surface wave tomography with noise instead of with signal associated with ballistic source-receiver propagation. Some may still do, but surface wave tomography with Green's functions estimated through ambient noise interferometry ('sourceless tomography') has transformed from a curiosity into one of the (almost) standard tools for analysis of data from dense seismograph arrays. Indeed, spectacular applications of ambient noise surface wave tomography have recently been published. For example, application to data from arrays in SE Tibet revealed structures in the crust beneath the Tibetan plateau that could not be resolved by traditional tomography (Yao et al., GJI, 2006, 2008). While the approach is conceptually simple, in application the proverbial devil is in the detail. Full reconstruction of the Green's function requires that the wavefields used are diffusive and that ambient noise energy is evenly distributed in the spatial dimensions of interest. In the field, these conditions are not usually met, and (frequency dependent) non-uniformity of the noise sources may lead to incomplete reconstruction of the Green's function. Furthermore, ambient noise distributions can be time-dependent, and seasonal variations have been documented. Naive use of empirical Green's functions may produce (unknown) bias in the tomographic models. The degrading effect on EGFs of the directionality of noise distribution forms particular challenges for applications beyond isotropic surface wave inversions, such as inversions for (azimuthal) anisotropy and attempts to use higher modes (or body waves). Incomplete Green's function reconstruction can (probably) not be prevented, but it may be possible to reduce the problem and - at least - understand the degree of incomplete reconstruction and prevent it from degrading the tomographic model. We will present examples of Rayleigh wave inversions and discuss strategies to mitigate effects of incomplete Green's function reconstruction on tomographic images.

  5. Validation of luminescent source reconstruction using spectrally resolved bioluminescence images

    NASA Astrophysics Data System (ADS)

    Virostko, John M.; Powers, Alvin C.; Jansen, E. D.

    2008-02-01

    This study examines the accuracy of the Living Image® Software 3D Analysis Package (Xenogen, Alameda, CA) in reconstruction of light source depth and intensity. Constant intensity light sources were placed in an optically homogeneous medium (chicken breast). Spectrally filtered images were taken at 560, 580, 600, 620, 640, and 660 nanometers. The Living Image® Software 3D Analysis Package was employed to reconstruct source depth and intensity using these spectrally filtered images. For sources shallower than the mean free path of light there was proportionally higher inaccuracy in reconstruction. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively. The ability to distinguish multiple sources decreased with increasing source depth and typically required a spatial separation of twice the depth. The constant intensity light sources were also implanted in mice to examine the effect of optical inhomogeneity. The reconstruction accuracy suffered in inhomogeneous tissue with accuracy influenced by the choice of optical properties used in reconstruction.

  6. 40 CFR 63.1191 - What notifications must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... becomes a major source. (2) A source that has an initial startup before the effective date of the standard. (3) A new or reconstructed source that has an initial startup after the effective date of the... major source or reconstruct a major source where the initial startup of the new or reconstructed source...

  7. 40 CFR 63.1191 - What notifications must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... becomes a major source. (2) A source that has an initial startup before the effective date of the standard. (3) A new or reconstructed source that has an initial startup after the effective date of the... major source or reconstruct a major source where the initial startup of the new or reconstructed source...

  8. 40 CFR 63.1191 - What notifications must I submit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... becomes a major source. (2) A source that has an initial startup before the effective date of the standard. (3) A new or reconstructed source that has an initial startup after the effective date of the... major source or reconstruct a major source where the initial startup of the new or reconstructed source...

  9. Comparative interpretations of renormalization inversion technique for reconstructing unknown emissions from measured atmospheric concentrations

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Kumar, Pramod; Rani, Raj; Turbelin, Grégory

    2017-04-01

    The study highlights a theoretical comparison and various interpretations of a recent inversion technique, called renormalization, developed for the reconstruction of unknown tracer emissions from their measured concentrations. The comparative interpretations are presented in relation to the other inversion techniques based on principle of regularization, Bayesian, minimum norm, maximum entropy on mean, and model resolution optimization. It is shown that the renormalization technique can be interpreted in a similar manner to other techniques, with a practical choice of a priori information and error statistics, while eliminating the need of additional constraints. The study shows that the proposed weight matrix and weighted Gram matrix offer a suitable deterministic choice to the background error and measurement covariance matrices, respectively, in the absence of statistical knowledge about background and measurement errors. The technique is advantageous since it (i) utilizes weights representing a priori information apparent to the monitoring network, (ii) avoids dependence on background source estimates, (iii) improves on alternative choices for the error statistics, (iv) overcomes the colocalization problem in a natural manner, and (v) provides an optimally resolved source reconstruction. A comparative illustration of source retrieval is made by using the real measurements from a continuous point release conducted in Fusion Field Trials, Dugway Proving Ground, Utah.

  10. 3-D Deep Penetration Neutron Imaging of Thick Absorgin and Diffusive Objects Using Transport Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragusa, Jean; Bangerth, Wolfgang

    2011-08-01

    A current area of research interest in national security is to effectively and efficiently determine the contents of the many shipping containers that enter ports in the United States. This interest comes as a result of the 9/11 Commission Act passed by Congress in 2007 that requires 100% of inbound cargo to be scanned by 2012. It appears that this requirement will be achieved by 2012, but as of February of 2009 eighty percent of the 11.5 million inbound cargo containers were being scanned. The systems used today in all major U.S. ports to determine the presence of radioactive materialmore » within cargo containers are Radiation Portal Monitors (RPM). These devices generally exist in the form of a gate or series of gates that the containers can be driven through and scanned. The monitors are effective for determining the presence of radiation, but offer little more information about the particular source. This simple pass-fail system leads to many false alarms as many everyday items emit radiation including smoke detectors due to the Americium-241 source contained inside, bananas, milk, cocoa powder and lean beef due to the trace amounts of Potassium-40, and fire brick and kitty litter due to their high clay content which often contains traces of uranium and thorium. In addition, if an illuminating source is imposed on the boundary of the container, the contents of the container may become activated. These materials include steel, aluminum and many agricultural products. Current portal monitors also have not proven to be that effective at identifying natural or highly enriched uranium (HEU). In fact, the best available Advanced Spectroscopic Portal Monitors (ASP) are only capable of identifying bare HEU 70-88% of the time and masked HEU and depleted uranium (DU) only 53 percent of the time. Therefore, a better algorithm that uses more information collected from better detectors about the specific material distribution within the container is desired. The work reported here explores the inverse problem of optical tomography applied to heterogeneous domains. The neutral particle transport equation was used as the forward model for how neutral particles stream through and interact within these heterogeneous domains. A constrained optimization technique that uses Newtons method served as the basis of the inverse problem. Optical tomography aims at reconstructing the material properties using (a) illuminating sources and (b) detector readings. However, accurate simulations for radiation transport require that the particle (gamma and/or neutron) energy be appropriate discretize in the multigroup approximation. This, in turns, yields optical tomography problems where the number of unknowns grows (1) about quadratically with respect to the number of energy groups, G, (notably to reconstruct the scattering matrix) and (2) linearly with respect to the number of unknown material regions. As pointed out, a promising approach could rely on algorithms to appropriately select a material type per material zone rather than G2 values. This approach, though promising, still requires further investigation: (a) when switching from cross-section values unknowns to material type indices (discrete integer unknowns), integer programming techniques are needed since derivative information is no longer available; and (b) the issue of selecting the initial material zoning remains. The work reported here proposes an approach to solve the latter item, whereby a material zoning is proposed using one-group or few-groups transport approximations. The capabilities and limitations of the presented method were explored; they are briefly summarized next and later described in fuller details in the Appendices. The major factors that influenced the ability of the optimization method to reconstruct the cross sections of these domains included the locations of the sources used to illuminate the domains, the number of separate experiments used in the reconstruction, the locations where measurements were collected, the optical thickness of the domain, the amount of signal noise and signal bias applied to the measurements and the initial guess for the cross section distribution. All of these factors were explored for problems with and without scattering. Increasing the number of source and measurement locations and experiments generally was more successful at reconstructing optically thicker domains while producing less error in the image. The maximum optical thickness that could be reconstructed with this method was ten mean free paths for pure absorber and two mean free paths for scattering problems. Applying signal noise and signal bias to the measured fluxes produced more error in the produced image. Generally, Newtons method was more successful at reconstructing domains from an initial guess for the cross sections that was greater in magnitude than their true values than from an initial guess that was lower in magnitude.« less

  11. On the assessment of spatial resolution of PET systems with iterative image reconstruction

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Cherry, Simon R.; Qi, Jinyi

    2016-03-01

    Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.

  12. 3-D time-domain induced polarization tomography: a new approach based on a source current density formulation

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Revil, A.

    2018-04-01

    Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole-Cole parameters. In the second case, we perform a laboratory sandbox experiment in which we mix a volume of burning coal and sand. The algorithm is able to localize the burning coal both in terms of electrical conductivity and chargeability.

  13. Hyperedge bundling: A practical solution to spurious interactions in MEG/EEG source connectivity analyses.

    PubMed

    Wang, Sheng H; Lobier, Muriel; Siebenhühner, Felix; Puoliväli, Tuomas; Palva, Satu; Palva, J Matias

    2018-06-01

    Inter-areal functional connectivity (FC), neuronal synchronization in particular, is thought to constitute a key systems-level mechanism for coordination of neuronal processing and communication between brain regions. Evidence to support this hypothesis has been gained largely using invasive electrophysiological approaches. In humans, neuronal activity can be non-invasively recorded only with magneto- and electroencephalography (MEG/EEG), which have been used to assess FC networks with high temporal resolution and whole-scalp coverage. However, even in source-reconstructed MEG/EEG data, signal mixing, or "source leakage", is a significant confounder for FC analyses and network localization. Signal mixing leads to two distinct kinds of false-positive observations: artificial interactions (AI) caused directly by mixing and spurious interactions (SI) arising indirectly from the spread of signals from true interacting sources to nearby false loci. To date, several interaction metrics have been developed to solve the AI problem, but the SI problem has remained largely intractable in MEG/EEG all-to-all source connectivity studies. Here, we advance a novel approach for correcting SIs in FC analyses using source-reconstructed MEG/EEG data. Our approach is to bundle observed FC connections into hyperedges by their adjacency in signal mixing. Using realistic simulations, we show here that bundling yields hyperedges with good separability of true positives and little loss in the true positive rate. Hyperedge bundling thus significantly decreases graph noise by minimizing the false-positive to true-positive ratio. Finally, we demonstrate the advantage of edge bundling in the visualization of large-scale cortical networks with real MEG data. We propose that hypergraphs yielded by bundling represent well the set of true cortical interactions that are detectable and dissociable in MEG/EEG connectivity analysis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Boosting probabilistic graphical model inference by incorporating prior knowledge from multiple sources.

    PubMed

    Praveen, Paurush; Fröhlich, Holger

    2013-01-01

    Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information can address this low signal to noise problem by biasing the network inference towards biologically plausible network structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task challenging. We propose two computational methods to incorporate various information sources into a probabilistic consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM), assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms and protein domain data, etc. and is flexible enough to integrate new sources, if available.

  15. The Information Available to a Moving Observer on Shape with Unknown, Isotropic BRDFs.

    PubMed

    Chandraker, Manmohan

    2016-07-01

    Psychophysical studies show motion cues inform about shape even with unknown reflectance. Recent works in computer vision have considered shape recovery for an object of unknown BRDF using light source or object motions. This paper proposes a theory that addresses the remaining problem of determining shape from the (small or differential) motion of the camera, for unknown isotropic BRDFs. Our theory derives a differential stereo relation that relates camera motion to surface depth, which generalizes traditional Lambertian assumptions. Under orthographic projection, we show differential stereo may not determine shape for general BRDFs, but suffices to yield an invariant for several restricted (still unknown) BRDFs exhibited by common materials. For the perspective case, we show that differential stereo yields the surface depth for unknown isotropic BRDF and unknown directional lighting, while additional constraints are obtained with restrictions on the BRDF or lighting. The limits imposed by our theory are intrinsic to the shape recovery problem and independent of choice of reconstruction method. We also illustrate trends shared by theories on shape from differential motion of light source, object or camera, to relate the hardness of surface reconstruction to the complexity of imaging setup.

  16. A time reversal algorithm in acoustic media with Dirac measure approximations

    NASA Astrophysics Data System (ADS)

    Bretin, Élie; Lucas, Carine; Privat, Yannick

    2018-04-01

    This article is devoted to the study of a photoacoustic tomography model, where one is led to consider the solution of the acoustic wave equation with a source term writing as a separated variables function in time and space, whose temporal component is in some sense close to the derivative of the Dirac distribution at t  =  0. This models a continuous wave laser illumination performed during a short interval of time. We introduce an algorithm for reconstructing the space component of the source term from the measure of the solution recorded by sensors during a time T all along the boundary of a connected bounded domain. It is based at the same time on the introduction of an auxiliary equivalent Cauchy problem allowing to derive explicit reconstruction formula and then to use of a deconvolution procedure. Numerical simulations illustrate our approach. Finally, this algorithm is also extended to elasticity wave systems.

  17. X-ray propagation microscopy of biological cells using waveguides as a quasipoint source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giewekemeyer, K.; Krueger, S. P.; Kalbfleisch, S.

    2011-02-15

    We have used x-ray waveguides as highly confining optical elements for nanoscale imaging of unstained biological cells using the simple geometry of in-line holography. The well-known twin-image problem is effectively circumvented by a simple and fast iterative reconstruction. The algorithm which combines elements of the classical Gerchberg-Saxton scheme and the hybrid-input-output algorithm is optimized for phase-contrast samples, well-justified for imaging of cells at multi-keV photon energies. The experimental scheme allows for a quantitative phase reconstruction from a single holographic image without detailed knowledge of the complex illumination function incident on the sample, as demonstrated for freeze-dried cells of the eukaryoticmore » amoeba Dictyostelium discoideum. The accessible resolution range is explored by simulations, indicating that resolutions on the order of 20 nm are within reach applying illumination times on the order of minutes at present synchrotron sources.« less

  18. Integrating Genetic and Functional Genomic Data to Elucidate Common Disease Tra

    NASA Astrophysics Data System (ADS)

    Schadt, Eric

    2005-03-01

    The reconstruction of genetic networks in mammalian systems is one of the primary goals in biological research, especially as such reconstructions relate to elucidating not only common, polygenic human diseases, but living systems more generally. Here I present a statistical procedure for inferring causal relationships between gene expression traits and more classic clinical traits, including complex disease traits. This procedure has been generalized to the gene network reconstruction problem, where naturally occurring genetic variations in segregating mouse populations are used as a source of perturbations to elucidate tissue-specific gene networks. Differences in the extent of genetic control between genders and among four different tissues are highlighted. I also demonstrate that the networks derived from expression data in segregating mouse populations using the novel network reconstruction algorithm are able to capture causal associations between genes that result in increased predictive power, compared to more classically reconstructed networks derived from the same data. This approach to causal inference in large segregating mouse populations over multiple tissues not only elucidates fundamental aspects of transcriptional control, it also allows for the objective identification of key drivers of common human diseases.

  19. Reconstructing evolutionary trees in parallel for massive sequences.

    PubMed

    Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam

    2017-12-14

    Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .

  20. Filtered maximum likelihood expectation maximization based global reconstruction for bioluminescence tomography.

    PubMed

    Yang, Defu; Wang, Lin; Chen, Dongmei; Yan, Chenggang; He, Xiaowei; Liang, Jimin; Chen, Xueli

    2018-05-17

    The reconstruction of bioluminescence tomography (BLT) is severely ill-posed due to the insufficient measurements and diffuses nature of the light propagation. Predefined permissible source region (PSR) combined with regularization terms is one common strategy to reduce such ill-posedness. However, the region of PSR is usually hard to determine and can be easily affected by subjective consciousness. Hence, we theoretically developed a filtered maximum likelihood expectation maximization (fMLEM) method for BLT. Our method can avoid predefining the PSR and provide a robust and accurate result for global reconstruction. In the method, the simplified spherical harmonics approximation (SP N ) was applied to characterize diffuse light propagation in medium, and the statistical estimation-based MLEM algorithm combined with a filter function was used to solve the inverse problem. We systematically demonstrated the performance of our method by the regular geometry- and digital mouse-based simulations and a liver cancer-based in vivo experiment. Graphical abstract The filtered MLEM-based global reconstruction method for BLT.

  1. Reconstructing cortical current density by exploring sparseness in the transform domain

    NASA Astrophysics Data System (ADS)

    Ding, Lei

    2009-05-01

    In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.

  2. On the quality of climate proxies derived from newspaper reports - a case study

    NASA Astrophysics Data System (ADS)

    Gallego, D.; García-Herrera, R.; Prieto, R.; Peña-Ortiz, C.

    2008-02-01

    One of the main problems in climate reconstruction from documentary sources is the evaluation of the quality of non instrumental meteorological records in absence of instrumental observations to perform a calibration. In these cases it is mandatory to envision different approaches to assess the climatic signal in a reconstruction. This work is aimed to test the consistency of a snow frequency reconstruction in the central Argentinean Andes by studying the synoptic patterns related to the occurrence of precipitation in this area. While the original reconstruction covers the period between 1885 and 1996, the insufficiency of overlapping instrumental data limited the calibration to a short 15-year interval. In this paper we evaluate the performance of the reconstructed series for the entire 45-year period between 1958 and 1996 by analyzing the displacement in the jet stream and the patterns of geopotential height related to anomalies in the reconstructed snow frequency series. Previous works have linked the precipitation in the central Andes to the ENSO through the Pacific South American mode. We also have found this connection between ENSO and the reconstructed precipitation. Finally, it is shown that the ENSO relationship is the cause of a significant link between the precipitation anomalies in the central Argentinean Andes and the ice extent around the Antarctic Peninsula.

  3. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Jinchao; Qin Chenghu; Jia Kebin

    2011-11-15

    Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescentmore » photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used rather than monochromatic data. Furthermore, the study conducted using an adaptive regularization parameter demonstrated our ability to accurately localize the bioluminescent source. With the adaptively estimated regularization parameter, the reconstructed center position of the source was (20.37, 31.05, 12.95) mm, and the distance to the real source was 0.63 mm. The results of the dual-source experiments further showed that our algorithm could localize the bioluminescent sources accurately. The authors then presented experimental evidence that the proposed algorithm exhibited its calculated efficiency over the heuristic method. The effectiveness of the new algorithm was also confirmed by comparing it with the L-curve method. Furthermore, various initial speculations regarding the regularization parameter were used to illustrate the convergence of our algorithm. Finally, in vivo mouse experiment further illustrates the effectiveness of the proposed algorithm. Conclusions: Utilizing numerical, physical phantom and in vivo examples, we demonstrated that the bioluminescent sources could be reconstructed accurately with automatic regularization parameters. The proposed algorithm exhibited superior performance than both the heuristic regularization parameter choice method and L-curve method based on the computational speed and localization error.« less

  4. Fingerprinting selection for agroenvironmental catchment studies: EDXRF analysis for solving complex artificial mixtures

    NASA Astrophysics Data System (ADS)

    Torres Astorga, Romina; Velasco, Hugo; Dercon, Gerd; Mabit, Lionel

    2017-04-01

    Soil erosion and associated sediment transportation and deposition processes are key environmental problems in Central Argentinian watersheds. Several land use practices - such as intensive grazing and crop cultivation - are considered likely to increase significantly land degradation and soil/sediment erosion processes. Characterized by highly erodible soils, the sub catchment Estancia Grande (12.3 km2) located 23 km north east of San Luis has been investigated by using sediment source fingerprinting techniques to identify critical hot spots of land degradation. The authors created 4 artificial mixtures using known quantities of the most representative sediment sources of the studied catchment. The first mixture was made using four rotation crop soil sources. The second and the third mixture were created using different proportions of 4 different soil sources including soils from a feedlot, a rotation crop, a walnut forest and a grazing soil. The last tested mixture contained the same sources as the third mixture but with the addition of a fifth soil source (i.e. a native bank soil). The Energy Dispersive X Ray Fluorescence (EDXRF) analytical technique has been used to reconstruct the source sediment proportion of the original mixtures. Besides using a traditional method of fingerprint selection such as Kruskal-Wallis H-test and Discriminant Function Analysis (DFA), the authors used the actual source proportions in the mixtures and selected from the subset of tracers that passed the statistical tests specific elemental tracers that were in agreement with the expected mixture contents. The selection process ended with testing in a mixing model all possible combinations of the reduced number of tracers obtained. Alkaline earth metals especially Strontium (Sr) and Barium (Ba) were identified as the most effective fingerprints and provided a reduced Mean Absolute Error (MAE) of approximately 2% when reconstructing the 4 artificial mixtures. This study demonstrates that the EDXRF fingerprinting approach performed very well in reconstructing our original mixtures especially in identifying and quantifying the contribution of the 4 rotation crop soil sources in the first mixture.

  5. SU-F-I-49: Vendor-Independent, Model-Based Iterative Reconstruction On a Rotating Grid with Coordinate-Descent Optimization for CT Imaging Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Hoffman, J; McNitt-Gray, M

    Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with amore » quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low-dose helical CT, in particular as part of our ongoing development of an acquisition/reconstruction pipeline for generating images under a wide range of conditions. Our algorithm will be made available open-source as “FreeCT-ICD”. NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  6. Class of near-perfect coded apertures

    NASA Technical Reports Server (NTRS)

    Cannon, T. M.; Fenimore, E. E.

    1977-01-01

    Coded aperture imaging of gamma ray sources has long promised an improvement in the sensitivity of various detector systems. The promise has remained largely unfulfilled, however, for either one of two reasons. First, the encoding/decoding method produces artifacts, which even in the absence of quantum noise, restrict the quality of the reconstructed image. This is true of most correlation-type methods. Second, if the decoding procedure is of the deconvolution variety, small terms in the transfer function of the aperture can lead to excessive noise in the reconstructed image. It is proposed to circumvent both of these problems by use of a uniformly redundant array (URA) as the coded aperture in conjunction with a special correlation decoding method.

  7. Building Facade Reconstruction by Fusing Terrestrial Laser Points and Images

    PubMed Central

    Pu, Shi; Vosselman, George

    2009-01-01

    Laser data and optical data have a complementary nature for three dimensional feature extraction. Efficient integration of the two data sources will lead to a more reliable and automated extraction of three dimensional features. This paper presents a semiautomatic building facade reconstruction approach, which efficiently combines information from terrestrial laser point clouds and close range images. A building facade's general structure is discovered and established using the planar features from laser data. Then strong lines in images are extracted using Canny extractor and Hough transformation, and compared with current model edges for necessary improvement. Finally, textures with optimal visibility are selected and applied according to accurate image orientations. Solutions to several challenge problems throughout the collaborated reconstruction, such as referencing between laser points and multiple images and automated texturing, are described. The limitations and remaining works of this approach are also discussed. PMID:22408539

  8. Boosting Probabilistic Graphical Model Inference by Incorporating Prior Knowledge from Multiple Sources

    PubMed Central

    Praveen, Paurush; Fröhlich, Holger

    2013-01-01

    Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information can address this low signal to noise problem by biasing the network inference towards biologically plausible network structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task challenging. We propose two computational methods to incorporate various information sources into a probabilistic consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM), assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms and protein domain data, etc. and is flexible enough to integrate new sources, if available. PMID:23826291

  9. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment.

    PubMed

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-12-01

    Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT∕CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. In this work, we accelerated the Feldcamp-Davis-Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT∕CT reconstruction algorithm. Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10(-7). Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. An ultrafast, reliable and scalable 4D CBCT∕CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment.

  10. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment

    PubMed Central

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-01-01

    Purpose: Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT/CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. Methods: In this work, we accelerated the Feldcamp–Davis–Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT/CT reconstruction algorithm. Results: Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10−7. Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. Conclusions: An ultrafast, reliable and scalable 4D CBCT/CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment. PMID:22149842

  11. Noniterative MAP reconstruction using sparse matrix representations.

    PubMed

    Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J

    2009-09-01

    We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.

  12. Iterative methods for tomography problems: implementation to a cross-well tomography problem

    NASA Astrophysics Data System (ADS)

    Karadeniz, M. F.; Weber, G. W.

    2018-01-01

    The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz’s algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.

  13. Reconstruction of Vectorial Acoustic Sources in Time-Domain Tomography

    PubMed Central

    Xia, Rongmin; Li, Xu; He, Bin

    2009-01-01

    A new theory is proposed for the reconstruction of curl-free vector field, whose divergence serves as acoustic source. The theory is applied to reconstruct vector acoustic sources from the scalar acoustic signals measured on a surface enclosing the source area. It is shown that, under certain conditions, the scalar acoustic measurements can be vectorized according to the known measurement geometry and subsequently be used to reconstruct the original vector field. Theoretically, this method extends the application domain of the existing acoustic reciprocity principle from a scalar field to a vector field, indicating that the stimulating vectorial source and the transmitted acoustic pressure vector (acoustic pressure vectorized according to certain measurement geometry) are interchangeable. Computer simulation studies were conducted to evaluate the proposed theory, and the numerical results suggest that reconstruction of a vector field using the proposed theory is not sensitive to variation in the detecting distance. The present theory may be applied to magnetoacoustic tomography with magnetic induction (MAT-MI) for reconstructing current distribution from acoustic measurements. A simulation on MAT-MI shows that, compared to existing methods, the present method can give an accurate estimation on the source current distribution and a better conductivity reconstruction. PMID:19211344

  14. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  15. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Wolbach, Wendy S.; Gilmour, Iain

    1991-01-01

    The current status of the reconstruction of major biomass fire events at the Cretaceous-Tertiary boundary is discussed. Attention is given to the sources of charcoal and soot, the identification of biomass and fossil carbon, and such ignition-related problems as delated fires, high atmospheric O2 content, ignition mechanisms, and the greenhouse-effect consequences of fire on the scale envisioned. Consequences of these factors for species extinction patterns are noted.

  16. A dynamical model improves reconstruction of handwriting from multichannel electromyographic recordings

    PubMed Central

    Okorokova, Elizaveta; Lebedev, Mikhail; Linderman, Michael; Ossadtchi, Alex

    2015-01-01

    In recent years, several assistive devices have been proposed to reconstruct arm and hand movements from electromyographic (EMG) activity. Although simple to implement and potentially useful to augment many functions, such myoelectric devices still need improvement before they become practical. Here we considered the problem of reconstruction of handwriting from multichannel EMG activity. Previously, linear regression methods (e.g., the Wiener filter) have been utilized for this purpose with some success. To improve reconstruction accuracy, we implemented the Kalman filter, which allows to fuse two information sources: the physical characteristics of handwriting and the activity of the leading hand muscles, registered by the EMG. Applying the Kalman filter, we were able to convert eight channels of EMG activity recorded from the forearm and the hand muscles into smooth reconstructions of handwritten traces. The filter operates in a causal manner and acts as a true predictor utilizing the EMGs from the past only, which makes the approach suitable for real-time operations. Our algorithm is appropriate for clinical neuroprosthetic applications and computer peripherals. Moreover, it is applicable to a broader class of tasks where predictive myoelectric control is needed. PMID:26578856

  17. 40 CFR Table 3 to Subpart Zzzz of... - Subsequent Performance Tests

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reconstructed 2SLB stationary RICE with a brake horsepower > 500 located at major sources; new or reconstructed 4SLB stationary RICE with a brake horsepower ≥ 250 located at major sources; and new or reconstructed CI stationary RICE with a brake horsepower > 500 located at major sources Reduce CO emissions and not...

  18. Integrated Tsunami Database: simulation and identification of seismic tsunami sources, 3D visualization and post-disaster assessment on the shore

    NASA Astrophysics Data System (ADS)

    Krivorot'ko, Olga; Kabanikhin, Sergey; Marinin, Igor; Karas, Adel; Khidasheli, David

    2013-04-01

    One of the most important problems of tsunami investigation is the problem of seismic tsunami source reconstruction. Non-profit organization WAPMERR (http://wapmerr.org) has provided a historical database of alleged tsunami sources around the world that obtained with the help of information about seaquakes. WAPMERR also has a database of observations of the tsunami waves in coastal areas. The main idea of presentation consists of determining of the tsunami source parameters using seismic data and observations of the tsunami waves on the shore, and the expansion and refinement of the database of presupposed tsunami sources for operative and accurate prediction of hazards and assessment of risks and consequences. Also we present 3D visualization of real-time tsunami wave propagation and loss assessment, characterizing the nature of the building stock in cities at risk, and monitoring by satellite images using modern GIS technology ITRIS (Integrated Tsunami Research and Information System) developed by WAPMERR and Informap Ltd. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. The most suitable physical models related to simulation of tsunamis are based on shallow water equations. We consider the initial-boundary value problem in Ω := {(x,y) ?R2 : x ?(0,Lx ), y ?(0,Ly ), Lx,Ly > 0} for the well-known linear shallow water equations in the Cartesian coordinate system in terms of the liquid flow components in dimensional form Here ?(x,y,t) defines the free water surface vertical displacement, i.e. amplitude of a tsunami wave, q(x,y) is the initial amplitude of a tsunami wave. The lateral boundary is assumed to be a non-reflecting boundary of the domain, that is, it allows the free passage of the propagating waves. Assume that the free surface oscillation data at points (xm, ym) are given as a measured output data from tsunami records: fm(t) := ? (xm, ym,t), (xm,ym ) ?Ω, t ?(Tm1, Tm2), m = 1,2,...,M, M ?N (2) The problem of tsunami source reconstruction (inverse tsunami problem) consists of determining the unknown initial perturbation q(x,y) of the free surface defied in (1) from knowledge of the free surface oscillation data fm(t) given by (2). We present a numerical method to determine the tsunami source using measurements of the height of a passing tsunami wave. Proposed approach based on the weak solution theory for hyperbolic PDEs and adjoint problem method for minimization of the corresponding cost functional 2 J(q) = ?Aq - F? , F = (f1,...,fM ). (3) The adjoint problem is defined to obtain an explicit gradient formula for the cost functional (3). Different numerical algorithms (finite-difference approach and finite volume method) are proposed for the direct as well as adjoint problem. Conjugate gradient algorithm based on explicit gradient formula is used for numerical solution of the inverse problem (1)-(2). This work was partially supported by the Russian Foundation for Basic Research (project No. 12-01-00773) and by SB RAS interdisciplinary project 14 "Inverse Problems and Applications: Theory, Algorithms, Software".

  19. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  20. Total variation-based neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Barnard, Richard C.; Bilheux, Hassina; Toops, Todd; Nafziger, Eric; Finney, Charles; Splitter, Derek; Archibald, Rick

    2018-05-01

    We perform the neutron computed tomography reconstruction problem via an inverse problem formulation with a total variation penalty. In the case of highly under-resolved angular measurements, the total variation penalty suppresses high-frequency artifacts which appear in filtered back projections. In order to efficiently compute solutions for this problem, we implement a variation of the split Bregman algorithm; due to the error-forgetting nature of the algorithm, the computational cost of updating can be significantly reduced via very inexact approximate linear solvers. We present the effectiveness of the algorithm in the significantly low-angular sampling case using synthetic test problems as well as data obtained from a high flux neutron source. The algorithm removes artifacts and can even roughly capture small features when an extremely low number of angles are used.

  1. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?

    PubMed Central

    Pan, Xiaochuan; Sidky, Emil Y; Vannier, Michael

    2010-01-01

    Despite major advances in x-ray sources, detector arrays, gantry mechanical design and especially computer performance, one component of computed tomography (CT) scanners has remained virtually constant for the past 25 years—the reconstruction algorithm. Fundamental advances have been made in the solution of inverse problems, especially tomographic reconstruction, but these works have not been translated into clinical and related practice. The reasons are not obvious and seldom discussed. This review seeks to examine the reasons for this discrepancy and provides recommendations on how it can be resolved. We take the example of field of compressive sensing (CS), summarizing this new area of research from the eyes of practical medical physicists and explaining the disconnection between theoretical and application-oriented research. Using a few issues specific to CT, which engineers have addressed in very specific ways, we try to distill the mathematical problem underlying each of these issues with the hope of demonstrating that there are interesting mathematical problems of general importance that can result from in depth analysis of specific issues. We then sketch some unconventional CT-imaging designs that have the potential to impact on CT applications, if the link between applied mathematicians and engineers/physicists were stronger. Finally, we close with some observations on how the link could be strengthened. There is, we believe, an important opportunity to rapidly improve the performance of CT and related tomographic imaging techniques by addressing these issues. PMID:20376330

  2. TOPICAL REVIEW: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?

    NASA Astrophysics Data System (ADS)

    Pan, Xiaochuan; Sidky, Emil Y.; Vannier, Michael

    2009-12-01

    Despite major advances in x-ray sources, detector arrays, gantry mechanical design and especially computer performance, one component of computed tomography (CT) scanners has remained virtually constant for the past 25 years—the reconstruction algorithm. Fundamental advances have been made in the solution of inverse problems, especially tomographic reconstruction, but these works have not been translated into clinical and related practice. The reasons are not obvious and seldom discussed. This review seeks to examine the reasons for this discrepancy and provides recommendations on how it can be resolved. We take the example of field of compressive sensing (CS), summarizing this new area of research from the eyes of practical medical physicists and explaining the disconnection between theoretical and application-oriented research. Using a few issues specific to CT, which engineers have addressed in very specific ways, we try to distill the mathematical problem underlying each of these issues with the hope of demonstrating that there are interesting mathematical problems of general importance that can result from in depth analysis of specific issues. We then sketch some unconventional CT-imaging designs that have the potential to impact on CT applications, if the link between applied mathematicians and engineers/physicists were stronger. Finally, we close with some observations on how the link could be strengthened. There is, we believe, an important opportunity to rapidly improve the performance of CT and related tomographic imaging techniques by addressing these issues.

  3. Fast ancestral gene order reconstruction of genomes with unequal gene content.

    PubMed

    Feijão, Pedro; Araujo, Eloi

    2016-11-11

    During evolution, genomes are modified by large scale structural events, such as rearrangements, deletions or insertions of large blocks of DNA. Of particular interest, in order to better understand how this type of genomic evolution happens, is the reconstruction of ancestral genomes, given a phylogenetic tree with extant genomes at its leaves. One way of solving this problem is to assume a rearrangement model, such as Double Cut and Join (DCJ), and find a set of ancestral genomes that minimizes the number of events on the input tree. Since this problem is NP-hard for most rearrangement models, exact solutions are practical only for small instances, and heuristics have to be used for larger datasets. This type of approach can be called event-based. Another common approach is based on finding conserved structures between the input genomes, such as adjacencies between genes, possibly also assigning weights that indicate a measure of confidence or probability that this particular structure is present on each ancestral genome, and then finding a set of non conflicting adjacencies that optimize some given function, usually trying to maximize total weight and minimizing character changes in the tree. We call this type of methods homology-based. In previous work, we proposed an ancestral reconstruction method that combines homology- and event-based ideas, using the concept of intermediate genomes, that arise in DCJ rearrangement scenarios. This method showed better rate of correctly reconstructed adjacencies than other methods, while also being faster, since the use of intermediate genomes greatly reduces the search space. Here, we generalize the intermediate genome concept to genomes with unequal gene content, extending our method to account for gene insertions and deletions of any length. In many of the simulated datasets, our proposed method had better results than MLGO and MGRA, two state-of-the-art algorithms for ancestral reconstruction with unequal gene content, while running much faster, making it more scalable to larger datasets. Studing ancestral reconstruction problems under a new light, using the concept of intermediate genomes, allows the design of very fast algorithms by greatly reducing the solution search space, while also giving very good results. The algorithms introduced in this paper were implemented in an open-source software called RINGO (ancestral Reconstruction with INtermediate GenOmes), available at https://github.com/pedrofeijao/RINGO .

  4. Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes

    PubMed Central

    2012-01-01

    Background Ancestral gene order reconstruction for flowering plants has lagged behind developments in yeasts, insects and higher animals, because of the recency of widespread plant genome sequencing, sequencers' embargoes on public data use, paralogies due to whole genome duplication (WGD) and fractionation of undeleted duplicates, extensive paralogy from other sources, and the computational cost of existing methods. Results We address these problems, using the gene order of four core eudicot genomes (cacao, castor bean, papaya and grapevine) that have escaped any recent WGD events, and two others (poplar and cucumber) that descend from independent WGDs, in inferring the ancestral gene order of the rosid clade and those of its main subgroups, the fabids and malvids. We improve and adapt techniques including the OMG method for extracting large, paralogy-free, multiple orthologies from conflated pairwise synteny data among the six genomes and the PATHGROUPS approach for ancestral gene order reconstruction in a given phylogeny, where some genomes may be descendants of WGD events. We use the gene order evidence to evaluate the hypothesis that the order Malpighiales belongs to the malvids rather than as traditionally assigned to the fabids. Conclusions Gene orders of ancestral eudicot species, involving 10,000 or more genes can be reconstructed in an efficient, parsimonious and consistent way, despite paralogies due to WGD and other processes. Pairwise genomic syntenies provide appropriate input to a parameter-free procedure of multiple ortholog identification followed by gene-order reconstruction in solving instances of the "small phylogeny" problem. PMID:22759433

  5. Single-shot thermal ghost imaging using wavelength-division multiplexing

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai

    2018-01-01

    Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.

  6. Magnetoacoustic Tomography with Magnetic Induction: Bioimepedance reconstruction through vector source imaging

    PubMed Central

    Mariappan, Leo; He, Bin

    2013-01-01

    Magneto acoustic tomography with magnetic induction (MAT-MI) is a technique proposed to reconstruct the conductivity distribution in biological tissue at ultrasound imaging resolution. A magnetic pulse is used to generate eddy currents in the object, which in the presence of a static magnetic field induces Lorentz force based acoustic waves in the medium. This time resolved acoustic waves are collected with ultrasound transducers and, in the present work, these are used to reconstruct the current source which gives rise to the MAT-MI acoustic signal using vector imaging point spread functions. The reconstructed source is then used to estimate the conductivity distribution of the object. Computer simulations and phantom experiments are performed to demonstrate conductivity reconstruction through vector source imaging in a circular scanning geometry with a limited bandwidth finite size piston transducer. The results demonstrate that the MAT-MI approach is capable of conductivity reconstruction in a physical setting. PMID:23322761

  7. Assessment of using ultrasound images as prior for diffuse optical tomography regularization matrix

    NASA Astrophysics Data System (ADS)

    Althobaiti, Murad; Vavadi, Hamed; Zhu, Quing

    2017-02-01

    Imaging of tissue with Ultrasound-guided diffuse optical tomography (DOT) is a rising imaging technique to map hemoglobin concentrations within tissue for breast cancer detection and diagnosis. Near-infrared optical imaging received a lot of attention in research as a possible technique to be used for such purpose especially for breast tumors. Since DOT images contrast is closely related to oxygenation and deoxygenating of the hemoglobin, which is an important factor in differentiating malignant and benign tumors. One of the optical imaging modalities used is the diffused optical tomography (DOT); which probes deep scattering tissue (1-5cm) by NIR optical source-detector probe and detects NIR photons in the diffusive regime. The photons in the diffusive regime usually reach the detector without significant information about their source direction and the propagation path. Because of that, the optical reconstruction problem of the medium characteristics is ill-posed even with the tomography and Back-projection techniques. The accurate recovery of images requires an effective image reconstruction method. Here, we illustrate a method in which ultrasound images are encoded as prior for regularization of the inversion matrix. Results were evaluated using phantom experiments of low and high absorption contrasts. This method improves differentiation between the low and the high contrasts targets. Ultimately, this method could improve malignant and benign cases by increasing reconstructed absorption ratio of malignant to benign. Besides that, the phantom results show improvements in target shape as well as the spatial resolution of the DOT reconstructed images.

  8. Efficient volumetric estimation from plenoptic data

    NASA Astrophysics Data System (ADS)

    Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.

    2013-03-01

    The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.

  9. The transverse musculocutaneous gracilis flap for breast reconstruction: guidelines for flap and patient selection.

    PubMed

    Schoeller, Thomas; Huemer, Georg M; Wechselberger, Gottfried

    2008-07-01

    The transverse musculocutaneous gracilis (TMG) flap has received little attention in the literature as a valuable alternative source of donor tissue in the setting of breast reconstruction. The authors give an in-depth review of their experience with breast reconstruction using the TMG flap. A retrospective review of 111 patients treated with a TMG flap for breast reconstruction in an immediate or a delayed setting between August of 2002 and July of 2007 was undertaken. Of these, 26 patients underwent bilateral reconstruction and 68 underwent unilateral reconstruction, and 17 patients underwent reconstruction unilaterally with a double TMG flap. Patient age ranged between 24 and 65 years (mean, 37 years). Twelve patients had to be taken back to the operating room because of flap-related problems and nine patients underwent successful revision microsurgically, resulting in three complete flap losses in a series of 111 patients with 154 transplanted TMG flaps. Partial flap loss was encountered in two patients, whereas fat tissue necrosis was managed conservatively in six patients. Donor-site morbidity was an advantage of this flap, with a concealed scar and minimal contour irregularities of the thigh, even in unilateral harvest. Complications included delayed wound healing (n = 10), hematoma (n = 5), and transient sensory deficit over the posterior thigh (n = 49). The TMG flap is more than an alternative to the deep inferior epigastric perforator (DIEP) flap in microsurgical breast reconstruction in selected patients. In certain indications, such as bilateral reconstructions, it possibly surpasses the DIEP flap because of a better concealed donor scar and easier harvest.

  10. New shape models of asteroids reconstructed from sparse-in-time photometry

    NASA Astrophysics Data System (ADS)

    Durech, Josef; Hanus, Josef; Vanco, Radim; Oszkiewicz, Dagmara Anna

    2015-08-01

    Asteroid physical parameters - the shape, the sidereal rotation period, and the spin axis orientation - can be reconstructed from the disk-integrated photometry either dense (classical lightcurves) or sparse in time by the lightcurve inversion method. We will review our recent progress in asteroid shape reconstruction from sparse photometry. The problem of finding a unique solution of the inverse problem is time consuming because the sidereal rotation period has to be found by scanning a wide interval of possible periods. This can be efficiently solved by splitting the period parameter space into small parts that are sent to computers of volunteers and processed in parallel. We will show how this approach of distributed computing works with currently available sparse photometry processed in the framework of project Asteroids@home. In particular, we will show the results based on the Lowell Photometric Database. The method produce reliable asteroid models with very low rate of false solutions and the pipelines and codes can be directly used also to other sources of sparse photometry - Gaia data, for example. We will present the distribution of spin axis of hundreds of asteroids, discuss the dependence of the spin obliquity on the size of an asteroid,and show examples of spin-axis distribution in asteroid families that confirm the Yarkovsky/YORP evolution scenario.

  11. Reconstruction de defauts a partir de donnees issues de capteurs a courants de foucault avec modele direct differentiel

    NASA Astrophysics Data System (ADS)

    Trillon, Adrien

    Eddy current tomography can be employed to caracterize flaws in metal plates in steam generators of nuclear power plants. Our goal is to evaluate a map of the relative conductivity that represents the flaw. This nonlinear ill-posed problem is difficult to solve and a forward model is needed. First, we studied existing forward models to chose the one that is the most adapted to our case. Finite difference and finite element methods matched very good to our application. We adapted contrast source inversion (CSI) type methods to the chosen model and a new criterion was proposed. These methods are based on the minimization of the weighted errors of the model equations, coupling and observation. They allow an error on the equations. It appeared that reconstruction quality grows with the decay of the error on the coupling equation. We resorted to augmented Lagrangian techniques to constrain coupling equation and to avoid conditioning problems. In order to overcome the ill-posed character of the problem, prior information was introduced about the shape of the flaw and the values of the relative conductivity. Efficiency of the methods are illustrated with simulated flaws in 2D case.

  12. Three-dimension reconstruction based on spatial light modulator

    NASA Astrophysics Data System (ADS)

    Deng, Xuejiao; Zhang, Nanyang; Zeng, Yanan; Yin, Shiliang; Wang, Weiyu

    2011-02-01

    Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .

  13. Locating multiple diffusion sources in time varying networks from sparse observations.

    PubMed

    Hu, Zhao-Long; Shen, Zhesi; Cao, Shinan; Podobnik, Boris; Yang, Huijie; Wang, Wen-Xu; Lai, Ying-Cheng

    2018-02-08

    Data based source localization in complex networks has a broad range of applications. Despite recent progress, locating multiple diffusion sources in time varying networks remains to be an outstanding problem. Bridging structural observability and sparse signal reconstruction theories, we develop a general framework to locate diffusion sources in time varying networks based solely on sparse data from a small set of messenger nodes. A general finding is that large degree nodes produce more valuable information than small degree nodes, a result that contrasts that for static networks. Choosing large degree nodes as the messengers, we find that sparse observations from a few such nodes are often sufficient for any number of diffusion sources to be located for a variety of model and empirical networks. Counterintuitively, sources in more rapidly varying networks can be identified more readily with fewer required messenger nodes.

  14. s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography

    PubMed Central

    Li, Ying; Qin, Jing; Hsin, Yue-Loong; Osher, Stanley; Liu, Wentai

    2016-01-01

    EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1−2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1−2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1−2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios. PMID:27965529

  15. Source reconstruction via the spatiotemporal Kalman filter and LORETA from EEG time series with 32 or fewer electrodes.

    PubMed

    Hamid, Laith; Al Farawn, Ali; Merlet, Isabelle; Japaridze, Natia; Heute, Ulrich; Stephani, Ulrich; Galka, Andreas; Wendling, Fabrice; Siniatchkin, Michael

    2017-07-01

    The clinical routine of non-invasive electroencephalography (EEG) is usually performed with 8-40 electrodes, especially in long-term monitoring, infants or emergency care. There is a need in clinical and scientific brain imaging to develop inverse solution methods that can reconstruct brain sources from these low-density EEG recordings. In this proof-of-principle paper we investigate the performance of the spatiotemporal Kalman filter (STKF) in EEG source reconstruction with 9-, 19- and 32- electrodes. We used simulated EEG data of epileptic spikes generated from lateral frontal and lateral temporal brain sources using state-of-the-art neuronal population models. For validation of source reconstruction, we compared STKF results to the location of the simulated source and to the results of low-resolution brain electromagnetic tomography (LORETA) standard inverse solution. STKF consistently showed less localization bias compared to LORETA, especially when the number of electrodes was decreased. The results encourage further research into the application of the STKF in source reconstruction of brain activity from low-density EEG recordings.

  16. Image reconstruction

    NASA Astrophysics Data System (ADS)

    Vasilenko, Georgii Ivanovich; Taratorin, Aleksandr Markovich

    Linear, nonlinear, and iterative image-reconstruction (IR) algorithms are reviewed. Theoretical results are presented concerning controllable linear filters, the solution of ill-posed functional minimization problems, and the regularization of iterative IR algorithms. Attention is also given to the problem of superresolution and analytical spectrum continuation, the solution of the phase problem, and the reconstruction of images distorted by turbulence. IR in optical and optical-digital systems is discussed with emphasis on holographic techniques.

  17. Technical Note: FreeCT_ICD: An Open Source Implementation of a Model-Based Iterative Reconstruction Method using Coordinate Descent Optimization for CT Imaging Investigations.

    PubMed

    Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael

    2018-06-01

    To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Reconstruction of sound source signal by analytical passive TR in the environment with airflow

    NASA Astrophysics Data System (ADS)

    Wei, Long; Li, Min; Yang, Debin; Niu, Feng; Zeng, Wu

    2017-03-01

    In the acoustic design of air vehicles, the time-domain signals of noise sources on the surface of air vehicles can serve as data support to reveal the noise source generation mechanism, analyze acoustic fatigue, and take measures for noise insulation and reduction. To rapidly reconstruct the time-domain sound source signals in an environment with flow, a method combining the analytical passive time reversal mirror (AP-TR) with a shear flow correction is proposed. In this method, the negative influence of flow on sound wave propagation is suppressed by the shear flow correction, obtaining the corrected acoustic propagation time delay and path. Those corrected time delay and path together with the microphone array signals are then submitted to the AP-TR, reconstructing more accurate sound source signals in the environment with airflow. As an analytical method, AP-TR offers a supplementary way in 3D space to reconstruct the signal of sound source in the environment with airflow instead of the numerical TR. Experiments on the reconstruction of the sound source signals of a pair of loud speakers are conducted in an anechoic wind tunnel with subsonic airflow to validate the effectiveness and priorities of the proposed method. Moreover the comparison by theorem and experiment result between the AP-TR and the time-domain beamforming in reconstructing the sound source signal is also discussed.

  19. Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging.

    PubMed

    Ding, Lei; Yuan, Han

    2013-04-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) have different sensitivities to differently configured brain activations, making them complimentary in providing independent information for better detection and inverse reconstruction of brain sources. In the present study, we developed an integrative approach, which integrates a novel sparse electromagnetic source imaging method, i.e., variation-based cortical current density (VB-SCCD), together with the combined use of EEG and MEG data in reconstructing complex brain activity. To perform simultaneous analysis of multimodal data, we proposed to normalize EEG and MEG signals according to their individual noise levels to create unit-free measures. Our Monte Carlo simulations demonstrated that this integrative approach is capable of reconstructing complex cortical brain activations (up to 10 simultaneously activated and randomly located sources). Results from experimental data showed that complex brain activations evoked in a face recognition task were successfully reconstructed using the integrative approach, which were consistent with other research findings and validated by independent data from functional magnetic resonance imaging using the same stimulus protocol. Reconstructed cortical brain activations from both simulations and experimental data provided precise source localizations as well as accurate spatial extents of localized sources. In comparison with studies using EEG or MEG alone, the performance of cortical source reconstructions using combined EEG and MEG was significantly improved. We demonstrated that this new sparse ESI methodology with integrated analysis of EEG and MEG data could accurately probe spatiotemporal processes of complex human brain activations. This is promising for noninvasively studying large-scale brain networks of high clinical and scientific significance. Copyright © 2011 Wiley Periodicals, Inc.

  20. 40 CFR 63.42 - Program requirements governing construction or reconstruction of major sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construction or reconstruction of major sources. 63.42 Section 63.42 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES Requirements for Control Technology Determinations for Major Sources in... achievable control technology emission limitation for new sources. [61 FR 68400, Dec. 27, 1996, as amended at...

  1. Generalized Fourier slice theorem for cone-beam image reconstruction.

    PubMed

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  2. A fast iterative convolution weighting approach for gridding-based direct Fourier three-dimensional reconstruction with correction for the contrast transfer function.

    PubMed

    Abrishami, V; Bilbao-Castro, J R; Vargas, J; Marabini, R; Carazo, J M; Sorzano, C O S

    2015-10-01

    We describe a fast and accurate method for the reconstruction of macromolecular complexes from a set of projections. Direct Fourier inversion (in which the Fourier Slice Theorem plays a central role) is a solution for dealing with this inverse problem. Unfortunately, the set of projections provides a non-equidistantly sampled version of the macromolecule Fourier transform in the single particle field (and, therefore, a direct Fourier inversion) may not be an optimal solution. In this paper, we introduce a gridding-based direct Fourier method for the three-dimensional reconstruction approach that uses a weighting technique to compute a uniform sampled Fourier transform. Moreover, the contrast transfer function of the microscope, which is a limiting factor in pursuing a high resolution reconstruction, is corrected by the algorithm. Parallelization of this algorithm, both on threads and on multiple CPU's, makes the process of three-dimensional reconstruction even faster. The experimental results show that our proposed gridding-based direct Fourier reconstruction is slightly more accurate than similar existing methods and presents a lower computational complexity both in terms of time and memory, thereby allowing its use on larger volumes. The algorithm is fully implemented in the open-source Xmipp package and is downloadable from http://xmipp.cnb.csic.es. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Parallel image reconstruction for 3D positron emission tomography from incomplete 2D projection data

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas M.; Ricci, Anthony R.; Dahlbom, Magnus; Cherry, Simon R.; Hoffman, Edward T.

    1993-07-01

    The problem of excessive computational time in 3D Positron Emission Tomography (3D PET) reconstruction is defined, and we present an approach for solving this problem through the construction of an inexpensive parallel processing system and the adoption of the FAVOR algorithm. Currently, the 3D reconstruction of the 610 images of a total body procedure would require 80 hours and the 3D reconstruction of the 620 images of a dynamic study would require 110 hours. An inexpensive parallel processing system for 3D PET reconstruction is constructed from the integration of board level products from multiple vendors. The system achieves its computational performance through the use of 6U VME four i860 processor boards, the processor boards from five manufacturers are discussed from our perspective. The new 3D PET reconstruction algorithm FAVOR, FAst VOlume Reconstructor, that promises a substantial speed improvement is adopted. Preliminary results from parallelizing FAVOR are utilized in formulating architectural improvements for this problem. In summary, we are addressing the problem of excessive computational time in 3D PET image reconstruction, through the construction of an inexpensive parallel processing system and the parallelization of a 3D reconstruction algorithm that uses the incomplete data set that is produced by current PET systems.

  4. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    PubMed

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  5. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds

    PubMed Central

    Gaihre, Bipin; Uswatta, Suren; Jayasuriya, Ambalangodage C.

    2017-01-01

    Engineering craniofacial bone tissues is challenging due to their complex structures. Current standard autografts and allografts have many drawbacks for craniofacial bone tissue reconstruction; including donor site morbidity and the ability to reinstate the aesthetic characteristics of the host tissue. To overcome these problems; tissue engineering and regenerative medicine strategies have been developed as a potential way to reconstruct damaged bone tissue. Different types of new biomaterials; including natural polymers; synthetic polymers and bioceramics; have emerged to treat these damaged craniofacial bone tissues in the form of injectable and non-injectable scaffolds; which are examined in this review. Injectable scaffolds can be considered a better approach to craniofacial tissue engineering as they can be inserted with minimally invasive surgery; thus protecting the aesthetic characteristics. In this review; we also focus on recent research innovations with different types of stem-cell sources harvested from oral tissue and growth factors used to develop craniofacial bone tissue-engineering strategies. PMID:29156629

  6. VARIAN CLINAC 6 MeV Photon Spectra Unfolding using a Monte Carlo Meshed Model

    NASA Astrophysics Data System (ADS)

    Morató, S.; Juste, B.; Miró, R.; Verdú, G.

    2017-09-01

    Energy spectrum is the best descriptive function to determine photon beam quality of a Medical Linear Accelerator (LinAc). The use of realistic photon spectra in Monte Carlo simulations has a great importance to obtain precise dose calculations in Radiotherapy Treatment Planning (RTP). Reconstruction of photon spectra emitted by medical accelerators from measured depth dose distributions in a water cube is an important tool for commissioning a Monte Carlo treatment planning system. Regarding this, the reconstruction problem is an inverse radiation transport function which is ill conditioned and its solution may become unstable due to small perturbations in the input data. This paper presents a more stable spectral reconstruction method which can be used to provide an independent confirmation of source models for a given machine without any prior knowledge of the spectral distribution. Monte Carlo models used in this work are built with unstructured meshes to simulate with realism the linear accelerator head geometry.

  7. Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations.

    PubMed

    Wilm, Bertram J; Barmet, Christoph; Pavan, Matteo; Pruessmann, Klaas P

    2011-06-01

    Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Copyright © 2011 Wiley-Liss, Inc.

  8. Local ROI Reconstruction via Generalized FBP and BPF Algorithms along More Flexible Curves.

    PubMed

    Yu, Hengyong; Ye, Yangbo; Zhao, Shiying; Wang, Ge

    2006-01-01

    We study the local region-of-interest (ROI) reconstruction problem, also referred to as the local CT problem. Our scheme includes two steps: (a) the local truncated normal-dose projections are extended to global dataset by combining a few global low-dose projections; (b) the ROI are reconstructed by either the generalized filtered backprojection (FBP) or backprojection-filtration (BPF) algorithms. The simulation results show that both the FBP and BPF algorithms can reconstruct satisfactory results with image quality in the ROI comparable to that of the corresponding global CT reconstruction.

  9. Efficient electromagnetic source imaging with adaptive standardized LORETA/FOCUSS.

    PubMed

    Schimpf, Paul H; Liu, Hesheng; Ramon, Ceon; Haueisen, Jens

    2005-05-01

    Functional brain imaging and source localization based on the scalp's potential field require a solution to an ill-posed inverse problem with many solutions. This makes it necessary to incorporate a priori knowledge in order to select a particular solution. A computational challenge for some subject-specific head models is that many inverse algorithms require a comprehensive sampling of the candidate source space at the desired resolution. In this study, we present an algorithm that can accurately reconstruct details of localized source activity from a sparse sampling of the candidate source space. Forward computations are minimized through an adaptive procedure that increases source resolution as the spatial extent is reduced. With this algorithm, we were able to compute inverses using only 6% to 11% of the full resolution lead-field, with a localization accuracy that was not significantly different than an exhaustive search through a fully-sampled source space. The technique is, therefore, applicable for use with anatomically-realistic, subject-specific forward models for applications with spatially concentrated source activity.

  10. A novel algorithm of super-resolution image reconstruction based on multi-class dictionaries for natural scene

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Zhao, Dewei; Zhang, Huan

    2015-12-01

    Super-resolution image reconstruction is an effective method to improve the image quality. It has important research significance in the field of image processing. However, the choice of the dictionary directly affects the efficiency of image reconstruction. A sparse representation theory is introduced into the problem of the nearest neighbor selection. Based on the sparse representation of super-resolution image reconstruction method, a super-resolution image reconstruction algorithm based on multi-class dictionary is analyzed. This method avoids the redundancy problem of only training a hyper complete dictionary, and makes the sub-dictionary more representatives, and then replaces the traditional Euclidean distance computing method to improve the quality of the whole image reconstruction. In addition, the ill-posed problem is introduced into non-local self-similarity regularization. Experimental results show that the algorithm is much better results than state-of-the-art algorithm in terms of both PSNR and visual perception.

  11. Dynamic dual-tracer PET reconstruction.

    PubMed

    Gao, Fei; Liu, Huafeng; Jian, Yiqiang; Shi, Pengcheng

    2009-01-01

    Although of important medical implications, simultaneous dual-tracer positron emission tomography reconstruction remains a challenging problem, primarily because the photon measurements from dual tracers are overlapped. In this paper, we propose a simultaneous dynamic dual-tracer reconstruction of tissue activity maps based on guidance from tracer kinetics. The dual-tracer reconstruction problem is formulated in a state-space representation, where parallel compartment models serve as continuous-time system equation describing the tracer kinetic processes of dual tracers, and the imaging data is expressed as discrete sampling of the system states in measurement equation. The image reconstruction problem has therefore become a state estimation problem in a continuous-discrete hybrid paradigm, and H infinity filtering is adopted as the estimation strategy. As H infinity filtering makes no assumptions on the system and measurement statistics, robust reconstruction results can be obtained for the dual-tracer PET imaging system where the statistical properties of measurement data and system uncertainty are not available a priori, even when there are disturbances in the kinetic parameters. Experimental results on digital phantoms, Monte Carlo simulations and physical phantoms have demonstrated the superior performance.

  12. Honey bee-inspired algorithms for SNP haplotype reconstruction problem

    NASA Astrophysics Data System (ADS)

    PourkamaliAnaraki, Maryam; Sadeghi, Mehdi

    2016-03-01

    Reconstructing haplotypes from SNP fragments is an important problem in computational biology. There have been a lot of interests in this field because haplotypes have been shown to contain promising data for disease association research. It is proved that haplotype reconstruction in Minimum Error Correction model is an NP-hard problem. Therefore, several methods such as clustering techniques, evolutionary algorithms, neural networks and swarm intelligence approaches have been proposed in order to solve this problem in appropriate time. In this paper, we have focused on various evolutionary clustering techniques and try to find an efficient technique for solving haplotype reconstruction problem. It can be referred from our experiments that the clustering methods relying on the behaviour of honey bee colony in nature, specifically bees algorithm and artificial bee colony methods, are expected to result in more efficient solutions. An application program of the methods is available at the following link. http://www.bioinf.cs.ipm.ir/software/haprs/

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virador, Patrick R.G.

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems:more » (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data and (c) mash the in plane projections, i.e. 2D data, with the projection data from the first oblique angles, which are then used to reconstruct the preliminary image in the 3D Reprojection Projection algorithm. The author presents reconstructed images of point sources and extended sources in both 2D and 3D. The images show that the camera is anticipated to eliminate radial elongation and produce artifact free and essentially spatially isotropic images throughout the entire FOV. It has a resolution of 1.50 ± 0.75 mm FWHM near the center, 2.25 ±0.75 mm FWHM in the bulk of the FOV, and 3.00 ± 0.75 mm FWHM near the edge and corners of the FOV.« less

  14. Influence of Iterative Reconstruction Algorithms on PET Image Resolution

    NASA Astrophysics Data System (ADS)

    Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.

  15. Re-evaluating alkenone based CO2 estimates

    NASA Astrophysics Data System (ADS)

    Pagani, M.

    2013-05-01

    Multi-million year patterns of ocean temperatures and ice accumulation are relatively consistent with reconstructed CO2 records. Existing records allow for broad statements regarding climate sensitivity, but uncertainties in reconstructions can lead to considerable error. For example, alkenone-based CO2 reconstructions assume that diffusion of CO2aq is the dominant source of inorganic carbon for photosynthesis. However, the concentration of CO2aq is the lowest of all dissolved carbon species, constituting <1% of the total inorganic aqueous pool. This poses a problem for sustaining reasonable algal growth rates because the half saturation constant for the enzyme Rubisco, the primary carboxylase involved in algal photosythesis, is commonly higher than the average concentration of seawater CO2aq. That is, the concentration of CO2aq in the modern ocean is too low to maintain adequate reactions rates for Rubisco, and thus, algal growth. In order to maintain algal growth rates, most modern algae have strategies to increase intercellular CO2 concentrations. But, if such strategies were prevalent for alkenone-producing algae in the past, CO2 reconstructions could be compromised. This presentation will assess time periods when carbon-concentration strategies were potentially in play and consequences for existing CO2 records.

  16. Iterative reconstruction methods in atmospheric tomography: FEWHA, Kaczmarz and Gradient-based algorithm

    NASA Astrophysics Data System (ADS)

    Ramlau, R.; Saxenhuber, D.; Yudytskiy, M.

    2014-07-01

    The problem of atmospheric tomography arises in ground-based telescope imaging with adaptive optics (AO), where one aims to compensate in real-time for the rapidly changing optical distortions in the atmosphere. Many of these systems depend on a sufficient reconstruction of the turbulence profiles in order to obtain a good correction. Due to steadily growing telescope sizes, there is a strong increase in the computational load for atmospheric reconstruction with current methods, first and foremost the MVM. In this paper we present and compare three novel iterative reconstruction methods. The first iterative approach is the Finite Element- Wavelet Hybrid Algorithm (FEWHA), which combines wavelet-based techniques and conjugate gradient schemes to efficiently and accurately tackle the problem of atmospheric reconstruction. The method is extremely fast, highly flexible and yields superior quality. Another novel iterative reconstruction algorithm is the three step approach which decouples the problem in the reconstruction of the incoming wavefronts, the reconstruction of the turbulent layers (atmospheric tomography) and the computation of the best mirror correction (fitting step). For the atmospheric tomography problem within the three step approach, the Kaczmarz algorithm and the Gradient-based method have been developed. We present a detailed comparison of our reconstructors both in terms of quality and speed performance in the context of a Multi-Object Adaptive Optics (MOAO) system for the E-ELT setting on OCTOPUS, the ESO end-to-end simulation tool.

  17. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    PubMed Central

    Sidky, Emil Y.; Jørgensen, Jakob H.; Pan, Xiaochuan

    2012-01-01

    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented. PMID:22538474

  18. Characterizing the impact of model error in hydrologic time series recovery inverse problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.

    Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less

  19. Characterizing the impact of model error in hydrologic time series recovery inverse problems

    DOE PAGES

    Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.

    2017-10-28

    Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less

  20. Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data.

    PubMed

    Owen, Julia P; Wipf, David P; Attias, Hagai T; Sekihara, Kensuke; Nagarajan, Srikantan S

    2012-03-01

    In this paper, we present an extensive performance evaluation of a novel source localization algorithm, Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse problem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data. The source locations used for the simulated data were chosen to test the performance on challenging source configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of both the accuracy of the source localizations and the correct estimation of source time courses. We also demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Wavelet-sparsity based regularization over time in the inverse problem of electrocardiography.

    PubMed

    Cluitmans, Matthijs J M; Karel, Joël M H; Bonizzi, Pietro; Volders, Paul G A; Westra, Ronald L; Peeters, Ralf L M

    2013-01-01

    Noninvasive, detailed assessment of electrical cardiac activity at the level of the heart surface has the potential to revolutionize diagnostics and therapy of cardiac pathologies. Due to the requirement of noninvasiveness, body-surface potentials are measured and have to be projected back to the heart surface, yielding an ill-posed inverse problem. Ill-posedness ensures that there are non-unique solutions to this problem, resulting in a problem of choice. In the current paper, it is proposed to restrict this choice by requiring that the time series of reconstructed heart-surface potentials is sparse in the wavelet domain. A local search technique is introduced that pursues a sparse solution, using an orthogonal wavelet transform. Epicardial potentials reconstructed from this method are compared to those from existing methods, and validated with actual intracardiac recordings. The new technique improves the reconstructions in terms of smoothness and recovers physiologically meaningful details. Additionally, reconstruction of activation timing seems to be improved when pursuing sparsity of the reconstructed signals in the wavelet domain.

  2. Breast Reconstruction with Flap Surgery

    MedlinePlus

    ... vessels requires expertise in surgery through a microscope (microsurgery). An advantage to this type of breast reconstruction ... of your disease Require additional surgery to correct reconstructive problems What breast reconstruction won't do: Make ...

  3. Model-based conifer crown surface reconstruction from multi-ocular high-resolution aerial imagery

    NASA Astrophysics Data System (ADS)

    Sheng, Yongwei

    2000-12-01

    Tree crown parameters such as width, height, shape and crown closure are desirable in forestry and ecological studies, but they are time-consuming and labor intensive to measure in the field. The stereoscopic capability of high-resolution aerial imagery provides a way to crown surface reconstruction. Existing photogrammetric algorithms designed to map terrain surfaces, however, cannot adequately extract crown surfaces, especially for steep conifer crowns. Considering crown surface reconstruction in a broader context of tree characterization from aerial images, we develop a rigorous perspective tree image formation model to bridge image-based tree extraction and crown surface reconstruction, and an integrated model-based approach to conifer crown surface reconstruction. Based on the fact that most conifer crowns are in a solid geometric form, conifer crowns are modeled as a generalized hemi-ellipsoid. Both the automatic and semi-automatic approaches are investigated to optimal tree model development from multi-ocular images. The semi-automatic 3D tree interpreter developed in this thesis is able to efficiently extract reliable tree parameters and tree models in complicated tree stands. This thesis starts with a sophisticated stereo matching algorithm, and incorporates tree models to guide stereo matching. The following critical problems are addressed in the model-based surface reconstruction process: (1) the problem of surface model composition from tree models, (2) the occlusion problem in disparity prediction from tree models, (3) the problem of integrating the predicted disparities into image matching, (4) the tree model edge effect reduction on the disparity map, (5) the occlusion problem in orthophoto production, and (6) the foreshortening problem in image matching, which is very serious for conifer crown surfaces. Solutions to the above problems are necessary for successful crown surface reconstruction. The model-based approach was applied to recover the canopy surface of a dense redwood stand using tri-ocular high-resolution images scanned from 1:2,400 aerial photographs. The results demonstrate the approach's ability to reconstruct complicated stands. The model-based approach proposed in this thesis is potentially applicable to other surfaces recovering problems with a priori knowledge about objects.

  4. Local ROI Reconstruction via Generalized FBP and BPF Algorithms along More Flexible Curves

    PubMed Central

    Ye, Yangbo; Zhao, Shiying; Wang, Ge

    2006-01-01

    We study the local region-of-interest (ROI) reconstruction problem, also referred to as the local CT problem. Our scheme includes two steps: (a) the local truncated normal-dose projections are extended to global dataset by combining a few global low-dose projections; (b) the ROI are reconstructed by either the generalized filtered backprojection (FBP) or backprojection-filtration (BPF) algorithms. The simulation results show that both the FBP and BPF algorithms can reconstruct satisfactory results with image quality in the ROI comparable to that of the corresponding global CT reconstruction. PMID:23165018

  5. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source

    NASA Astrophysics Data System (ADS)

    Panin, V. Y.; Aykac, M.; Casey, M. E.

    2013-06-01

    The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.

  6. Greedy algorithms for diffuse optical tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Dileep, B. P. V.; Das, Tapan; Dutta, Pranab K.

    2018-03-01

    Diffuse optical tomography (DOT) is a noninvasive imaging modality that reconstructs the optical parameters of a highly scattering medium. However, the inverse problem of DOT is ill-posed and highly nonlinear due to the zig-zag propagation of photons that diffuses through the cross section of tissue. The conventional DOT imaging methods iteratively compute the solution of forward diffusion equation solver which makes the problem computationally expensive. Also, these methods fail when the geometry is complex. Recently, the theory of compressive sensing (CS) has received considerable attention because of its efficient use in biomedical imaging applications. The objective of this paper is to solve a given DOT inverse problem by using compressive sensing framework and various Greedy algorithms such as orthogonal matching pursuit (OMP), compressive sampling matching pursuit (CoSaMP), and stagewise orthogonal matching pursuit (StOMP), regularized orthogonal matching pursuit (ROMP) and simultaneous orthogonal matching pursuit (S-OMP) have been studied to reconstruct the change in the absorption parameter i.e, Δα from the boundary data. Also, the Greedy algorithms have been validated experimentally on a paraffin wax rectangular phantom through a well designed experimental set up. We also have studied the conventional DOT methods like least square method and truncated singular value decomposition (TSVD) for comparison. One of the main features of this work is the usage of less number of source-detector pairs, which can facilitate the use of DOT in routine applications of screening. The performance metrics such as mean square error (MSE), normalized mean square error (NMSE), structural similarity index (SSIM), and peak signal to noise ratio (PSNR) have been used to evaluate the performance of the algorithms mentioned in this paper. Extensive simulation results confirm that CS based DOT reconstruction outperforms the conventional DOT imaging methods in terms of computational efficiency. The main advantage of this study is that the forward diffusion equation solver need not be repeatedly solved.

  7. Dose Deposition Profiles in Untreated Brick Material

    DOE PAGES

    O'Mara, Ryan; Hayes, Robert

    2018-04-01

    In nuclear forensics or accident dosimetry, building materials such as bricks can be used to retrospectively determine radiation fields using thermoluminescence and/or optically stimu-lated luminescence. A major problem with brick material is that significant chemical processing is generally necessary to isolate the quartz from the brick. In this study, a simplified treatment process has been tested in an effort to lessen the processing burden for retrospective dosimetry studies. It was found that by using thermoluminescence responses, the dose deposition profile of a brick sample could be reconstructed without any chemical treat-ment. This method was tested by estimating the gamma-ray ener-giesmore » of an 241Am source from the dose deposition in a brick. The results demonstrated the ability to retrospectively measure the source energy with an overall energy resolution of approximately 6 keV. This technique has the potential to greatly expedite dose re-constructions in the wake of nuclear accidents or for any related application where doses of interest are large compared to overall process system noise.« less

  8. Dose Deposition Profiles in Untreated Brick Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Mara, Ryan; Hayes, Robert

    In nuclear forensics or accident dosimetry, building materials such as bricks can be used to retrospectively determine radiation fields using thermoluminescence and/or optically stimu-lated luminescence. A major problem with brick material is that significant chemical processing is generally necessary to isolate the quartz from the brick. In this study, a simplified treatment process has been tested in an effort to lessen the processing burden for retrospective dosimetry studies. It was found that by using thermoluminescence responses, the dose deposition profile of a brick sample could be reconstructed without any chemical treat-ment. This method was tested by estimating the gamma-ray ener-giesmore » of an 241Am source from the dose deposition in a brick. The results demonstrated the ability to retrospectively measure the source energy with an overall energy resolution of approximately 6 keV. This technique has the potential to greatly expedite dose re-constructions in the wake of nuclear accidents or for any related application where doses of interest are large compared to overall process system noise.« less

  9. Generalized source Finite Volume Method for radiative transfer equation in participating media

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Xu, Chuan-Long; Wang, Shi-Min

    2017-03-01

    Temperature monitoring is very important in a combustion system. In recent years, non-intrusive temperature reconstruction has been explored intensively on the basis of calculating arbitrary directional radiative intensities. In this paper, a new method named Generalized Source Finite Volume Method (GSFVM) was proposed. It was based on radiative transfer equation and Finite Volume Method (FVM). This method can be used to calculate arbitrary directional radiative intensities and is proven to be accurate and efficient. To verify the performance of this method, six test cases of 1D, 2D, and 3D radiative transfer problems were investigated. The numerical results show that the efficiency of this method is close to the radial basis function interpolation method, but the accuracy and stability is higher than that of the interpolation method. The accuracy of the GSFVM is similar to that of the Backward Monte Carlo (BMC) algorithm, while the time required by the GSFVM is much shorter than that of the BMC algorithm. Therefore, the GSFVM can be used in temperature reconstruction and improvement on the accuracy of the FVM.

  10. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be extended to any subsequent brain connectivity analyses used to construct the associated dynamic brain networks.

  11. Rapid prototyping in orthopaedic surgery: a user's guide.

    PubMed

    Frame, Mark; Huntley, James S

    2012-01-01

    Rapid prototyping (RP) is applicable to orthopaedic problems involving three dimensions, particularly fractures, deformities, and reconstruction. In the past, RP has been hampered by cost and difficulties accessing the appropriate expertise. Here we outline the history of rapid prototyping and furthermore a process using open-source software to produce a high fidelity physical model from CT data. This greatly mitigates the expense associated with the technique, allowing surgeons to produce precise models for preoperative planning and procedure rehearsal. We describe the method with an illustrative case.

  12. Numerical Recovering of a Speed of Sound by the BC-Method in 3D

    NASA Astrophysics Data System (ADS)

    Pestov, Leonid; Bolgova, Victoria; Danilin, Alexandr

    We develop the numerical algorithm for solving the inverse problem for the wave equation by the Boundary Control method. The problem, which we refer to as a forward one, is an initial boundary value problem for the wave equation with zero initial data in the bounded domain. The inverse problem is to find the speed of sound c(x) by the measurements of waves induced by a set of boundary sources. The time of observation is assumed to be greater then two acoustical radius of the domain. The numerical algorithm for sound reconstruction is based on two steps. The first one is to find a (sufficiently large) number of controls {f_j} (the basic control is defined by the position of the source and some time delay), which generates the same number of known harmonic functions, i.e. Δ {u_j}(.,T) = 0 , where {u_j} is the wave generated by the control {f_j} . After that the linear integral equation w.r.t. the speed of sound is obtained. The piecewise constant model of the speed is used. The result of numerical testing of 3-dimensional model is presented.

  13. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    PubMed Central

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  14. The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction.

    PubMed

    Strohmeier, Daniel; Bekhti, Yousra; Haueisen, Jens; Gramfort, Alexandre

    2016-10-01

    Source imaging based on magnetoencephalography (MEG) and electroencephalography (EEG) allows for the non-invasive analysis of brain activity with high temporal and good spatial resolution. As the bioelectromagnetic inverse problem is ill-posed, constraints are required. For the analysis of evoked brain activity, spatial sparsity of the neuronal activation is a common assumption. It is often taken into account using convex constraints based on the l 1 -norm. The resulting source estimates are however biased in amplitude and often suboptimal in terms of source selection due to high correlations in the forward model. In this work, we demonstrate that an inverse solver based on a block-separable penalty with a Frobenius norm per block and a l 0.5 -quasinorm over blocks addresses both of these issues. For solving the resulting non-convex optimization problem, we propose the iterative reweighted Mixed Norm Estimate (irMxNE), an optimization scheme based on iterative reweighted convex surrogate optimization problems, which are solved efficiently using a block coordinate descent scheme and an active set strategy. We compare the proposed sparse imaging method to the dSPM and the RAP-MUSIC approach based on two MEG data sets. We provide empirical evidence based on simulations and analysis of MEG data that the proposed method improves on the standard Mixed Norm Estimate (MxNE) in terms of amplitude bias, support recovery, and stability.

  15. Joint reconstruction of multiview compressed images.

    PubMed

    Thirumalai, Vijayaraghavan; Frossard, Pascal

    2013-05-01

    Distributed representation of correlated multiview images is an important problem that arises in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed images are decoded together in order to take benefit from the image correlation. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG) with a balanced rate distribution among different cameras. A central decoder first estimates the inter-view image correlation from the independently compressed data. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images, which comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to their compressed versions. We show through experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our algorithm compares advantageously to state-of-the-art distributed coding schemes based on motion learning and on the DISCOVER algorithm.

  16. Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy.

    PubMed

    Fortun, Denis; Guichard, Paul; Hamel, Virginie; Sorzano, Carlos Oscar S; Banterle, Niccolo; Gonczy, Pierre; Unser, Michael

    2018-05-01

    The imaging of proteins within macromolecular complexes has been limited by the low axial resolution of optical microscopes. To overcome this problem, we propose a novel computational reconstruction method that yields isotropic resolution in fluorescence imaging. The guiding principle is to reconstruct a single volume from the observations of multiple rotated particles. Our new operational framework detects particles, estimates their orientation, and reconstructs the final volume. The main challenge comes from the absence of initial template and a priori knowledge about the orientations. We formulate the estimation as a blind inverse problem, and propose a block-coordinate stochastic approach to solve the associated non-convex optimization problem. The reconstruction is performed jointly in multiple channels. We demonstrate that our method is able to reconstruct volumes with 3D isotropic resolution on simulated data. We also perform isotropic reconstructions from real experimental data of doubly labeled purified human centrioles. Our approach revealed the precise localization of the centriolar protein Cep63 around the centriole microtubule barrel. Overall, our method offers new perspectives for applications in biology that require the isotropic mapping of proteins within macromolecular assemblies.

  17. Scaling of plane-wave functions in statistically optimized near-field acoustic holography.

    PubMed

    Hald, Jørgen

    2014-11-01

    Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.

  18. A MATLAB implementation of the minimum relative entropy method for linear inverse problems

    NASA Astrophysics Data System (ADS)

    Neupauer, Roseanna M.; Borchers, Brian

    2001-08-01

    The minimum relative entropy (MRE) method can be used to solve linear inverse problems of the form Gm= d, where m is a vector of unknown model parameters and d is a vector of measured data. The MRE method treats the elements of m as random variables, and obtains a multivariate probability density function for m. The probability density function is constrained by prior information about the upper and lower bounds of m, a prior expected value of m, and the measured data. The solution of the inverse problem is the expected value of m, based on the derived probability density function. We present a MATLAB implementation of the MRE method. Several numerical issues arise in the implementation of the MRE method and are discussed here. We present the source history reconstruction problem from groundwater hydrology as an example of the MRE implementation.

  19. A Markov model for blind image separation by a mean-field EM algorithm.

    PubMed

    Tonazzini, Anna; Bedini, Luigi; Salerno, Emanuele

    2006-02-01

    This paper deals with blind separation of images from noisy linear mixtures with unknown coefficients, formulated as a Bayesian estimation problem. This is a flexible framework, where any kind of prior knowledge about the source images and the mixing matrix can be accounted for. In particular, we describe local correlation within the individual images through the use of Markov random field (MRF) image models. These are naturally suited to express the joint pdf of the sources in a factorized form, so that the statistical independence requirements of most independent component analysis approaches to blind source separation are retained. Our model also includes edge variables to preserve intensity discontinuities. MRF models have been proved to be very efficient in many visual reconstruction problems, such as blind image restoration, and allow separation and edge detection to be performed simultaneously. We propose an expectation-maximization algorithm with the mean field approximation to derive a procedure for estimating the mixing matrix, the sources, and their edge maps. We tested this procedure on both synthetic and real images, in the fully blind case (i.e., no prior information on mixing is exploited) and found that a source model accounting for local autocorrelation is able to increase robustness against noise, even space variant. Furthermore, when the model closely fits the source characteristics, independence is no longer a strict requirement, and cross-correlated sources can be separated, as well.

  20. Hybrid Weighted Minimum Norm Method A new method based LORETA to solve EEG inverse problem.

    PubMed

    Song, C; Zhuang, T; Wu, Q

    2005-01-01

    This Paper brings forward a new method to solve EEG inverse problem. Based on following physiological characteristic of neural electrical activity source: first, the neighboring neurons are prone to active synchronously; second, the distribution of source space is sparse; third, the active intensity of the sources are high centralized, we take these prior knowledge as prerequisite condition to develop the inverse solution of EEG, and not assume other characteristic of inverse solution to realize the most commonly 3D EEG reconstruction map. The proposed algorithm takes advantage of LORETA's low resolution method which emphasizes particularly on 'localization' and FOCUSS's high resolution method which emphasizes particularly on 'separability'. The method is still under the frame of the weighted minimum norm method. The keystone is to construct a weighted matrix which takes reference from the existing smoothness operator, competition mechanism and study algorithm. The basic processing is to obtain an initial solution's estimation firstly, then construct a new estimation using the initial solution's information, repeat this process until the solutions under last two estimate processing is keeping unchanged.

  1. Spatial sound field synthesis and upmixing based on the equivalent source method.

    PubMed

    Bai, Mingsian R; Hsu, Hoshen; Wen, Jheng-Ciang

    2014-01-01

    Given scarce number of recorded signals, spatial sound field synthesis with an extended sweet spot is a challenging problem in acoustic array signal processing. To address the problem, a synthesis and upmixing approach inspired by the equivalent source method (ESM) is proposed. The synthesis procedure is based on the pressure signals recorded by a microphone array and requires no source model. The array geometry can also be arbitrary. Four upmixing strategies are adopted to enhance the resolution of the reproduced sound field when there are more channels of loudspeakers than the microphones. Multi-channel inverse filtering with regularization is exploited to deal with the ill-posedness in the reconstruction process. The distance between the microphone and loudspeaker arrays is optimized to achieve the best synthesis quality. To validate the proposed system, numerical simulations and subjective listening experiments are performed. The results demonstrated that all upmixing methods improved the quality of reproduced target sound field over the original reproduction. In particular, the underdetermined ESM interpolation method yielded the best spatial sound field synthesis in terms of the reproduction error, timbral quality, and spatial quality.

  2. Analytic solution of the Spencer-Lewis angular-spatial moments equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippone, W.L.

    A closed-form solution for the angular-spatial moments of the Spencer-Lewis equation is presented that is valid for infinite homogeneous media. From the moments, the electron density distribution as a function of position and path length (energy) is reconstructed for several sample problems involving plane isotropic sources of electrons in aluminium. The results are in excellent agreement with those determined numerically using the streaming ray method. The primary use of the closed form solution will most likely be to generate accurate electron transport benchmark solutions. In principle, the electron density as a function of space, path length, and direction can bemore » determined for planar sources of arbitrary angular distribution.« less

  3. Reconstructing gravitational wave source parameters via direct comparisons to numerical relativity I: Method

    NASA Astrophysics Data System (ADS)

    Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Shoemaker, Deirdre; Lovelace, Geoffrey; Scheel, Mark; Ossokine, Serguei

    2016-03-01

    In this talk, we describe a procedure to reconstruct the parameters of sufficiently massive coalescing compact binaries via direct comparison with numerical relativity simulations. For sufficiently massive sources, existing numerical relativity simulations are long enough to cover the observationally accessible part of the signal. Due to the signal's brevity, the posterior parameter distribution it implies is broad, simple, and easily reconstructed from information gained by comparing to only the sparse sample of existing numerical relativity simulations. We describe how followup simulations can corroborate and improve our understanding of a detected source. Since our method can include all physics provided by full numerical relativity simulations of coalescing binaries, it provides a valuable complement to alternative techniques which employ approximations to reconstruct source parameters. Supported by NSF Grant PHY-1505629.

  4. Profiling the robustness, efficiency and limits of the forward-adjoint method for 3-D mantle convection modelling

    NASA Astrophysics Data System (ADS)

    Price, M. G.; Davies, J. H.

    2018-02-01

    Knowledge of Earth's past mantle structure is inherently unknown. This lack of knowledge presents problems in many areas of Earth science, including in mantle circulation modelling (MCM). As a mathematical model of mantle convection, MCMs require boundary and initial conditions. While boundary conditions are readily available from sources such as plate reconstructions for the upper surface, and as free slip at the core-mantle boundary, the initial condition is not known. MCMs have historically `created' an initial condition using long `spin up' processes using the oldest available plate reconstruction period available. While these do yield good results when models are run to present day, it is difficult to infer with confidence results from early in a model's history. Techniques to overcome this problem are now being studied in geodynamics, such as by assimilating the known internal structure (e.g. from seismic tomography) of Earth at present day backwards in time. One such method is to use an iterative process known as the forward-adjoint method. While this is an efficient means of solving this inverse problem, it still strains all but the most cutting edge computational systems. In this study we endeavour to profile the effectiveness of this method using synthetic test cases as our known data source. We conclude that savings in terms of computational expense for forward-adjoint models can be achieved by streamlining the time-stepping of the calculation, as well as determining the most efficient method of updating initial conditions in the iterative scheme. Furthermore, we observe that in the models presented, there exists an upper limit on the time interval over which solutions will practically converge, although this limit is likely to be linked to Rayleigh number.

  5. 40 CFR 63.844 - Emission limits for new or reconstructed sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Primary Aluminum Reduction Plants § 63.844 Emission limits for new or reconstructed sources. (a) Potlines. The owner or...

  6. 40 CFR 63.844 - Emission limits for new or reconstructed sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Primary Aluminum Reduction Plants § 63.844 Emission limits for new or reconstructed sources. (a) Potlines. The owner or...

  7. 40 CFR 63.844 - Emission limits for new or reconstructed sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Primary Aluminum Reduction Plants § 63.844 Emission limits for new or reconstructed sources. (a) Potlines. The owner or...

  8. 40 CFR 63.844 - Emission limits for new or reconstructed sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Primary Aluminum Reduction Plants § 63.844 Emission limits for new or reconstructed sources. (a) Potlines. The owner or...

  9. Sensitivity of a Bayesian atmospheric-transport inversion model to spatio-temporal sensor resolution applied to the 2006 North Korean nuclear test

    NASA Astrophysics Data System (ADS)

    Lundquist, K. A.; Jensen, D. D.; Lucas, D. D.

    2017-12-01

    Atmospheric source reconstruction allows for the probabilistic estimate of source characteristics of an atmospheric release using observations of the release. Performance of the inversion depends partially on the temporal frequency and spatial scale of the observations. The objective of this study is to quantify the sensitivity of the source reconstruction method to sparse spatial and temporal observations. To this end, simulations of atmospheric transport of noble gasses are created for the 2006 nuclear test at the Punggye-ri nuclear test site. Synthetic observations are collected from the simulation, and are taken as "ground truth". Data denial techniques are used to progressively coarsen the temporal and spatial resolution of the synthetic observations, while the source reconstruction model seeks to recover the true input parameters from the synthetic observations. Reconstructed parameters considered here are source location, source timing and source quantity. Reconstruction is achieved by running an ensemble of thousands of dispersion model runs that sample from a uniform distribution of the input parameters. Machine learning is used to train a computationally-efficient surrogate model from the ensemble simulations. Monte Carlo sampling and Bayesian inversion are then used in conjunction with the surrogate model to quantify the posterior probability density functions of source input parameters. This research seeks to inform decision makers of the tradeoffs between more expensive, high frequency observations and less expensive, low frequency observations.

  10. Investigating Causality Between Interacting Brain Areas with Multivariate Autoregressive Models of MEG Sensor Data

    PubMed Central

    Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim

    2013-01-01

    Abstract In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc. PMID:22328419

  11. Imaging metallic samples using electrical capacitance tomography: forward modelling and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Hosani, E. Al; Zhang, M.; Abascal, J. F. P. J.; Soleimani, M.

    2016-11-01

    Electrical capacitance tomography (ECT) is an imaging technology used to reconstruct the permittivity distribution within the sensing region. So far, ECT has been primarily used to image non-conductive media only, since if the conductivity of the imaged object is high, the capacitance measuring circuit will be almost shortened by the conductivity path and a clear image cannot be produced using the standard image reconstruction approaches. This paper tackles the problem of imaging metallic samples using conventional ECT systems by investigating the two main aspects of image reconstruction algorithms, namely the forward problem and the inverse problem. For the forward problem, two different methods to model the region of high conductivity in ECT is presented. On the other hand, for the inverse problem, three different algorithms to reconstruct the high contrast images are examined. The first two methods are the linear single step Tikhonov method and the iterative total variation regularization method, and use two sets of ECT data to reconstruct the image in time difference mode. The third method, namely the level set method, uses absolute ECT measurements and was developed using a metallic forward model. The results indicate that the applications of conventional ECT systems can be extended to metal samples using the suggested algorithms and forward model, especially using a level set algorithm to find the boundary of the metal.

  12. SPIRiT: Iterative Self-consistent Parallel Imaging Reconstruction from Arbitrary k-Space

    PubMed Central

    Lustig, Michael; Pauly, John M.

    2010-01-01

    A new approach to autocalibrating, coil-by-coil parallel imaging reconstruction is presented. It is a generalized reconstruction framework based on self consistency. The reconstruction problem is formulated as an optimization that yields the most consistent solution with the calibration and acquisition data. The approach is general and can accurately reconstruct images from arbitrary k-space sampling patterns. The formulation can flexibly incorporate additional image priors such as off-resonance correction and regularization terms that appear in compressed sensing. Several iterative strategies to solve the posed reconstruction problem in both image and k-space domain are presented. These are based on a projection over convex sets (POCS) and a conjugate gradient (CG) algorithms. Phantom and in-vivo studies demonstrate efficient reconstructions from undersampled Cartesian and spiral trajectories. Reconstructions that include off-resonance correction and nonlinear ℓ1-wavelet regularization are also demonstrated. PMID:20665790

  13. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of determining boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation details will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of problems.

  14. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Oliver, A Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of specifying boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation nuances will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of one-dimensional and multi-dimensional problems

  15. Feasibility study for wax deposition imaging in oil pipelines by PGNAA technique.

    PubMed

    Cheng, Can; Jia, Wenbao; Hei, Daqian; Wei, Zhiyong; Wang, Hongtao

    2017-10-01

    Wax deposition in pipelines is a crucial problem in the oil industry. A method based on the prompt gamma-ray neutron activation analysis technique was applied to reconstruct the image of wax deposition in oil pipelines. The 2.223MeV hydrogen capture gamma rays were used to reconstruct the wax deposition image. To validate the method, both MCNP simulation and experiments were performed for wax deposited with a maximum thickness of 20cm. The performance of the method was simulated using the MCNP code. The experiment was conducted with a 252 Cf neutron source and a LaBr 3 : Ce detector. A good correspondence between the simulations and the experiments was observed. The results obtained indicate that the present approach is efficient for wax deposition imaging in oil pipelines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Riemann–Hilbert problem approach for two-dimensional flow inverse scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agaltsov, A. D., E-mail: agalets@gmail.com; Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr; IEPT RAS, 117997 Moscow

    2014-10-15

    We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.

  17. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.

    PubMed

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-01

    The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used in the reconstruction process. The concept of assessing temporal resolution by means of the data employed for reconstruction can nicely be extended from single-source to dual-source CT. However, for advanced (possibly nonlinear iterative) reconstruction algorithms the examined approach fails to deliver accurate results. New methods and measures to assess the temporal resolution of CT images need to be developed to be able to accurately compare the performance of such algorithms.

  18. Reconstructing gravitational wave source parameters via direct comparisons to numerical relativity II: Applications

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Richard; Lange, Jacob; Healy, James; Carlos, Lousto; Shoemaker, Deirdre; Lovelace, Geoffrey; Scheel, Mark

    2016-03-01

    In this talk, we apply a procedure to reconstruct the parameters of sufficiently massive coalescing compact binaries via direct comparison with numerical relativity simulations. We illustrate how to use only comparisons between synthetic data and these simulations to reconstruct properties of a synthetic candidate source. We demonstrate using selected examples that we can reconstruct posterior distributions obtained by other Bayesian methods with our sparse grid. We describe how followup simulations can corroborate and improve our understanding of a candidate signal.

  19. Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Chu, Pan; Lei, Jing

    2017-11-01

    The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.

  20. Accurate sparse-projection image reconstruction via nonlocal TV regularization.

    PubMed

    Zhang, Yi; Zhang, Weihua; Zhou, Jiliu

    2014-01-01

    Sparse-projection image reconstruction is a useful approach to lower the radiation dose; however, the incompleteness of projection data will cause degeneration of imaging quality. As a typical compressive sensing method, total variation has obtained great attention on this problem. Suffering from the theoretical imperfection, total variation will produce blocky effect on smooth regions and blur edges. To overcome this problem, in this paper, we introduce the nonlocal total variation into sparse-projection image reconstruction and formulate the minimization problem with new nonlocal total variation norm. The qualitative and quantitative analyses of numerical as well as clinical results demonstrate the validity of the proposed method. Comparing to other existing methods, our method more efficiently suppresses artifacts caused by low-rank reconstruction and reserves structure information better.

  1. Low dose reconstruction algorithm for differential phase contrast imaging.

    PubMed

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  2. Fast reconstruction of optical properties for complex segmentations in near infrared imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Wolf, Martin; Sánchez Majos, Salvador

    2017-04-01

    The intrinsic ill-posed nature of the inverse problem in near infrared imaging makes the reconstruction of fine details of objects deeply embedded in turbid media challenging even for the large amounts of data provided by time-resolved cameras. In addition, most reconstruction algorithms for this type of measurements are only suitable for highly symmetric geometries and rely on a linear approximation to the diffusion equation since a numerical solution of the fully non-linear problem is computationally too expensive. In this paper, we will show that a problem of practical interest can be successfully addressed making efficient use of the totality of the information supplied by time-resolved cameras. We set aside the goal of achieving high spatial resolution for deep structures and focus on the reconstruction of complex arrangements of large regions. We show numerical results based on a combined approach of wavelength-normalized data and prior geometrical information, defining a fully parallelizable problem in arbitrary geometries for time-resolved measurements. Fast reconstructions are obtained using a diffusion approximation and Monte-Carlo simulations, parallelized in a multicore computer and a GPU respectively.

  3. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation

    NASA Astrophysics Data System (ADS)

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-03-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  4. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation.

    PubMed

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-01-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  5. 3D reconstruction of the magnetic vector potential using model based iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat, K. C.; Aditya Mohan, K.; Phatak, Charudatta

    Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model formore » image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. Here, a comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach.« less

  6. 3D reconstruction of the magnetic vector potential using model based iterative reconstruction.

    PubMed

    Prabhat, K C; Aditya Mohan, K; Phatak, Charudatta; Bouman, Charles; De Graef, Marc

    2017-11-01

    Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model for image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. A comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. 3D reconstruction of the magnetic vector potential using model based iterative reconstruction

    DOE PAGES

    Prabhat, K. C.; Aditya Mohan, K.; Phatak, Charudatta; ...

    2017-07-03

    Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model formore » image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. Here, a comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach.« less

  8. ISMRM Raw Data Format: A Proposed Standard for MRI Raw Datasets

    PubMed Central

    Inati, Souheil J.; Naegele, Joseph D.; Zwart, Nicholas R.; Roopchansingh, Vinai; Lizak, Martin J.; Hansen, David C.; Liu, Chia-Ying; Atkinson, David; Kellman, Peter; Kozerke, Sebastian; Xue, Hui; Campbell-Washburn, Adrienne E.; Sørensen, Thomas S.; Hansen, Michael S.

    2015-01-01

    Purpose This work proposes the ISMRM Raw Data (ISMRMRD) format as a common MR raw data format, which promotes algorithm and data sharing. Methods A file format consisting of a flexible header and tagged frames of k-space data was designed. Application Programming Interfaces were implemented in C/C++, MATLAB, and Python. Converters for Bruker, General Electric, Philips, and Siemens proprietary file formats were implemented in C++. Raw data were collected using MRI scanners from four vendors, converted to ISMRMRD format, and reconstructed using software implemented in three programming languages (C++, MATLAB, Python). Results Images were obtained by reconstructing the raw data from all vendors. The source code, raw data, and images comprising this work are shared online, serving as an example of an image reconstruction project following a paradigm of reproducible research. Conclusion The proposed raw data format solves a practical problem for the MRI community. It may serve as a foundation for reproducible research and collaborations. The ISMRMRD format is a completely open and community-driven format, and the scientific community is invited (including commercial vendors) to participate either as users or developers. PMID:26822475

  9. Regridding reconstruction algorithm for real-time tomographic imaging

    PubMed Central

    Marone, F.; Stampanoni, M.

    2012-01-01

    Sub-second temporal-resolution tomographic microscopy is becoming a reality at third-generation synchrotron sources. Efficient data handling and post-processing is, however, difficult when the data rates are close to 10 GB s−1. This bottleneck still hinders exploitation of the full potential inherent in the ultrafast acquisition speed. In this paper the fast reconstruction algorithm gridrec, highly optimized for conventional CPU technology, is presented. It is shown that gridrec is a valuable alternative to standard filtered back-projection routines, despite being based on the Fourier transform method. In fact, the regridding procedure used for resampling the Fourier space from polar to Cartesian coordinates couples excellent performance with negligible accuracy degradation. The stronger dependence of the observed signal-to-noise ratio for gridrec reconstructions on the number of angular views makes the presented algorithm even superior to filtered back-projection when the tomographic problem is well sampled. Gridrec not only guarantees high-quality results but it provides up to 20-fold performance increase, making real-time monitoring of the sub-second acquisition process a reality. PMID:23093766

  10. [Two hundred blood tests from Auschwitz. A notorious research project and the question about the contribution Adolf Butenandts].

    PubMed

    Trunk, Achim

    2007-01-01

    The 1939 Nobel Laureate in Chemistry and later President of the Max Planck Society Adolf Butenandt has been increasingly exposed to criticism in recent years. One far-reaching accusation against him is his postulated participation in the human experiments executed by the SS-physician Josef Mengele in the Auschwitz concentration camp. It concerns a project initiated by anthropologist Otmar von Verschuer in 1943. For this, Verschu-ER Obtained blood samples from his assistant Mengele in the Auschwitz concentration camp. When methodological problems occurred in the project Butenandt helped Verschuer. According to the reconstruction of geneticist Benno Müller-Hill the research project included lethal human experiments: Mengele had selectively infected concentration camp detainees with tuberculosis to observe their racially conditioned resistibility against that disease, he claims. This reconstruction, however, contradicts other sources. Therefore an alternative reconstruction is offered here. According to that, the project represented a large-scale attempt of serological race diagnosis in man. Human experiments are not plausible for this project. Yet it is clearly connected to race biological research and implementation.

  11. Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames.

    PubMed

    Ayyer, Kartik; Philipp, Hugh T; Tate, Mark W; Elser, Veit; Gruner, Sol M

    2014-02-10

    Schemes for X-ray imaging single protein molecules using new x-ray sources, like x-ray free electron lasers (XFELs), require processing many frames of data that are obtained by taking temporally short snapshots of identical molecules, each with a random and unknown orientation. Due to the small size of the molecules and short exposure times, average signal levels of much less than 1 photon/pixel/frame are expected, much too low to be processed using standard methods. One approach to process the data is to use statistical methods developed in the EMC algorithm (Loh & Elser, Phys. Rev. E, 2009) which processes the data set as a whole. In this paper we apply this method to a real-space tomographic reconstruction using sparse frames of data (below 10(-2) photons/pixel/frame) obtained by performing x-ray transmission measurements of a low-contrast, randomly-oriented object. This extends the work by Philipp et al. (Optics Express, 2012) to three dimensions and is one step closer to the single molecule reconstruction problem.

  12. Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction

    NASA Astrophysics Data System (ADS)

    Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng

    2017-01-01

    Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.

  13. Patient satisfaction and aesthetic outcomes after ear reconstruction with a Branemark-type, bone-anchored, ear prosthesis: a 16 year review.

    PubMed

    Younis, Ibby; Gault, David; Sabbagh, Walid; Kang, Norbert V

    2010-10-01

    Reconstruction of the human ear with a bone-anchored prosthesis is a widely accepted alternative when autologous reconstruction is technically impossible or declined by the individual. However, there are relatively few data in the literature documenting patient satisfaction with this form of reconstruction. This study examines different aspects of patient satisfaction using an eighteen-point postal questionnaire to measure patient outcomes against a Likert rating scale. The questionnaire was sent to 33 patients who completed prosthetic ear reconstruction over a 16 year period at a specialist plastic surgery unit in the United Kingdom. Medical case notes for these cases were also reviewed. Twenty completed questionnaires were returned. The response rate was 61%. The majority of patients were satisfied with the aesthetics, ease of handling and comfort of the bone-anchored implant and prosthesis. However, the majority of patients was only moderately satisfied or was dissatisfied with this method of reconstruction. Specifically, 15 of the respondents reported skin problems around the abutments of the bone-anchored implant with 10 patients reporting ongoing skin complications. Granulation tissue was the most common skin problem (12 cases) followed by local infection (10 cases). Interestingly, despite the chronic skin problems, most patients indicated that they would undergo the same procedure again or would recommend it to others. Our survey shows that patients fitted with a Branemark-type bone-anchored implant for ear reconstruction are pleased with the aesthetic appearance but experience multiple, chronic, skin complications and other implant related problems. These affect their satisfaction with this method of reconstruction. Our findings may have significant implications for patients and surgeons considering this form of reconstruction and for the institutions making decisions about funding this treatment. Copyright 2009. Published by Elsevier Ltd.

  14. Ill-posed problem and regularization in reconstruction of radiobiological parameters from serial tumor imaging data

    NASA Astrophysics Data System (ADS)

    Chvetsov, Alevei V.; Sandison, George A.; Schwartz, Jeffrey L.; Rengan, Ramesh

    2015-11-01

    The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy. Serial images of tumor response to radiation therapy represent a complex summation of several exponential processes as treatment induced cell inactivation, tumor growth rates, and the rate of cell loss. Accurate assessment of treatment response would require separation of these processes because they define radiobiological determinants of treatment response and, correspondingly, tumor control probability. However, the estimation of radiobiological parameters using imaging data can be considered an inverse ill-posed problem because a sum of several exponentials would produce the Fredholm integral equation of the first kind which is ill posed. Therefore, the stability of reconstruction of radiobiological parameters presents a problem even for the simplest models of tumor response. To study stability of the parameter reconstruction problem, we used a set of serial CT imaging data for head and neck cancer and a simplest case of a two-level cell population model of tumor response. Inverse reconstruction was performed using a simulated annealing algorithm to minimize a least squared objective function. Results show that the reconstructed values of cell surviving fractions and cell doubling time exhibit significant nonphysical fluctuations if no stabilization algorithms are applied. However, after applying a stabilization algorithm based on variational regularization, the reconstruction produces statistical distributions for survival fractions and doubling time that are comparable to published in vitro data. This algorithm is an advance over our previous work where only cell surviving fractions were reconstructed. We conclude that variational regularization allows for an increase in the number of free parameters in our model which enables development of more-advanced parameter reconstruction algorithms.

  15. Application of kernel method in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Baikejiang, Reheman; Li, Changqing

    2017-02-01

    Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.

  16. Anterior cruciate ligament reconstruction with a novel porcine xenograft: the initial Italian experience

    PubMed Central

    ZAFFAGNINI, STEFANO; GRASSI, ALBERTO; MUCCIOLI, GIULIO MARIA MARCHEGGIANI; DI SARSINA, TOMMASO ROBERTI; RAGGI, FEDERICO; BENZI, ANDREA; MARCACCI, MAURILIO

    2015-01-01

    At the current state of the art in anterior cruciate ligament (ACL) reconstruction, multiple techniques have been presented but none has given clearly defined and improved results. One of the main issues concerns the choice of graft. The concept of using xenograft tissue, defined as a graft tissue from one species and destined for implantation in an unlike species, was introduced in order to try to overcome the mechanical and biological concerns associated with synthetic materials and the safety and quality concerns and availability problems of allograft tissue. Xenograft tissue carries the risk of producing an immunological reaction. In order to try to overcome or attenuate the immune response against porcine xenograft tissue, the Z-Process® (Aperion Biologics Inc, San Antonio, Texas, USA) has been developed and used to produce the Z-Lig® family of devices for ACL reconstruction procedures. Z-Lig® is a tendon graft with or without bone blocks, sourced from animal tissue in a manner consistent with what has normally been sourced from human tissue, and processed to overcome anti-Gal-mediated rejection and to attenuate other immunological recognition in humans. All this while ensuring sterility, viral inactivation and preservation of mechanical proprieties appropriate for an ACL reconstruction device. The Z-Lig® device has been tested in skeletally mature monkeys and given interesting and promising results from the preclinical performance and safety profile point of view. On this basis, it was possible to proceed with the first clinical trial involving humans, which gave similar encouraging results. The Z-Lig® device has also been implanted in Italy at the Rizzoli Orthopaedic Institute in Bologna, as a part of international multicenter prospective randomized blinded controlled study aimed at comparing xenograft with allograft tissue. PMID:26605257

  17. 40 CFR Table 1 to Subpart Mmmmm of... - Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Each existing, new, or reconstructed loop slitter adhesive use affected source Not use any HAP-based adhesives. 2. Each new or reconstructed flame lamination affected source Reduce HAP emissions by 90 percent...

  18. a Multi-Data Source and Multi-Sensor Approach for the 3d Reconstruction and Visualization of a Complex Archaelogical Site: the Case Study of Tolmo de Minateda

    NASA Astrophysics Data System (ADS)

    Torres-Martínez, J. A.; Seddaiu, M.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; González-Aguilera, D.

    2015-02-01

    The complexity of archaeological sites hinders to get an integral modelling using the actual Geomatic techniques (i.e. aerial, closerange photogrammetry and terrestrial laser scanner) individually, so a multi-sensor approach is proposed as the best solution to provide a 3D reconstruction and visualization of these complex sites. Sensor registration represents a riveting milestone when automation is required and when aerial and terrestrial dataset must be integrated. To this end, several problems must be solved: coordinate system definition, geo-referencing, co-registration of point clouds, geometric and radiometric homogeneity, etc. Last but not least, safeguarding of tangible archaeological heritage and its associated intangible expressions entails a multi-source data approach in which heterogeneous material (historical documents, drawings, archaeological techniques, habit of living, etc.) should be collected and combined with the resulting hybrid 3D of "Tolmo de Minateda" located models. The proposed multi-data source and multi-sensor approach is applied to the study case of "Tolmo de Minateda" archaeological site. A total extension of 9 ha is reconstructed, with an adapted level of detail, by an ultralight aerial platform (paratrike), an unmanned aerial vehicle, a terrestrial laser scanner and terrestrial photogrammetry. In addition, the own defensive nature of the site (i.e. with the presence of three different defensive walls) together with the considerable stratification of the archaeological site (i.e. with different archaeological surfaces and constructive typologies) require that tangible and intangible archaeological heritage expressions can be integrated with the hybrid 3D models obtained, to analyse, understand and exploit the archaeological site by different experts and heritage stakeholders.

  19. As above, so below? Towards understanding inverse models in BCI

    NASA Astrophysics Data System (ADS)

    Lindgren, Jussi T.

    2018-02-01

    Objective. In brain-computer interfaces (BCI), measurements of the user’s brain activity are classified into commands for the computer. With EEG-based BCIs, the origins of the classified phenomena are often considered to be spatially localized in the cortical volume and mixed in the EEG. We investigate if more accurate BCIs can be obtained by reconstructing the source activities in the volume. Approach. We contrast the physiology-driven source reconstruction with data-driven representations obtained by statistical machine learning. We explain these approaches in a common linear dictionary framework and review the different ways to obtain the dictionary parameters. We consider the effect of source reconstruction on some major difficulties in BCI classification, namely information loss, feature selection and nonstationarity of the EEG. Main results. Our analysis suggests that the approaches differ mainly in their parameter estimation. Physiological source reconstruction may thus be expected to improve BCI accuracy if machine learning is not used or where it produces less optimal parameters. We argue that the considered difficulties of surface EEG classification can remain in the reconstructed volume and that data-driven techniques are still necessary. Finally, we provide some suggestions for comparing approaches. Significance. The present work illustrates the relationships between source reconstruction and machine learning-based approaches for EEG data representation. The provided analysis and discussion should help in understanding, applying, comparing and improving such techniques in the future.

  20. Model-free data analysis for source separation based on Non-Negative Matrix Factorization and k-means clustering (NMFk)

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Alexandrov, B.

    2014-12-01

    The identification of the physical sources causing spatial and temporal fluctuations of state variables such as river stage levels and aquifer hydraulic heads is challenging. The fluctuations can be caused by variations in natural and anthropogenic sources such as precipitation events, infiltration, groundwater pumping, barometric pressures, etc. The source identification and separation can be crucial for conceptualization of the hydrological conditions and characterization of system properties. If the original signals that cause the observed state-variable transients can be successfully "unmixed", decoupled physics models may then be applied to analyze the propagation of each signal independently. We propose a new model-free inverse analysis of transient data based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS) coupled with k-means clustering algorithm, which we call NMFk. NMFk is capable of identifying a set of unique sources from a set of experimentally measured mixed signals, without any information about the sources, their transients, and the physical mechanisms and properties controlling the signal propagation through the system. A classical BSS conundrum is the so-called "cocktail-party" problem where several microphones are recording the sounds in a ballroom (music, conversations, noise, etc.). Each of the microphones is recording a mixture of the sounds. The goal of BSS is to "unmix'" and reconstruct the original sounds from the microphone records. Similarly to the "cocktail-party" problem, our model-freee analysis only requires information about state-variable transients at a number of observation points, m, where m > r, and r is the number of unknown unique sources causing the observed fluctuations. We apply the analysis on a dataset from the Los Alamos National Laboratory (LANL) site. We identify and estimate the impact and sources are barometric pressure and water-supply pumping effects. We also estimate the location of the water-supply pumping wells based on the available data. The possible applications of the NMFk algorithm are not limited to hydrology problems; NMFk can be applied to any problem where temporal system behavior is observed at multiple locations and an unknown number of physical sources are causing these fluctuations.

  1. Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources.

    PubMed

    Bradley, Allison; Yao, Jun; Dewald, Jules; Richter, Claus-Peter

    2016-01-01

    Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. EEG data were generated by simulating multiple cortical sources (2-4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms.

  2. Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources

    PubMed Central

    Bradley, Allison; Yao, Jun; Dewald, Jules; Richter, Claus-Peter

    2016-01-01

    Background Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. Methods EEG data were generated by simulating multiple cortical sources (2–4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. Results While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms. PMID:26809000

  3. A New Method for Coronal Magnetic Field Reconstruction

    NASA Astrophysics Data System (ADS)

    Yi, Sibaek; Choe, Gwang-Son; Cho, Kyung-Suk; Kim, Kap-Sung

    2017-08-01

    A precise way of coronal magnetic field reconstruction (extrapolation) is an indispensable tool for understanding of various solar activities. A variety of reconstruction codes have been developed so far and are available to researchers nowadays, but they more or less bear this and that shortcoming. In this paper, a new efficient method for coronal magnetic field reconstruction is presented. The method imposes only the normal components of magnetic field and current density at the bottom boundary to avoid the overspecification of the reconstruction problem, and employs vector potentials to guarantee the divergence-freeness. In our method, the normal component of current density is imposed, not by adjusting the tangential components of A, but by adjusting its normal component. This allows us to avoid a possible numerical instability that on and off arises in codes using A. In real reconstruction problems, the information for the lateral and top boundaries is absent. The arbitrariness of the boundary conditions imposed there as well as various preprocessing brings about the diversity of resulting solutions. We impose the source surface condition at the top boundary to accommodate flux imbalance, which always shows up in magnetograms. To enhance the convergence rate, we equip our code with a gradient-method type accelerator. Our code is tested on two analytical force-free solutions. When the solution is given only at the bottom boundary, our result surpasses competitors in most figures of merits devised by Schrijver et al. (2006). We have also applied our code to a real active region NOAA 11974, in which two M-class flares and a halo CME took place. The EUV observation shows a sudden appearance of an erupting loop before the first flare. Our numerical solutions show that two entwining flux tubes exist before the flare and their shackling is released after the CME with one of them opened up. We suggest that the erupting loop is created by magnetic reconnection between two entwining flux tubes and later appears in the coronagraph as the major constituent of the observed CME.

  4. A robust adaptive flightpath reconstruction technique

    NASA Technical Reports Server (NTRS)

    Verhaegen, M. H.

    1986-01-01

    Computational schemes are presented that allow accurate reconstruction of an aircraft's flightpath in real-time. The reconstruction of the flightpath is formulated as a linear state reconstruction problem, which can be solved via Kalman filtering (KF) techniques. This imposes some conditions upon the flight-test equipment. A reliable square root covariance KF (SRCF) implementation is chosen and further developed into a fully adaptive flightpath reconstruction scheme. Therefore, the basic SRCF is modified in order to cope with several practical problems such as: the automatic control of the convergence of the recursive KF calculations, time varying zero-bias errors on the input signal of the system model used in the KF, and the changing aircraft dynamics owing to a change in reference flight condition. The developed solutions for these problems are all implemented in a numerically stable way, which guarantees the overall flightpath reconstruction scheme to be robust. Furthermore, some special features of the used system model are exploited to make the algorithmic implementation very efficient. An experimental simulation study using simulated flight test data demonstrated these different capabilities.

  5. Mathematical Problems in Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Klein, Jens

    2010-10-01

    This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new inversion formula. This inversion formula has the potential to make it easier to suppress artifacts due to limited data and, depending on the application, can be refined to a fast reconstruction formula. In the penultimate chapter a solution to the problem of left-right ambiguity is presented. This problem exists since the invention of SAR and is caused by the geometry of the measurements. This leads to the fact that only symmetric images can be obtained. With the solution from this chapter it is possible to reconstruct not only the even part of the reflectivity function, but also the odd part, thus making it possible to reconstruct asymmetric images. Numerical simulations are shown to demonstrate that this solution is not affected by stability problems as other approaches have been. The final chapter develops some continuative ideas that could be pursued in the future.

  6. [The use of open source software in graphic anatomic reconstructions and in biomechanic simulations].

    PubMed

    Ciobanu, O

    2009-01-01

    The objective of this study was to obtain three-dimensional (3D) images and to perform biomechanical simulations starting from DICOM images obtained by computed tomography (CT). Open source software were used to prepare digitized 2D images of tissue sections and to create 3D reconstruction from the segmented structures. Finally, 3D images were used in open source software in order to perform biomechanic simulations. This study demonstrates the applicability and feasibility of open source software developed in our days for the 3D reconstruction and biomechanic simulation. The use of open source software may improve the efficiency of investments in imaging technologies and in CAD/CAM technologies for implants and prosthesis fabrication which need expensive specialized software.

  7. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a...

  8. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a...

  9. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a... stationary RICE >500 HP located at a major source of HAP emissions: For each . . . You must meet the...

  10. Coupling reconstruction and motion estimation for dynamic MRI through optical flow constraint

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; O'Connor, Daniel; Gu, Wenbo; Ruan, Dan; Basarab, Adrian; Sheng, Ke

    2018-03-01

    This paper addresses the problem of dynamic magnetic resonance image (DMRI) reconstruction and motion estimation jointly. Because of the inherent anatomical movements in DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been explored under the compressed sensing (CS) scheme. In this paper, by embedding the intensity based optical flow (OF) constraint into the traditional CS scheme, we are able to couple the DMRI reconstruction and motion vector estimation. Moreover, the OF constraint is employed in a specific coarse resolution scale in order to reduce the computational complexity. The resulting optimization problem is then solved using a primal-dual algorithm due to its efficiency when dealing with nondifferentiable problems. Experiments on highly accelerated dynamic cardiac MRI with multiple receiver coils validate the performance of the proposed algorithm.

  11. High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware.

    PubMed

    Freiberger, Manuel; Egger, Herbert; Liebmann, Manfred; Scharfetter, Hermann

    2011-11-01

    Image reconstruction in fluorescence optical tomography is a three-dimensional nonlinear ill-posed problem governed by a system of partial differential equations. In this paper we demonstrate that a combination of state of the art numerical algorithms and a careful hardware optimized implementation allows to solve this large-scale inverse problem in a few seconds on standard desktop PCs with modern graphics hardware. In particular, we present methods to solve not only the forward but also the non-linear inverse problem by massively parallel programming on graphics processors. A comparison of optimized CPU and GPU implementations shows that the reconstruction can be accelerated by factors of about 15 through the use of the graphics hardware without compromising the accuracy in the reconstructed images.

  12. A recursive algorithm for the three-dimensional imaging of brain electric activity: Shrinking LORETA-FOCUSS.

    PubMed

    Liu, Hesheng; Gao, Xiaorong; Schimpf, Paul H; Yang, Fusheng; Gao, Shangkai

    2004-10-01

    Estimation of intracranial electric activity from the scalp electroencephalogram (EEG) requires a solution to the EEG inverse problem, which is known as an ill-conditioned problem. In order to yield a unique solution, weighted minimum norm least square (MNLS) inverse methods are generally used. This paper proposes a recursive algorithm, termed Shrinking LORETA-FOCUSS, which combines and expands upon the central features of two well-known weighted MNLS methods: LORETA and FOCUSS. This recursive algorithm makes iterative adjustments to the solution space as well as the weighting matrix, thereby dramatically reducing the computation load, and increasing local source resolution. Simulations are conducted on a 3-shell spherical head model registered to the Talairach human brain atlas. A comparative study of four different inverse methods, standard Weighted Minimum Norm, L1-norm, LORETA-FOCUSS and Shrinking LORETA-FOCUSS are presented. The results demonstrate that Shrinking LORETA-FOCUSS is able to reconstruct a three-dimensional source distribution with smaller localization and energy errors compared to the other methods.

  13. On the application of ENO scheme with subcell resolution to conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Chang, Shih-Hung

    1991-01-01

    Two approaches are used to extend the essentially non-oscillatory (ENO) schemes to treat conservation laws with stiff source terms. One approach is the application of the Strang time-splitting method. Here the basic ENO scheme and the Harten modification using subcell resolution (SR), ENO/SR scheme, are extended this way. The other approach is a direct method and a modification of the ENO/SR. Here the technique of ENO reconstruction with subcell resolution is used to locate the discontinuity within a cell and the time evolution is then accomplished by solving the differential equation along characteristics locally and advancing in the characteristic direction. This scheme is denoted ENO/SRCD (subcell resolution - characteristic direction). All the schemes are tested on the equation of LeVeque and Yee (NASA-TM-100075, 1988) modeling reacting flow problems. Numerical results show that these schemes handle this intriguing model problem very well, especially with ENO/SRCD which produces perfect resolution at the discontinuity.

  14. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    NASA Astrophysics Data System (ADS)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  15. On some control problems of dynamic of reactor

    NASA Astrophysics Data System (ADS)

    Baskakov, A. V.; Volkov, N. P.

    2017-12-01

    The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....

  16. Pathgroups, a dynamic data structure for genome reconstruction problems.

    PubMed

    Zheng, Chunfang

    2010-07-01

    Ancestral gene order reconstruction problems, including the median problem, quartet construction, small phylogeny, guided genome halving and genome aliquoting, are NP hard. Available heuristics dedicated to each of these problems are computationally costly for even small instances. We present a data structure enabling rapid heuristic solution to all these ancestral genome reconstruction problems. A generic greedy algorithm with look-ahead based on an automatically generated priority system suffices for all the problems using this data structure. The efficiency of the algorithm is due to fast updating of the structure during run time and to the simplicity of the priority scheme. We illustrate with the first rapid algorithm for quartet construction and apply this to a set of yeast genomes to corroborate a recent gene sequence-based phylogeny. http://albuquerque.bioinformatics.uottawa.ca/pathgroup/Quartet.html chunfang313@gmail.com Supplementary data are available at Bioinformatics online.

  17. Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations

    NASA Astrophysics Data System (ADS)

    Beilina, L.; Cristofol, M.; Li, S.; Yamamoto, M.

    2018-01-01

    We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic equation of hyperbolic type using interior data of solutions with suitable choices of initial condition. Using a Carleman estimate, we prove Lipschitz stability estimates which ensure unique reconstruction of both coefficients. Our theoretical results are justified by numerical studies on the reconstruction of two unknown coefficients using noisy backscattered data.

  18. Adaptive multi-step Full Waveform Inversion based on Waveform Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Zeng, Jingwen

    2017-04-01

    Full Waveform Inversion (FWI) can be used to build high resolution velocity models, but there are still many challenges in seismic field data processing. The most difficult problem is about how to recover long-wavelength components of subsurface velocity models when seismic data is lacking of low frequency information and without long-offsets. To solve this problem, we propose to use Waveform Mode Decomposition (WMD) method to reconstruct low frequency information for FWI to obtain a smooth model, so that the initial model dependence of FWI can be reduced. In this paper, we use adjoint-state method to calculate the gradient for Waveform Mode Decomposition Full Waveform Inversion (WMDFWI). Through the illustrative numerical examples, we proved that the low frequency which is reconstructed by WMD method is very reliable. WMDFWI in combination with the adaptive multi-step inversion strategy can obtain more faithful and accurate final inversion results. Numerical examples show that even if the initial velocity model is far from the true model and lacking of low frequency information, we still can obtain good inversion results with WMD method. From numerical examples of anti-noise test, we see that the adaptive multi-step inversion strategy for WMDFWI has strong ability to resist Gaussian noise. WMD method is promising to be able to implement for the land seismic FWI, because it can reconstruct the low frequency information, lower the dominant frequency in the adjoint source, and has a strong ability to resist noise.

  19. High-resolution three-dimensional imaging with compress sensing

    NASA Astrophysics Data System (ADS)

    Wang, Jingyi; Ke, Jun

    2016-10-01

    LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.

  20. Multiple sparse volumetric priors for distributed EEG source reconstruction.

    PubMed

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-10-15

    We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. An experimental comparison of various methods of nearfield acoustic holography

    DOE PAGES

    Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.

    2017-05-19

    An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less

  2. An experimental comparison of various methods of nearfield acoustic holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.

    An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less

  3. Influence of the limited detector size on spatial variations of the reconstruction accuracy in holographic tomography

    NASA Astrophysics Data System (ADS)

    Kostencka, Julianna; Kozacki, Tomasz; Hennelly, Bryan; Sheridan, John T.

    2017-06-01

    Holographic tomography (HT) allows noninvasive, quantitative, 3D imaging of transparent microobjects, such as living biological cells and fiber optics elements. The technique is based on acquisition of multiple scattered fields for various sample perspectives using digital holographic microscopy. Then, the captured data is processed with one of the tomographic reconstruction algorithms, which enables 3D reconstruction of refractive index distribution. In our recent works we addressed the issue of spatially variant accuracy of the HT reconstructions, which results from the insufficient model of diffraction that is applied in the widely-used tomographic reconstruction algorithms basing on the Rytov approximation. In the present study, we continue investigating the spatially variant properties of the HT imaging, however, we are now focusing on the limited spatial size of holograms as a source of this problem. Using the Wigner distribution representation and the Ewald sphere approach, we show that the limited size of the holograms results in a decreased quality of tomographic imaging in off-center regions of the HT reconstructions. This is because the finite detector extent becomes a limiting aperture that prohibits acquisition of full information about diffracted fields coming from the out-of-focus structures of a sample. The incompleteness of the data results in an effective truncation of the tomographic transfer function for the out-of-center regions of the tomographic image. In this paper, the described effect is quantitatively characterized for three types of the tomographic systems: the configuration with 1) object rotation, 2) scanning of the illumination direction, 3) the hybrid HT solution combing both previous approaches.

  4. Rapid Prototyping in Orthopaedic Surgery: A User's Guide

    PubMed Central

    Frame, Mark; Huntley, James S.

    2012-01-01

    Rapid prototyping (RP) is applicable to orthopaedic problems involving three dimensions, particularly fractures, deformities, and reconstruction. In the past, RP has been hampered by cost and difficulties accessing the appropriate expertise. Here we outline the history of rapid prototyping and furthermore a process using open-source software to produce a high fidelity physical model from CT data. This greatly mitigates the expense associated with the technique, allowing surgeons to produce precise models for preoperative planning and procedure rehearsal. We describe the method with an illustrative case. PMID:22666160

  5. Single-view 3D reconstruction of correlated gamma-neutron sources

    DOE PAGES

    Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.

    2017-01-05

    We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less

  6. Single-view 3D reconstruction of correlated gamma-neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.

    We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less

  7. Relaxation approximations to second-order traffic flow models by high-resolution schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.

    2015-03-10

    A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reportedmore » demonstrate the simplicity and versatility of relaxation schemes as numerical solvers.« less

  8. Effects of reconstructed magnetic field from sparse noisy boundary measurements on localization of active neural source.

    PubMed

    Shen, Hui-min; Lee, Kok-Meng; Hu, Liang; Foong, Shaohui; Fu, Xin

    2016-01-01

    Localization of active neural source (ANS) from measurements on head surface is vital in magnetoencephalography. As neuron-generated magnetic fields are extremely weak, significant uncertainties caused by stochastic measurement interference complicate its localization. This paper presents a novel computational method based on reconstructed magnetic field from sparse noisy measurements for enhanced ANS localization by suppressing effects of unrelated noise. In this approach, the magnetic flux density (MFD) in the nearby current-free space outside the head is reconstructed from measurements through formulating the infinite series solution of the Laplace's equation, where boundary condition (BC) integrals over the entire measurements provide "smooth" reconstructed MFD with the decrease in unrelated noise. Using a gradient-based method, reconstructed MFDs with good fidelity are selected for enhanced ANS localization. The reconstruction model, spatial interpolation of BC, parametric equivalent current dipole-based inverse estimation algorithm using reconstruction, and gradient-based selection are detailed and validated. The influences of various source depths and measurement signal-to-noise ratio levels on the estimated ANS location are analyzed numerically and compared with a traditional method (where measurements are directly used), and it was demonstrated that gradient-selected high-fidelity reconstructed data can effectively improve the accuracy of ANS localization.

  9. Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles

    PubMed Central

    Michailidis, George

    2014-01-01

    Reconstructing transcriptional regulatory networks is an important task in functional genomics. Data obtained from experiments that perturb genes by knockouts or RNA interference contain useful information for addressing this reconstruction problem. However, such data can be limited in size and/or are expensive to acquire. On the other hand, observational data of the organism in steady state (e.g., wild-type) are more readily available, but their informational content is inadequate for the task at hand. We develop a computational approach to appropriately utilize both data sources for estimating a regulatory network. The proposed approach is based on a three-step algorithm to estimate the underlying directed but cyclic network, that uses as input both perturbation screens and steady state gene expression data. In the first step, the algorithm determines causal orderings of the genes that are consistent with the perturbation data, by combining an exhaustive search method with a fast heuristic that in turn couples a Monte Carlo technique with a fast search algorithm. In the second step, for each obtained causal ordering, a regulatory network is estimated using a penalized likelihood based method, while in the third step a consensus network is constructed from the highest scored ones. Extensive computational experiments show that the algorithm performs well in reconstructing the underlying network and clearly outperforms competing approaches that rely only on a single data source. Further, it is established that the algorithm produces a consistent estimate of the regulatory network. PMID:24586224

  10. Decoupled Method for Reconstruction of Surface Conditions From Internal Temperatures On Ablative Materials With Uncertain Recession Model

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon

    2017-01-01

    Obtaining measurements of flight environments on ablative heat shields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heat shield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from these measurements. Ablation can contribute substantially to the measurement response making solutions to the inverse problem strongly dependent on the recession model, which is often poorly characterized. To enable efficient surface reconstruction for recession model sensitivity analysis, a method for decoupling the surface recession evaluation from the inverse heat conduction problem is presented. The decoupled method is shown to provide reconstructions of equivalent accuracy to the traditional coupled method but with substantially reduced computational effort. These methods are applied to reconstruct the environments on the Mars Science Laboratory heat shield using diffusion limit and kinetically limited recession models.

  11. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions, Existing Compression Ignition Stationary RICE >500 HP, and Existing 4SLB Stationary RICE >500 HP Located at...

  12. Imaging of neural oscillations with embedded inferential and group prevalence statistics.

    PubMed

    Donhauser, Peter W; Florin, Esther; Baillet, Sylvain

    2018-02-01

    Magnetoencephalography and electroencephalography (MEG, EEG) are essential techniques for studying distributed signal dynamics in the human brain. In particular, the functional role of neural oscillations remains to be clarified. For that reason, imaging methods need to identify distinct brain regions that concurrently generate oscillatory activity, with adequate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-noise are challenging factors to source reconstruction from external sensor data. The detection of weak sources in the presence of stronger regional activity nearby is a typical complication of MEG/EEG source imaging. We propose a novel, hypothesis-driven source reconstruction approach to address these methodological challenges. The imaging with embedded statistics (iES) method is a subspace scanning technique that constrains the mapping problem to the actual experimental design. A major benefit is that, regardless of signal strength, the contributions from all oscillatory sources, which activity is consistent with the tested hypothesis, are equalized in the statistical maps produced. We present extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate several advantages of iES over standard source imaging approaches. These include the detection of oscillatory coupling without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavorable. We also show that iES provides a separate evaluation of oscillatory synchronization and desynchronization in experimental contrasts, which has important statistical advantages. The flexibility of iES allows it to be adjusted to many experimental questions in systems neuroscience.

  13. Imaging of neural oscillations with embedded inferential and group prevalence statistics

    PubMed Central

    2018-01-01

    Magnetoencephalography and electroencephalography (MEG, EEG) are essential techniques for studying distributed signal dynamics in the human brain. In particular, the functional role of neural oscillations remains to be clarified. For that reason, imaging methods need to identify distinct brain regions that concurrently generate oscillatory activity, with adequate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-noise are challenging factors to source reconstruction from external sensor data. The detection of weak sources in the presence of stronger regional activity nearby is a typical complication of MEG/EEG source imaging. We propose a novel, hypothesis-driven source reconstruction approach to address these methodological challenges. The imaging with embedded statistics (iES) method is a subspace scanning technique that constrains the mapping problem to the actual experimental design. A major benefit is that, regardless of signal strength, the contributions from all oscillatory sources, which activity is consistent with the tested hypothesis, are equalized in the statistical maps produced. We present extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate several advantages of iES over standard source imaging approaches. These include the detection of oscillatory coupling without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavorable. We also show that iES provides a separate evaluation of oscillatory synchronization and desynchronization in experimental contrasts, which has important statistical advantages. The flexibility of iES allows it to be adjusted to many experimental questions in systems neuroscience. PMID:29408902

  14. 40 CFR 63.4283 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... initial startup of your new or reconstructed affected source is before May 29, 2003, the compliance date is May 29, 2003. (2) If the initial startup of your new or reconstructed affected source occurs after May 29, 2003, the compliance date is the date of initial startup of your affected source. (b) For an...

  15. 40 CFR 63.5425 - When must I start recordkeeping to determine my compliance ratio?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this section: (1) If the startup of your new or reconstructed affected source is before February 27..., 2002. (2) If the startup of your new or reconstructed affected source is after February 27, 2002, then you must start recordkeeping to determine your compliance ratio upon startup of your affected source...

  16. 40 CFR 63.5425 - When must I start recordkeeping to determine my compliance ratio?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this section: (1) If the startup of your new or reconstructed affected source is before February 27..., 2002. (2) If the startup of your new or reconstructed affected source is after February 27, 2002, then you must start recordkeeping to determine your compliance ratio upon startup of your affected source...

  17. 40 CFR 63.4283 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initial startup of your new or reconstructed affected source is before May 29, 2003, the compliance date is May 29, 2003. (2) If the initial startup of your new or reconstructed affected source occurs after May 29, 2003, the compliance date is the date of initial startup of your affected source. (b) For an...

  18. 40 CFR 63.4283 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... initial startup of your new or reconstructed affected source is before May 29, 2003, the compliance date is May 29, 2003. (2) If the initial startup of your new or reconstructed affected source occurs after May 29, 2003, the compliance date is the date of initial startup of your affected source. (b) For an...

  19. Super resolution reconstruction of infrared images based on classified dictionary learning

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Han, Pingli; Wang, Yi; Li, Xuan; Bai, Lu; Shao, Xiaopeng

    2018-05-01

    Infrared images always suffer from low-resolution problems resulting from limitations of imaging devices. An economical approach to combat this problem involves reconstructing high-resolution images by reasonable methods without updating devices. Inspired by compressed sensing theory, this study presents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore, more satisfactory results is achieved without the increase in computational complexity and time cost. Experiments and results demonstrated that it is a viable method for infrared images reconstruction since it improves image resolution and recovers detailed information of targets.

  20. Comparison Study of Three Different Image Reconstruction Algorithms for MAT-MI

    PubMed Central

    Xia, Rongmin; Li, Xu

    2010-01-01

    We report a theoretical study on magnetoacoustic tomography with magnetic induction (MAT-MI). According to the description of signal generation mechanism using Green’s function, the acoustic dipole model was proposed to describe acoustic source excited by the Lorentz force. Using Green’s function, three kinds of reconstruction algorithms based on different models of acoustic source (potential energy, vectored acoustic pressure, and divergence of Lorenz force) are deduced and compared, and corresponding numerical simulations were conducted to compare these three kinds of reconstruction algorithms. The computer simulation results indicate that the potential energy method and vectored pressure method can directly reconstruct the Lorentz force distribution and give a more accurate reconstruction of electrical conductivity. PMID:19846363

  1. Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction

    PubMed Central

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-01-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835

  2. Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-11-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality.

  3. 3D reconstruction of highly fragmented bone fractures

    NASA Astrophysics Data System (ADS)

    Willis, Andrew; Anderson, Donald; Thomas, Thad; Brown, Thomas; Marsh, J. Lawrence

    2007-03-01

    A system for the semi-automatic reconstruction of highly fragmented bone fractures, developed to aid in treatment planning, is presented. The system aligns bone fragment surfaces derived from segmentation of volumetric CT scan data. Each fragment surface is partitioned into intact- and fracture-surfaces, corresponding more or less to cortical and cancellous bone, respectively. A user then interactively selects fracture-surface patches in pairs that coarsely correspond. A final optimization step is performed automatically to solve the N-body rigid alignment problem. The work represents the first example of a 3D bone fracture reconstruction system and addresses two new problems unique to the reconstruction of fractured bones: (1) non-stationary noise inherent in surfaces generated from a difficult segmentation problem and (2) the possibility that a single fracture surface on a fragment may correspond to many other fragments.

  4. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI.

    PubMed

    Liu, Tian; Spincemaille, Pascal; de Rochefort, Ludovic; Kressler, Bryan; Wang, Yi

    2009-01-01

    Magnetic susceptibility differs among tissues based on their contents of iron, calcium, contrast agent, and other molecular compositions. Susceptibility modifies the magnetic field detected in the MR signal phase. The determination of an arbitrary susceptibility distribution from the induced field shifts is a challenging, ill-posed inverse problem. A method called "calculation of susceptibility through multiple orientation sampling" (COSMOS) is proposed to stabilize this inverse problem. The field created by the susceptibility distribution is sampled at multiple orientations with respect to the polarization field, B(0), and the susceptibility map is reconstructed by weighted linear least squares to account for field noise and the signal void region. Numerical simulations and phantom and in vitro imaging validations demonstrated that COSMOS is a stable and precise approach to quantify a susceptibility distribution using MRI.

  5. Distortion outage minimization in Nakagami fading using limited feedback

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Hong; Dey, Subhrakanti

    2011-12-01

    We focus on a decentralized estimation problem via a clustered wireless sensor network measuring a random Gaussian source where the clusterheads amplify and forward their received signals (from the intra-cluster sensors) over orthogonal independent stationary Nakagami fading channels to a remote fusion center that reconstructs an estimate of the original source. The objective of this paper is to design clusterhead transmit power allocation policies to minimize the distortion outage probability at the fusion center, subject to an expected sum transmit power constraint. In the case when full channel state information (CSI) is available at the clusterhead transmitters, the optimization problem can be shown to be convex and is solved exactly. When only rate-limited channel feedback is available, we design a number of computationally efficient sub-optimal power allocation algorithms to solve the associated non-convex optimization problem. We also derive an approximation for the diversity order of the distortion outage probability in the limit when the average transmission power goes to infinity. Numerical results illustrate that the sub-optimal power allocation algorithms perform very well and can close the outage probability gap between the constant power allocation (no CSI) and full CSI-based optimal power allocation with only 3-4 bits of channel feedback.

  6. Estimation of the Cesium-137 Source Term from the Fukushima Daiichi Power Plant Using Air Concentration and Deposition Data

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne

    2013-04-01

    A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativeness of the measurements, the instrumental errors, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, and specially in a situation of sparse observability, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. In Winiarek et al. (2012), we proposed to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We applied the method to the estimation of the Fukushima Daiichi cesium-137 and iodine-131 source terms using activity concentrations in the air. The results were compared to an L-curve estimation technique, and to Desroziers's scheme. Additionally to the estimations of released activities, we provided related uncertainties (12 PBq with a std. of 15 - 20 % for cesium-137 and 190 - 380 PBq with a std. of 5 - 10 % for iodine-131). We also enlightened that, because of the low number of available observations (few hundreds) and even if orders of magnitude were consistent, the reconstructed activities significantly depended on the method used to estimate the prior errors. In order to use more data, we propose to extend the methods to the use of several data types, such as activity concentrations in the air and fallout measurements. The idea is to simultaneously estimate the prior errors related to each dataset, in order to fully exploit the information content of each one. Using the activity concentration measurements, but also daily fallout data from prefectures and cumulated deposition data over a region lying approximately 150 km around the nuclear power plant, we can use a few thousands of data in our inverse modeling algorithm to reconstruct the Cesium-137 source term. To improve the parameterization of removal processes, rainfall fields have also been corrected using outputs from the mesoscale meteorological model WRF and ground station rainfall data. As expected, the different methods yield closer results as the number of data increases. Reference : Winiarek, V., M. Bocquet, O. Saunier, A. Mathieu (2012), Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant : Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant, J. Geophys. Res., 117, D05122, doi:10.1029/2011JD016932.

  7. Reconstruction of Atmospheric Tracer Releases with Optimal Resolution Features: Concentration Data Assimilation

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Turbelin, Gregory; Issartel, Jean-Pierre; Kumar, Pramod; Feiz, Amir Ali

    2015-04-01

    The fast growing urbanization, industrialization and military developments increase the risk towards the human environment and ecology. This is realized in several past mortality incidents, for instance, Chernobyl nuclear explosion (Ukraine), Bhopal gas leak (India), Fukushima-Daichi radionuclide release (Japan), etc. To reduce the threat and exposure to the hazardous contaminants, a fast and preliminary identification of unknown releases is required by the responsible authorities for the emergency preparedness and air quality analysis. Often, an early detection of such contaminants is pursued by a distributed sensor network. However, identifying the origin and strength of unknown releases following the sensor reported concentrations is a challenging task. This requires an optimal strategy to integrate the measured concentrations with the predictions given by the atmospheric dispersion models. This is an inverse problem. The measured concentrations are insufficient and atmospheric dispersion models suffer from inaccuracy due to the lack of process understanding, turbulence uncertainties, etc. These lead to a loss of information in the reconstruction process and thus, affect the resolution, stability and uniqueness of the retrieved source. An additional well known issue is the numerical artifact arisen at the measurement locations due to the strong concentration gradient and dissipative nature of the concentration. Thus, assimilation techniques are desired which can lead to an optimal retrieval of the unknown releases. In general, this is facilitated within the Bayesian inference and optimization framework with a suitable choice of a priori information, regularization constraints, measurement and background error statistics. An inversion technique is introduced here for an optimal reconstruction of unknown releases using limited concentration measurements. This is based on adjoint representation of the source-receptor relationship and utilization of a weight function which exhibits a priori information about the unknown releases apparent to the monitoring network. The properties of the weight function provide an optimal data resolution and model resolution to the retrieved source estimates. The retrieved source estimates are proved theoretically to be stable against the random measurement errors and their reliability can be interpreted in terms of the distribution of the weight functions. Further, the same framework can be extended for the identification of the point type releases by utilizing the maximum of the retrieved source estimates. The inversion technique has been evaluated with the several diffusion experiments, like, Idaho low wind diffusion experiment (1974), IIT Delhi tracer experiment (1991), European Tracer Experiment (1994), Fusion Field Trials (2007), etc. In case of point release experiments, the source parameters are mostly retrieved close to the true source parameters with least error. Primarily, the proposed technique overcomes two major difficulties incurred in the source reconstruction: (i) The initialization of the source parameters as required by the optimization based techniques. The converged solution depends on their initialization. (ii) The statistical knowledge about the measurement and background errors as required by the Bayesian inference based techniques. These are hypothetically assumed in case of no prior knowledge.

  8. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source.

    PubMed

    Van Eijk, F; Saris, D B F; Riesle, J; Willems, W J; Van Blitterswijk, C A; Verbout, A J; Dhert, W J A

    2004-01-01

    Anterior cruciate ligament (ACL) reconstruction surgery still has important problems to overcome, such as "donor site morbidity" and the limited choice of grafts in revision surgery. Tissue engineering of ligaments may provide a solution for these problems. Little is known about the optimal cell source for tissue engineering of ligaments. The aim of this study is to determine the optimal cell source for tissue engineering of the anterior cruciate ligament. Bone marrow stromal cells (BMSCs), ACL, and skin fibroblasts were seeded onto a resorbable suture material [poly(L-lactide/glycolide) multifilaments] at five different seeding densities, and cultured for up to 12 days. All cell types tested attached to the suture material, proliferated, and synthesized extracellular matrix rich in collagen type I. On day 12 the scaffolds seeded with BMSCs showed the highest DNA content (p < 0.01) and the highest collagen production (p < 0.05 for the two highest seeding densities). Scaffolds seeded with ACL fibroblasts showed the lowest DNA content and collagen production. Accordingly, BMSCs appear to be the most suitable cells for further study and development of tissue-engineered ligament.

  9. On a problem of reconstruction of a discontinuous function by its Radon transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derevtsov, Evgeny Yu.; Maltseva, Svetlana V.; Svetov, Ivan E.

    A problem of reconstruction of a discontinuous function by its Radon transform is considered. One of the approaches to the numerical solution for the problem consists in the next sequential steps: a visualization of a set of breaking points; an identification of this set; a determination of jump values; an elimination of discontinuities. We consider three of listed problems except the problem of jump values. The problems are investigated by mathematical modeling using numerical experiments. The results of simulation are satisfactory and allow to hope for the further development of the approach.

  10. Full Waveform Inversion for Seismic Velocity And Anelastic Losses in Heterogeneous Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askan, A.; /Carnegie Mellon U.; Akcelik, V.

    2009-04-30

    We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization problem, where the constraints are the partial and ordinary differential equations governing the anelastic wave propagation from the source to the receivers in the time domain. This leads to amore » variational formulation in terms of the material model plus the state variables and their adjoints. We employ a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium is modeled by a set of standard linear solids. The least-squares optimization approach to inverse wave propagation presents the well-known difficulties of ill posedness and multiple minima. To overcome ill posedness, we include a total variation regularization functional in the objective function, which annihilates highly oscillatory material property components while preserving discontinuities in the medium. To treat multiple minima, we use a multilevel algorithm that solves a sequence of subproblems on increasingly finer grids with increasingly higher frequency source components to remain within the basin of attraction of the global minimum. We illustrate the methodology with high-resolution inversions for two-dimensional sedimentary models of the San Fernando Valley, under SH-wave excitation. We perform inversions for both the seismic velocity and the intrinsic attenuation using synthetic waveforms at the observer locations as pseudoobserved data.« less

  11. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, Existing Non-Emergency Compression Ignition Stationary RICE >500 HP, and New and Reconstructed 4SLB Burn Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2b Table 2b to Subpart ZZZZ of Part 63...

  12. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions 1b... Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of... 15 percent O2 and using NSCR; a. maintain your catalyst so that the pressure drop across the catalyst...

  13. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions 1b... Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of... 15 percent O2 and using NSCR; a. maintain your catalyst so that the pressure drop across the catalyst...

  14. Discriminative Transfer Subspace Learning via Low-Rank and Sparse Representation.

    PubMed

    Xu, Yong; Fang, Xiaozhao; Wu, Jian; Li, Xuelong; Zhang, David

    2016-02-01

    In this paper, we address the problem of unsupervised domain transfer learning in which no labels are available in the target domain. We use a transformation matrix to transfer both the source and target data to a common subspace, where each target sample can be represented by a combination of source samples such that the samples from different domains can be well interlaced. In this way, the discrepancy of the source and target domains is reduced. By imposing joint low-rank and sparse constraints on the reconstruction coefficient matrix, the global and local structures of data can be preserved. To enlarge the margins between different classes as much as possible and provide more freedom to diminish the discrepancy, a flexible linear classifier (projection) is obtained by learning a non-negative label relaxation matrix that allows the strict binary label matrix to relax into a slack variable matrix. Our method can avoid a potentially negative transfer by using a sparse matrix to model the noise and, thus, is more robust to different types of noise. We formulate our problem as a constrained low-rankness and sparsity minimization problem and solve it by the inexact augmented Lagrange multiplier method. Extensive experiments on various visual domain adaptation tasks show the superiority of the proposed method over the state-of-the art methods. The MATLAB code of our method will be publicly available at http://www.yongxu.org/lunwen.html.

  15. Heat source reconstruction from noisy temperature fields using a gradient anisotropic diffusion filter

    NASA Astrophysics Data System (ADS)

    Beitone, C.; Balandraud, X.; Delpueyo, D.; Grédiac, M.

    2017-01-01

    This paper presents a post-processing technique for noisy temperature maps based on a gradient anisotropic diffusion (GAD) filter in the context of heat source reconstruction. The aim is to reconstruct heat source maps from temperature maps measured using infrared (IR) thermography. Synthetic temperature fields corrupted by added noise are first considered. The GAD filter, which relies on a diffusion process, is optimized to retrieve as well as possible a heat source concentration in a two-dimensional plate. The influence of the dimensions and the intensity of the heat source concentration are discussed. The results obtained are also compared with two other types of filters: averaging filter and Gaussian derivative filter. The second part of this study presents an application for experimental temperature maps measured with an IR camera. The results demonstrate the relevancy of the GAD filter in extracting heat sources from noisy temperature fields.

  16. The riddle of Tasmanian languages

    PubMed Central

    Bowern, Claire

    2012-01-01

    Recent work which combines methods from linguistics and evolutionary biology has been fruitful in discovering the history of major language families because of similarities in evolutionary processes. Such work opens up new possibilities for language research on previously unsolvable problems, especially in areas where information from other sources may be lacking. I use phylogenetic methods to investigate Tasmanian languages. Existing materials are so fragmentary that scholars have been unable to discover how many languages are represented in the sources. Using a clustering algorithm which identifies admixture, source materials representing more than one language are identified. Using the Neighbor-Net algorithm, 12 languages are identified in five clusters. Bayesian phylogenetic methods reveal that the families are not demonstrably related; an important result, given the importance of Tasmanian Aborigines for information about how societies have responded to population collapse in prehistory. This work provides insight into the societies of prehistoric Tasmania and illustrates a new utility of phylogenetics in reconstructing linguistic history. PMID:23015621

  17. General phase regularized reconstruction using phase cycling.

    PubMed

    Ong, Frank; Cheng, Joseph Y; Lustig, Michael

    2018-07-01

    To develop a general phase regularized image reconstruction method, with applications to partial Fourier imaging, water-fat imaging and flow imaging. The problem of enforcing phase constraints in reconstruction was studied under a regularized inverse problem framework. A general phase regularized reconstruction algorithm was proposed to enable various joint reconstruction of partial Fourier imaging, water-fat imaging and flow imaging, along with parallel imaging (PI) and compressed sensing (CS). Since phase regularized reconstruction is inherently non-convex and sensitive to phase wraps in the initial solution, a reconstruction technique, named phase cycling, was proposed to render the overall algorithm invariant to phase wraps. The proposed method was applied to retrospectively under-sampled in vivo datasets and compared with state of the art reconstruction methods. Phase cycling reconstructions showed reduction of artifacts compared to reconstructions without phase cycling and achieved similar performances as state of the art results in partial Fourier, water-fat and divergence-free regularized flow reconstruction. Joint reconstruction of partial Fourier + water-fat imaging + PI + CS, and partial Fourier + divergence-free regularized flow imaging + PI + CS were demonstrated. The proposed phase cycling reconstruction provides an alternative way to perform phase regularized reconstruction, without the need to perform phase unwrapping. It is robust to the choice of initial solutions and encourages the joint reconstruction of phase imaging applications. Magn Reson Med 80:112-125, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Atmospheric histories of halocarbons from analysis of Antarctic firn air: Methyl bromide, methyl chloride, chloroform, and dichloromethane

    NASA Astrophysics Data System (ADS)

    Trudinger, C. M.; Etheridge, D. M.; Sturrock, G. A.; Fraser, P. J.; Krummel, P. B.; McCulloch, A.

    2004-11-01

    We reconstruct atmospheric levels of methyl bromide (CH3Br), methyl chloride (CH3Cl), chloroform (CHCl3), and dichloromethane (CH2Cl2) back to before 1940 using measurements of air extracted from firn on Law Dome in Antarctica. The firn air at this site has a relatively narrow age spread, giving high time resolution reconstructions. The CH3Br reconstructions confirm previously measured firn records but with more temporal structure. Our CH3Cl reconstruction is slightly different from previous reconstructions, raising some questions about CH3Cl in the firn. Our reconstructions for CHCl3 and CH2Cl2 are the first published records of concentration prior to direct atmospheric measurements. A two-box atmospheric model is used to investigate the budgets of these gases. Much of the variation in CH3Cl can be explained by biomass burning emissions that increase up to 1980 and then are relatively stable apart from some high burning years such as 1997-1998. The CHCl3 firn reconstruction suggests that the anthropogenic source for CHCl3 is greater than previously thought, with human influence on the soil source a possible important contributor here. The CH2Cl2 firn reconstruction is consistent with industrial emission estimates based on audited sales data but suggests that the ocean source of CH2Cl2 is less than previously estimated.

  20. Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Rodney O.; Passalacqua, Alberto

    2016-02-01

    Computational fluid dynamics (CFD) has been widely studied and used in the scientific community and in the industry. Various models were proposed to solve problems in different areas. However, all models deviate from reality. Uncertainty quantification (UQ) process evaluates the overall uncertainties associated with the prediction of quantities of interest. In particular it studies the propagation of input uncertainties to the outputs of the models so that confidence intervals can be provided for the simulation results. In the present work, a non-intrusive quadrature-based uncertainty quantification (QBUQ) approach is proposed. The probability distribution function (PDF) of the system response can bemore » then reconstructed using extended quadrature method of moments (EQMOM) and extended conditional quadrature method of moments (ECQMOM). The report first explains the theory of QBUQ approach, including methods to generate samples for problems with single or multiple uncertain input parameters, low order statistics, and required number of samples. Then methods for univariate PDF reconstruction (EQMOM) and multivariate PDF reconstruction (ECQMOM) are explained. The implementation of QBUQ approach into the open-source CFD code MFIX is discussed next. At last, QBUQ approach is demonstrated in several applications. The method is first applied to two examples: a developing flow in a channel with uncertain viscosity, and an oblique shock problem with uncertain upstream Mach number. The error in the prediction of the moment response is studied as a function of the number of samples, and the accuracy of the moments required to reconstruct the PDF of the system response is discussed. The QBUQ approach is then demonstrated by considering a bubbling fluidized bed as example application. The mean particle size is assumed to be the uncertain input parameter. The system is simulated with a standard two-fluid model with kinetic theory closures for the particulate phase implemented into MFIX. The effect of uncertainty on the disperse-phase volume fraction, on the phase velocities and on the pressure drop inside the fluidized bed are examined, and the reconstructed PDFs are provided for the three quantities studied. Then the approach is applied to a bubbling fluidized bed with two uncertain parameters, particle-particle and particle-wall restitution coefficients. Contour plots of the mean and standard deviation of solid volume fraction, solid phase velocities and gas pressure are provided. The PDFs of the response are reconstructed using EQMOM with appropriate kernel density functions. The simulation results are compared to experimental data provided by the 2013 NETL small-scale challenge problem. Lastly, the proposed procedure is demonstrated by considering a riser of a circulating fluidized bed as an example application. The mean particle size is considered to be the uncertain input parameter. Contour plots of the mean and standard deviation of solid volume fraction, solid phase velocities, and granular temperature are provided. Mean values and confidence intervals of the quantities of interest are compared to the experiment results. The univariate and bivariate PDF reconstructions of the system response are performed using EQMOM and ECQMOM.« less

  1. Photoacoustic image reconstruction via deep learning

    NASA Astrophysics Data System (ADS)

    Antholzer, Stephan; Haltmeier, Markus; Nuster, Robert; Schwab, Johannes

    2018-02-01

    Applying standard algorithms to sparse data problems in photoacoustic tomography (PAT) yields low-quality images containing severe under-sampling artifacts. To some extent, these artifacts can be reduced by iterative image reconstruction algorithms which allow to include prior knowledge such as smoothness, total variation (TV) or sparsity constraints. These algorithms tend to be time consuming as the forward and adjoint problems have to be solved repeatedly. Further, iterative algorithms have additional drawbacks. For example, the reconstruction quality strongly depends on a-priori model assumptions about the objects to be recovered, which are often not strictly satisfied in practical applications. To overcome these issues, in this paper, we develop direct and efficient reconstruction algorithms based on deep learning. As opposed to iterative algorithms, we apply a convolutional neural network, whose parameters are trained before the reconstruction process based on a set of training data. For actual image reconstruction, a single evaluation of the trained network yields the desired result. Our presented numerical results (using two different network architectures) demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative reconstruction methods.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems.more » Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.« less

  3. Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals.

    PubMed

    Heydari, Mahdi; Marashi, Sayed-Amir; Tusserkani, Ruzbeh; Sadeghi, Mehdi

    2014-10-01

    One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Binary optimization for source localization in the inverse problem of ECG.

    PubMed

    Potyagaylo, Danila; Cortés, Elisenda Gil; Schulze, Walther H W; Dössel, Olaf

    2014-09-01

    The goal of ECG-imaging (ECGI) is to reconstruct heart electrical activity from body surface potential maps. The problem is ill-posed, which means that it is extremely sensitive to measurement and modeling errors. The most commonly used method to tackle this obstacle is Tikhonov regularization, which consists in converting the original problem into a well-posed one by adding a penalty term. The method, despite all its practical advantages, has however a serious drawback: The obtained solution is often over-smoothed, which can hinder precise clinical diagnosis and treatment planning. In this paper, we apply a binary optimization approach to the transmembrane voltage (TMV)-based problem. For this, we assume the TMV to take two possible values according to a heart abnormality under consideration. In this work, we investigate the localization of simulated ischemic areas and ectopic foci and one clinical infarction case. This affects only the choice of the binary values, while the core of the algorithms remains the same, making the approximation easily adjustable to the application needs. Two methods, a hybrid metaheuristic approach and the difference of convex functions (DC), algorithm were tested. For this purpose, we performed realistic heart simulations for a complex thorax model and applied the proposed techniques to the obtained ECG signals. Both methods enabled localization of the areas of interest, hence showing their potential for application in ECGI. For the metaheuristic algorithm, it was necessary to subdivide the heart into regions in order to obtain a stable solution unsusceptible to the errors, while the analytical DC scheme can be efficiently applied for higher dimensional problems. With the DC method, we also successfully reconstructed the activation pattern and origin of a simulated extrasystole. In addition, the DC algorithm enables iterative adjustment of binary values ensuring robust performance.

  5. Harmony: EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of Spherical Harmonics

    PubMed Central

    Petrov, Yury

    2012-01-01

    EEG/MEG source localization based on a “distributed solution” is severely underdetermined, because the number of sources is much larger than the number of measurements. In particular, this makes the solution strongly affected by sensor noise. A new way to constrain the problem is presented. By using the anatomical basis of spherical harmonics (or spherical splines) instead of single dipoles the dimensionality of the inverse solution is greatly reduced without sacrificing the quality of the data fit. The smoothness of the resulting solution reduces the surface bias and scatter of the sources (incoherency) compared to the popular minimum-norm algorithms where single-dipole basis is used (MNE, depth-weighted MNE, dSPM, sLORETA, LORETA, IBF) and allows to efficiently reduce the effect of sensor noise. This approach, termed Harmony, performed well when applied to experimental data (two exemplars of early evoked potentials) and showed better localization precision and solution coherence than the other tested algorithms when applied to realistically simulated data. PMID:23071497

  6. SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005.

    PubMed

    Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F

    2009-01-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.

  7. The algorithm of central axis in surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhao, Bao Ping; Zhang, Zheng Mei; Cai Li, Ji; Sun, Da Ming; Cao, Hui Ying; Xing, Bao Liang

    2017-09-01

    Reverse engineering is an important technique means of product imitation and new product development. Its core technology -- surface reconstruction is the current research for scholars. In the various algorithms of surface reconstruction, using axis reconstruction is a kind of important method. For the various reconstruction, using medial axis algorithm was summarized, pointed out the problems existed in various methods, as well as the place needs to be improved. Also discussed the later surface reconstruction and development of axial direction.

  8. A new non-iterative reconstruction method for the electrical impedance tomography problem

    NASA Astrophysics Data System (ADS)

    Ferreira, A. D.; Novotny, A. A.

    2017-03-01

    The electrical impedance tomography (EIT) problem consists in determining the distribution of the electrical conductivity of a medium subject to a set of current fluxes, from measurements of the corresponding electrical potentials on its boundary. EIT is probably the most studied inverse problem since the fundamental works by Calderón from the 1980s. It has many relevant applications in medicine (detection of tumors), geophysics (localization of mineral deposits) and engineering (detection of corrosion in structures). In this work, we are interested in reconstructing a number of anomalies with different electrical conductivity from the background. Since the EIT problem is written in the form of an overdetermined boundary value problem, the idea is to rewrite it as a topology optimization problem. In particular, a shape functional measuring the misfit between the boundary measurements and the electrical potentials obtained from the model is minimized with respect to a set of ball-shaped anomalies by using the concept of topological derivatives. It means that the objective functional is expanded and then truncated up to the second order term, leading to a quadratic and strictly convex form with respect to the parameters under consideration. Thus, a trivial optimization step leads to a non-iterative second order reconstruction algorithm. As a result, the reconstruction process becomes very robust with respect to noisy data and independent of any initial guess. Finally, in order to show the effectiveness of the devised reconstruction algorithm, some numerical experiments into two spatial dimensions are presented, taking into account total and partial boundary measurements.

  9. Physically corrected forward operators for induced emission tomography: a simulation study

    NASA Astrophysics Data System (ADS)

    Viganò, Nicola Roberto; Solé, Vicente Armando

    2018-03-01

    X-ray emission tomography techniques over non-radioactive materials allow one to investigate different and important aspects of the matter that are usually not addressable with the standard x-ray transmission tomography, such as density, chemical composition and crystallographic information. However, the quantitative reconstruction of these investigated properties is hindered by additional problems, including the self-attenuation of the emitted radiation. Work has been done in the past, especially concerning x-ray fluorescence tomography, but this has always focused on solving very specific problems. The novelty of this work resides in addressing the problem of induced emission tomography from a much wider perspective, introducing a unified discrete representation that can be used to modify existing algorithms to reconstruct the data of the different types of experiments. The direct outcome is a clear and easy mathematical description of the implementation details of such algorithms, despite small differences in geometry and other practical aspects, but also the possibility to express the reconstruction as a minimization problem, allowing the use of variational methods, and a more flexible modeling of the noise involved in the detection process. In addition, we look at the results of a few selected simulated data reconstructions that describe the effect of physical corrections like the self-attenuation, and the response to noise of the adapted reconstruction algorithms.

  10. SART-Type Half-Threshold Filtering Approach for CT Reconstruction

    PubMed Central

    YU, HENGYONG; WANG, GE

    2014-01-01

    The ℓ1 regularization problem has been widely used to solve the sparsity constrained problems. To enhance the sparsity constraint for better imaging performance, a promising direction is to use the ℓp norm (0 < p < 1) and solve the ℓp minimization problem. Very recently, Xu et al. developed an analytic solution for the ℓ1∕2 regularization via an iterative thresholding operation, which is also referred to as half-threshold filtering. In this paper, we design a simultaneous algebraic reconstruction technique (SART)-type half-threshold filtering framework to solve the computed tomography (CT) reconstruction problem. In the medical imaging filed, the discrete gradient transform (DGT) is widely used to define the sparsity. However, the DGT is noninvertible and it cannot be applied to half-threshold filtering for CT reconstruction. To demonstrate the utility of the proposed SART-type half-threshold filtering framework, an emphasis of this paper is to construct a pseudoinverse transforms for DGT. The proposed algorithms are evaluated with numerical and physical phantom data sets. Our results show that the SART-type half-threshold filtering algorithms have great potential to improve the reconstructed image quality from few and noisy projections. They are complementary to the counterparts of the state-of-the-art soft-threshold filtering and hard-threshold filtering. PMID:25530928

  11. Reconstructing Networks from Profit Sequences in Evolutionary Games via a Multiobjective Optimization Approach with Lasso Initialization

    PubMed Central

    Wu, Kai; Liu, Jing; Wang, Shuai

    2016-01-01

    Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy. PMID:27886244

  12. SART-Type Half-Threshold Filtering Approach for CT Reconstruction.

    PubMed

    Yu, Hengyong; Wang, Ge

    2014-01-01

    The [Formula: see text] regularization problem has been widely used to solve the sparsity constrained problems. To enhance the sparsity constraint for better imaging performance, a promising direction is to use the [Formula: see text] norm (0 < p < 1) and solve the [Formula: see text] minimization problem. Very recently, Xu et al. developed an analytic solution for the [Formula: see text] regularization via an iterative thresholding operation, which is also referred to as half-threshold filtering. In this paper, we design a simultaneous algebraic reconstruction technique (SART)-type half-threshold filtering framework to solve the computed tomography (CT) reconstruction problem. In the medical imaging filed, the discrete gradient transform (DGT) is widely used to define the sparsity. However, the DGT is noninvertible and it cannot be applied to half-threshold filtering for CT reconstruction. To demonstrate the utility of the proposed SART-type half-threshold filtering framework, an emphasis of this paper is to construct a pseudoinverse transforms for DGT. The proposed algorithms are evaluated with numerical and physical phantom data sets. Our results show that the SART-type half-threshold filtering algorithms have great potential to improve the reconstructed image quality from few and noisy projections. They are complementary to the counterparts of the state-of-the-art soft-threshold filtering and hard-threshold filtering.

  13. Reconstructing Networks from Profit Sequences in Evolutionary Games via a Multiobjective Optimization Approach with Lasso Initialization

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Jing; Wang, Shuai

    2016-11-01

    Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy.

  14. 40 CFR Table 5 to Subpart Zzzz of... - Initial Compliance With Emission Limitations and Operating Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... demonstrated initial compliance if . . . 1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP...

  15. Design of an essentially non-oscillatory reconstruction procedure on finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, R.

    1991-01-01

    An essentially non-oscillatory reconstruction for functions defined on finite-element type meshes was designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitrary meshes and the reconstruction of a function from its average in the control volumes surrounding the nodes of the mesh. Concerning the first problem, we have studied the behavior of the highest coefficients of the Lagrange interpolation function which may admit discontinuities of locally regular curves. This enables us to choose the best stencil for the interpolation. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, because of the very nature of the mesh, the only method that may work is the so called reconstruction via deconvolution method. Unfortunately, it is well suited only for regular meshes as we show, but we also show how to overcome this difficulty. The global method has the expected order of accuracy but is conservative up to a high order quadrature formula only. Some numerical examples are given which demonstrate the efficiency of the method.

  16. An interior-point method for total variation regularized positron emission tomography image reconstruction

    NASA Astrophysics Data System (ADS)

    Bai, Bing

    2012-03-01

    There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.

  17. Pan-sharpening via compressed superresolution reconstruction and multidictionary learning

    NASA Astrophysics Data System (ADS)

    Shi, Cheng; Liu, Fang; Li, Lingling; Jiao, Licheng; Hao, Hongxia; Shang, Ronghua; Li, Yangyang

    2018-01-01

    In recent compressed sensing (CS)-based pan-sharpening algorithms, pan-sharpening performance is affected by two key problems. One is that there are always errors between the high-resolution panchromatic (HRP) image and the linear weighted high-resolution multispectral (HRM) image, resulting in spatial and spectral information lost. The other is that the dictionary construction process depends on the nontruth training samples. These problems have limited applications to CS-based pan-sharpening algorithm. To solve these two problems, we propose a pan-sharpening algorithm via compressed superresolution reconstruction and multidictionary learning. Through a two-stage implementation, compressed superresolution reconstruction model reduces the error effectively between the HRP and the linear weighted HRM images. Meanwhile, the multidictionary with ridgelet and curvelet is learned for both the two stages in the superresolution reconstruction process. Since ridgelet and curvelet can better capture the structure and directional characteristics, a better reconstruction result can be obtained. Experiments are done on the QuickBird and IKONOS satellites images. The results indicate that the proposed algorithm is competitive compared with the recent CS-based pan-sharpening methods and other well-known methods.

  18. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics

    NASA Astrophysics Data System (ADS)

    Weltje, G. J.; Prins, M. A.

    2003-04-01

    One of the outstanding problems of palaeoclimate reconstruction from physico-chemical properties of terrigenous deep-sea sediments is the fact that most basin fills are mixtures of sediment populations derived from different sources and transported to the site of deposition by different mechanisms. Conventional approaches to palaeoclimate reconstruction from deep-sea sediments, which ignore this common fact, often fail to recognise the true significance of variations in sediment properties. We formulate a set of requirements that each proposed palaeoenvironmental indicator should fulfil, and focus on the intrinsic coupling between grain size and chemical composition. A critical review of past achievements in grain-size analysis is given to provide a starting point for a conceptual model of spatio-temporal grain-size variation in terms of dynamic populations. Each dynamic population results from a characteristic combination of production and transport mechanisms that corresponds to a distinct subpopulation in the data analysed. The mathematical-statistical equivalent of the conceptual model may be solved by means of the end-member modelling algorithm EMMA. Applications of the model to several ocean basins are discussed, as well as methods to examine the validity of the palaeoclimate reconstructions.

  19. Waffle mode error in the AEOS adaptive optics point-spread function

    NASA Astrophysics Data System (ADS)

    Makidon, Russell B.; Sivaramakrishnan, Anand; Roberts, Lewis C., Jr.; Oppenheimer, Ben R.; Graham, James R.

    2003-02-01

    Adaptive optics (AO) systems have improved astronomical imaging capabilities significantly over the last decade, and have the potential to revolutionize the kinds of science done with 4-5m class ground-based telescopes. However, provided sufficient detailed study and analysis, existing AO systems can be improved beyond their original specified error budgets. Indeed, modeling AO systems has been a major activity in the past decade: sources of noise in the atmosphere and the wavefront sensing WFS) control loop have received a great deal of attention, and many detailed and sophisticated control-theoretic and numerical models predicting AO performance are already in existence. However, in terms of AO system performance improvements, wavefront reconstruction (WFR) and wavefront calibration techniques have commanded relatively little attention. We elucidate the nature of some of these reconstruction problems, and demonstrate their existence in data from the AEOS AO system. We simulate the AO correction of AEOS in the I-band, and show that the magnitude of the `waffle mode' error in the AEOS reconstructor is considerably larger than expected. We suggest ways of reducing the magnitude of this error, and, in doing so, open up ways of understanding how wavefront reconstruction might handle bad actuators and partially-illuminated WFS subapertures.

  20. Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality.

    PubMed

    Yang, Guanxue; Wang, Lin; Wang, Xiaofan

    2017-06-07

    Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior information for subsequent model selection, we put forward a general framework for nonlinear causal network reconstruction from time-series with limited observations. With obtaining multi-source datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and directionality of complex networked systems, namely group lasso nonlinear conditional granger causality. Specially, our method can exploit different sets of radial basis functions to approximate the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables selection. The performance characteristic of our approach is firstly assessed with two types of simulated datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity are also discussed. All of the results demonstrate that the proposed method performs better in terms of higher area under precision-recall curve.

  1. Hydrology and sediment budget of Los Laureles Canyon, Tijuana, MX: Modelling channel, gully, and rill erosion with 3D photo-reconstruction, CONCEPTS, and AnnAGNPS

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kristine; Gudiño, Napoleon; Biggs, Trent; Castillo, Carlos; Langendoen, Eddy; Bingner, Ron; Taguas, Encarnación; Liden, Douglas; Yuan, Yongping

    2015-04-01

    Several watersheds cross the US-Mexico boundary, resulting in trans-boundary environmental problems. Erosion in Tijuana, Mexico, increases the rate of sediment deposition in the Tijuana Estuary in the United States, altering the structure and function of the ecosystem. The well-being of residents in Tijuana is compromised by damage to infrastructure and homes built adjacent to stream channels, gully formation in dirt roads, and deposition of trash. We aim to understand the dominant source of sediment contributing to the sediment budget of the watershed (channel, gully, or rill erosion), where the hotspots of erosion are located, and what the impact of future planned and unplanned land use changes and Best Management Practices (BMPs) will be on sediment and storm flow. We will be using a mix of field methods, including 3D photo-reconstruction of stream channels, with two models, CONCEPTS and AnnAGNPS to constrain estimates of the sediment budget and impacts of land use change. Our research provides an example of how 3D photo-reconstruction and Structure from Motion (SfM) can be used to model channel evolution.

  2. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting.

    PubMed

    Assländer, Jakob; Cloos, Martijn A; Knoll, Florian; Sodickson, Daniel K; Hennig, Jürgen; Lattanzi, Riccardo

    2018-01-01

    The proposed reconstruction framework addresses the reconstruction accuracy, noise propagation and computation time for magnetic resonance fingerprinting. Based on a singular value decomposition of the signal evolution, magnetic resonance fingerprinting is formulated as a low rank (LR) inverse problem in which one image is reconstructed for each singular value under consideration. This LR approximation of the signal evolution reduces the computational burden by reducing the number of Fourier transformations. Also, the LR approximation improves the conditioning of the problem, which is further improved by extending the LR inverse problem to an augmented Lagrangian that is solved by the alternating direction method of multipliers. The root mean square error and the noise propagation are analyzed in simulations. For verification, in vivo examples are provided. The proposed LR alternating direction method of multipliers approach shows a reduced root mean square error compared to the original fingerprinting reconstruction, to a LR approximation alone and to an alternating direction method of multipliers approach without a LR approximation. Incorporating sensitivity encoding allows for further artifact reduction. The proposed reconstruction provides robust convergence, reduced computational burden and improved image quality compared to other magnetic resonance fingerprinting reconstruction approaches evaluated in this study. Magn Reson Med 79:83-96, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Cell-centered high-order hyperbolic finite volume method for diffusion equation on unstructured grids

    NASA Astrophysics Data System (ADS)

    Lee, Euntaek; Ahn, Hyung Taek; Luo, Hong

    2018-02-01

    We apply a hyperbolic cell-centered finite volume method to solve a steady diffusion equation on unstructured meshes. This method, originally proposed by Nishikawa using a node-centered finite volume method, reformulates the elliptic nature of viscous fluxes into a set of augmented equations that makes the entire system hyperbolic. We introduce an efficient and accurate solution strategy for the cell-centered finite volume method. To obtain high-order accuracy for both solution and gradient variables, we use a successive order solution reconstruction: constant, linear, and quadratic (k-exact) reconstruction with an efficient reconstruction stencil, a so-called wrapping stencil. By the virtue of the cell-centered scheme, the source term evaluation was greatly simplified regardless of the solution order. For uniform schemes, we obtain the same order of accuracy, i.e., first, second, and third orders, for both the solution and its gradient variables. For hybrid schemes, recycling the gradient variable information for solution variable reconstruction makes one order of additional accuracy, i.e., second, third, and fourth orders, possible for the solution variable with less computational work than needed for uniform schemes. In general, the hyperbolic method can be an effective solution technique for diffusion problems, but instability is also observed for the discontinuous diffusion coefficient cases, which brings necessity for further investigation about the monotonicity preserving hyperbolic diffusion method.

  4. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    PubMed

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  5. Overview of 3D-TRACE, a NASA Initiative in Three-Dimensional Tomography of the Aerosol-Cloud Environment

    NASA Astrophysics Data System (ADS)

    Davis, Anthony; Diner, David; Yanovsky, Igor; Garay, Michael; Xu, Feng; Bal, Guillaume; Schechner, Yoav; Aides, Amit; Qu, Zheng; Emde, Claudia

    2013-04-01

    Remote sensing is a key tool for sorting cloud ensembles by dynamical state, aerosol environments by source region, and establishing causal relationships between aerosol amounts, type, and cloud microphysics-the so-called indirect aerosol climate impacts, and one of the main sources of uncertainty in current climate models. Current satellite imagers use data processing approaches that invariably start with cloud detection/masking to isolate aerosol air-masses from clouds, and then rely on one-dimensional (1D) radiative transfer (RT) to interpret the aerosol and cloud measurements in isolation. Not only does this lead to well-documented biases for the estimates of aerosol radiative forcing and cloud optical depths in current missions, but it is fundamentally inadequate for future missions such as EarthCARE where capturing the complex, three-dimensional (3D) interactions between clouds and aerosols is a primary objective. In order to advance the state of the art, the next generation of satellite information processing systems must incorporate technologies that will enable the treatment of the atmosphere as a fully 3D environment, represented more realistically as a continuum. At one end, there is an optically thin background dominated by aerosols and molecular scattering that is strongly stratified and relatively homogeneous in the horizontal. At the other end, there are optically thick embedded elements, clouds and aerosol plumes, which can be more or less uniform and quasi-planar or else highly 3D with boundaries in all directions; in both cases, strong internal variability may be present. To make this paradigm shift possible, we propose to combine the standard models for satellite signal prediction physically grounded in 1D and 3D RT, both scalar and vector, with technologies adapted from biomedical imaging, digital image processing, and computer vision. This will enable us to demonstrate how the 3D distribution of atmospheric constituents, and their associated microphysical properties, can be reconstructed from multi-angle/multi-spectral imaging radiometry and, more and more, polarimetry. Specific technologies of interest are computed tomography (reconstruction from projections), optical tomography (using cross-pixel radiation transport in the diffusion limit), stereoscopy (depth/height retrievals), blind source and scale separation (signal unmixing), and disocclusion (information recovery in the presence of obstructions). Later on, these potentially powerful inverse problem solutions will be fully integrated in a versatile satellite data analysis toolbox. At present, we can report substantial progress at the component level. Specifically, we will focus on the most elementary problems in atmospheric tomography with an emphasis on the vastly under-exploited class of multi-pixel techniques. One basic problem is to infer the outer shape and mean opacity of 3D clouds, along with a bulk measure of cloud particle size. Another is to separate high and low cloud layers based on their characteristically different spatial textures. Yet another is to reconstruct the 3D spatial distribution of aerosol density based on passive imaging. This suite of independent feasibility studies amounts to a compelling proofof- concept for the ambitious 3D-Tomographic Reconstruction of the Aerosol-Cloud Environment (3D-TRACE) project as a whole.

  6. Estimated Accuracy of Three Common Trajectory Statistical Methods

    NASA Technical Reports Server (NTRS)

    Kabashnikov, Vitaliy P.; Chaikovsky, Anatoli P.; Kucsera, Tom L.; Metelskaya, Natalia S.

    2011-01-01

    Three well-known trajectory statistical methods (TSMs), namely concentration field (CF), concentration weighted trajectory (CWT), and potential source contribution function (PSCF) methods were tested using known sources and artificially generated data sets to determine the ability of TSMs to reproduce spatial distribution of the sources. In the works by other authors, the accuracy of the trajectory statistical methods was estimated for particular species and at specified receptor locations. We have obtained a more general statistical estimation of the accuracy of source reconstruction and have found optimum conditions to reconstruct source distributions of atmospheric trace substances. Only virtual pollutants of the primary type were considered. In real world experiments, TSMs are intended for application to a priori unknown sources. Therefore, the accuracy of TSMs has to be tested with all possible spatial distributions of sources. An ensemble of geographical distributions of virtual sources was generated. Spearman s rank order correlation coefficient between spatial distributions of the known virtual and the reconstructed sources was taken to be a quantitative measure of the accuracy. Statistical estimates of the mean correlation coefficient and a range of the most probable values of correlation coefficients were obtained. All the TSMs that were considered here showed similar close results. The maximum of the ratio of the mean correlation to the width of the correlation interval containing the most probable correlation values determines the optimum conditions for reconstruction. An optimal geographical domain roughly coincides with the area supplying most of the substance to the receptor. The optimal domain s size is dependent on the substance decay time. Under optimum reconstruction conditions, the mean correlation coefficients can reach 0.70 0.75. The boundaries of the interval with the most probable correlation values are 0.6 0.9 for the decay time of 240 h and 0.5 0.95 for the decay time of 12 h. The best results of source reconstruction can be expected for the trace substances with a decay time on the order of several days. Although the methods considered in this paper do not guarantee high accuracy they are computationally simple and fast. Using the TSMs in optimum conditions and taking into account the range of uncertainties, one can obtain a first hint on potential source areas.

  7. Method for image reconstruction of moving radionuclide source distribution

    DOEpatents

    Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick

    2012-12-18

    A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.

  8. 40 CFR 63.1346 - Standards for new or reconstructed raw material dryers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for new or reconstructed raw... Industry Emission Standards and Operating Limits § 63.1346 Standards for new or reconstructed raw material dryers. (a) New or reconstructed raw material dryers located at facilities that are major sources can not...

  9. Markov prior-based block-matching algorithm for superdimension reconstruction of porous media

    NASA Astrophysics Data System (ADS)

    Li, Yang; He, Xiaohai; Teng, Qizhi; Feng, Junxi; Wu, Xiaohong

    2018-04-01

    A superdimension reconstruction algorithm is used for the reconstruction of three-dimensional (3D) structures of a porous medium based on a single two-dimensional image. The algorithm borrows the concepts of "blocks," "learning," and "dictionary" from learning-based superresolution reconstruction and applies them to the 3D reconstruction of a porous medium. In the neighborhood-matching process of the conventional superdimension reconstruction algorithm, the Euclidean distance is used as a criterion, although it may not really reflect the structural correlation between adjacent blocks in an actual situation. Hence, in this study, regular items are adopted as prior knowledge in the reconstruction process, and a Markov prior-based block-matching algorithm for superdimension reconstruction is developed for more accurate reconstruction. The algorithm simultaneously takes into consideration the probabilistic relationship between the already reconstructed blocks in three different perpendicular directions (x , y , and z ) and the block to be reconstructed, and the maximum value of the probability product of the blocks to be reconstructed (as found in the dictionary for the three directions) is adopted as the basis for the final block selection. Using this approach, the problem of an imprecise spatial structure caused by a point simulation can be overcome. The problem of artifacts in the reconstructed structure is also addressed through the addition of hard data and by neighborhood matching. To verify the improved reconstruction accuracy of the proposed method, the statistical and morphological features of the results from the proposed method and traditional superdimension reconstruction method are compared with those of the target system. The proposed superdimension reconstruction algorithm is confirmed to enable a more accurate reconstruction of the target system while also eliminating artifacts.

  10. Mandible reconstruction: History, state of the art and persistent problems.

    PubMed

    Ferreira, José J; Zagalo, Carlos M; Oliveira, Marta L; Correia, André M; Reis, Ana R

    2015-06-01

    Mandibular reconstruction has been experiencing an amazing evolution. Several different approaches are used to reconstruct this bone and therefore have a fundamental role in the recovery of oral functions. This review aims to highlight the persistent problems associated with the approaches identified, whether bone grafts or prosthetic devices are used. A brief summary of the historical evolution of the surgical procedures is presented, as well as an insight into possible future pathways. A literature review was conducted from September to December 2012 using the PubMed database. The keyword used was "mandible reconstruction." Articles published in the last three years were included as well as the relevant references from those articles and the "historical articles" were referred. This research resulted in a monograph that this article aims to summarize. Titanium plates, bone grafts, pediculate flaps, free osteomyocutaneous flaps, rapid prototyping, and tissue engineering strategies are some of the identified possibilities. The classical approaches present considerable associated morbidity donor-site-related problems. Research that results in the development of new prosthetics devices is needed. A new prosthetic approach could minimize the identified problems and offer the patients more predictable, affordable, and comfortable solutions. This review, while affirming the evolution and the good results found with the actual approaches, emphasizes the negative aspects that still subsist. Thus, it shows that mandible reconstruction is not a closed issue. On the contrary, it remains as a research field where new findings could have a direct positive impact on patients' life quality. The identification of the persistent problems reveals the characteristics to be considered in a new prosthetic device. This could overcome the current difficulties and result in more comfortable solutions. Medical teams have the responsibility to keep patients informed about the predictable problems related with each elected approach, even understanding that a perfect reconstruction is a secondary goal when compared with maintenance of life. © The International Society for Prosthetics and Orthotics 2014.

  11. Using Local History, Primary Source Material, and Comparative History to Teach Reconstruction.

    ERIC Educational Resources Information Center

    Adomanis, James F.

    1989-01-01

    Suggests using local history, primary source material, and comparative history to alleviate the boredom most students experience when studying the Reconstruction period of U.S. history. Provides an example of comparative history usage through a discussion of ante-bellum Maryland and the history of Liberia. (KO)

  12. 40 CFR Table 4 to Subpart Eeee of... - Work Practice Standards

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline) Pt. 63, Subpt. EEEE... at an existing, reconstructed, or new affected source meeting any set of tank capacity and organic..., reconstructed, or new affected source meeting any set of tank capacity and organic HAP vapor pressure criteria...

  13. 40 CFR 63.345 - Provisions for new and reconstructed sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electroplating, or chromium anodizing); (viii) A description of the air pollution control technique to be used to... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.345 Provisions for new and reconstructed sources. (a) This section identifies...

  14. 40 CFR 63.345 - Provisions for new and reconstructed sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electroplating, or chromium anodizing); (viii) A description of the air pollution control technique to be used to... National Emission Standards for Chromium Emissions From Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks § 63.345 Provisions for new and reconstructed sources. (a) This section identifies...

  15. 40 CFR 63.345 - Provisions for new and reconstructed sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... completion dates of the construction or reconstruction; (vi) The anticipated date of (initial) startup of the affected source; (vii) The type of process operation to be performed (hard or decorative chromium... startup had not occurred before January 25, 1995, the notification shall be submitted as soon as...

  16. 40 CFR 63.345 - Provisions for new and reconstructed sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... completion dates of the construction or reconstruction; (vi) The anticipated date of (initial) startup of the affected source; (vii) The type of process operation to be performed (hard or decorative chromium... startup had not occurred before January 25, 1995, the notification shall be submitted as soon as...

  17. 40 CFR 63.345 - Provisions for new and reconstructed sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... completion dates of the construction or reconstruction; (vi) The anticipated date of (initial) startup of the affected source; (vii) The type of process operation to be performed (hard or decorative chromium... startup had not occurred before January 25, 1995, the notification shall be submitted as soon as...

  18. Initial evaluation of discrete orthogonal basis reconstruction of ECT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, E.B.; Donohue, K.D.

    1996-12-31

    Discrete orthogonal basis restoration (DOBR) is a linear, non-iterative, and robust method for solving inverse problems for systems characterized by shift-variant transfer functions. This simulation study evaluates the feasibility of using DOBR for reconstructing emission computed tomographic (ECT) images. The imaging system model uses typical SPECT parameters and incorporates the effects of attenuation, spatially-variant PSF, and Poisson noise in the projection process. Sample reconstructions and statistical error analyses for a class of digital phantoms compare the DOBR performance for Hartley and Walsh basis functions. Test results confirm that DOBR with either basis set produces images with good statistical properties. Nomore » problems were encountered with reconstruction instability. The flexibility of the DOBR method and its consistent performance warrants further investigation of DOBR as a means of ECT image reconstruction.« less

  19. Solving Large-Scale Inverse Magnetostatic Problems using the Adjoint Method

    PubMed Central

    Bruckner, Florian; Abert, Claas; Wautischer, Gregor; Huber, Christian; Vogler, Christoph; Hinze, Michael; Suess, Dieter

    2017-01-01

    An efficient algorithm for the reconstruction of the magnetization state within magnetic components is presented. The occurring inverse magnetostatic problem is solved by means of an adjoint approach, based on the Fredkin-Koehler method for the solution of the forward problem. Due to the use of hybrid FEM-BEM coupling combined with matrix compression techniques the resulting algorithm is well suited for large-scale problems. Furthermore the reconstruction of the magnetization state within a permanent magnet as well as an optimal design application are demonstrated. PMID:28098851

  20. Design of an essentially non-oscillatory reconstruction procedure in finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, Remi

    1992-01-01

    An essentially non oscillatory reconstruction for functions defined on finite element type meshes is designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitary meshes and the reconstruction of a function from its averages in the control volumes surrounding the nodes of the mesh. Concerning the first problem, the behavior of the highest coefficients of two polynomial interpolations of a function that may admit discontinuities of locally regular curves is studied: the Lagrange interpolation and an approximation such that the mean of the polynomial on any control volume is equal to that of the function to be approximated. This enables the best stencil for the approximation to be chosen. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, two methods were studied: one based on an adaptation of the so called reconstruction via deconvolution method to irregular meshes and one that lies on the approximation on the mean as defined above. The first method is conservative up to a quadrature formula and the second one is exactly conservative. The two methods have the expected order of accuracy, but the second one is much less expensive than the first one. Some numerical examples are given which demonstrate the efficiency of the reconstruction.

  1. Error analysis and correction in wavefront reconstruction from the transport-of-intensity equation

    PubMed Central

    Barbero, Sergio; Thibos, Larry N.

    2007-01-01

    Wavefront reconstruction from the transport-of-intensity equation (TIE) is a well-posed inverse problem given smooth signals and appropriate boundary conditions. However, in practice experimental errors lead to an ill-condition problem. A quantitative analysis of the effects of experimental errors is presented in simulations and experimental tests. The relative importance of numerical, misalignment, quantization, and photodetection errors are shown. It is proved that reduction of photodetection noise by wavelet filtering significantly improves the accuracy of wavefront reconstruction from simulated and experimental data. PMID:20052302

  2. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  3. Graph-cut based discrete-valued image reconstruction.

    PubMed

    Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim

    2015-05-01

    Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.

  4. Bitzer's Model Reconstructed.

    ERIC Educational Resources Information Center

    Lybarger, Scott; Smith, Craig R.

    1996-01-01

    Reconstructs Lloyd Bitzer's situational model to serve as a guide for the generation of multiperspectival critical assessments of rhetorical discourse. Uses two of President Bush's speeches on the drug crisis to illustrate how the reconstructed model can account for such modern problems as multiple audiences, perceptions, and exigencies. (PA)

  5. Education for Reconstruction.

    ERIC Educational Resources Information Center

    Phillips, David; And Others

    This report describes the main questions that various international agencies must address in order to reconstruct education in countries that have experienced crisis. "Crisis" is defined as war, natural disaster, and extreme political and economic upheaval. Many of the problems of educational reconstruction with which the Allies contended in…

  6. 3D reconstruction software comparison for short sequences

    NASA Astrophysics Data System (ADS)

    Strupczewski, Adam; Czupryński, BłaŻej

    2014-11-01

    Large scale multiview reconstruction is recently a very popular area of research. There are many open source tools that can be downloaded and run on a personal computer. However, there are few, if any, comparisons between all the available software in terms of accuracy on small datasets that a single user can create. The typical datasets for testing of the software are archeological sites or cities, comprising thousands of images. This paper presents a comparison of currently available open source multiview reconstruction software for small datasets. It also compares the open source solutions with a simple structure from motion pipeline developed by the authors from scratch with the use of OpenCV and Eigen libraries.

  7. Automatic alignment for three-dimensional tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Tristan; Maretzke, Simon; Joost Batenburg, K.

    2018-02-01

    In tomographic reconstruction, the goal is to reconstruct an unknown object from a collection of line integrals. Given a complete sampling of such line integrals for various angles and directions, explicit inverse formulas exist to reconstruct the object. Given noisy and incomplete measurements, the inverse problem is typically solved through a regularized least-squares approach. A challenge for both approaches is that in practice the exact directions and offsets of the x-rays are only known approximately due to, e.g. calibration errors. Such errors lead to artifacts in the reconstructed image. In the case of sufficient sampling and geometrically simple misalignment, the measurements can be corrected by exploiting so-called consistency conditions. In other cases, such conditions may not apply and we have to solve an additional inverse problem to retrieve the angles and shifts. In this paper we propose a general algorithmic framework for retrieving these parameters in conjunction with an algebraic reconstruction technique. The proposed approach is illustrated by numerical examples for both simulated data and an electron tomography dataset.

  8. Blind compressed sensing image reconstruction based on alternating direction method

    NASA Astrophysics Data System (ADS)

    Liu, Qinan; Guo, Shuxu

    2018-04-01

    In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.

  9. Visual Recognition Software for Binary Classification and Its Application to Spruce Pollen Identification

    PubMed Central

    Tcheng, David K.; Nayak, Ashwin K.; Fowlkes, Charless C.; Punyasena, Surangi W.

    2016-01-01

    Discriminating between black and white spruce (Picea mariana and Picea glauca) is a difficult palynological classification problem that, if solved, would provide valuable data for paleoclimate reconstructions. We developed an open-source visual recognition software (ARLO, Automated Recognition with Layered Optimization) capable of differentiating between these two species at an accuracy on par with human experts. The system applies pattern recognition and machine learning to the analysis of pollen images and discovers general-purpose image features, defined by simple features of lines and grids of pixels taken at different dimensions, size, spacing, and resolution. It adapts to a given problem by searching for the most effective combination of both feature representation and learning strategy. This results in a powerful and flexible framework for image classification. We worked with images acquired using an automated slide scanner. We first applied a hash-based “pollen spotting” model to segment pollen grains from the slide background. We next tested ARLO’s ability to reconstruct black to white spruce pollen ratios using artificially constructed slides of known ratios. We then developed a more scalable hash-based method of image analysis that was able to distinguish between the pollen of black and white spruce with an estimated accuracy of 83.61%, comparable to human expert performance. Our results demonstrate the capability of machine learning systems to automate challenging taxonomic classifications in pollen analysis, and our success with simple image representations suggests that our approach is generalizable to many other object recognition problems. PMID:26867017

  10. Filtered-backprojection reconstruction for a cone-beam computed tomography scanner with independent source and detector rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rit, Simon, E-mail: simon.rit@creatis.insa-lyon.fr; Clackdoyle, Rolf; Keuschnigg, Peter

    Purpose: A new cone-beam CT scanner for image-guided radiotherapy (IGRT) can independently rotate the source and the detector along circular trajectories. Existing reconstruction algorithms are not suitable for this scanning geometry. The authors propose and evaluate a three-dimensional (3D) filtered-backprojection reconstruction for this situation. Methods: The source and the detector trajectories are tuned to image a field-of-view (FOV) that is offset with respect to the center-of-rotation. The new reconstruction formula is derived from the Feldkamp algorithm and results in a similar three-step algorithm: projection weighting, ramp filtering, and weighted backprojection. Simulations of a Shepp Logan digital phantom were used tomore » evaluate the new algorithm with a 10 cm-offset FOV. A real cone-beam CT image with an 8.5 cm-offset FOV was also obtained from projections of an anthropomorphic head phantom. Results: The quality of the cone-beam CT images reconstructed using the new algorithm was similar to those using the Feldkamp algorithm which is used in conventional cone-beam CT. The real image of the head phantom exhibited comparable image quality to that of existing systems. Conclusions: The authors have proposed a 3D filtered-backprojection reconstruction for scanners with independent source and detector rotations that is practical and effective. This algorithm forms the basis for exploiting the scanner’s unique capabilities in IGRT protocols.« less

  11. Numerical reconstruction of unknown Robin inclusions inside a heat conductor by a non-iterative method

    NASA Astrophysics Data System (ADS)

    Nakamura, Gen; Wang, Haibing

    2017-05-01

    Consider the problem of reconstructing unknown Robin inclusions inside a heat conductor from boundary measurements. This problem arises from active thermography and is formulated as an inverse boundary value problem for the heat equation. In our previous works, we proposed a sampling-type method for reconstructing the boundary of the Robin inclusion and gave its rigorous mathematical justification. This method is non-iterative and based on the characterization of the solution to the so-called Neumann- to-Dirichlet map gap equation. In this paper, we give a further investigation of the reconstruction method from both the theoretical and numerical points of view. First, we clarify the solvability of the Neumann-to-Dirichlet map gap equation and establish a relation of its solution to the Green function associated with an initial-boundary value problem for the heat equation inside the Robin inclusion. This naturally provides a way of computing this Green function from the Neumann-to-Dirichlet map and explains what is the input for the linear sampling method. Assuming that the Neumann-to-Dirichlet map gap equation has a unique solution, we also show the convergence of our method for noisy measurements. Second, we give the numerical implementation of the reconstruction method for two-dimensional spatial domains. The measurements for our inverse problem are simulated by solving the forward problem via the boundary integral equation method. Numerical results are presented to illustrate the efficiency and stability of the proposed method. By using a finite sequence of transient input over a time interval, we propose a new sampling method over the time interval by single measurement which is most likely to be practical.

  12. Acceleration of image-based resolution modelling reconstruction using an expectation maximization nested algorithm.

    PubMed

    Angelis, G I; Reader, A J; Markiewicz, P J; Kotasidis, F A; Lionheart, W R; Matthews, J C

    2013-08-07

    Recent studies have demonstrated the benefits of a resolution model within iterative reconstruction algorithms in an attempt to account for effects that degrade the spatial resolution of the reconstructed images. However, these algorithms suffer from slower convergence rates, compared to algorithms where no resolution model is used, due to the additional need to solve an image deconvolution problem. In this paper, a recently proposed algorithm, which decouples the tomographic and image deconvolution problems within an image-based expectation maximization (EM) framework, was evaluated. This separation is convenient, because more computational effort can be placed on the image deconvolution problem and therefore accelerate convergence. Since the computational cost of solving the image deconvolution problem is relatively small, multiple image-based EM iterations do not significantly increase the overall reconstruction time. The proposed algorithm was evaluated using 2D simulations, as well as measured 3D data acquired on the high-resolution research tomograph. Results showed that bias reduction can be accelerated by interleaving multiple iterations of the image-based EM algorithm solving the resolution model problem, with a single EM iteration solving the tomographic problem. Significant improvements were observed particularly for voxels that were located on the boundaries between regions of high contrast within the object being imaged and for small regions of interest, where resolution recovery is usually more challenging. Minor differences were observed using the proposed nested algorithm, compared to the single iteration normally performed, when an optimal number of iterations are performed for each algorithm. However, using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer tomographic iterations (up to 70% fewer iterations for small regions). Nevertheless, the optimal number of nested image-based EM iterations is hard to be defined and it should be selected according to the given application.

  13. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems.

    PubMed

    Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A

    2017-12-01

    The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.

  14. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems

    PubMed Central

    Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.

    2017-01-01

    The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111

  15. Reconstruction of reflectance data using an interpolation technique.

    PubMed

    Abed, Farhad Moghareh; Amirshahi, Seyed Hossein; Abed, Mohammad Reza Moghareh

    2009-03-01

    A linear interpolation method is applied for reconstruction of reflectance spectra of Munsell as well as ColorChecker SG color chips from the corresponding colorimetric values under a given set of viewing conditions. Hence, different types of lookup tables (LUTs) have been created to connect the colorimetric and spectrophotometeric data as the source and destination spaces in this approach. To optimize the algorithm, different color spaces and light sources have been used to build different types of LUTs. The effects of applied color datasets as well as employed color spaces are investigated. Results of recovery are evaluated by the mean and the maximum color difference values under other sets of standard light sources. The mean and the maximum values of root mean square (RMS) error between the reconstructed and the actual spectra are also calculated. Since the speed of reflectance reconstruction is a key point in the LUT algorithm, the processing time spent for interpolation of spectral data has also been measured for each model. Finally, the performance of the suggested interpolation technique is compared with that of the common principal component analysis method. According to the results, using the CIEXYZ tristimulus values as a source space shows priority over the CIELAB color space. Besides, the colorimetric position of a desired sample is a key point that indicates the success of the approach. In fact, because of the nature of the interpolation technique, the colorimetric position of the desired samples should be located inside the color gamut of available samples in the dataset. The resultant spectra that have been reconstructed by this technique show considerable improvement in terms of RMS error between the actual and the reconstructed reflectance spectra as well as CIELAB color differences under the other light source in comparison with those obtained from the standard PCA technique.

  16. Mass-conservative reconstruction of Galerkin velocity fields for transport simulations

    NASA Astrophysics Data System (ADS)

    Scudeler, C.; Putti, M.; Paniconi, C.

    2016-08-01

    Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration values that can moreover cause the numerical solution to explode. These problems do not occur when using LN post-processed velocities.

  17. Local reconstruction in computed tomography of diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Feng; Zhang, Li; Kang, Ke-Jun; Chen, Zhi-Qiang; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia

    2007-07-01

    Computed tomography of diffraction enhanced imaging (DEI-CT) based on synchrotron radiation source has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. The authors propose a modified backprojection filtration(BPF)-type algorithm based on PI-line segments to reconstruct region of interest from truncated refraction-angle projection data in DEI-CT. The distribution of refractive index decrement in the sample can be directly estimated from its reconstruction images, which has been proved by experiments at the Beijing Synchrotron Radiation Facility. The algorithm paves the way for local reconstruction of large-size samples by the use of DEI-CT with small field of view based on synchrotron radiation source.

  18. 40 CFR 74.46 - Opt-in source permanent shutdown, reconstruction, or change in affected status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Opt-in source permanent shutdown, reconstruction, or change in affected status. 74.46 Section 74.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Tracking and Transfer...

  19. 40 CFR 74.46 - Opt-in source permanent shutdown, reconstruction, or change in affected status.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Opt-in source permanent shutdown, reconstruction, or change in affected status. 74.46 Section 74.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Tracking and Transfer...

  20. Nanoscale imaging with table-top coherent extreme ultraviolet source based on high harmonic generation

    NASA Astrophysics Data System (ADS)

    Ba Dinh, Khuong; Le, Hoang Vu; Hannaford, Peter; Van Dao, Lap

    2017-08-01

    A table-top coherent diffractive imaging experiment on a sample with biological-like characteristics using a focused narrow-bandwidth high harmonic source around 30 nm is performed. An approach involving a beam stop and a new reconstruction algorithm to enhance the quality of reconstructed the image is described.

  1. Robust video transmission with distributed source coded auxiliary channel.

    PubMed

    Wang, Jiajun; Majumdar, Abhik; Ramchandran, Kannan

    2009-12-01

    We propose a novel solution to the problem of robust, low-latency video transmission over lossy channels. Predictive video codecs, such as MPEG and H.26x, are very susceptible to prediction mismatch between encoder and decoder or "drift" when there are packet losses. These mismatches lead to a significant degradation in the decoded quality. To address this problem, we propose an auxiliary codec system that sends additional information alongside an MPEG or H.26x compressed video stream to correct for errors in decoded frames and mitigate drift. The proposed system is based on the principles of distributed source coding and uses the (possibly erroneous) MPEG/H.26x decoder reconstruction as side information at the auxiliary decoder. The distributed source coding framework depends upon knowing the statistical dependency (or correlation) between the source and the side information. We propose a recursive algorithm to analytically track the correlation between the original source frame and the erroneous MPEG/H.26x decoded frame. Finally, we propose a rate-distortion optimization scheme to allocate the rate used by the auxiliary encoder among the encoding blocks within a video frame. We implement the proposed system and present extensive simulation results that demonstrate significant gains in performance both visually and objectively (on the order of 2 dB in PSNR over forward error correction based solutions and 1.5 dB in PSNR over intrarefresh based solutions for typical scenarios) under tight latency constraints.

  2. Regularization iteration imaging algorithm for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Tong, Guowei; Liu, Shi; Chen, Hongyan; Wang, Xueyao

    2018-03-01

    The image reconstruction method plays a crucial role in real-world applications of the electrical capacitance tomography technique. In this study, a new cost function that simultaneously considers the sparsity and low-rank properties of the imaging targets is proposed to improve the quality of the reconstruction images, in which the image reconstruction task is converted into an optimization problem. Within the framework of the split Bregman algorithm, an iterative scheme that splits a complicated optimization problem into several simpler sub-tasks is developed to solve the proposed cost function efficiently, in which the fast-iterative shrinkage thresholding algorithm is introduced to accelerate the convergence. Numerical experiment results verify the effectiveness of the proposed algorithm in improving the reconstruction precision and robustness.

  3. Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography.

    PubMed

    Hielscher, Andreas H; Bartel, Sebastian

    2004-02-01

    Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.

  4. When holography meets coherent diffraction imaging.

    PubMed

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.

  5. A phylogenetic Kalman filter for ancestral trait reconstruction using molecular data.

    PubMed

    Lartillot, Nicolas

    2014-02-15

    Correlation between life history or ecological traits and genomic features such as nucleotide or amino acid composition can be used for reconstructing the evolutionary history of the traits of interest along phylogenies. Thus far, however, such ancestral reconstructions have been done using simple linear regression approaches that do not account for phylogenetic inertia. These reconstructions could instead be seen as a genuine comparative regression problem, such as formalized by classical generalized least-square comparative methods, in which the trait of interest and the molecular predictor are represented as correlated Brownian characters coevolving along the phylogeny. Here, a Bayesian sampler is introduced, representing an alternative and more efficient algorithmic solution to this comparative regression problem, compared with currently existing generalized least-square approaches. Technically, ancestral trait reconstruction based on a molecular predictor is shown to be formally equivalent to a phylogenetic Kalman filter problem, for which backward and forward recursions are developed and implemented in the context of a Markov chain Monte Carlo sampler. The comparative regression method results in more accurate reconstructions and a more faithful representation of uncertainty, compared with simple linear regression. Application to the reconstruction of the evolution of optimal growth temperature in Archaea, using GC composition in ribosomal RNA stems and amino acid composition of a sample of protein-coding genes, confirms previous findings, in particular, pointing to a hyperthermophilic ancestor for the kingdom. The program is freely available at www.phylobayes.org.

  6. Self-prior strategy for organ reconstruction in fluorescence molecular tomography

    PubMed Central

    Zhou, Yuan; Chen, Maomao; Su, Han; Luo, Jianwen

    2017-01-01

    The purpose of this study is to propose a strategy for organ reconstruction in fluorescence molecular tomography (FMT) without prior information from other imaging modalities, and to overcome the high cost and ionizing radiation caused by the traditional structural prior strategy. The proposed strategy is designed as an iterative architecture to solve the inverse problem of FMT. In each iteration, a short time Fourier transform (STFT) based algorithm is used to extract the self-prior information in the space-frequency energy spectrum with the assumption that the regions with higher fluorescence concentration have larger energy intensity, then the cost function of the inverse problem is modified by the self-prior information, and lastly an iterative Laplacian regularization algorithm is conducted to solve the updated inverse problem and obtains the reconstruction results. Simulations and in vivo experiments on liver reconstruction are carried out to test the performance of the self-prior strategy on organ reconstruction. The organ reconstruction results obtained by the proposed self-prior strategy are closer to the ground truth than those obtained by the iterative Tikhonov regularization (ITKR) method (traditional non-prior strategy). Significant improvements are shown in the evaluation indexes of relative locational error (RLE), relative error (RE) and contrast-to-noise ratio (CNR). The self-prior strategy improves the organ reconstruction results compared with the non-prior strategy and also overcomes the shortcomings of the traditional structural prior strategy. Various applications such as metabolic imaging and pharmacokinetic study can be aided by this strategy. PMID:29082094

  7. Self-prior strategy for organ reconstruction in fluorescence molecular tomography.

    PubMed

    Zhou, Yuan; Chen, Maomao; Su, Han; Luo, Jianwen

    2017-10-01

    The purpose of this study is to propose a strategy for organ reconstruction in fluorescence molecular tomography (FMT) without prior information from other imaging modalities, and to overcome the high cost and ionizing radiation caused by the traditional structural prior strategy. The proposed strategy is designed as an iterative architecture to solve the inverse problem of FMT. In each iteration, a short time Fourier transform (STFT) based algorithm is used to extract the self-prior information in the space-frequency energy spectrum with the assumption that the regions with higher fluorescence concentration have larger energy intensity, then the cost function of the inverse problem is modified by the self-prior information, and lastly an iterative Laplacian regularization algorithm is conducted to solve the updated inverse problem and obtains the reconstruction results. Simulations and in vivo experiments on liver reconstruction are carried out to test the performance of the self-prior strategy on organ reconstruction. The organ reconstruction results obtained by the proposed self-prior strategy are closer to the ground truth than those obtained by the iterative Tikhonov regularization (ITKR) method (traditional non-prior strategy). Significant improvements are shown in the evaluation indexes of relative locational error (RLE), relative error (RE) and contrast-to-noise ratio (CNR). The self-prior strategy improves the organ reconstruction results compared with the non-prior strategy and also overcomes the shortcomings of the traditional structural prior strategy. Various applications such as metabolic imaging and pharmacokinetic study can be aided by this strategy.

  8. Effective learning strategies for real-time image-guided adaptive control of multiple-source hyperthermia applicators.

    PubMed

    Cheng, Kung-Shan; Dewhirst, Mark W; Stauffer, Paul R; Das, Shiva

    2010-03-01

    This paper investigates overall theoretical requirements for reducing the times required for the iterative learning of a real-time image-guided adaptive control routine for multiple-source heat applicators, as used in hyperthermia and thermal ablative therapy for cancer. Methods for partial reconstruction of the physical system with and without model reduction to find solutions within a clinically practical timeframe were analyzed. A mathematical analysis based on the Fredholm alternative theorem (FAT) was used to compactly analyze the existence and uniqueness of the optimal heating vector under two fundamental situations: (1) noiseless partial reconstruction and (2) noisy partial reconstruction. These results were coupled with a method for further acceleration of the solution using virtual source (VS) model reduction. The matrix approximation theorem (MAT) was used to choose the optimal vectors spanning the reduced-order subspace to reduce the time for system reconstruction and to determine the associated approximation error. Numerical simulations of the adaptive control of hyperthermia using VS were also performed to test the predictions derived from the theoretical analysis. A thigh sarcoma patient model surrounded by a ten-antenna phased-array applicator was retained for this purpose. The impacts of the convective cooling from blood flow and the presence of sudden increase of perfusion in muscle and tumor were also simulated. By FAT, partial system reconstruction directly conducted in the full space of the physical variables such as phases and magnitudes of the heat sources cannot guarantee reconstructing the optimal system to determine the global optimal setting of the heat sources. A remedy for this limitation is to conduct the partial reconstruction within a reduced-order subspace spanned by the first few maximum eigenvectors of the true system matrix. By MAT, this VS subspace is the optimal one when the goal is to maximize the average tumor temperature. When more than 6 sources present, the steps required for a nonlinear learning scheme is theoretically fewer than that of a linear one, however, finite number of iterative corrections is necessary for a single learning step of a nonlinear algorithm. Thus, the actual computational workload for a nonlinear algorithm is not necessarily less than that required by a linear algorithm. Based on the analysis presented herein, obtaining a unique global optimal heating vector for a multiple-source applicator within the constraints of real-time clinical hyperthermia treatments and thermal ablative therapies appears attainable using partial reconstruction with minimum norm least-squares method with supplemental equations. One way to supplement equations is the inclusion of a method of model reduction.

  9. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    PubMed Central

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  10. Super-Resolution Imagery by Frequency Sweeping.

    DTIC Science & Technology

    1980-08-15

    IMAGE RETRIEVAL The above considerations of multiwavelength holography have lead us to determining a means by which the 3-D Fourier space of the...it at a distant bright point source. The point source used need not be derived from a laser. In fact it is preferable for safety purposes to use an LED ...noise and therefore higher reconstructed image quality can be attained by using nonlaser point sources in the reconstruction such as LED or miniature

  11. Fast super-resolution estimation of DOA and DOD in bistatic MIMO Radar with off-grid targets

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun

    2018-05-01

    In this paper, we focus on the problem of joint DOA and DOD estimation in Bistatic MIMO Radar using sparse reconstruction method. In traditional ways, we usually convert the 2D parameter estimation problem into 1D parameter estimation problem by Kronecker product which will enlarge the scale of the parameter estimation problem and bring more computational burden. Furthermore, it requires that the targets must fall on the predefined grids. In this paper, a 2D-off-grid model is built which can solve the grid mismatch problem of 2D parameters estimation. Then in order to solve the joint 2D sparse reconstruction problem directly and efficiently, three kinds of fast joint sparse matrix reconstruction methods are proposed which are Joint-2D-OMP algorithm, Joint-2D-SL0 algorithm and Joint-2D-SOONE algorithm. Simulation results demonstrate that our methods not only can improve the 2D parameter estimation accuracy but also reduce the computational complexity compared with the traditional Kronecker Compressed Sensing method.

  12. Guidebook for Planning Education in Emergencies and Reconstruction

    ERIC Educational Resources Information Center

    International Institute for Educational Planning (IIEP) UNESCO, 2006

    2006-01-01

    This comprehensive guidebook will help educational planners during emergencies and reconstruction. The "Guidebook for Planning Education in Emergencies and Reconstruction" presents examples of the problems faced in emergencies, and suggests policy options and strategies that have been found useful in such situations. It is organized in six…

  13. Reconstruction of periorbital soft tissue defects.

    PubMed

    Berli, Jens U; Merbs, Shannath L; Grant, Michael P

    2014-10-01

    Because of the complex anatomy and fine mechanics of the periorbital soft tissues, the reconstruction of this region can be particularly daunting. Through a structured assessment of the defect, based on subunit analysis and thorough understanding of the surgical layers, we believe to allow the reconstructive surgeon to develop an algorithmic approach to these complex problems. The sequela of a suboptimal reconstruction do not only result in an inferior aesthetic result, but also have the potential for long-term functional problems such as epiphora, dry eye, ptosis, eyelid retraction, and thus requiring secondary surgery. There is no better time to aim for a perfect reconstruction than at the time of the initial surgery. In this chapter, we hope to encourage the reader to strengthen and recapitulate these analytical skills and present the most commonly used and studied techniques to help achieve a reproducible functional and aesthetically appealing result. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.

    PubMed

    Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo

    2018-05-03

    Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.

  15. A CLASS OF RECONSTRUCTED DISCONTINUOUS GALERKIN METHODS IN COMPUTATIONAL FLUID DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Yidong Xia; Robert Nourgaliev

    2011-05-01

    A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison.more » Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness.« less

  16. Do our reconstructions of ENSO have too much low-frequency variability?

    NASA Astrophysics Data System (ADS)

    Loope, G. R.; Overpeck, J. T.

    2017-12-01

    Reconstructing the spectrum of Pacific SST variability has proven to be difficult both because of complications with proxy systems such as tree rings and the relatively small number of records from the tropical Pacific. We show that the small number of long coral δ18O and Sr/Ca records has caused a bias towards having too much low-frequency variability in PCR, CPS, and RegEM reconstructions of Pacific variability. This occurs because the individual coral records used in the reconstructions have redder spectra than the shared signal (e.g. ENSO). This causes some of the unshared, low-frequency signal from local climate, salinity and possibly coral biology to bleed into the reconstruction. With enough chronologies in a reconstruction, this unshared noise cancels out but the problem is exacerbated in our longest reconstructions where fewer records are available. Coral proxies tend to have more low-frequency variability than SST observations so this problem is smaller but can still be seen in pseudoproxy experiments using observations and reanalysis data. The identification of this low-frequency bias in coral reconstructions helps bring the spectra of ENSO reconstructions back into line with both models and observations. Although our analysis is mostly constrained to the 20th century due to lack of sufficient data, we expect that as more long chronologies are developed, the low-frequency signal in ENSO reconstructions will be greatly reduced.

  17. [Reconstruction of tangential and circular infected bone defects].

    PubMed

    Schmidt, H G; Neikes, M; Zimmer, W

    1987-12-01

    In the treatment of bone infections the reconstruction and rehabilitation of bone defects is a problem that often requires treatment secondary to curative treatment of the infection. For the reconstruction of smaller and more extensive defects we used predominantly (92.7%) autogenous (autologous) untreated spongiosa and in only 7% of the cases allogenic (homologous) spongiosa from an organ bank, this being added if necessary. Recently the additionally introduced vascularized bone chip has become a useful extension of the therapy concept. The problems and complications of defect reconstruction are demonstrated for 705 cases of bone infection with 472 defects of different sizes, based on a comprehensive classification with defect calculation. Surgical technical approach and special aspects of after-treatment are described, as well as the results for every group of cases. We achieved stability and freedom from infection in a total of 93.7% of the patients. As was to be expected, the problems grow with the size of the defect. Particularly problematic are joint infections with adjacent extensive circular defect.

  18. Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method.

    PubMed

    Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi

    2012-11-01

    Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter

    NASA Astrophysics Data System (ADS)

    Delpueyo, D.; Balandraud, X.; Grédiac, M.

    2013-09-01

    The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.

  20. TV-based conjugate gradient method and discrete L-curve for few-view CT reconstruction of X-ray in vivo data.

    PubMed

    Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; van de Kamp, Thomas; dos Santos Rolo, Tomy; Xiao, Xianghui; Moosmann, Julian; Kashef, Jubin; Stotzka, Rainer

    2015-03-09

    High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.

  1. TV-based conjugate gradient method and discrete L-curve for few-view CT reconstruction of X-ray in vivo data

    DOE PAGES

    Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; ...

    2015-01-01

    High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration o f in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce themore » number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.« less

  2. Workflows and the Role of Images for Virtual 3d Reconstruction of no Longer Extant Historic Objects

    NASA Astrophysics Data System (ADS)

    Münster, S.

    2013-07-01

    3D reconstruction technologies have gained importance as tools for the research and visualization of no longer extant historic objects during the last decade. Within such reconstruction processes, visual media assumes several important roles: as the most important sources especially for a reconstruction of no longer extant objects, as a tool for communication and cooperation within the production process, as well as for a communication and visualization of results. While there are many discourses about theoretical issues of depiction as sources and as visualization outcomes of such projects, there is no systematic research about the importance of depiction during a 3D reconstruction process and based on empirical findings. Moreover, from a methodological perspective, it would be necessary to understand which role visual media plays during the production process and how it is affected by disciplinary boundaries and challenges specific to historic topics. Research includes an analysis of published work and case studies investigating reconstruction projects. This study uses methods taken from social sciences to gain a grounded view of how production processes would take place in practice and which functions and roles images would play within them. For the investigation of these topics, a content analysis of 452 conference proceedings and journal articles related to 3D reconstruction modeling in the field of humanities has been completed. Most of the projects described in those publications dealt with data acquisition and model building for existing objects. Only a small number of projects focused on structures that no longer or never existed physically. Especially that type of project seems to be interesting for a study of the importance of pictures as sources and as tools for interdisciplinary cooperation during the production process. In the course of the examination the authors of this paper applied a qualitative content analysis for a sample of 26 previously published project reports to depict strategies and types and three case studies of 3D reconstruction projects to evaluate evolutionary processes during such projects. The research showed that reconstructions of no longer existing historic structures are most commonly used for presentation or research purposes of large buildings or city models. Additionally, they are often realized by interdisciplinary workgroups using images as the most important source for reconstruction as far as important media for communication and quality control during the reconstruction process.

  3. A composite molecular phylogeny of living lemuroid primates.

    PubMed

    DelPero, Massimiliano; Pozzi, Luca; Masters, Judith C

    2006-01-01

    Lemuroid phylogeny is a source of lively debate among primatologists. Reconstructions based on morphological, physiological, behavioural and molecular data have yielded a diverse array of tree topologies with few nodes in common. In the last decade, molecular phylogenetic studies have grown in popularity, and a wide range of sequences has been brought to bear on the problem, but consensus has remained elusive. We present an analysis based on a composite molecular data set of approx. 6,400 bp assembled from the National Center for Biotechnology Information (NCBI) database, including both mitochondrial and nuclear genes, and diverse analytical methods. Our analysis consolidates some of the nodes that were insecure in previous reconstructions, but is still equivocal on the placement of some taxa. We conducted a similar analysis of a composite data set of approx. 3,600 bp to investigate the controversial relationships within the family Lemuridae. Here our analysis was more successful; only the position of Eulemur coronatus remained uncertain. Copyright 2006 S. Karger AG, Basel.

  4. Vector intensity reconstruction using the data completion method.

    PubMed

    Langrenne, Christophe; Garcia, Alexandre

    2013-04-01

    This paper presents an application of the data completion method (DCM) for vector intensity reconstructions. A mobile array of 36 pressure-pressure probes (72 microphones) is used to perform measurements near a planar surface. Nevertheless, since the proposed method is based on integral formulations, DCM can be applied with any kind of geometry. This method requires the knowledge of Cauchy data (pressure and velocity) on a part of the boundary of an empty domain in order to evaluate pressure and velocity on the remaining part of the boundary. Intensity vectors are calculated in the interior domain surrounded by the measurement array. This inverse acoustic problem requires the use of a regularization method to obtain a realistic solution. An experiment in a closed wooden car trunk mock-up excited by a shaker and two loudspeakers is presented. In this case, where the volume of the mock-up is small (0.61 m(3)), standing-waves and fluid structure interactions appear and show that DCM is a powerful tool to identify sources in a confined space.

  5. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-10

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  6. SU-C-207-01: Four-Dimensional Inverse Geometry Computed Tomography: Concept and Its Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K; Kim, D; Kim, T

    2015-06-15

    Purpose: In past few years, the inverse geometry computed tomography (IGCT) system has been developed to overcome shortcomings of a conventional computed tomography (CT) system such as scatter problem induced from large detector size and cone-beam artifact. In this study, we intend to present a concept of a four-dimensional (4D) IGCT system that has positive aspects above all with temporal resolution for dynamic studies and reduction of motion artifact. Methods: Contrary to conventional CT system, projection data at a certain angle in IGCT was a group of fractionated narrow cone-beam projection data, projection group (PG), acquired from multi-source array whichmore » have extremely short time gap of sequential operation between each of sources. At this, for 4D IGCT imaging, time-related data acquisition parameters were determined by combining multi-source scanning time for collecting one PG with conventional 4D CBCT data acquisition sequence. Over a gantry rotation, acquired PGs from multi-source array were tagged time and angle for 4D image reconstruction. Acquired PGs were sorted into 10 phase and image reconstructions were independently performed at each phase. Image reconstruction algorithm based upon filtered-backprojection was used in this study. Results: The 4D IGCT had uniform image without cone-beam artifact on the contrary to 4D CBCT image. In addition, the 4D IGCT images of each phase had no significant artifact induced from motion compared with 3D CT. Conclusion: The 4D IGCT image seems to give relatively accurate dynamic information of patient anatomy based on the results were more endurable than 3D CT about motion artifact. From this, it will be useful for dynamic study and respiratory-correlated radiation therapy. This work was supported by the Industrial R&D program of MOTIE/KEIT [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  7. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    PubMed

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  8. Smartphone based scalable reverse engineering by digital image correlation

    NASA Astrophysics Data System (ADS)

    Vidvans, Amey; Basu, Saurabh

    2018-03-01

    There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.

  9. Experimental investigations on airborne gravimetry based on compressed sensing.

    PubMed

    Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun

    2014-03-18

    Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements.

  10. Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing

    PubMed Central

    Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun

    2014-01-01

    Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements. PMID:24647125

  11. Regularized reconstruction of absorbing and phase objects from a single in-line hologram, application to fluid mechanics and micro-biology.

    PubMed

    Jolivet, Frédéric; Momey, Fabien; Denis, Loïc; Méès, Loïc; Faure, Nicolas; Grosjean, Nathalie; Pinston, Frédéric; Marié, Jean-Louis; Fournier, Corinne

    2018-04-02

    Reconstruction of phase objects is a central problem in digital holography, whose various applications include microscopy, biomedical imaging, and fluid mechanics. Starting from a single in-line hologram, there is no direct way to recover the phase of the diffracted wave in the hologram plane. The reconstruction of absorbing and phase objects therefore requires the inversion of the non-linear hologram formation model. We propose a regularized reconstruction method that includes several physically-grounded constraints such as bounds on transmittance values, maximum/minimum phase, spatial smoothness or the absence of any object in parts of the field of view. To solve the non-convex and non-smooth optimization problem induced by our modeling, a variable splitting strategy is applied and the closed-form solution of the sub-problem (the so-called proximal operator) is derived. The resulting algorithm is efficient and is shown to lead to quantitative phase estimation on reconstructions of accurate simulations of in-line holograms based on the Mie theory. As our approach is adaptable to several in-line digital holography configurations, we present and discuss the promising results of reconstructions from experimental in-line holograms obtained in two different applications: the tracking of an evaporating droplet (size ∼ 100μm) and the microscopic imaging of bacteria (size ∼ 1μm).

  12. 40 CFR 63.5425 - When must I start recordkeeping to determine my compliance ratio?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) and (2) of this section: (1) If the startup of your new or reconstructed affected source is before... February 27, 2002. (2) If the startup of your new or reconstructed affected source is after February 27, 2002, then you must start recordkeeping to determine your compliance ratio upon startup of your...

  13. 40 CFR 63.5425 - When must I start recordkeeping to determine my compliance ratio?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) and (2) of this section: (1) If the startup of your new or reconstructed affected source is before... February 27, 2002. (2) If the startup of your new or reconstructed affected source is after February 27, 2002, then you must start recordkeeping to determine your compliance ratio upon startup of your...

  14. 40 CFR 63.5425 - When must I start recordkeeping to determine my compliance ratio?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) and (2) of this section: (1) If the startup of your new or reconstructed affected source is before... February 27, 2002. (2) If the startup of your new or reconstructed affected source is after February 27, 2002, then you must start recordkeeping to determine your compliance ratio upon startup of your...

  15. 40 CFR 63.9495 - When do I have to comply with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... October 18, 2005. (b) If you have a new or reconstructed solvent mixer and its initial startup date is... initial startup. (c) If your friction materials manufacturing facility is an area source that increases... reconstructed sources upon startup or no later than October 18, 2002, whichever is later. (2) For any portion of...

  16. Source Plane Reconstruction of the Bright Lensed Galaxy RCSGA 032727-132609

    NASA Technical Reports Server (NTRS)

    Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Wuyts, Eva; Koester, Benjamin P.; Bayliss, Matthew B.; Barrientos, L. Felipe

    2011-01-01

    We present new HST/WFC3 imaging data of RCS2 032727-132609, a bright lensed galaxy at z=1.7 that is magnified and stretched by the lensing cluster RCS2 032727-132623. Using this new high-resolution imaging, we modify our previous lens model (which was based on ground-based data) to fully understand the lensing geometry, and use it to reconstruct the lensed galaxy in the source plane. This giant arc represents a unique opportunity to peer into 100-pc scale structures in a high redshift galaxy. This new source reconstruction will be crucial for a future analysis of the spatially-resolved rest-UV and rest-optical spectra of the brightest parts of the arc.

  17. Reconstruction of signals with unknown spectra in information field theory with parameter uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ensslin, Torsten A.; Frommert, Mona

    2011-05-15

    The optimal reconstruction of cosmic metric perturbations and other signals requires knowledge of their power spectra and other parameters. If these are not known a priori, they have to be measured simultaneously from the same data used for the signal reconstruction. We formulate the general problem of signal inference in the presence of unknown parameters within the framework of information field theory. To solve this, we develop a generic parameter-uncertainty renormalized estimation (PURE) technique. As a concrete application, we address the problem of reconstructing Gaussian signals with unknown power-spectrum with five different approaches: (i) separate maximum-a-posteriori power-spectrum measurement and subsequentmore » reconstruction, (ii) maximum-a-posteriori reconstruction with marginalized power-spectrum, (iii) maximizing the joint posterior of signal and spectrum, (iv) guessing the spectrum from the variance in the Wiener-filter map, and (v) renormalization flow analysis of the field-theoretical problem providing the PURE filter. In all cases, the reconstruction can be described or approximated as Wiener-filter operations with assumed signal spectra derived from the data according to the same recipe, but with differing coefficients. All of these filters, except the renormalized one, exhibit a perception threshold in case of a Jeffreys prior for the unknown spectrum. Data modes with variance below this threshold do not affect the signal reconstruction at all. Filter (iv) seems to be similar to the so-called Karhune-Loeve and Feldman-Kaiser-Peacock estimators for galaxy power spectra used in cosmology, which therefore should also exhibit a marginal perception threshold if correctly implemented. We present statistical performance tests and show that the PURE filter is superior to the others, especially if the post-Wiener-filter corrections are included or in case an additional scale-independent spectral smoothness prior can be adopted.« less

  18. B-Scan Based Acoustic Source Reconstruction for Magnetoacoustic Tomography with Magnetic Induction (MAT-MI)

    PubMed Central

    Mariappan, Leo; Li, Xu; He, Bin

    2011-01-01

    We present in this study an acoustic source reconstruction method using focused transducer with B mode imaging for magnetoacoustic tomography with magnetic induction (MAT-MI). MAT-MI is an imaging modality proposed for non-invasive conductivity imaging with high spatial resolution. In MAT-MI acoustic sources are generated in a conductive object by placing it in a static and a time-varying magnetic field. The acoustic waves from these sources propagate in all directions and are collected with transducers placed around the object. The collected signal is then usedto reconstruct the acoustic source distribution and to further estimate the electrical conductivity distribution of the object. A flat piston transducer acting as a point receiver has been used in previous MAT-MI systems to collect acoustic signals. In the present study we propose to use B mode scan scheme with a focused transducer that gives a signal gain in its focus region and improves the MAT-MI signal quality. A simulation protocol that can take into account different transducer designs and scan schemes for MAT-MI imaging is developed and used in our evaluation of different MAT-MI system designs. It is shown in our computer simulations that, as compared to the previous approach, the MAT-MI system using B-scan with a focused transducer allows MAT-MI imaging at a closer distance and has improved system sensitivity. In addition, the B scan imaging technique allows reconstruction of the MAT-MI acoustic sources with a discrete number of scanning locations which greatly increases the applicability of the MAT-MI approach especially when a continuous acoustic window is not available in real clinical applications. We have also conducted phantom experiments to evaluate the proposed method and the reconstructed image shows a good agreement with the target phantom. PMID:21097372

  19. DEEP WIDEBAND SINGLE POINTINGS AND MOSAICS IN RADIO INTERFEROMETRY: HOW ACCURATELY DO WE RECONSTRUCT INTENSITIES AND SPECTRAL INDICES OF FAINT SOURCES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, U.; Bhatnagar, S.; Owen, F. N., E-mail: rurvashi@nrao.edu

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μ Jy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in themore » reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.« less

  20. Optimized x-ray source scanning trajectories for iterative reconstruction in high cone-angle tomography

    NASA Astrophysics Data System (ADS)

    Kingston, Andrew M.; Myers, Glenn R.; Latham, Shane J.; Li, Heyang; Veldkamp, Jan P.; Sheppard, Adrian P.

    2016-10-01

    With the GPU computing becoming main-stream, iterative tomographic reconstruction (IR) is becoming a com- putationally viable alternative to traditional single-shot analytical methods such as filtered back-projection. IR liberates one from the continuous X-ray source trajectories required for analytical reconstruction. We present a family of novel X-ray source trajectories for large-angle CBCT. These discrete (sparsely sampled) trajectories optimally fill the space of possible source locations by maximising the degree of mutually independent information. They satisfy a discrete equivalent of Tuy's sufficiency condition and allow high cone-angle (high-flux) tomog- raphy. The highly isotropic nature of the trajectory has several advantages: (1) The average source distance is approximately constant throughout the reconstruction volume, thus avoiding the differential-magnification artefacts that plague high cone-angle helical computed tomography; (2) Reduced streaking artifacts due to e.g. X-ray beam-hardening; (3) Misalignment and component motion manifests as blur in the tomogram rather than double-edges, which is easier to automatically correct; (4) An approximately shift-invariant point-spread-function which enables filtering as a pre-conditioner to speed IR convergence. We describe these space-filling trajectories and demonstrate their above-mentioned properties compared with a traditional helical trajectories.

  1. Local motion-compensated method for high-quality 3D coronary artery reconstruction

    PubMed Central

    Liu, Bo; Bai, Xiangzhi; Zhou, Fugen

    2016-01-01

    The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method. PMID:28018741

  2. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.

    PubMed

    Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-07-21

    Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy.

  3. Surface-from-gradients without discrete integrability enforcement: A Gaussian kernel approach.

    PubMed

    Ng, Heung-Sun; Wu, Tai-Pang; Tang, Chi-Keung

    2010-11-01

    Representative surface reconstruction algorithms taking a gradient field as input enforce the integrability constraint in a discrete manner. While enforcing integrability allows the subsequent integration to produce surface heights, existing algorithms have one or more of the following disadvantages: They can only handle dense per-pixel gradient fields, smooth out sharp features in a partially integrable field, or produce severe surface distortion in the results. In this paper, we present a method which does not enforce discrete integrability and reconstructs a 3D continuous surface from a gradient or a height field, or a combination of both, which can be dense or sparse. The key to our approach is the use of kernel basis functions, which transfer the continuous surface reconstruction problem into high-dimensional space, where a closed-form solution exists. By using the Gaussian kernel, we can derive a straightforward implementation which is able to produce results better than traditional techniques. In general, an important advantage of our kernel-based method is that the method does not suffer discretization and finite approximation, both of which lead to surface distortion, which is typical of Fourier or wavelet bases widely adopted by previous representative approaches. We perform comparisons with classical and recent methods on benchmark as well as challenging data sets to demonstrate that our method produces accurate surface reconstruction that preserves salient and sharp features. The source code and executable of the system are available for downloading.

  4. Experimental/clinical evaluation of EIT image reconstruction with l1 data and image norms

    NASA Astrophysics Data System (ADS)

    Mamatjan, Yasin; Borsic, Andrea; Gürsoy, Doga; Adler, Andy

    2013-04-01

    Electrical impedance tomography (EIT) image reconstruction is ill-posed, and the spatial resolution of reconstructed images is low due to the diffuse propagation of current and limited number of independent measurements. Generally, image reconstruction is formulated using a regularized scheme in which l2 norms are preferred for both the data misfit and image prior terms due to computational convenience which result in smooth solutions. However, recent work on a Primal Dual-Interior Point Method (PDIPM) framework showed its effectiveness in dealing with the minimization problem. l1 norms on data and regularization terms in EIT image reconstruction address both problems of reconstruction with sharp edges and dealing with measurement errors. We aim for a clinical and experimental evaluation of the PDIPM method by selecting scenarios (human lung and dog breathing) with known electrode errors, which require a rigorous regularization and cause the failure of reconstructions with l2 norm. Results demonstrate the applicability of PDIPM algorithms, especially l1 data and regularization norms for clinical applications of EIT showing that l1 solution is not only more robust to measurement errors in clinical setting, but also provides high contrast resolution on organ boundaries.

  5. Challenges in the reconstruction of bilateral maxillectomy defects.

    PubMed

    Joseph, Shawn T; Thankappan, Krishnakumar; Buggaveeti, Rahul; Sharma, Mohit; Mathew, Jimmy; Iyer, Subramania

    2015-02-01

    Bilateral maxillectomy defects, if not adequately reconstructed, can result in grave esthetic and functional problems. The purpose of this study was to investigate the outcome of reconstruction of such defects. This is a retrospective case series. The defects were analyzed for their components and the flaps used for reconstruction. Outcomes for flap loss and functional indices, including oral diet, speech, and dental rehabilitation, also were evaluated. Ten consecutive patients who underwent bilateral maxillectomy reconstruction received 14 flaps. Six patients had malignancies of the maxilla, and 4 patients had nonmalignant indications. Ten bony free flaps were used. Four soft tissue flaps were used. The fibula free flap was the most common flap used. Three patients had total flap loss. Seven patients were alive and available for functional evaluation. Of these, 4 were taking an oral diet with altered consistency and 2 were on a regular diet. Speech was intelligible in all patients. Only 2 patients opted for dental rehabilitation with removable dentures. Reconstruction after bilateral maxillectomy is essential to prevent esthetic and functional problems. Bony reconstruction is ideal. The fibula bone free flap is commonly used. The complexity of the defect makes reconstruction difficult and the initial success rate of free flaps is low. Secondary reconstructions after the initial flap failures were successful. A satisfactory functional outcome can be achieved. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Progressive Stochastic Reconstruction Technique (PSRT) for cryo electron tomography.

    PubMed

    Turoňová, Beata; Marsalek, Lukas; Davidovič, Tomáš; Slusallek, Philipp

    2015-03-01

    Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. 40 CFR 60.706 - Reconstruction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Processes § 60.706 Reconstruction. (a) For...

  8. 40 CFR 60.706 - Reconstruction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Processes § 60.706 Reconstruction. (a) For...

  9. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... following operating emission limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP...

  10. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... emission limitations for existing, new and reconstructed 4SRB stationary RICE at 100 percent load plus or...

  11. Ghost imaging with bucket detection and point detection

    NASA Astrophysics Data System (ADS)

    Zhang, De-Jian; Yin, Rao; Wang, Tong-Biao; Liao, Qing-Hua; Li, Hong-Guo; Liao, Qinghong; Liu, Jiang-Tao

    2018-04-01

    We experimentally investigate ghost imaging with bucket detection and point detection in which three types of illuminating sources are applied: (a) pseudo-thermal light source; (b) amplitude modulated true thermal light source; (c) amplitude modulated laser source. Experimental results show that the quality of ghost images reconstructed with true thermal light or laser beam is insensitive to the usage of bucket or point detector, however, the quality of ghost images reconstructed with pseudo-thermal light in bucket detector case is better than that in point detector case. Our theoretical analysis shows that the reason for this is due to the first order transverse coherence of the illuminating source.

  12. The Linearized Bregman Method for Frugal Full-waveform Inversion with Compressive Sensing and Sparsity-promoting

    NASA Astrophysics Data System (ADS)

    Chai, Xintao; Tang, Genyang; Peng, Ronghua; Liu, Shaoyong

    2018-03-01

    Full-waveform inversion (FWI) reconstructs the subsurface properties from acquired seismic data via minimization of the misfit between observed and simulated data. However, FWI suffers from considerable computational costs resulting from the numerical solution of the wave equation for each source at each iteration. To reduce the computational burden, constructing supershots by combining several sources (aka source encoding) allows mitigation of the number of simulations at each iteration, but it gives rise to crosstalk artifacts because of interference between the individual sources of the supershot. A modified Gauss-Newton FWI (MGNFWI) approach showed that as long as the difference between the initial and true models permits a sparse representation, the ℓ _1-norm constrained model updates suppress subsampling-related artifacts. However, the spectral-projected gradient ℓ _1 (SPGℓ _1) algorithm employed by MGNFWI is rather complicated that makes its implementation difficult. To facilitate realistic applications, we adapt a linearized Bregman (LB) method to sparsity-promoting FWI (SPFWI) because of the efficiency and simplicity of LB in the framework of ℓ _1-norm constrained optimization problem and compressive sensing. Numerical experiments performed with the BP Salt model, the Marmousi model and the BG Compass model verify the following points. The FWI result with LB solving ℓ _1-norm sparsity-promoting problem for the model update outperforms that generated by solving ℓ _2-norm problem in terms of crosstalk elimination and high-fidelity results. The simpler LB method performs comparably and even superiorly to the complicated SPGℓ _1 method in terms of computational efficiency and model quality, making the LB method a viable alternative for realistic implementations of SPFWI.

  13. A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment

    NASA Astrophysics Data System (ADS)

    Mehrabian, Hatef; Campbell, Gordon; Samani, Abbas

    2010-12-01

    In breast elastography, breast tissue usually undergoes large compression resulting in significant geometric and structural changes. This implies that breast elastography is associated with tissue nonlinear behavior. In this study, an elastography technique is presented and an inverse problem formulation is proposed to reconstruct parameters characterizing tissue hyperelasticity. Such parameters can potentially be used for tumor classification. This technique can also have other important clinical applications such as measuring normal tissue hyperelastic parameters in vivo. Such parameters are essential in planning and conducting computer-aided interventional procedures. The proposed parameter reconstruction technique uses a constrained iterative inversion; it can be viewed as an inverse problem. To solve this problem, we used a nonlinear finite element model corresponding to its forward problem. In this research, we applied Veronda-Westmann, Yeoh and polynomial models to model tissue hyperelasticity. To validate the proposed technique, we conducted studies involving numerical and tissue-mimicking phantoms. The numerical phantom consisted of a hemisphere connected to a cylinder, while we constructed the tissue-mimicking phantom from polyvinyl alcohol with freeze-thaw cycles that exhibits nonlinear mechanical behavior. Both phantoms consisted of three types of soft tissues which mimic adipose, fibroglandular tissue and a tumor. The results of the simulations and experiments show feasibility of accurate reconstruction of tumor tissue hyperelastic parameters using the proposed method. In the numerical phantom, all hyperelastic parameters corresponding to the three models were reconstructed with less than 2% error. With the tissue-mimicking phantom, we were able to reconstruct the ratio of the hyperelastic parameters reasonably accurately. Compared to the uniaxial test results, the average error of the ratios of the parameters reconstructed for inclusion to the middle and external layers were 13% and 9.6%, respectively. Given that the parameter ratios of the abnormal tissues to the normal ones range from three times to more than ten times, this accuracy is sufficient for tumor classification.

  14. An extended algebraic reconstruction technique (E-ART) for dual spectral CT.

    PubMed

    Zhao, Yunsong; Zhao, Xing; Zhang, Peng

    2015-03-01

    Compared with standard computed tomography (CT), dual spectral CT (DSCT) has many advantages for object separation, contrast enhancement, artifact reduction, and material composition assessment. But it is generally difficult to reconstruct images from polychromatic projections acquired by DSCT, because of the nonlinear relation between the polychromatic projections and the images to be reconstructed. This paper first models the DSCT reconstruction problem as a nonlinear system problem; and then extend the classic ART method to solve the nonlinear system. One feature of the proposed method is its flexibility. It fits for any scanning configurations commonly used and does not require consistent rays for different X-ray spectra. Another feature of the proposed method is its high degree of parallelism, which means that the method is suitable for acceleration on GPUs (graphic processing units) or other parallel systems. The method is validated with numerical experiments from simulated noise free and noisy data. High quality images are reconstructed with the proposed method from the polychromatic projections of DSCT. The reconstructed images are still satisfactory even if there are certain errors in the estimated X-ray spectra.

  15. Load identification approach based on basis pursuit denoising algorithm

    NASA Astrophysics Data System (ADS)

    Ginsberg, D.; Ruby, M.; Fritzen, C. P.

    2015-07-01

    The information of the external loads is of great interest in many fields of structural analysis, such as structural health monitoring (SHM) systems or assessment of damage after extreme events. However, in most cases it is not possible to measure the external forces directly, so they need to be reconstructed. Load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response functions are usually the knowns. Generally, this leads to a so called ill-posed inverse problem, which involves solving an underdetermined linear system of equations. For most practical applications it can be assumed that the applied loads are not arbitrarily distributed in time and space, at least some specific characteristics about the external excitation are known a priori. In this contribution this knowledge was used to develop a more suitable force reconstruction method, which allows identifying the time history and the force location simultaneously by employing significantly fewer sensors compared to other reconstruction approaches. The properties of the external force are used to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The possibility of reconstructing loads based on noisy structural measurement signals will be demonstrated by considering two frequently occurring loading conditions: harmonic excitation and impact events, separately and combined. First a simulation study of a simple plate structure is carried out and thereafter an experimental investigation of a real beam is performed.

  16. Expectation maximization for hard X-ray count modulation profiles

    NASA Astrophysics Data System (ADS)

    Benvenuto, F.; Schwartz, R.; Piana, M.; Massone, A. M.

    2013-07-01

    Context. This paper is concerned with the image reconstruction problem when the measured data are solar hard X-ray modulation profiles obtained from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) instrument. Aims: Our goal is to demonstrate that a statistical iterative method classically applied to the image deconvolution problem is very effective when utilized to analyze count modulation profiles in solar hard X-ray imaging based on rotating modulation collimators. Methods: The algorithm described in this paper solves the maximum likelihood problem iteratively and encodes a positivity constraint into the iterative optimization scheme. The result is therefore a classical expectation maximization method this time applied not to an image deconvolution problem but to image reconstruction from count modulation profiles. The technical reason that makes our implementation particularly effective in this application is the use of a very reliable stopping rule which is able to regularize the solution providing, at the same time, a very satisfactory Cash-statistic (C-statistic). Results: The method is applied to both reproduce synthetic flaring configurations and reconstruct images from experimental data corresponding to three real events. In this second case, the performance of expectation maximization, when compared to Pixon image reconstruction, shows a comparable accuracy and a notably reduced computational burden; when compared to CLEAN, shows a better fidelity with respect to the measurements with a comparable computational effectiveness. Conclusions: If optimally stopped, expectation maximization represents a very reliable method for image reconstruction in the RHESSI context when count modulation profiles are used as input data.

  17. Temporal evolution of the Green's function reconstruction in the seismic coda

    NASA Astrophysics Data System (ADS)

    Clerc, V.; Roux, P.; Campillo, M.

    2013-12-01

    In presence of multiple scattering, the wavefield evolves towards an equipartitioned state, equivalent to ambient noise. CAMPILLO and PAUL (2003) reconstructed the surface wave part of the Green's function between three pairs of stations in Mexico. The data indicate that the time asymmetry between causal and acausal part of the Green's function is less pronounced when the correlation is performed in the later windows of the coda. These results on the correlation of diffuse waves provide another perspective on the reconstruction of Green function which is independent of the source distribution and which suggests that if the time of observation is long enough, a single source could be sufficient. The paper by ROUX et al. (2005) provides a theoretical frame for the reconstruction of the Green's function in a homogeneous middle. In a multiple scattering medium with a single source, scatterers behave as secondary sources according to the Huygens principle. Coda waves are relevant to multiple scattering, a regime which can be approximated by diffusion for long lapse times. We express the temporal evolution of the correlation function between two receivers as a function of the secondary sources. We are able to predict the effect of the persistence of the net flux of energy observed by CAMPILLO and PAUL (2003) in numerical simulations. This method is also effective in order to retrieve the scattering mean free path. We perform a partial reconstruction of the Green's function in a strongly scattering medium in numerical simulations. The prediction of the flux asymmetry allows defining the parts of the coda providing the same information as ambient noise cross correlation.

  18. ISMRM Raw data format: A proposed standard for MRI raw datasets.

    PubMed

    Inati, Souheil J; Naegele, Joseph D; Zwart, Nicholas R; Roopchansingh, Vinai; Lizak, Martin J; Hansen, David C; Liu, Chia-Ying; Atkinson, David; Kellman, Peter; Kozerke, Sebastian; Xue, Hui; Campbell-Washburn, Adrienne E; Sørensen, Thomas S; Hansen, Michael S

    2017-01-01

    This work proposes the ISMRM Raw Data format as a common MR raw data format, which promotes algorithm and data sharing. A file format consisting of a flexible header and tagged frames of k-space data was designed. Application Programming Interfaces were implemented in C/C++, MATLAB, and Python. Converters for Bruker, General Electric, Philips, and Siemens proprietary file formats were implemented in C++. Raw data were collected using magnetic resonance imaging scanners from four vendors, converted to ISMRM Raw Data format, and reconstructed using software implemented in three programming languages (C++, MATLAB, Python). Images were obtained by reconstructing the raw data from all vendors. The source code, raw data, and images comprising this work are shared online, serving as an example of an image reconstruction project following a paradigm of reproducible research. The proposed raw data format solves a practical problem for the magnetic resonance imaging community. It may serve as a foundation for reproducible research and collaborations. The ISMRM Raw Data format is a completely open and community-driven format, and the scientific community is invited (including commercial vendors) to participate either as users or developers. Magn Reson Med 77:411-421, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Extinction in Phylogenetics and Biogeography: From Timetrees to Patterns of Biotic Assemblage

    PubMed Central

    Meseguer, Andrea S.

    2016-01-01

    Global climate change and its impact on biodiversity levels have made extinction a relevant topic in biological research. Yet, until recently, extinction has received less attention in macroevolutionary studies than speciation; the reason is the difficulty to infer an event that actually eliminates rather than creates new taxa. For example, in biogeography, extinction has often been seen as noise, introducing homoplasy in biogeographic relationships, rather than a pattern-generating process. The molecular revolution and the possibility to integrate time into phylogenetic reconstructions have allowed studying extinction under different perspectives. Here, we review phylogenetic (temporal) and biogeographic (spatial) approaches to the inference of extinction and the challenges this process poses for reconstructing evolutionary history. Specifically, we focus on the problem of discriminating between alternative high extinction scenarios using time trees with only extant taxa, and on the confounding effect introduced by asymmetric spatial extinction – different rates of extinction across areas – in biogeographic inference. Finally, we identify the most promising avenues of research in both fields, which include the integration of additional sources of evidence such as the fossil record or environmental information in birth–death models and biogeographic reconstructions, the development of new models that tie extinction rates to phenotypic or environmental variation, or the implementation within a Bayesian framework of parametric non-stationary biogeographic models. PMID:27047538

  20. Reconstruction of limited-angle dual-energy CT using mutual learning and cross-estimation (MLCE)

    NASA Astrophysics Data System (ADS)

    Zhang, Huayu; Xing, Yuxiang

    2016-03-01

    Dual-energy CT (DECT) imaging has gained a lot of attenuation because of its capability to discriminate materials. We proposes a flexible DECT scan strategy which can be realized on a system with general X-ray sources and detectors. In order to lower dose and scanning time, our DECT acquires two projections data sets on two arcs of limited-angular coverage (one for each energy) respectively. Meanwhile, a certain number of rays from two data sets form conjugate sampling pairs. Our reconstruction method for such a DECT scan mainly tackles the consequent limited-angle problem. Using the idea of artificial neural network, we excavate the connection between projections at two different energies by constructing a relationship between the linear attenuation coefficient of the high energy and that of the low one. We use this relationship to cross-estimate missing projections and reconstruct attenuation images from an augmented data set including projections at views covered by itself (projections collected in scanning) and by the other energy (projections estimated) for each energy respectively. Validated by our numerical experiment on a dental phantom with rather complex structures, our DECT is effective in recovering small structures in severe limited-angle situations. This DECT scanning strategy can much broaden DECT design in reality.

  1. Phase unwinding for dictionary compression with multiple channel transmission in magnetic resonance fingerprinting.

    PubMed

    Lattanzi, Riccardo; Zhang, Bei; Knoll, Florian; Assländer, Jakob; Cloos, Martijn A

    2018-06-01

    Magnetic Resonance Fingerprinting reconstructions can become computationally intractable with multiple transmit channels, if the B 1 + phases are included in the dictionary. We describe a general method that allows to omit the transmit phases. We show that this enables straightforward implementation of dictionary compression to further reduce the problem dimensionality. We merged the raw data of each RF source into a single k-space dataset, extracted the transceiver phases from the corresponding reconstructed images and used them to unwind the phase in each time frame. All phase-unwound time frames were combined in a single set before performing SVD-based compression. We conducted synthetic, phantom and in-vivo experiments to demonstrate the feasibility of SVD-based compression in the case of two-channel transmission. Unwinding the phases before SVD-based compression yielded artifact-free parameter maps. For fully sampled acquisitions, parameters were accurate with as few as 6 compressed time frames. SVD-based compression performed well in-vivo with highly under-sampled acquisitions using 16 compressed time frames, which reduced reconstruction time from 750 to 25min. Our method reduces the dimensions of the dictionary atoms and enables to implement any fingerprint compression strategy in the case of multiple transmit channels. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Backward renormalization-group inference of cortical dipole sources and neural connectivity efficacy

    NASA Astrophysics Data System (ADS)

    Amaral, Selene da Rocha; Baccalá, Luiz A.; Barbosa, Leonardo S.; Caticha, Nestor

    2017-06-01

    Proper neural connectivity inference has become essential for understanding cognitive processes associated with human brain function. Its efficacy is often hampered by the curse of dimensionality. In the electroencephalogram case, which is a noninvasive electrophysiological monitoring technique to record electrical activity of the brain, a possible way around this is to replace multichannel electrode information with dipole reconstructed data. We use a method based on maximum entropy and the renormalization group to infer the position of the sources, whose success hinges on transmitting information from low- to high-resolution representations of the cortex. The performance of this method compares favorably to other available source inference algorithms, which are ranked here in terms of their performance with respect to directed connectivity inference by using artificially generated dynamic data. We examine some representative scenarios comprising different numbers of dynamically connected dipoles over distinct cortical surface positions and under different sensor noise impairment levels. The overall conclusion is that inverse problem solutions do not affect the correct inference of the direction of the flow of information as long as the equivalent dipole sources are correctly found.

  3. NuSTAR: system engineering and modeling challenges in pointing reconstruction for a deployable x-ray telescope

    NASA Astrophysics Data System (ADS)

    Harp, D. Isaiah; Liebe, Carl Christian; Craig, William; Harrison, Fiona; Kruse-Madsen, Kristin; Zoglauer, Andreas

    2010-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will make the first sensitive images of the sky in the high energy X-ray band (6 - 80 keV). The NuSTAR observatory consists of two co-aligned grazing incidence hard X-ray telescopes with a ~10 meter focal length, achieved by the on-orbit extension of a deployable mast. A principal science objective of the mission is to locate previously unknown high-energy X-ray sources to an accuracy of 10 arcseconds (3-sigma), sufficient to uniquely identify counterparts at other wavelengths. In order to achieve this, a star tracker and laser metrology system are an integral part of the instrument; in conjunction, they will determine the orientation of the optics bench in celestial coordinates and also measure the flexures in the deployable mast as it responds to the varying on-orbit thermal environment, as well as aerodynamic and control torques. The architecture of the NuSTAR system for solving the attitude and aspect problems differs from that of previous X-ray telescopes, which did not require ex post facto reconstruction of the instantaneous observatory alignment on-orbit. In this paper we describe the NuSTAR instrument metrology system architecture and implementation, focusing on the systems engineering challenges associated with validating the instantaneous transformations between focal plane and celestial coordinates to within the required accuracy. We present a mathematical solution to photon source reconstruction, along with a detailed error budget that relates component errors to science performance. We also describe the architecture of the instrument simulation software being used to validate the end-to-end performance model.

  4. 40 CFR 63.1345 - Emissions limits for affected sources other than kilns; in-line kiln/raw mills; clinker coolers...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills, and open clinker piles. 63.1345 Section 63.1345 Protection of Environment... for affected sources other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed...

  5. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction.

    PubMed

    Friedman, C D; Costantino, P D; Takagi, S; Chow, L C

    1998-01-01

    BoneSource-hydroxyapatite cement is a new self-setting calcium phosphate cement biomaterial. Its unique and innovative physical chemistry coupled with enhanced biocompatibility make it useful for craniofacial skeletal reconstruction. The general properties and clinical use guidelines are reviewed. The biomaterial and surgical applications offer insight into improved outcomes and potential new uses for hydroxyapatite cement systems.

  6. Allogeneic versus autologous derived cell sources for use in engineered bone-ligament-bone grafts in sheep anterior cruciate ligament repair.

    PubMed

    Mahalingam, Vasudevan D; Behbahani-Nejad, Nilofar; Horine, Storm V; Olsen, Tyler J; Smietana, Michael J; Wojtys, Edward M; Wellik, Deneen M; Arruda, Ellen M; Larkin, Lisa M

    2015-03-01

    The use of autografts versus allografts for anterior cruciate ligament (ACL) reconstruction is controversial. The current popular options for ACL reconstruction are patellar tendon or hamstring autografts, yet advances in allograft technologies have made allogeneic grafts a favorable option for repair tissue. Despite this, the mismatched biomechanical properties and risk of osteoarthritis resulting from the current graft technologies have prompted the investigation of new tissue sources for ACL reconstruction. Previous work by our lab has demonstrated that tissue-engineered bone-ligament-bone (BLB) constructs generated from an allogeneic cell source develop structural and functional properties similar to those of native ACL and vascular and neural structures that exceed those of autologous patellar tendon grafts. In this study, we investigated the effectiveness of our tissue-engineered ligament constructs fabricated from autologous versus allogeneic cell sources. Our preliminary results demonstrate that 6 months postimplantation, our tissue-engineered auto- and allogeneic BLB grafts show similar histological and mechanical outcomes indicating that the autologous grafts are a viable option for ACL reconstruction. These data indicate that our tissue-engineered autologous ligament graft could be used in clinical situations where immune rejection and disease transmission may preclude allograft use.

  7. Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares.

    PubMed

    Zhang, Cheng; Zhang, Tao; Li, Ming; Peng, Chengtao; Liu, Zhaobang; Zheng, Jian

    2016-06-18

    In order to reduce the radiation dose of CT (computed tomography), compressed sensing theory has been a hot topic since it provides the possibility of a high quality recovery from the sparse sampling data. Recently, the algorithm based on DL (dictionary learning) was developed to deal with the sparse CT reconstruction problem. However, the existing DL algorithm focuses on the minimization problem with the L2-norm regularization term, which leads to reconstruction quality deteriorating while the sampling rate declines further. Therefore, it is essential to improve the DL method to meet the demand of more dose reduction. In this paper, we replaced the L2-norm regularization term with the L1-norm one. It is expected that the proposed L1-DL method could alleviate the over-smoothing effect of the L2-minimization and reserve more image details. The proposed algorithm solves the L1-minimization problem by a weighting strategy, solving the new weighted L2-minimization problem based on IRLS (iteratively reweighted least squares). Through the numerical simulation, the proposed algorithm is compared with the existing DL method (adaptive dictionary based statistical iterative reconstruction, ADSIR) and other two typical compressed sensing algorithms. It is revealed that the proposed algorithm is more accurate than the other algorithms especially when further reducing the sampling rate or increasing the noise. The proposed L1-DL algorithm can utilize more prior information of image sparsity than ADSIR. By transforming the L2-norm regularization term of ADSIR with the L1-norm one and solving the L1-minimization problem by IRLS strategy, L1-DL could reconstruct the image more exactly.

  8. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  9. Problems in modernization of automation systems at coal preparation plants

    NASA Astrophysics Data System (ADS)

    Myshlyaev, L. P.; Lyakhovets, M. V.; Venger, K. G.; Leontiev, I. A.; Makarov, G. V.; Salamatin, A. S.

    2018-05-01

    The factors influencing the process of modernization (reconstruction) of the automation systems at coal preparation plants are described. Problems such as heterogeneity of existing and developed systems, planning of reconstruction of a technological complex without taking into account modernization of automated systems, commissioning without stopping the existing technological complex, as well as problems of conducting procurement procedures are discussed. The option of stage-by-stage start-up and adjustment works in the conditions of modernization of systems without long stops of the process equipment is offered.

  10. 3D medical volume reconstruction using web services.

    PubMed

    Kooper, Rob; Shirk, Andrew; Lee, Sang-Chul; Lin, Amy; Folberg, Robert; Bajcsy, Peter

    2008-04-01

    We address the problem of 3D medical volume reconstruction using web services. The use of proposed web services is motivated by the fact that the problem of 3D medical volume reconstruction requires significant computer resources and human expertise in medical and computer science areas. Web services are implemented as an additional layer to a dataflow framework called data to knowledge. In the collaboration between UIC and NCSA, pre-processed input images at NCSA are made accessible to medical collaborators for registration. Every time UIC medical collaborators inspected images and selected corresponding features for registration, the web service at NCSA is contacted and the registration processing query is executed using the image to knowledge library of registration methods. Co-registered frames are returned for verification by medical collaborators in a new window. In this paper, we present 3D volume reconstruction problem requirements and the architecture of the developed prototype system at http://isda.ncsa.uiuc.edu/MedVolume. We also explain the tradeoffs of our system design and provide experimental data to support our system implementation. The prototype system has been used for multiple 3D volume reconstructions of blood vessels and vasculogenic mimicry patterns in histological sections of uveal melanoma studied by fluorescent confocal laser scanning microscope.

  11. TV-based conjugate gradient method and discrete L-curve for few-view CT reconstruction of X-ray in vivo data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin

    2015-01-01

    High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the numbermore » of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation. (C) 2015 Optical Society of America« less

  12. Inverse problem for multispecies ferromagneticlike mean-field models in phase space with many states

    NASA Astrophysics Data System (ADS)

    Fedele, Micaela; Vernia, Cecilia

    2017-10-01

    In this paper we solve the inverse problem for the Curie-Weiss model and its multispecies version when multiple thermodynamic states are present as in the low temperature phase where the phase space is clustered. The inverse problem consists of reconstructing the model parameters starting from configuration data generated according to the distribution of the model. We demonstrate that, without taking into account the presence of many states, the application of the inversion procedure produces very poor inference results. To overcome this problem, we use the clustering algorithm. When the system has two symmetric states of positive and negative magnetizations, the parameter reconstruction can also be obtained with smaller computational effort simply by flipping the sign of the magnetizations from positive to negative (or vice versa). The parameter reconstruction fails when the system undergoes a phase transition: In that case we give the correct inversion formulas for the Curie-Weiss model and we show that they can be used to measure how close the system gets to being critical.

  13. Data based identification and prediction of nonlinear and complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods outlined in this Review are principled on various concepts in complexity science and engineering such as phase transitions, bifurcations, stabilities, and robustness. The methodologies have the potential to significantly improve our ability to understand a variety of complex dynamical systems ranging from gene regulatory systems to social networks toward the ultimate goal of controlling such systems.

  14. On the Performance Evaluation of 3D Reconstruction Techniques from a Sequence of Images

    NASA Astrophysics Data System (ADS)

    Eid, Ahmed; Farag, Aly

    2005-12-01

    The performance evaluation of 3D reconstruction techniques is not a simple problem to solve. This is not only due to the increased dimensionality of the problem but also due to the lack of standardized and widely accepted testing methodologies. This paper presents a unified framework for the performance evaluation of different 3D reconstruction techniques. This framework includes a general problem formalization, different measuring criteria, and a classification method as a first step in standardizing the evaluation process. Performance characterization of two standard 3D reconstruction techniques, stereo and space carving, is also presented. The evaluation is performed on the same data set using an image reprojection testing methodology to reduce the dimensionality of the evaluation domain. Also, different measuring strategies are presented and applied to the stereo and space carving techniques. These measuring strategies have shown consistent results in quantifying the performance of these techniques. Additional experiments are performed on the space carving technique to study the effect of the number of input images and the camera pose on its performance.

  15. Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberer, Mark; Shidner, Jeremy D.

    2013-01-01

    On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has been implemented to reconstruct the entry, descent, and landing trajectory based on all available data. The data sources considered in the Kalman filtering approach include the inertial measurement unit accelerations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measurements are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter approach enables the identification of atmospheric winds, which has not been accomplished in past planetary entry reconstructions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and uncertainty quantification, which directly impacts future missions. This paper describes the mathematical formulation of the Kalman filtering approach, a summary of data sources and preprocessing activities, and results of the reconstruction.

  16. Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment

    DOE PAGES

    Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...

    2017-04-18

    Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The eddy current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D eddy currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less

  17. The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK)

    NASA Astrophysics Data System (ADS)

    Rit, S.; Vila Oliva, M.; Brousmiche, S.; Labarbe, R.; Sarrut, D.; Sharp, G. C.

    2014-03-01

    We propose the Reconstruction Toolkit (RTK, http://www.openrtk.org), an open-source toolkit for fast cone-beam CT reconstruction, based on the Insight Toolkit (ITK) and using GPU code extracted from Plastimatch. RTK is developed by an open consortium (see affiliations) under the non-contaminating Apache 2.0 license. The quality of the platform is daily checked with regression tests in partnership with Kitware, the company supporting ITK. Several features are already available: Elekta, Varian and IBA inputs, multi-threaded Feldkamp-David-Kress reconstruction on CPU and GPU, Parker short scan weighting, multi-threaded CPU and GPU forward projectors, etc. Each feature is either accessible through command line tools or C++ classes that can be included in independent software. A MIDAS community has been opened to share CatPhan datasets of several vendors (Elekta, Varian and IBA). RTK will be used in the upcoming cone-beam CT scanner developed by IBA for proton therapy rooms. Many features are under development: new input format support, iterative reconstruction, hybrid Monte Carlo / deterministic CBCT simulation, etc. RTK has been built to freely share tomographic reconstruction developments between researchers and is open for new contributions.

  18. Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space

    NASA Astrophysics Data System (ADS)

    Nagib, Karim; Mezgebo, Biniyam; Thakur, Rahul; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Optical coherence tomography systems suffer from noise that could reduce ability to interpret reconstructed images correctly. We describe a method to increase the signal-to-noise ratio of swept-source optical coherence tomography (SSOCT) using oversampling in k-space. Due to this oversampling, information redundancy would be introduced in the measured interferogram that could be used to reduce white noise in the reconstructed A-scan. We applied our novel scaled nonuniform discrete Fourier transform to oversampled SS-OCT interferograms to reconstruct images of a salamander egg. The peak-signal-to-noise (PSNR) between the reconstructed images using interferograms sampled at 250MS/s andz50MS/s demonstrate that this oversampling increased the signal-to-noise ratio by 25.22 dB.

  19. DEEP ATTRACTOR NETWORK FOR SINGLE-MICROPHONE SPEAKER SEPARATION.

    PubMed

    Chen, Zhuo; Luo, Yi; Mesgarani, Nima

    2017-03-01

    Despite the overwhelming success of deep learning in various speech processing tasks, the problem of separating simultaneous speakers in a mixture remains challenging. Two major difficulties in such systems are the arbitrary source permutation and unknown number of sources in the mixture. We propose a novel deep learning framework for single channel speech separation by creating attractor points in high dimensional embedding space of the acoustic signals which pull together the time-frequency bins corresponding to each source. Attractor points in this study are created by finding the centroids of the sources in the embedding space, which are subsequently used to determine the similarity of each bin in the mixture to each source. The network is then trained to minimize the reconstruction error of each source by optimizing the embeddings. The proposed model is different from prior works in that it implements an end-to-end training, and it does not depend on the number of sources in the mixture. Two strategies are explored in the test time, K-means and fixed attractor points, where the latter requires no post-processing and can be implemented in real-time. We evaluated our system on Wall Street Journal dataset and show 5.49% improvement over the previous state-of-the-art methods.

  20. A penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography.

    PubMed

    Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn

    2007-01-01

    Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.

  1. Accelerating electron tomography reconstruction algorithm ICON with GPU.

    PubMed

    Chen, Yu; Wang, Zihao; Zhang, Jingrong; Li, Lun; Wan, Xiaohua; Sun, Fei; Zhang, Fa

    2017-01-01

    Electron tomography (ET) plays an important role in studying in situ cell ultrastructure in three-dimensional space. Due to limited tilt angles, ET reconstruction always suffers from the "missing wedge" problem. With a validation procedure, iterative compressed-sensing optimized NUFFT reconstruction (ICON) demonstrates its power in the restoration of validated missing information for low SNR biological ET dataset. However, the huge computational demand has become a major problem for the application of ICON. In this work, we analyzed the framework of ICON and classified the operations of major steps of ICON reconstruction into three types. Accordingly, we designed parallel strategies and implemented them on graphics processing units (GPU) to generate a parallel program ICON-GPU. With high accuracy, ICON-GPU has a great acceleration compared to its CPU version, up to 83.7×, greatly relieving ICON's dependence on computing resource.

  2. An Intelligent Actuator Fault Reconstruction Scheme for Robotic Manipulators.

    PubMed

    Xiao, Bing; Yin, Shen

    2018-02-01

    This paper investigates a difficult problem of reconstructing actuator faults for robotic manipulators. An intelligent approach with fast reconstruction property is developed. This is achieved by using observer technique. This scheme is capable of precisely reconstructing the actual actuator fault. It is shown by Lyapunov stability analysis that the reconstruction error can converge to zero after finite time. A perfect reconstruction performance including precise and fast properties can be provided for actuator fault. The most important feature of the scheme is that, it does not depend on control law, dynamic model of actuator, faults' type, and also their time-profile. This super reconstruction performance and capability of the proposed approach are further validated by simulation and experimental results.

  3. Auricular reconstruction for microtia: Part II. Surgical techniques.

    PubMed

    Walton, Robert L; Beahm, Elisabeth K

    2002-07-01

    Reconstruction of the microtic ear represents one of the most demanding challenges in reconstructive surgery. In this review the two most commonly used techniques for ear reconstruction, the Brent and Nagata techniques, are addressed in detail. Unique to this endeavor, the originator of each technique has been allowed to submit representative case material and to address the pros and cons of the other's technique. What follows is a detailed, insightful overview of microtia reconstruction, as a state of the art. The review then details commonly encountered problems in ear reconstruction and pertinent technical points. Finally, a glimpse into the future is offered with an accounting of the advances made in tissue engineering as this technology applies to auricular reconstruction.

  4. Complicated sternal dehiscence: reconstruction with plates, cables, and cannulated screws.

    PubMed

    Voss, Bernhard; Bauernschmitt, Robert; Brockmann, Gernot; Krane, Markus; Will, Albrecht; Lange, Rüdiger

    2009-04-01

    Sternal dehiscence after median sternotomy can be a challenging problem in case of multiple fractures or infection. For sternal refixation, the principles of rigid plate and screw osteosynthesis gained from orthopedic surgery have been recommended by several authors. We present a new system for sternal reconstruction consisting of reconstruction plates, steel cables, and cannulated screws.

  5. Wavelet-based localization of oscillatory sources from magnetoencephalography data.

    PubMed

    Lina, J M; Chowdhury, R; Lemay, E; Kobayashi, E; Grova, C

    2014-08-01

    Transient brain oscillatory activities recorded with Eelectroencephalography (EEG) or magnetoencephalography (MEG) are characteristic features in physiological and pathological processes. This study is aimed at describing, evaluating, and illustrating with clinical data a new method for localizing the sources of oscillatory cortical activity recorded by MEG. The method combines time-frequency representation and an entropic regularization technique in a common framework, assuming that brain activity is sparse in time and space. Spatial sparsity relies on the assumption that brain activity is organized among cortical parcels. Sparsity in time is achieved by transposing the inverse problem in the wavelet representation, for both data and sources. We propose an estimator of the wavelet coefficients of the sources based on the maximum entropy on the mean (MEM) principle. The full dynamics of the sources is obtained from the inverse wavelet transform, and principal component analysis of the reconstructed time courses is applied to extract oscillatory components. This methodology is evaluated using realistic simulations of single-trial signals, combining fast and sudden discharges (spike) along with bursts of oscillating activity. The method is finally illustrated with a clinical application using MEG data acquired on a patient with a right orbitofrontal epilepsy.

  6. Reconstructing El Niño Southern Oscillation using data from ships' logbooks, 1815-1854. Part I: methodology and evaluation

    NASA Astrophysics Data System (ADS)

    Barrett, Hannah G.; Jones, Julie M.; Bigg, Grant R.

    2018-02-01

    The meteorological information found within ships' logbooks is a unique and fascinating source of data for historical climatology. This study uses wind observations from logbooks covering the period 1815 to 1854 to reconstruct an index of El Niño Southern Oscillation (ENSO) for boreal winter (DJF). Statistically-based reconstructions of the Southern Oscillation Index (SOI) are obtained using two methods: principal component regression (PCR) and composite-plus-scale (CPS). Calibration and validation are carried out over the modern period 1979-2014, assessing the relationship between re-gridded seasonal ERA-Interim reanalysis wind data and the instrumental SOI. The reconstruction skill of both the PCR and CPS methods is found to be high with reduction of error skill scores of 0.80 and 0.75, respectively. The relationships derived during the fitting period are then applied to the logbook wind data to reconstruct the historical SOI. We develop a new method to assess the sensitivity of the reconstructions to using a limited number of observations per season and find that the CPS method performs better than PCR with a limited number of observations. A difference in the distribution of wind force terms used by British and Dutch ships is found, and its impact on the reconstruction assessed. The logbook reconstructions agree well with a previous SOI reconstructed from Jakarta rain day counts, 1830-1850, adding robustness to our reconstructions. Comparisons to additional documentary and proxy data sources are provided in a companion paper.

  7. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ

    PubMed Central

    Müller, Marcel; Mönkemöller, Viola; Hennig, Simon; Hübner, Wolfgang; Huser, Thomas

    2016-01-01

    Super-resolved structured illumination microscopy (SR-SIM) is an important tool for fluorescence microscopy. SR-SIM microscopes perform multiple image acquisitions with varying illumination patterns, and reconstruct them to a super-resolved image. In its most frequent, linear implementation, SR-SIM doubles the spatial resolution. The reconstruction is performed numerically on the acquired wide-field image data, and thus relies on a software implementation of specific SR-SIM image reconstruction algorithms. We present fairSIM, an easy-to-use plugin that provides SR-SIM reconstructions for a wide range of SR-SIM platforms directly within ImageJ. For research groups developing their own implementations of super-resolution structured illumination microscopy, fairSIM takes away the hurdle of generating yet another implementation of the reconstruction algorithm. For users of commercial microscopes, it offers an additional, in-depth analysis option for their data independent of specific operating systems. As a modular, open-source solution, fairSIM can easily be adapted, automated and extended as the field of SR-SIM progresses. PMID:26996201

  8. A realistic multimodal modeling approach for the evaluation of distributed source analysis: application to sLORETA.

    PubMed

    Cosandier-Rimélé, D; Ramantani, G; Zentner, J; Schulze-Bonhage, A; Dümpelmann, M

    2017-10-01

    Electrical source localization (ESL) deriving from scalp EEG and, in recent years, from intracranial EEG (iEEG), is an established method in epilepsy surgery workup. We aimed to validate the distributed ESL derived from scalp EEG and iEEG, particularly regarding the spatial extent of the source, using a realistic epileptic spike activity simulator. ESL was applied to the averaged scalp EEG and iEEG spikes of two patients with drug-resistant structural epilepsy. The ESL results for both patients were used to outline the location and extent of epileptic cortical patches, which served as the basis for designing a spatiotemporal source model. EEG signals for both modalities were then generated for different anatomic locations and spatial extents. ESL was subsequently performed on simulated signals with sLORETA, a commonly used distributed algorithm. ESL accuracy was quantitatively assessed for iEEG and scalp EEG. The source volume was overestimated by sLORETA at both EEG scales, with the error increasing with source size, particularly for iEEG. For larger sources, ESL accuracy drastically decreased, and reconstruction volumes shifted to the center of the head for iEEG, while remaining stable for scalp EEG. Overall, the mislocalization of the reconstructed source was more pronounced for iEEG. We present a novel multiscale framework for the evaluation of distributed ESL, based on realistic multiscale EEG simulations. Our findings support that reconstruction results for scalp EEG are often more accurate than for iEEG, owing to the superior 3D coverage of the head. Particularly the iEEG-derived reconstruction results for larger, widespread generators should be treated with caution.

  9. A realistic multimodal modeling approach for the evaluation of distributed source analysis: application to sLORETA

    NASA Astrophysics Data System (ADS)

    Cosandier-Rimélé, D.; Ramantani, G.; Zentner, J.; Schulze-Bonhage, A.; Dümpelmann, M.

    2017-10-01

    Objective. Electrical source localization (ESL) deriving from scalp EEG and, in recent years, from intracranial EEG (iEEG), is an established method in epilepsy surgery workup. We aimed to validate the distributed ESL derived from scalp EEG and iEEG, particularly regarding the spatial extent of the source, using a realistic epileptic spike activity simulator. Approach. ESL was applied to the averaged scalp EEG and iEEG spikes of two patients with drug-resistant structural epilepsy. The ESL results for both patients were used to outline the location and extent of epileptic cortical patches, which served as the basis for designing a spatiotemporal source model. EEG signals for both modalities were then generated for different anatomic locations and spatial extents. ESL was subsequently performed on simulated signals with sLORETA, a commonly used distributed algorithm. ESL accuracy was quantitatively assessed for iEEG and scalp EEG. Main results. The source volume was overestimated by sLORETA at both EEG scales, with the error increasing with source size, particularly for iEEG. For larger sources, ESL accuracy drastically decreased, and reconstruction volumes shifted to the center of the head for iEEG, while remaining stable for scalp EEG. Overall, the mislocalization of the reconstructed source was more pronounced for iEEG. Significance. We present a novel multiscale framework for the evaluation of distributed ESL, based on realistic multiscale EEG simulations. Our findings support that reconstruction results for scalp EEG are often more accurate than for iEEG, owing to the superior 3D coverage of the head. Particularly the iEEG-derived reconstruction results for larger, widespread generators should be treated with caution.

  10. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming

    2014-07-28

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated bymore » a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.« less

  11. 'Genetics is not the issue': insurers on genetics and life insurance.

    PubMed

    Van Hoyweghen, Ine; Horstman, Klasien; Schepers, Rita

    2005-04-01

    This article offers an analysis of the way private insurers deal with the issue of genetics and insurance. Drawing on specific written insurance sources, a reconstruction is made of internal debates on genetics and insurance within the private insurance world in Europe and the United States. The article starts by analyzing the way insurers initially framed the issue of genetics. It proceeds by showing how ideas with respect to this issue developed beyond public policy debates in the nineties. Although not a strictly linear development, a trend towards a change in perspective can be demonstrated: at the beginning most insurance companies took another stance than they do nowadays. The article concludes by questioning the effect of these changes within the insurance world for the definition of the problem with respect to genetics and insurance. Does taking into account the public concerns around genetics also include taking genetics as a public problem?

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B; Southern Medical University, Guangzhou, Guangdong; Shen, C

    Purpose: Multi-energy computed tomography (MECT) is an emerging application in medical imaging due to its ability of material differentiation and potential for molecular imaging. In MECT, image correlations at different spatial and channels exist. It is desirable to incorporate these correlations in reconstruction to improve image quality. For this purpose, this study proposes a MECT reconstruction technique that employes spatial spectral non-local means (ssNLM) regularization. Methods: We consider a kVp-switching scanning method in which source energy is rapidly switched during data acquisition. For each energy channel, this yields projection data acquired at a number of angles, whereas projection angles amongmore » channels are different. We formulate the reconstruction task as an optimziation problem. A least square term enfores data fidelity. A ssNLM term is used as regularization to encourage similarities among image patches at different spatial locations and channels. When comparing image patches at different channels, intensity difference were corrected by a transformation estimated via histogram equalization during the reconstruction process. Results: We tested our method in a simulation study with a NCAT phantom and an experimental study with a Gammex phantom. For comparison purpose, we also performed reconstructions using conjugate-gradient least square (CGLS) method and conventional NLM method that only considers spatial correlation in an image. ssNLM is able to better suppress streak artifacts. The streaks are along different projection directions in images at different channels. ssNLM discourages this dissimilarity and hence removes them. True image structures are preserved in this process. Measurements in regions of interests yield 1.1 to 3.2 and 1.5 to 1.8 times higher contrast to noise ratio than the NLM approach. Improvements over CGLS is even more profound due to lack of regularization in the CGLS method and hence amplified noise. Conclusion: The proposed ssNLM method for kVp-switching MECT reconstruction can achieve high quality MECT images.« less

  13. Non-rigid Reconstruction of Casting Process with Temperature Feature

    NASA Astrophysics Data System (ADS)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu

    2017-09-01

    Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.

  14. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-04-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.

  15. A survey of GPU-based acceleration techniques in MRI reconstructions

    PubMed Central

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou

    2018-01-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community. PMID:29675361

  16. A survey of GPU-based acceleration techniques in MRI reconstructions.

    PubMed

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou; Liang, Dong

    2018-03-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community.

  17. Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.

    PubMed

    Kolehmainen, Ville; Vanne, Antti; Siltanen, Samuli; Järvenpää, Seppo; Kaipio, Jari P; Lassas, Matti; Kalke, Martti

    2006-02-01

    Diagnostic and operational tasks based on dental radiology often require three-dimensional (3-D) information that is not available in a single X-ray projection image. Comprehensive 3-D information about tissues can be obtained by computerized tomography (CT) imaging. However, in dental imaging a conventional CT scan may not be available or practical because of high radiation dose, low-resolution or the cost of the CT scanner equipment. In this paper, we consider a novel type of 3-D imaging modality for dental radiology. We consider situations in which projection images of the teeth are taken from a few sparsely distributed projection directions using the dentist's regular (digital) X-ray equipment and the 3-D X-ray attenuation function is reconstructed. A complication in these experiments is that the reconstruction of the 3-D structure based on a few projection images becomes an ill-posed inverse problem. Bayesian inversion is a well suited framework for reconstruction from such incomplete data. In Bayesian inversion, the ill-posed reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete information of the projection data. In this paper we propose a Bayesian method for 3-D reconstruction in dental radiology. The method is partially based on Kolehmainen et al. 2003. The prior model for dental structures consist of a weighted l1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posteriori (MAP) estimate. To make the 3-D reconstruction computationally feasible, a parallelized version of an optimization algorithm is implemented for a Beowulf cluster computer. The method is tested with projection data from dental specimens and patient data. Tomosynthetic reconstructions are given as reference for the proposed method.

  18. Fast alternating projection methods for constrained tomographic reconstruction

    PubMed Central

    Liu, Li; Han, Yongxin

    2017-01-01

    The alternating projection algorithms are easy to implement and effective for large-scale complex optimization problems, such as constrained reconstruction of X-ray computed tomography (CT). A typical method is to use projection onto convex sets (POCS) for data fidelity, nonnegative constraints combined with total variation (TV) minimization (so called TV-POCS) for sparse-view CT reconstruction. However, this type of method relies on empirically selected parameters for satisfactory reconstruction and is generally slow and lack of convergence analysis. In this work, we use a convex feasibility set approach to address the problems associated with TV-POCS and propose a framework using full sequential alternating projections or POCS (FS-POCS) to find the solution in the intersection of convex constraints of bounded TV function, bounded data fidelity error and non-negativity. The rationale behind FS-POCS is that the mathematically optimal solution of the constrained objective function may not be the physically optimal solution. The breakdown of constrained reconstruction into an intersection of several feasible sets can lead to faster convergence and better quantification of reconstruction parameters in a physical meaningful way than that in an empirical way of trial-and-error. In addition, for large-scale optimization problems, first order methods are usually used. Not only is the condition for convergence of gradient-based methods derived, but also a primal-dual hybrid gradient (PDHG) method is used for fast convergence of bounded TV. The newly proposed FS-POCS is evaluated and compared with TV-POCS and another convex feasibility projection method (CPTV) using both digital phantom and pseudo-real CT data to show its superior performance on reconstruction speed, image quality and quantification. PMID:28253298

  19. A Reconstruction Method for the Estimation of Temperatures of Multiple Sources Applied for Nanoparticle-Mediated Hyperthermia.

    PubMed

    Steinberg, Idan; Tamir, Gil; Gannot, Israel

    2018-03-16

    Solid malignant tumors are one of the leading causes of death worldwide. Many times complete removal is not possible and alternative methods such as focused hyperthermia are used. Precise control of the hyperthermia process is imperative for the successful application of such treatment. To that end, this research presents a fast method that enables the estimation of deep tissue heat distribution by capturing and processing the transient temperature at the boundary based on a bio-heat transfer model. The theoretical model is rigorously developed and thoroughly validated by a series of experiments. A 10-fold improvement is demonstrated in resolution and visibility on tissue mimicking phantoms. The inverse problem is demonstrated as well with a successful application of the model for imaging deep-tissue embedded heat sources. Thereby, allowing the physician then ability to dynamically evaluate the hyperthermia treatment efficiency in real time.

  20. A Twelve-Year Consecutive Case Experience in Thoracic Reconstruction

    PubMed Central

    Chen, Jenny T.; Bonneau, Laura A.; Weigel, Tracey L.; Maloney, James D.; Castro, Francisco; Shulzhenko, Nikita

    2016-01-01

    Background: We describe the second largest contemporary series of flaps used in thoracic reconstruction. Methods: A retrospective review of patients undergoing thoracomyoplasty from 2001 to 2013 was conducted. Ninety-one consecutive patients were identified. Results: Thoracomyoplasty was performed for 67 patients with intrathoracic indications and 24 patients with chest wall defects. Malignancy and infection were the most common indications for reconstruction (P < 0.01). The latissimus dorsi (LD), pectoralis major, and serratus anterior muscle flaps remained the workhorses of reconstruction (LD and pectoralis major: 64% flaps in chest wall reconstruction; LD and serratus anterior: 85% of flaps in intrathoracic indication). Only 12% of patients required mesh. Only 6% of patients with <2 ribs resected required mesh when compared with 24% with 3–4 ribs, and 100% with 5 or more ribs resected (P < 0.01). Increased rib resections required in chest wall reconstruction resulted in a longer hospital stay (P < 0.01). Total comorbidities and complications were related to length of stay only in intrathoracic indication (P < 0.01). Average intubation time was significantly higher in patients undergoing intrathoracic indication (5.51 days) than chest wall reconstruction (0.04 days), P < 0.05. Average hospital stay was significantly higher in patients undergoing intrathoracic indication (23 days) than chest wall reconstruction (12 days), P < 0.05. One-year survival was most poor for intrathoracic indication (59%) versus chest wall reconstruction (83%), P = 0.0048. Conclusion: Thoracic reconstruction remains a safe and successful intervention that reliably treats complex and challenging problems, allowing more complex thoracic surgery problems to be salvaged. PMID:27257568

  1. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE...

  2. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE...

  3. Three-dimensional curvilinear device reconstruction from two fluoroscopic views

    NASA Astrophysics Data System (ADS)

    Delmas, Charlotte; Berger, Marie-Odile; Kerrien, Erwan; Riddell, Cyril; Trousset, Yves; Anxionnat, René; Bracard, Serge

    2015-03-01

    In interventional radiology, navigating devices under the sole guidance of fluoroscopic images inside a complex architecture of tortuous and narrow vessels like the cerebral vascular tree is a difficult task. Visualizing the device in 3D could facilitate this navigation. For curvilinear devices such as guide-wires and catheters, a 3D reconstruction may be achieved using two simultaneous fluoroscopic views, as available on a biplane acquisition system. The purpose of this paper is to present a new automatic three-dimensional curve reconstruction method that has the potential to reconstruct complex 3D curves and does not require a perfect segmentation of the endovascular device. Using epipolar geometry, our algorithm translates the point correspondence problem into a segment correspondence problem. Candidate 3D curves can be formed and evaluated independently after identifying all possible combinations of compatible 3D segments. Correspondence is then inherently solved by looking in 3D space for the most coherent curve in terms of continuity and curvature. This problem can be cast into a graph problem where the most coherent curve corresponds to the shortest path of a weighted graph. We present quantitative results of curve reconstructions performed from numerically simulated projections of tortuous 3D curves extracted from cerebral vascular trees affected with brain arteriovenous malformations as well as fluoroscopic image pairs of a guide-wire from both phantom and clinical sets. Our method was able to select the correct 3D segments in 97.5% of simulated cases thus demonstrating its ability to handle complex 3D curves and can deal with imperfect 2D segmentation.

  4. Waveform Design for Multimedia Airborne Networks: Robust Multimedia Data Transmission in Cognitive Radio Networks

    DTIC Science & Technology

    2011-03-01

    at the sensor. According to Candes, Tao and Romberg [1], a small number of random projections of a signal that is compressible is all the...Projection of Signal Transform i. DWT ii. FFT iii. DCT Solve the Minimization problem Reconstruct Signal Channel (AWGN ) De -noise Signal Original...Signal (Noisy) Random Projection of Signal Transform i. DWT ii. FFT iii. DCT Solve the Minimization problem Reconstruct Signal Channel (Noiseless) De

  5. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  6. A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system

    NASA Astrophysics Data System (ADS)

    Ge, Zhuo; Zhu, Ying; Liang, Guanhao

    2017-01-01

    To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.

  7. Reconstruction of lightning channel geometry by localizing thunder sources

    NASA Astrophysics Data System (ADS)

    Bodhika, J. A. P.; Dharmarathna, W. G. D.; Fernando, Mahendra; Cooray, Vernon

    2013-09-01

    Thunder is generated as a result of a shock wave created by sudden expansion of air in the lightning channel due to high temperature variations. Even though the highest amplitudes of thunder signatures are generated at the return stroke stage, thunder signals generated at other events such as preliminary breakdown pulses also can be of amplitudes which are large enough to record using a sensitive system. In this study, it was attempted to reconstruct the lightning channel geometry of cloud and ground flashes by locating the temporal and spatial variations of thunder sources. Six lightning flashes were reconstructed using the recorded thunder signatures. Possible effects due to atmospheric conditions were neglected. Numerical calculations suggest that the time resolution of the recorded signal and 10 ms-1error in speed of sound leads to 2% and 3% errors, respectively, in the calculated coordinates. Reconstructed channel geometries for cloud and ground flashes agreed with the visual observations. Results suggest that the lightning channel can be successfully reconstructed using this technique.

  8. Joint Source-Channel Coding by Means of an Oversampled Filter Bank Code

    NASA Astrophysics Data System (ADS)

    Marinkovic, Slavica; Guillemot, Christine

    2006-12-01

    Quantized frame expansions based on block transforms and oversampled filter banks (OFBs) have been considered recently as joint source-channel codes (JSCCs) for erasure and error-resilient signal transmission over noisy channels. In this paper, we consider a coding chain involving an OFB-based signal decomposition followed by scalar quantization and a variable-length code (VLC) or a fixed-length code (FLC). This paper first examines the problem of channel error localization and correction in quantized OFB signal expansions. The error localization problem is treated as an[InlineEquation not available: see fulltext.]-ary hypothesis testing problem. The likelihood values are derived from the joint pdf of the syndrome vectors under various hypotheses of impulse noise positions, and in a number of consecutive windows of the received samples. The error amplitudes are then estimated by solving the syndrome equations in the least-square sense. The message signal is reconstructed from the corrected received signal by a pseudoinverse receiver. We then improve the error localization procedure by introducing a per-symbol reliability information in the hypothesis testing procedure of the OFB syndrome decoder. The per-symbol reliability information is produced by the soft-input soft-output (SISO) VLC/FLC decoders. This leads to the design of an iterative algorithm for joint decoding of an FLC and an OFB code. The performance of the algorithms developed is evaluated in a wavelet-based image coding system.

  9. Approximate static condensation algorithm for solving multi-material diffusion problems on meshes non-aligned with material interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikinzon, Evgeny; Kuznetsov, Yuri; Lipnikov, Konstatin

    In this study, we describe a new algorithm for solving multi-material diffusion problem when material interfaces are not aligned with the mesh. In this case interface reconstruction methods are used to construct approximate representation of interfaces between materials. They produce so-called multi-material cells, in which materials are represented by material polygons that contain only one material. The reconstructed interface is not continuous between cells. Finally, we suggest the new method for solving multi-material diffusion problems on such meshes and compare its performance with known homogenization methods.

  10. Approximate static condensation algorithm for solving multi-material diffusion problems on meshes non-aligned with material interfaces

    DOE PAGES

    Kikinzon, Evgeny; Kuznetsov, Yuri; Lipnikov, Konstatin; ...

    2017-07-08

    In this study, we describe a new algorithm for solving multi-material diffusion problem when material interfaces are not aligned with the mesh. In this case interface reconstruction methods are used to construct approximate representation of interfaces between materials. They produce so-called multi-material cells, in which materials are represented by material polygons that contain only one material. The reconstructed interface is not continuous between cells. Finally, we suggest the new method for solving multi-material diffusion problems on such meshes and compare its performance with known homogenization methods.

  11. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  12. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.

    PubMed

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  13. Reconstruction of network topology using status-time-series data

    NASA Astrophysics Data System (ADS)

    Pandey, Pradumn Kumar; Badarla, Venkataramana

    2018-01-01

    Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.

  14. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.

    PubMed

    Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao

    2016-01-01

    Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.

  15. Application of the sequential quadratic programming algorithm for reconstructing the distribution of optical parameters based on the time-domain radiative transfer equation.

    PubMed

    Qi, Hong; Qiao, Yao-Bin; Ren, Ya-Tao; Shi, Jing-Wen; Zhang, Ze-Yu; Ruan, Li-Ming

    2016-10-17

    Sequential quadratic programming (SQP) is used as an optimization algorithm to reconstruct the optical parameters based on the time-domain radiative transfer equation (TD-RTE). Numerous time-resolved measurement signals are obtained using the TD-RTE as forward model. For a high computational efficiency, the gradient of objective function is calculated using an adjoint equation technique. SQP algorithm is employed to solve the inverse problem and the regularization term based on the generalized Gaussian Markov random field (GGMRF) model is used to overcome the ill-posed problem. Simulated results show that the proposed reconstruction scheme performs efficiently and accurately.

  16. Endless cold: a seasonal reconstruction of temperature and precipitation in the Burgundian Low Countries during the 15th century based on documentary evidence

    NASA Astrophysics Data System (ADS)

    Camenisch, C.

    2015-03-01

    This paper applies the methods of historical climatology to present a climate reconstruction for the area of the Burgundian Low Countries during the 15th century. The results are based on documentary evidence that has been handled very carefully, especially with regard to the distinction between contemporary and non-contemporary sources. Approximately 3000 written records deriving from about 100 different sources were examined and converted into seasonal seven-degree indices for temperature and precipitation. For the Late Middle Ages only a few climate reconstructions exist. There are even fewer reconstructions which include winter and autumn temperature or precipitation at all. This paper therefore constitutes a useful contribution to the understanding of climate and weather conditions in the less well researched but highly interesting 15th century.

  17. Adaptive zooming in X-ray computed tomography.

    PubMed

    Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan

    2014-01-01

    In computed tomography (CT), the source-detector system commonly rotates around the object in a circular trajectory. Such a trajectory does not allow to exploit a detector fully when scanning elongated objects. Increase the spatial resolution of the reconstructed image by optimal zooming during scanning. A new approach is proposed, in which the full width of the detector is exploited for every projection angle. This approach is based on the use of prior information about the object's convex hull to move the source as close as possible to the object, while avoiding truncation of the projections. Experiments show that the proposed approach can significantly improve reconstruction quality, producing reconstructions with smaller errors and revealing more details in the object. The proposed approach can lead to more accurate reconstructions and increased spatial resolution in the object compared to the conventional circular trajectory.

  18. A simple smoothness indicator for the WENO scheme with adaptive order

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Chen, Li Li

    2018-01-01

    The fifth order WENO scheme with adaptive order is competent for solving hyperbolic conservation laws, its reconstruction is a convex combination of a fifth order linear reconstruction and three third order linear reconstructions. Note that, on uniform mesh, the computational cost of smoothness indicator for fifth order linear reconstruction is comparable with the sum of ones for three third order linear reconstructions, thus it is too heavy; on non-uniform mesh, the explicit form of smoothness indicator for fifth order linear reconstruction is difficult to be obtained, and its computational cost is much heavier than the one on uniform mesh. In order to overcome these problems, a simple smoothness indicator for fifth order linear reconstruction is proposed in this paper.

  19. Pulse reflectometry as an acoustical inverse problem: Regularization of the bore reconstruction

    NASA Astrophysics Data System (ADS)

    Forbes, Barbara J.; Sharp, David B.; Kemp, Jonathan A.

    2002-11-01

    The theoretical basis of acoustic pulse reflectometry, a noninvasive method for the reconstruction of an acoustical duct from the reflections measured in response to an input pulse, is reviewed in terms of the inversion of the central Fredholm equation. It is known that this is an ill-posed problem in the context of finite-bandwidth experimental signals. Recent work by the authors has proposed the truncated singular value decomposition (TSVD) in the regularization of the transient input impulse response, a non-measurable quantity from which the spatial bore reconstruction is derived. In the present paper we further emphasize the relevance of the singular system framework to reflectometry applications, examining for the first time the transient bases of the system. In particular, by varying the truncation point for increasing condition numbers of the system matrix, it is found that the effects of out-of-bandwidth singular functions on the bore reconstruction can be systematically studied.

  20. Accurate reconstruction in digital holographic microscopy using antialiasing shift-invariant contourlet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-03-01

    The measurement of microstructured components is a challenging task in optical engineering. Digital holographic microscopy has attracted intensive attention due to its remarkable capability of measuring complex surfaces. However, speckles arise in the recorded interferometric holograms, and they will degrade the reconstructed wavefronts. Existing speckle removal methods suffer from the problems of frequency aliasing and phase distortions. A reconstruction method based on the antialiasing shift-invariant contourlet transform (ASCT) is developed. Salient edges and corners have sparse representations in the transform domain of ASCT, and speckles can be recognized and removed effectively. As subsampling in the scale and directional filtering schemes is avoided, the problems of frequency aliasing and phase distortions occurring in the conventional multiscale transforms can be effectively overcome, thereby improving the accuracy of wavefront reconstruction. As a result, the proposed method is promising for the digital holographic measurement of complex structures.

  1. Fast half-sibling population reconstruction: theory and algorithms.

    PubMed

    Dexter, Daniel; Brown, Daniel G

    2013-07-12

    Kinship inference is the task of identifying genealogically related individuals. Kinship information is important for determining mating structures, notably in endangered populations. Although many solutions exist for reconstructing full sibling relationships, few exist for half-siblings. We consider the problem of determining whether a proposed half-sibling population reconstruction is valid under Mendelian inheritance assumptions. We show that this problem is NP-complete and provide a 0/1 integer program that identifies the minimum number of individuals that must be removed from a population in order for the reconstruction to become valid. We also present SibJoin, a heuristic-based clustering approach based on Mendelian genetics, which is strikingly fast. The software is available at http://github.com/ddexter/SibJoin.git+. Our SibJoin algorithm is reasonably accurate and thousands of times faster than existing algorithms. The heuristic is used to infer a half-sibling structure for a population which was, until recently, too large to evaluate.

  2. Quantitative ultrasonic evaluation of concrete structures using one-sided access

    NASA Astrophysics Data System (ADS)

    Khazanovich, Lev; Hoegh, Kyle

    2016-02-01

    Nondestructive diagnostics of concrete structures is an important and challenging problem. A recent introduction of array ultrasonic dry point contact transducer systems offers opportunities for quantitative assessment of the subsurface condition of concrete structures, including detection of defects and inclusions. The methods described in this paper are developed for signal interpretation of shear wave impulse response time histories from multiple fixed distance transducer pairs in a self-contained ultrasonic linear array. This included generalizing Kirchoff migration-based synthetic aperture focusing technique (SAFT) reconstruction methods to handle the spatially diverse transducer pair locations, creating expanded virtual arrays with associated reconstruction methods, and creating automated reconstruction interpretation methods for reinforcement detection and stochastic flaw detection. Interpretation of the reconstruction techniques developed in this study were validated using the results of laboratory and field forensic studies. Applicability of the developed methods for solving practical engineering problems was demonstrated.

  3. Antesternal pharyngogastrostomy by oral insertion of a stapler.

    PubMed

    Tanaka, T; Sato, H; Sakabe, T

    1984-03-01

    Cancer of the hypopharynx and cervical esophagus involve problems such as removal of the cervical region, resection of the esophagus and also esophageal reconstruction. A standard surgical procedure has not been established. In our clinic, surgery is performed by two teams; one for head and neck and the other for the digestive tract. Since 1963, we have performed 22 operations on patients with such cancers; resection of the cancer and reconstruction of the alimentary tract were performed in sixteen 16 patients and palliative operations in six. As procedures of reconstructive surgery, antesternal pharyngogastrostomy was performed in ten patients, and antesternal esophagogastrostomy in one. Six of these reconstructions were carried out with oral insertion of a stapler. In this paper, we present the surgical techniques and some of the problems involved in total esophagectomy without thoracotomy, i.e., blunt dissection of the esophagus and antesternal pharyngogastrostomy, particularly pharyngogastrostomy, using a stapler inserted orally.

  4. Validation of a Sensor-Driven Modeling Paradigm for Multiple Source Reconstruction with FFT-07 Data

    DTIC Science & Technology

    2009-05-01

    operational warning and reporting (information) systems that combine automated data acquisition, analysis , source reconstruction, display and distribution of...report and to incorporate this operational ca- pability into the integrative multiscale urban modeling system implemented in the com- putational...Journal of Fluid Mechanics, 180, 529–556. [27] Flesch, T., Wilson, J. D., and Yee, E. (1995), Backward- time Lagrangian stochastic dispersion models

  5. Use of the 3D surgical modelling technique with open-source software for mandibular fibula free flap reconstruction and its surgical guides.

    PubMed

    Ganry, L; Hersant, B; Quilichini, J; Leyder, P; Meningaud, J P

    2017-06-01

    Tridimensional (3D) surgical modelling is a necessary step to create 3D-printed surgical tools, and expensive professional software is generally needed. Open-source software are functional, reliable, updated, may be downloaded for free and used to produce 3D models. Few surgical teams have used free solutions for mastering 3D surgical modelling for reconstructive surgery with osseous free flaps. We described an Open-source software 3D surgical modelling protocol to perform a fast and nearly free mandibular reconstruction with microvascular fibula free flap and its surgical guides, with no need for engineering support. Four successive specialised Open-source software were used to perform our 3D modelling: OsiriX ® , Meshlab ® , Netfabb ® and Blender ® . Digital Imaging and Communications in Medicine (DICOM) data on patient skull and fibula, obtained with a computerised tomography (CT) scan, were needed. The 3D modelling of the reconstructed mandible and its surgical guides were created. This new strategy may improve surgical management in Oral and Craniomaxillofacial surgery. Further clinical studies are needed to demonstrate the feasibility, reproducibility, transfer of know how and benefits of this technique. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Reconstruction of atmospheric pollutant concentrations from remote sensing data - An application of distributed parameter observer theory

    NASA Technical Reports Server (NTRS)

    Koda, M.; Seinfeld, J. H.

    1982-01-01

    The reconstruction of a concentration distribution from spatially averaged and noise-corrupted data is a central problem in processing atmospheric remote sensing data. Distributed parameter observer theory is used to develop reconstructibility conditions for distributed parameter systems having measurements typical of those in remote sensing. The relation of the reconstructibility condition to the stability of the distributed parameter observer is demonstrated. The theory is applied to a variety of remote sensing situations, and it is found that those in which concentrations are measured as a function of altitude satisfy the conditions of distributed state reconstructibility.

  7. Deep Wideband Single Pointings and Mosaics in Radio Interferometry: How Accurately Do We Reconstruct Intensities and Spectral Indices of Faint Sources?

    NASA Astrophysics Data System (ADS)

    Rau, U.; Bhatnagar, S.; Owen, F. N.

    2016-11-01

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1-2 GHz)) and 46-pointing mosaic (D-array, C-Band (4-8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μJy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in the reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  8. Ab initio nanostructure determination

    NASA Astrophysics Data System (ADS)

    Gujarathi, Saurabh

    Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and technology, from protein structure determination to bulk heterostructure solar cells and the structure of nanoparticles. This problem is cast as a complex network problem where the edges in a network have weights equal to the Euclidean distance between their endpoints. A method, called Tribond, for the reconstruction of the locations of the nodes of the network given only the edge weights of the Euclidean network is presented. The timing results indicate that the algorithm is a low order polynomial in the number of nodes in the network in two dimensions. Reconstruction of Euclidean networks in two dimensions of about one thousand nodes in approximately twenty four hours on a desktop computer using this implementation is done. In three dimensions, the computational cost for the reconstruction is a higher order polynomial in the number of nodes and reconstruction of small Euclidean networks in three dimensions is shown. If a starting network of size five is assumed to be given, then for a network of size 100, the remaining reconstruction can be done in about two hours on a desktop computer. In situations when we have less precise data, modifications of the method may be necessary and are discussed. A related problem in one dimension known as the Optimal Golomb ruler (OGR) is also studied. A statistical physics Hamiltonian to describe the OGR problem is introduced and the first order phase transition from a symmetric low constraint phase to a complex symmetry broken phase at high constraint is studied. Despite the fact that the Hamiltonian is not disordered, the asymmetric phase is highly irregular with geometric frustration. The phase diagram is obtained and it is seen that even at a very low temperature T there is a phase transition at finite and non-zero value of the constraint parameter gamma/mu. Analytic calculations for the scaling of the density and free energy of the ruler are done and they are compared with those from the mean field approach. A scaling law is also derived for the length of OGR, which is consistent with Erdos conjecture and with numerical results.

  9. Localization and spectral isolation of special nuclear material using stochastic image reconstruction

    NASA Astrophysics Data System (ADS)

    Hamel, M. C.; Polack, J. K.; Poitrasson-Rivière, A.; Clarke, S. D.; Pozzi, S. A.

    2017-01-01

    In this work we present a technique for isolating the gamma-ray and neutron energy spectra from multiple radioactive sources localized in an image. Image reconstruction algorithms for radiation scatter cameras typically focus on improving image quality. However, with scatter cameras being developed for non-proliferation applications, there is a need for not only source localization but also source identification. This work outlines a modified stochastic origin ensembles algorithm that provides localized spectra for all pixels in the image. We demonstrated the technique by performing three experiments with a dual-particle imager that measured various gamma-ray and neutron sources simultaneously. We showed that we could isolate the peaks from 22Na and 137Cs and that the energy resolution is maintained in the isolated spectra. To evaluate the spectral isolation of neutrons, a 252Cf source and a PuBe source were measured simultaneously and the reconstruction showed that the isolated PuBe spectrum had a higher average energy and a greater fraction of neutrons at higher energies than the 252Cf. Finally, spectrum isolation was used for an experiment with weapons grade plutonium, 252Cf, and AmBe. The resulting neutron and gamma-ray spectra showed the expected characteristics that could then be used to identify the sources.

  10. Efficient operator splitting algorithm for joint sparsity-regularized SPIRiT-based parallel MR imaging reconstruction.

    PubMed

    Duan, Jizhong; Liu, Yu; Jing, Peiguang

    2018-02-01

    Self-consistent parallel imaging (SPIRiT) is an auto-calibrating model for the reconstruction of parallel magnetic resonance imaging, which can be formulated as a regularized SPIRiT problem. The Projection Over Convex Sets (POCS) method was used to solve the formulated regularized SPIRiT problem. However, the quality of the reconstructed image still needs to be improved. Though methods such as NonLinear Conjugate Gradients (NLCG) can achieve higher spatial resolution, these methods always demand very complex computation and converge slowly. In this paper, we propose a new algorithm to solve the formulated Cartesian SPIRiT problem with the JTV and JL1 regularization terms. The proposed algorithm uses the operator splitting (OS) technique to decompose the problem into a gradient problem and a denoising problem with two regularization terms, which is solved by our proposed split Bregman based denoising algorithm, and adopts the Barzilai and Borwein method to update step size. Simulation experiments on two in vivo data sets demonstrate that the proposed algorithm is 1.3 times faster than ADMM for datasets with 8 channels. Especially, our proposal is 2 times faster than ADMM for the dataset with 32 channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Anthropogenic Sources of Arsenic and Copper to Sediments of a Suburban Lake, 1964-1998

    NASA Astrophysics Data System (ADS)

    Rice, K. C.; Conko, K. M.; Hornberger, G. M.

    2002-05-01

    Nonpoint-source pollution from urbanization is becoming a widespread problem. Long-term monitoring data are necessary to document geochemical processes in urban settings and changes in sources of chemical contaminants over time. In the absence of long-term data, lake-sediment cores can be used to reconstruct past processes, because they serve as integrators of sources of pollutants from the contributing airshed and catchment. Lake Anne is a 10.9-ha man-made lake in a 235-ha suburban catchment in Reston, Virginia, with a population density of 1,116 people/km2. Three sediment cores, collected in 1996 and 1997, indicate increasing concentrations of arsenic and copper since 1964, when the lake was formed. The cores were compared to a core collected from a forested catchment in the same airshed that showed no increases in concentrations of these elements. Neither an increase in atmospheric deposition nor diagenesis and remobilization were responsible for the trends in the Lake Anne cores. Mass balances of sediment, arsenic, and copper were calculated using 1998 data on precipitation, streamwater, road runoff, and a laboratory leaching experiment on pressure-treated lumber. Sources of arsenic to the lake in 1998 were in-lake leaching of pressure-treated lumber (52%) and streamwater (47%). Road runoff was a greater (93%) source of copper than leaching of pressure-treated lumber (4%). Atmospheric deposition was an insignificant source (<3%) of both elements. Urbanization of the catchment was confirmed as a major cause of the increasing arsenic and copper in the lake cores through an annual historical reconstruction of the deposition of sediment, arsenic, and copper to the lake for 1964-1997. Aerial photography indicated that the area of roads and parking lots in the catchment increased to 26% by 1997 and that the number of docks on the lake also increased over time. The increased mass of arsenic and copper in the lake sediments corresponded to the increased amount of pressure-treated lumber in the lake, and the mass of copper also corresponded to the increase in paved surfaces in the catchment.

  12. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    NASA Astrophysics Data System (ADS)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  13. Autofocusing in digital holography using deep learning

    NASA Astrophysics Data System (ADS)

    Ren, Zhenbo; Xu, Zhimin; Lam, Edmund Y.

    2018-02-01

    In digital holography, it is critical to know the distance in order to reconstruct the multi-sectional object. This autofocusing is traditionally solved by reconstructing a stack of in-focus and out-of-focus images and using some focus metric, such as entropy or variance, to calculate the sharpness of each reconstructed image. Then the distance corresponding to the sharpest image is determined as the focal position. This method is effective but computationally demanding and time-consuming. To get an accurate estimation, one has to reconstruct many images. Sometimes after a coarse search, a refinement is needed. To overcome this problem in autofocusing, we propose to use deep learning, i.e., a convolutional neural network (CNN), to solve this problem. Autofocusing is viewed as a classification problem, in which the true distance is transferred as a label. To estimate the distance is equated to labeling a hologram correctly. To train such an algorithm, totally 1000 holograms are captured under the same environment, i.e., exposure time, incident angle, object, except the distance. There are 5 labels corresponding to 5 distances. These data are randomly split into three datasets to train, validate and test a CNN network. Experimental results show that the trained network is capable of predicting the distance without reconstructing or knowing any physical parameters about the setup. The prediction time using this method is far less than traditional autofocusing methods.

  14. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  15. Probabilistic surface reconstruction from multiple data sets: An example for the Australian Moho

    NASA Astrophysics Data System (ADS)

    Bodin, T.; Salmon, M.; Kennett, B. L. N.; Sambridge, M.

    2012-10-01

    Interpolation of spatial data is a widely used technique across the Earth sciences. For example, the thickness of the crust can be estimated by different active and passive seismic source surveys, and seismologists reconstruct the topography of the Moho by interpolating these different estimates. Although much research has been done on improving the quantity and quality of observations, the interpolation algorithms utilized often remain standard linear regression schemes, with three main weaknesses: (1) the level of structure in the surface, or smoothness, has to be predefined by the user; (2) different classes of measurements with varying and often poorly constrained uncertainties are used together, and hence it is difficult to give appropriate weight to different data types with standard algorithms; (3) there is typically no simple way to propagate uncertainties in the data to uncertainty in the estimated surface. Hence the situation can be expressed by Mackenzie (2004): "We use fantastic telescopes, the best physical models, and the best computers. The weak link in this chain is interpreting our data using 100 year old mathematics". Here we use recent developments made in Bayesian statistics and apply them to the problem of surface reconstruction. We show how the reversible jump Markov chain Monte Carlo (rj-McMC) algorithm can be used to let the degree of structure in the surface be directly determined by the data. The solution is described in probabilistic terms, allowing uncertainties to be fully accounted for. The method is illustrated with an application to Moho depth reconstruction in Australia.

  16. The Herschel-ATLAS: magnifications and physical sizes of 500-μm-selected strongly lensed galaxies

    NASA Astrophysics Data System (ADS)

    Enia, A.; Negrello, M.; Gurwell, M.; Dye, S.; Rodighiero, G.; Massardi, M.; De Zotti, G.; Franceschini, A.; Cooray, A.; van der Werf, P.; Birkinshaw, M.; Michałowski, M. J.; Oteo, I.

    2018-04-01

    We perform lens modelling and source reconstruction of Sub-millimetre Array (SMA) data for a sample of 12 strongly lensed galaxies selected at 500μm in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). A previous analysis of the same data set used a single Sérsic profile to model the light distribution of each background galaxy. Here we model the source brightness distribution with an adaptive pixel scale scheme, extended to work in the Fourier visibility space of interferometry. We also present new SMA observations for seven other candidate lensed galaxies from the H-ATLAS sample. Our derived lens model parameters are in general consistent with previous findings. However, our estimated magnification factors, ranging from 3 to 10, are lower. The discrepancies are observed in particular where the reconstructed source hints at the presence of multiple knots of emission. We define an effective radius of the reconstructed sources based on the area in the source plane where emission is detected above 5σ. We also fit the reconstructed source surface brightness with an elliptical Gaussian model. We derive a median value reff ˜ 1.77 kpc and a median Gaussian full width at half-maximum ˜1.47 kpc. After correction for magnification, our sources have intrinsic star formation rates (SFR) ˜ 900-3500 M⊙ yr-1, resulting in a median SFR surface density ΣSFR ˜ 132 M⊙ yr-1 kpc-2 (or ˜218 M⊙ yr-1 kpc-2 for the Gaussian fit). This is consistent with that observed for other star-forming galaxies at similar redshifts, and is significantly below the Eddington limit for a radiation pressure regulated starburst.

  17. Comparison of 3D reconstruction of mandible for pre-operative planning using commercial and open-source software

    NASA Astrophysics Data System (ADS)

    Abdullah, Johari Yap; Omar, Marzuki; Pritam, Helmi Mohd Hadi; Husein, Adam; Rajion, Zainul Ahmad

    2016-12-01

    3D printing of mandible is important for pre-operative planning, diagnostic purposes, as well as for education and training. Currently, the processing of CT data is routinely performed with commercial software which increases the cost of operation and patient management for a small clinical setting. Usage of open-source software as an alternative to commercial software for 3D reconstruction of the mandible from CT data is scarce. The aim of this study is to compare two methods of 3D reconstruction of the mandible using commercial Materialise Mimics software and open-source Medical Imaging Interaction Toolkit (MITK) software. Head CT images with a slice thickness of 1 mm and a matrix of 512x512 pixels each were retrieved from the server located at the Radiology Department of Hospital Universiti Sains Malaysia. The CT data were analysed and the 3D models of mandible were reconstructed using both commercial Materialise Mimics and open-source MITK software. Both virtual 3D models were saved in STL format and exported to 3matic and MeshLab software for morphometric and image analyses. Both models were compared using Wilcoxon Signed Rank Test and Hausdorff Distance. No significant differences were obtained between the 3D models of the mandible produced using Mimics and MITK software. The 3D model of the mandible produced using MITK open-source software is comparable to the commercial MIMICS software. Therefore, open-source software could be used in clinical setting for pre-operative planning to minimise the operational cost.

  18. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet.

    PubMed

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-02-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼ 1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

  19. 42 CFR 82.13 - What sources of information may be used for dose reconstructions?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER... from health research on DOE worker populations; (c) Interviews and records provided by claimants; (d...

  20. 40 CFR 63.1158 - Emission standards for new or reconstructed sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1158 Emission standards for new or... percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of a new or reconstructed...

Top